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Introduction

In the theory of dynamical systems, a well known seminal area is the study of rational
maps in the Riemann sphere. For complex dynamics in several variables, polynomial
automorphisms of C2 appear in a natural way. Their study represent the first step for a
global understanding of holomorphics dynamic in higher dimension.

Moreover, this area is particularly interesting because of its connections to some
fundamental questions of dynamical systems via two real dimensional dynamics and
because of its connection to some powerful techniques via one dimensional complex
tools.

The first results in the theory, were given by Friedland and Milnor in [FM]. They
proved, that in the set of polynomial automorphism in C2, the only systems that exhibit
rich dynamics (module, conjugation by a polynomial automorphism) are the so called
generalized Hénon maps (or by simplicity, Hénon maps).

This kind of applications are characterized as the map that can be written as

f (x, y) = fk ◦ · · · ◦ f1(x, y),

for each j = 1, . . . , k
f j(x, y) = (y, p j(y) − δ jx)

where δ j , 0 and p j is a monic polynomial of degree d j = deg(p j) ≥ 2. As in the one
dimensional context, it can be defined the Julia set, which is the set that concentrate the
interesting dynamical behavior of these type of systems. This set is compact invariant
and have a series of properties similar to the ones satisfied by the one dimensional Julia
set.

Several works in the study of Hénon map, has been carried out by a large number
of authors including Bedford, Fornæss, Friedland, Hubbard, Lyubich, Milnor, Oberste-
Vorth, Sibony, Smillie; and among other.

One of the goals of the present work is to describe the dynamics of two dimensional
polynomial automorphisms under the hypotheses of Dominated Splitting in the Julia
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set. We also look to find sufficient conditions to guarantee hyperbolicity. The second
main goal is to understand the dynamical obstruction for domination. This allow us to
introduce a notion of critical point for polynomial automorphisms that capture many of
the dynamical properties of their one-dimensional counterpart.

At the beginning of each chapter, there are extensive introductions resuming the main
results. Here, we only summarize briefly the general ideas and we recommend to the
reader to give a glance to that introductions.

In the first chapter, we present the generalized Hénon maps and we list a series of
properties of the Julia set that give a global panorama of their dynamics. We also, for-
malize the notion of dominated splitting in the context of two dimensional holomorphic
maps and it is given an extensive list of examples of holomorphics transformations that
have invariant set with the properties of dominated splitting.

In the second chapter, we address the main part of the work about the dynamical con-
sequences of dominated splitting. Under a topological condition in the center unstable
leaves, namely expansiveness, we prove that the Julia set is a hyperbolic set (Theorem
A). Another result in the second chapter gives a metrical condition that also implies
hyperbolicity.

In the third chapter, we study the dynamical obstruction for domination in the two di-
mensional holomorphic context (not necessarily for Hénon maps), called critical points.
This is a generalization in the two dimensional holomorphic context of the notion intro-
duced in [P-RH] for surfaces maps. The main theorem of the present chapter establish,
roughly speaking, that The Julia set has dominated splitting if and only if it does not
have ”critical points“. In some sense, this suggest a two dimensional counterpart for
the classical one dimensional theorem about rational maps: “ If the postcritical set is
disjoint from the Julia set, them the Julia set is Hyperbolic”.

In the last chapter, we summarize a list of question that appear along this work and
motivated this thesis.
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A.2.5 The Invariant measure for Hénon maps . . . . . . . . . . . . . 105



Chapter 1

Preliminary Results on Polynomial
Automorphisms and Dominated
Splitting

Introduction

In this chapter, we study two central topics to the present work. The first of them is
generalized Hénon map, and the second one is the notion of dominated splitting for
two dimensional holomorphics map. We also make a list of examples of holomorphic
maps in the two dimensional space, that have invariant sets with dominated splitting.

The main goal of the first section, is to present the state of the art in the study of
Hénon map, however not all of this results are used in this Thesis works.

1.1 Background on Generalized Hénon map

In this section we study polynomial automorphisms of C2. Several works in the study
of a special type of polynomial automorphisms called generalized Hénon map, has
been carried out by a large number of authors including Bedford, Fornæss, Friedland,
Hubbard, Lyubich, Milnor, Oberste-Vorth, Sibony, Smillie; and among other. We will
present the most important result in this direction.

An holomorphic automorphism (or biholomorphisms) f (x, y) = ( f1(x, y), f2(x, y)) of
C2 is called a polynomial automorphisms if f1(x, y), f2(x, y) are polynomials in the
variables x, y. The degree of f is defined by deg( f ) = max(deg( f1), deg( f2)). Since
f is a biholomorphism, the inverse map f −1 is also a polynomial automorphism of
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C2 with the same degree of the f , and the Jacobian Determinant J f (x, y) is a non-
zero constant function (see for example [MNTU]). We can describe three equivalence
class of conjugation in the Group of Polynomials Automorphisms. To enunciate this
result due to Friedland and Milnor in their work [FM], we first define three types of
polynomial automorphism.

Definition 1.1.1. We say that a polynomial automorphism f is:

(a) affine map, if

f (x, y) = (ax + by + c, αx + βy + γ), (aβ − αb , 0);

(b) elementary map, if

f (x, y) = (ax + b, sy + p(x)), (as , 0),

where p is a polynomial in the variable x;

(c) generalized Hénon map (or simply a Hénon map), if

f (x, y) = fk ◦ · · · ◦ f1(x, y),

where for each j = 1, . . . , k

f j(x, y) = (y, p j(y) − δ jx)

where δ j , 0 and p j is a monic polynomial of degree d j = deg(p j) ≥ 2.

Theorem 1.1.1 (Friedland-Milnor). Every polynomial automorphism of C2 is conju-
gated by a polynomial automorphism to one of the following maps:

(1) an affine map,

(2) an elementary map,

(3) an generalized Hénon maps.

Henceforth let f be a Hénon map. It follows from the Definition 1.1.1, that the
degree of f is equal to deg( f ) =

∏k
j=1 d j = d and that the Jacobian determinant is equal

to det(D f ) =
∏k

j=1 δ j = δ, we also denote b = |δ| = | det(D f ) |.
We also adopt the following terminology: given f a Hénon map, let

K±f =
{
z ∈ C2 :

{
f ±n(z)

}
n∈N is bounded

}
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the forward/backward filled Julia set, J±f = ∂K±f the forward/backward Julia set,
K f = K+ ∩ K−f filled Julia set, and J f = J+f ∩ J−f = ∂K f is the Julia set. Also we
define the set of forward/backward escaping points by the sets U±f = C

2 \ K±. When
the dependence is clear, we omit the subscript in the notation. We will now enumerate
a series of result concerning Hénon maps.

1.1.1 Filtration

For R > 0 we define the sets

V− =
{
(x, y) ∈ C2 : |y| > R, |y| > |x|} , V+ =

{
(x, y) ∈ C2 : |x| > R, |x| > |y|}

and
V =

{
z ∈ C2 : |zi| ≤ r, for every i = 1, 2

}
= ∆(0,R)

the polydisc of radius R. Note that C2 = V− ∪ V ∪ V+. In [BS1] and [H-OV1] (see also
[MNTU]), the authors show the following general properties:

Properties 1.1.1. Given f a generalized Hénon map, there exist R > 0 great enough
such that:

1. K± ⊂ V ∪ V±;

2. K ⊂ V and is closed in V, so K is a compact set;

3. f ∓(V±) ( V± and f ∓(V± ∪ V) ⊂ V± ∪ V;

4. f ±n(V±) ⊂ f ±(n+1)(V±) for every n ≥ 0 and U± = ∪n≥0 f ±n(V±);

5. W s/u(K) = K±;

6. If | det(D f ) | < 1, then Int(K−) = ∅.

7. The chain recurrent set R( f ) ⊂ K.

8. The sets K± and J± are connected.

9. If f is hyperbolic in J, then f has a finitely many periodic sink q1, . . . , qk, whose
stable manifolds W s are Fatou-Bieberbach domains (open set biholomorphic to
C2). Also ∂W s(qi) = J+ for all i = 1, . . . , k. Moreover Ω( f ) = J ∪ {

q1, . . . , qk
}
.

We can think, in the set K as a “fat hyperbolic fixed point” (see Fig.1).
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Figure 1

1.1.2 Metrical Properties of Hénon maps

In [BS1] is proved that for every Hénon map there exists an invariant measure µ that
plays an important role in the studying of these applications. To complement, in the
Appendix A we developed main tools to show existence of this measure.

We denote by J∗ to the support of the measure µ defined above.

Properties 1.1.2. The main properties about µ are the following:

1. J∗ ⊂ J.

2. If J is uniformly hyperbolic, then J = J∗. Moreover, the invariant manifolds
W s/u(x) of any x ∈ J, are conformally equivalent to the complex plane (see
[BS1]).

3. If J∗ is hyperbolic and f is not volume preserving, then J = J∗ (see [F]).

4. The measure µ is mixing, so ergodic (see [BS3] and [BLS1]).

5. The measure satisfies hµ( f ) = hµ( f |K) = hµ( f |J) = hµ( f |J∗) = log(d), where d is
the degree of f (see [BS3]).

6. The measure µ is the unique of maximal entropy (see [BLS1]).
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Another important Property to recall, is that the periodic point are equidistributed
with respect to the measure µ. This result is due to Bedford, Lyubich and Smillie (see
[BLS2]).

Firstly, we introduce some notation: Fixn denote the set of fixed point of f n, Pern the
set of points of period exactly n. Then Fixn=∪Perk, where the union is taken over all
k dividing n. Also denote by SPern, the set of all periodic saddle points with period
exactly n, hence

SPern ⊂ Pern ⊂ Fixn

#SPern ≤ #Pern ≤ #Fixn ≤ dn,

where d is the degree of f .

Theorem 1.1.2. Let Pn denotes any of the three sets above, then

lim
n→∞

1
dn

∑
p∈Pn

δp = µ.

1.1.3 Invariant Sets, Pesin Theory

For polynomial maps of C, Fatou and Julia used Montel’s theorem to show that the
expanding periodic points are dense in J. In the two dimensional context, the natural
analogs of expanding point are the periodic saddle points. It is clear that periodic saddle
point, are inside of J. In [BS1], the authors shows that J∗ is contained in closure of
periodic saddle points. Also we can relate the invariant manifolds W s/u(p) of a saddle
point p ∈ J∗ with the set J±, but the same relation can be showed for regular points
in the Oseledets sense. Denote by R the set of regular point in J∗. The following
properties are showed in [BLS1], and we can replace Per( f ) by R and “all” by “µ-a.e.”
in the following results.

Properties 1.1.3. One generalized Hénon map, has the following properties:

1. If p is periodic saddle point, then p ∈ J∗, in particular, the regular point are
dense in J∗.

2. For every p ∈ R denote by λs(p) and λu(p) the Lyapunov exponent. Then for µ-
a.e. p

λu(p) = lim
n→∞

1
n

∫
log ||D f n(x)||dµ(x),

and
λs(p) = log(b) − λu(p) ≤ − log(d) < 0 < log(d) ≤ λu(p).
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3. The stable and unstable manifolds W s(p) and Wu(p) are conformally equivalent
to the complex plane for µ-a.e. p.

4. For µ-a.e. p, Wu(p) is dense in J− and W s(p) is dense in J+. In particular,
J = J+ ∩ J− = W s(p) ∩Wu(q) for any pair p, q ∈ R.

5. For any pair of periodic saddle points, p and q, hold that J∗ = W s(p) ∩Wu(q).

Remark 1. 1. The property above, in particular implies that J∗ is a homoclinic
class, of any periodic point p.

2. The expression µ-a.e., in the previous properties, is in fact for µ-a.e. regular
points.

3. The same previous properties are true, if we replace µ by any measure f -invariant
ν, that is ergodic and hyperbolic supported in J.

1.2 Dominated Splitting and Examples

For a long time the goal in the theory of dynamical systems is to describe the dynamics
of “big set” (generic, residual, dense, etc.) in the space of all dynamical systems. It was
thought in the sixties that this could be realized by the so-called hyperbolic systems:
systems that have a splitting TL( f )M = E s ⊕ Eu, where M is a manifolds and L( f ) is the
limit set, such that vectors in E s (respectively Eu) are uniformly forward (respectively
backward) contracted by the linear cocycle (or tangent map) D f , (see [BDV] for more
details, and properties).

However, hyperbolicity is far from being a generic property: it was shown that there
are open sets in the space of dynamics which are non-hyperbolic. For example, in the
case of surface diffeomorphisms, Newhouse show that hyperbolicity was not dense in
the space of Cr-diffeomorphisms of compact surfaces for r ≥ 2 (the case r = 1 is still
an open problem). A similar phenomena holds for polynomial automorphisms: there
are open sets of polynomial automorphisms such that their Julia set is not hyperbolic
(see [Bu]).

We are interested in the study of a weaker form of hyperbolicity known as Dominated
Splitting. The concept of dominated splitting was introduced independently by Mañé,
Liao and Pliss, as a first step in the attempt to prove that structurally stable systems
satisfy a hyperbolic condition on the tangent map. In fact, under the assumption of
C1-structural stability, the closure of the periodic points exhibits dominated splitting.
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In this work, we are interested in the holomorphic context. More precisely, the notion
of dominated splitting for a two-dimensional holomorphics systems.

In this section, we present this notion and describe equivalents definitions that only
holds for polynomial automorphisms. Moreover, we present a series of examples of
holomorphic systems, that have an invariant set with dominated splitting.

In what follows, U and V are open connected sets of C2, f is a holomorphic diffeo-
morphisms of U to V , and Λ ⊂ U ∩ V is a compact f -invariant set.

Definition 1.2.1. A splitting TΛC2 = E ⊕ F, with dimC Ez = dimC Fz = 1 is dominated
(l-dominated), if it is invariant under the derivative D f and there exists a positive inte-
ger l > 0 such that

||D f l(z)|E(z)|| · ||D f −l( f l(z))|F( f l(z))|| <
1
2
,

for every z ∈ Λ.

The following classical proposition establish properties equivalent with the domi-
nated splitting notion.

Proposition 1.2.1. The following statement are equivalent:

1. The f -invariant set Λ has dominated splitting.

2. There exist an splitting TΛC2 = E ⊕F, of D f -invariant one-dimensional complex
planes, and positive real numbers C > 0 and 0 < λ < 1 such that

||D f (z)n|E(z)|| · ||D f −n(z)|F( f n(z))|| ≤ Cλn.

3. There exists an splitting TΛC2 = E ⊕ F, of one-dimensional complex planes (not
necessarily D f -invariant), such that there exists l > 0 and cone fields K(α, E)
and K(β, F), namely

K(α, E(z)) =
{
u + v ∈ E(z) ⊕ F(z) : ||u|| ≤ α||v||}

and
K(β, F(z)) =

{
u + v ∈ E(z) ⊕ F(z) : ||v|| ≤ β||u||},

such that

D f −l( f l(z))(K(α, E( f l(z)))) ⊂ K(α, E(z))◦, D f l(z)(K(β, F(z))) ⊂ K(β, F( f l(z)))◦
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and
||D f l(z)|K(α,E(z))|| · ||D f −l(z)|K(β,F( f l(z)))|| <

1
2
, 1

where K◦ = int(K) ∪ {
0
}
. We say that such of those cones are D f l-invariant and

have the property of l-domination.

Remark 2. We recall that the notion of dominated splitting, does not depend of the
norm function, considered in C2.

However in the context of Hénon maps, it is possible to get a stronger equivalent
definitions, of dominated splitting.

Definition 1.2.2. Let f : Cn → Cn be a biholomorphisms and Λ ⊂ Cn denote be a
compact f -invariant set. We say that f is ρ0-pseudo hyperbolic in Λ, if there exist a
continuous D f -invariant splitting TΛCn = E ⊕ F, and constants 0 < λ0 < ρ0 < µ0 and
C > 0 such that,

1. ||D f n(x)|E(x)|| ≤ Cλn
0, for n ≥ 0,

2. ||D f n(x)|F(x)|| ≥ Cµn
0, for n ≥ 0.

Remark 3. In general, the notion of ρ0-pseudo hyperbolicity is strong than dominated
splitting. For example, a dominated splitting in Λ, TΛC2 = E ⊕ F is equivalent with the
fact (maybe working whit f n instead f , with n great enough) that for each x ∈ Λ

||D f (x)|E(x)||
||D f (x)|F(x)|| < λ < 1,

for some λ. Thus there exist τx such that

||D f (x)|E(x)|| < τx < λ||D f (x)|F(x)||,

but we not have any condition to standardize the value τx over Λ. In other words, we
not have a uniform control of the spectrum of D f .

The following Lemma, establish that for a Hénon maps dominated splitting and ρ0-
pseudo hyperbolicity are equivalent notions, and the keys for this, is that the Jacobian
determinant of a Hénon map is constant.

1This condition appear for real cocycle of each dimension. In our case, complex two-dimensional
dominated splitting is not necessary. To see this fact, see the Proposition 3.1.5, and the proof of the
Proposition 3.1.6, in the Chapter 3.
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Lemma 1.1. Let f be a generalized Hénon. Then f has dominated splitting in J with
TJC

2 = E ⊕ F if and only if there exists ρ0 such that f is ρ0-pseudo hyperbolic in J.
Moreover, if f is dissipative (i.e. b < 1), then direction E is a stable direction.

We prove this this Lemma in the Chapter 2, in the Section 2.2. Also, in Chapter 2,
we studies the dynamical consequences of dominated splitting in the context of Hénon
maps.

1.2.1 Examples of Holomorphic systems with dominated splitting

Before introducing some examples, we consider the following Lemma.

Lemma 1.2. Let λ′ ∈ C such that |λ′| > λ > 0, and define the matrix

A(δ) =

 0 1
−δ λ′

 .
Then there exist δ0(λ) > 0 and positive numbers α and β, with αβ < 1 such that

A−1(δ)(Kh
α) ⊂ Kh

α

◦
, A(δ)(Kv

β) ⊂ Kv
β
◦,

where
Kh
α =

{
(u, v) ∈ C2 : |u| ≤ α|v|}

and
Kv
β =

{
(u, v) ∈ C2 : |v| ≤ β|u|},

for every 0 < |δ| < δ0(λ).

Proof. First one, note that we can find constant α, β and δ such that:

a. 1 < αλ,

b. β and |δ| small such that αβ < 1, 1 + α2|δ| < αλ and |δ| + β2 < βλ.

With this, if we take (u, v) ∈ Kv
α, denote Iv(u, v) = |u|/|v| ≤ α; then A(δ)(u, v) =

(v, λ′v − δu) so

Iv(A(δ)(u, v)) =
|v|

|λ′v − δu| ≤
1

|λ′| − |δ|Iv(u, v)
.

On the other hand,

1 + α|δ|Iv(u, v) ≤ 1 + α2|δ| ≤ αλ ≤ α|λ′|,
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hence
1 ≤ α(|λ′| − |δ|Iv(u, v)),

it follows that Iv(A(δ)(u, v)) ≤ α.
Working with the inverse matrix, and by a similar calculus, it follows that, if Ih(u, v) =
|v|/|u| and Ih(u, v) ≤ β, then Ih(A−1(δ)(u, v)) ≤ β. �

Remark 4. The idea for the previous Lemma is that the matrix A(0), “super-contract”
any vertical cone (collapsed into, the y-axis), and “super-expand” any horizontal cone.
Since that the contraction/expansion of cones, is a robustly property, the same is true
for A(δ), for δ close to 0.

Also we remark that the constants α, β and δ only depend of λ and not of |λ′|.

The previous Lemma, allows us to “inflate”, one dimensional maps into a two di-
mensional action.

Proposition 1.2.2. Let fδ(x, y) = (y, p(y) − δx) be a Hénon map, and denote by Jδ the
Julia set of fδ. Suppose that for |δ| small enough, we have the following property: for
every (x, y) ∈ Jδ, |p′(y)| > 0; then Jδ has dominated.

Proof. Denote by pr2 the projection of C2 in the second variable. The set pr2(Jδ) is
compact in the non-critical set

NC = {
z ∈ C : |p′(z)| > 0

}
,

and we can take an uniform constant λ such that |p′(z)| > λ > 0 for all z ∈ pr2(Jδ).
Since that

J f (x, y) =

 0 1
−δ p′(y)

 ,
we are in the hypothesis of the previous Lemma, so for |δ| < δ0(λ) there exist two cones
fields D f -invariant. Hence Jδ has dominate splitting. �

The previous proposition establish that when the projection of the Julia set Jδ is
projected in the second coordinate to the set of not-critical points of p, then Jδ has
dominated splitting when |δ| is small. However, we not have information over how
close is this projection to Jp, the Julia set of p.
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1.2.2 Examples

Now we present a several list of examples.

Example 1. Hyperbolic maps: A Hénon map f , is said that is hyperbolic if the Julia
set J f is a uniform hyperbolic set. It is clear that they is an examples of systems with
dominated splitting.

In the Example 2, we give an example of hyperbolic Hénon map. However this
example, and in all examples that we are presented here, they are essentially a one
dimensional phenomena. In the article [I], Yutaka Ishii give examples of hyperbolic
Hénon map that are non-planar, i.e. which is not topologically conjugate on its Julia
set to a small perturbation of any expanding polynomial in one variable.

In the Example 7, we present an one-parameter family fδ, that have dominated split-
ting but are non-hyperbolic. In these example the Julia set Jδ is planar because is a
small perturbation of a planar map. An interesting question is:
Question: There exist a Hénon map whose Julia set is non-planar, has dominated split-
ting and is non-hyperbolic?

Example 2. Inflate of a Hyperbolic polynomial: It is possible to inflate a hyperbolic
polynomial p, in the Hénon map of the form

fδ(x, y) = (y, p(y) − δx),

such that if |δ| is small enough, the resultant Hénon map is hyperbolic. The idea behind
of this fact, is the persistence of hyperbolic set, including the context of endomor-
phisms. We present a small sketch of the proof of the hyperbolicity of fδ. For reference
of hyperbolicity in the context of endomorphisms, see [J].

For a compact f -invariant set Λ of a Riemannian manifold M, we define the set of
histories of Λ by

Λ̃ =
{
x̃ = (xi)i≤0 : xi ∈ Λ and f (xi) = xi+1

}
.

This set is a compact metrizable subspace of ΛN. The restriction of f to Λ lifts to a
homeomorphism f̃ of Λ̃ by f̃ ((xi)i≤0) = ( f (xi))i≤0. There is a natural projection π from
Λ̃ to Λ sending x̃ to x0 and the pullback under π of the tangent bundle TΛM is a bundle
T Λ̃ which we call the tangent bundle. Explicitly, a point in T Λ̃ is of the form ṽ = (x̃, v)
where x̃ ∈ Λ̃ and v ∈ Tx0 M. The derivative D f lifts to a map D f̃ of T Λ̃ in a natural
way, i.e., D f̃ (̃v) = ( f̃ (x̃),D fx0v).
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Now, we say that f is hyperbolic in Λ if the linear cocycle D f̃ is hyperbolic in the
bundle T Λ̃ with the natural bundle metric induced, i.e., if there exist a D f̃ -invariant
splitting T Λ̃ = E s ⊕ Eu, and constants C > 0 and τ > 1 such that

|D f̃ n(̃v)| ≥ Cτn |̃v|, ṽ ∈ Eu,

|D f̃ n(̃v)| ≤ C−1τ−n |̃v|, ṽ ∈ E s.

We have that following.

Proposition 1.2.3. If f is hyperbolic onΛ = Λ f and g is C1-close to f , then there exist a
continuous map h : Λ̃ f → M close to the projection π(x̃) = x0 such that g◦h = h◦ f̃ and
that g is hyperbolic on Λg = h(Λ̃ f ). The map h lifts to a homeomorphism h̃ : Λ̃ f → Λ̃g

with g̃ ◦ h̃ = h̃ ◦ f̃ , and h depends continuously on g in the Cr topology , 1 ≤ r ≤ ∞.

Now, we present the sketch of the proof to statement: If p is hyperbolic, then fδ is
for |δ| small enough.
From hyperbolicity of p it follows that there exist C0 > 0 and τ > 1 such that for every
z ∈ Jp

|(pn)′(z)| ≥ Cτn.

The map f0(x, y) = (y, p(y)) is hyperbolic in

J0 =
{
(y, p(y)) : y ∈ Jp

}
.

This because J0 is f0-invariant, and defining the splitting T J̃0 = E s ⊕ Eu where ṽ ∈ Eu
x̃

if v = α(1, p′(x0)) with α ∈ C, and ṽ ∈ E s
x̃ if v = (v1, 0). Thus is clear that E s is invariant

an that for every constant C > 0

|D f̃0
n
(̃v)| ≤ C−1τ−n |̃v|, ṽ ∈ E s.

On the other hand, is not difficult to see that Eu is also invariant and that

|D f̃0
n|Eu

x̃ |2 =
|D f n

0 (x0)(1, p′(x0))|2

|(1, p′(x0))|2 =
|(pn)′(x0)|2 + |(pn+1)′(x0)|2

1 + |p′(x0)|2 ≥
C2

0

1 + M(Jp)
(τn)2,

where M(Jp) = sup
{|p′(z)| : z ∈ Jp

}
.

Applying the previous Proposition to f0, we conclude that for |δ| small, fδ is an
hyperbolic Hénon map, so has dominated splitting.

Example 3. Inflate of a non Hyperbolic Polynomial: To present another examples of
holomorphic systems with dominated splitting, we need introduce the following notion.
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Definition 1.2.3. We said that a family of Hénon maps

fδ(x, y) = (y, p(y) − δx),

is regular, if the function δ 7→ Jδ is continuous, as a function of C into the space of all
compact set of C2, endowed with the Hausdorff metric, and J0 =

{
(y, p(y)) : y ∈ Jp

}
.

We have the following:

Proposition 1.2.4. Let us assume that fδ is a regular family. If Jp is far of critical set
of p

C(p) =
{
z ∈ C : p′(z) = 0

}
.

Then for all δ with |δ| small, Jδ has dominated splitting.

This it is follows directly from Proposition 1.2.2: from continuity variation of Jδ, and
for |δ| small, the projection on the second variable of points of Jδ, are far of the critical
set of p.

We conjecture that this condition (Jp is far of critical set of p) is sufficient to guaran-
tee continuity of the family. For a non-hyperbolic polynomial, we do not have a criteria
to establish continuity of the Julia set with respect to the parameter δ, in the Hausdorff
topology, in fact, the problem is to determine if the family is continuous in 0, and if his
value in 0 is in fact J0 as above.

Remark 5. In that follows we assume the regularity of the family of compact invariant
set, in the parameter δ = 0.

Example 4. Polynomial-like maps: The same construction in the previous examples
can be used for a polynomial-like map p : U → V . Note that the map fδ(x, y) defined
as a Hénon map, is a diffeomorphisms between U × C onto its image. For |δ| small
enough, fδ has a compact invariant set Jδ set, and the projection in the second variable
is close to Julia set Jp. If Jp is the interior of the non-critical set, from Proposition 1.2.2,
it follows that Jδ has dominated splitting.

Example 5. Siegel Disk and Herman Rings: Consider now a rational map R and
either a Siegel disk or a Herman ring denoted by U. It is known that ∂U is contained in
the post-critical set. Moreover a Siegel disc may have a critical point in the boundary.

However, since R is conjugated in U to an irrational rotation in the unitary disc, then
R has invariant Jordan curves in the interior of U that are conjugated to an irrational
rotation in the circle. Moreover, U contain an exhaustion of compact R-invariant set,
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each of them are either topological disc or topological rings, and whose boundaries are
the invariant Jordan curves.

Let K some of this compact invariant set. In the Siegel disk case this compacts set
are topological disks, and in the Herman ring case, are rings.

We proceed as the previous examples. The map fδ(x, y) = (y,R(y) − δx) is a diffeo-
morphisms between U × C onto its image, and since that K is far of the critical set, fδ
has an invariant set K̃, such that the projection in the second variable is close to K, so
K̃ has dominated splitting.
Question: Is the dynamics conjugated to a one dimensional Siegel disk or Herman
ring multiplied by a uniform contraction?

Example 6. Hénon maps with periodic components. Rotation Domains has domi-
nated splitting:
We now consider f , be a dissipative Hénon map, with | det(D f ) | = |δ| < 1.

Let U be a connected component of Int(K+). We say that U is periodic, if there exist
a integer n such that f n(U) = U. Also, we say that U is recurrent, if there exist w ∈ U
and a compact set L ⊂ U such that f n(x) ∈ L for infinitely many n > 0.

In the article [BS2] (see also [MNTU]), the author proof that any recurrent domain
U in the interior of K+, is indeed a periodic component, and is either:

1. The basin of attraction of an attracting periodic point a, W s(a),

2. The stable set of a Siegel disk, W s(D),

3. The stable set of a Herman ring, W s(H).

In the two dimensional context, we say that a one-dimensional complex set S, is a
Siegel disk (resp. a Herman ring) when, there exist κ be an irrational number and an
injective holomorphic map ϕ : ∆ → C2, where ∆ =

{
z ∈ C : |z| < r

}
for some r > 0

(resp. ∆ =
{
z ∈ C : r1 < |z| < r2

}
for some 0 < r1 < r2), and a positive integer n such

that
f n(ϕ(w)) = ϕ(bw),

where b = eiπκ. Then the set S = ϕ(∆) is a Siegel disk (resp. Herman ring), if this
set is maximal with respect to the inclusion. In the previous conditions we say that the
set S, is a rotation domain of period n. Note also that the sets S0 = S, S1 = f (S),
S2 = f 2(S), . . . ,Sn−1 = f n−1(S), are all rotation domains.

We can find a “linearization” for rotation domain. As before, ∆ denote both a (eu-
clidean) disk or a ring, and denote by ∆∗ = ∆ \ {0}. Then there exist a neighborhood N
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of ∆∗× {
0
}

in ∆∗×C and a biholomorphisms S : N → C2 satisfying S (z, 0) = ϕ(z) such
that F = S −1 ◦ f n ◦ S : N → C2 has the form

F(z,w) = (bz + w2 f1, δ
nb−1 + w2 f2),

where f1 and f2 are holomorphic functions in N .
The set ∆∗ × {

0
}

is F-invariant, and that the Jacobian matrix in points of ∆∗ × {
0
}

is

DF(z, 0) =

b 0
0 δnb−1

 .
Since that we can find n-linearizations function for each Si with i = 0, . . . , n − 1, we
conclude that (each in the orbit) the rotation domain has dominated splitting. This
is follows, since that conjugated system with one that has dominated splitting, has
dominated splitting; and this is because, the conjugated system contract and expand
families of cones.

Example 7. Inflate of a parabolic fixed point: Now we consider a polynomial p of
degree greater than 2, with a parabolic point in the Julia set of the form p(q) = q and
p′(q) = 1, and such that all critical point are far to the Julia set Jp. For example,
p(z) = z2 + z has 0 as a parabolic fixed point, and the critical point z = −1/2 goes to 0
by iterates of p, however −1/2 < Jp.

We define the two parametric family of Hénon map fµ,δ by the equation

fµ,δ(x, y) = (y, p(y) + µ − δx).

We assert that we can find a function δ 7→ µ(δ) such that fδ = fµ(δ),δ has a periodic
fixed point (qδ, qδ) with an eigenvalue equal to one. With this, and taking |δ| small, we
have a Hénon map with dominated splitting that is not hyperbolic. More over, Jδ is not
expansive, since that J∗δ is a homoclinic class of periodic saddle points, and they are
dense them, it follows the assertion.

To end, we must construct the explicit family. Since that p′ has degree greater or
equal to 1, for every δ > 0 we can find a continuous parametric point qδ close to q such
that p′(qδ) = 1 + δ. Define

µ(δ) = (1 + δ)qδ − p(qδ),

then µ is continuous and equal to 0 for δ = 0. With this, is easy to see that fδ has (qδ, qδ)
as a fixed point, and that the Jacobian matrix

J fδ(qδ, qδ) =

 0 1
−δ 1 + δ

 ,
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has eigenvalues λ− = δ and λ+ = 1.
To end, and assuming that the family fδ is regular, it follows from Proposition 1.2.4,

that Jδ has dominated splitting, but this is not hyperbolic because the point (qδ, qδ) has
an eigenvalue equal to 1.



Chapter 2

Dynamical Consequences of
Dominated Splitting in the
Holomorphic Context

Introduction

The main purpose of this chapter is the study generalized Hénon maps in C2, with the
hypothesis of dominated splitting in the Julia set J (see Chapter 1 for preliminaries
results on Hénon maps). The initial motivation for this study is to answer the question:
Question 1: Under which conditions the hypothesis of dominated splitting implies
hyperbolicity on J?
This question appears in a natural way, since that the set K and also J = ∂K, in a topo-
logical point of view, is a “fat hyperbolic fixed point”. In fact we have the following
conjecture:
Conjecture: If f is a dissipative Hénon map with dominated splitting in J∗, and all
periodic point in J∗ are hyperbolic, then f is hyperbolic in J.

We recall that a consequence of hyperbolicity of J, is the hyperbolicity of the non-
wandering set Ω( f ), which is also is equal to J ∪ {

p1, . . . , pk
}
, where each pi is a sink

(see 1.1.1, item 9 on the previous Chapter).
The first approach to answer the Question 1, is to show that under the hypothesis of

domination, a Hénon map is ρ-pseudo hyperbolic, that is slightly strong property than
domination (see Definition 1.2.2 and Remark 3, in the previous Chapter).

This establish that the spectrum of D f over J is lies off the circle of radius ρ (Lemma

17
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1.1). A numerical condition for hyperbolicity is the following: suppose that

||D f |E(x)||
||D f |F(x)|| < λ < 1,

where TJC
2 = E ⊕ F is the dominated splitting and b = | det(D f (x))| the norm of the

Jacobian determinant. Thus if λ < min(b, b−1), then J is hyperbolic, and in particular
if f is volume preserving (b = 1), then f is hyperbolic in J (see Corollary 2.2.1). Thus
the interesting case is when b < 1, that is the dissipative case.

Another way of trying to solve the conjecture in the dissipative case, is under a
topological condition in some neighborhood of J, namely forward expansiveness in
some neighborhood of J, or in a more weaker sense, forward expansiveness in the
center unstable leaves.

For a dissipative function f with dominated splitting, the direction E is a stable di-
rection (Lemma 1.1), and there exist stables local manifolds and center unstable local
manifolds over J. If we assume that the center unstable leaves are forward expansive,
then it is proved that they are dynamically defined (they are in fact the unstable local
set), and this last condition in the holomorphic context, implies that the center unstable
manifolds are holomorphic submanifolds of C2. With the above, and a simply applica-
tion of the Schwarz Lemma, we conclude that the direction center unstable are in fact
an unstable direction, implying hyperbolicity of J.

Another approach, also under the hypothesis of dissipativity and domination, is to
give a more metrical condition to have hyperbolicity. This establish that J is hyperbolic
if and only if, J only supports measures f -invariant, that are hyperbolic, i.e., that its
Lyapunov exponents related with each regular point λ− ≤ λ+, satisfying λ− < 0 < λ+.
In this results, play an important role, the Fornæss’s Theorem:

Theorem 2.0.1 (Fornæss). Let f be a complex Hénon map which is hyperbolic in J∗.
If f is not volume preserving, then J∗ = J.

This chapter is organized as follows: In the section 2.1 we state the main result of
this chapter, in the direction of proof the following Theorem:

Theorem A. Let f be dissipative Hénon map, with dominated splitting. If f is cu-
forward expansive, then f is hyperbolic.

In the section 2.2, we prove all results stated in the section 2.1, including the Theorem
A.

In the section 2.3, we give a simply description of the set supp (J), that roughly
speaking, is the set that support all invariant measures. We introduce the set J0, how
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the set that support all measures that have a null Lyapunov exponent, and that play an
important role in the section 2.5. We prove that supp (J) = J∗ ∪ J0. We do note that the
set supp (J) in a more general context play an essential role in the Section 3.3.3, in the
following Chapter.

In the section 2.4 and 2.5 we prove the following theorem:

Theorem B. Let f be a dissipative complex Hénon map, with dominated splitting in J.
The following statement are equivalents:

1. J is hyperbolic,

2. J0 = ∅,

3. The set of periodic (saddle) point are uniformly hyperbolic.

4. The set of periodic (saddle) point are uniformly expanding at the period.

As a Corollary of the previous Theorem we have:

Corollary of Theorem B. Let f be a dissipative complex Hénon map, with dominated
splitting in J. Then J is hyperbolic if and only if all measure f -invariant supported in
J is hyperbolic.

2.1 Preliminaries and Main Results

In this section we recall several classic results in the context of complex and holomor-
phic dynamics. Some of this results, can be enunciated in Cn for any n ≥ 2.

We define the closed polydisc of center 0 and radio r > 0 in Ck as the set

∆k(0, r) =
{
z ∈ Ck : |zi| ≤ r, for every i = 1, . . . , k

}
.

Denote by Emb1(∆k(0, 1),Cn) the set of C1-embeddings of ∆k(0, 1) on Cn. Two point
x, y ∈ Cn are forward ρ-asymptotic under f , if d( f n(x), f n(y)) ≤ Cρn for all n ≥ 0
and some constant C > 0. Similarly, we define backward ρ-asymptotic as forward
ρ-asymptotic for f −1.

We recall that Hénon map with dominated splitting in the Julia, is in fact ρ-pseudo
hyperbolic (see Definition 1.2.2), this assert the Lemma 1.1. We present his proof in
the following section. Recall by [HPS] that a ρ-pseudo hyperbolic has the following
property.
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Theorem 2.1.1. Let f be a biholomorphisms in Cn, such that f is ρ-pseudo hyperbolic
in Λ. Then there exist two continuous functions φcs : Λ → Emb1(∆k(0, 1),Cn) and
φcu : Λ → Emb1(∆l(0, 1),Cn) such that, with Wcs

ε (x) = φcs(x)∆k(0, ε) and Wcu
ε (x) =

φcu(x)∆l(0, ε), the following properties hold:

a) TxWcs
ε (x) = E(x) and TxWcu

ε (x) = F(x),

b) for all 0 < ε1 < 1 there exist ε2 such that

f (Wcs
ε2

(x)) ⊂ Wcs
ε1

( f (x))

and
f −1(Wcu

ε2
(x)) ⊂ Wcu

ε1
( f −1(x)).

If ρ ≤ 1 (resp. ρ ≥ 1) then
{
Wcs

1 (x)
}

x∈Λ (resp.
{
Wcu

1 (x)
}

x∈Λ) are C∞ submanifolds of
Cn, and Wcs

1 (x) (resp. Wcu
1 (x)) is characterized as those points locally forward (resp.

backward) ρ-asymptotic with x.

We name the sets Wcs
ε (x), the center stable leaf or cs-leaf, and similarly for cu-leaf.

The following Theorem is part of the folklore and we prove them in the following
section. In his proof is introduced an important technique, that we use later in the proof
of Proposition 2.1.5.

Theorem 2.1.2. Let f be a ρ-pseudo hyperbolic map in Λ with splitting TΛCn = E⊕F.
Suppose that the direction F, is an unstable direction, then the cu-leaves are holomor-
phics unstable manifolds.

Remark 6. When Λ is hyperbolic, is known that the invariant manifolds are holomor-
phics and that when n = 2 (see [BS1] or [BS2]), this manifolds are biholomorphic to
C. In the previous Theorem, we don’t have hypothesis that the direction E is stable.

A first dynamic consequence for Hénon map with dominated splitting in the Julia
set, is the following Proposition.

Proposition 2.1.1. Let f be dissipative Hénon map, with dominated splitting in J∗.
Then for every x ∈ J∗, holds that Wcu

loc(x) ∩ U+ , ∅.

Remark 7. The Proposition above say roughly speaking, that there are point (not ne-
cessarily every point) in the center unstable leaf, that for forward iterates escaping to
infinity. We proof this Proposition after the proof of Theorem A.
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We recall some basic definitions. The unstable set of a point x for f , is the set

Wu(x) =
{
y ∈ Cn : d( f −n(x), f −n(y))→ 0, when n→ ∞}

,

where d is the euclidean distance. Similarly, the local unstable set of size ε is the set

Wu
ε (x) =

{
y ∈ Wu(x) : d( f −n(x), f −n(y)) ≤ ε, for every n ≥ 0

}
.

It is know that for every 0 < ε ≤ 1 there exist δ > 0 such that for every x ∈ Λ,
Wu

δ (x) ⊆ Wcu
ε (x), however in general the opposite inclusion not hold if we not have

good properties in the asymptotic behavior of D f .

Definition 2.1.1. We say that the cu-leaves are dynamically defined, if for every
0 < ε � 1, Wcu

ε (x) ⊂ Wu
loc(x) for all x ∈ Λ.

In holomorphic context, cu-leaves dynamically defined has an important analytic
consequence.

Theorem 2.1.3. Let f a biholomorphisms ρ-pseudo hyperbolic in Λ ⊂ Cn. If the cu-
leaves are dynamically defined, then they are holomorphic submanifolds of Cn.

In the following definition we introduce a local topological property, that implies
that cu-leaves are dynamically defined. This is motivated by a small modification of
the property before mentioned in the Remark 7.

Definition 2.1.2. We say that f is expansive in the center unstable leaves or cu-expansive
(resp. forward expansive), if there exist a uniform constant c > 0 such that for every x ∈
Λ, and any y ∈ Wcu

ε (x), there exists n ∈ Z (resp. n ∈ N), such that dist ( f n(y), f n(x)) > c.
We say that the constant c is the expansiveness constant.

Theorem 2.1.4. If f is cu-forward expansive then the cu-leaves are dynamically de-
fined.

In dimension two, we also have that the condition of cu-forward expansive and cu-
dynamically defined are equivalent conditions.

Theorem 2.1.5. Let f a biholomorphisms ρ-pseudo hyperbolic inΛ ⊂ C2 with splitting
TΛC2 = E ⊕ F. Then the cu-leaves are dynamically defined if and only if F = Eu, i.e.,
to F is an unstable direction.

In other words, cu-forward expansive and cu-dynamically defined are equivalent
conditions.
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The previous results, applied to the case of Hénon maps, can be summarized as the
following:

Theorem A. Let f be dissipative Hénon map, with dominated splitting in J∗. If f is
cu-forward expansive, then f is hyperbolic in J.

2.2 Proofs of Main Results

We begin this section proving the equivalence between domination and ρ-pseudo hy-
perbolicity, in the context of Hénon map. For this, we first present a equivalent notion
of domination for Hénon maps. This is proved in the Proposition 3.1.6 in the following
Chapter, in a more general context.

Proposition 2.2.1. Let f be a Hénon map with b = | det(D f ) |, and let TJC
2 = E ⊕ F

be a splitting. The following statement are equivalents:

1. The splitting TJC
2 = E ⊕ F is dominated;

2. There exist C > 0 and 0 < λ < 1 such that:

a) For every unitary vector v ∈ F and n ≥ 1

bn

||D f nv||2 ≤ Cλn,

b) For every unitary vector v ∈ E and n ≥ 1

b−n

||D f −nv||2 ≤ Cλn.

Proof of Lemma 1.1. From the previous Proposition, and maybe taking an iterate of f
instead f , we can assume that there exist 0 < λ < 1 such that

(a)
bn

||D f n
x ux||2

< λn, for every n and x ∈ J,

(b)
b−n

||D f −n
x vx||2

< λn, for every n and x ∈ J,

where ux ∈ F(x) and vx ∈ E(x) are unitary vectors.
Replacing the previous inequality for the direction E(x), it follows that

||D f −n
x vx||2 >

(
1

bλ

)n

.
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Replacing the inverse function of D f −n in the previous inequality, and taking λ0 =
√

bλ,
we obtain that

||D f n
x vx|| ≤ λn

0 =⇒ ||D f n
x |E(x)|| ≤ λn

0.

Similarly for the direction F(x), let ux a unitary vector in this direction we obtain

||D f n
x ux||2 >

(
b
λ

)n

,

and taking µ0 =
√

b/λ it follows that

||D f n|Fx || ≥ µn
0.

Thus we have
λ2 < 1 ⇐⇒ bλ <

b
λ
⇐⇒ λ0 < µ0,

then we can find a positive real number ρ0 that satisfies the inequality λ0 < ρ0 < µ0, so
f is ρ0-pseudo hyperbolic in J.

On the other hand, if f is ρ0-pseudo hyperbolic in J (see Definition 1.2.2), is not
difficult to see that

||D f n|E(x)||
||D f n|F(x)|| <

(
λ0

µ0

)n

=: λn,

where λ < 1; so it follows from Proposition 1.2.1 that J has dominated splitting.
To end, for the dissipative case b < 1, so λ0 =

√
λb < 1, then E is a stable direction.

�

Corollary 2.2.1. The constants λ0 and µ0 given in the proof of previous Lemma, satisfy
λ0 < 1 < µ0 if and only if λ < min(b, b−1). In particular, if f has dominated splitting
and is volume preserving (i.e., b = 1), then f is hyperbolic.

Proof. From the previous proof, we conclude that

||D f n|F(x)|| ≥ µn
0 and ||D f n|E(x)|| ≤ λn

0,

where λ0 =
√
λb, µ0 =

√
b/λ and b = | det(D f )|. From this equation is easy to see that

||D f n|E(x)||
||D f n|F(x)|| < λ

n.

Suppose that λ0 < 1 < µ0 is equivalent to haves

λ2b < λ < b,

that is λ < min(b, b−1). �
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Now we enunciate a classical version of the Theorem of existence of center sta-
bles/center unstable manifold, knowing as Hadamard-Perron Theorem. We will use the
notation and the “technique” of this Theorem, to prove many of the statement in the
previous section. We use the version of the theorem stated in the book [KH].

Theorem 2.2.2 (Hadamard-Perron Theorem). Let λ < µ, r ≥ 1 and for each m ∈ Z
let fm : Cn → Cn be a (onto) Cr diffeomorphisms such that for (x, y) ∈ Cl ⊕ Ck,

fm(x, y) = (Amx + αm(x, y), Bmy + βm(x, y)),

for some linear maps Am : Cl → Cl and Bm : Ck → Ck with ||A−1
m || ≤ µ−1, and ||Bm|| ≤ λ

and αm(0) = 0, βm(0) = 0.
Then for 0 < γ < min(1,

√
µ/λ − 1) and

0 < δ < min
(

µ − λ
γ + 2 + γ−1 ,

µ − (1 + γ)2λ

(1 + γ)(γ2 + 2γ + 2)

)
(2.1)

we have the following property: If ||αm||C1 < δ and ||βm||C1 < δ for all m ∈ Z then there
is

(1) a unique family {W+
m}m∈Z of l-dimensional C1 manifolds

W+
m = {(x, ϕ+m(x)) : x ∈ Cl} = graphϕ+m

and

(2) a unique family {W−
m}m∈Z of k-dimensional C1 manifolds

W−
m = {(ϕ−m(y), y) : y ∈ Cn−l} = graphϕ−m,

where ϕ+m : Cl → Ck, ϕ−m : Ck → Cl, supm∈Z ||Dϕ±m|| < γ, and the following properties
holds:

(i) fm(W−
m) = W−

m+1, fm(W+
m) = W+

m+1.

(ii) The inequalities
|| fm(z)|| < λ′||z|| for z ∈ W−

m,

and
|| f −1

m−1(z)|| < µ′||z|| for z ∈ W+
m

hold, where λ′ = (1 + γ)(λ + δ(1 + γ)) < µ

1+γ − δ = µ′.
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(iii) Let λ′ < ν < µ′. If || fm+ j−1 ◦ · · · ◦ fm(z)|| < Cν j for all j ≥ 0 and some C > 0 then
z ∈ W−

m.
Similarly, if || f −1

m− j ◦ · · · ◦ f −1
m−1(z)|| < Cν− j for all j ≥ 0 and some C > 0 then

z ∈ W+
m.

Finally, in the hyperbolic case λ < 1 < µ the families {W+
m}m∈Z and {W−

m}m∈Z consist of
Cr manifolds.

It is important also to note the following proposition, proved in [KH].

Proposition 2.2.2. The invariant manifolds (with C1 topology) obtained in the Hadamard-
Perron Theorem, have continuous dependence with respect to the family f = { fm}m∈Z,
with the C1 topology defined by

d1( f , g) = sup
m∈Z

dC1( fm, gm).

Remark 8. To apply the previous Theorem and the subsequent results, firstly we con-
struct the family { fm}m∈Z, that carries the asymptotic information of the map f , along
the whole orbit of some point x ∈ Λ.

For this, first note that given δ > 0 we can find R > 0 such that for every x0 ∈ Λ we
can write

f (x) = f (x0) + D f (x0)(x − x0) + Rx0(x − x0)

on Cn, and ||Rx0(x − x0)||C1 < δ for all x ∈ ∆n(x0,R). Moreover, for every δ > 0 we
can find R > 0 (uniformly in Λ) and a function fx0 such that: fx0(h) = f (x + h) − f (x0)
with h ∈ ∆n(0,R), fx0 is a diffeomorphisms in Cn and || fx0(h) − D f (x0)(h)||C1 < δ for all
h ∈ Cn.

Now taking Lx0 : Cn = Cl ⊕ Ck → Cn a linear orthogonal complex map such that
Lx0(C

l) = F(x0) and Lx0(C
k) = F(x0)⊥, and define the maps f̂x0 = L−1

f (x0) ◦ fx0 ◦ Lx0 , then
f̂x0 has the form

f̂x0(x, y) = (Ax0 x + αx0(x, y), Bx0y + βx0(x, y)).

To finish, we denote xm = f m(x0) with m ∈ Z and fm = f̂xm , then:

1) fm is holomorphic in ∆n(0,R′) for every R′ < R,

2) since that the angle between the direction F and E are uniformly away from
zero, it follows that there exist λ < µ such that are satisfied the hypothesis of
Hadamard-Perron Theorem.
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2.2.1 Proof of Theorem 2.1.2

To proof this Theorem, is only necessary to observe the Proposition 2.2.3. The principal
ideas are summarizes right away.

The sketch of the proof is essentially the following: in the Hadamard-Perron The-
orem, we find the invariant manifolds as an application of the Contraction Theorem
for Lipschitz maps. We define the graph transform operator, in an appropriated space
of functions C0

γ(C
l), and it is possible to proof that the graph transform operator is a

contraction in this space, that is a completed space with certain metric.
In this space of functions, we will prove that under the hypothesis of holomorphic

of the functions fm and forward expansiveness in the center unstable direction, the
graph transform operator leaves invariant the subspace of functions of C0

γ(C
l) that are

holomorphic in some small neighborhood of zero.
The metric considerer in this space is the metric of uniform convergence in compact

set, and with this metric, the space of holomorphic function is closed, concluding that
the limit of holomorphic function is holomorphic, so the invariant manifold.

Proposition 2.2.3. Under the hypothesis of Theorem 2.2.2, suppose that the following
additional conditions hold:

1. µ > 1.

2. There exists R > 0 such that, for each m ∈ Z, the map fm is holomorphic in some
neighborhood of the closed polydisc ∆n(0,R) ⊂ Cn.

Then there exists 0 < r < R such that each ϕ+m is holomorphic in some neighborhood of
∆l(0, r) ⊂ Cl, where ϕ+m is as in (1) in the Theorem 2.2.2.

Proof. In the proof of Theorem 2.2.2 (see [KH]), the functions ϕ+m are obtained as fixed
point of a contractive operator in a space of Lipschitz maps. We enumerate the main
fact:

1. Let C0
γ the space of sequences as form ϕ∗ = {ϕm}m∈Z where each ϕm is in the set

C0
γ(C

l) = {ϕ : Cl → Cn−l : Lip(ϕ) < γ, and ϕ(0) = 0}.

2. The set C0
γ is a compact metric space with the metric defined by

d∗(ϕ∗, φ∗) = sup
m∈Z

d(ϕm, φm);
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where
d(ϕ, φ) = sup

x∈Cl\{0}

||ϕ(x) − φ(x)||
||x||

is a metric in C0
γ(C

l). Note that (C0
γ(C

l), d) is also compact metric space.

3. The action of f = { fm}m∈Z in the space C0
γ is the desired contraction; this action

is defined as follows: denote by ( fm)∗ϕ the unique Lipschitz map that satisfy the
equation

fm(graphϕ) = graph (( fm)∗ϕ).

On the other hand, we have the bijection Gm
ϕ : Cl → Cl defined by

Gm
ϕ (x) = Amx + αm(x, ϕ(x)),

and the map Fm
ϕ : Cl → Cl given by

Fm
ϕ (x) = Bmϕ(x) + βm(x, ϕ(x)),

it follows that the function ( fm)∗ϕ is given by the expression

( fm)∗ϕ(x) = Fm
ϕ ◦ (Gm

ϕ )−1(x).

Finally if we define fϕ∗ = {ψm}m∈Z, whit ψm+1 = ( fm)∗ϕm, we have that

lim
n→∞

f nϕ∗ = ϕ
+
∗ , (2.2)

where ϕ∗ ∈ C0
γ and ϕ+∗ =

{
ϕ+m

}
m∈Z is the sequences of function given by the

Hadamard-Perron Theorem.

Denote by O0
γ(r) ⊂ C0

γ, the set of sequences of functions that are holomorphic in some
neighborhood of the closed polydisc ∆l(0, r) in each level m ∈ Z. To prove the Propo-
sition, is only necessary to prove that there exists 0 < r < R such that:

(a) O0
γ(r) is a closed space in C0

γ,

(b) O0
γ(r) is invariant by the action f .

If we assume that (a) and (b) holds, and since that equation (2.2) hold for every ϕ∗ ∈
O0
γ(r), the limit

lim
n→∞

f nϕ∗ = ϕ
+
∗

there exists and is an element of O0
γ(r), so each function ϕ+m is holomorphic in some

neighborhood of ∆l(0, r).
Observe that for proof the two previous assertions, is only necessary proof that:



28

(a’) O0
γ(r,C

l) is a closed space in C0
γ(C

l),

(b’) O0
γ(r,C

l) is invariant by the action fm, for all m ∈ Z.

where O0
γ(r,C

l) is the subset of C0
γ(C

l), whose elements are holomorphics function in
some neighborhood of the polydisc ∆l(0, r).

The first assertion (a′), follows after observing that the metric defined in the para-
graph (2.), induce the uniformly convergence on compact topology in O0

γ(r,C
l), so if

ϕn ∈ O0
γ(r,C

l) and ϕn → ϕ for some ϕ ∈ C0
γ(C

l) then, the limit map ϕ is an element of
the set O0

γ(r,C
l).

The proposition (b′), it follows from the following: in the proof of the Theorem 2.2.2,
we can see that

||Gm
ϕ (x)|| ≥ µ0||x||. (2.3)

where the constant is µ0 = (µ − δ(1 + γ)). This constant is greater than 1 if and only if,
µ > 1 and δ and γ are small enough. If we take r = µ−1

0 R, the functions Fm
ϕ and Gm

ϕ are
holomorphics in some neighborhood of ∆l(0, r) when ϕ ∈ O0

γ(r,C
l). It follows by the

equation (2.3) that ∆l(0,R) ⊂ Gm
ϕ (∆l(0, r)), then the function (Gm

ϕ )−1 is holomorphic in
∆l(0, r), and also by equation (2.3), it follows that

(Gm
ϕ )−1(∆l(0, r)) ⊂ ∆l(0, µ−1

0 r) ⊂ ∆l(0, r).

We obtain that Fm
ϕ ◦ (Gm

ϕ )−1 is holomorphic in some neighborhood of ∆l(0, r), is as
desired. �

2.2.2 Proof of Theorem 2.1.3

To prove this Theorem, first we present a necessary and sufficient condition that to have
cu-leaf are dynamically defined. The proof is left to the reader.

Lemma 2.1. The cu-leaves are dynamically defined, if and only if, there exists r � 1
uniform constant such that for all x ∈ Λ, the following statement holds:

1. For any r1 < r, there exist r0 < r1 such that for every n ≥ 0 and x ∈ Λ,
f −n(Wcu

r0
(x)) ⊂ Wcu

r1
( f −n(x)).

2. For every r1 < r and r0 < r1, there exists N = N(r0, r1) such that for all x ∈ Λ
and n ≥ N f −n(Wcu

r1
(x)) ⊂ Wcu

r0
( f −n(x)).

An important consequence of this easy observation is the following.
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Lemma 2.2. Let f such that the cu-leaves are dynamically defined, and let 0 < r � 1
as in the previous Lemma. Then for every 0 < r2 < r there exit 0 < r−1 < r0 < r1 < r2, a
number N = N(r0, r1) and closed topological balls Bcu(x) ⊂ (Wcu

r0
(x))◦ for every x ∈ Λ,

such that the following statement holds:

1. For every n ≥ N we have the inclusion f −n(Wcu
r1

(x)) ⊂ (Wcu
r0

( f −n(x)))◦,

2. Wcu
r−1

( f −N(x)) ⊂ f −N(Wcu
r1

(x)) ⊂ (Bcu( f −N(x)))◦,

3. For every 0 ≤ k ≤ N, we have f k(Bcu( f −N(x))) ⊂ (Wcu
r ( f N−k(x)))◦.

Proof. If let us take r2 < r, then for every x ∈ Λ, dist
(
∂Wcu

r2
(x), ∂Wcu

r (x)
)
> 0, where

dist is the induced distance in the center unstable leaf. It follows by compactness of
Λ and continuity of the cu-leaves, that there exist a positive number δ > 0 such that
dist

(
∂Wcu

r2
(x), ∂Wcu

r (x)
)
> δ.

Now let us take r1 < r2 as in the item 1 in the previous Lemma. Since that for every
n ≥ 0, f −n(Wcu

r1
(x)) ⊂ Wcu

r2
( f −n(x)) we have in particular that

dist
(
∂ f −n(Wcu

r1
(x)), ∂Wcu

r ( f −n(x))
)
≥ dist

(
∂Wcu

r2
( f −n(x)), ∂Wcu

r ( f −n(x))
)
> δ.

If we take r0 < r1, and ε small enough such that r0 − ε > 0, we know from the item
2 in the previous Lemma, that there exit N = N(r0 − ε, r1) such that

f −n(Wcu
r1

(x)) ⊂ Wcu
r0−ε( f −n(x)) ⊂ (Wcu

r0
( f −n(x)))◦

for every n ≥ N, and this implies the first item.
On the other hand, we can define the function ρ(x) = dist

(
f −N(x), ∂ f −N(Wcu

r1
(x))

)
> 0

that is continuous in Λ. Let ρ0 = infx∈Λ ρ(x). Then for every x there exist a neighbor-
hood Ux and a radius rx such that for y ∈ Ux

dist
(
Wcu

rx
( f −N(y)), ∂ f −N(Wcu

r1
(y))

)
>
ρ0

2
.

So by compactness, there exist a r−1 such that

dist
(
Wcu

r−1
( f −N(x)), ∂ f −N(Wcu

r1
(x))

)
>
ρ0

2

in Λ and in particular, Wcu
r−1

( f −N(x)) ⊂ f −N(Wcu
r1

(x)), that is the first inclusion of the
second item.

For the second inclusion of the item 2 and the item 3, we first will construct the sets
Bcu(x). For this, let us take

B(x) =
{
z ∈ Wcu

r (x) : dist
(
z, ∂Wcu

r (x)
) ≥ δ/2}.
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Then it is clear that f −n(Wcu
r1

(x)) ⊂ (B( f −n(x)))◦ for all n ≥ 0, thus we define Bcu( f −N(x))
has the connected component that contain f −N(Wcu

r1
(x)) of the intersection

Wcu
r0−ε( f −N(x))) ∩ f −1(B( f −(N−1)(x))) ∩ . . . ∩ f −N(B(x)).

By construction the set (Bcu( f −N(x)))◦ contain f −N(Wcu
r1

(x)) and it follows the third item,
that conclude the proof of this Lemma. �

Remark 9. It is important to recall that the election of the constant r0 < r1 is arbitrary,
once we take r1 < r2.

Now, we want to highlight the main difference of the Theorem 2.1.2 with the Theo-
rem 2.1.3. In the first of them, it is assumed that F is an unstable direction. Here we
only assume that the center unstable manifold are dynamically defined.

However, the states of the proof has many similarities. The goal is to show that using
the graph transform operator it is possible to prove that the cu-leaves are limits of the
graph of uniformly bounded holomorphic function, and therefore it is also holomorphic.
The main difficulty is to show that only using the dynamically defined property, is
arrange to recover, after some iterate, the overflowing property of the graph transform
operator.

We recall that in the Hadamard-Perron Theorem (Theorem 2.2.2), we obtain the
existence of invariant manifolds, that are denoted by ϕ±m. The are, by some local change
of chart, the center stable/unstable manifolds given in the Theorem 2.1.1.

The proof of Theorem 2.1.3, it follows immediately from the following Proposition.

Proposition 2.2.4. Under the hypothesis of Theorem 2.2.2, suppose that the following
additional conditions hold:

1. There exists R > 0 such that, for each m ∈ Z, the map fm is holomorphic in some
neighborhood of the closed polydisc ∆(0,R) ⊂ Cn,

2. For every 0 < r < R, are satisfied the three items of the Lemma 2.2,

then there exit R′ < R such that ϕ+m is holomorphic in ∆l(0,R′).

Proof. We use the same notation of the proof of Proposition 2.2.3. Firstly let us take
r2 < r < R with

2γr2 <
R − r

2
. (2.4)

We remark that from the item 2 of the hypothesis, we have that there exist r−1 < r0 <

r1 < r2, an integer N = N(r0, r1), and a family of closed topological balls Um with
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∆l(0, r−1) ⊂ Um ⊂ ∆l(0, r0), such that if we denote D+m = graph (ϕ+m|Um) and W+
m(r′) =

graph (ϕ+m|∆l(0, r′)) are satisfied the following properties:

a) For every n ≥ N and m ∈ Z, hold that f −1
m−n ◦ · · · ◦ f −1

m−1(W+
m(r1)) ⊂ (W+

m(r0))◦,

b) W+
m−N(r−1) ⊂ f −1

m−N ◦ · · · ◦ f −1
m−1(W+

m(r1)) ⊂ (D+m−N)◦,

c) For every 0 ≤ k ≤ N − 1 we have fm−(N−(k−1)) ◦ · · · ◦ fm−(N−1) ◦ fm−N(D+m−N) ⊂
W+

m−(N−k)(r)◦.

We recall that from the remark 9, we can take r0 < r1 small enough such that

2γr0 <
r1 − r0

2
. (2.5)

The proof goes through a series of claims.
Claim 1: There exists λ0 < 1, such that for every ϕ, φ ∈ C0

γ(C
l), m ∈ Z and x ∈ Cl we

have the inequality

|| fm(x, ϕ(x)) − fm(x, φ(x))|| ≤ λ0||ϕ(x) − φ(x)||.

Proof of Claim 1. We recall that fm(x, ϕ(x)) = (Gm
ϕ (x), Fm

ϕ (x)), then we have

|| fm(x, ϕ(x)) − fm(x, φ(x))|| = ||(Gm
ϕ (x), Fm

ϕ (x)) − (Gm
φ (x), Fm

φ (x))||
≤ ||Gm

ϕ (x) −Gm
φ (x)|| + ||Fm

ϕ (x) − Fm
φ (x)||

≤ ||(Amx + αm(x, ϕ(x))) − (Amx + αm(x, φ(x)))||
+ ||(Bmϕ(x) + βm(x, ϕ(x))) − (Bmφ(x) + βm(x, φ(x)))||

≤ ||αm(x, ϕ(x)) − αm(x, φ(x))|| + ||Bm(ϕ(x) − φ(x))||
+ ||βm(x, ϕ(x)) − βm(x, φ(x))||

≤ (λ + 2δ)||ϕ(x) − φ(x)||,

then let us take λ0 = (λ + 2δ), and we will prove that λ0 < 1. Firstly note that we
can assume that µ ≤ 1, if not by Proposition 2.2.3 it follows that ϕ+m is holomorphic
in a polydisc ∆l(0,R′) for some R′ < R, that is we want to prove. On other hand, by
inequality (2.1) in the Theorem 2.2.2

δ <
µ − λ

γ + γ−1 + 2
,

and this is less than (1 − λ)/2 < 1. This end the proof of the claim. �
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In that follows, we fix m ∈ Z and define

gk = f(m+kN)+(N−1) ◦ f(m+kN)+(N−2) ◦ · · · ◦ f(m+kN)+1 ◦ f(m+kN). (2.6)

Then we can write gk as the form

gk(x, y) = (Ckx + ck(x, y),Dky + dk(x, y)),

where
Ck = A(m+kN)+(N−1) · A(m+kN)+(N−2) · . . . · A(m+kN)+1 · A(m+kN)

and
Dk = B(m+kN)+(N−1) · B(m+kN)+(N−2) · . . . · B(m+kN)+1 · B(m+kN).

We recall that graph transform operator ( fm)∗ of a Lipschitz function ϕ is defined by
the equation

(x′, ( fm)∗ϕ(x′)) = fm(x, ϕ(x)) = (Amx + αm(x, ϕ(x)), Bmϕ(x) + βm(x, ϕ(x))).

It is possible to prove that the map Gm
ϕ : Cl → Cl given by

Gm
ϕ (x) = Amx + αm(x, ϕ(x)),

is a bijection, and that if we define Fm
ϕ : Cl → Cl by

Fm
ϕ (x) = Bmϕ(x) + βm(x, ϕ(x)),

then the graph transform operator ( fm)∗ϕ, is given by the expression

( fm)∗ϕ(x) = Fm
ϕ ◦ (Gm

ϕ )−1(x).

Similarly, we denote by
G̃k
ϕ(x) = Ckx + ck(x, ϕ(x)),

and
F̃k
ϕ(x) = Dkϕ(x) + dk(x, ϕ(x)),

the coordinates maps related with gk and ϕ.
For a fixed k and ϕ, we denote:

1. ϕ1 = ( fm+kN)∗ϕ,

2. ϕ j+1 = ( fm+kN+ j)∗ϕ j, for every j = 1, . . . ,N − 2,
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3. G j = Gm+kN+ j
ϕ j , for every j = 1, . . . ,N − 1.

Claim 2: We have that

G̃k
ϕ = GN−1 ◦GN−2 ◦ . . .G1 ◦Gm+kN

ϕ ,

and the graph transform operator of gk, given by equality 2.6, is equal to

(gk)∗ = ( f(m+kN)+(N−1))∗( f(m+kN)+(N−2))∗ . . . ( f(m+kN)+1)∗( f(m+kN))∗.

Proof. This is elementary, and the proof is left to the reader. �

As a consequence of the previous claim, we conclude that G̃k
ϕ is a bijection of Cl, and

that the graph transform operator related with gk is given by the equality

(gk)∗ϕ(x) = F̃k
ϕ ◦ (G̃k

ϕ)−1(x).

In that follows by simplicity, we will work with m = k = 0, and the function g0 =

fN−1 ◦ · · · ◦ f0, but all the following results are true for any m and k.
Claim 3: If ϕ ∈ C0

γ(C
l) is holomorphic in some neighborhood of U+0 , then the function

G̃0
ϕ is holomorphic in some neighborhood of U+0 .

Proof. From the inequality (2.4), for any point x in the closed polydisc ∆l(0, r2), we
have that

||ϕ+0 (x) − ϕ(x)|| ≤ 2γ||x|| ≤ 2γr2 <
R − r

2
.

We recall that each map f j is holomorphic in the closed polydisc ∆(0,R). From the
item (c), it follows that f0(D+0 ) ⊂ (W+

1 (r))◦ and we conclude that G0
ϕ+0

(U0) ⊂ ∆l(0, r)◦. It
follows from the Claim 1 that for every x ∈ U0

||G0
ϕ+0

(x) −G0
ϕ(x)|| ≤ || f0(x, ϕ+0 (x)) − f0(x, ϕ(x))|| ≤ λ0||ϕ+0 (x) − ϕ(x)|| < λ0

R − r
2

,

this implies that

||G0
ϕ(x)|| ≤ ||G0

ϕ+0
(x) −G0

ϕ(x)|| + ||G0
ϕ+0

(x)|| < R − r
2
+ r =

R + r
2

< R.

As before, we denote ϕ1 = ( f0)∗ϕ, ϕ j+1 = ( f j)∗ϕ j, for every j = 1, . . . ,N − 2; and
G j = G j

ϕ j , for every j = 1, . . . ,N − 1. Again by item (c), for every 1 ≤ k ≤ N − 1 we
have fk ◦ · · · ◦ f0(D+0 ) ⊂ (W+

k+1(r))◦, it follows that Gk
ϕ+k
◦ · · · ◦G0

ϕ+0
(U0) ⊂ ∆l(0, r)◦. We

use the following notation:

x+k = Gk
ϕ+k
◦ · · · ◦G0

ϕ+0
(x) and xk = Gk ◦ . . . ◦G0

ϕ(x).
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Then as before, we conclude that for every x ∈ U0

||x+k − xk|| ≤ || fk(x+k−1, ϕ
+
k (x+k−1)) − fk(xk−1, ϕk(xk−1))||

≤ λ0||ϕ+k (x+k−1) − ϕk(xk−1)||
≤ λ0|| fk−1(x+k−2, ϕ

+
k−1(x+k−2)) − fk−1(xk−2, ϕk−1(xk−2))||

...

≤ λk
0||ϕ+0 (x) − ϕ(x)||

< λk
0
R − r

2

then is follows that

||Gk ◦ . . . ◦G0
ϕ(x)|| ≤ ||x+k − xk|| + ||x+k || <

R − r
2
+ r =

R + r
2

< R.

To end, since that ϕ is holomorphic in some neighborhood of U0, f0 is holomor-
phic in ∆l(0,R) and Im (G0

ϕ(U0)) ⊂ ∆l(0,R)◦ it follows that the map ϕ1 is holomor-
phic in some neighborhood of Im (G0

ϕ(U0)). Similarly, since that G1(Im (G0
ϕ(U0))) ⊂

∆l(0,R)◦, and f1 is holomorphic in this domain, we conclude that ϕ2 is holomorphic in
Im (G1(Im (G0

ϕ(U0)))), and so on. This implies that the map G̃0
ϕ = GN−1 ◦ · · ·G1 ◦G0

ϕ is

holomorphic in U0 and Im (G̃0
ϕ(U0)) ⊂ ∆l(0,R)◦. �

Claim 4: The image of U0 from the map G̃0
ϕ, contain the polydisc ∆l(0, r0).

Proof. From the item (b), we have that W+
N(r1) ⊂ (g0(D+0 ))◦, and we recall that g0(D+0 )

is a topological ball that contain 0. Now for a point x ∈ pr1(g−1
0 (W+

N(r1))) ⊂ ∆l(0, r0)
we have that ||GN−1

ϕ+N−1
◦ · · · ◦G0

ϕ+0
(x)|| ≤ r1 and that

||GN−1
ϕ+N−1
◦ · · · ◦G0

ϕ+0
(x) − G̃0

ϕ(x)|| ≤ ||g0(x, ϕ+0 (x)) − g0(x, ϕ(x))|| < λN
0 2γr0 <

r1 − r0

2
,

and this last inequality comes from the inequality (2.5). This conclude the proof of the
claim. �

From the previous claim, in particular we have that UN ⊂ Im (g0(D+0 )). Since F̃0
ϕ

be a holomorphic map in some neighborhood of U0, and (G̃0
ϕ)−1 is holomorphic in

∆l(0, r0) ⊃ UN (and this because G̃0
ϕ is holomorphic and injective), it follows that the

map ϕ′(x) = (g0)∗ϕ(x) = F̃0
ϕ ◦ (G̃0

ϕ)−1(x) is holomorphic in UN .
We conclude that for any m, the action of the graph transform operator associated

with the family g =
{
gk

}
k∈Z defined as in the equation (2.6), leaves invariant the set of
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sequences of Lipschitz functions that in each level is holomorphic in some neighbor-
hood of the sets U’s; and note that this set contain the linear maps. Passing to limit, we
conclude that each ϕ+m is holomorphic in the set Um ⊃ ∆l(0, r−1). Thus taking R′ = r−1,
we completed the proof of the Proposition. �

2.2.3 Proof of Theorem 2.1.4

For this purpose, is only necessary to prove that are satisfied the equivalents condition
in the Lemma 2.1.

Proposition 2.2.5. Let f be a forward expansive map in the cu-leaves, with constant of
expansiveness c. Then for every r1 < c there exist r0 < r1 such that for all x ∈ Λ and
n ≥ 0

f −n(Wcu
r0

(x)) ⊂ Wcu
r1

( f −n(x)).

Proof. We suppose that is not true, thus there exists r1 such that the previous propo-
sition not holds. Let ρ ' 1 such that ρr1 < c and let (rk)k be a sequence of positive
numbers such that rk → 0 and rk < r1. Thus there exist xk ∈ Λ and (nk)k ↗ ∞ such that

f −nk(Wcu
rk

(xk)) * Wcu
r1

( f −nk(xk)) ⊂ Wcu
ρr1

( f −nk(xk)).

We take each nk minimal with this property. Let us take yk = f −nk(xk) and take zk some
point in the following intersection

f −nk(Wcu
rk

(xk)) ∩Wcu
ρr1

(yk) \Wcu
r1

(yk).

Also we take y0 and z0 such that zk → z0 and yk → y0. By construction (and C1

continuity of the cu-leaves) we have that z0 ∈ Wcu
ρr1

(y0) \Wcu
r1

(y0).
We assert that

dist ( f n(y0), f n(z0)) ≤ ρr1

for each n ≥ 1, and since ρr1 < c we have a contradiction with the expansiveness in the
cu-leaves. Then to conclude the proof, is only necessary to prove the previous assertion.

By contradiction, we assume that there exist n such that dist ( f n(y0), f n(z0)) = γ >

ρr1. By continuity of f n, given ε > 0 we can take k � 1 such that nk > n and satisfied

dist ( f n(yk), f n(y0)) < ε and dist ( f n(zk), f n(z0)) < ε.

If we take ε such that γ− 2ε > ρr1 we conclude that dist ( f n(zk), f n(yk)) > γ− 2ε > ρr1.
To end, taking z̃k ∈ Wcu

r1
(xk) such that f nk (̃zk) = zk, the previous inequality implies that

dist ( f n−nk (̃zk), f n−nk(xk)) > ρr1,
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that is
f n−nk(Wcu

rk
(xk)) * Wcu

r1
( f n−nk(xk)),

that contradict the minimality of nk. This ends the proof. �

Proposition 2.2.6. Let f be a forward expansive map in the cu-leaves, and r0 < r1 such
that r0 ∈ I(r1). Then for every 0 < ε < r1 < c there exists N = N(ε, r0) such that for all
x ∈ Λ and n ≥ N

f −n(Wcu
r0

(x)) ⊂ Wcu
ε ( f −n(x)).

Proof. We suppose that is not true. Thus there exist ε such that for all k ≥ 0 there exist
xk ∈ Λ and nk > k such that

f −nk(Wcu
r0

(xk)) * Wcu
ε ( f −nk(xk)) ⊂ Wcu

r1
( f −nk(xk)).

We take each nk minimal with this property. Let us take yk = f −nk(xk) and take zk some
point in the following intersection

f −nk(Wcu
rk

(xk)) ∩Wcu
r1

(yk) \Wcu
ε (yk).

Note that in particular dist (yk, zk) < c.
Also we take y0 and z0 such that zk → z0 and yk → y0. By construction (and C1

continuity of the cu-leaves) we have that z0 ∈ Wcu
r1

(y0) \Wcu
ε (y0) and dist (y0, z0) ≤ c.

We assert that
dist ( f n(y0), f n(z0)) ≤ c

for each n ≥ 1, and since c the expansiveness constant, we have a contradiction with
the hypothesis of expansiveness in the cu-leaves. Then to conclude the proof, is only
necessary to prove the previous assertion.

By contradiction, and arguing as in the previous proposition, if we assume that there
exist n such that dist ( f n(y0), f n(z0)) > c > ε,there exist k � 1 such that nk > n and
satisfies dist ( f n(zk), f n(yk)) > ε. Thus

f n−nk(Wcu
rk

(xk)) * Wcu
r1

( f n−nk(xk)),

that contradict the minimality of nk. �

2.2.4 Proof of Theorem 2.1.5

Proof. It is clear that if F is unstable, then the cu-leaves are unstable manifolds, so are
dynamically defined.
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For the reciprocal, we suppose that cu-leaves are dynamically defined. It follows
from the Theorem 2.1.3, that the cu-leaves are holomorphic manifolds, then the map
φcu given by Theorem 2.1.1, satisfy φcu : Λ→ EmbHol(D,C2).

On the other hand, from continuity of φcu and compactness ofΛ, there exist a constant
c > 1 such that c−1 < ||(φcu(x))′(0)|| < c for all x ∈ Λ. Let

ex =
(φcu(x))′(0)
||(φcu(x))′(0)|| ,

and write
(φcu(x))′(0) = αxex.

It follows that the maps x 7→ Ex and x 7→ αx varies continuously in Λ and that c−1 <

|αx| < c.
Working with f n for n great instead of f if for necessary, we can assume that

f −1(Wcu
1 (x)) ⊂ Wcu

1/2( f −1(x)). (2.7)

For an element v ∈ F(x) with v = αex we write

D f −1(x)(v) = α · D f −1(x)(ex) = α · tx · e f −1(x).

For each x ∈ Λ, we define the holomorphic map fx : D→ D given by

fx(z) = (φcu( f −1(x)))−1 ◦ f −1 ◦ φcu
x (x),

then by construction the maps x 7→ fx is continuous.
Now, from the equation (2.7), fx(D) ⊂ {|z| < 1/2

}
and fx(0) = 0, and applying

Schwarz Lemma we conclude that | f ′x(0)| = λx < 1/2.
Now note that

λx = |α−1
f −1(x) · tx · αx|,

thus for any n ≥ 1 we have that

λ f −(n−1)(x) · . . . · λx = |α−1
f −1(x) · t f −(n−1)(x) · . . . · tx · αx| < (1/2)n,

and it follows that

||D f −n(x)|F(x)|| = |t f −(n−1)(x) · . . . · tx| ≤ |α f −1(x)| · |α−1
x |(1/2)n < c2(1/2)n,

we conclude that the direction F is an unstable direction. �
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2.2.5 Proof of Theorem A.

Proof. We consider the dominated splitting as TΛC2 = E ⊕ F. From Lemma 1.1, and
working with f n0 instead f if necessary, there exist 1 > ρ > 0 such that f is ρ-pseudo
hyperbolic. Thus J has a foliation local stable and local center unstable.

On the other hand, since that f is cu-forward expansiveness, Theorem 2.1.4 implies
that the cu-leaves are dynamically defined; and Theorem 2.1.5 implies that the direction
F is an unstable direction, that is follows the hyperbolicity. �

2.2.6 Proof of Proposition 2.1.1

Proof. The statement of the Lemma is true for saddle periodic points. In fact, for a
saddle periodic point p, we have that Wu(p) is a copy of C, and is dense in J− (see
Property 1.1.3 in the previous Chapter, item 3 and 4). Also, we have that J− ∩ U+ , ∅.
This is follows from the Property 1.1.1 in the previous Chapter (see also Figure 1, in
page 4).

Thus, to proof this Lemma, we assert that the stable manifold of p intersect any local
center unstable disk. This it follows from the fact that J∗ = H(p) is a homoclinic class
of any periodic saddle point, and that there is a uniformly contractive sub-bundle, i.e.,
the direction E (see Lemma 3).

Let pk be a sequence of periodic saddle points, pk → x ∈ J∗. From the continuity
of the splitting, it follows that for k great enough W s

loc(pk) ∩ Wcu
loc(x) , ∅. Since that

pk ∈ H(p), each W s
loc(pk) is approximated by disc contained in W s(p). More precisely,

there exist a disc Dk ⊂ W s(p) such that dist 1(Dk,W s
loc(pk)) < 1/k, where dist 1 is the

metric of the C1 topology. It follows that for k great enough, Dk ∩ Wcu
loc(x) , ∅ thus

W s(p) intersect to Wcu
loc(x).

Now since that Wu(p) ∩ U+ , ∅ and U+ is open, backward iterates of U+ accumu-
lates on any compact part of W s(p), and imply that backward iterates of U+ intersects
Wcu

loc(x). �

2.3 Zero Lyapunov Exponent Measures

In this section, we assume that f is a dissipative polynomial diffeomorphisms in C2,
with | det(D f ) | = b < 1.

In what follows, ν is a f -invariant measure whose support is contained in J. Also,
we denote by R(ν), the set of all regular point in supp (ν). By the classical Oseledets
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Theorem, we know that ν(R(ν)) = 1. Let x ∈ J be a regular point and let λ−(x) ≤ λ+(x)
its Lyapunov exponents, then they are related with a splitting E−x and E+x respectively.
Since J has no attracting periodic points, from the equation λ−(x) + λ+(x) = log(b) it
follows that λ−(x) ≤ log(b) < 0 ≤ λ+(x).

Definition 2.3.1. We say that a measure ν:

1. is hyperbolic, if λ+(x) > 0 for ν-a.e.,

2. has a zero exponent, if λ+(x) = 0 for ν-a.e.,

Give ν a measure, we denote by R+(ν) (resp. R0(ν)), the set of all regular points, that
has the maximal exponent positive (resp. null). It is clear that R(ν) = R+(ν) t R0(ν),
where t is a disjoint union. It is easy to see from the definition that ν is hyperbolic
(resp. be a zero exponent) if and only if ν(R+(ν)) = 1 (resp. ν(R0(ν)) = 1). A measure,
is not of the above types if and only if ν(R+(ν)), ν(R0(ν)) > 0. We recall that supp (ν) =
R(ν)(mod0) = R(ν)(mod0).

We can write every measure ν, as a direct sum of the form ν = ν+ ⊕ ν0, where
ν+ = ν|R+(ν) is hyperbolic and ν0 = ν|R0(ν) is has a zero exponent. Naturally ν0 ≡ 0 when
ν is hyperbolic, and ν+ ≡ 0 when ν has a zero exponent.

Remark 10. It is important to recall that, for a measure that is neither hyperbolic nor
has zero exponent, the supports supp (ν0) = R0(ν)(mod0) and supp (ν+) = R+(ν)(mod0)
can intersect, but this intersection has measure zero both for ν0 and for ν+.

We define the set support of J, as the set

supp (J) = ∪{supp (ν) : ν is f -invariant
}
.

This set can by defined in more general context, namely, linear cocycles (see Chapter 3
for details), and play an important role in the proof of Theorem D in this chapter.

In the paper [BLS1], the authors proof that the set J∗ = supp (µ), where µ is the
unique measure of maximal entropy log(deg( f )), and that any hyperbolic measure has
support contained in J∗. Then we have that

J∗ = ∪{supp (ν) : ν is hyperbolic
}
.

Also we define the set

J0 = ∪
{
supp (ν) : ν is has a zero exponent

}
.

Note that by definition, J0 is a compact f -invariant set.
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Proposition 2.3.1. The equality supp (J) = J∗ ∪ J0 holds.

Proof. It is clear that J∗ ∪ J0 ⊂ supp (J). On the other hand, Let xn → x ∈ supp (J)
with xn ∈ supp (νn). Writing νn = ν

+
n ⊕ ν0

n, we have that there is an infinity times n such
that either xn ∈ supp (ν+n ) or xn ∈ supp (ν0

n), and we can take a subsequence converging
to x. This conclude the proof. �

2.4 Equivalence to Hyperbolicity in the Dominated Case

The main goal of this section is to proof the following Theorem.

Theorem B. Let f be a dissipative complex Hénon map, with dominated splitting in J.
The following statement are equivalents:

1. J is hyperbolic,

2. J0 = ∅,

3. The set of periodic (saddle) point are uniformly hyperbolic.

4. The set of periodic (saddle) point are uniformly expanding at the period.

An immediate Corollary from the Theorem above is the following.

Corollary of Theorem B. Let f be a dissipative complex Hénon map, with dominated
splitting in J. Then J is hyperbolic if and only if all measure f -invariant supported in
J is hyperbolic.

In the next subsection, we shall prove this result. The proof will be supported essen-
tially in the Fornæss Theorem (see [F]), and the Theorem 2.4.2.

Theorem 2.4.1 (Fornæss). Let f be a complex Hénon map which is hyperbolic in J∗.
If f is not volume preserving, then J∗ = J.

This implies that is sufficient to see hyperbolicity of the J∗. This allows enunciate
the following result.

Theorem 2.4.2. Let f be a complex Hénon map, dissipative with dominated splitting
in J∗. Then we have the following dichotomy:

i. The set J∗ is hyperbolic.
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ii. J∗ ∩ J0 , ∅.

In the next section, we shall prove this result, as a corollary of the Theorem 2.1 of the
celebrated work of R. Mañé “A proof of the C1 Stability Conjecture”. This Theorem
can be also proved independently of the Mañé work, and we present this proof in the
Chapter 3, subsection 3.5. With this another proof, we can conclude that in the context
of Hénon map, Mañé Theorem and Theorem 2.4.2 are equivalent.

As a corollary of the previous Theorem, we have.

Corollary 2.4.3. The set J0 , ∅ if and only if J0 ∩ J∗ , ∅.

Proof. If J0 ∩ J∗ = ∅, then J∗ is hyperbolic. Thus from Fornæss Theorem, J is hyper-
bolic and J0 = ∅. �

We also have the following question.

Question 2. Let f be a dissipative Hénon map with dominated splitting in J. If f is
also expansive in J, is the set J0 empty? An affirmative answer for this question, allows
to enunciate the following statement: If f is expansive in J, the any measure invariant
supported them, is hyperbolic.

Question 3. Let f be a dissipative Hénon map with dominated splitting in J. If the set
J0 is not empty, there exist some condition under which J0 \ J∗ , ∅? An affirmative
answer, give examples for which J∗ ( J.

2.4.1 Proof of Theorem B

First we define some basically notions. Let Per the set of all periodic point contained
in J. From [BS1] any periodic saddle point p of f is on Per, and J∗ = Per.

We recall that from Lemma 1.1, the dominated direction E in each periodic point is
a stable direction. This justify the following definition.

Definition 2.4.1. 1. We say that Per is uniformly hyperbolic if there exist a C ≥ 1
and 0 < λ1 < 1 such that for every n ≥ 1

||D f −n|F(p)|| ≤ Cλn
1,

for every p ∈ Per.

2. We say that Per is uniformly expanding at the period, if there exist a C ≥ 1 and
0 < λ1 < 1 such that

||D f −π(p)|F(p)|| ≤ Cλπ(p)
1 ,
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for every p ∈ Per, where π(p) is the period of p.

Proof of (1) ⇔ (2) . From the Theorem 2.4.2, it follows that if J is hyperbolic, then
J0 ∩ J∗ = ∅. Thus, from Corollary 2.4.3 it follows that J0 = ∅.

The reciprocal direction, is essentially the same: Corollary 2.4.3 say that if J0 = ∅,
then J0 ∩ J∗ = ∅. The hyperbolicity of J, it follows from the Theorem 2.4.2, and the
Fornæss Theorem. �

It is clear that (1) ⇒ (3) ⇒ (4). Then is only necessary to proof that (4) ⇒ (2) and
we conclude the proof of Theorem B. This it follows directly from the following fact.

Proposition 2.4.1. Let f be a complex Hénon map, dissipative with dominated splitting
in J∗. Then we have the following dichotomy:

i. The set Per is uniformly expanding at the period.

ii. J∗ ∩ J0 , ∅.

Proof. We assume that J∗ ∩ J0 = ∅, and that the set Per is not uniformly expanding at
the period. In this case we can assume that for every n ≥ 1, there exist a periodic point
pn such that

||D f −kπ(pn)|F(pn)|| <
(
n − 1

n

)kπ(pn)

,

for every k ≥ 1. Thus we have

log
( n
n − 1

)
>

1
kπ(pn)

log
(
||D f kπ(pn)|F(pn)||

)
. (2.8)

Since that λ+(pn) > 0, we can find kn great enough such that

1
knπ(pn)

log
(
||D f knπ(pn)|F(pn)||

)
>

1
n
. (2.9)

Now we define

νn =
1

knπ(pn)

knπ(pn)∑
j=1

δ f j(pn),

be a sequence of f -invariant measures that, taking a subsequence if necessary, we can
assume that νn → ν. It follows from the inequalities (2.8) and (2.9) that∫

log ||D f |F ||dν = lim
n→∞

∫
log ||D f |F ||dνn = 0,

that is a contradiction with J0 = ∅. �
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Recently Christian Bonatti, Shaobo Gan and Dawei Yang, have proven an more gen-
eral case of the previous proposition and that contain this (see [BGY] for instance).
In the work of Bonatti Et al., an important hypothesis in the proof is that his compact
invariant set is a homoclinic class, and these is the case of J∗; but we don’t use this fact
in the previous proof, however homoclinic class is a hypothesis used in the proof of
Fornæss Theorem. We conclude this section with the statement of Theorem of Bonatti
Et al..

Theorem 2.4.4 (Bonatti-Gan-Yang). Let p be a hyperbolic periodic point of a dif-
feomorphism f on a compact manifold M. Assume that its homoclinic class H(p) ad-
mits a (homogeneous) dominated splitting TH(p)M = E ⊕ F with E contracting and
dim(E) = ind(p).

If f is uniformly F-expanding at the period on the set of periodic points q homoclin-
ically related to p, then F is uniformly expanding on H(p).

2.5 Proof of Theorem 2.4.2

First one, we present the Theorem 2.1 due to Mañé in [Ma1]. Let f be a diffeomor-
phisms of C1 class in a Riemannian manifold M of any dimension, and Λ be a compact
invariant by f . A dominated splitting TΛ = E⊕F is say homogeneous if the dimension
of the subspace E(x) is constant for every x ∈ Λ. We say that a compact neighborhood
U of Λ is admissible if the set M( f ,U) = ∩n∈Z f n(U) has one and exactly one homoge-
neous dominated splitting T M( f ,U) = Ê ⊕ F̂ extending the splitting TΛ = E ⊕ F. It
is known, that if TΛ has a homogeneous dominated splitting, then Λ has an admissible
neighborhood U (see [HPS] for instance).

Theorem 2.5.1. LetΛ be a compact invariant set of f ∈ Diff1(M) such thatΩ( f |Λ) = Λ,
let TΛM = E ⊕ F be a homogeneous dominated splitting such that E is contracting and
suppose c > 0 is such that the inequality

lim inf
n→∞

1
n

n∑
j=1

log ||(D f )−1|F( f j(x))|| < −c (2.10)

holds for a dense set of points x ∈ Λ. Then either F is expanding (and therefore Λ is
hyperbolic) or for every admissible neighborhood V of Λ and every 0 < γ < 1 there
exists a periodic point p ∈ M( f ,V) with arbitrarily large period N and satisfying

γN ≤
N∏

j=1

||(D f )−1|F̂( f j(p))|| < 1
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where F̂ is given be the unique homogeneous dominated splitting T M( f ,V) = Ê ⊕ F̂
that extend TΛ = E ⊕ F.

In terms of the hypothesis of the Mañé Theorem, is clear that are satisfied: f of
C1 class and homogeneous dominated splitting. From item (2) above, is satisfied the
inequality (2.10) with c = log(d) where d is the degree of the map f (see Properties
1.1.2 in the previous chapter). Also we remark that any periodic point in M( f ,V) for
some V a admissible neighborhood of J∗, is in fact an element of Per.

Proof of Theorem 2.4.2. By the Mañé Theorem, if J∗ is not hyperbolic then, in parti-
cular, for every n > 0 there exist a periodic point pn of period N(n) ≥ n such that

log
(
n − 1

n

)
≤ 1

N(n)
log ||(D f )−N(n)|F(pn)|| < 0.

To end the proof, proceed in the same way as in the Proposition 2.4.1. �



Chapter 3

Critical Points for Projective Cocycle

Introduction

The main purpose of this chapter is to study the dynamical obstruction to dominated
splitting for two dimensional holomorphic systems.

In the real and complex one-dimensional context, this phenomena is already known:
for one-dimensional endomorphism, the presence of critical points (points with zero
derivative) in the Limit set is an obstruction to hyperbolicity. In the one-dimensional
real case, Mañé showed that smooth and generic (Kupka-Smale) one-dimensional en-
domorphisms without critical points are either hyperbolic or conjugate to an irrational
rotation (see [Ma2]). So we could say that, for generic smooth one-dimensional endo-
morphisms, any compact invariant set is hyperbolic if, and only if, it does not contain
critical points. In the one-dimensional complex case (more precisely for rational maps),
the Julia set J is hyperbolic if, and only if, J is disjoint of the post critical set (see for
example, [MNTU]).

On the other hand, E. Pujals and F. Rodriguez Hertz in their work [P-RH], introduce
a notion of critical point for surfaces maps and they show that under the hypothesis of
“dissipation”:

Main Theorem. [Pujals-Rodriguez Hertz] For a generic C2 system in a compact sur-
face, a systems has dominated splitting, if and only if the set of critical point is empty.

From Theorem B of Pujals-Sambarino in [P-S], the authors of [P-RH] conclude that
(generically) a invariant set (under certain hypothesis) is either a hyperbolic set or a
invariant closed curve that is normally hyperbolic and on which the dynamics is con-
jugate to an irrational rotation if and only if the set of critical points is empty. Also
we remark that in [P-RH], the authors perform the proof of their main result, using the

45
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Theorem B on [P-S].
Later, Silvan Crovisier in [Cr], give a proof of the Main Theorem on [P-RH], inde-

pendent of the Pujals-Sambarino’s Theorem.
In this Chapter, we generalize the notion of critical point for two dimensional holo-

morphics maps. In few words, given a dissipative compact invariant set without attract-
ing periodic points, the main result (Theorem D) establish that: One systems of this
nature have dominated splitting if and only if there are not critical points.

Roughly speaking, it is said that a point z is a critical point, if this has a direction,
a one dimensional complex space, that in the projective action, is expansive for back-
ward/backward iterates. The notion of critical point that we define in this work, is
slightly different to the original given in [P-RH]. In general, critical point are uniquely
defined along the orbit, and the set of all critical points (critical set) is compact and far
of dominated set and hyperbolic blocks. With the new definition, the critical set are also
invariant by metric and are persistent by conjugation close to the identity. To justify the
notion of critical points, we refer to section 3.4 where a set of properties of the critical
points are listed and proved.

Notice that, in the two dimensional holomorphics context, in principle, there are not
a Pujals-Sambarino Theorem. Thus to prove the Theorem D, we adapt the ideas of
Crovisier for the two dimensional holomorphics maps.

Another important remark is the following: however that in particular a holomorphic
map is a C2 map, this is not an important point in the proof of theorem, it is only nec-
essary have continuous variation in the derivative of the map. It is not even necessary
to be holomorphic.

To show the independence of the class of differentiability, we prove this result in a
more general context: namely complex linear cocycles acting in a complex fiber bundle
of dimension two. This is possible because domination and the notion of critical point
(introduce in the section 1.7) defined for a differentiable map f , are intrinsic properties
of the projective dynamics induced by the cocycle ( f ,D f ); in particular, we can define
them in general cocycles acting in a vectorial bundle.

This chapter is organized as follows:
In the section 3.1-3.5 we introduce the basic definition and preliminaries to define

critical point. In the section 3.6-3.8 we introduce the notion of critical point and demon-
strate the Theorem D.

More precisely:
In the subsections 3.1.1 and 3.1.2, we present the notions of multiplier (and the norm

of the multiplier) for a holomorphic function on the Riemann sphere, and we calculate
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this for the case of Möbius transformation.
In the subsection 3.1.3, we recall the notions of linear and projective bundle and

present the natural system acting in there, namely, linear and projective cocycles.
In the subsection 3.1.4, relate the linear and projective bundle with the Riemannian

and Spherical metric defined there.
In the subsection 3.1.5, present the notion of dominated splitting for a linear cocycle.
In the subsections 3.1.6 to 3.1.8, is shown that linear cocycles has a related projec-

tive cocycle. Moreover, we introduce the notion of “hyperbolicity” for this projective
cocycle and it is proved that: A linear cocycle has dominated splitting if and only if its
related projective cocycle is hyperbolic. Also we prove that hyperbolicity is equivalent
with some more weak condition in the projective cocycle.

In the section 3.2, we recall some technical considerations, in particular related with
the projective cocycles and the norm of the multiplier.

In the section 3.3, we define the notions of critical point and it is defined the sets
called “block of domination”, which exhibits some kind of asymptotic dominations.

In the subsection 3.3.1 it is proved the Theorem C, that establish that this blocks of
domination always exists. This it follows from a easy observation of Oseledets theorem.

In the subsection 3.3.2, we describe two criteria for obtaining domination.
In the subsection 3.3.3, based in the ideas of Sylvain Crovisier (see [Cr]) for the proof

of the Theorem B in [P-RH], we prove the Theorem D.
In the section 3.4, we describe a series of properties of critical points.

3.1 Dominated Splitting and Hyperbolic Projective Co-
cycle

This section is devote to show the main elements used to introduce the notion of critical
point for linear cocycles.

3.1.1 Multiplier

In the studies of rational function in the Riemann sphere, an important tool to describe
the dynamics near fixed (or periodic) points is the notion of multiplier. By the Böcher’s
Theorem, the dynamics in a neighborhood of a fixed point is, via conjugation, given
by the dynamics of the map w 7→ λw, where λ is called the multiplier. Based on this
approaches, the main goal of this subsection is to introduce the notion of the multiplier



48

for any point (not necessarily for fixed or periodic points), that in the particular case of
Möbius transformation determine the behavior of the dynamics. First we remember the
definition of the multiplier for fixed points of rational map.

Definition 3.1.1. Let R be a rational function in the Riemann sphere C, and let z ∈ C
be a fixed point for R.

i) If z ∈ C we define the multiplier of R in the point z by R′(z), and is denoted by
λ(z,R).

ii) If z = ∞ we choose a Möbius map f such that f (∞) ∈ C, and it is defined
λ(∞,R) = λ( f (∞), f ◦ R ◦ f −1).

Note that in the previous Definition, the value of λ(z,R) when z ∈ C is invariant under
conjugation. It follows that λ(∞,R) is a well-defined.

Now we may define the norm of the multiplier for a rational map R in any z ∈ C. In
what follows, Isom(C) denote the set of all isomorphisms in the Riemann Sphere with
the spherical metric.

Definition 3.1.2. Let U ⊂ C be an open set and R : U → C be an holomorphic map.
Let z ∈ U and fz, hz ∈ Isom(C) such that fz(z) = hz(R(z)) = 0. Then the “norm of the
multiplier” of R in a point z is defined as

g(z,R) = |λ(0, hz ◦ R ◦ f −1
z )| = |(hz ◦ R ◦ f −1

z )′(0)|. (3.1)

Observe that the Definition above, is invariant under conjugation by isomorphisms.

Proposition 3.1.1. Let D ⊂ C be a topological disc and R : D→ C be an holomorphic
map. Let z ∈ D 7→ fi,z, hi,z ∈ Isom(C), with i = 1, 2, be continuous correspondence
such that fi,z(z) = hi,z(R(z)) = 0. If we define F1,z(w) = h1,z ◦ R ◦ f −1

1,z (w) and F2,z(w) =
h2,z ◦ R ◦ f −1

2,z (w) in some neighborhood of zero, then there exists a unique continuous
function ξ : D→ S1 such that

F′1,z(0) = ξ(z)F′2,z(0). (3.2)

Proof. If we write fi,z = Tai(z),bi(z) and hi,z = Tci(z),di(z), then f1,z ◦ f −1
2,z (w) = ξ1(z) · w

and h2,z ◦ h−1
1,z(w) = ξ2(z) · w where ξ1(z) = ζ1(z) · (ζ1(z))−1, ξ2(z) = ζ2(z) · (ζ2(z))−1,

ζ1(z) = a1(z)a2(z) + b1(z)b2(z) and ζ2(z) = c2(z)c1(z) + d2(z)d1(z). Hence taking ξ(z) =
(ξ1(z))−1 · ξ2(z) is proved the thesis. �
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The previous Proposition assert that the definition of g given in the Definition 3.1.2,
is independent of the isometries fz and hz considered to calculate it, that is, g is well
defined.

We would like give three remark to justify Definition 3.1.2. The reader can skip this
part.

1. The derivative in the point does not give good information for the behavior of
the dynamics. For example the map M(w) = 2w has infinity as attracting fixed
point with multiplier 1/2, but points near of infinity has derivative equal two. So
this is not a well definition because in the context of surfaces, we expect that the
“derivative” be a continuous function.

2. The multiplier provide good information in the case of fixed points, so we need
transform any point in a fixed point by Möbius transformations; but we can not
work with all transformations in this process, because we can lose information
about the local behavior in this point. For example, for the map M(z) = z, we can
take f (z) = z − 1 and h(z) = 3z − 3 for calculate a multiplier in the point z = 1;
then the map F(z) = h◦M ◦ f −1 has zero as fixed point and his multiplier is equal
to F′(0) = 3. However, M not expand any neighborhood of z = 1. To avoid this
inconvenience, we only work with spherical isometries.

3. Bad definition: Restricting the conjugations to spherical isometries, it is natural
to defines the multiplier as value F′1,z(0) given in the equation (3.2). But precisely
this equation say that this value depends of the conjugation considered. For this
reason, we take the norm of this value.

Remember that a Möbius transformation T is an isometry in the Riemann sphere
whit the spherical metric, if and only if T can be written in the form

T (w) = Ta,b(w) =
bw + a
−aw + b

,

with a and b complex number and |a|2 + |b|2 = 1. Observe that if we write z = a/b (and
z = ∞ if b = 0) then T (0) = z and since T is an isometry, T (∞) = z∗ = −1/z, that is the
antipodal point of z in the Riemann sphere.

We recall that the norm of the multiplier g, is given by g(z,R) = |(hz ◦ R ◦ f −1
z )′(0)|,

as in the Definition 3.1.2.

Proposition 3.1.2. The definition of g is half of the norm of the derivative of M in the
spherical metric.
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Proof. The spherical norm of a vector v ∈ C at a finite point z is given by

||v||z =
2

1 + |z|2 · |v|,

then if R is a rational function and z is such that R(z) is finite, we can take fz and hz

isometries as in the Proposition 3.1.1 and obtain

||R′(z)||R(z) = ||(hz ◦ R ◦ f −1
z )′(0)||0 = 2g(z,R).

�

3.1.2 Calculating the function g

To calculate the function g for a rational map R we can the choice isometries as the
form:

if w ∈ C 7→ fw(z) =
z + w
−wz + 1

, if w ∈ C \ {0} 7→ fw(z) =
−w−1z + 1

z + w−1 .

This allows define g(z) := g(z,R) for any z ∈ C as a continuous function.

Lemma 3.1. Let R be a rational map in the Riemann sphere. Then the norm of the
multiplier is given by

g(z) = g(z,R) = |R′(z)| · 1 + |z|2
1 + |R(z)|2 . (3.3)

In particular, for a Möbius transformations

M(ξ) =
aξ + b
cξ + d

,

we have
g(z) = g(z,R) =

|δ|
||Avz||2

, (3.4)

where A is the matrix  a b
c d

 ,
δ = det(A) and vz is a unitary vector in C2 such that [vz] = z.

Proof. Let z <
{∞, pole

}
let ξ = R(z). Define Fz(w) = f −1

ξ ◦ R ◦ fz(w), and we will
calculate |F′z(0)| = |( f −1

ξ )′(ξ)| · |R′(z)| · | f ′z (0)|. Notice that

fz(w) =
w + z
−zw + 1

, ⇒ f ′z (w) =
1 + |z|2

(−zw + 1)2
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and

f −1
ξ (w) =

w − ξ
ξw + 1

, ⇒ ( f −1
ξ )′(w) =

1 + |ξ|2

(ξw + 1)2
.

hence, an easy calculus implies that

|F′z(0)| = |( f −1
ξ )′(ξ)| · |R′(z)| · | f ′z (0)| = |R′(z)| · 1 + |z|2

1 + |R(z)|2 .

Now, for a Möbious transformation, we have

|F′z(0)| = |M′(z)| · 1 + |z|2
1 + |M(z)|2 =

|δ|
|cz + d|2

1 + |z|2
1 + |M(z)|2 ,

where δ = ad − bc. To end, denote as A the linear map in C2 that define the Möbius
transformation M and δ its determinant, also take vz = (v1

z , v
2
z ) ∈ C2 unitary vector such

that z = v1
z/v

2
z . Then we have that

g(z,M) = |F′z(0)|

= |δ| · 1 + |z|2
|az + b|2 + |cz + d|2

= |δ| ·
1 +

∣∣∣∣ v1
z

v2
z

∣∣∣∣2∣∣∣∣a v1
z

v2
z
+ b

∣∣∣∣2 + ∣∣∣∣c v1
z

v2
z
+ d

∣∣∣∣2
= |δ| ·

|v1
z |2 + |v2

z |2

|av1
z + bv2

z |2 + |cv1
z + dv2

z |2

=
|δ|
||Avz||2

.

�

Remark 11. For convenience, we will call the value F′z(0) the multiplier of M in the
point z even knowing that this depends on the conjugation involved in its definition.

3.1.3 Bundles and Natural Cocycles

This subsection is devoted to introduce the notion of vector and projective bundles. We
consider linear cocycles acting in the two dimensional complex linear bundle and we
relate it with a projective cocycle that describe the asymptotic behavior of the dynamics
in the complex lines (or complex directions). Also we define a spherical metric in the
projective bundle.

In this subsection, the set X denote a compact Hausdorff space.
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Definition 3.1.3. A 3-tuple (T X, p, X) is a vector bundle of dimension k if:

1. T X is a topological space,

2. p : T X → X is a continuous map,

3. for every z ∈ X the set p−1(z) (that we named this as fiber and denoted by Tz) has
structure of vector space over a field F and dimension k,

4. for every z there exist a pair (U, ϕ) where U is an open subset of X and the map
ϕ : p−1(U) → U × Fk is an homomorphism and an isomorphism of vector space
restricted in each fiber.

Moreover, the set
{
(U, ϕ)

}
has the properties of compatibility on the change of chart,

that is, if (U1, ϕ1) and (U2, ϕ2) are such that U1 ∩ U2 , ∅ then the change of chart
ϕ2 ◦ϕ−1

1 : (U1 ∩U2)× Fk → (U1 ∩U2)× Fk is an homomorphism and an isomorphisms
in each trivial fiber.

The set
{
(U, ϕ)

}
is called an atlas of trivialization maps. Since that X is a compact set,

we have a good defined hermitian metric in T X (see [H]), that is, if T X�T X denote the
subset of T X ×T X of pairs (u, v) such that u and v are in the same fiber, then there exist
a continuous function (·|·) : T X � T X → C such that (·|·)|Tz × Tz = (·|·)z is an hermitian
product in Tz.

We will only work with vector bundles of dimension two. Now we define the projec-
tive bundle space.

Definition 3.1.4. A 3-tuple (P, pr, X) is a projective bundle if:

1. P is a topological space,

2. pr : P→ X is a continuous map,

3. for every z ∈ X the set pr−1(z) (that we named this as projective fiber and denoted
by Cz) has structure of Riemann surface biholomorphic with the sphere,

4. for every z there exist a pair (U, φ) where U is an open subset of X and the map
φ : pr−1(U) → U × C is an homomorphism and a biholomorphism restricted in
each projective fiber.

Moreover, the set
{
(U, φ)

}
has the properties of compatibility on the change of chart,

that is, if (U1, φ1) and (U2, φ2) are such that U1 ∩ U2 , ∅ then the change of chart
φ2 ◦ φ−1

1 : (U1 ∩U2)×C→ (U1 ∩U2)×C is an homomorphism and a biholomorphism
in each projective trivial fiber.
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Given a vector bundle we have a natural projective bundle defined. In fact, if
{
(U, ϕ)

}
is an atlas of trivialization maps of T X we may construct an atlas of trivialization maps
of P(X) = ∪z∈X

{
z
} × CP1(Tz) with fiber C. In fact, let φ : pr−1(U)→ U × C defined by

φ(w, [v]) = (w, [π2(ϕ(v))]),

where [·] denote the equivalence class in the respective projective space, pr is the pro-
jection in the first coordinate and π2 : Uz × C2 → C2 is the projection in the second
coordinate.

3.1.4 Spherical Metric

Definition 3.1.5. The spherical metric considered in the fiber projective bundle P(X), is
induced by considering in each projective fiber Cz, the natural spherical metric defined
in them. This varies continuously in the projective bundle.

To explain with more details this definition, first we observe some basic fact of the
spherical metric defined in C.

Consider the Riemann sphere as the Projective space of all 1-dimensional space in
C2, and write this in homogeneous coordinates as

C =
{
[z1 : z2] : (z1, z2) ∈ C2}.

Also identify z ∈ C with [z1 : z2] = [z : 1] and the point in the infinity with [z1 : 0] =
[1 : 0]. With this coordinates the standard spherical metric

dρ = 2
|dz|

1 + |z|2

has constant Gaussian curvature +1. The chordal metric is defined by

d(z,w) =
2|z − w|

[(1 + |z|2)(1 + |w|2)]1/2 , when z,w ∈ C,

and
d(z,∞) =

2
(1 + |z|2)1/2 , when z ∈ C,

and we have the formula

d(z,w) = 2 sin
(
ρ(z,w)

2

)
(3.5)

which relate the two metrics.
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On the other hand, we have a natural homeomorphism h between C and the sphere
S2 in R3 given by

[z1 : z2] 7→ (2Re (z2z1), 2Im (z2z1), |z2|2 − |z1|2)/(|z1|2 + |z2|2). (3.6)

Then the chordal metric is precisely

d(z,w) = ||h([z1 : z2]) − h([w1 : w2])||, (3.7)

where || · || is the euclidean norm in R3.
All the previous observations are done considering homogeneous coordinates in the

canonical base of C2. So, a natural question arises: What happens with other basin?
If we make the previous constructions with homogeneous coordinates in another or-

thonormal base, we obtain the same chordal metric and accordingly the same spherical
metric. This is follows from the following fact.

Let A the change of basin matrix between the new orthogonal base and the canonical
base and M the Möbius transformation related with the matrix A. Then A is an iso-
metry with the hermitian metric in C2, and M is and isometry with the spherical metric
defined in the canonical way. This last observation says that the spherical metric is only
related with the Hermitian structure considered in the vectorial space, and not with the
coordinate system considered in it.

Now we explain how this fact well define a spherical metric in the projective cocycle.
Given U ⊂ X an open set, we denote by Γ(U,T X) the set of all continuous maps υ of
U in T X such that z = pr ◦ υ(z) and we call this function of section. Now let us take{
U1, . . . ,Uk

}
a finite cover of X such that there exists sections υi, υ

∗
i ∈ Γ(Ui,T X) such

that (υi(z)|υ∗i (z))z = 0 and ||υi(z)||z = ||υ∗i (z)||z = 1, then for each z ∈ Ui we can relate the
projective space Cz with the set of homogeneous coordinates in the base

{
υi(z), υ∗i (z)

}
,

that is
P(Tz) =

{
[z1 : z2] : z1υi(z) + z2υ

∗
i (z) ∈ Tz

}
,

and we define the chordal metric in P(Tz) as in the equation (3.7). For points z ∈ Ui∩U j

with i , j and ξ ∈ P(Tz), the homogeneous representation of ξ in the different bases{
σi(z), σ∗i (z)

}
and

{
σ j(z), σ∗j(z)

}
is not the same, however the metric induced is the same.

It is clear that the chordal metric varies continuously with this local representation.
This implies that we have a good defined chordal and spherical metric in the projective
bundle.
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3.1.5 Linear and Projective Cocycle

Now consider f : X → X an homomorphism. We denote by GL(T X, f ,C) the space of
all applications A : T X → T X such that for every z ∈ X the map Az = A|Tz : Tz → T f (z)

is a complex isomorphisms, that is, Az ∈ GL(Tx,T f (z)). We also define

||Az|| = sup
{||Azv|| f (z) : v ∈ Tz , ||v||z = 1

}
and the norm of A as

||A|| = max
{|A|, |A−1|} where |A| = sup

z∈X
||Az||.

Definition 3.1.6. A complex linear cocycle with base f , is a 4-tuple (T X, f , X, A) where
X is a topological space, f ∈ Hom(X), T X is a vector bundle with base X and A ∈
GL(T X, f ,C) is a continuous map with ||A|| < ∞.

In what follows, we refer as cocycle to the map A and its base f , omitting the other
element of the tuple, since this inherent as sets of definitions of this functions.

Remark 12. Observe that under a change of trivialization chart, the map z 7→ Az is a
continuous map z 7→ Uz, where Uz ∈ GL(2,C).

Now, we introduce the notion of dominated splitting.

Definition 3.1.7. We say that a cocycle A : T X → T X has dominated splitting if there
exists an splitting T X = E ⊕ F, of A-invariant one-dimensional complex planes, and
a positive integer l such that for each pair of unitary vectors u ∈ Ez and v ∈ F f l(z) we
have

||Al
z(u)|| · ||A−l

f l(z)(v)|| < 1
2
,

where Al
z = A f l−1(z) ◦ · · · ◦ A f (z) ◦ Az and A−l

z = A−1
f −l(z) ◦ · · · ◦ A−1

f −2(z) ◦ A−1
f −1(z).

The following classical proposition establishes properties equivalent with the domi-
nated splitting notion.

Proposition 3.1.3. The following statement are equivalent:

1. The cocycle A : T X → T X has dominated splitting.

2. There exist an splitting T X = E ⊕ F, of A-invariant one-dimensional complex
planes, and positive constants C > 0 and 0 < λ < 1 such that

||An
z |Ez || · ||A−n

z |F f n(z) || ≤ Cλn,

for any n > 0.
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3. There exists an splitting T X = E ⊕ F, of one-dimensional complex planes and
not necessarily A-invariant, such that there exists l > 0 and cone fields K(α, E)
and K(β, F), namely

K(α, Ez) =
{
u + v ∈ Ez ⊕ Fz : ||u|| ≤ α||v||}

and
K(β, Fz) =

{
u + v ∈ Ez ⊕ Fz : ||v|| ≤ β||u||},

such that

A−l
f l(z)(K(α, E f l(z))) ⊂ K(α, Ez)◦, Al

z(K(β, Fz)) ⊂ K(β, F f l(z))◦,

where K◦ = int(K) ∪ {
0
}
. We say that such of those cones are A-invariant and

have the property of l-domination.

Notice that in the condition (3.) in the previous Proposition, is possible to get the
invariant splitting given in (1.) and (2.) by the expressions

Ẽz =
∩
n≥0

A−n
f n(z)(K(α, E f n(z))) and F̃z =

∩
n≥0

An
f −n(z)(K(β, F f −n(z))). (3.8)

As in a vector bundle the natural function acting in this space are linear cocycles; the
natural function acting in a projective bundle are cocycles that are biholomorphisms in
the fibers. More precisely we have the following definition.

Definition 3.1.8. A projective cocycle with base f , is a continuous map M : P(X) →
P(X) with the form M = ( f ,M∗) where f is an homomorphism in X, and Mz : Cz → C f (z)

is a biholomorphism.

Remark 13. Note that given a linear cocycle A we can associate to it a projective
cocycle M in a natural fashion as Mz([v]) = [Azv].

For every ξ ∈ Cz we denote by λ(ξ) the multiplier of Mz at the point ξ (see Remark
11), and λn(ξ) the multiplier of Mn

z = M f n−1(z) ◦ · · · ◦ M f (z) ◦ Mz in the respective point.
Also we write g(ξ) = |λ(ξ)| and gn(ξ) = |λn(ξ)|.

Remember that the norm of the multiplier (see Lemma 3.1), is given by the equation
(equation (3.4))

g(ξ) =
| det(Az)|
||Azvξ ||2f (z)

,

and therefore
gn(ξ) =

| det(An
z )|

||An
z vξ ||2f n(z)

(3.9)
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where vξ is choose unitary and such that [vξ] = ξ.
To end, denote by T X∗ = T X \ {the zero section

}
and observe that we have defined

the canonical projection p : T X∗ → P(X). So given A a linear cocycle with base id, pA

denotes the map from T X∗ to P(X) given by pA|T ∗z = p ◦ Az, and we denote by pI = p
the projection defined considering Az = Id in Tz, for every z ∈ X.

3.1.6 Conjugation of Cocycles

A well known fact about holomorphics maps, is that topological (metrical) contraction
of small disc around some point implies that the norm of its derivative is smaller than
one and therefore also its multiplier is smaller than one. Since that projective cocycle
is holomorphic in each fiber, to determinate if the norm of the multiplier is less to one
in some point, it is sufficient to determinate if this contract disc around this point. For
that, it is natural to look for more simples cocycles which are conjugated to the initial
one, and check if the new cocycle shrinks discs. The formal notion of conjugation is
the following definition.

Definition 3.1.9. Let M,N : P(X)→ P(X) be two projective cocycles with M = ( f ,M∗)
and N = (g,N∗). We say that M is conjugate to N if there exists a projective cocycle
H = (h,H∗) : P(X) → P(X), where h : X → X is an homeomorphism such that
H ◦ M = N ◦ H.

The definition above says that we have simultaneously the conjugations h f (z) =
gh(z) and H f (z)Mz(ξ) = Nh(z)Hz(ξ).

Definition 3.1.10. We say that a section σ ∈ Γ(X,P(X)) is invariant by the projective
cocycle M (or M-invariant) if M(σ(z)) = σ( f (z)).

In that follows, we will work with projective cocycles with an invariant section. Un-
der the hypothesis of the existence of a global section, the following proposition gives
global coordinates in the projective space that is very useful further on.

Proposition 3.1.4. If P(X) has a global section, then P(X) is isometrically equivalent
to the trivial projective bundle X × C.

Proof. Let σ ∈ Γ(X,P(X)) a global section and E a splitting in T X associated with this
direction. Let us take σ∗ the global section associated with the direction E⊥, then σ∗(z)
is the antipodal point of σ(z) in the sphere Cz.
Claim: For every z ∈ X there exists a biholomorphisms Hz : Cz → C such that is an
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isometry, Hz(σ(z)) = 0 and Hz(σ∗(z)) = ∞.
Proof of Claim. Let

{
(Ui, ϕi) : i = 1, . . . , n

}
a family of trivialization charts such

that X = ∪iUi and let vi ∈ Γ(Ui,T X) local sections with ||vi|| = 1 and vi(z) ∈ E. Let
Lz : Tz → C2 be the unique linear map such that Lz is an isometry, Tz(vi(z)) = (1, 0) and
det(Lz) = 1. The map Lz is unique because the only element of the group S U(2,C) that
fix the vector (1, 0) is the identity map. By uniqueness and by continuity of the section
vi, the map z 7→ Lz is a continuous correspondence.

Let v∗i (z) = L−1
z ((0, 1)), then v∗i ∈ Γ(Ui,T X) is a local section such that ||v∗i || = 1 and

v∗i (z) ∈ E⊥. Define the splitting

Fz =
{
v ∈ Tz : (v|vi − v∗i )z = 0

}
.

It is easy to see that Fz is independent of the choice of the initials section considered.
Moreover, F is a continuous splitting. In the projective bundle F defines a global
section τ ∈ Γ(X,P(X)), this is, for any u ∈ Fz we have τ(z) = [u].

To end, we define Hz as the unique biholomorphisms such that

• Hz(σ(z)) = 0,

• Hz(σ∗(z)) = ∞,

• and Hz(τ(z)) = 1,

or equivalently Hz([v]) = [Lz(v)]. This finishes the proof of the claim.
Continuing with the proof of the Proposition, if (U, φ) is a local trivialization of P(X),

by continuity of the sections, the local expression in U of Hz is a continuous function.
More precisely, there exist a continuous family H̃ : U × C→ U × C with

H̃z(w) =
azw + bz

czw + dz

where the maps z 7→ az, . . . , z 7→ dz are continuous function and we have the equality
Hz = H̃z ◦ φ and H̃z ◦ σ̃(z) = 0, H̃z ◦ σ̃∗(z) = ∞, where σ̃ = σ ◦ φ and σ̃∗ = σ∗ ◦ φ. It
follows that the function H = (id,H∗) is an homeomorphism and an isometry in each
fiber. �

Remark 14. After previous proposition we can assume that the bundle P(X) is in fact
the trivial bundle X × C. Moreover, given a section σ ∈ Γ(X,P(X)) we can lift this
section to the trivial bundle X × C2 as a global section v ∈ Γ(X, X × C2) such that
||v|| = 1 and if we write v = (v1, v2) then σ(z) = (z, [v1(z) : v2(z)]); this helps us to find
global expressions of the section in the projective bundle. We call v the unitary lift of
σ.



59

3.1.7 Projective Hyperbolicity

In this subsection we introduce the notion of hyperbolic projective cocycle, that is,
cocycles with two invariant sections that contract/expand asymptotically small disc
around them. We prove that a linear cocycle A have dominated splitting if and only
if the natural projective cocycle related with them is hyperbolic. Also we prove that the
notion of hyperbolic is equivalent with the presence the only one invariant section that
have an hyperbolic asymptotic behavior for the past or the future.

Recall that the norm of the multiplier (see Definition 3.1.2) is given by the
equation (3.4).

Definition 3.1.11. We say that a section σ is a contraction for M (or is contractive), if it
is M-invariant and there exist constants C > 0 and 0 < λ < 1 such that gn(σ(z)) ≤ Cλn,
for any n ≥ 0 and z ∈ X. In the same way, we say that a section is an expansion (or is
expansive) if this is a contraction for the cocycle M−1.

Definition 3.1.12. We say that a cocycle M is hyperbolic if there exist two projective
sections τ and σ in Γ(X,P(X)), that are disjoint (i.e., τ(z) , σ(z) for every z ∈ X), and
τ is an expansion and σ is a contraction.

We denote the unit disc in C by D. For any ξ ∈ C an any r we denote the ρ-ball with
center at ξ and radius r by B(ξ, r); these sets will be called balls. For any r > 0 and any
Möbius transformation that is an isometry in the spherical metric L with L(0) = ξ ∈ C,
it follows that the set L(rD) does not depend on L; we will denote this set by Dr(ξ), and
it will be called the disc of radius r centered at ξ. Note that fixed r the disc Dr(ξ) is
equal to B(ξ, ε), where ε satisfies the equation

r
√

1 + r2
= sin

(
ε

2

)
.

The last equation follows by the equation (3.5).

Proposition 3.1.5. Let σ ∈ Γ(X,P(X)) be a M-invariant section. Then the following
statement are equivalents:

i. The section σ is a contraction.

ii. There exist 0 < η < 1 and k > 0 such that gk(σ(z)) < η for all z in X.

iii. There exist k > 0 and r > 0 such that Mk
z (Dr(σ(z))) ⊂ Dr(σ( f k(z))).

iv. There exist k > 0 and R > 0 such that for all 0 < r ≤ R, Mk
z (Dr(σ(z))) ⊂

Dr(σ( f k(z))).
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Proof. It is clear that (i) implies (ii). To see that (ii) implies (i), consider for any
j = 0, . . . , k − 1 let

C j = sup
{
g j(σ(z)) : z ∈ X

}
.

Then for any s ≥ 0

gsk+ j(σ(z)) = gsk(σ( f j(z)))g j(σ(z)) ≤ C jη
s = C jη

− j/k[η1/k]sk+ j ≤ Cλsk+ j,

where C = sup
{
C jη

− j/k : j = 0, . . . , k − 1
}

and λ = η1/k < 1.
Also it is clear that (ii) is equivalent with (iii) and that (iv) implies (ii) and (iii).
To prove that (ii) implies (iv), we consider v = (v1, v2) the unitary lift of σ then

v∗ = (v2,−v1) is an unitary lift of σ∗ where σ∗ is the antipodal point of σ. Consider Hz

the Möbius transformation associated to the matrix

Bz =

 v2(z) v1(z)
−v1(z) v2(z)

 . (3.10)

It is easy to see that Hz defined as above is an isometry of the Riemann sphere. To end,
define Nz = H−1

f (z) ◦ Mz ◦ Hz and the cocycles N and H by N = ( f ,N∗) and H = (id,H∗).
Notice that H ◦ N = M ◦ H and that the section null ξ0 ≡ 0 is N-invariant, so each Nz

has the form
Nz(ξ) =

ξ

βzξ + αz
.

Notice that
g(ξ0) =

∣∣∣∣∣ 1
αz

∣∣∣∣∣ ,
so the hypothesis imply that there exist k and η such that gk(ξ0(z)) = |αk

z |−1 < η for all z
in X.

We can take R > 0 uniformly in z, such that 0 < r ≤ R then gk(ξ) ≤ η for every ξ in
Dr(ξ0(z)); it follows that gn(ξ) ≤ Cλn for some C and 0 < λ < 1 and every ξ in Dr(ξ0(z))
and n ∈ N. The previous observation implies that |Nn(ξ)| < Cλnr for all ξ in Dr(ξ0) and
positive n, and it follows the proposition. �

Corollary 3.1.1. Let σ and R satisfying the item (iv) of the Proposition 3.1.5, then
ρ(Mn

z (ξ),Mn
z (σ(z))) goes to zero when n goes to infinity, for every ξ in Dr(σ(z)) and

0 < r ≤ R, where ρ is the spherical metric.

Proposition 3.1.6. A linear cocycle A has dominated splitting if and only if M is hy-
perbolic where Mz = [Az].
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Proof. Let us take (U, ϕ) a local trivialization of T X and take sections u in Γ(U, E) and
v in Γ(U, F) such that ||u(z)||z = ||v(z)||z = 1 for all z ∈ U. So we can define the sections

τ(z) = (z, [u(z)]) and σ(z) = (z, [v(z)]).

By compactness X is covered by finitely many local trivialization, it follows that this
section are globally defined and that are M-invariant.

On the other hand, let us take K(β, F) an invariant cone field uniformly contracted by
Al. Denoting pI(K(β, Fz)) by Dz, we remark that Dz is a closed conformal disc satisfying
that σ(z) ∈ Dz and we have that Ml

z(Dz) ⊂ int(D f l(z)). It is possible to find a radius r > 0
such that the closed disc centered in σ(z) of radius r is contained in Dz, and by equation
(3.8) we can find an integer k > 0 such that Mk

f −k(z)(D f −k(z)) = ∩k
n=0Mn

f −n(z)(D f −n(z)) ⊂
int(D(σ(z), r)). By continuity of the splitting and so of the cone field, and using the
compactness of X, we can choose this integer independent of the point z ∈ X, therefore
it follows that Mk

z (D(σ(z), r)) ⊂ int(D(σ( f k(z)), r)).
Repeating this argument for τ, follows that M is hyperbolic.
We shall now show the converse. First define Ez = p−1

I (τ(z)) ∪ {
0
}

and Fz =

p−1
I (σ(z)) ∪ {

0
}

and it is clear that this define a A-invariant splitting. Let us take sec-
tions u an unitary lift of τ and v an unitary lift of σ. Remember that the unitary lift are
element of the section of the trivial vector bundle X × C2.

We shall now construct a hyperbolic cocycle N which is conjugated with M. If we
write u = (u1, u2) and v = (v1, v2), we define Hz as the Möbius transformation associated
to the matrix

Bz =

 u1(z) v1(z)
u2(z) v2(z)

 , (3.11)

and define Nz = H−1
f (z) ◦ Mz ◦ Hz. Now the cocycles N and H are defined by N = ( f ,N∗)

and H = (id,H∗) and clearly H ◦ N = M ◦ H.
It remains to prove that N is hyperbolic. First note that by construction, the sections

ξ∞ (resp. ξ0) that associates at each fiber the point at infinity (resp. the zero point), are
N-invariant sections and so we have an explicit expression for N, that is, Nz(ξ) = λzξ.

To see that N is hyperbolic, it remain only to prove that N satisfy some of the state-
ment of the Proposition 3.1.5.

Since M is hyperbolic, then Mk shrinks small closed disc around σ and expands
small disc around τ for some k ≥ 0 (see Proposition 3.1.5 ), so the same is true for
Nk, and this imply that |λk

z | is less than one for every z ∈ X, so by compactness, this
is true uniformly in z, that is, there exist 0 < η < 1 such that |λk

z | < η. Note that
gk(ξ0(z)) = |λk

z | < η. Repeating the argument for ξ∞, it follows the hyperbolicity of N.
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To end, note that we have the following algebraic equality. First let us take
{
(Ui, ϕi)

}
a finite atlas of trivialization maps of T X, local sections ũi and ṽi in Γ(Ui,T X∗) such
that ũi ∈ Ez, ṽi ∈ Fz and both are unitary, then we have the equality

pI (̃ui) = τ = (id, [u]) and pI (̃vi) = σ = (id, [v]).

Take z ∈ Ui with f n(z) ∈ U j and write An
z ũi(z) = kn

z ũ j( f n(z)), An
z ṽi(z) = ln

z ṽ j( f n(z)) and
Ãn

z = (ϕ j)−1
z ◦ An

z ◦ (ϕi)z then

B−1
f n(z)Ã

n
z Bz =

 kn
z 0

0 ln
z


and it is follows that λn

z = kn
z /l

n
z . Now take u′ = sui(z) in Ez and v′ = tv j( f n) in F f n(z)

with |s| = |t| = 1, then

||An
z u′|| · ||A−n

f n(z)v
′|| = ||An

z ui(z)|| · ||A−n
f n(z)v j( f n(z))|| = |kn

z | · |ln
z |−1 = |λn

z | ≤ Cλn

for n ≥ 1, so A has dominated splitting. �

3.1.8 Local manifold for invariant sections and Module

This subsection is devote to prove the following proposition.

Proposition 3.1.7. A projective cocycle M is hyperbolic if and only if at least one of
the following equivalent conditions hold:

1. There exist a section that is a contraction.

2. There exist a section that is an expansion.

To proof this Proposition, we need establish the notion of stable and unstable set of
a point ξ and denoted by W s/u(ξ). For a contractive section σ, we assert that for every
z ∈ X, W s(σ(z)) is biholomorphic to C. The tool to prove this last assertion is known as
module. After we give the poof of Proposition 3.1.7.

Stable and Unstable Sets

Given a cocycle M, we define the stable set of a element ξ ∈ Cz by the set

W s(ξ) =
{
w ∈ Cz : lim

n→∞
ρ(Mn

z (w),Mn
z (ξ)) = 0

}
,
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where ρ is the spherical metric in Cz. Also, we define the local stable set of size ε > 0
by the set

W s
ε(ξ) =

{
w ∈ W s(ξ) : ρ(Mn

z (w),Mn
z (ξ)) < ε, for all n ∈ N

}
.

The unstable set is defined in the same way, but with the inverse cocycle M−1. More
precisely

Wu(ξ) =
{
w ∈ Cz : lim

n→∞
ρ(M−n

z (w),M−n
z (ξ)) = 0

}
,

and the set

Wu
ε (ξ) =

{
w ∈ Wu(ξ) : ρ(M−n

z (w),M−n
z (ξ)) < ε, for all n ∈ N

}
is the local unstable set. Also we can write the stable set (resp. unstable set) in terms
of backward (resp. forward) iteration of the local stable (resp. unstable) sets, that is,
given ε > 0 we have

W s(ξ) =
∞∪

n=0

M−n
z

(
W s

ε(Mn(ξ))
)
,

and

Wu(ξ) =
∞∪

n=0

Mn
z
(
Wu

ε (M−n(ξ))
)
.

For the proof of the Proposition 3.1.7, we need the following lemma.

Lemma 3.2. Let σ be a contractive section for M, then there exist constant k and r > 0
such that

W s(σ(z)) =
∪
t≥0

M−tk
z

(
Dr(σ( f tk(z)))

)
.

Proof. It follows from the Corollary 3.1.1 that each Dr(σ( f tk(z))) is a local stable set,
and there are uniformly contractive by the cocycle. �

Module

See [M] and [LV] for details. A double connected domain in C is a open connected set
such that its complement has two connected component. The definition of the module
of a double connected domain is based in the following mapping theorem: Every double
connected domain U is biholomorphic to a ring domain of the form

A(r1, r2) =
{
z ∈ C : 0 ≤ r1 < |z| < r2 ≤ ∞

}
.
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If r1 > 0 and r2 < ∞ for one canonical image of U, then the ratio of the radii r2/r1 is
the same for all canonical images of U. Then the number

mod(U) = log
r2

r1

which then determines the conformal equivalence class of U, is called the module of U.
Otherwise, we define mod(U) = ∞ and this happens if and only if at least one boundary
component of U consists of a single point.

The following classical lemma provides the module super-additivity property.

Lemma 3.3. Let U, U1, U2, . . . be double connected domains such that the Ui are
pairwise disjoint sub-domains of U. If every Un separates the two connected component
of the complement of U, then ∑

n

mod(Un) ≤ mod(U).

A immediate corollary of the previous lemma is the following.

Corollary 3.1.2. Let D1, D2, D3, . . . be conformal discs in C such that for every i ≥ 1
we have Di ⊂ Di+1. If there exist a constant κ > 0 such that mod(int(Di+1 \ Di)) ≥ κ,
then the set D = ∪nDn is biholomorphic with C.

Proof of Proposition 3.1.7

Proof. It is enough to prove that (2) imply (1), and the other direction follows using
the inverse cocycle.

We will show that W s(σ(z)) is biholomorphic to C. Take k and r as in the Lemma
3.1.7 and define Dt = M−tk

z

(
Dr(σ( f tk(z)))

)
. It is clear that Dt−1 ( Dt and the function

Mtk
z maps biholomorphically Dt \ Dt−1 on

At = Dr(σ( f tk(z))) \ Mk
f (t−1)k(z)(Dr(σ( f (t−1)k(z)))),

so the module mod(Dt \ Dt−1) and mod(At) are equal. By Corollary 3.1.2, it is enough
to prove that the module of the annulus are bounded above, but if we take η uniformly
in X such that gk(σ) ≤ η it follows that mod(At) ≥ log(1/η); this proves the claim.

To end, we have that Cz \ W s(σ(z)) =
{
τ(z)

}
. Since W s varies continuously and is

M-invariant, it follows that τ is a M-invariant section. By the definition of τ, it follows
that small disc around of τ are contracted uniformly by M−1, and it follows that τ is an
expansion. �
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3.2 Some Preliminary Results about Cocycles

As before we assume that X is a metric compact space, the function f is an homomor-
phism of X, the linear cocycle A : T X → T X is a cocycle with base f , and M is the
projective cocycle associated with A, i.e., Mz([v]) = [Azv].

3.2.1 Oseledets Theorem

A point z ∈ X is a regular point of A if the fiber Tz admits a splitting Tz = Ez ⊕ Fz of
one dimensional complex spaces, and number λ−(x) ≤ λ+(z) satisfying

lim
n→±∞

1
n

log(||An
z u||) = ±λ−(z) and lim

n→±∞

1
n

log(||An
z v||) = ±λ+(z),

where u ∈ Ez \
{
0
}

and v ∈ Fz \
{
0
}
. Remember that we say that a set S ⊂ X is of total

probability in X, if for every measure µ f -invariant, µ(S c) = 0.
The following Theorem is a version of Oseledets Theorem in the cocycles context

(see for references [V]).

Theorem 3.2.1. (Oseledets) The set of regular points of A has total probability. More-
over, z 7→ Ez and z 7→ Fz are measurable subbundles and the functions z 7→ λ±(z) are
measurable.

Remark 15. We denote byR(A) the set of regular points for a cocycle A . The Oseledets
Theorem asserts that given a measure f -invariant µ, the set of regular point in the
support of µ has total measure. Indeed, we have that µ(R(A) ∩ supp (µ)) = 1. We
denote this full measure set by R(A, µ).

Definition 3.2.1. We say that a measure f -invariant µ is partially hyperbolic, if for any
x ∈ R(A, µ) the following inequality occurs:

λ−(x) < 0 ≤ λ+(x).

3.2.2 Pliss’s Lemma

The next Lemma is due to Pliss, which is frequently used in this work.

Lemma 3.4. (Pliss’s Lemma) Given 0 < γ1 < γ0 and a > 0, there exist N0 =

N0(γ0, γ1, a) and δ0 = δ0(γ0, γ1, a) > 0 such that for any sequences of numbers (al)n−1
l=0

with n > N0, a−1 < al < a and
∏n−1

l=0 al ≥ γn
0 we have that

#

0 ≤ k < n : ∀ k < s < n, we have that
s∏

l=k+1

al ≥ γs−k
1

 ≥ n · δ0. (3.12)
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We reformulate an application of the Pliss Lemma, in terms of projective cocycle
and the norm of the multiplier of the cocycle. We recall that the function g is defined in
Definition 3.1.2, and that by equation (3.9) we have that

gn(ξ) =
det(An

z )
||An

z vξ ||2f (z)

,

where ξ ∈ Cz and vξ is a unitary vector satisfying [vξ] = ξ.

Corollary 3.2.2. Given 0 < γ1 < γ0, there exist two positive constants N0 and δ0 such
that:

If for z ∈ X there exist ξ ∈ Cz such that gn(ξ) ≥ γn
0 (resp. g−n(ξ) ≥ γn

0) for n ≥ N0,
then there exists 0 ≤ j < n such that n − j > nδ0 − 1 and

gi(M j(ξ)) ≥ γi
1 for every 0 < i ≤ n − j,

(resp. g−i(M− j(ξ)) ≥ γi
1 for every 0 < i ≤ n − j).

Proof. It is obtained applying directly the Pliss Lemma to the sequence (g(Ml(ξ)))n−1
l=0 .

We have that gn(ξ) =
∏n−1

l=0 g(Ml(ξ)) ≥ γn
0, and if let us take k0 the smallest of k’s that

be in the set defined in the inequality (3.12), we have that n − k0 ≥ nδ0, and for every
k0 < s < n

γs−k0
1 ≤

s∏
l=k0+1

g(Ml(ξ)) = gs−k0(Mk0+1(ξ)).

Hence it is enough to take j = k0 + 1, and we have the corollary. �

3.2.3 Some Formulas about the map g

Lemma 3.5. If ξi with i = 1, 2 are two different directions in Cz and ui is an unitary
vector that generates the direction ξi for i = 1, 2, then

gn(ξ1)gn(ξ2) =
(
sin(](An

z u1, An
z u2))

sin(](u1, u2))

)2

,

for any n ∈ Z.

Proof. First observe that given two vector x and y in C2, we denote by φ(x, y) the area
of the polygon formed by the vertices 0, x, x + y and y. Then it is clear that

φ(x, y) = |x| · |y| · sin(](x, y)) =
√

det([x y]∗ · [x y]) = | det([x y])|, (3.13)
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where [x y] is a column matrix and [x y]∗ denote its transposed conjugate. Then, it is
easy to see that φ(Ax, Ay) = | det(A)|φ(x, y) for any linear map A in C2.

So by the equation 3.13 we have that(
sin(](An

z u1, An
z u2))

sin(](u1, u2))

)2

=
φ(An

z u1, An
z u2)2/|An

z u1|2 · |An
z u2|2

φ(u1, u2)2/|u1|2 · |u2|2
=

| det(An
z )|2

|An
z u1|2 · |An

z u2|2
.

According to the equation (3.9) and the previous equality, it follows that

gn(ξ1)gn(ξ2) =
| det(An

z )|2

|An
z u1|2 · |An

z u2|2
=

(
sin(](An

z u1, An
z u2))

sin(](u1, u2))

)2

.

�

Lemma 3.6. Let λ > 1, C > 0 and let z ∈ X. Assume that there exists a direction ξ such
that gn(ξ) ≥ Cλn (or g−n(ξ) ≥ Cλn) for every n ≥ 1, then this direction is unique.

Proof. By the previous lemma, if z ∈ X and if ξ1 and ξ2 are two different directions that
are expanded for the future, then ](u1, u2) > 0, and hence

C2λ2n ≤ gn(ξ1)gn(ξ2) =
(
sin(](An

z u1, An
z u2))

sin(](u1, u2))

)2

<
1

sin(](u1, u2))

which is a contradiction. �

For the case that we have expansion for the past, the same proof holds.

3.3 Critical Points

In this section we can enunciate formally the main Theorem of this Chapter, the Theo-
rem D. First, we establish the notion of critical points, and for this purpose, is important
to recall that a cocycle A has domination along the orbit of a point z, if there exist a di-
rection F ∈ Cz that is (uniformly) expanded to the past, and (uniformly) contracted to
the future. Roughly speaking it is said that a point z is a critical point if it has a direction
which is projective expansive for backward iterate and it is also projective expansive
for the forward iterate.

To be more precise, z is a critical point z ∈ X is critical if there exist one direction
ξ ∈ Cz such that g−n(ξ) ≥ Cγn for every n ≥ 1 where γ > 1 and 0 < C < 1, but
gn(ξ) ≥ C−1(1/Cγ)n (meaning that any forward iterate is bounded) and there exists
nk → ∞ such that gnk(ξ) > Cγnk , i.e., also has projective expansive for the future.
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Observe that in this case if there are critical points, then there is not dominated split-
ting (see the proof of Theorem D, in page 81), the most important part is that if there
are not dominated splitting, then there are critical points.

We want to highlight certain properties of the notion of critical point. The set of all
critical point (the critical set) is compact, in the orbit of a critical point only one is a
critical point (uniquely defined), also a critical point are invariant by a change of metric,
invariant by small (close to the identity) conjugation, remain far from hyperbolic set and
non-hyperbolic set, tangencies are critical points, but not the whole orbit is a critical
point. This will be discussed deeply in the subsection ??. Moreover, in subsection ??
we show certain properties of critical point, that only holds for holomorphic dynamics.

Definition 3.3.1. Given 0 < b < 1, we say that X is b-dissipative (for a cocycle A) if
there exists a positive constant C > 0 such that for every z ∈ X, | det(An

z )| ≤ Cbn for
every n ≥ 0.

Definition 3.3.2. (Blocks of domination). Given β and δ positive numbers, we define
the sets

βH±(δ) =
{
z ∈ X : ∃ ζ ∈ Cz such that g±n(ζ) ≥ β(1 + δ)n, ∀ n > 0

}
,

and the sets

βH̊±(δ) =
{
z ∈ X : ∃ ζ ∈ Cz such that g±n(ζ) > β(1 + δ)n, ∀ n > 0

}
.

Remark 16. a) We denote by H±(δ) and also H̊±(δ), when in the previous defini-
tions we take β = 1.

b) It is easy to see, that for 0 < δ′ < δ the following inclusions holds βH±(δ) ⊂
βH±(δ′) and βH̊±(δ) ⊂ βH̊±(δ′).

Notation: We denote by x, the points of βH−(δ) and βH̊−(δ); we denote by ξ, the
direction ζ ∈ Cx that appears in the previous definition and call this by critical direction
of x. Similarly, we denote by y the points in βH+(δ) (or βH̊−(δ)), and its critical
direction, by $.

Definition 3.3.3. Let α ≥ 1 and δ > 0. We say that a point (x, ξ) ∈ T X is a (α, δ)-critical
point, for the linear cocycle A, if:

1. x ∈ α−1H−(δ),

2. ξ is the critical direction of x,
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3. f n(x) < αH̊−(δ) for every n ≥ 0,

4. x is maximal in the orbit O(x) with the three properties above: if (x′, ξ′) satisfies
the previous three properties then there exist n0 > 0 such that x′ = f −n0(x) and
ξ′ = M−n0(ξ)

A point (y, $) ∈ T X is a (α, δ)-critical value, if (y, $) is (α, δ)-critical point for A−1.
We denote by C(α, δ) the set of all (α, δ)-critical point, and by V(α, δ) the set of all

(α, δ)-critical value.

In the Remark 19, we show that in the orbit of a a point x such that have a direction
ξ satisfying the three first properties in the previous definition, there exist a maximal
element, and this justify the previous definition.

Remark 17. We remark that since 0 < b < 1 then 1 − b < b−1 − 1. We also introduce
the following notation. When 0 < δ < b−1 − 1 we denote by α0(δ) = b−1/(1 + δ). If
1 ≤ α < α0(δ) we can find δ′ such that δ < δ′ < b−1 − 1 and α(1+ δ) ≤ 1+ δ′. Similarly
when 0 < δ < 1 − b we denote by α1(δ) = (2 − b)/(1 + δ), then 1 < α1(δ) < α0(δ). If
1 ≤ α < α1(δ) we can find δ′ such that δ < δ′ < 1 − b and α(1 + δ) ≤ 1 + δ′

Now we will devote to prove the following two theorems:

Theorem C. Let A be a linear cocycle such that X is b-dissipative, such that every
f -invariant measure is partially hyperbolic. Then for any 0 < δ < b−1 − 1 and any
α0(δ) > α ≥ 1, the blocks of dominations αH+(δ) and α−1H−(δ) are not empty compact
sets. Moreover, the sets

X+0 = ∪n∈Z f n(αH+(δ)) and X−0 = ∪n∈Z f n(α−1H−(δ))

have total measure for any invariant measure ν with support in X.

Also we have:

Theorem D. Let A be a linear cocycle such that X is b-dissipative, such that every
f -invariant measure is partially hyperbolic. Then A has dominated splitting if and only
if C(α, δ) = ∅ for every 0 < δ < 1 − b and 1 ≤ α < α1(δ).

To prove the theorems, first we describe some basics fact with respect to critical
directions.

It follows directly from the Lemma 3.6 the following Corollary.

Corollary 3.3.1. The critical direction is unique.
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Proposition 3.3.1. For i = 1, 2, let βi and δi positive numbers. Assume that x ∈
β1H−(δ1) with critical direction ξx and let l > 0. Then the following statements
occur:

i) If f l(x) ∈ β2H−(δ2) (or in β2H̊−(δ2)), then ξ f l(x) = Ml(Fx) (i.e. Ml(Fx) is the
critical direction for f l(x)).

ii) If β2 ≥ 1 and gl(ξx) > β2(1 + δ2)l then f l(x) < β2H̊−(δ2).

iii) If g−l(Ml(ξx)) ≤ β2(1 + δ2)l then f l(x) < β2H̊−(δ2).

Proof. Take vx (resp. v f l(x)) a unitary vector such that [vx] = ξx (resp. [v f l(x)] = ξ f l(x)).
For the first statement, note that if ](v f l(x), Al

xvx) > 0 then for every n > l we have that

g−n(Ml(ξx)) = g−(n−l)(ξx)g−l(Ml(ξx)) ≥ β1(1 + δ1)n−lg−l(Ml(ξx)).

Defining β = min(β1, β2) and δ = min(δ1, δ2) we have that for any n > 0 holds

g−l(Ml(ξx))β2(1 + δ)2n−l ≤ g−l(Ml(ξx))β1(1 + δ1)n−lβ2(1 + δ2)n

≤ g−n(Ml(ξx))g−n(ξ f l(x))

=

sin(](A−n
f l(x)v f l(x), A−n+l

f l(x)vx))

sin(](v f l(x), Al
xvx))


2

<
1

sin(](v f l(x), Al
xvx))

,

that is a contradiction.
For the second, if we suppose that f l(x) ∈ β2H̊−(δ2) it follows from the first part that

g−n(Ml(ξx)) > β2(1 + δ2)n for every n > 0; in particular g−l(Ml(ξx)) > β2(1 + δ2)l, hence

β2(1 + δ2)l < g−l(Ml(ξx)) =
1

gl(ξx)
<

1
β2(1 + δ2)l .

A contradiction.
The third part it follows easily because, if we suppose that f l(x) ∈ β2H̊−(δ2), we have

that
β2(1 + δ2)l < g−l(Ml(ξx)) ≤ β2(1 + δ2)l

that is a contradiction. �

Corollary 3.3.2. Let α ≥ 1 and x ∈ α−1H−(δ) with critical direction ξ. If for every
n ≥ 1 we have that g−n(Mn(ξ)) ≤ α(1 + δ)n, then (x, ξ) ∈ C(α, δ).
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Proposition 3.3.2. Let (x, ξ) ∈ T X. Then (x, ξ) ∈ C(α, δ) then for every n ≥ 1, g−n(ξ) ≥
α−1(1 + δ)n and g−n(Mn(ξ)) ≤ αn+1(1 + δ)n.

Proof. Since that x ∈ α−1H−(δ) the first inequality is clear. For the second inequality
we proceed by induction.

First one, we assume that g−1(M(ξ)) > α2(1 + δ) > α(1 + δ). In particular, for every
n ≥ 2

g−n(M(ξ)) = g−(n−1)(ξ)g−1(M(ξ)) > α−1(1 + δ)(n−1)α2(1 + δ) = α(1 + δ)n,

that implies that f (x) ∈ αH̊−(δ) that is a contradiction.
Now, we assume that the second inequality is true for every 0 < n < m and that

g−m(Mm(ξ)) > αm+1(1 + δ)m. For every 0 < s < m we have

αm+1(1 + δ)m < g−m(Mm(ξ)) = g−s(Mm(ξ)) · g−(m−s)(Mm−s(ξ))

≤ α(m−s)+1(1 + δ)m−sg−s(Mm(ξ)),

hence we conclude that

g−s(Mm(ξ)) > αs(1 + δ)s > α(1 + δ)s.

Then for every 0 < n ≤ m we have that g−n(Mm(ξ)) > α(1 + δ)n. To finish, for n > m
we have

g−n(Mm(ξ)) = g−(n−m)(ξ) · g−m(Mm(ξ)) > α−1(1 + δ)n−mαm+1(1 + δ)m > α(1 + δ)n,

that contradicts the fact that f m(x) < αH̊−(δ). �

3.3.1 Proof of Theorem C

Proof of Theorem C. First, we fix 1 ≤ α < α0(δ) and take δ′ < b−1−1 as in Remark
17, it is δ < δ′ < b−1 − 1 and α(1 + δ) ≤ 1 + δ′.

On the other hand, let ν a f -invariant measure and let x ∈ R(A, ν), then

lim
n→+∞

1
n

log(gn(Ex)) = λ+(x) − λ−(x) ≥ λ−(x) ≥ − log(b).

If we choose c satisfying
1 + δ′ < c < b−1

it follows that for m great enough, we have

gm(Ex) ≥ cm,
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and by Pliss’s Lemma, there exist a sequence (mk)k ↗ ∞ such that

gn(Mmk(Ex)) ≥ (1 + δ′)n > αn(1 + δ)n > α(1 + δ)n, for every n ≥ 1.

It follows that αH+(δ) is not empty. Moreover, αH+(δ) contains all accumulation
points of the set ( f mk(x))k with critical directions gives by an accumulation point of
(Mmk(Ex))k.

Arguing in the same way, for x ∈ R(A, ν) we have that

lim
n→+∞

1
n

log(g−n(Fx)) = λ+(x) − λ−(x) ≥ λ−(x) ≥ − log(b),

and we can find a sequence (nk)k ↗ ∞ such that

g−n(M−nk(Fx)) ≥ (1 + δ)n > α−1(1 + δ)n, for every n ≥ 1,

and conclude that α−1H−(δ) is not empty.
The compactness follows because given a sequence (yn)n ⊂ αH+(δ) with critical

direction ($n)n, any accumulation point y of (yn)n, has a direction $y accumulated by
the directions ($n)n that satisfy gn($x) ≥ α(1 + δ)n, then y ∈ αH+(δ).

To end note that the set X+0 = ∪n∈Z f n(αH+(δ)) and for any regular point x ∈ R(A, ν)
there exist an element of its orbit that is in αH+(δ), then R(A, ν) ⊂ X+0 , and X+0 have
total measure. �

3.3.2 Criteria of Domination

Now we present two criteria for the existence of dominated splitting that are essential
to prove the Theorem D.

Proposition 3.3.3. (Criteria of Domination I) Let us assume that X is b-dissipative,
every f -invariant measure is partially hyperbolic and let us take 0 < δ < 1 − b.

If there exist k,m0 > 0 such that, for all z ∈ X there exist one direction ξz ∈ Cz such
that

gk(Mm(ξz)) ≤ (1 + δ)k, for every m > m0; (3.14)

then X has dominated splitting.

Proposition 3.3.4. (Criteria of Domination II) Let us assume that there exist positive
integers k,m0 and γ < 1 such that: for any z ∈ X there exists one direction ξz ∈ Cz such
that

gk(Mm(ξz)) < γ, for every m > m0;

then X has dominated splitting.
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Proof. Fix z0 ∈ X and denote by ξ0 = Mm0(ξz0) and ξt = Mt(ξ0), then we have that
gk(ξt) < γ for every t ≥ 0. Let us take, for j = 0, . . . , k − 1

C j = sup
{
g j(w) : w ∈ Cz , z ∈ X

}
,

it follows that
gnk+ j(ξ0) = gl(ξ0)gnk(ξ j) ≤ C jγ

n ≤ Cλnk+ j
0 ,

where λ0 = γ
1/k < 1 and C0 = sup

{
C jγ

− j/k : j = 1, . . . , k − 1
}
.

To end, for every z ∈ X let us take z0 = f −m0(z) and σz = Mm0(ξz0), it follows that
g−n(σz) ≥ Cλn, where C = C−1

0 and λ = λ−1
0 . The domination in X, is immediate after

the following lemma (Lemma 3.7). �

Lemma 3.7. Let C > 0 and λ > 1 be two constant. Suppose that for every z ∈ X there
exists one direction τz ∈ Cz (resp. σz ∈ Cz) such that gn(τz) ≥ Cλn (resp. g−n(σz) ≥ Cλn)
for every n > 0, then the function τ(z) = τz is a continuous section M-invariant that is
an expansion (resp. contraction).

Proof. Denote by uz some unitary vector that define the direction τz and suppose that
M(τ f −1(z)) , τz, then it follows from the lemma 3.5 that C2λ2n ≤ 1/ sin(](vz, Azv f −1(z)))
for every n > 0, that is a contradictions; so τz is M-invariant.

On the other hand, let zn → z in X, then τzn → τz. In fact, by compactness there
exists some adherence point for the sequence (τzn)n, named τ′ ∈ Cz that is expansive for
the future. From the uniqueness of the expansive direction for the future, it follows that
τ′ is equal to τz. So we prove continuity. Also is clear from the hypothesis that τ is an
expansion. �

A fundamental tool to prove the Criteria of Domination I, is the following lemma.
This establish that if there exists one direction that is neither contracted nor expanded
for the future, then the largest Lyapunov exponent in the omega limit of this point is
negative.

Lemma 3.8. (Criteria of Negative Exponent) Let 0 < δ′ < 1 − b < b−1 − 1, x be a
point in X and ξx a direction in Cx verifying that there exist constants n0,m0 ∈ N such
that

i) ω(x) is b-dissipative,

ii) (1 − δ′)n ≤ gn(ξx) for every n ≥ n0.

iii) gn(Mmξx) ≤ (1 + δ′)n for every m > m0 and n ≥ n0.
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Then ω(x) supports a measure that is not partially hyperbolic.

Proof. We may assume that ω(x), only support partially hyperbolic measures, This
implies that the biggest exponent is positive. Let us take nk → ∞ such that the following
limit exists,

µ = lim
k→∞

1
nk

nk−1∑
i=0

δMi(ξx).

We have that K̂ = supp (µ) is a compact set of T X, and that the projection K = pr(K̂) ⊂
ω(x) is the support in X, of the measure µ′ that is the projection of µ in the first coordi-
nate; that is

µ′ = lim
k→∞

1
nk

nk−1∑
i=0

δ f i(x).

Since µ′ be a f -invariant measure, we have that for any z0 ∈ R(A, µ′) (the set of
regular point in the support of µ′) and w ∈ Cz0 , the limit

lim
k→∞

1
nk

log(gnk(w)) = lim
k→∞

1
nk

(log(| det Ank
z0
|) − 2 log(|Ank

z0
w|)) = λ+(z0) + λ−(z0) − 2λ(w),

where λ(w) is the Lyapunov exponent associated with the direction w. Hence this limit,
denoted by I(z0,w), takes the values λ+(z0) − λ−(z0) or λ−(z0) − λ+(z0).

Since that z0 ∈ ω(x), and assume that f mk(x)→ z0; taking a subsequence if necessary
there exists w0 ∈ Cz such that Mmk(ξx) → w0 and (z0,w0) is a point in K̂. By condition
(iii) we have that I(z0,w0) ≤ log(1 + δ′). Moreover, this inequality is true for every
(z,w) ∈ K̂, with z ∈ R(A, µ′).

On the other hand, we remark that λ−(z0) ≤ log b < 0 ≤ λ+(z0) and λ−(z0) − λ+(z0) ≤
λ−(z0) + λ+(z0) = log b. Hence either I(z0,w0) ≤ log b or I(z0,w0) > − log b; but if the
second inequality holds, then I(z0,w0) > log(b−1) ≥ log(1 + δ′) that is a contradiction.
We conclude that for every (z,w) ∈ K̂ with z a regular point in the Oseledets sense, the
limit I(z,w) is equal to

lim
k→∞

1
nk

log(gnk(w)) = λ−(z) − λ+(z) ≤ log(b).

Claim. µ(K̂ ∩ pr−1(R(A, µ′)) = 1.
Proof of the Claim. The Ergodic Decomposition Theorem assert that: There exists a
set Σ of full probability in P(X) such that for all (z,w) ∈ Σ the limit

lim
n→∞

1
n

n−1∑
j=0

δM j(z,w) = µ(z,w)
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is a ergodic measure, and for all h ∈ L1(P(X), µ) we have∫ (∫
hdµ(z,w)

)
dµ =

∫
hdµ.

In particular, the projection

µ′z = pr ◦ µ(z,w) = lim
n→∞

1
n

n−1∑
j=0

δ f j(z)

is ergodic and the previous integral equality occurs for the measures µ′ and µ′z. To
end, note that the claim is true for ergodic measures. The Lyapunov exponent are
invariant function which are constant in the support of the measures µ′z. Now R(z) =
pr−1(R(A, µ′z)) is invariant by the projective cocycle, so has µ(z,w)-measure 0 or 1, but

µ(z,w)(log(g)) = µ(y,t)(log(g)) = λ−(y) − λ+(y)

for (y, t) ∈ R(z) µ(z,w)-a.e. this implies that µ(z,w)(R(z)) , 0 so it is equal to 1. This end
the proof of the Claim.

Continuing with the proof of the Lemma, applying Birkhoff Ergodic Theorem to the
function φ = log(g), µ-a.e. (z,w) ∈ K̂, there exist the limit

φ̃(z,w) = lim
n→∞

1
n

n−1∑
j=0

φ ◦ M j(w) = λ−(z) − λ+(z),

hence it follows that

log(b) ≥
∫

φ̃dµ(z,w) =
∫

φdµ(z,w) = lim
k→∞

1
nk

log(gnk(ξx)) ≥ log(1 − δ′),

therefore, there are measure with the two negative Lyapunov exponent, that is a contra-
diction. �

Proof of Criteria of Domination I.
From the Criteria of Domination II, it is enough to prove that there exist some po-

sitive integers k and m0, such that for every z there exists one direction ξz such that
gk(Mm(ξz)) ≤ (1 − δ)k for all m > m0.

If not, it follows that for every pair k, m0 ∈ N, there exists z ∈ X such that for every
ξ ∈ Cz we have that gk(Mm(ξ)) ≥ (1 − δ)k for some m > m0. In particular, for every k
there exists zk ∈ X and mk > k such that gk(Mmk(ξk)) ≥ (1 − δ)k, where ξk satisfies the
equation (3.14). Let us take δ′ > δ; applying the Corollary 3.2.2, it follows that there
exists a sequence (rk)k≥1 with k − rk → ∞ such that

gs(Mrk(ξk)) ≥ (1 − δ′)s, for every 0 < s ≤ k − rk.
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Taking z and $ as an accumulations point of ( f rk(zk))k and (Mrk(ξk))k, respectively, it
follows that

(1 − δ′)n ≤ gn($), for every n > 0.

On the other hand, note that there exist a constant C > 0 such that for every k > 0,
n ≥ 0 and m ≥ m0

gn(Mm(ξk)) ≤ C(1 + δ)n ≤ (1 + δ′)n,

hence passing to the limit it follows that

gn(Mm($)) ≤ (1 + δ′)n, for every n ≥ 0.

Therefore, by the Criteria of Negative Exponent, we conclude that there exists a invari-
ant measure that is not partially hyperbolic supported in X, which is a contradiction. �

3.3.3 Proof of Theorem D

This chapter is based in the ideas of Sylvain Crovisier in [Cr], for the proof of the
same theorem in the context of C2 generic diffeomorphisms in compact manifolds. Our
exhibition presents significant changes compared with that of Silvan, among others,
we have a different definition of critical point. Now we present a notion that allows to
prove the Theorem D.

Definition 3.3.4. Given 0 < δ, and α ≥ 1, we say that a projective cocycle M satisfies
the property P(α, δ) if there exist k0 > 0, such that for every k > k0 there exit xk ∈ X,
ξk ∈ Cxk and mk ≥ 0 such that:

1. g−n(ξk) ≥ α−1(1 + δ)n, for every 1 ≤ n ≤ k,

2. gk(Mmk(ξk)) ≥ 1.

Proposition 3.3.5. If the projective cocycle M satisfies the property P(α, δ), then
C(α, δ) , ∅.

Proof. We will apply the Corollary 3.2.2. Let k > 0, γ0 = 1, γ1 = α−1/k(1 + δ)−1.
Also take n0 and δ0 > 0 be the numbers given by this Corollary. If we choose s > n0

such that sδ0 − 1 > k, since that gs(Mms(ξs)) ≥ 1, then there exist 0 ≤ j < s such that
s − j > sδ0 − 1 > k and

gi(Mms+ j(ξs)) ≥ γi
1, for every 0 < i ≤ s − j.
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Then we can take yk = xs, υk = ξs and nk = ms + j and obtain that for every k > 0, there
exist yk ∈ X, υk ∈ Cxk and nk ≥ 0 such that, for every 0 < n ≤ k,

g−n(υk) ≥ α−1(1 + δ)n and gn(Mnk(υk)) ≥ α−n/k(1 + δ)−n > α−1(1 + δ)−n.

For every k, let us take 0 ≤ lk ≤ nk maximal such that for every 0 < n ≤ k + lk we have
that g−n(Mlk(υk)) ≥ α−1(1 + δ)n.
Claim. For every 0 < n ≤ nk − lk we have that g−n(Mlk+nυk) < (1 + δ)n.
Proof of the Claim. It is clear that this is true for n = 1, and we assume that the
property hold for every 0 < n < m. If we suppose that g−m(Mlk+mυk) ≥ (1 + δ)m, then
we have that for every 0 < s < m

(1 + δ)m ≤ g−m(Mlk+mυk) = g−s(Mlk+mυk) · g−(m−s)(Mlk+m−sυk)

< (1 + δ)m−s · g−s(Mlk+mυk).

This implies that g−s(Mlk+mυk) > (1 + δ)s, and in particular implies that for 0 < n ≤ m,
g−n(Mlk+mυk) ≥ (1 + δ)n > α−1(1 + δ)n. To end, for m < n < m + k we have that

g−n(Mlk+mυk) = g−m(Mlk+mυk) · g−(n−m)(Mlkυk) ≥ α−1(1 + δ)n,

and this contradicts the maximality of lk. This end the proof of the Claim.
Continuing with the proof of the proposition, as g−n(Mnk+n(υk)) < α(1 + δ)n for

0 < n ≤ k, it follows from the previous claim that g−n(Mlk+nυk) ≤ α(1 + δ)n for any
0 < n ≤ k + lk. Then, if we take zk = f lk(yk) and ωk = Mlk(υk), we have that for each
0 < n ≤ k

g−n(ωk) ≥ α−1(1 + δ)n and g−n(Mn(ωk)) ≤ α(1 + δ)n.

To end, take (z, ω) an adherence point of (zk, ωk), and we have that for n ≥ 0

g−n(ω) ≥ α−1(1 + δ)n and g−n(Mn(ω)) ≤ α(1 + δ)n.

It follows form the Corollary 3.3.2 that z ∈ α−1H−(δ) with critical direction ω and that
(z, ω) ∈ C(α, δ). �

We denote by supp (X) the closed subset of X that support all measure f -invariant,
i.e.,

supp (X) = ∪{supp (ν) : ν is f -invariant
}
.

Lemma 3.9. Let 0 < δ < b−1 − 1 and 1 ≤ α < α0(δ) = b−1/(1 + δ). Then supp (X) ⊂
ω(α−1H−(δ)).
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Proof. Any point in the support of an invariant measure ν is approximated by regular
points. By the proof of Theorem C, any x ∈ R(A, ν) has infinitely many iterates in
α−1H−(δ). The previous remark and the Poincaré recurrence theorem implies that

supp (ν) ⊂ ω(α−1H−(δ)) =
∪

z∈α−1H−(δ)

ω(z),

and this implies that supp (X) ⊂ ω(α−1H−(δ)). �

Lemma 3.10. If there exist δ ∈ (0, b−1 − 1) and α0(δ) > α ≥ 1 such that the property
P(α, δ) is not satisfied, then the set supp (X) has dominated splitting.

Proof. As the property P(α, δ) is not satisfied, then there exists k > 0 such that for
every x ∈ X and υ ∈ Cx both g−n(υ) < α−1(1 + δ)n for 1 ≤ n ≤ k, or gk(Mmυ) < 1 for
every m ≥ 1. In particular, for points x ∈ α−1H−(δ) with critical direction ξ, can not
pass the first condition, then

gk(Mmξ) < 1. (3.15)

We assert that ω(α−1H−(δ)) has dominated splitting. By the equation (3.15), and
taking 0 < δ′ < 1 − b, for every x ∈ α−1H−(δ) with critical direction ξ we have that
gk(Mm(ξ)) < (1 + δ′)k. Let z ∈ ω(x) and (ml)l a sequence of natural numbers goes to
infinity, such that f ml(x)→ z. Taking a subsequence if necessary, there exist a direction
ξz ∈ Cz such that Mml(ξ)→ ξz. It follows by continuity of g, that

(1 + δ′)k > gk(Mm+ml(ξ)) = gk(Mm(Mml(ξ)))→ gk(Mm(ξz)),

and this property is true for every point z ∈ ω(x) with x ∈ α−1H−(δ), so this implies
that ω(α−1H−(δ)) satisfies the hypothesis of the Criteria of Domination I. In particular
supp (X) has dominated splitting. �

We can rewrite the Lemma 3.7 to obtain the following Lemma.

Lemma 3.11. Let β, δ > 0 and Λ ⊂ X compact f -invariant set such that Λ ⊂ βH±(δ).
Then linear cocycle A has dominated splitting in Λ.

Corollary 3.3.3. Let Λ ⊆ X compact f -invariant. The linear cocycle A has dominated
splitting in Λ if and only if there exist β, δ0 > 0 such that Λ ⊂ β−1H̊−(δ)∩β−1H̊+(δ), for
every δ ∈ (0, δ0).

Proof. Let TΛ = E ⊕ F be a dominated splitting. By Proposition 3.1.6, we have
that there exist constants C > 0 and 0 < λ < 1 such that g−n(Fz) ≥ C−1λ−n and
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gn(Ez) ≥ C−1λ−n. It is only necessary to take C = β and δ0 small enough such that
λ−1 = 1 + δ0, to obtain the first direction.

The reciprocal is immediate by the previous Lemma. �

Proposition 3.3.6. If supp (X) has dominated splitting but X does not have dominated
splitting, then there exists δ0 such that the property P(α, δ) is satisfied for every α ≥ 1
and δ ∈ (0, δ0).

Proof. Since that X does not have a dominated splitting and contradicting the Criteria
of Domination I, follows that for every positive integer k, there exists a point xk ∈ X,
and a integer m > 0 such that for every direction ω ∈ Cxk we have that

gk(Mm(ω)) ≥ 1. (3.16)

On the other hand, the set α-limit of xk, α(xk) support an invariant measure for f .
Take z0 ∈ α(xk) ∩ supp (X), then by the previous Corollary there exists one direction ξ0

such that
g−n(ξ0) > β−1(1 + δ′)n, for every n ≥ 1,

and all δ′ ∈ (0, δ0). Let us take δ < δ′′ < δ′ < δ0 and k fixed.
Let (nt)t ↗ ∞ such that f −nt(xk)→ z0. For every positive integer s, we can find some

neighborhood Us ⊂ P(X) of ξ0 such that for every ξ ∈ Us, holds that g−n(ξ) ≥ β−1(1+δ′)n

for all 1 ≤ n ≤ s. If we take t great enough, f −nt(xk) is inside of the projection in X of
neighborhood Us. So, there exists ξs ∈ C f −nt (xk) such that g−n(ξs) ≥ β−1(1 + δ′)n for all
1 ≤ n ≤ s. Note that for s great enough we have that g−s(ξs) ≥ (1+ δ′′)s, hence we have
in the hypothesis of the Corollary 3.2.2.

We conclude that, we can find s and ls such that s − ls > k and

g−n(M−ls(ξs)) ≥ (1 + δ)n, for every 0 < n ≤ s − ls,

in particular, and calling υk = M−ls(ξs), we have that

g−n(υk) ≥ α−1(1 + δ)n, for every 0 < n ≤ k.

To end, by equation (3.16) we have that there exist mk such that gk(mmk(υk)) ≥ 1, so
the property P(α, δ) is satisfied. �

With this in mind, we can prove one direction of the Theorem D. Later, we present
their proof of the other direction of this Theorem.
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Proof of Theorem D:. If X does not have dominated splitting, then C(α, δ) , ∅ for
some 0 < δ < 1 − b and 1 ≤ α < α0(δ):
It is sufficient to prove that X satisfies the property P(α, δ) for some 0 < δ < 1 − b and
1 ≤ α < α0(δ) (Proposition 3.3.5). But if for some pair (α, δ) as before, the property
P(α, δ) is not satisfied, we have that supp (X) has dominated splitting (Lemma 3.10).
Since that X does not have dominated splitting, then by Proposition 3.3.6, for every
0 < δ′ < min(δ0, 1 − b) and α0(δ′) > α′ ≥ 1, P(α′, δ′) is satisfied. So we have a
contradiction. �

Now we work to proof the opposite direction of the Theorem D. For this, we use
the fact that for every critical point, there exists a critical value intrinsically linked with
him. This is the notion of critical pair that we introduce in the following paragraph.

Definition 3.3.5. We say that a pair (x, y) ∈ X × X is a (α, δ)-critical pair if there exists
α ≥ 1 and δ > 0 such that:

1. x ∈ C(α, δ) with critical direction ξ,

2. y ∈ V(α, δ) with critical direction $,

3. there exist a sequence of positive integer lk such that

f lk(x)→ y and Mlk(ξ)→ $.

It follows directly of the previous definition the following Proposition.

Proposition 3.3.7. If X has dominated splitting, then X does not have a (α, δ)-critical
pair.

Proof. If A have dominated splitting T X = E ⊕ F, then the angle of the invariant
splitting is great of some α > 0. If (x, y) is critical pair, the direction Fx is defined by
ξ, and Ey is defined by $, but by the third condition on the previous definition we have
that Mlk(Fx)→ Ey, and this say that Fy = Ey; a contradiction. �

The following Proposition, related each (α, δ)-critical point, with a (α, δ)-critical
value.

Proposition 3.3.8. Let 0 < δ < 1 − b and 1 ≤ α < α1(δ). For every (α, δ)-critical point
x, there exists a (α, δ)-critical value y such that the pair (x, y) is a (α, δ)-critical pair.

The proof is given after.
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Remark 18. Given a critical point x, the critical value y is not, a priori, uniquely
defined, can be occurs that for different critical values y and y′, makes (x, y) and (x, y′)
critical pairs.

Now we will conclude the proof of Theorem D.

Proof of Theorem D:. If C(α, δ) , ∅ with 0 < δ < 1 − b and 1 ≤ α < α1(δ), then X
does not have Dominated Splitting:
If there exist critical point, then there exist a critical pair, so by Proposition 3.3.7, X
does not have dominated splitting. �

Only remains to proof the Proposition 3.3.8. For this, we need the following lemma.

Lemma 3.12. Let 0 < δ < 1 − b, 1 ≤ α < α1(δ) and x ∈ C(α, δ) with critical direction
ξ. Then there exist δ < δ′ < 1 − b and k0 ≥ 1 satisfying the following property: for
every k ≥ k0 there exists mk ≥ 1 such that gk(Mmk(ξ)) ≥ (1 + δ′)k.

Proof. First one, we take δ′ as in the Remark 17, and we recall that this constant
satisfies the inequalities δ < δ′ < 1 − b and α(1 + δ) < 1 + δ.

Now by contradiction, we suppose that for every k, there exist nk ≥ k such that for
every m ≥ 1

gnk(Mmξ) < (1 + δ′)nk .

On the other hand, since x is a (α, δ)-critical point, then g−n(Mn(ξ)) ≤ αn+1(1 + δ)n for
every n ≥ 0. It follows that for n great enough gn(ξ) ≥ α−1(1 + δ′)−n > (1 − δ′)n.

Form the previous inequalities, we conclude that there exist a sequence (nk)k satisfy-
ing

log(1 − δ′) ≤ lim
k→∞

1
nk

log(gnk(ξ)) ≤ log(1 + δ′), (3.17)

that is the key in the proof of the Criteria of Negative Exponent (see Lemma 3.8). Now
the proof follows by arguing as in the proof of Lemma 3.8:

1. Let us take a subsequence if necessary, and we can assume that the sequence of
measure

µk =
1
nk

nk−1∑
i=0

δMi(ξx),

converge to a measure µ.

2. The projection in X of the measure µ, is a f -invariant measure µ′, and denote by
R(A, µ′) the set of regular points in the support of µ′.
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3. We have µ(supp (µ) ∩ pr−1(R(A, µ′))) = 1.

4. For every (z,w) ∈ supp (µ) ∩ pr−1(R(A, µ′)) the limit

I(z,w) = lim
k→∞

1
nk

log(gnk(w)) = ±(λ−(z) − λ+(z)) < log(1 + δ′).

5. Since that µ′ is partially hyperbolic, then λ−(z) − λ+(z) ≤ log(b), so we have two
possibilities, either I(z,w) ≤ log(b) or I(z,w) > log(b−1).

6. If I(z,w) = −(λ−(z) − λ+(z)) ≥ log(b−1) > log(1 + δ′) that is a contradiction.

7. Then it follows that

log(b) ≥
∫

I(z,w)dµ(z,w) = lim
k→∞

1
nk

log(gnk(M(ξ)) ≥ log(1 − δ)

that is a contradiction.

This implies the assertion of the Lemma. �

Remark 19. Now we justify the item (4) in the definition of critical point (Definition
3.3.3). Let (x, ξ) a pair with x ∈ α−1H−(δ), f n(x) < αH̊−(δ) for every n ≥ 1 and ξ

the critical direction. Then arguing as in the previous proof, we have that for n great
enough gn(ξ) > (1 − δ′)n where δ′ > 0 is as in the Remark 17.

On the other hand if we assume that there are not a maximal element in the orbit of x,
then there exist nk ↗ ∞ such that f nk(x) ∈ α−1H−(δ). This implies that g−nk(Mnk(ξ)) ≥
α−1(1 + δ)nk , so it follows that

gnk(ξ) <
α

(1 + δ)nk
< α(1 + δ)nk < (1 + δ′)nk .

Hence from the previous inequalities we conclude that there exist a sequence (nk)k sat-
isfying the equation (3.17),and arguing as in the previous proof, this is a contradiction.

An immediate Corollary from the previous Lemma is the equivalence between criti-
cal points and the property P(α, δ).

Corollary 3.3.4. Let 0 < δ < 1 − b and 1 ≤ α < α1(δ). Then the set of critical points
C(α, δ) is not empty if and only if the cocycle M has the property P(α, δ).

Proof. The property P(α, δ) implies the existence of critical point from the Proposition
3.3.5, and the other direction it follows from the previous Lemma. �
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Now we proceed to give the proof of the Proposition 3.3.8.

Proof of Proposition 3.3.8: Let x be a (α, δ)-critical point, with critical direction ξ.
We will apply the Corollary 3.2.2. Let k > 0, γ0 = (1 + δ′) and γ1 = (1 + δ). Also

take n0 and δ0 > 0 the number given by this Corollary. Let us take s > max(n0, k0) such
that sδ0−1 > k where k0 is given in the Lemma 3.12. Since gs(Mms(ξ)) ≥ (1+δ′)s, then
there exists j with s − j > sδ0 − 1 > k such that gn(Mms+ j(ξ)) ≥ (1 + δ)n > α−1(1 + δ)n

for every 0 ≤ n ≤ s − j. We call nk = ms + j, xk = f nk(x) and υk = Mnk(ξ), then

gn(υk) ≥ α−1(1 + δ)n

for every 0 < n ≤ k.
Since that x a critical point g−k(ξ) ≥ α−1(1 + δ) ≥ 1 for k great enough. We conclude

that there exist k′ such that for every k > k′ holds:

1. gn(υk) ≥ α−1(1 + δ)n, for every 1 ≤ n ≤ k,

2. g−k(M−nk(υk)) ≥ 1.

this is, the property P(α, δ) is satisfied for the inverse cocycle M−1. It follows for the
Proposition 3.3.5 that there exist a (α, δ)-critical value y with critical direction $; and
a sequence (lk)k such that f lk(x) converge to y and Mlk(ξ) converge to $, then the pair
(x, y) is a (α, δ)-critical pair. �

3.4 Properties of the Critical Point

In this section we discuss the main properties of the critical point. In fact, these prop-
erties justify the notion of critical point and highlight its meaning. Moreover, the prop-
erties show how the notion of critical point is an intrinsic notion of the dynamics.

First we give a series of property that do not depend on working with holomorphic
dynamics.

Later, in subsection 3.4.2, we give a series of properties strongly hinge on the fort
that we are dealing with polynomial automorphisms.

3.4.1 General Context

• Compactness: Compactness of the set of critical point, it follows from the following
elemental observation:
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If (x, ξ) is a (α, δ-critical point, then for every n ≥ 1, g−n(Mn(ξ)) < (1 + δ)n.

The proof of this fact is by induction, and the idea is that assuming that the inequality
not hold, we have a contradiction with the fact that f n(x) < α−1H(δ).

Now if (xm, ξm)→ (x, ξ) where (xm, ξm) are (α, δ)-critical points, it is follows that

g−n(ξ) ≥ α−1(1 + δ)n, and g−n(Mn(ξ)) ≤ (1 + δ)n < α(1 + δ)n,

for every n ≥ 1, so (x, ξ) is a (α, δ)-critical point. This proof that the set of critical point
is closed in the compact bundle P(X), hence is compact.
• Invariance by the change metric: The invariance by the change of metric it is
follows from the following Lemma.

Lemma 3.13. Let || · || and || · ||′ two metrics in T X. Let g and h, the norm of the
multiplier defined as in the equation (3.9) with the metric || · || and || · ||′ respectively. If x
is a (α1, δ)-critical point in the metric || · ||, then there exist α2 such that is (α2, δ)-critical
point in the metric || · ||′.

Proof. From compactness, there exits a constant β > 0 such that for every z ∈ X and
v ∈ Tz hold that β−1||v|| ≤ ||v||′ ≤ β||v||. If we define t : P(X) → R+ by t(z, [v]) =
||v||′z/||v||z, then for every z ∈ X and v ∈ T ∗z we have that

β−1 ≤ t(z, [v]) ≤ β, that is equivalent with β−1 ≤ t(z, [v])−1 ≤ β.

We remark that
gn(ξ) =

| det(An
z )|

||An
z vξ ||2f n(z)

where ||vξ ||z = 1 and [vξ] = ξ, and that

hn(ξ) =
| det(An

z )|
||An

z uξ ||′2f n(z)

where ||uξ ||′z = 1 and [uξ] = ξ. Since that uξ = λvξ with λ , 0, then

1 = ||uξ ||′z = t(z, ξ)|λ| · ||vξ ||z = t(z, ξ)|λ|,

and this implies that
|λ| = t(z, ξ)−1.

From this equation, and by the definition of g and h, is not difficult to see that for every
n ∈ Z we have the equality

hn(ξ) = T (z, ξ, n)2gn(ξ),
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where
T (z, ξ, n) =

t(z, ξ)
t( f n(z),Mn(ξ))

.

Note also that T have the property of cocycle as g, that is

T (z, ξ, n + m) = T ( f m(z),Mm(ξ), n) · T (z, ξ,m);

and that β−2 ≤ T ≤ β2. We conclude that

β−4gn(ξ) ≤ hn(ξ) ≤ β4gn(ξ).

To end, is only necessary to take α2 = α1β
4 to conclude the Lemma. �

• Invariance by Conjugation: Also we have that the following proposition.

Lemma 3.14. Critical points are invariant by conjugation, whenever the conjugation
is close to the identity.

Proof. Let A = ( f , A∗), Â = ( f̂ , Â∗) and H = (h,H∗) linear cocycles and M, M̂ and N,
the respective projective cocycles related with them, such that H ◦ A = Â ◦ H. The is
clear that if we denote ẑ = h(z)

Ân
ẑ = H f n(z) ◦ An

z ◦ H−1
ẑ .

Now consider ξ̂ ∈ Cẑ and vξ̂ some unitary vector that define the direction ξ̂. Let us take
ξ ∈ Cz such that N(ξ) = ξ̂ and denote by

vξ =
H−1

x̂ vx̂

||H−1
x̂ vx̂||

and
wMn(ξ) =

An
z vξ

||An
z vξ ||

we conclude that
Ân

ẑ vx̂ = ||H−1
x̂ vx̂|| · ||An

z vξ || · H f n(z)wMn(ξ).

Hence we have that

det(Ân
ẑ ) = det(H f n(z)) · det(An

z ) · det(H−1
ẑ )

and
||Ân

ẑ vx̂|| = ||H f n(z)wMn(ξ)|| · ||H−1
x̂ vx̂|| · ||An

z vξ ||,
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and we conclude that

gn(̂ξ, M̂) = g(Mn(ξ),N) · gn(ξ, M) · g−1(̂ξ,N),

or equivalently
g(Mn(ξ),N) · gn(ξ,M) = gn(N(ξ), M̂) · g(ξ,N),

since that when N ≈ id, g(·,N) ≈ 1, it follows the Lemma. �

• Far from set with Domination: As a Corollary from Theorem D, we can give some
information in the case for a cocycle A, does not have dominated. We remark that in
particular, the set C(α, δ) is not empty, for every 0 < δ < 1 − b and 1 ≤ α < α1(δ), and
this is compact.

Corollary 3.4.1. Suppose that there exist a compact subset Λ ⊂ X, f -invariant that has
dominated splitting. Then d(Λ,C(α, δ)) > 0.

Proof. It is immediate from the compactness of C(α, δ), and that the set of point (α, δ)-
critical point in Λ is empty. �

In the context of cocycles dynamically defined, we also can give another similarities
consequences. We consider f be a biholomorphisms in some complex two dimensional
manifold, that have a compact invariant set X. We consider he natural linear cocycle
D f# = ( f ,D f ).

Remark 20. In the one dimensional context (real or complex), critical point are far
from hyperbolic set, however they can be accumulated by hyperbolic sets.

Corollary 3.4.2. Suppose that there exist a compact subset Λ ⊂ X, f -invariant such
that is hyperbolic. Then d(Λ,C(α, δ)) > 0.

We also have that critical points are not regular points.

Lemma 3.15. A critical point is not a regular point.

Proof. If we assume that a critical point x (with critical direction ξ) is regular, then the
fiber Tx = E+⊕E− and the exponents related with this splitting satisfies the inequalities

λ− ≤ log(b) < 0 ≤ λ+,

and
λ− − λ+ ≤ log(b).
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We assert that the related direction of ξ, is the subspace E+. If not, we have

lim
n→−∞

1
n

log ||An
zυξ || = −λ−,

where υξ is unitary and define the direction ξ. From the previous equation and since
that gn(ξ) ≥ α−1(1 + δ)n for n ≤ 0, we have that

lim
n→−∞

1
n

log(gn(ξ)) = λ− − λ+ ≥ log(1 + δ)

that is a contradiction.
Now as E+ define the direction ξ, we have that

lim
n→∞

1
n

log(gn(ξ)) = λ− − λ+.

On the other hand, since that gn(ξ) ≥ α−(n+1)(1 + δ)−n we conclude hat

log(b−1) ≤ log(α(1 + δ)) < log(1 + δ′),

where δ′ is as in the Remark 17, but this is a contradiction. �

Moreover, when the cocycle is dynamically defined, critical point are disjoint to
“hyperbolic blocks”.

More precisely, let f be a Hénon map. We denote by R ⊂ J the set of all regular
points. Given C > 0 fixed, consider the set

B(0,C) =
{
z ∈ R : |D f n|E−(z)| ≤ Cexp(nλ−(z)) and |D f −n|E+(z)| ≤ Cexp(−nλ+(z))

}
.

This set is a closed set, and given l ∈ N we define the hyperbolic block of large l

B(l,C) = ∪l
k=−l f k(B(0,C)).

Since that all point in the hyperbolic point is regular, it is follows from the previous
lemma, that critical points are disjoint to hyperbolic blocks.
• Tangencies of Periodic Contain Critical Points: Let f be Hénon map with b =
| det(D f )| < 1. Without loss of generality, we can assume that p is a fixed point. Let λs

and λu the eigenvalues of D f in p, then b = |λs| · |λu|. Note that

g−n(Eu
p) =

b−n

|D f −n|Eu
p|2
=

(
(λu)2

b

)n

> b−n.

On the other hand,

gn(E s
p) =

bn

|D f n|E s
p|2
=
|λu|n
|λs|n =

(
(λu)2

b

)n

> b−n.
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Then there exist λ > b−1 such that g−n(Eu
p) > λn and gn(E s

p) > λn. We conclude that
for every 0 < δ < 1 − b, p ∈ H̊−(δ) and p ∈ H̊+(δ). Now we fix δ. Since the previous
inequalitys open properties, we can find ε > 0 small such that if z ∈ Wu

p(ε), then
z ∈ H̊−(δ).

On the other hand, provided that ε small enough, it is follows that for any tangency
point z ∈ Wu

p(ε), we have that z < H̊+(δ). Otherwise, we denote by Fz the tangent
direction to Wu

p(ε) in z that in fact is the critical direction. Since that if z ∈ H̊+(δ), we
conclude that there exist another direction Ez transversal to Fz such that D f n

# (Ez)→ Eu
p

has n→ ∞. Here D f# denote the projective cocycle induced by D f .
Now we have that

gn(Eu
p) <

(
1

(1 + δ)

)n

for n great enough, it is follows that gn(Ez) contracts for the future, that is a contradic-
tion.
• Stable and center unstable sets of Critical value and points: We recall some basic
definitions. The unstable set of a point x for f , is the set

Wu(x) =
{
y ∈ Cn : d( f −n(x), f −n(y))→ 0, when n→ ∞}

,

where d is the euclidean distance. Similarly, the local unstable set of size ε is the set

Wu
ε (x) =

{
y ∈ Wu(x) : d( f −n(x), f −n(y)) ≤ ε, for every n ≥ 0

}
.

Equivalently we can define stable set and local stable set in the same fashion above,
but taking forward iterate.

In the [P-RH], the authors proof the following two result. It is not difficult to see, that
it is possible to adapt the proof for the holomorphic context. See [P-RH] for details.

We take α and δ as in the Theorem C.

Lemma 3.16. If y ∈ αH+(δ) and W s
ε(y) is a C1-injective immersed submanifolds, then

Ey = TyW s
ε(y) where Ey is the critical direction related with y. Similarly, y ∈ α−1H−(δ)

and W s
ε(u) is a C1-injective immersed submanifolds, then Fy = TyW s

ε(y), where Fy is
the critical direction related with y.

Also we have

Lemma 3.17. Let Λ be a compact invariant dissipative set. There exist a continuous
functions ϕ : αH+(δ) → Emb1(D,C2), such that if W s

ε(x) = ϕs(x)(εD), the following
properties hold:
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1. TyW s
ε(y) = Ey, where x is the critical direction related with y,

2. W s
ε(x) =

{
y ∈ C2 : dist ( f n(x), f n(y)) < ε

}
,

3. there exists λ < 1 and C > 0 such that for any x ∈ αH+(δ)

(a) |D f n(Ex)| < Cλn.

(b) dist ( f n(x), f n(y)) < Cλn, for every y ∈ W s
ε(x).

Now appear a question.
Question: Points in α−1H−(δ), has tangent manifolds?

It is natural to ask of critical points are related to unstable direction. Moreover,
assuming an affirmative answer for the previous question, in the context of Hénon maps
appear:
Question: Let x be a critical point and let Wu

loc(x) be a local submanifold tangent to
the critical direction Fx, does it hold that Wu

loc(x) ∩ U+ , ∅?.

3.4.2 Critical Point in the Holomorphic Context

Recall that for polynomial (or rational maps) in C, always exists critical point. More-
over they determine the global dynamics. In this direction recall the following state-
ment: The Julia set Jp ⊂ C is hyperbolic, if and only if PC(p) ∩ Jp = ∅. Here PC(p)
denote the postcritical set defined by

PC(p) = ∪n≥1 pn ({
z : p′(z) = 0

})
.

Following these result, we wonder (in two dimensional dynamics) if always exist
critical point (even outside of J) and if they determine the global dynamics. In fact,
recall that we have proved: If CP ∩ J = ∅,if and only if J has dominated splitting,
where CP is any C(α, δ) as in the Theorem D.

But, do they always exist outside of J, when J has dominated splitting?. In fact, we
can formulate the following questions.

Question A: Do always exists critical point in C2?

Question B: If K+ has interior, always exists critical point in K+ ?

We can answer positively the Question B, for a polynomial automorphisms close to
one dimensional polynomial p. Let

fδ(x, y) = (y, p(y) − δx),
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with |δ| small. When we refer to critical point of p, i.e., p′(x) = 0 we denote them as
one dimensional critical point. With the words critical point, we are referring to the
critical point we have introduced.

Observe that to introduce of critical point, we only need to deal with compact invari-
ant set, so the notion can be extended to K+.

Let us assume that the polynomial p satisfies:

1. there are not one dimensional critical point in Jp,

2. Jp is connected,

3. the filled Julia set Kp has interior.

The item 3, implies that the set K+p associated with the two dimensional map f0 :
(x, y) 7→ (y, p(y)), has non empty interior. In fact, is easy to see that K+p = C × Kp.
We recall that since |δ| small, f = fδ is close to f0, hence J f is close to the set J0 ={
(y, p(y)) : , y ∈ Jp

}
.

Proposition 3.4.1. Under the previous hypothesis, there are a critical point in the inte-
rior of K+.

Proof. If there are not critical points in K+, then this has dominated splitting, so K+ is
foliated by holomorphic stable leaves

K+ = sup
x∈K+

W s(x).

On the other hand, the map

z = (x, y) ↪→ (y, p(y)) ↪→ p(y),

is holomorphic and the image of K+p is Kp, that is contained in the y-axis. So, for |δ|
small enough, there exists a holomorphic disc D, close to the y-axis and transversal to
the stable foliation of f in K+.

We define πs the projection to D, by the stable foliation. Now we define

z ∈ D ∩ K+ ↪→ f (z) ↪→ πs( f (z)) ∈ D.

Then the map (πs ◦ f ) : D → D is a holomorphic one dimensional map. We denote by
pr2 the projection in the second variable. Since πs close to pr2 nearby the Julia set, and
f close to f0, then πs ◦ f is close to p nearby the Julia set, thus it is follows that πs ◦ f
has degree equal to degree of polynomial p.
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From the previous observation, there exist c ∈ D such that (πs ◦ f )′(c) = 0. Now, D f
does not have kernel, it is follows that

(D f )(TcD) ⊂ Kernel(Dπs).

Since that Kernel(Dπs) = E s, we conclude that (D f )(TcD) ⊂ E s but this is a contradic-
tion, because TcDtE s. �

3.5 Another Proof of Theorem 2.4.2

In this subsection we present an independent proof of the Theorem 2.4.2, that not use
the Mañé Theorem. A first important remark is the following.

Remark 21. Is useful remark, since the F(x) = E+x in every regular point, is easy to see
that for x ∈ R

lim
n→∞

1
n

log(gn(F(x)) = ±(λ−(x) − λ+(x)).

Since gn(F(x)) ≤ λn, the previous limit is negative, thus is equal to λ−(x) − λ+(x).

For the proof we recall two classical results. The first of them, is a characterization
for hyperbolicity, and the second is a corollary of the Pliss Lemma.

Lemma 3.18. If ||D f −n|F(x)|| → 0 for every x ∈ J∗, then J∗ is hyperbolic.

Lemma 3.19. Given 0 < γ1 < γ0, there exist N0 and δ0 satisfying the following prop-
erty: If there exist x ∈ J∗ such that ||D f −n|F(x)|| > γn

0, with n ≥ N0, then there exists
0 ≤ j < n such that n − j > nδ0 − 1, and

||D f −i|F( f − j(x))|| > γi
1,

for every 0 < i ≤ n − j.

Proof of Theorem 2.4.2. We suppose that J∗ ∩ J0 = ∅. In particular this implies that
any invariant measure supported in J∗ is hyperbolic.

On he other hand, if J∗ is not hyperbolic, then there exists x0 ∈ J∗ such that

||D f −n|F(x0)||9 0.

It follows that there exists a constant c > 0 such that for every n, there exist N(n) ≥ n
such that

||D f −N(n)|F(x0)|| =
N(n)∏
j=1

||D f − j|F( f 1− j(x))|| > c.
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We define αn =
n
√

c0 and βn = αn − 1/n. It is clear that αn → 1 and βn → 1.
We fix k > 0. Let us take γ0 = αk and γ1 = βk. Let N0 and δ0 the constants from the

Pliss Lemma. Also we take n great enough such that:

• N(n) > max(N0, k),

• N(n)δ0 − 1 > k.

Since (αN(n))N(n) > (αk)k, we conclude that: there exists zk in the past orbit of x0, such
that for all 0 < n ≤ k we have that

||D f −n|F(zk)|| > βn
k .

We take xk = f −k(zk) then we have that for every 0 < n ≤ k

||D f n|F(xk)|| < β−n
k .

Take x ∈ J∗ such that xn → x, then we have that

||D f n|F(x)|| ≤ 1

for every n.
From the previous inequality, and the property of ρ-hyperbolicity with constant µ0,

we conclude that

a. bn ≤ gn(F(x)), for every n ≥ 1, and

b. gn(F( f m(x))) < λn, for every m, n ≥ 1.

Form the previous inequalities, we conclude that

log(b) ≤ lim
n→∞

1
n

log(gn(F(x))) ≤ log(λ) < 0.

Now the proof follows by arguing as in the proof of Criteria of Negative Exponent
(Lemma 3.8):

1. Let us take a subsequence (nk)k, such that the sequence of measure

ν′k =
1
nk

nk−1∑
i=0

δD f i
#(F(x)),

converge to a measure ν′, where D f# is the projective cocycle in the trivial bundle
J × C, of the linear cocycle D f . Note that the support of ν′ is contained in the
omega limits set of (x, F(x)), by the cocycle D f#.
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2. The projection in J∗ of the measure ν′ is a f -invariant measure ν. Note that the
support of ν is contained in the omega limits set of x.

3. We have ν′(supp (ν) ∩ pr−1(R(ν))) = 1.

4. For every (z,w) ∈ supp (µ′) ∩ pr−1(R(ν)), from the Remark 21 we have that

I(z,w) = lim
k→∞

1
nk

log(gnk(w)) = λ−(z) − λ+(z).

5. Since that ν is hyperbolic, then λ−(z) − λ+(z) < log(b), it follows from (a), that

log(b) >
∫

I(z,w)dν′(z,w) = lim
k→∞

1
nk

log(gnk(D f#(F(x))) ≥ log(b)

that is a contradiction.

This conclude the proof of the Theorem. �



Chapter 4

Some Open Questions

In this Chapter we summarize, the list of question that appear a long of the work, for
contextualize them, we refer the page that they appear.

1. Can we find non-planar dominated splitting and non-hyperbolic Hénon maps?
(pag. 11).

2. Is the dynamics conjugated to a one dimensional Siegel disk or Herman ring
multiplied by a uniform contraction? (pag. 14).

3. Under which conditions the hypothesis of dominated splitting implies hyperbol-
icity on J? (pag. 17).

4. If f is a dissipative Hénon map with dominated splitting in J∗, and all periodic
point in J∗ are hyperbolic, Is f hyperbolic in J? (pag. 17).

5. Let f be a dissipative Hénon map with dominated splitting in J. If f is also
expansive in J, is the set J0 empty? (pag. 41).

6. Let f be a dissipative Hénon map with dominated splitting in J. If the set J0 is
not empty, there exist some condition under which J0 \ J∗ , ∅? (pag. 41).

7. Points in α−1H−(δ), has tangent manifolds? (pag. 89).

8. Let x be a critical point and let Wu
loc(x) be a local submanifold tangent to the

critical direction Fx, does it hold that Wu
loc(x) ∩ U+ , ∅? (pag. 89).

9. Always exists critical point in C2? (pag. 89).

10. If K+ has interior, always exists critical point in K+ ? (pag. 89).

94
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Another questions: ??



Appendix A

Introduction

The principal motivation for this Appendix, is explain how is defined the measure of
maximal entropy µ, for Hénon maps. However, this Appendix is not fundamental to
read, for the comprehension of the principal topics presented in this works. The reader
can skip this Chapter.

In this Appendix we present in the first section, how Potential Theory is an important
tool, in the study of dynamics of polynomial in one complex variable. We use this
how a motivation to introduce the notions of Pluripotential Theory, that is the natural
extension on higher dimension.

A.1 Potential Theory and Polynomial

It know of the study of dynamics in one complex variable for polynomials, that the
Potential Theory plays a fundamental role to describe the metrics properties related
with the Julia set. We briefly describe these results.

For a finite Borel measure ν, we define its (logarithmic) potential as the function

pν(z) =
∫

log |z − w|dν(w).

We also consider the energy I(ν), of ν as the integral

I(ν) =
∫ ∫

log |z − w|dν(z)dν(w) =
∫

pν(z)dν(z).

For a compact set K ⊂ C, denote by P(K) the set of all finite Borel measures with
support within K. If there exist µ ∈ P(K) such that

I(µ) = V = sup
P(K)

I(ν),

96
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then µ is called an equilibrium measure for K. To end, we define the (logarithmic)
capacity for K by

c(K) = eV ,

and we say that a set K is polar if c(K) = 0.
We list a series of result of potential theory, relating with non-polar set. One reference

for this topics is the book of Thomas Ransford [R] (see also [M]).

1. The potential pν is subharmonic in C and harmonic in C \ supp (ν).

2. The Laplacian (in the sense of distribution) of pν is equal to ∆pν = 2πν.

3. Every compact set K in C has an equilibrium measure, that we denote by µ.

4. If K is non-polar, µ is unique and supp (µ) ⊂ ∂eK where ∂e denote the exterior
boundary of K (Also in the case non-polar, µ can be obtained as an harmonic
measure, see Definition 4.3.1 and Theorem 4.3.14 in [R] for details).

5. Let D∞ the connected component of C\K which contains∞. The Green function
GK on D∞ with a logarithmic pole at ∞ is (by definition) the infimum of the
Perron family G consisting of all non-negative superharmonic functions s(z) such
that s(z)− log |z| is bounded near∞. When K is non-polar set, the Green function
always exist and satisfy the equalities

GK(z) = pµ(z) − I(µ) = pµ(z) − log c(K) = log |z| − log c(K) + o(1), as z→ ∞.
(A.1)

Denote K f be the filled Julia set for a polynomial f of degree not less than 2, and
J f = ∂K be the Julia set related with f . If we write f (z) = adzd + O(zd−1), is possible
to show that c(K f ) = 1/|ad|1/(d−1) > 0. Its follows that J f support an unique equilibrium
(harmonic) measure µ f such that

µ f =
1

2π
∆G f ,

where G f is the Green function on C \ K f , and the Laplacian is in the sense of distribu-
tions.

All the previous results for are uniquely based in the potential theory.
A first dynamical result that give a new focus of attention, is that the Green function

has a explicitly expression in terms of the dynamics of the polynomial f . First one, we
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can prove that G( f (z)) = dG(z), and this combining with the equation (A.1), we obtain
that the Green function is dynamically defined by the equation

G(z) = lim
n→∞

1
dn log+ | f n(z)|,

where log+ |z| = max
{
0, log |z|}. The second important fact, is proper to Brolin (see

[Br]), that establish that the equilibrium measure is the weak limit, of asymptotic mass
distribution related with the dynamics of f . Fixed a point z0 ∈ C be a not exceptional
point, we define:

µn =
1
dn

∑
f n(z)=z0

δz.

Theorem A.1.1 (Brolin). The sequence (µn)n converge to µ f in the weak topology,
hence µ f is a f invariant measure. Moreover, the equilibrium measure is strongly
mixing (so ergodic).

Also we have the following ergodic result (see [G] and [L]).

Theorem A.1.2. The measure µ f is the unique measure of maximal entropy.

A.2 Pluripotential Theory

For a simple exposition of the topic of current and Pluripotential Theory, oriented for
the study of Hénon maps we suggest the book Holomorphic dynamics of Morasawa
Et.al., in [MNTU]. Other recommendations for Pluripotential Theory are, [K] and the
Appendix (A.1–A.7) on Dynamic of Rational Map on Pk, of Nessim Sibony in [C]. The
following subsection, are based in the Appendix of Nessin Sibony, refer above.

A.2.1 Plurisubharmonic Function and
Smooth Approximation

Definition A.2.1. Let U be a open set of Rn. A function u : Rn → [−∞,∞) is subhar-
monic if:

1. u is not identically −∞ in any component of U,

2. u is uppersemicontinuous (u.s.c.),
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3. u satisfy the sub-mean value property: for any x0 ∈ U and r > 0 such that
Br(x0) b U,

u(x0) ≤ M(x0, r) =
∫
|y|=1

u(x0 + ry)
dσ(y)

cn
,

where cn =
∫
|y|=1

dσ(y) and σ is Lebesgue measure in the sphere.

It can be shown that is u is subharmonic, then u ∈ L1
loc(U) and ∆u ≥ 0 in the sense

of distributions. If v ∈ L1
loc(U) and ∆v ≥ 0, then v is equal to a subharmonic function

(a.e.).

Theorem A.2.1. Let (v j) j be a sequence of subharmonic functions on a domain U ⊂ Rn.
Suppose that the sequence (v j) j is bounded above on every compact subset of U.

1. If (v j) j does not converge to −∞ on compact subsets of U, then there is a sequence
(v jk)k that converge in L1

loc(U) to subharmonic function.

2. If v is subharmonic and v j → v in L1
loc(U), then

lim sup
j→∞

sup
K

(v j − f ) ≤ sup
K

(v − f )

for every compact K ⊂ U and every function f that is continuous on K.

Definition A.2.2. Let U be a open set of Cn. Let u : Cn → [−∞,∞) be a u.s.c. function
that is not identically −∞ in any component of U. We say that u is plurisubharmonic
(psh) if

u(z0) ≤ 1
2π

∫ 2π

0
u(z0 + weiθ)dθ,

Remark 22. Any psh function is subharmonic has function of R2n.

For any differentiable function v : U ⊂ Cn → C, we can express his differential dv
has a a sum of a C-linear part and an anti C-linear part dv = ∂v+∂v. Using the standard
notation

z j = x j + iy j, dz j = dx j + idy j, dz j = dx j − idy j

∂

∂z j
=

1
2

(
∂

∂x j
− i

∂

∂y j

)
,

∂

∂z j
=

1
2

(
∂

∂x j
+ i

∂

∂y j

)
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one has the following formula:

dv =
2∑

j=1

(
∂v
∂x j

dx j +
∂v
∂y j

dy j

)
;

∂v =
2∑

j=1

∂v
∂z j

dz j;

∂v =
2∑

j=1

∂v
∂z j

dz j.

We have that d = ∂ + ∂, and define dc = i
2π(∂ − ∂) so that ddc = 1

π
∂∂.

Plurisubharmonic function have the following properties.

Properties A.2.1. 1. If f is holomorphic in U, then log || f || is psh in U.

2. A function u is pluriharmonic if ddcu = 0. In this case, it is the real part of a
holomorphic function. One can also write u = log ||h||, where h is a nonvanishing
holomorphic function.

3. If g : U → U′ is a holomorphic map between two open set in Cn and u is psh in
U′, then u ◦ g is either psh in U or −∞.

4. A function v ∈ L1
loc is equal almost everywhere to a psh function if and only if∑

j,k=1

∂2v
∂z j∂zk

(z)w jwk ≥ 0,

for every w ∈ Cn. This means that the left-hand side define a positive measure.
Since that

ddcv =
1
π

∑
j,k=1

∂2v
∂z j∂zk

dz jdzk,

we say that v is psh if and only if ddcv ≥ 0.

For any two real functions u, v : Cn → R we define their convolution has the function
u ∗ v : Cn → R given by

u ∗ v(z) =
∫
Cn

u(z − w)v(w)dV(w).

Proposition A.2.1. Let u be a psh function on U ⊂ Cn, with u . −∞. Let χ : Cn → R
be a function satisfying:

χ ∈ C∞, χ ≥ 0, χ(z) = χ(||z||), supp (χ) ⊂ B(0, 1),
∫
Cn
χdV = 1.



101

For every ε > 0 define

χε(z) =
1
ε2nχ

( z
ε

)
.

Then uε = u ∗ χε is a C∞ psh function in
{
z ∈ U : d(z, ∂U) > ε

}
, for each ε > 0.

Moreover, uε ↓ u, and uε → u in L1
loc(U), as ε ↓ 0.

A.2.2 Current

We denote byDp the space of compactly supported smooth form of degree p on Rn. A
sequence (ϕ j) j ⊂ Dp converges to 0 if:

1. write ϕ j =
∑
|I|=p ϕ

j
IdxI , where I is a ordered multi-index, with I =

{
i1 < · · · < ip

}
,

2. there exists a compact K ⊂ Rn such that supp (ϕ j
I) ⊂ K for all I and j,

3. Dα(ϕ j
I)→ 0 uniformly as j→ ∞, for all I and α = (α1, . . . , αn) ∈ (Z+)n and

Dα =
∂|α|

∂xα1
1 · · · ∂xαn

n
, with |α| =

n∑
j=1

α j.

We denote by Dp the dual space (Dp)′. An element T ∈ Dp is said a current of
dimension p (or current of degree n−p). We say that a sequence of current of dimension
p, (T j) j converge to a current T , and denote by T j → T ; if for every ϕ ∈ Dp we have

〈T j, ϕ〉 = 〈T, ϕ〉.

Also, we define the set supp (T ) as the set supp (T ) := (N(T ))c where

N(T ) = Int
{
z ∈ Cn : ∃U neighborhood of z, such that T (ϕ) = 0,∀ϕ, with supp (ϕ) b U

}
.

We can think a current of dimension p as a (n − p)-form with distribution as coeffi-
cients. For this, first note that for each ordered multi-index J with |J| = p there exist a
unique ordered multi-index J∗ with |J∗| = n − p such that J ∪ J∗ =

{
1, . . . , n

}
. Let I, J

are ordered multi-indexes with |I| = n − p, |J| = p, and let S be a distribution and φ a
compact supported smooth function. We define

〈S dxI , φdxJ〉 =
 (−1)σ(I,J)〈S , φ〉 , if I = J∗

0 , if I , J∗
,

where σ(I, J) is the signature of the permutation

(i1, . . . , in−p, j1, . . . , jp) 7→ (1, . . . , n).
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To end, if T is a current of dimension p and we define the distribution TI by the equation

〈TI , φdxJ〉 = (−1)σ(I,J)〈T, φdxJ〉,

is not difficult to see that 〈 ∑
|I|=n−p

TIdxI ,
∑
|J|=p

ϕJdxJ

〉
= 〈T, ϕ〉

when ϕ =
∑
|J|=p ϕJdxJ. With this in mind, we say that

T =
∑
|I|=n−p

TIdxI ,

and we denote
〈T, ϕ〉 =

∫
T ∧ ϕ.

Example 8. The spaceD0 = C∞0 is the space of all smooth compactly supported func-
tion in Rn, thenD0 = D′ the space of distributions.

Example 9. Let M be a smooth manifold in Rn of dimension p, for ϕ ∈ Dp(M) define

〈[M], ϕ〉 =
∫

M
ϕ,

define a current of dimension p.

Example 10. Let g : N → M be a proper smooth map between the manifolds N and
M, then

〈g∗[N], ϕ〉 =
∫

N
g∗ϕ,

is a current of dimension p in M.

Example 11. Let T ∈ Dp and α ∈ Dk, then we define T ∧ α be the relation

〈T ∧ α, ϕ〉 = 〈T, α ∧ ϕ〉,

this define a current of dimension p − k.

Example 12. Given a current T of dimension q, we define the current dT of degree
q + 1 be the relation

〈dT, ϕ〉 = (−1)p+1〈T, dϕ〉,

for ϕ ∈ Dn−q−1. We say that the current T is closed, if dT = 0.
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Example 13. Let f : M → N be a smooth proper submersion. Given ψ ∈ Dn−p we
denote f∗ψ the pushforward of ψ. This is given by the relation

〈 f∗ψ, ϕ〉 = 〈ψ, f ∗ϕ〉 =
∫

ψ ∧ f ∗ϕ.

When T is a current, we define f ∗T be the dual formula, this is,

〈 f ∗T, ϕ〉 = 〈T, f∗ϕ〉.

Note that when T is smooth, f ∗T is the usual pullback of the form T . The pullback
operation has the following properties.

(a) deg( f ∗T ) = deg(T ).

(b) If ψ is a smooth form, then f ∗(T ∧ ψ) = f ∗T ∧ f ∗ψ.

(c) d( f ∗T ) = f ∗(dT ).

(d) supp ( f ∗T ) ⊂ f −1(supp T ).

(e) If T j → T , the f ∗T j → f ∗T .

A.2.3 Positive Currents

Now we consider current acting in the space Dp,q(Cn) of the smooth forms with com-
pact support of bidegree (p, q). We denote this space by Dp,q and an element of Dp,q

is a current of bidimension (p, q) or of bidegree (n − p, n − q). As before, we can
think a current of dimension (p, q) as a differential form of bidegree (n− p, n− q), whit
distribution as coefficients.

Also we consider the Poincaré operator d = ∂ + ∂ and the operator dc = i/2π(∂ − ∂).
If T is a current of bidimension (p, p), then we have the following relations:

〈dT, ϕ〉 = −〈T, dϕ〉
〈dcT, ϕ〉 = −〈T, dcϕ〉
〈ddcT, ϕ〉 = 〈T, ddcϕ〉.

Definition A.2.3. Let T be a current of bidimension (p, p). We say that T is a positive
current, and denote by T ≥ 0, if the following properties holds: for every collection{
α1, . . . , αp

} ⊂ D1,0 define

ϕ = iα1 ∧ α1 ∧ · · · ∧ iα1 p ∧ αp,

then 〈T, ϕ〉 ≥ 0.
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Definition A.2.4. We say that a current T =
∑

I TidxI is representable by integration,
if each distribution TI is a regular measure.

Proposition A.2.2. Any positive current of bidimension (p, p) on an open set of Cn, is
representable by integration.

Remark 23. The previous Proposition generalizes a result of distribution:

“If T is a positive distribution in an open set U
(i.e. T (ϕ) ≥ 0 for any non-negative test function),

then T is a measure.”

Note also that if T is representable by integration, then the current can be extended
to the space of all continuous forms.

Example 14. Let u be a psh function. Since that

〈ddcuw,w〉 =
∑
j,k=1

∂2u
∂z j∂zk

(z)w jwk ≥ 0,

for every w ∈ Cn, it follows that ddcu is a closed positive current of bidegree (1, 1).

Example 15. Let Z be an analytic subset of an open set U of Cn, of pure dimension
p. Let Reg Z the set of regular point of Z. Lelong has shown that the current [Z], of
bidimension (p, p) defined by

〈[Z], ϕ〉 =
∫

Reg Z
ϕ,

is a closed positive current of bidimension (p, p).

Proposition A.2.3. Let T be a closed positive current of bidegree (1, 1), on a open set
U ⊂ Cn. Then for every z0 ∈ U there exist a neighborhood U0 ⊂ U and a psh function
on U0, such that T = ddcu.

Remark 24. If u is a psh function as in the previous Proposition, we say that u is a
potential of T . In the case that U is equal to Cn, the potential function is globally
defined. If u1 and u2 are two potential of T , in the same open set, then u1 − u2 is a
pluriharmonic function.
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A.2.4 Exterior Product of Currents

Is easy to see, that for two smooth functions u and v, is valid the following formula:

(ddcu) ∧ (ddcv) = ddc(u · ddcv).

Moreover, the previous formula is true inductively for more functions, that is,

ddcu1 ∧ ddcu2 ∧ · · · ∧ ddcup = ddc(u1 · ddcu2 ∧ · · · ∧ ddcup).

This fact make sense in the context of positive current.
Let T be a closed positive current of bidimension (p, p) in an open set U ⊂ Cn. Set

β = ddc||z||2. We denote by |T | the positive measure defined by

|T | = S ∧ βp.

If u ∈ Psh(U) ∩ L1
loc(|T |), then uT is a current in U. We define the current ddcu ∧ T as

before, that is, ddcu ∧ T = ddc(uT ). We have the following results.

Theorem A.2.2. Let T be a closed positive current of bidimension (p, p) in an open set
U ⊂ Cn.

(1) If u ∈ Psh(U)∩ L1
loc(|T |), then the current ddcu∧ T is a closed positive current in

U. Moreover, if u j → u in L1
loc(U), then ddcu j ∧ T → ddcu ∧ T in the sense of

current.

(2) Let uk ∈ Psh(U) ∩ L∞loc(|T |), for k = 1, . . . , q. For every k, let u j
k be a decreasing

sequence of psh functions that converge pointwise to uk. Then

(a) u j
1ddcu j

2 ∧ · · · ∧ ddcu j
q → u1ddcu2 ∧ · · · ∧ ddcuq,

(b) ddcu j
1 ∧ ddcu j

2 ∧ · · · ∧ ddcu j
q → ddcu1 ∧ ddcu2 ∧ · · · ∧ ddcuq,

in the sense of currents.

Remark 25. In particular, when u and uk are continuous and bounded in the neighbor-
hood U, then the previous results of convergence, are valid.

A.2.5 The Invariant measure for Hénon maps

Now we back with the description of the invariant measure for Hénon map.
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Definition A.2.5. The Green function’s related with a Hénon map f of degree d, are
defined be the limit

G±(z) = lim
n→∞

1
dn log+ || f n(z)||,

that always exist (see [BS1]).

Remark 26. The Green function is a measure of the rate of logarithmic scape points.

We recommend review the definitions of filtration, exposed in the Chapter [?]. The
Green functions are the following properties:

Properties A.2.2. 1. G± are continuous plurisubharmonic function inC2, and pluri-
harmonic function in U± ∪ int(K±);

2. K± =
{
z ∈ C2 : G±(z) = 0

}
and G± ≥ 0 in C2.

3. G±( f (z)) = d±1G±.

4. Let Mx =
{
x
} × C and Yx = K+ ∩ Mx. The function y 7→ G+(x, y) is the Green

function GYx . A symmetrical result holds for the function G−.

5. G+(x, y) − log |y| is pluriharmonic and bounded in V−.

6. G−(x, y) − log |x| is pluriharmonic and bounded in V+.

So we can consider the closed positive currents, called the stable/unstable currents
defined by

µ± = ddcG±. (A.2)

Since that G± are pluriharmonic in the complement of J±, it follows that for every point
z of U+ ∪ int(K+), we have that ddcG+(z) = 0; this imply that

supp (ddcG±) = J±. (A.3)

Another property of the currents µ± is the following: in case that a current is defined
by the equation T = ddcu where u is a locally integrable function in C2, then we can
define the pullback f ∗T , by ddc(u ◦ f ). From the previous observation it follows that

f ∗µ± = ddc(G± ◦ f ) = d±µ±. (A.4)

With all this, the measure
µ = µ+ ∧ µ− (A.5)

is f -invariant, since

f ∗µ = f ∗(µ+ ∧ µ−) = f ∗µ+ ∧ f ∗µ− = (dµ+) ∧ (d−1µ−) = µ.
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[Ma2] R. Mañé. Hyperbolicity, sinks and measure in one-dimensional dynamics.
Comm. Math. Phys. 100 (1985), no. 4, 495–524.

[M] J. Milnor. Dynamics in one complex variable. Third edition. Annals of Mathe-
matics Studies, 160. Princeton University Press, Princeton, NJ, 2006. viii+304
pp. ISBN: 978-0-691-12488-9; 0-691-12488-4.

[MNTU] S. Morosawa; Y. Nishimura; M. Taniguchi; T. Ueda. Holomorphic dynam-
ics. Translated from the 1995 Japanese original and revised by the authors.
Cambridge Studies in Advanced Mathematics, 66. Cambridge University Press,
Cambridge, 2000. xii+338 pp. ISBN: 0-521-66258-3.

[P-RH] E. R. Pujals; F. Rodriguez Hertz. Critical points for surface diffeomorphisms.
J. Mod. Dyn. 1 (2007), no. 4, 615–648.

[P-S] E. R. Pujals; M. Sambarino. Homoclinic tangencies and hyperbolicity for sur-
face diffeomorphisms. Annals of Mathematics, vol. 151, 2000, p. 9611023.

[R] T. Ransford. Potential theory in the complex plane. London Mathematical So-
ciety Student Texts, 28. Cambridge University Press, Cambridge, 1995. x+232
pp. ISBN: 0-521-46120-0; 0-521-46654-7.

[V] M. Viana. Multiplicative ergodic theorem of Oseledets (after Ricardo Mañé): A
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