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ABSTRACT

The aim of this Thesis is to investigate germs at 0 ∈ Cn, n ≥ 2 of real analytic

Levi-�at hypersurfaces with singularities. Inspired by a recent work of Cerveau-Lins

Neto [12], we generalize a result of Burns-Gong [7] on Levi-�at hypersurface with

Morse type singularity. We also obtain in certain cases normal forms of Levi-�at

hypersurface de�ned by the vanishing of the real part of complex quasihomogeneous

polynomials. Finally we study germs at 0 ∈ Cn of singular k-webs tangent to Levi-

�at hypersurfaces, generalizing a result of [12] for codimension one holomorphic

foliations tangent to Levi-�at hypersurfaces.

Keywords: Levi-�at Hypersurfaces, Holomorphic Foliations, Singular Webs.

iii



RESUMO

O objetivo desta tese é investigar germes em 0 ∈ Cn, n ≥ 2 de hipersuperfícies Levi-

�at reais analíticas com singularidades. Inspirado pelo recente trabalho de Cerveau-

Lins Neto [12], generalizamos um resultado de Burns-Gong [7], sobre hipersuperfícies

Levi-�at com singularidade do tipo Morse. Encontramos também em certos casos

formas normais de hipersuperfícies Levi-�at de�nidas pela anulação da parte real

de polinômios complexos quase-homogêneos. Finalmente estudamos germes em

0 ∈ Cn de k-webs singulares tangente a hipersuperfícies Levi-�at, generalizando

um resultado de [12] para folheações holomorfas de codimensão um tangentes a

hipersuperfícies Levi-�at.

Palvras-chave: Hipersuperfícies Levi-�at, Folheações Holomorfas, Webs singu-

lares.
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INTRODUCTION

In this work we consider germs at 0 ∈ Cn, n ≥ 2 of real analytic Levi-�at

hypersurfaces with singularities. A well-known theorem of E.Cartan says that a real

analytic smooth hypersurface M in Cn has no local holomorphic invariants, if M is

Levi-�at, i.e, it is foliated by smooth holomorphic hypersurfaces of Cn. In suitable

local coordinates such a hypersurface is given by Re(zn) = 0. On the other hand,

if M is not Levi-�at, the invariants of M are given by the theory of Cartan [9],

Chern-Moser [13].

A real analytic hypersurfaceM in Cn can be decomposed intoM∗ and sing(M),

where M∗ is a smooth real analytic hypersurface and sing(M), the singular locus,

is contained in a proper analytic subvariety of lower dimension. A real analytic

hypersurface M with singularities is said to be Levi-�at if its smooth part M∗ is

Levi-�at.

Singular Levi-�at hypersurfaces have been previously studied by E.Bedford [6],

X.Gong [15], M.Brunella [8]. Local questions about Levi-�at hypersurfaces with

quadratic singularities have been studied by Burns-Gong [7] and most recently

Cerveau-Lins Neto [12] have studied Local Levi-�at hypersurfaces invariants by

codimension one holomorphic foliations. This new approach using methods from

the theory of holomorphic foliations, inspired this work.

This work has three purposes. First, we will prove a generalization of a result

due to Burns-Gong [7].

Theorem 1. Let M = F−1(0), where F : (Cn, 0) → (R, 0), n ≥ 2, be a germ of

irreducible real analytic function such that

(a). F (z1, . . . , zn) = Re(P (z1, . . . , zn)) + h.o.t, where P is a homogeneous polyno-

mial of degree k with an isolated singularity at 0 ∈ Cn.

(b). The Milnor number of P at 0 ∈ Cn is µ.

(c). M is Levi-�at.

Then there exists a germ of biholomorphism ϕ : (Cn, 0) → (Cn, 0) such that ϕ(M) =

(Re(h) = 0), where h(z) is a polynomial of degree µ+ 1 and jk0 (h) = P .
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In the second contribution of this work, we obtain in certain cases, normal forms

for real analytic Levi-�at hypersurfaces which are de�ned by the vanishing of the

real part of a quasihomogeneous polynomial. The quasihomogeneous polynomials

that we will consider is a special class of germs, the famous Ak, Dk, Ek singularities

or simple singularities (cf. [1]). More precisely, our result is the following :

Theorem 2. Let M = F−1(0) be a germ at 0 ∈ Cn, n ≥ 2, of irreducible real

analytic Levi-�at hypersurface. Suppose that F is of one of following types:

(a). F (z) = Re(z21 + zk+1
2 + . . .+ z2n) +H(z, z̄), where k ≥ 3 and

H(z, z̄) = 0(|z|k+2) , H(z, z̄) = H(z̄, z).

(b). F (z) = Re(z21z2 + zk−1
2 + z23 + . . .+ z2n) +H(z, z̄), where k ≥ 6 and

H(z, z̄) = 0(|z|k) , H(z, z̄) = H(z̄, z).

(c). F (z) = Re(z41 + z32 + z23 + . . .+ z2n) +H(z, z̄), where

H(z, z̄) = 0(|z|5) , H(z, z̄) = H(z̄, z).

Then there exists a germ of biholomorphism φ : (Cn, 0) → (Cn, 0) such that

φ(M) = (Re(z21 + zk+1
2 + . . .+ z2n) = 0),

φ(M) = (Re(z21z2 + zk−1
2 + z23 + . . .+ z2n) = 0),

φ(M) = (Re(z41 + z32 + z23 + . . .+ z2n) = 0),

respectively.

We �nd the following list:

Name Normal form Conditions

Ak Re(z21 + zk+1
2 + . . .+ z2n) = 0 k = 1 or k ≥ 3

Dk Re(z21z2 + zk−1
2 + z23 + . . .+ z2n) = 0 k = 4 or k ≥ 6

E6 Re(z41 + z32 + z23 + . . .+ z2n) = 0

The third contribution of this work is a generalization of a result due to Cerveau-

Lins Neto [12]. More precisely, we have the following :
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Theorem 3. Let W be a germ at 0 ∈ Cn, n ≥ 2 of k-web tangent to a germ at

0 ∈ Cn of an irreducible real-analytic Levi-�at hypersurface M . Assume that W is

irreducible and has a �nite number of invariant analytic leaves through the origin.

Denote by X the variety associated to W.

(a). If n = 2. Then W has a non-constant holomorphic �rst integral.

(b). If n ≥ 3, and codXreg(sing(X)) ≥ 2. Then W has a non-constant holomorphic

�rst integral.

In both cases the web W has a non-constant holomorphic �rst integral of the form

f0(x) + z.f1(x) + . . .+ zk−1.fk−1(x) + zk,

where f0, f1, . . . , fk−1 ∈ On.

We would like to observe that if n = 2 and k = 1, W is a non-dicritical

holomorphic foliation at (C2, 0) tangent to a germ at 0 ∈ C2 of an irreducible

real analytic Levi-�at hypersurface M , then a theorem due to Cerveau-Lins Neto

says that W has a non-constant holomorphic �rst integral. In this sense, Theorem

3 is a generalization of Cerveau-Lins Neto's theorem.

This work is organized as follows:

1. Notations and Results. We begin with the basic de�nitions and results

concerning Levi-�at hypersurfaces and holomorphic foliations. Those result will be

used later.

2. Normal forms of Levi-�at hypersurfaces. In this chapter we obtain

normal forms for Levi-�at hypersurfaces which are de�ned by the vanishing of the

real part of a homogeneous polynomial. We will also give applications and some

examples of our main theorem.

3. Levi-�at hypersurfaces with Ak, Dk, Ek singularities. We will give

a list due to V.I.Arnold of Ak, Dk, Ek singularities and we recall some properties.

We obtain in certain cases normal forms for Levi-�at hypersurfaces de�ned by the

vanishing of the real part of Ak, Dk, Ek types.

4. Levi-�at hypersurfaces and webs. We investigate germs at 0 ∈ Cn

of codimension one k-webs tangent to germs at 0 ∈ Cn of real analytic Levi-�at

hypersurfaces. In particular, our main theorem generalizes a result of Cerveau-Lins

Neto for holomorphic foliation in the non-dicritical case.
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Chapter 1

Notations and Results

1.1 Complex variables background

First, we �x some terminology. We will be working in Cn, and we will frequently

write the coordinates as z = (z1, . . . , zn). Note that, if z ∈ C then we can write

z = x+ iy, where x, y ∈ R are the real and imaginary parts of z. Therefore, we can

think of Cn as R2n = Rn × Rn by writing zk = xk + iyk. The complex conjugation

is de�ned by z̄k = xk − iyk, and

dzk = dxk + idyk and dz̄k = dxk − idyk. (1.1)

A (smooth) real hypersurface in Cn is a subsetM of Cn such that for every point

p0 ∈ M there is a neigborhood U of p0 in Cn and a smooth real-valued function ρ

de�ned in U such that

M ∩ U = {Z ∈ U : ρ(Z) = 0}, (1.2)

with di�erential dρ nonvanishing in U . Such a function ρ is called a local de�ning

function for M near p0. The hypersurface M is real-analytic if the de�ning function

ρ in (1.2) can be chosen to be real-analytic.

Example 1.1. The hypersurface in Cn given by the equation Im(zn) = 0 is a ��at�

real hyperplane in Cn.
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Example 1.2. The hypersurface in Cn given by the equation

Im(zn)−
n−1∑
j=1

|zj|2 = 0 (1.3)

is called the Lewy hypersurface.

Example 1.3. The unit sphere in Cn given by
∑n

j=1 |zj|2 = 1 is a compact hy-

persurface. The reader can check that the holomorphic rational mapping H(z) =

(H1(z), . . . , Hn(z)) given by

Hj(z) :=
izj

1− zn
, j = 1, . . . , n− 1, Hn(z) :=

i(zn + 1)

1− zn
,

takes the unit sphere minus the point (0, 0, . . . , 1) bijectively to the Lewy hypersur-

face given in example 1.2.

Remark 1.4. Given a smooth real analytic hypersurface M and p ∈ M , there

exists a local real analytic coordinates (x1, . . . , x2n) ∈ R2n such that M = (x1 = 0)

in a neigborhood of p. However, in the general there is no holomorphic change of

coordinates which performs this equivalence. For instance, as in example 1.2.

1.2 Levi-�at hypersurfaces

A smooth real hypersuperface M ⊂ Cn is said to be Levi-�at if the codimension

one distribution

TCM = TM ∩ i(TM) ⊂ TM

is integrable, in Frobenius' sense. It follows thatM is smoothly foliated by immersed

complex manifolds of complex dimension n − 1. The foliation de�ned by this

distribution is called the Levi foliation and will be denoted by LM .

If M is real analytic, then according to E. Cartan, around each p ∈ M we can

�nd local holomorphic coordinates z1, . . . , zn such that M = {Re(z1) = 0}, and
consequently the leaves of LM are locally {z1 = ic}, c ∈ R. In particular, the

Levi foliation LM extends to a codimension one holomorphic foliation de�ned in a

neighborhood of M , with leaves {z1 = c}, c ∈ C.
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A real analytic subsetM is irreducible if it cannot be expressed asM =M1∪M2,

with both M1 and M2 real analytic and di�erent from M . Any real analytic subset

can be decomposed (on relatively compact open subsets) into a �nite collection of

irreducible components.

An irreducible real analytic subset M has a well de�ned dimension dimRM , and

it can be decomposed as a disjoint union M =M∗ ∪ sing(M), where:

(i). M∗ is nonempty and open in M , and it is formed by those points of M around

which M is a smooth real analytic submanifold of Cn of dimension dimRM .

(ii). sing(M) is a real analytic subset, all of whose irreducible components have

dimension strictly smaller that dimRM .

When dimRM = 2n− 1, or more generally each irreducible component of M has

dimension 2n− 1, we call M a real analytic hypersurface. In this case, we say that

M is Levi-�at if M∗ is Levi-�at.

1.3 Singular holomorphic foliations

In this section we de�ne codimension one singular holomorphic foliations.

De�nition 1.5. Let X be a complex manifold of dimension n ≥ 2. A codimension

one singular holomorphic foliation on X is an object F given by collections {ωα}α∈A,
{Uα}α∈A and {gαβ}Uα∩Uβ ̸=∅, such that:

(i). {Uα}α∈A is an open covering of X.

(ii). ωα is a holomorphic integrable 1-form not identically zero in {Uα}. (That is

ωα ∧ dωα = 0).

(iii). If Uα ∩ Uβ ̸= ∅ then {gαβ} ∈ O∗(Uα ∩ Uβ) and ωα = gαβωβ in Uα ∩ Uβ.

For each form ωα, we de�ne the singular set as

sing(ωα) = {p ∈ Uα : ωα(p) = 0} := Sα. (1.4)

Note that Sα is an analytic sub-variety of Uα. It follows from (iii) that Sα∩Uα∩Uβ =

Sβ ∩ Uα ∩ Uβ. Therefore, the union of the sets Sα, de�nes an analytic sub-variety
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S on X. This set, that we will denote by sing(F), is called the singular set of F .

In particular, F de�nes a codimension one foliation (non-singular) in the open set

U = X \sing(F), a leaf of F is by de�nition, a leaf of the restriction of F|U . See [17]
for the complete bibliography.

1.4 Levi-�at hypersurfaces and foliations

In this section we give some basic de�nitions and state the results of [12], we also

give some examples. Let us �x some notations that will be used from now on.

1. On : The ring of germs of holomorphic functions at 0 ∈ Cn. O(U) = set of

holomorphic functions in the open set U ⊂ Cn.

2. O∗
n = {f ∈ On/f(0) ̸= 0}. O∗(U) = {f ∈ O(U)/f(z) ̸= 0, ∀z ∈ U}.

3. Mn = {f ∈ On/f(0) = 0} maximal ideal of On.

4. An : The ring of germs at 0 ∈ Cn of complex valued real analytic functions.

5. AnR: The ring of germs at 0 ∈ Cn of real valued real analytic functions. Note

that F ∈ An is in AnR if and only if F = F̄ .

6. Diff(Cn, 0) : The group of germs at 0 ∈ Cn of holomorphic di�eomorphisms

f : (Cn, 0) → (Cn, 0) with the operation of composition.

7. jk0 (f) : The k-jet at 0 ∈ Cn of f ∈ On.

Let M be a germ at (Cn, 0) of a real codimension one irreducible analytic set.

For the sake of simplicity we will denote germs and representative of germs by the

same letter. Since M is real analytic of codimension one and irreducible, it can be

de�ned by (F = 0), where F is an irreducible germ of real analytic function. The

singular set of M is de�ned by sing(M) = (F = 0) ∩ (dF = 0) and its smooth part

(F = 0)\(dF = 0) will be denoted by M∗. In this case, the Levi distribution L on

M∗ is de�ned by

Lp := ker(∂F (p)) ⊂ TpM
∗ = ker(dF (p)), for any p ∈M∗.

In this situation, M is Levi-�at if the Levi distribution L on M∗ is integrable.
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Remark 1.6. If the hypersurfaceM is de�ned by (F = 0) then the Levi distribution

L on M can be de�ned by the real analytic 1-form η = i(∂F − ∂̄F ), which will be

called the Levi 1-form of F . The integrability condition is equivalent to (∂F − ∂̄F )∧
∂∂̄F |M∗ = 0

Example 1.7. If f : (Cn, 0) → (C, 0) is holomorphic and non constant then the

analytic set de�ned byM = (Im(f) = 0) is Levi-�at. The leaves of the Levi foliation

on M are the real levels of f .

De�nition 1.8. Let F and M = F−1(0) be germs at (Cn, 0) of a codimension one

singular holomorphic foliation and of a real Levi-�at hypersurface, respectively. We

say that F and M are tangent, if the leaves of the Levi foliation L on M are also

leaves of F .

D. Cerveau and Lins Neto [12], proved the following result, concerning the

situation of de�nition 1.8.

Theorem 1.9. Let F be a germ at 0 ∈ Cn, n ≥ 2, of holomorphic codimension

one foliation tangent to a germ at 0 ∈ Cn of real codimension one and irreducible

analytic variety M . Then F has a non-constant meromorphic �rst integral. In the

case n = 2 we have:

(a). If F is dicritical then it has a non-constant meromorphic �rst integral f/g,

where f, g ∈ O2 and f(0) = g(0) = 0.

(b). If F is non-dicritical then it has a non-constant holomorphic �rst integral.

Recall that a germ of foliation F at 0 ∈ C2 is dicritical if it has in�nitely many

analytic separatrices through the origin. Otherwise, it is called non-dicritical.

1.4.1 The complexi�cation

Given H ∈ An we can write its Taylor series at 0 ∈ Cn as

H(z) =
∑
µ,ν

Hµνz
µz̄ν , (1.5)
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where Hµν ∈ C, µ = (µ1, . . . , µn), ν = (ν1, . . . , νn), zµ = zµ1

1 . . . zµn
n , z̄ν = z̄ν11 . . . z̄νnn .

When H ∈ AnR then the coe�cients Hµν satisfy

H̄µν = Hνµ.

The complexi�cation HC ∈ O2n of H is de�ned by the series

HC(z, w) =
∑
µ,ν

Hµνz
µwν . (1.6)

If the series in (1.5) converges in polydisk Dr = {z ∈ Cn/|zj| ≤ r} then the

series in (1.6) converges in the polydisk Dr ×Dr. Moreover, H(z) = HC(z, z̄).

Let F ∈ AnR, F (0) = 0, be irreducible and such that M = F−1(0) is Levi-�at.

If the Taylor series of F is

F (z) =
∑
µ,ν

Fµνz
µz̄ν ,

the complexi�cation FC ∈ O2n of F is de�ned by the series

FC(z, w) =
∑
µ,ν

Fµνz
µwν . (1.7)

In particular FC(z, z̄) = F (z). The complexi�cation ηC of its Levi 1-form η =

i(∂F − ∂̄F ) can be written as

ηC = i(∂zFC − ∂wFC) = i
∑
µ,ν

(Fµνw
νd(zµ)− Fµνz

µd(wν)).

The complexi�cation MC of M is de�ned as MC = F−1
C (0) and its smooth part

is M∗
C = MC\(dFC = 0). The integrability condition of η = i(∂F − ∂̄F )|M∗ implies

that ηC|M∗
C
is integrable. Therefore ηC = 0 de�nes a foliation LC on M∗

C that will be

called the complexi�cation of L.
We will assume that the Taylor series of F converges in the polydisk Dn

r . The

following result was proved in [12].

Lemma 1.10. Let F,M,M∗ and FC be as above. Then for any z0 ∈ M∗ the leaf

Lz0 of L through z0 is contained in the hypersurface {z ∈ Dn
r |FC(z, z̄0) = 0}. In

particular, Lz0 is closed in M∗.
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Now we consider a germ at 0 ∈ C2 of real analytic Levi-�at M = (F = 0), where

F is irreducible in A2R. Let FC, MC = (FC = 0) ⊂ (C4, 0) and M∗
C be as before.

We will assume that the power series that de�nes FC converges in a neighborhood

of △̄ = {(z, w) ∈ C4/|z|, |w| ≤ 1}, so that FC(z, z̄) = F (z) for all |z| ≤ 1.

Let V :=M∗
C\sing(ηC|M∗

C
) and denote Lp the leaf of LC through p, where p ∈ V .

In this situation the following lemma is proved in [12].

Lemma 1.11. For any p = (z0, w0) ∈ V the leaf Lp is closed in M∗
C.

De�nition 1.12. The algebraic dimension of sing(M) is the complex dimension of

the singular set of MC.

The second result of [12] concerns the existence of a foliation tangent to the

singular Levi-�at hypersurface.

In a certain sense, the next result asserts that if the singularities of M are

su�ciently small (in the algebraic sense) then M is given by the zeroes of the real

part of a holomorphic function.

Theorem 1.13. Let M = F−1(0) be a germ of an irreducible analytic Levi-�at

hypersurface at 0 ∈ Cn, n ≥ 2, with Levi 1-form η = i(∂F − ∂̄F ). Assume that

the algebraic dimension of sing(M) ≤ 2n− 4. Then there exists an unique germ at

0 ∈ Cn of holomorphic codimension one foliation FM tangent to M , if one of the

following conditions is ful�lled:

(a). n ≥ 3 and codM∗
C
(sing(ηC|M∗

C
)) ≥ 3.

(b). n ≥ 2, codM∗
C
(sing(ηC|M∗

C
)) ≥ 2 and LC has a non-constant holomorphic �rst

integral.

Moreover, in both cases the foliation FM has a non-constant holomorphic �rst inte-

gral f such that M = (Re(f) = 0).

1.5 The reduced singularities in dimension two

Let M and F be germs at (C2, 0) of a real analytic Levi-�at hypersurface and of a

holomorphic foliation, respectively, where F is tangent to M . We will assume that:
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(i). F is de�ned by a germ at 0 ∈ C2 of holomorphic vector �eld X with an isolated

singularity at 0.

(ii). M is irreducible and de�ned by (F = 0), where F ∈ A2R is irreducible.

Let us assume that 0 is a reduced singularity of X, in the sense of Seidenberg.

Denote the eigenvalues of DX(0) by λ1, λ2. We have two possibilities:

(a). λ1, λ2 ̸= 0 and λ2/λ1 ̸∈ Q+. In this case, X has exactly two analytic separatri-

ces through 0, both smooth. It can be written in a suitable coordinate system

(u, v), as

X = λ1.u(1 +R1(u, v))∂u + λ2.v(1 +R2(u, v))∂v. (1.8)

where R1(0, 0) = R2(0, 0) = 0. The separatrices are S1 := {v = 0} and

S2 := {u = 0}.

(b). λ1 ̸= 0 and λ2 = 0. In this case, X has a saddle-node at 0. We will suppose

without lost of generality that λ1 = 1. It can be written in a suitable coordinate

system (u, v), as

X = um+1∂u + [v(1 + λ.um) + h.o.t]∂v, (1.9)

where λ ∈ C, m ≥ 1 (cf. [20]). In this case, X has one or two analytic

separatrices through the origin.

The following lemma is proved in [12].

Lemma 1.14. Suppose that X has a reduced singularity at 0 ∈ C2 and is tangent

to M = F−1(0) Levi-�at hypersurface. Then λ1, λ2 ̸= 0, λ2/λ1 ∈ Q− and X has a

holomorphic �rst integral.

In particular, in a suitable coordinates system (x, y) around 0 ∈ C2, X = ϕ.Y , where

ϕ(0) ̸= 0 and

Y = q.x∂x − p.y∂y , gcd(p, q) = 1. (1.10)

In this coordinate system, f(x, y) := xp.yq is a �rst integral of X.
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1.5.1 Saddle singularities with �rst integral

We consider the following situation: Let F be a germ at 0 ∈ C2 of a non-dicritical

foliation and consider a resolution π : (C̃2, D) → (C2, 0) of the foliation F . Let

F̃ = π∗(F) andD be the exceptional divisor. Since F is non-dicritical, all irreducible

components of D are F -invariants. Assume that for any p ∈ sing(F̃) ⊂ D there

exists a local coordinate system (W, (u, v)) such that F̃ |W has a �rst integral of the

form umvn, where m,n ∈ N and gcd(m,n) = 1. We will call this type of singularity

a saddle with �rst integral.

Another result that we will use is the following, (cf. [18] pg. 162):

Theorem 1.15. Let F be a non-dicritical foliation, π : (C̃2, D) → (C2, 0) be a

minimal resolution and F̃ = π∗(F). Assume that all singularities of F̃ in D are

saddles with �rst integral. Fix a transversal
∑

through a point p ∈
∑

∩D, which is

not a singularity of F̃ . Then:

(a). The transversal is complete, in the sense that there is a neighborhood U0 of p in∑
such that for any smaller neigborhood p ∈ U ⊂ U0 then VU := int(satF̃(U))

is a neighborhood of D, where int denotes the interior and

satF̃(U) := ∪q∈ULq,

Lq=leaf of F̃ through q.

(b). There exist a �nite rami�ed covering Π : (D, 0) → (
∑
, 0) and a subgroup

G ⊂ Diff(C, 0) which covers the pseudo-group of holonomy of the germ F̃D

of F̃ at D.

For a precise de�nition of the pseudo-group of holonomy of the germ F̃D, we

refer to [18]. The group G is usually called the global holonomy group of F̃ . In

particular in [18] the following result is proved:

Corollary 1.16. In the situation of theorem 1.15 the foliation F has a �rst integral

if, and only if, the group G is �nite.
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1.6 Examples

D.Burns and X.Gong [7] have classi�ed all singular quadratic Levi-�at hypersurfaces

(hypersurfaces de�ned by the vanishing of a real analytic quadratic polynomial) in

Cn. They have proved the following result.

Theorem 1.17. If M ⊂ Cn is a quadratic Levi-�at hypersurface, then it is bi-

holomorphically equivalent to a hypersurface with one of the following �ve de�ning

functions.

(i). Re(z21 + . . .+ z2k) = 0, k = 1, . . . , n.

(ii). z21 + 2z1z̄1 + z̄21 = 0

(iii). z21 + 2λz1z̄1 + z̄21 = 0, where 0 < λ < 1.

(iv). (z1 + z̄1)(z2 + z̄2) = 0

(v). z1z̄2 − z2z̄1 = 0

The hypersurface (i) is de�ned by the vanishing of the real part of a holomorphic

function, the hypersurface (v) is de�ned by the vanishing of the imaginary part of

a meromorphic function.

On the other hand, the hypersurface of Cn de�ned by

{(z1, . . . , zn) ∈ Cn/Re(z1)2 − Im(z1)
3 = 0}

is irreducible Levi-�at and not de�ned by the vanishing of the imaginary part of a

meromorphic function. For instance see [7], proposition [5.4].

More complicated examples can be derived by pull-back of a Levi-�at hypersur-

face by a holomorphic mapping. That is, if M ⊂ Cn is a hypersurface de�ned by

g = 0, and f : CN → Cn is a nontrivial holomorphic mapping, then the set M̃ ⊂ CN ,

de�ned by g ◦ f = 0 is a Levi-�at hypersurface. This can be seen by pulling back

the Levi foliation of M which becomes the Levi foliation of M̃ .
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Chapter 2

Normal forms of Levi-Flat

hypersurfaces

In this chapter we study normal forms of real analytic Levi-�at hypersurfaces. An

interesting class of Levi-�at hypersurfaces are those real analytic varieties de�ned

by the vanishing of the real part of a holomorphic function. As, we have remarked

before, Levi-�at hypersurfaces are not always of this type.

In the case of a real analytic smooth Levi-�at hypersurface M of Cn, its local

structure is very well understood, according to E. Cartan (see for instance [5] �1.7),

around each p ∈ M we can �nd local holomorphic coordinates z1, . . . , zn such that

M = {Re(z1) = 0}.
More recently D. Burns and X. Gong [7] have proved an analogous result in the

following case:

Let M = F−1(0) be a Levi-�at, where F : (Cn, 0) → (R, 0), n ≥ 2, is a germ of

real analytic function such that

F (z1, . . . , zn) = Re(z21 + . . .+ z2n) +H(z, z̄) (2.1)

with

H(z, z̄) = 0(|z|3) , H(z, z̄) = H(z̄, z). (2.2)

They show that there exists a germ of biholomorphism ϕ : (Cn, 0) → (Cn, 0)

such that

ϕ(M) = (Re(z21 + . . .+ z2n) = 0).
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In [12], the authors prove the above result by using the theory of holomorphic

foliations.

We are interested in �nding similar normal forms in a situation more general.

Our main result is the following :

Theorem 1. Let M = F−1(0), where F : (Cn, 0) → (R, 0), n ≥ 2, be a germ of

irreducible real analytic function such that

(a). F (z1, . . . , zn) = Re(P (z1, . . . , zn)) + h.o.t, where P is a homogeneous polyno-

mial of degree k with an isolated singularity at 0 ∈ Cn.

(b). The Milnor number of P at 0 ∈ Cn is µ.

(c). M is Levi-�at.

Then there exists a germ of biholomorphism ϕ : (Cn, 0) → (Cn, 0) such that ϕ(M) =

(Re(h) = 0), where h(z) is a polynomial of degree µ+ 1 and jk0 (h) = P .

Remark 2.1. Any homogeneous polynomial of degree 2 in C[z1, . . . , zn] with isolated
singularity at 0 ∈ Cn is equivalent to z21 + . . . + z2n. In particular, we obtain the

result of [7].

The following result is a consequence of the proof of theorem 1.

Corollary 1. Let Q be a quasihomogeneous polynomial of degree d with an isolated

singularity at 0 ∈ Cn, n ≥ 3 and F (z) = Re(Q(z))+h.o.t. Assume thatM = F−1(0)

is Levi-�at. Then there exists a germ of biholomorphism ϕ : (Cn, 0) → (Cn, 0) such

that

ϕ(M) = (Re(Q(z) +
∑
j

cjej(z)) = 0),

where e1, . . . , es are the elements of the monomial basis of the local algebra AQ such

that deg(ej) > d and cj ∈ C.

2.1 Tougeron's lemma on �nite determinacy

De�nition 2.2. Two germs f, g ∈ On are said to be right equivalent, if there exists

ϕ ∈ Diff(Cn, 0) such that f ◦ ϕ−1 = g. In other words, this means that g can be

obtained from f by a local change of coordinates.
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Morse Lemma can now be rephrased by saying that if 0 ∈ Cn is an isolated

singularity of f with Milnor number µ(f, 0) = 1 then f is right equivalent to its

second jet. The next lemma is a generalization of Morse's Lemma. We refer to [4],

pg.121.

Lemma 2.3 (Tougeron's lemma). Suppose 0 ∈ Cn is an isolated singularity of

f ∈ Mn with Milnor number µ. Then f is right equivalent to jµ+1
0 (f).

2.2 Proof of Theorem 1

Let M = F−1(0) ⊂ (Cn, 0) be a Levi-�at, where F (z) = Re(P (z)) + h.o.t with P a

homogeneous polynomial of degree k ≥ 2 with an isolated singularity at 0 ∈ Cn and

Milnor number µ. We want to prove that there exists ϕ ∈ Diff(Cn, 0) such that

ϕ(M) = (Re(h) = 0), where h is a polynomial of degree µ+ 1.

The idea is to use theorem 1.13 to prove that there exists a germ f ∈ On such

that the foliation F de�ned by df = 0 is tangent to M and M = (Re(f) = 0). The

foliation F can viewed as an extension to a neighborhood of 0 ∈ Cn of the Levi

foliation L on M∗.

Suppose for a moment that M = (Re(f) = 0) and let us conclude the proof.

Without lost of generality, we can suppose that f is not a power in On. In this

case Re(f) is irreducible (cf. [12]). This implies that Re(f) = U.F , where U ∈ AnR

and U(0) ̸= 0. Let
∑

j≥k fj be the taylor series of f , where fj is a homogeneous

polynomial of degree j, j ≥ k. Then

Re(fk) = jk0 (Re(f)) = jk0 (U.F ) = U(0).Re(P (z1, . . . , zn)).

Hence fk(z1, . . . , zn) = U(0).P (z1, . . . , zn). We can suppose that U(0) = 1, so that

f(z) = P (z) + h.o.t (2.3)

In particular, µ = µ(f, 0) = µ(P, 0), f ∈ Mn, because P has isolated singularity

at 0 ∈ Cn. Hence by lemma 2.3, f is right equivalent to jµ+1
0 (f), i.e. there exists

ϕ ∈ Diff(Cn, 0) such that h := f ◦ ϕ−1 = jµ+1
0 (f). Therefore, ϕ(M) = (Re(h) = 0)

and this will conclude the proof of theorem 1.
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Let us prove that we can apply theorem 1.13. We can write

F (z) = Re(P (z1, . . . , zn)) +H(z1, . . . , zn),

where H : (Cn, 0) → (R, 0) is a germ of real-analytic function and jk0 (H) = 0. For

simplicity, we assume that P has real coe�cients. Then we get the complexi�cation

FC(z, w) =
1

2
(P (z) + P (w)) +HC(z, w)

and MC = F−1
C (0) ⊂ (C2n, 0). In the general case, replacing P (w) =

∑
ajw

j by

P̃ (w) =
∑
ājw

j, we will recover each step of proof.

Since P (z) has an isolated singularity at 0 ∈ Cn, we get sing(MC) = {0}, and
so the algebraic dimension of sing(M) is 0. On other hand, the complexi�cation of

η = i(∂F − ∂̄F ) is

ηC = i(∂zFC − ∂wFC).

Recall that η|M∗ and ηC|M∗
C
de�ne L and LC. Now we compute sing(ηC|M∗

C
). We

can write dFC = α+ β, with

α =
n∑

j=1

∂FC

∂zj
dzj :=

1

2

n∑
j=1

(
∂P

∂zj
(z) + Aj)dzj

and

β =
n∑

j=1

∂FC

∂wj

dwj :=
1

2

n∑
j=1

(
∂P

∂wj

(w) +Bj)dwj,

where 1
2

∑n
j=1Ajdzj =

∑n
j=1

∂HC
∂zj

dzj and 1
2

∑n
j=1Bjdwj =

∑n
j=1

∂HC
∂wj

dwj.

Then ηC = i(α− β), and so

ηC|M∗
C
= (ηC + idFC)|M∗

C
= 2iα|M∗

C
= −2iβ|M∗

C
. (2.4)

In particular, α|M∗
C
and β|M∗

C
de�ne LC. Therefore sing(ηC|M∗

C
) can be splited

in two parts. Let M1 = {(z, w) ∈ MC|∂FC
∂wj

̸= 0 for some j = 1, . . . , n} and M2 =

{(z, w) ∈MC|∂FC
∂zj

̸= 0 for some j = 1, . . . , n}, note that MC =M1 ∪M2. Set

X1 :=M1 ∩ {∂P
∂z1

(z) + A1 = . . . =
∂P

∂zn
(z) + An = 0}
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and

X2 :=M2 ∩ { ∂P
∂w1

(w) +B1 = . . . =
∂P

∂wn

(w) +Bn = 0}.

Then sing(ηC|M∗
C
) = X1∪X2. Since P ∈ C[z1, . . . , zn] has an isolated singularity

at 0 ∈ Cn, we conclude that codM∗
C
sing(ηC|M∗

C
) = n.

If n ≥ 3, we can directly apply Theorem 1.13 and the proof ends. In the case

n = 2, we are going to prove that LC has a non-constant holomorphic �rst integral.

We begin by a blow-up at 0 ∈ C4. Let F (x, y) = Re(P (x, y)) + h.o.t and

M = F−1(0) Levi-�at. Its complexi�cation can be written as

FC(x, y, z, w) =
1

2
P (x, y) +

1

2
P (z, w) +HC(x, y, z, w).

We take the exceptional divisor D = P3 of the blow-up π : (C̃4,P3) → (C4, 0)

with homogeneous coordinates [a : b : c : d], (a, b, c, d) ∈ C4\{0}. The intersection

of the strict transform M̃C of MC by π with the divisor D = P3 is the surface

Q = {[a : b : c : d] ∈ P3/P (a, b) + P (c, d) = 0},

which is an irreducible smooth surface.

Consider for instance the chart (W, (t, u, z, v)) of C̃4 where

π(t, u, z, v) = (t.z, u.z, z, v.z) = (x, y, z, w).

We have

FC ◦ π(t, u, z, v) = zk(
1

2
P (t, u) +

1

2
P (1, v) + zH1(t, u, z, v)),

where H1(t, u, z, v) = H(tz, uz, z, vz)/zk+1, which implies that

M̃C ∩W = (
1

2
P (t, u) +

1

2
P (1, v) + zH1(t, u, z, v) = 0)

and so Q ∩W = (z = P (t, u) + P (1, v) = 0).

On the other hand, as we have seen in (3.2), the foliation LC is de�ned by

α|M∗
C
= 0, where

α =
1

2

∂P

∂x
dx+

1

2

∂P

∂y
dy +

∂HC

∂x
dx+

∂HC

∂y
dy.
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In particular, we get

π∗(α) = zk−1(
1

2

∂P

∂x
(t, u)zdt+

1

2

∂P

∂y
(t, u)zdu+

1

2
kP (t, u)dz + zθ),

where θ = π∗(∂HC
∂x
dx+ ∂HC

∂y
dy)/zk.

Hence, L̃C is de�ned by

α1 =
1

2

∂P

∂x
(t, u)zdt+

1

2

∂P

∂y
(t, u)zdu+

1

2
kP (t, u)dz + zθ. (2.5)

Since Q ∩W = (z = P (t, u) + P (1, v) = 0), we see that Q is L̃C-invariant. In

particular, S := Q\sing(L̃C) is a leaf of L̃C. Fix p0 ∈ S and a transverse section
∑

through p0. Let G ⊂ Diff(
∑
, p0) be the holonomy group of the leaf S of L̃C. Since

dim(
∑

) = 1, we can think that G ⊂ Diff(C, 0). Let us prove that G is �nite and

linearizable.

At this part we use that the leaves of L̃C are closed (see lemma 1.11). Let

G′ = {f ′(0)/f ∈ G} and consider the homomorphism ϕ : G → G′ de�ned by

ϕ(f) = f ′(0). We assert that ϕ is injective. In fact, assume that ϕ(f) = 1 and

by contradiction that f ̸= id. In this case f(z) = z + a.zr+1 + . . ., where a ̸= 0.

According to [18], the pseudo-orbits of this transformation accumulate at 0 ∈ (
∑
, 0),

contradicting that the leaves of L̃C are closed. Now, it su�ces to prove that any

element g ∈ G has �nite order (cf. [19]). In fact, if ϕ(g) = g′(0) is a root of unity

then g has �nite order because ϕ is injective. On the other hand, if g′(0) was not a

root of unity then g would have pseudo-orbits accumulating at 0 ∈ (
∑
, 0) (cf. [18]).

Hence, all transformations of G have �nite order and G is linearizable.

This implies that there is a coordinate system w on (
∑
, 0) such that G = ⟨w →

λw⟩, where λ is a dth-primitive root of unity (cf. [19]). In particular, ψ(w) = wd is

a �rst integral of G, that is ψ ◦ g = ψ for any g ∈ G.

Let Z be the union of the separatrices of LC through 0 ∈ C4 and Z̃ be its

strict transform under π. The �rst integral ψ can be extended to a �rst integral

φ : M̃C\Z̃ → C be setting

φ(p) = ψ(L̃p ∩
∑

),

where L̃p denotes the leaf of L̃C through p. Since ψ is bounded (in a compact

neighborhood of 0 ∈
∑

), so is φ. It follows from Riemann extension theorem that
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φ can be extended holomorphically to Z̃ with φ(Z̃) = 0. This provides the �rst

integral and �nishes the proof of theorem 1.

2.3 Quasihomogeneous polynomials

In this section, we state some general facts about normal forms of quasihomogeneous

polynomials.

The local algebra of f ∈ On is by de�nition

Af = On/(∂f/∂x1, . . . , ∂f/∂xn).

Recall that µ(f, 0) = dimAf .

De�nition 2.4. The Newton support of germ f =
∑
aijx

iyj is de�ned as supp(f) =

{(i, j) : aij ̸= 0}.

De�nition 2.5. A holomorphic function f : (Cn, 0) → (C, 0) is said to be quasiho-

mogeneous of degree d with indices α1, . . . , αn, if for any λ ∈ C and (z1, . . . , zn) ∈ Cn,

we have

f(λα1z1, . . . , λ
αnzn) = λdf(z1, . . . , zn).

The index αs is also called the weight of the variable zs.

In the above situation, if f =
∑
akx

k, k = (k1, . . . , kn), xk = xk11 . . . xkn , then

supp(f) ⊂ Γ = {k : a1k1+ . . .+ankn = d}. The set Γ is called the diagonal. Usually

one takes αi ∈ Q and d = 1.

One can de�ne the quasihomogeneous �ltration of the ring On. It consists of the

decreasing family of ideals Ad ⊂ On, Ad′ ⊂ Ad for d < d′. Here Ad = {Q : degrees

of monomials from supp(Q) are deg(Q) ≥ d}; (the degree is quasihomogeneous).

When α1 = . . . = αn = 1, this �ltration coincides with the usual �ltration by

the usual degree.

De�nition 2.6. A function f is called semiquasihomogeneous if f = Q+F ′, where

Q is quasihomogeneous of degree d of �nite multiplicity and F ′ ∈ Ad′ , d′ > d.

We will use the following result (cf. [1]).
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Theorem 2.7. Let f be a semiquasihomogeneous function, f = Q + F ′ with

quasihomogeneous Q of �nite multiplicity. Then f is right equivalent to the function

Q+
∑

j cjej(z), where e1, . . . , es are the elements of the monomial basis of the local

algebra AQ such that deg(ej) > d and cj ∈ C.

Example 2.8. If f = Q+F ′ is semiquasihomogeneous and Q(x, y) = x2y+yk, then

f is right equivalent to Q. Indeed, the base of the local algebra O2/(xy, x
2 + kyk−1)

is 1, x, y, y2, . . . , yk−1 and lies below the diagonal Γ. Here µ(Q, 0) = k + 1.

2.4 Proof of corollary 1

Let M = F−1(0) be a germ at 0 ∈ Cn, n ≥ 3 of real analytic Levi-�at hypersurface,

where F (z) = Re(Q(z)) + h.o.t and Q is a quasihomogeneous polynomial with

an isolated singularity at 0 ∈ Cn. It is easily seen that sing(MC) = {0} and

codM∗
C
sing(LC) ≥ 3. The argument is essentially the same of the proof of theorem

1. In this way, there exists an unique germ at 0 ∈ Cn of holomorphic codimension

one foliation FM tangent to M , moreover FM : dh = 0, h(z) = Q(z) + h.o.t and

M = (Re(h) = 0). Acoording to theorem 2.7, there exists ϕ ∈ Diff(Cn, 0) such

that h ◦ ϕ−1(w) = Q(w) +
∑

k ckek(w), where ck and ek as above. Hence

ϕ(M) = (Re(Q(w) +
∑
k

ckek(w)) = 0).

2.5 Applications

Here we give some applications of theorem 1.

Example 2.9. Q(x, y) = x2y + y3 is a homogeneous polynomial of degree 3 with

an isolated singularity at 0 ∈ C2 and Milnor number µ(Q, 0) = 4. According to [4]

pg. 184, any germ f(x, y) = x2y + y3 + h.o.t is right equivalent to x2y + y3.

In particular, if F (z) = Re(x2y + y3) + h.o.t and M = (F = 0) is a germ of

real analytic Levi-�at at 0 ∈ C2, Theorem 1 implies that there exists a holomorphic

change of coordinate such that

M = (Re(x2y + y3) = 0).
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Example 2.10. If Q(x, y) = x5+y5 then f(x, y) = Q(x, y)+h.o.t is right equivalent

to x5 + y5 + c.x3y3, where c ̸= 0 is a constant (see [4] pg. 194). Let F (z) =

Re(x5 + y5) + h.o.t be such that M = (F = 0) is Levi-�at, Theorem 1 implies that

there exists a holomorphic change of coordinate such that

M = (Re(x5 + y5 + c.x3y3) = 0).

Example 2.11. About normal forms of Parabolic singularities [4] pg. 246, we

have two interesting families P8 : x3 + y3 + z3 + a.xzy, where a3 + 27 ̸= 0. and

X9 : x
4 + y4 + a.x2y2, where a2 ̸= 4. In this case, we get the following normal forms

of Levi-�at hypersurfaces.

M = (Re(x3 + y3 + z3 + a.xzy) = 0).

M = (Re(x4 + y4 + a.x2y2) = 0).
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Chapter 3

Levi-�at hypersurfaces with

Ak, Dk, Ek singularities

An important problem in Singularity theory is the classi�cation of holomorphic

germs f ∈ On with respect to holomorphic change of coordinates in Cn. When we

consider only germs f with an isolated singularity at 0 ∈ Cn, the list starts with the

famous Ak, Dk, Ek singularities, see for instance Arnold's papers [1], [2]:

Name Normal form Conditions

Ak z21 + zk+1
2 + . . .+ z2n k ≥ 1

Dk z21z2 + zk−1
2 + z23 + . . .+ z2n k ≥ 4

E6 z41 + z32 + z23 + . . .+ z2n
E7 z31z2 + z32 + z23 + . . .+ z2n
E8 z51 + z32 + z23 + . . .+ z2n

Table 1

Several characterizations of the Ak, Dk, Ek singularities are well known, see for

instance Durfee [14].

In this chapter, we are interested in obtaining normal forms of Levi-�at hyper-

surfaces which are de�ned by the vanishing of the real part of quasihomogeneous

polynomials. The polynomials that we will be consider are the Ak, Dk, Ek singu-

larities. In this sense, we remark the following: let f ∈ On be of A1 type and

F = Re(f) + h.o.t be such that M = F−1(0) is Levi-�at. Then there exists a germ
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of biholomorphism φ : (Cn, 0) → (Cn, 0) such that φ(M) = (Re(f) = 0) (see [7]).

When f is of D4 type, we have an analogous result (see Chapter 1, example 2.9).

We will prove the following:

Theorem 2. Let M = F−1(0) be a germ at 0 ∈ Cn, n ≥ 2, of irreducible real

analytic Levi-�at hypersurface. Suppose that F is of one of the following types:

(a). F (z) = Re(z21 + zk+1
2 + . . .+ z2n) +H(z, z̄), where k ≥ 3 and

H(z, z̄) = 0(|z|k+2) , H(z, z̄) = H(z̄, z).

(b). F (z) = Re(z21z2 + zk−1
2 + z23 + . . .+ z2n) +H(z, z̄), where k ≥ 6 and

H(z, z̄) = 0(|z|k) , H(z, z̄) = H(z̄, z).

(c). F (z) = Re(z41 + z32 + z23 + . . .+ z2n) +H(z, z̄), where

H(z, z̄) = 0(|z|5) , H(z, z̄) = H(z̄, z).

Then there exists a germ of biholomorphism φ : (Cn, 0) → (Cn, 0) such that

φ(M) = (Re(z21 + zk+1
2 + . . .+ z2n) = 0),

φ(M) = (Re(z21z2 + zk−1
2 + z23 + . . .+ z2n) = 0),

φ(M) = (Re(z41 + z32 + z23 + . . .+ z2n) = 0),

respectively.

We �nd the following list:

Name Normal form Conditions

Ak Re(z21 + zk+1
2 + . . .+ z2n) = 0 k = 1 or k ≥ 3

Dk Re(z21z2 + zk−1
2 + z23 + . . .+ z2n) = 0 k = 4 or k ≥ 6

E6 Re(z41 + z32 + z23 + . . .+ z2n) = 0

Table 2

For A2, D5, E7, E8 the problem remains open.
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3.1 Normal forms of Levi-�at in Cn, n ≥ 3

We would like to observe that the normal forms of Ak, Dk, Ek singulatities due to

V.I.Arnold are polynomials with an isolated singularity at 0 ∈ Cn, and are stable

under deformations. For instance, given a germ f ∈ On of Ak type and if we set

g = f + h.o.t, then g is right equivalent to f , i.e. there exists φ ∈ Diff(Cn, 0) such

that g ◦φ−1 = f . We send the reader to the reference [26], pg. 32 for the complete

bibliography.

The following proposition is a consequence of the proof of corollary 1 (Chapter

2).

Proposition 3.1. Let Q be a quasihomogeneous polynomial with an isolated singu-

larity at 0 ∈ Cn, n ≥ 3 such that

(a). F (z1, . . . , zn) = Re(Q(z1, . . . , zn)) +H(z, z̄), with

H(z, z̄) = 0(|z|deg(Q)+1) , H(z, z̄) = H(z̄, z).

where deg(Q) is the degree (as polynomial) of Q

(b). M = F−1(0) is Levi-�at.

Then there exists an unique germ at 0 ∈ Cn of holomorphic codimension one foliation

FM tangent to M . Moreover, the foliation FM has a non-constant holomorphic �rst

integral f(z) = Q(z) + h.o.t and M = (Re(f) = 0).

The above proposition implies theorem 2 for n ≥ 3.

Corollary 3.2. Let g be a germ at 0 ∈ Cn, n ≥ 3, of Ak, Dk or Ek type and

F (z) = Re(g(z)) +H(z, z̄), where

H(z, z̄) = 0(|z|deg(g)+1) , H(z, z̄) = H(z̄, z).

Assume that M = F−1(0) is Levi-�at. Then there exists a germ of biholomorphism

φ : (Cn, 0) → (Cn, 0) such that

φ(M) = (Re(g(z)) = 0).
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Proof. Let g be as in table 1. By proposition 3.1 there exists f ∈ On such that

f(z) = g(z) + h.o.t and M = (Re(f) = 0). Since g is stable by deformations, f

is right equivalent to g, i.e. there exists φ ∈ Diff(Cn, 0) such that f ◦ φ−1 = g.

Therefore, φ(M) = (Re(g) = 0).

Finally, observe that for n ≥ 3, the table 2 is complete.

Name Normal form Conditions

Ak Re(z21 + zk+1
2 + . . .+ z2n) = 0 k ≥ 1

Dk Re(z21z2 + zk−1
2 + z23 + . . .+ z2n) = 0 k ≥ 4

E6 Re(z41 + z32 + z23 + . . .+ z2n) = 0

E7 Re(z31z2 + z32 + z23 + . . .+ z2n) = 0

E8 Re(z51 + z32 + z23 + . . .+ z2n) = 0

Table 3

3.2 Proof of Theorem 2

If n ≥ 3, by corollary 3.2, Theorem 2 is proved. We give the proof for n = 2. The

idea is to use Theorem 1.13. Let us assume for a moment that there exists a foliation

FM with a non-constant holomorphic �rst integral f and M = (Re(f) = 0). Since

F (z) = Re(h(z)) +H(z, z̄), where h is a germ at 0 ∈ C2 of Ak, Dk or E6 types, and

M = F−1(0), we must have f(z) = h(z) + h.o.t. Then there exists φ ∈ Diff(Cn, 0)

such that f ◦ φ−1 = h, �nally φ(M) = (Re(h) = 0).

Let us mention two remarks:

Remark 3.3. Let η = i(∂F − ∂̄F ) and ηC be as before. Recall that η|M∗ and ηC|M∗
C

de�ne L and LC, respectively. Set α =
∑n

j=1
∂FC
∂zj
dzj and β =

∑n
j=1

∂FC
∂wj

dwj. Hence

dFC = α+ β and ηC = i(α− β), so that

ηC|M∗
C
= 2iα|M∗

C
= −2iβ|M∗

C
(3.1)

In particular, α|M∗
C
and β|M∗

C
de�ne LC.

Remark 3.4. Let F (z) = Re(h(z)) + h.o.t be such that M = F−1(0) is Levi-�at

and h(z) is a germ at 0 ∈ C2 of Ak, Dk or Ek types. It is easy to check that

M∗
C =MC \ {0} and codM∗

C
sing(ηC|M∗

C
) = 2.
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Let us prove that we can apply theorem 1.13. We are going to prove directly

that LC has a non-constant holomorphic �rst integral. For convenience, the proof

will be divided into the following cases:

1. Case Ak, k ≥ 3.

2. Case Dk, k ≥ 6.

3. Case E6.

3.2.1 Case Ak, k ≥ 3

Let (x, y) ∈ C2. Write

F (x, y) = Re(x2 + yk+1) +H(x, y, x̄, ȳ).

Therefore, the complexi�cation FC of F can be written as

FC(x, y, z, w) =
1

2
(x2 + yk+1) +

1

2
(z2 + wk+1) +HC(x, y, z, w) (3.2)

and MC = F−1
C (0) ⊂ (C4, 0). Note that sing(MC) = {0}.

The resolution of singularities of MC will be a detailed analysis. First of all, we

begin by a blow-up at 0 ∈ C4, π : (C̃4,P3) → (C4, 0). Let M̃C denote the strict

transform of MC by π. We take the divisor P3 of the blow-up π with coordinates

[x : y : z : w], (x, y, z, w) ∈ C4\{0}. The intersection of M̃C with the divisor P3 is

the singular algebraic surface

Q := {[x : y : z : w] ∈ P3|x2 + z2 = 0}.

1. Consider for instance the chart (U, (t, u, z, v)) of C̃4, where

π(t, u, z, v) = (z.t, z.u, z, z.v) = (x, y, z, w).

From (3.2) we have

FC ◦ π(t, u, z, v) = z2.(
1

2
+

1

2
t2 +

1

2
zk−1vk+1 +

1

2
zk−1uk+1 + zH1),
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where H1 = HC(zt, zu, z, zv)/z
3, which implies that M̃C ∩ U = F̃−1

C (0), where

F̃C(t, u, v, w) = 1 + t2 + zk−1vk+1 + zk−1uk+1 + 2zH1,

=⇒ Q1 := Q ∩ U = (z = t2 + 1 = 0).

On the other hand, as we have seen in the remark 3.3, the foliation LC is

de�ned by α|M∗
C
= 0, where

α = xdx+
(k + 1)

2
ykdy + θ, (3.3)

and θ is a 1-form with jk0 (θ) = 0. Therefore, the foliation L̃C = π∗(LC) is

de�ned by α1|M̃C
= 0, where

α1 = (t2 +
(k + 1)

2
uk+1zk−1)dz +

(k + 1)

2
ukzkdu+ ztdt+ zθ1, (3.4)

and θ1 = π∗(θ)/z2, which implies that Q1 is L̃C-invariant. We would like to

remark that

sing(L̃C) ∩ U = (α1 ∧ dF̃C = 0, F̃C = 0).

As the reader can check, (3.4) implies that sing(L̃C) ∩Q1 = ∅. In particular,

Q1 is the union of two leaves of L̃C isomorphic to C2, say L1 and L2.

2. Consider now the chart (V, (t, u, v, w)) of C̃4, where

π(t, u, v, w) = (t.w, u.w, v.w, w) = (x, y, z, w).

From (3.2) we have

FC ◦ π(t, u, z, v) = w2.(
1

2
t2 +

1

2
v2 +

1

2
wk−1 +

1

2
wk−1uk+1 + wG1),

where G1 = HC(wt, wu, wv, w)/w
3, which implies that M̃C ∩ V = F̃−1

C (0),

where

F̃C(t, u, v, w) =
1

2
t2 +

1

2
v2 +

1

2
wk−1 +

1

2
wk−1uk+1 + wG1, (3.5)

=⇒ Q ∩ V = (w = t2 + v2 = 0).

This implies that sing(M̃C)∩P3 is a line L which in this coordinate system is

L ∩ V = (w = t = v = 0). Notice that L̄1 ∩ L̄2 = L.

We need more blow-ups along L to resolve this hypersurface. The process

involves (k−1)
2

more explosions if k is odd and k
2
if k is even.
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(a) If k is odd. We do (k − 1)/2 explosions in the u-axis, obtaining divisors

D1, . . . , D(k−1)/2. In the appropiate chart, we have the equations
w = w

u = u

ti−1 = w.ti

vi−1 = w.vi,

where t0 = t, v0 = v and 1 ≤ i ≤ (k − 1)/2. Let (V(k−1)/2, (t, u, v, w)) be

the chart of the last explosion, we obtain

π(k−1)/2(t, u, v, w) = (w(k−1)/2.t, u, w(k−1)/2.v, w),

where t = t(k−1)/2, v = v(k−1)/2. Denote by M̂C the strict transform of

M̃C under π(k−1)/2. From (3.5), we get

F̃C ◦ π(k−1)/2(t, u, v, w) = wk−1.(
1

2
+

1

2
t2 +

1

2
v2 +

1

2
uk+1 + wG2),

where G2 = π∗
(k−1)/2(wG1)/w

k, so that M̂C ∩ V(k−1)/2 = F̂−1
C (0), where

F̂C(t, u, v, w) = 1 + t2 + v2 + uk+1 + 2wG2,

=⇒ Q̂ := M̂C ∩ V(k−1)/2 ∩D(k−1)/2 = (w = 1+ t2 + v2 + uk+1 = 0). (3.6)

Notice that M̂C ∩ V(k−1)/2 is a smooth hypersurface.

At this part, we will see that Q̂ is invariant by the strict transform of L̃C

under π(k−1)/2. In fact, the foliation LC is de�ned by (3.3), so that the

foliation L̃C = π∗(LC) in the chart V is de�ned by α1|M̃C
= 0, where

α1 = (t2 +
(k + 1)

2
uk+1wk−1)dw +

(k + 1)

2
ukwkdu+ twdt+ wη1,

and η1 = π∗(θ)/w2. Therefore, the foliation L̂C = π∗
(k−1)/2(L̃C) in the

chart V(k−1)/2 is de�ned by α2|M̂C
= 0, where

α2 =
(k + 1)

2
(t2 + uk+1)dw +

(k + 1)

2
wukdu+ twdt+ wη2, (3.7)

and η2 = π∗
(k−1)/2(wη1)/w

k, (here t = t(k−1)/2, v = v(k−1)/2).
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Hence, Q̂ is L̂C-invariant. As we have already remarked

sing(L̂C) ∩ V(k−1)/2 = (α2 ∧ dF̂C = 0, F̂C = 0).

It follows from (3.6) and (3.7) that

C := Q̂ ∩ sing(L̂C) = (w = t2 + uk+1 = v2 + 1 = 0). (3.8)

Therefore, C has the following irreducible components

(w = t+ iu(k+1)/2 = v + i = 0), (w = t− iu(k+1)/2 = v + i = 0),

(w = t+ iu(k+1)/2 = v − i = 0), (w = t− iu(k+1)/2 = v − i = 0).

In order to study the singular set of L̂C, we will work in the �rst explosion,

for instance in the chart (V1, (t, u, s, p)), where
t = t

u = u

v = s.t

w = p.t,

we obtain π1(t, u, s, p) = (t, u, s.t, p.t) = (t, u, v, w). In this chart, we can

see other two rules of sing(L̂C). In fact, it follows from (3.5) that the

strict transform of M̃C under π1 is given by

M̂C ∩ V1 = (1 + s2 + pk−1tk−3 + uk+1pk−1tk−3 + 2tG3 = 0),

where G3 = π∗
1(wG1)/t

3, which implies that

Q̂1 := M̂C ∩ V1 ∩D1 = (t = s2 + 1 = 0). (3.9)

The foliation L̂C = π∗
1(L̃C) in this chart is de�ned by ω2|M̂C

= 0, where

ω2 =(2p+
(k + 1)

2
uk+1pktk−3)dt+

+
(k + 1)

2
ukpktk−2du+ (1 +

(k + 1)

2
uk+1pk−1tk−3)tdp+ tη3,

(3.10)
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and η3 = π∗
(k−1)/2(wη1)/t

3. Observe that if k > 3, (3.9) and (3.10) implies

that Q̂1 is L̂C-invariant and

B := Q̂1 ∩ sing(L̂C) = (t = p = s2 + 1 = 0).

This implies that B has the following irreducible components

(t = p = s+ i = 0), (t = p = s− i = 0).

In the particular case k = 3, we need 1 blow-up along L to resolve M̃C.

For instance in the coordinate system V1, we have

M̂C ∩ V1 = (1 + s2 + p2 + u4p2 + 2tG2 = 0),

where G3 = π∗
1(wG1)/t

3, which implies that

Q̂1 = M̂C ∩ V1 ∩D1 = (t = p2u4 + p2 + s2 + 1 = 0).

Notice that M̂C ∩ V1 is a smooth hypersurface.

On the other hand, (3.10) implies that the foliation L̂C = π∗
1(L̃C) in V1 is

de�ned by ω2|M̂C
= 0, where

ω2 =2p(1 + p2u4)dt+ (1 + 2u4p2)tdp+ 2u3p3tdu+ tη3, (3.11)

and η3 = π∗
1(wη1)/t

3. Note that (3.11) implies that Q̂1 is L̂C-invariant

and Q̂1 ∩ sing(L̂C) has the following irreducible components

(t = p = s+ i = 0), (t = s+ ip = pu2 − i = 0), (t = s+ ip = pu2 + i = 0),

(t = p = s− i = 0), (t = s− ip = pu2 + i = 0), (t = s− ip = pu2 − i = 0).

(b) If k is even. We do k/2 explosions in the u-axis, obtaining divisors

D1, . . . , Dk/2. As we have seen in (a), in an appropiate chart, we have

the equations 
w = w

u = u

ti−1 = w.ti

vi−1 = w.vi,

32



where t0 = t, v0 = v and 1 ≤ i ≤ k/2. Let (Vk/2, (t, u, v, w)) be the chart

of the last explosion, we obtain

πk/2(t, u, v, w) = (wk/2.t, u, wk/2.v, w), (3.12)

where tk/2 = t and vk/2 = v. Denote M̂C be as before. It follows from

(3.5) and (3.12) that

M̂C ∩ Vk/2 = (1 + t2w + v2w + uk+1 + 2wG4 = 0),

where G4 = π∗
k/2(wG1)/w

k, which implies that

Q̃ := M̂C ∩ Vk/2 ∩Dk/2 = (w = 1 + uk+1 = 0). (3.13)

From (3.7), the foliation L̂C = π∗
k/2(L̃C) in Vk/2 is de�ned by β2|M̂C

= 0,

where

β2 =
(k + 1)

2
wukdu+

+ (
(k + 2)

2
t2w +

(k + 1)

2
uk+1)dw + tw2da+ wη4,

(3.14)

and η4 = π∗
k/2(wη1)/w

k. Note that (3.13) and (3.14) implies that Q̃ is

L̂C-invariant and

Q̃ ∩ sing(L̂C) = ∅.

In particular, Q̃ is the union of k + 1 leaves of L̂C isomorphic to C2.

In the others charts, the study is similar to case k odd.

3. The study in the other charts is analogous, because there is a symmetry of the

variables in the de�nition of the hypersurface MC = F−1
C (0).

Let us prove that L̂C has a non-constant holomorphic �rst integral. Let D be the

global exceptional divisor of the resolution of singularities of MC, as we have seen

before, all irreducible components of D are L̂C-invariant. Set Z := D\sing(L̂C). Fix

p0 ∈ Z and a transversal
∑

to Z. For instance in the case k odd, we work in the chart

(V(k−1)/2, (t, u, v, w)), take p0 = (0, 0, 0, 0) and the section
∑

= {(0, 0, 0, w)|w ∈ C},
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parametrized by w. Call G the holonomy group of the leaf Z of L̂C in the section∑
. As we have seen in (3.6) and (3.8), we have

Z ∩ V(k−1)/2 = Q̂\(w = t2 + uk+1 = v2 + 1 = 0).

Note that if we set Z1 = Q̂\(w = t2 + uk+1 = v + i = 0) and Z2 = Q̂\(w =

t2 + uk+1 = v − i = 0) then Z ∩ V(k−1)/2 = Z1 ∩ Z2. The fundamental group

Π1(Z1, p0) is generated by two loops δ1, δ2. These loops as follows: δ1, δ2 are loops

that turns around (w = t2+uk+1 = v+ i = 0). Analogously, Π1(Z2, p0) is generated

by two loops γ1, γ2. Acoording to Zariski [25], we get

Π1(Z1, p0) = ⟨[δ1], [δ2] : δ1.δ(k+1)/2
2 = δ

(k+1)/2
2 .δ1⟩,

Π1(Z2, p0) = ⟨[γ1], [γ2] : γ1.γ(k+1)/2
2 = γ

(k+1)/2
2 .γ1⟩.

Then Π1(Z∩V(k−1)/2, p0) is generated by δ1, δ2, γ1, γ2. Therefore G = ⟨f1, f2, g1, g2⟩,
where fi corresponding to [δi], and gi to [γi], for i = 1, 2. We get from (3.7) that

f ′
1(0) = 1, f ′

2(0) = e−2πi/k+1, g′1(0) = 1, g′2(0) = e−2πi/k+1, so that f1(w) = w+w2r1,

f2(w) = e−2πi/k+1.w+w2r2, and g1(w) = w+w2s1, g2(w) = e−2πi/k+1.w+w2s2. Since

all leaves of LC are closed, we get f1(w) = w and g1(w) = w, therefore G = ⟨f2, g2⟩.
Observe that G′ := {g′(0)|g ∈ G} is a �nite group, and by similar arguments of the

proof of theorem 1, the homomorphism ϕ : G → G′ de�ned by ϕ(g) = g′(0) is an

isomorphism. This implies that G is �nite and linearizable: in a some holomorphic

coordinate system z of (
∑
, 0) we have f2(z) = g2(z) = e−2πi/k+1.z, so that G = ⟨f2⟩.

The function H(z) = zk+1 ∈ O1 satis�es H ◦f2 = H. By [19] it can be extended to a

non-constant holomorphic �rst integral, say ĥ, of L̂C, de�ned in some neighborhood

of Q̂ in M̂C, which provides a �rst integral for LC.

In the case k even, the proof is similar.

3.2.2 Case Dk, k ≥ 6

Write

F (x, y) = Re(x2y + yk−1) +H(x, y, x̄, ȳ).

Therefore, the complexi�cation FC of F can be written as

FC(x, y, z, w) =
1

2
(x2y + yk−1) +

1

2
(z2w + wk−1) +HC(x, y, z, w), (3.15)
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and MC = F−1
C (0) ⊂ (C4, 0). Note that sing(MC) = {0}.

First of all, we begin by a blow-up at 0 ∈ C4, π : (C̃4,P3) → (C4, 0). We take

the divisor P3 of the blow-up π with coordinates [x : y : z : w], (x, y, z, w) ∈ C4\{0}.
Denote M̃C be as before. The intersection of M̃C with the divisor P3 is the singular

algebraic surface

R := {[x : y : z : w]|x2y + z2w = 0}.

1. Consider for instance the chart (W1, (t, u, z, v)) of C̃4, where

π(t, u, z, v) = (zt, zu, z, zv) = (x, y, z, w)

From (3.15) we have

FC ◦ π(t, u, z, v) = z3(
1

2
v +

1

2
ut2 +

1

2
zk−4uk−1 +

1

2
zk−4vk−1 + zH1),

where H1 = HC(zt, zu, z, zv)/z
4, which implies that M̃C∩W1 = F̃−1

C (0), where

F̃C(t, u, z, v) =
1

2
v +

1

2
ut2 +

1

2
zk−4uk−1 +

1

2
zk−4vk−1 + zH1,

=⇒ R1 := R ∩W1 = (z = u.t2 + v = 0).

On the other hand, the foliation LC is de�ned by α|M∗
C
= 0, where

α = xydx+
1

2
(x2 + (k − 1)yk−2)dy + θ, (3.16)

and θ is a 1-form with jk−2
0 (θ) = 0. Therefore, the foliation L̃C = π∗(LC) in

this chart is de�ned by

α1 =
1

2
z2(t2 + (k − 1)u2)du+

+ (
3

2
ut2 +

(k − 1)

2
zk−4uk−1)dz + ztudt+ zθ1,

(3.17)

where θ1 =
π∗(θ)
z3

. Note that R1 is L̃C-invariant. As we have already remarked

in the case Ak, we have

sing(L̃C) ∩W1 = (α1 ∧ dF̃C = 0, F̃C = 0).

Now, as the reader can check, (3.17) implies that

sing(L̃C) ∩R1 = (z = t = v = 0) ∪ (z = u = v = 0).
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2. Consider now the chart (W2, (t, u, v, w)) of C̃4, where

π(t, u, v, w) = (t.w, u.w, v.w, w) = (x, y, z, w),

we have

FC ◦ π(t, u, v, w) = w3.(
1

2
ut2 +

1

2
v2 +

1

2
uk−1wk−4 +

1

2
wk−4 + wG1),

where G1 = HC(wt, wu,wv, w)/w
4, which implies that M̃C ∩ W2 = F̃−1

C (0),

where

F̃C(t, u, v, w) =
1

2
ut2 +

1

2
v2 +

1

2
uk−1wk−4 +

1

2
wk−4 + wG1, (3.18)

=⇒ R2 := R ∩W2 = (w = ut2 + v2 = 0).

This implies that sing(M̃C)∩P3 is a line L which in this coordinate system is

(w = t = v = 0).

We need more blow-ups along L to resolve M̃C. The process involves (k−4)/2

more explosions if k is even and (k − 3)/2 if k is odd.

(a) We do (k−4)/2 explosions the u-axis, obtaining divisors D1, . . . , D(k−4)/2.

In the appropiate chart, we have the equations
w = w

u = u

ti−1 = w.ti

vi−1 = w.vi,

where t0 = t, v0 = v and 1 ≤ i ≤ (k − 4)/2. Let (U(k−4)/2, (t, u, v, w)) be

the chart of the last explosion, we obtain

π(k−4)/2(t, u, v, w) = (w(k−4)/2.t, u, w(k−4)/2.v, w),

where t(k−4)/2 = t and v(k−4)/2 = v. Denote by M̂C the strict transform

of M̃C under π(k−4)/2. From (3.18), we get

F̃C ◦ π(k−4)/2(t, u, v, w) = wk−4.(
1

2
+

1

2
a2u+

1

2
b2 +

1

2
uk−1 + wG2),
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where G2 = π∗
(k−4)/2(wG1)/w

k−3, which implies that M̂C ∩ U(k−4)/2 =

F̂−1
C (0), where

F̂C(t, u, v, w) =
1

2
+

1

2
a2u+

1

2
b2 +

1

2
uk−1 + wG2,

=⇒ R̂ := M̂C∩U(k−4)/2∩D(k−4)/2 = (w = 1+a2u+b2+uk−1 = 0). (3.19)

Notice that M̂C ∩ U(k−4)/2 is a smooth hypersurface.

At this part, we will see that R̂ is invariant by the strict transform of L̃C

under π(k−4)/2. In fact, the foliation LC is de�ned by (3.16), so that the

foliation L̃C = π∗(LC) in the chart W2 is de�ned by α1|M̃C
= 0, where

α1 =(
3

2
ut2 +

(k − 1)

2
uk−1wk−4)dw+

+ twudt+
1

2
(t2 + (k − 1)uk−2wk−4)wdu+ wη1,

and η1 = π∗(θ)/w3. Therefore, the foliation L̂C = π∗
(k−4)/2(L̃C) is de�ned

by α2|M̂C
= 0, where

α2 =
(k − 1)

2
u(t2 + uk−2)dw+

+
1

2
(t2 + (k − 1)uk−2)wdu+ tuwdt+ wη2,

(3.20)

and η2 = π∗
(k−4)/2(wη1)/w

k−3, (here t(k−4)/2 = t and v(k−4)/2 = v). From

(3.20), we have that R̂ is L̂C-invariant and

K = R̂ ∩ sing(L̂C) = (w = u(t2 + uk−2) = v2 + 1 = 0). (3.21)

Note that K is composed of six components

(w = v + i = u = 0), (w = v + i = t+ iu(k−2)/2 = 0),

(w = v − i = u = 0), (w = v + i = t− iu(k−2)/2 = 0),

(w = v − i = t+ iu(k−2)/2 = 0), (w = v − i = t− iu(k−2)/2 = 0).
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In order to study of singular set of L̂C, we will work in the �rst explosion,

for instance in the chart (U1, (t, u, s, p)) where
t = t

u = u

v = s.t

w = p.t.

We obtain π1(t, u, s, p) = (t, u, s.t, p.t) = (t, u, v, w). In this chart, we can

see other irreducible components of singL̂C. In fact, it is easy to check

that

M̂C ∩ U1 = (u+ s2 + uk−1pk−4tk−6 + pk−4tk−6 + 2tG4 = 0),

where G4 = π∗
1(wG1)/t

3, which implies that

R̂1 := M̂C ∩ U1 ∩D1 = (t = u+ s2 = 0).

Note that M̂C ∩ U1 is a smooth hypersurface.

On the other hand, the foliation L̂C = π∗
1(L̃C) in this chart is de�ned by

ω2|M̂C
= 0, where

ω2 =(
5

2
up+

(k − 1)

2
uk−1pk−3tk−6)dt+

+ (
3

2
u+

(k − 1)

2
uk−1pk−4tk−6)tdp+

+
1

2
(1 + (k − 1)uk−2pk−4tk−6)tpdu+ tη4,

(3.22)

and η4 = π∗
1(wη1)/t

3. Observe that if k > 6, (3.22) implies that R̂1 is

L̂C-invariant and

K1 := R̂1 ∩ sing(L̂C) = (t = pu = u+ s2 = 0).

Then K1 is composed of one line and one curve:

(t = u = s = 0) and (t = p = u+ s2 = 0).
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In the particular case k = 6, we need 1 blow-up along L to resolve M̃C.

For instance in the coordinate system U1, we have

M̂C ∩ U1 = (u+ s2 + u5p2 + p2 + 2tG4 = 0),

where G4 = π∗
1(wG1)/t

3, which implies that

R̂1 = M̂C ∩ U1 ∩D1 = (t = u+ s2 + u5p2 + p2 = 0).

The foliation L̂C = π∗
1(L̃C) in U1 is de�ned by α2|M̂C

= 0, where

α2 =
5

2
(up+ u5p3)dt+

+ (
3

2
u+

5

2
u5p2)tdp+

1

2
(1 + 5u2p2)tpdu+ tη4,

(3.23)

and η4 = π∗
1(wη1)/t

3. Note that (3.23) implies that R̂1 is L̂C-invariant

and R̂1 ∩ sing(L̂C) has the following components

(t = p = u+ s2 = 0), (t = u = s− ip = 0), (t = s− ip = pu2 − i = 0),

(t = u = s+ ip = 0), (t = s− ip = pu2 + i = 0),

(t = s+ ip = pu2 − i = 0), (t = s+ ip = pu2 − i = 0).

(b) If k is odd. We do (k − 3)/2 explosions in the u-axis, obtaining divi-

sors D1, . . ., D(k−3)/2. Let (U(k−3)/2, (t, u, v, w)) be the chart of the last

explosion, we obtain

π(k−3)/2(t, u, v, w) = (w(k−3)/2.t, u, w(k−3)/2.v, w), (3.24)

where t = t(k−3)/2 and v = v(k−3)/2. Denote M̂C be as before. It follows

from (3.18) and (3.24) that

M̂C ∩ U(k−3)/2 = (1 + a2uw + b2w + uk−1 + 2wG3 = 0),

where G3 = π∗
1(wG1)/w

k−4, which implies that

R̃ = M̂C ∩ U(k−3)/2 ∩D(k−3)/2 = (w = 1 + uk−1 = 0).
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The foliation L̃C = π∗(LC) is de�ned by (3.20). Therefore, L̂C = π∗
(k−3)/2(L̃C)

in this chart is de�ned by α2|M̂C
= 0, where

α2 =(
k

2
uwa2 +

(k − 1)

2
uk−1)dw+

+
1

2
(wa2 + (k − 1)uk−2)wdu+ auw2da+ wη3,

(3.25)

and η3 = π∗
(k−3)/2(wη1)/w

k−5. From (3.25), R̃ is L̂C-invariant and

R̃ ∩ sing(L̂C) = ∅.

In particular, R̃ is a union of k − 1 leaves of L̂C isomorphic to C2.

In the others charts, the study is similar to case k even.

3. The study in the other charts is analogous.

Let us prove that L̂C has a non-constant holomorphic �rst integral. Let D be the

global exceptional divisor of the resolution of singularities of MC, as we have seen

before, all irreducible components of D are L̂C-invariant. Set Z := D\sing(L̂C). Fix

p0 ∈ Z and a transversal
∑

to Z. For instance for case k even, we work in the chart

(U(k−4)/2, (t, u, v, w)), take p0 = (0, 0, 0, 0) and the section
∑

= {(0, 0, 0, w)|w ∈ C},
parametrized by w. Call G the holonomy group of the leaf Z of L̂C in the section∑

. As we have seen in (3.19) and (3.21), we have

Z ∩ U(k−4)/2 = R̂\(w = u(t2 + uk−2) = v2 + 1 = 0).

Note that if we set Z1 = R̂\(w = u(t2 + uk−2) = v + i = 0), Z2 = R̂\(w =

u(t2 + uk−2) = v − i = 0) then Z ∩ U(k−4)/2 = Z1 ∩ Z2. The fundamental group

Π1(Z1, p0) is generated by three loops δ1, δ2 and δ3. These loops as follows: δ1, δ2
are loops that turns around (w = t2 + uk−2 = v+ i = 0), and δ3 is a loop that turns

around (w = u = v + i = 0). Analogously, Π1(Z2, p0) is generated by two loops γ1,

γ2 and γ3. According to Zariski [25], we get

Π1(Z1, p0) = ⟨[δ1], [δ2], [δ3] : δ(k−2)/2
1 .δ2 = δ2.δ

(k−2)/2
1 ⟩,

Π1(Z2, p0) = ⟨[γ1], [γ2], [γ3] : γ(k−2)/2
1 .γ2 = γ2.γ

(k−2)/2
1 ⟩.
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Then Π1(Z ∩ U(k−4)/2, p0) is generated by δ1, δ2, δ3, γ1, γ2, γ3. Therefore

G = ⟨f1, f2, f3, g1, g2, g3⟩,

where fi corresponding to [δi], and gi to [γi], for i = 1, 2, 3. We get from (3.20)

that f ′
1(0) = e−2πi/k−1, f ′

2(0) = e−4πi/k−1, f ′
3(0) = 1, g′1(0) = e−2πi/k−1, g′2(0) =

e−4πi/k−1, g′3(0) = 1 so that f1(w) = e−2πi/k−1w + w2r1, f2(w) = e−4πi/k−1.w + w2r2,

f3(w) = w + w2r3, and g1(w) = e−2πi/k−1w + w2s1, g2(w) = e−4πi/k−1.w + w2s2,

f3(w) = w+w2s3. Since all leaves of LC are closed, we get f3(w) = w and g3(w) = w,

therefore G = ⟨f1, f2, g1, g2⟩. Observe that G′ := {g′(0)|g ∈ G} is a �nite group,

and by similar arguments of the proof of theorem 1, the homomorphism ϕ : G→ G′

de�ned by ϕ(g) = g′(0) is an isomorphism. This implies that G is �nite, it follows

that G is linearizable: in a some holomorphic coordinate system z of (
∑
, 0) we

have f1(z) = g1(z) = e−2πi/k−1.z and f2(z) = g2(z) = e−4πi/k−1.z, so that G = ⟨f1⟩,
because f1 ◦ f1 = f2 = g2. The function H(z) = zk−1 ∈ O1 satis�es H ◦ f1 = H. By

[19] it can be extended to a non-constant holomorphic �rst integral, say ĥ, of L̂C,

de�ned in some neighborhood of R̂ in M̂C, which provides a �rst integral for LC.

In the case k odd, the proof is similar.

3.2.3 Case E6

Write

F (x, y) = Re(x4 + y3) +H(x, y, x̄, ȳ).

Therefore, the complexi�cation FC of F can be written as

FC(x, y, z, w) =
1

2
(x4 + y3) +

1

2
(z4 + w3) +HC(x, y, z, w), (3.26)

and MC = F−1
C (0) ⊂ (C4, 0). Note that sing(MC) = {0}.

We begin by a blow-up at 0 ∈ C4, π : (C̃4,P3) → (C4, 0). Let M̃C be as

before. We take the divisor P3 of the blow-up π with coordinates [x : y : z : w],

(x, y, z, w) ∈ C4\{0}. The intersection of M̃C with the divisor P3 is the singular

algebraic surface

N := {[x : y : z : w]|y3 + w3 = 0}.
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1. Consider for instance the chart (W1, (t, u, v, w)) of C̃4, where

π(t, u, z, v) = (wt, wu, wv, w) = (x, y, z, w).

We have

FC ◦ π(t, u, v, w) = w3(
1

2
+

1

2
wt4 +

1

2
u3 +

1

2
v4w + z.H1),

where H1 = HC(wt, wu, wv, w)/w
4, which implies that

M̃C ∩W1 = (1 + wt4 + u3 + v4w + 2.zH1 = 0)

=⇒ N1 = N ∩W1 = (w = u3 + 1 = 0).

Note that M̃C ∩W1 is a smooth hypersurface on C̃4 ∩W1. The foliation LC is

de�ned by α|M∗
C
= 0, where

α = 2x3dx+
3

2
y2dy + θ, (3.27)

where θ is a 1-form with j30(θ) = 0. The foliation L̃C = π∗(LC) in this chart is

de�ned by α1|M̃C
= 0, where

α1 = 2w2t3dt+ (2wt4 +
3

2
u3)dw +

3

2
wu2du+ wη1, (3.28)

and η1 = π∗(θ)/w3. Note that N1 is L̃C-invariant and from (3.28), we get

N1∩sing(L̃C) = ∅. In particular, N1 is a union of three leaves of L̃C isomorphic

to C2, say L1, L2, L3.

2. In the chart (W2, (t, u, z, v)) of C̃4, where

π(t, u, z, v) = (z.t, z.u, z, z.v) = (x, y, z, w).

From (3.26) we have

FC ◦ π(t, u, z, v) = z3(
1

2
z +

1

2
z.t4 +

1

2
u3 +

1

2
v3 + z.H1),

where H1 = HC(zt, zu, z, zv)/z
4, which implies that

M̃C ∩W2 = (z + zt4 + u3 + v3 + 2.zH1 = 0) (3.29)
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=⇒ N2 = N ∩W2 = (z = u3 + v3 = 0).

This implies that sing(M̃C) ∩ P3 is a line L which in this coordinate system

is {z = v = u = 0}. Notice that L̄1 ∩ L̄2 ∩ L̄3 = L. We need more blow-ups

along L to resolve M̃C. The process involves 3 explosions.

We do 3 explosions in the t-axis, obtaining a sequence of divisors D1, D2, D3.

In the appropiate chart, we have the equations
v = v

t = t

zi−1 = v.zi

ui−1 = v.ui,

where z0 = z, u0 = u and 1 ≤ i ≤ 3. Let (U3, (t, u3, z3, v)) be the chart in the

last explosion, we obtain

π3(t, u3, z3, v) = (t, v3.u3, v
3.z3, v) = (t, u, z, v).

Denote by M̂C the strict transform of M̃C under π3. From (3.29), we get

M̂C ∩ U3 = (1 + z + zt4 + v6u3 + 2.vG3 = 0),

where G3 = π∗
3(zH1)/v

4, (here z3 = z and u3 = u) which implies that

B =: M̂C ∩ U3 ∩D3 = (v = 1 + z + zt4 = 0). (3.30)

We will see that B is invariant by the strict transform of L̃C under π3, where

L̃C = π∗(LC).

In fact, the foliation LC is de�ned by (3.27). Therefore, the foliation L̃C =

π∗(LC) in the chart W2 is de�ned by α1|M̃C
= 0, where

α1 = 2z2t3dt+ (2zt4 +
3

2
u3)dz +

3

2
zu2du+ zη1,

and η1 = π∗(θ)/z3. Therefore, the foliation L̂C = π∗
3(L̃C) in the chart U3 is

de�ned by α2|M̂C
= 0, where

α2 =2vz2t3dt+ 6(z2t4 + zu3v6)dv+

+ (2zt4 +
3

2
u3v6)vda+

3

2
zu2v7du+ vη4,

(3.31)

43



and η4 = π∗
1(zη1)/v

6, (here z3 = z and u3 = u).

From (3.31), B is L̂C-invariant and

B ∩ sing(L̂C) = (v = t = z + 1 = 0). (3.32)

3. Finally, the study in the other charts is analogous.

Let us prove that L̂C has a non-constant holomorphic �rst integral. Let D be the

global exceptional divisor of the resolution of singularities of MC, as we have seen

before, all irreducible components of D are L̂C-invariant. Set Z := D\sing(L̂C). Fix

p0 ∈ Z and a transversal
∑

to Z. For instance, we work in the chart (Ṽ , (t, u, z, v)),

take p0 = (0, 0, 0, 0) and the section
∑

= {(0, 0, 0, v)|v ∈ C}, parametrized by w.

Call G the holonomy group of the leaf Z of L̂C in the section
∑

. As we have seen

in (3.30) and (3.32), we have

Z ∩ U3 = B\(v = t = z + 1 = 0).

The fundamental group Π1(Z ∩ U3, p0) is generated by a loop δ that turns around

of (v = t = z + 1 = 0). Therefore G = ⟨f⟩, where f corresponding to [δ], from

(3.31), we have f ′(0) = e−2πi/3, so that f(v) = e−2πi/3.v + v2r. Since all leaves of

LC are closed, the group G is �nite, it follows that G is linearizable: in a some

holomorphic coordinate system z of (
∑
, 0) we have f(z) = e−2πi/3.z. The function

H(z) = z3 ∈ O1 satis�es H ◦ f = H. By [19] it can be extended to a non-constant

holomorphic �rst integral, say ĥ, of L̂C, de�ned in some neighborhood of B in M̂C.

In all cases, we have seen that the foliation LC has a non-constant holomorphic

�rst integral. This �nishes the proof of theorem 2.
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Chapter 4

Levi-�at hypersurfaces and webs

In this chapter, we investigate germs at 0 ∈ Cn of codimension one k-webs tangent

to germs at 0 ∈ Cn of real analytic Levi-�at hypersurfaces.

4.1 Local webs

We refer the terminology used in [22]. A germ of singular codimension one k-web

on (Cn, 0), n ≥ 2, is an equivalence class [ω] of germs of k-symmetric 1-forms, that is

sections of SymkΩ1(Cn, 0), modulo multipilication by O∗(Cn, 0) such that a suitable

representative ω de�ned in a connected neighborhood U of the origin satis�es the

following conditions:

1. The zero set of ω has codimension at least two.

2. The 1-form ω, seen as a homogeneous polynomial of degree k in the ring

O(Cn, 0)[dx1, . . . , dxn], is square-free.

3. (Brill's condition) For a generic p ∈ U , ω(p) is a product of k linear forms.

4. (Frobenius's condition) For a generic p ∈ U , the germ of ω at p is the product

of k germs of integrable 1-forms.

Both conditions (3) and (4) are automatic for germs of webs on (C2, 0) and

non-trivial for germs on (Cn, 0) when n ≥ 3.
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We can think k-webs as �rst order di�erential equations of degree k. There exists

an alternative de�nition for germs of singular webs that is in a certain sense more

geometric. The idea is to consider the germ of web as a meromorphic section of the

projectivization of the cotangent bundle. This is a classical point view in the theory

of di�erential equations, which has been recently explored in Web-geometry. For

instance see Cavalier-Lehmann [10], [11], J. Yartey [23]. In this section, we will use

both de�nitions.

4.1.1 The contact distribution

Let us denote P := PT ∗(Cn, 0) the projectivization of the cotangent bundle of (Cn, 0)

and π : PT ∗(Cn, 0) → (Cn, 0) the natural projection. Over a point p the �ber

π−1(p) parametrizes the one-dimensional subspaces of T ∗
p (Cn, 0). On P there is a

canonical codimension one distribution, the so called contact distribution D. Its

description in terms of a system of coordinates x = (x1, . . . , xn) of (Cn, 0) goes

as follows: let dx1, . . . , dxn be the basis of T ∗(Cn, 0) associated to the coordinate

system (x1, . . . , xn). Given a point (x, y) ∈ T ∗(Cn, 0), we can write y =
∑n

j=1 yjdxj,

(y1, . . . , yn) ∈ Cn. In this way, if (y1, . . . , yn) ̸= 0 then we set [y] = [y1, . . . .yn] ∈ Pn−1

and (x, [y]) ∈ (Cn, 0) × Pn−1 ∼= P. In the a�ne coordinate system yn ̸= 0 of P, the
distribiution D is de�ned by α = 0, where

α = dxn −
n−1∑
j=1

pjdxj, pj = − yi
yn

(1 ≤ j ≤ n− 1). (4.1)

The 1-form α is called the contact form.

4.2 Webs as closures of meromorphic multi-sections

Now consider X ⊂ P a sub-variety, not necessarily irreducible, but of pure dimension

n. Let πX : X → (Cn, 0) be the restriction to X of the projection π : P → (Cn, 0).

Suppose also that X satis�es the following conditions:

1. The image under π of every irreducible component of X has dimension n.

2. The generic �ber of π intersects X in k distints smooth points and at these the

di�erential dπX : TpX → Tπ(p)(Cn, 0) is surjective. Note that k = deg(πX).
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3. The restriccion of the contact form α to the smooth part of every irreducible

component of X is integrable. We denote FX the foliation de�ned by α|X = 0.

We can then de�ne W a germ at 0 ∈ Cn of k-web as a triple (X, πX ,FX). This

de�nition is equivalent to the one laid down in Section 4.1. Denote by X the variety

associated to W . The singular set of X will be denoted by sing(X) and its the

smooth part by Xreg.

Here and subsequently, W denotes a germ at 0 ∈ Cn of codimension one k-web,

X the contact variety associated to W , πX the restriction to X of the projection

π : P → (Cn, 0) and FX the foliation de�ned by α|X = 0.

De�nition 4.1. Let R be the set of points p ∈ X where

� either X is singular,

� or the di�erential dπX : TpXreg → Tπ(p)(Cn, 0) is not an isomorphism.

The analytic set R is called the criminant set of W and △W = π(R) the

discriminant of W . Note that dim(R) ≤ n− 1.

4.2.1 The foliation FX

Since the restriction of D to Xreg is integrable, it de�nes a foliation FX , which in

general is a singular foliation. Given p ∈ (Cn, 0)\△W , π−1
X (p) = {q1, . . . , qk}, where

qi ̸= qj, if i ̸= j, (deg(πX) = k), denote by F i
X the germ of FX at qi, i = 1, . . . , k.

The projections π∗(F i
X) := F i

p de�nes k germs of codimension one foliations at

p.

De�nition 4.2. A leaf of the web W is, by de�nition, the projection on (Cn, 0) of

a leaf of FX .

Remark 4.3. Given p ∈ (Cn, 0)\△W , and qi ∈ π−1
X (p), the projection πX(Li) of the

leaf Li of FX through qi, gives origen to a leaf of W through p. In particular, W
has at most k leaves through p.

Remark 4.4. Let ω ∈ SymkΩ1(Cn, 0) and assume that it de�nes a k-web W with

contact variety X. Then X is irreducible if, and only if, ω is irreducible in the ring

On[dx1, . . . , dxn]. In this case we say the web is irreducible.
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4.3 First integrals for webs

Let O(X) denote the ring of holomorphic functions on X.

De�nition 4.5. We say that W a k-web has a meromorphic �rst integral if, and

only if, there exists

P (z) = f0 + z.f1 + . . .+ zk.fk ∈ On[z],

where f0, . . . , fk ∈ On, such that every irreducible component of the hypersurface

(P (z0) = 0) is a leaf of W , for all z0 ∈ (C, 0).

De�nition 4.6. We say that W a k-web has a holomorphic �rst integral if, and

only if, there exists

P (z) = f0 + z.f1 + . . .+ zk−1.fk−1 + zk ∈ On[z],

where f0, . . . , fk−1 ∈ On and such that every irreducible component of the hyper-

surface (P (z0) = 0) is a leaf of W , for all z0 ∈ (C, 0).

We will use the following proposition (cf. [16] Th. 5, pg. 32).

Proposition 4.7. Let V be an analytic variety. If π : V → W is a �nite branched

holomorphic covering of pure order k over an open subset W ⊆ Cn, then to each

holomorphic function f ∈ O(V ) there is canonically associated a monic polynomial

Pf (z) ∈ On[z] ⊆ O(V )[z] of degree k such that Pf (f) = 0 in O(V ).

We have now the following lemma. The proof is an easy adaption of an argument

of I.Pan (cf. [21]).

Lemma 4.8. Suppose that (X, πX ,FX) de�nes a k-web W on (Cn, 0), n ≥ 2, where

X is an irreducible sub-variety of P. If FX has a non-constant holomorphic �rst

integral then W also has a holomorphic �rst integral.

Proof. Let g ∈ O(X) be the �rst integral for FX . By proposition 4.7, there exists a

monic polynomial Pg(z) ∈ On[z] of degree k such that Pg(g) = 0 in O(X). Write

Pg(z) = g0 + z.g1 + . . .+ zk−1.gk−1 + zk,
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where g0, . . . , gk−1 ∈ On.

Assertion.� Pg de�nes a holomorphic �rst integral for W .

Let U ⊆ (Cn, 0)\△W be an open subset and set φ : X → (Cn, 0)×C be de�ned

by φ = (πX , g). Take a leaf L of W|U . Then there is z ∈ C such that the following

diagram

π−1
X (U) ∩ φ−1(L× {z})

πX

((QQQQQQQQQQQQQQQ

φ // L× {z}

pr1
{{wwwwwwwww

L

is commutative, where pr1 is the projection to �rst coordinate. One deduce that

L is a leaf of W if and only if g is constant along of each connected component of

π−1
X (L) contained in φ−1(L× {z}).
Consider now the hypersurface G = φ(X) ⊂ (Cn, 0)× C which is the closure of

set

{(x, s) ∈ U × C : g0(x) + s.g1(x) + . . .+ sk−1.gk−1(x) + sk = 0}.

Let ψ : (Cn, 0)×C → (Cn, 0) be the usual projection and denote by Z ⊂ (Cn, 0)

the analytic subset such that the restriction to G of ψ not is a �nite branched

covering. Notice that for all x0 ∈ (Cn, 0)\Z, the equation

g0(x) + s.g1(x) + . . .+ sk−1.gk−1(x) + sk = 0

de�nes k analytic hypersurfaces pairwise transverse in x0 and therefore correspond

to leaves of W .

4.4 Levi-�at hypersurfaces and webs

Let M be a germ at 0 ∈ Cn of real analytic Levi-�at hypersurface. Denote by Mreg,

the smooth part of M .

De�nition 4.9. We say that M is tangent to W if any leaf of the Levi foliation L
on Mreg is also a leaf of W .

We will see that there exists germs of real analytic Levi-�at hypersurfaces which

are not tangent to foliations, even in the case n = 2. For instance, the following

example is tangent to a web.
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Example 4.10. ([12]) Let f0, f1, . . . , fk ∈ On, n ≥ 2, be irreducible germs of

holomorphic functions, where k ≥ 2. Consider the family of hypersurfaces

G := {Gs := f0 + s.f1 + . . .+ skfk/s ∈ R}.

By eliminating the real variable s in the system Gs = Ḡs = 0, we obtain a real

analytic germ F : (Cn, 0) → (R, 0) such that any complex hypersurface (Gs = 0)

is contained in the real hypersurface (F = 0). For instance, in the case k = 2, we

obtain

F = det


f0 f1 f2 0

0 f0 f1 f2

f̄0 f̄1 f̄2 0

0 f̄0 f̄1 f̄2

 =

= f 2
0 .f̄

2
2 + f̄2

0 .f
2
2 + f0.f2.f̄

2
1 + f̄0.f̄2.f

2
1 + |f1|2(f0.f̄2 + f̄0.f2)− 2|f0|2.|f2|2. (4.2)

which comes from the elimination of s in the system

f0 + s.f1 + s2.f2 = f̄0 + s.f̄1 + s2.f̄2 = 0.

We would like to observe that the examples of this type are tangent to singular

webs. The web is obtained by the elimination of s in the system given by{
f0 + s.f1 + s2.f2 + . . .+ sk.fk = 0

df0 + s.df1 + s2.df2 . . .+ sk.dfk = 0

In the case we get a 2-web given by the implicit di�erential equation Ω = 0, where

Ω = det


f0 f1 f2 0

0 f0 f1 f2

df0 df1 df2 0

0 df0 df1 df2


This example shows that, although L is a foliation on Mreg ⊂ M = (F = 0),

in general it is not tangent to a germ of holomorphic foliation at (Cn, 0). In fact,

M. Brunella [8] in has proved that in the general situation a germ of real analytic

Levi-�at hypersurface is �almost� like that. He proves that there exist a complex
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manifold Y together with a codimension one divisor D, a real analytic Levi-�at

hypersurface N ⊂ Y , an open subset N0 ⊂ N , a codimension one singular foliation

F in Y tangent to N and a holomorphic map π : (Y,D) → (Cn, 0) such that

(a). π|N0 : N0 →Mreg is an isomorphism.

(b). π|N0
: N0 →Mreg is a proper map.

In particular, the Levi foliation L on Mreg satis�es π∗(L) = F|N0 , but in general

there is no germ of foliation G at 0 ∈ Cn such that π∗(G) = F , whereas sometimes

there are webs as the example above.

Example 4.11. [Clairaut's equations] The Clairaut's equations are tangent to Levi-

�at hypersurfaces. Consider the �rst-order implicit di�erential equation:

y = xp+ f(p), (4.3)

where (x, y) ∈ C2, p = dy
dx

and f ∈ C[p] is a polynomial of degree k. The equation

(4.3) de�nes a k-webW on (C2, 0). Let S = F−1(0), where F (x, y, p) = y−xp−f(p).
Let α = dy− pdx be the contact 1-form and FS the foliation de�ned by α|S = 0,

in the chart (x, p) of S, we get α|S = (x+ f ′(p))dp.

The criminant set of W is given by

R = (y − xp− f(p) = x+ f ′(p) = 0),

note that FS is tangent to S along R.

On the other hand, FS has a non-constant �rst integral g(x, p) = p. Let πS :

S → (C2, 0) be the restriction to S of the usual projection π : P → (C2, 0). The

leaves of FS project by πS in leaves of W . Those leaves are as follows:

−y + s.x+ f(s) = 0, (4.4)

where s ∈ C. By the elimation of the variable s in the system:{
−y + s.x+ f(s) = 0

−ȳ + s.x̄+ f(s) = 0,

we obtain a Levi-�at hypersurface tangent to W . In particular, the Clairaut's

equation has a holomorphic �rst integral.
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The following Problem was proposed by Cerveau-Lins Neto in [12].

�Let M be a real analytic germ of a Levi-�at hypersurface at 0 ∈ Cn. Assume

that there exists a singular codimension one k-web W , such that W is tangent toM .

Does the web has a non-constant meromorphic �rst integral as in example 4.10.?�

We are unable to prove the above problem in full generality. More precisely, we

will prove the following.

Theorem 3. Let W be a germ at 0 ∈ Cn, n ≥ 2 of k-web tangent to a germ at

0 ∈ Cn of an irreducible real-analytic Levi-�at hypersurface M . Assume that W is

irreducible and has a �nite number of invariant analytic leaves through the origin.

Denote by X the variety associated to W.

(a). If n = 2. Then W has a non-constant holomorphic �rst integral

(b). If n ≥ 3, and codXreg(sing(X)) ≥ 2. Then W has a non-constant holomorphic

�rst integral

Remark 4.12. The condition of �niteness of the number of analytic leaves through

0 ∈ Cn will be used only on M . Since the leaves of L are analytic (see Lemma

1.10), this condition is equivalent to say that W|M is non-dicritical, (in the sense of

foliations).

Observe that for n = 2 and k = 1, we obtain Theorem 1 of [12] in the non-

dicritical case.

Remark 4.13. When we consider W a germ at 0 ∈ Cn, n ≥ 2, of a smooth k-web

tangent to a germ at 0 ∈ Cn of irreducible real codimension one submanifold M ;

i.e, W = F1 � . . . � Fk is a generic superposition of k germs at 0 ∈ Cn of regular

foliations F1, . . . ,Fk. The irreducibility and tangency conditions to M implies that

there exists an unique i ∈ {1, . . . , k} such that Fi is tangent to M . Therefore we

can �nd a coordinates system z1, . . . , zn of Cn such that Fi is de�ned by dzn = 0

and M = (Re(zn) = 0).
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4.4.1 Lifting of Levi-�at hypersurfaces to the cotangent bun-

dle

In this section we give some remarks about the lifting of a Levi-�at hypersurface to

the cotangent bundle of Cn.

Let P be as before, the projectivised cotangent bundle of (Cn, 0) and M an

irreducible real analytic Levi-�at at (Cn, 0), n ≥ 2. Note that P is a Pn−1-bundle

over (Cn, 0), whose �bre PT ∗
zCn over z ∈ Cn will be thought as the set of complex

hyperplanes in T ∗
zCn. Let π : P → (Cn, 0) be the usual projection.

The regular part Mreg of M can be lifted to P: just take, for every z ∈Mreg, the

complex hyperplane

TC
z Mreg = TzMreg ∩ i(TzMreg) ⊂ TzCn. (4.5)

We call

M ′
reg ⊂ P (4.6)

this lifting ofMreg. We remark that it is no more a hypersurface: its (real) dimension

2n − 1 is half of the real dimension of PT ∗Cn. However, it is still �Levi-�at�, in a

sense which will be precised below.

Take now a point y in the closure M ′
reg projecting on Cn to a point x ∈M . The

following lemma was proved by Brunella [8].

Lemma 4.14. There exist, in a germ of neighbourhood Uy ⊂ PT ∗Cn of y, a germ

of real analytic subset Ny of dimension 2n− 1 containing M ′
reg ∩ Uy.

We will use the result of [8].

Proposition 4.15. In the above situation, there exists, in a germ of neighbourhood

Vy ⊂ Uy of y, a germ of complex analytic subset Yy of (complex) dimension n

containing Ny ∩ Vy.

4.5 Proof of Theorem 3

The proof will be divided into two parts. First, we give the proof for n = 2. The

proof in dimension n ≥ 3 will be done by reduction to the case of dimension two.

53



4.5.1 Planar webs

Consider n = 2. A k-web W on (C2, 0) can be given in coordinates (x, y) ∈ C2 by

ω = a0(x, y)(dy)
k + a1(x, y)(dy)

k−1.(dx) + . . .+ ak(x, y)(dx)
k = 0,

where the coe�cients aj ∈ M2, j = 1, . . . , k.

We set

U = {(x, y, [adx+ bdy]) ∈ PT ∗(C2, 0) : a ̸= 0}

and

V = {(x, y, [adx+ bdy]) ∈ PT ∗(C2, 0) : b ̸= 0}.

Observe that PT ∗(C2, 0) = U ∪ V .

� Let S be the surface associated to W . In the coordinates (x, y, p) ∈ U , where

p = dy
dx
, we get

S = {(x, y, p) ∈ PT ∗(C2, 0) : F (x, y, p) = 0},

where F (x, y, p) = a0(x, y)p
k + a1(x, y)p

k−1 + . . . + ak(x, y). Note that S is

possibly singular at 0.

� Let FS be the foliation associated to W . In the coordinates (x, y, p) ∈ U , FS

is de�ned by α|S = 0, where α = dy − pdx.

� In the coordinates (x, y, p) ∈ U , the criminant set R is de�ned by the equations

F (x, y, p) = Fp(x, y, p) = 0.

In V the coordinate system is (x, y, q) ∈ C3, where q = 1
p
, the equations are similar.

4.5.2 Proof in dimension two

Let W be a k-web tangent to M Levi-�at. Assume that W satis�es the hypothesis

of theorem 3 (see pg. 52) . Let S be as before, and π : PT ∗C2 → C2 the usual

projection. The idea is to use lemma 4.8. We will be assume that W is de�ned by

ω = a0(x, y)(dy)
k + a1(x, y)(dy)

k−1.dx+ . . .+ ak(x, y)(dx)
k = 0, (4.7)

where the coe�cients aj ∈ M2, j = 1, . . . , k.
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Lemma 4.16. In the hypothesis of theorem 3, the surface S is irreducible and S ∩
π−1(0) contains just a number �nite of points.

Proof. Since W is irreducible so is S. On the other hand, S∩π−1(0) is �nite because

W is non-dicritical.

We can assume without lost of generality that S∩π−1(0) contains just one point,

in case general, the idea of the proof is the same. In this situation, we can suppose

that a0(0, 0) = 1 in (4.7). Then in the coordinate system (x, y, p) ∈ C3, where

p = dy
dx
, we have π−1(0) ∩ S = {p0 = (0, 0, 0)}, which implies that S is singular at

p0 ∈ PT ∗(C2, 0). In particular, S is de�ned by F−1(0), where

F (x, y, p) = pk + a1(x, y)p
k−1 + . . .+ ak(x, y),

and a1, . . . , ak ∈ M2. Let FS be the foliation de�ned by α|S = 0. The hypothesis

implies that FS is a non-dicritical foliation with an isolated singularity at p0.

Let M ′
reg be the lifting of Mreg by πS, and denote by σ : (S̃, D) → (S, p0) the

resolution of singularities of S at p0. Let F̃ = σ∗(FS) be the pull-back of FS under

σ.

Lemma 4.17. In the above situation. The foliation F̃ has only singularities of

saddle with �rst integral type in D.

Proof. Let y ∈ M ′
reg, it follows from lemma 4.14 there exist, in a neighbourhood

Uy ⊂ PT ∗C2 of y, a real analytic subset Ny of dimension 3 containing M ′
reg ∩ Uy.

Then by proposition 4.15, there exists, in a neighbourhood Vy ⊂ Uy of y, a complex

analytic subset Yy of (complex) dimension 2 containing Ny ∩ Vy. As germs at y, we

get Yy = Sy then Ny ∩ Vy ⊂ Sy, we have that Ny ∩ Vy is a real analytic hypersurface

in Sy, and it is Levi-�at because each irreducible component contains a Levi-�at

piece (cf. [7], Lemma 2.2).

Let us denote M ′
y = Ny ∩ Vy. The hypothesis implies that FS is tangent to M ′

y.

These local constructions are su�ciently canonical to be patched together, when y

varies onM ′
reg: if Sy1 ⊂ Vy1 and Sy2 ⊂ Vy2 are as above, withM

′
reg∩Vy1∩Vy2 ̸= ∅, then

Sy2 ∩ (Vy1 ∩ Vy2) and Sy1 ∩ (Vy1 ∩ Vy2) have some common irreducible components

containing M ′
reg ∩ Vy1 ∩ Vy2 , so that M ′

y1
, M ′

y2
can be glued by identifying those

components. In this way, we obtain a Levi-�at hypersurface N on S tangent to FS.
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Since FS is non-dicritical, all irreducible components of D are F̃ -invariants. Let

Ñ be the strict transform of N under σ, then Ñ ⊃ D. In particular, Ñ contains

all singularities of F̃ in D. It follows from lemma 1.14 (see Chapter 1) that all

singularities of F̃ are saddle with �rst integral.

End of the proof of theorem in dimension two. The idea is to prove that FS

has a holomorphic �rst integral. Since D is F̃ -invariant, we have S := D\sing(F̃)

is a leaf of F̃ . Now, �x p ∈ S and a transverse section
∑

through p. By lemma

4.17, the singularities of F̃ in D are saddle with �rst integral types. Therefore the

transverse section
∑

is complete. (See theorem 1.15). Let G ⊂ Diff(
∑
, p) be

the holonomy group of the leaf S of F̃ . It follows from lemma 1.10 that all leaves

of FS through points of Nreg are closed in Nreg. This implies that G is a �nite

group by the same arguments of the proof of theorem 1. By corollary 1.16, FS has

a non-constant holomorphic �rst integral. Finally from Lemma 4.8, W has a �rst

integral as follows:

f0(x, y) + z.f1(x, y) + . . .+ zk−1.fk−1(x, y) + zk,

where f0, f1, . . . , fk−1 ∈ O2.

4.5.3 Proof in the dimension n ≥ 3

Let us give an idea of the proof. First of all, we will prove that there is a holomorphic

embedding i : (C2, 0) → (Cn, 0) with the following properties:

(i). i−1(M) has real codimension one on (C2, 0).

(ii). i∗(W) is a k-web on (C2, 0) and i∗(W) is tangent to i−1(M).

Set E := i(C2, 0). The above conditions and theorem 3 in dimension two imply

that W|E has a non-constant holomorphic �rst integral, say g = f0 + z.f1 + . . . +

zk−1.fk−1 + zk, where f0, . . . , fk−1 ∈ M2. After that we will use a lemma to prove

that g can be extended to a holomorphic germ g1, which is a �rst integral of W .

On the other hand, let F be a germ at 0 ∈ Cn, n ≥ 3, of a holomorphic

codimension one foliation, tangent to a real analytic hypersurfaceM . Let us suppose
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that F is de�ned by ω = 0, where ω is a germ at 0 ∈ Cn of an integrable holomorphic

1-form with codCn(sing(ω)) ≥ 2. We say that a holomorphic embedding i : (C2, 0) →
(Cn, 0) is transverse to ω if codCn(sing(ω)) = 2, which means in fact that, as a germ

of set, we have sing(i∗(ω)) = {0}. Note that the concept is independent of the

particular germ of holomorphic 1-form which represents F . Therefore, we will say

that the embedding i is transverse to F if it is transverse to some holomorphic

1-form ω representing F .

The following lemma is proved in [12].

Lemma 4.18. In the above situation, there exists a 2-plane E ⊂ Cn, transverse to

F , such that the germ at 0 ∈ E of M ∩ E has real codimension one.

We say that a embedding i is transverse to W if it is transverse to all k-foliations

which de�nes W . Now, one deduces the following:

Lemma 4.19. There exists a 2-plane E ⊂ Cn, transverse to W, such that the germ

at 0 ∈ E of M ∩ E has real codimension one.

Proof. First of all, note that outside of the singular part of W , we can suppose

that W = F1 � . . . � Fk, where F1, . . . ,Fk are germs of codimension one regular

foliations. Since W is tangent to M , there is a foliation Fj such that is tangent

to a Levi foliation L on Mreg. Lemma 4.18 implies that we can �nd a 2-plane E0

tranverse toM and to Fj. Clearly the set of linear mappings tranverse to F1, . . . ,Fk

simultaneously is open and dense in the set of linear mappings from C2 to Cn, by

transversality theory, there exists a linear embedding i such that E = i(C2, 0) is

transverse to Mreg and to W simultaneously.

Let E be a 2-plane as in lemma 4.19. It easy to check that W|E satis�es the

hypothesis of theorem 3. By the two dimensional case W|E has a non-constant �rst

integral:

g0 + z.g1 + . . .+ zk−1.gk−1 + zk, (4.8)

where g0, . . . , gk−1 ∈ O2.

Let X be the contact variety associated to W and set S be the contact surface

associated to W|E. Observe that FS has a non-constant holomorphic �rst integral

g de�ned on S.
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Lemma 4.20. In the above situation, we get FX |S = FS and FX has a non-constant

holomorphic �rst integral g1 on X, such that g1|S = g.

Proof. It is easily seen that S ⊂ X which implies that FX |S = FS. Let us extend g

to X. Fix p ∈ Xreg\sing(FX). It is possible to �nd a small neighborhood Wp ⊂ X

of p and a holomorphic coordinate chart φ : Wp → △, where △ ⊂ Cn is a polydisc,

such that:

(i). φ(S ∩Wp) = {z3 = . . . = zn = 0} ∩ △.

(ii). φ∗(FX) is given by dzn|△ = 0.

Let πn : Cn → C2 be the projection de�ned by πn(z1, . . . , zn) = (z1, z2) and set

g̃p := g ◦φ−1 ◦πn|△. We obtain that g̃ is a holomorphic function de�ned in △ and is

a �rst integral of φ∗(FX). Let gp = g̃p◦φ. Notice that, ifWp∩Wq ̸= ∅, p and q being
regular points for FX , then we have gp|Wp∩Wq = gq|Wp∩Wq . This follows easily form

the identity principle for holomorphic functions. In particular, g can be extended to

W =
∪

p∈Xreg\sing(FX)

Wp,

which is a neighborhood of Xreg\sing(FX). Call gW this extension.

Since codXregsing(FX) ≥ 2, by a theorem of Levi (cf. [24]), gW can be extended

to Xreg, as codXreg(sing(X)) ≥ 2 this allows us to extend gW to g1 as holomorphic

�rst integral for FX , in whole X.

End of the proof of theorem in dimension n ≥ 3. Since FX has a non-constant

holomorphic �rst integral on X, lemma 4.8 implies that W has a non-constant

holomorphic �rst integral. This �nishes the proof of theorem 3.

58



Bibliography

[1] V.I Arnold: Normal forms of functions in the neighborhood of degenerate

critical points. I. Uspehi Mat. Nauk 29 (1974), no. 2(176), 11�49.

[2] V.I. Arnold: Normal forms of functions near degenerate critical points, the Weyl

groups Ak, Dk, Ek and Lagrangian singularities. Funkcional. Anal. i Priloºen. 6

(1972), no. 4, 3�25.

[3] V.I. Arnold: Geometrical methods in the theory of ordinary di�erential

equations. Second edition. Fundamental Principles of Mathematical Sciences,

250. Springer-Verlag, New York, 1988.

[4] V.I. Arnold, S.M. Gusein-Zade, A.N. Varchenko: Singularities of Di�erential

Maps, Vol. I, Monographs in Math., vol. 82, Birkhäuser, 1985.

[5] Baouendi, M. Salah, Ebenfelt, Peter Rothschild, Linda Preiss: Real submani-

folds in complex space and their mappings. Princeton Mathematical Series, 47.

Princeton University Press, Princeton, NJ, 1999.

[6] E. Bedford: Holomorphic continuation of smooth functions over Levi-�at

hypersurfaces. Trans. Amer. Math. Soc. 232 (1977), 323�341.

[7] D. Burns, X. Gong: Singular Levi-�at real analytic hypersurfaces, Amer. J.

Math. 121, (1999), pp. 23-53.

[8] M. Brunella: Singular Levi-�at hypersurfaces and codimension one foliations.

Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), no. 4, 661�672.

[9] E. Cartan: Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de

deux variables complexes. Ann. Mat. Pura Appl. 11 (1933), no. 1, 17�90.

59



[10] V. Cavalier, D. Lehmann: Introduction à l'étude globale des tissus sur une

surface holomorphe. Ann. Inst. Fourier (Grenoble) 57 (2007), no. 4, 1095�1133.

[11] V. Cavalier, D. Lehmann: Global structure of holomorphic webs on surfaces.

Geometry and topology of caustics�CAUSTICS '06, 35�44, Banach Center

Publ., 82, Polish Acad. Sci. Inst. Math., Warsaw, 2008.

[12] D. Cerveau, A. Lins Neto: Local Levi-Flat hypersurfaces invariants by a

codimension one holomorphic foliation. To appear in Amer. J. Math.

[13] S.S. Chern, J.K. Moser: Real hypersurfaces in complex manifolds. Acta Math.

133 (1974), 219�271.

[14] A.H. Durfee: Fifteen characterizations of rational double points and simple

critical points. Enseign. Math. (2) 25 (1979), no. 1-2, 131�163.

[15] X. Gong: Levi-�at invariant sets of holomorphic symplectic mappings. Inst.

Fourier (Grenoble) 51 (2001), no. 1, 151�208.

[16] R. Gunning: Introduction to holomorphic functions of several variables. Vol. II.

Local theory. The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth

& Brooks/Cole Advanced Books & Software, Monterey, CA, 1990.

[17] A. Lins Neto, B. Scárdua: Folheações Algébricas Complexas. Publicações

Matemáticas do IMPA. Rio de Janeiro, 1997.

[18] F. Loray: Pseudo-groupe d'une singularité de feuilletage holomorphe en

dimension deux. ; http://hal.archives-ouvertures.fr/ccsd-00016434

[19] J.F. Mattei, R. Moussu: Holonomie et intégrales premières, Ann. Ec. Norm.

Sup. 13, (1980), pg. 469-523.

[20] J. Martinet, J.P. Ramis: Problèmes de modules pour des équations di�éren-

tielles non linéaires du premier ordre. Inst. Hautes Études Sci. Publ. Math. No.

55 (1982), 63�164.

[21] I. Pan: Quelques remarques sur les d-web des surfaces complexes et un problème

proposé par D. Cerveau. Bol. Asoc. Mat. Venez. 10 (2003), no. 1, 21�33.

60



[22] J.V. Pereira, L. Pirio: An invitation to web geometry. From Abel's addition the-

orem to the algebraization of codimension one webs. Publicações Matemáticas

do IMPA. Rio de Janeiro, 2009.

[23] J.N.A Yartey: Number of singularities of a generic web on the complex

projective plane. J. Dyn. Control Syst. 11 (2005), no. 2, 281�296.

[24] Y.T. Siu: Techniques of extension of analytic objects. Lecture Notes in Pure

and Applied Mathematics, Vol. 8. Marcel Dekker, Inc., New York, 1974.

[25] O. Zariski: On the Topology of algebroid singularities, Amer. J. Math. 54,

(1932), pg. 455-465.

[26] H. �oª¡dek: The monodromy group. Mathematics Institute of the Polish

Academy of Sciences. Mathematical Monographs (New Series), 67. Birkhäuser

Verlag, Basel, 2006.

61


