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Abstract

A reduced one-dimensional strongly nonlinear model forebalution of inter-
nal waves over an arbitrary bottom topography is derivece fHtduced model is
aimed at obtaining anfiécient numerical method for the two-dimensional prob-
lem. Two layers containing inviscid, immiscible, irrotatal fluids of diferent
densities are defined. The upper layer is shallow comparéutie characteristic
wavelength at the interface of the two-fluid system, whike diepth of the bottom
region is comparable to the characteristic wavelength. Adwinear evolution
equations obtained describe the behaviour of the interaabwlevation and mean
upper-velocity for this water configuration. The system geaeralization of the
one proposed by Choi and Camassa for the flat bottom case inrtteedaysical
settings. Due to the presence of topography a variabléiceat accompanies
each space derivative. These Boussinesg-type equatiotarctme Intermediate
Long Wave (ILW) equation and the Benjamin-Ono (BO) equationmwiestricted
to the unidirectional wave regime. We intend to use this rhtmstudy the inter-
action of waves with the bottom profile. The dynamics includere scattering,
dispersion and attenuation among other phenomena. Tharcbss relevant in
oil recovery in deep ocean waters, where salt concentratiwhdiferences in
temperature generate stratification in such a way thatnatevaves can féect

offshore operations and submerged structures.



Resumo

E obtido um modelo reduzido unidirecional fortemerde finear para a evolé@g

de ondas internas sobre topografias de fundo arimtr Com o modelo reduzido
busca-se obter @todos nuraricos eficientes para resolver o problema bidimen-
sional. &0 consideradas duas camadas contendo dois fluidEzithys, imis-
civeis e irrotacionais de densidades diferentes. A camaperisu &€ delgada

se comparada longitude de onda caracigtica. As equaies de evolugo rao
lineares obtidas descrevem o comportamento da €levda onda interna e a
velocidade superior édia para esta configu@g daagua. O sistem& uma
generalizago daquele proposto por Choi e Camassa para o caso de fundo plano
nas mesmas condies fsicas. Devida presenca da topografia, cada derivada es-
pacial esh acompanhada por um coeficiente &ael. Estas equées de Boussi-
nesq corém a equa@o da Onda Longa Intermexdia (ntermediate Long Wavye
ILW) e a equago de Benjamin-Ono (BO) se restritas ao regime unidireciomal d
propagaao de ondas. Pretendemos utilizar este modelo para estutarago

das ondas com o perfil do fundo. A @mica inclui refle&o, disperdo e atenuaip

das ondas entre outros famenos. A pesquigade imporancia na recuperag de
petibleo emaguas profundas oéricas onde a concentéax;de sal e as diferen-
cas de temperatura geram estratifazade tal forma que as ondas internas podem

afetar as oper@gsoffshoree as estruturas submersas.



Chapter 1

| ntroduction

Modelling waves is of great interest in the study of oceanadyics. Internal
ocean waves, for example, appear when salt concentratibdii@rences in tem-
perature generate stratification. They can interact witbtbttom topography and
submerged structures as well as with surface waves. Ircphatj in oil recovery
in deep ocean waters, internal waves ctiec dfshore operations and submerged
structures. Accurate reduced models are a first step in progléficient compu-
tational methods for engineering problems in oceanographis was the goal in
[24, 1].

To describe this nonlinear wave phenomenon in deep waters e several
bidirectional models containing the Intermediate Long @@\W) equation and
the Benjamin-Ono (BO) equation, starting from works such a®[25, 14, 17]
to more recent papers such as [20, 6, 7, 8, 13]. In these mtwlelBindamen-
tal mechanisms, nonlinearity and dispersion, are resplair the main features
of the propagating wave. One of the most interesting belbasiobserved is the

existence of solitary wave solutions with permanent shapieey are observed



when the steepening of a given wave front due to the noniityesard the attenua-
tion and flattenning promoted by the dispersion are balaopnexparticular scale.
Usually the contribution of nonlinearity is quantified bython-dimensional non-
linearity parametett, which is the ratio between the wave amplitude and the fluid
layer thickness. It appears as a small non-zero parametiee iso-called weakly
nonlinear regime, and accompanies the nonlinear terms.h®other hand, the
dispersion paramet@ is the squared ratio between the fluid layer thickness and
the typical wavelength. It appears in the dispersion m@atmaking the phase
velocity a function of the wavenumbkr The balance that creates a solitary wave
is commonly obtained through a scaling relation betweemdg, in the form of

a power law, for asymptotic values< 1 andB <« 1. In the water configuration
considered here, it is the scaliag= O(+/3) that leads to the ILW [14, 17]. In
the limit when one layer thickness tends to infinity, the IL@uiation becomes the
BO equation [3, 9, 25].

For all these models, the dependence on the vertical caisdivas been elim-
inated by focusing on specific regimes and using systemsjimpatotic expansion
methods in small parameters. This results in a considesaiglification of the
original Euler equations that leads to mof&aent computational methods than
the integration of the Euler system in the presence of a freface. However,
the approximation needs to be accurate even for large valudse parameters
a andg. In other words, the model needs to be robust enough to cevera
regimes in which the viscosityfiects are negligible, justifying the use of the Eu-
ler equations. In [8], the authors compared weakly nonlimeadels with experi-
mental data obtained by Koop and Butler in [16]. They foundvajence. This

motivated them to propose a strongly nonlinear model forbitatom that shares

4



the simplicity of the weakly nonlinear ones and extends dmsdin of validity.
The numerical results agree very well with the experimedéh. This model is
generalized in the present work to consider an arbitrarjpsgam. We also im-
prove the asymptotic expansion to the next order of appration in the pressure
term by taking a nonhydrostatic correction term. The rasgistrongly nonlinear
model of higher order is more complicated than the previaesroentioned here,
but it has a weakly nonlinear version very similar to thesijlg nonlinear model
of lower order. This fact implies that the weakly nonlineagher-order model
should serve as a good model for moderate amplitude interaeds in a deep
water configuration. We remark that the new models suppditdational wave
propagation, so they are able to capture the reflected wawe thie propagation
over a nonuniform sea bottom.

The models found in the literature consider flat or slowlyiag bottom to-
pography. Here, the model of Choi and Camassa is generalizéek tcase of
an arbitrary bottom topography by using the conformal magpechnique de-
scribed in [24]. We obtained a strongly nonlinear long-wenael like Choi and
Camassa’s, which is able to describe large amplitude intsoigary waves. A
system of two layers constrained to a region limited by aworial rigid lid at the
top and an arbitrary bottom topography is considered, agitbesl in Fig. 2.1. The
upper layer is shallow compared with the characteristicalength at the interface
of the two-fluid system, while the lower region is deeper. mbalinear evolution
equations describe the behaviour of the internal wave gtevand mean upper-
velocity for this water configuration. These Boussinesctgpguations contain
the ILW equation and the BO equation in the unidirectional eveegime. We

intend to use this model to study the interaction of waveh e bottom profile,



in particular that of solitary waves. This is part of our fridigoals. The dynamics
described include wave scattering, dispersion and attemuamong other phe-
nomena.

The work is organized as follows. In Chapter 2 the physicdiigeis presented
and as the main result, a reduced strongly nonlinear onesgiianal model is pro-
posed. Section 2.1 is devoted to obtaining a set of upper ésgraged equations
that will be completed with information provided by the lawayer in order to
derive the reduced model. The continuity of pressure atrttegface establishes
a connection between both layers, as shown in Section 2.@ugh this condi-
tion we add the topography information to the averaged ufgyer system. The
case when the depth of the bottom layer approaches infindfgtsconsidered. In
Section 2.3 the dispersion relations for the linearized elodre computed. An
ILW equation with variable ca@cient and the BO equation are obtained from
the reduced models as unidirectional wave propagation lmau&ection 2.4. In
Section 2.5 theoretical solitary wave solutions are prieskfor the ILW equation
and for the Regularized ILW equation. The purpose of Chaptsrt8 exhibit a
model that improves the order in the asymptotic approxiomain the pressure
term of the reduced model obtained in Chapter 2. To that en&eition 3.1
one more term of the asymptotic expansion of the mean hadakderivative of
pressure is added to the upper layer averaged equations, iflgection 3.2, the
approximation of the pressure at the interface is improvetaareduced strongly
nonlinear one-dimensional model of higher-order is olgdinThe dispersion re-
lations for the higher-order model and for the previous nhade compared with
the full dispersion relation originating from the Euler atjons in Section 3.3.

Chapter 4 is devoted to the numerical resolution of the redlmecedel obtained



in Chapter 2. A hierarchy of one-dimensional models can baetkfrom this
strongly nonlinear model as shown in Section 4.1 by consigethe diferent
regimes (linear, weakly nonlinear or strongly nonlinea\eell as the flat or cor-
rugated bottom cases. Numerical schemes based on the nadthods for all
models are described in Section 4.2 together with the stiithea stability prop-
erties. The results from the Matlab implementations arevsho Sections 4.3, 4.4
and 4.5, including periodic topography experiments andasglwave solutions.
Technical justifications for the manipulations done in #ecP.4 are provided in
Appendix A. The relation between the Hilbert transform oa #trip (involved
in the models considered) and the Dirichlet-to-Neumanmaipeis presented in
Appendix B. Due to the nonlocal definition of the Hilbert tréorsn on the strip,
it must be redefined on the periodic domain used for numeingalementations,

as done in Appendix C.



Chapter 2

Derivation of thereduced model

In this chapter we generalize the work by Choi and Camassa [@ir &symptotic

technique for reducing a pair of two-dimensional (2D) sys@f nonlinear partial
differential equations (PDES) to a single one-dimensional &8)em of PDEs
at an interface, is generalized to include very general swim@ structures and
topographies at the bottom of the lower fluid layer.

We start with a two-fluid configuration. Define the density atle inviscid,
immiscible, irrotational fluid ag, for the upper layer and, for the lower layer.
For a stable stratificatiom, > p;. Similarly, (U, w;) denotes the velocity com-
ponents angy; the pressure, whetie= 1,2. The upper layer is assumed to have
an undisturbed thickness, much smaller than the characteristic wavelength of
the perturbed interfacke > 0, hence the upper layer will be in the shallow water
regime. At the lower layer the irregular bottom is describga = h,(h(x/1) — 1).
The functionh needs not to be continuous neither univalued, see for exampl
Fig. 2.1 where a polygonal shaped topography is sketchedcaWesssume that

h has compact support so the roughness is confined to a findevaht More-



Figure 2.1: Two-fluid system configuration.

overh; is the undisturbed thickness of the lower layer outsiderttegular bottom
region and it is comparable with the characteristic wavgtleh, that character-
izes an intermediate depth regime. In the slowly varyingdsotcase we define
e = L/l < 1; when a more rapidly varying bottom is of concern, the honrtal
length scale for bottom irregularitiéds such thah; < | < L. The coordinate
system is positioned at the undisturbed interface betwagers. The displace-
ment of the interface is denoted hgx, t) and we may assume that initially it has
compact support.

The corresponding Euler equations are

Uix + Wiz = O’
Uit + Uillix + Williz; = —&,
Pi
Pi
Wit + UiWix + WiWi; = —— — @,
Pi
fori = 1,2. Subscript, z andt stand for partial derivatives with respect to

spatial coordinates and time. The continuity conditiorhatinterfacez = n(x, t)



demands that

nt+uinX:VVia plz p27

namely, a kinematic condition for the material curve and respure jumps al-
lowed.

At the top we impose a rigid lid condition,
wi(X, hg,t) =0,

commonly used in ocean and atmospheric models, while atitbguiar imper-
meable bottom

h X
i (T)u2 W, =0,

: . : . . 2 .
Introducing the dimensionless dispersion paranxétev(h—f) , it follows from

the shallowness of the upper layer that

hy

O(\/B) = O(f) < 1

From the continuity equation for= 1 we have,

M o(%) - O(vA).

Up

Let Uy = +/gh; be the characteristic shallow layer speed. According teehe

scalings, physical variables involved in the upper layera¢igns are non-dimen-
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sionalized as follows:

_Lf
= Uk

U, = anl, W; = \/IEUo\TV]_, p1= (plUS)ﬁl

~

X = L%, z=hz t n = hin,

In a weakly nonlinear theory; is usually scaled by a small parameter. Note that

here we have a@®(1) scaling. This will lead to a strongly nonlinear model.

2.1 Reducingtheupper layer dynamicstotheinter-
face

The dimensionless equations for the upper layer (the tisdelleen removed) are:

Uiy + Wy, = 0’
Ugt + Uzl + Wil1; = —Pay,

B (Wi + UpWiy + WiWi,) = —pg, — 1. (2.1)
The boundary conditions are

n+umy=w; and p;=p; at z=n(xt), (2.2)

wi(x, 1,t) = 0.

Focusing on the upper shallow region, consider the follgwdefinition: for any

11



function f(x, z t), let its associatethean-layer quantityf be

1
f(xt) = ﬁ ff(x,z,t) dz
n

By averaging we will reduce the 2D Euler equations to a 1D syste

Letn, = 1 - . From the horizontal momentum equation we have

iUy + m1UgUry + 71Wqli, = —171P1y. (2.3)

We need to express each of these mean-layer quantitiesns t&iti; andz.
The dfificulty at this stage is breaking up the mean of square, and géreral

guadratic terms, into individually averaged terms. To begth, note that

1

(), = f e dZ =m0,

n

= nUy; — MUy,

whereu, is evaluated at the interfacg, ¢ t) = (X, n(x, t),t). So,

N1l = (U + MUy (2.4)
Similarly
Uz, = Urny + (7102)x (2.5)
and
211 UpUy = 5 + (Tllu_i) - (2.6)
X

12



Therefore atz = n(x, 1),

. _ 1 1/ =
m1(Ury + Uplp,) = (172Un); + Uaipe + Eﬂxui + > (Uluf) .
X

From the kinematic condition Eq. (2.2)
1 2 1 2
Uit + Enxul = UWy — Eﬂxul,
and by substitution,

o _ 1 1/ —
11 (Ung + Upliny) = (17200), + Urwy — Eﬂxui + > (Uluf) . (2.7)
X

On the other hand, integration by parts and incompredyilgive

1

1
Wil = —Wilp — f Wi,U; dz= —wquyg + f Uy, up dz
n n
From Eq. (2.6),

1 1/ —=
1Wil, = —WaUy + Enxuf +5 (nlui) ) (2.8)
X

Substituting Egs. (2.7) and (2.8) in Eq. (2.3), the follogvimean-layer equation
is derived

(71U + (Ulu_i) = —11P1y- (2.9)

X
The incompressibility condition gives; = niU;, atz = n(x,t). This, together
with Eq. (2.5) shows that

W1 = Upny + (172U1)x.

13



Substitution ofw, into Eq. (2.2) leads tg; + uinx = uiny + (71U7)x and

—n1 = (M1Up)x. (2.10)

As pointed in [8], the system of Egs. (2.9)—(2.10) was alyea@hsidered in
[31, 5] for surface waves. In reducing (averaging) the 2DeEeljuations to this
1D system no approximations have been made up to this poavertheless, the
quantitiest; - u; andp,, prevent the closure of the system of Eqgs. (2.9)—(2.10).
These quantities will be expressed in termsy@ndu; up to a certain order in
the dispersion parametg@r Note that until now, we still have not used the vertical
momentum equation and the continuity of pressure boundargitton. We start
by approximatingp;, and then proceed to do the sametpr U;.

The vertical momentum equation over a shallow layer suggastfollowing

asymptotic expansion in powers @f

f(x.zt) = O+ 50 4+ O

for any of the functionsy;, wy, p1. In fact, from Eq. (2.1),p1, = -1 + O(B).

Integrating fromy to zwe have that

P1(X, 2 1) = pu(Xn,t) = —=(z— 1) + OB),

and the pressure continuity across the interface gives

P1(X, Z 1) = pa(X, n, 1) — (z—17) + O(B).

14



The pressurg,(x, i, t) should be non-dimensionalized in the same fashiop,as

that is,

P2 = p1UG Pe.

DefineP(x,t) = pa(x, (X, t),t). Then

p1 = P(x.1) - (z—1n) + O),

which immediately yields

plX = Px(x, t) + nx + O(B).

By averaging we get

1
= — f P 1) dz-+ e + O(B),
m
n

= Px(X.1) + 11x + O(B),

= (Pl nx 0.0) + e+ O(B) (2.12)

An approximation forP, will be obtained later from the Euler equations for
the lower fluid layer. We now approximate the mean squareztiatal velocity
in terms ofu; andn.

In order to express; - U; as a function ofi; andn, it should be pointed out

that the irrotational condition in non-dimensional vatesbis

15



i. e. Uy, = AW, Hence(u(lo))Z = 0 and as expected for shallow water flow® is

independent fronz:
u® = u9(x, 1). (2.12)

We now correct this first order approximation. By using
u = u? + UM + O(B?) (2.13)
and Eq. (2.12) it is straightforward that

2
w2 = u0” + 28000 + O(B?),
1 1 1
2
W dz= fu(lo) dz+ Zﬁfu(ll)u(lo) dz+ O(8%),
n n

n

and
, _
U ug = U271 - ) + 20O + OB,

so that
o op = U U+ ZBu(lo)@ +O(B?). (2.14)

Also from Eq. (2.13),

1

l JEE—
= [ uy dz=u? + gD + OB?),
m

n

o = U +gui + O(8%),

U U = U u? + 28u7u + O(B?). (2.19)

16



Thus Egs. (2.14) and (2.15) lead to our desired approximatiamely that
niUp - Ug =m0y - Ug + O(B°). (2.16)
Using Eg. (2.16), the nonlinear interfacial system (2.9)dmees

MU + il + (7107 - Tg + O(B%)), = —11Prys

ML + U + Ta(710n)x + 7101 - Uy = =71 P + O(B7).
From Eq. (2.10) one obtains that
niUn; + MU - Ury = —11Piy + O(B7). (2.17)

After substitution of Eq. (2.11), the following set of apgimate equations for the

upper layer was derived from Egs. (2.9), (2.10):

N1 + (mUn)x =0,

u_lt + u_l : u_lX = —MNx— (pZ(X’ T](X, t)’t)) + O(ﬁ)’
or equivalently,

-+ ((1 -y, =0,

(2.18)
W + U T = 75— (Pax (6 0.1)) +O(B).

We have almost closed our system of PDEs. Now we need to gepagssion

for p, in order to close the system and also to establish a connegtib the lower

17



fluid layer.

2.2 Connecting the upper and lower layers

The coupling of the upper and lower layers is done througtpthssure term. To
get an approximation fdPy(x, t) = (pz(x, n(x, t),t)) from the Euler equations for
X

the lower fluid layer, notice that out of the shallow water @p@mation

h,
t - O(l)’

so that the following scaling relation

Wo h2
i=o(F) =0

follows from the continuity equation. At the interface, indhe kinematic condi-

tions and the relations above, we have that

w-o(B). % -o(v)

Uy Uy

atz = n. Following these scalings introduce the dimensionlesgbbas for the

lower region (with a tilde)

X = L¥, z=1% t=—Tf n = hy,

P2 = (021U§) P2, U = BUol, Wo = BUoW,.

18



This naturally suggests that we introduce the velocity pcitd ¢ = BUoLd.
Note that the definition for is different from the one for the upper region, since
it involves the characteristic wavelendthinstead of the vertical scale. This is
consistent since both scales are of the same order.

In these dimensionless variables, the Bernoulli law for therface reads

B+ 5@ ad) +n+ 2P =),
P2

where the tilde has been ignored(t) is an arbitrary function of time. Then, up

to orderg, the pressure derivativi, is

Pu= 22 (e + VB (4u(x VB1.Y) ) +O(®). (2.19)

T
whereg satisfies the Neumann problem with a free upper surface lavymdn-

dition, given as

Pxx + ¢22= 0, on—%+wszs VBI(% 1),
bz =1+ VBxdx, atz= VBn(xt), (2.20)
—%h’(Lx/l)@ 46,20, atz= 2, MelLX)

L L

19



Furthermore,

[\/B@ (X, \/BU’ t)]x = \/B¢tx (X, \/EU’ t) + Btz (X, \/,5’77’ t) Mxs
= \Bew (% VBn.t) + O(),
= VB 0,1) + O(B),

where a Taylor expansion abaut 0 was performed.

Therefore,

I:)x = _/;_i (77x + \/E¢IX(X7 O’ t)) + O(ﬂ) (221)

As in the flat bottom case [8], from Eq. (2.21) it is clear thaisisuficient to
find the horizontal velocity, atz = 0 in order to obtairP, at the interface. Due
to the presence of the small parametg in problem (2.20)¢,(x,0,t) can be
approximated by the horizontal velocity a& 0 that comes from the linearized

problem around = 0,

Poct 9220 on P, PalLx) o

L L
¢Z = nt, atZ = O, (2.22)
_%V(Lx/l)qu co,—0 aizo e, PehLx/)

L L

In this systematic reduction we use Taylor expansion to rentiat

¢Z(X’ O’ t) = ¢Z (Xa \/ETI, t) + O(\/E) ’
= e+ Bk + O(VB),

20



hy
L
M—N z= -2+ Rn(Lx/I)
£=0
he
L
(=t

Figure 2.2: Conformal mappingx,2) = (X(¢, ), z(, £)).

and therefore,

6% 0.1) = 7+ O(B).

To find the horizontal velocity,(x, 0, t) in problem (2.22), a conformal map-
ping between the flat strip [—“—5,0] and the lower layer at rest is performed.

See Fig. 2.2.

21



The problem in conformal coordinates is

Gee + ¢ = 0, on—%sgso,

¢:(£,0,1) = M(é) m(x(£,0),1), atl =0, (2.23)
_ o

¢ =0, aty = -,

where the previous Neumann condition at the top is now matiigM(¢) =
Z,(¢,0) which is the nonzero element of the Jacobian of the cordbmapping at

the unperturbed interface. As shown in [24], its exact esgimn is:

[Se]

7L [ h(LX(E —ho/L)/1)
=1-7— dé.
M) =1 f cosi (= (¢ - &)

4h,

—00

Moreover, the Jacobian along the unperturbed interface analytic function.
Hence a highly complex boundary profile has been convertedarsmooth
variable coéficient in the equations.
To obtain the Neumann condition at the unperturbed interiacproblem

(2.23), consider

br = OxXp + dZ;

evaluated ax = 0 (equivalently = 0):

?:(€,0,1) = du(X, 0, 1) X, (£, 0) + ¢,(X, 0,t) z,(¢, 0).

The Cauchy-Riemann relations and the fact that@(= 0 and (¢, 0) = 0 imply

22



that x(¢£,0) = 0, which leads to the Neumann condition in problem (2.23).
Since a conformal mapping was used in the coordinate tremstmon and
z:(£,0) = 0, it is guaranteed that &, 0) = x:(&, 0) is different from zero. From

#:(€,0,1) = dx(X, 0,t) Xs(¢, 0), the velocitypy(X, 0, t) is recovered as

$:(£,0,1) '

¢X(X’ O’ t) = M(g)

The bottom Neumann condition is trivial in these new coaatis.
Notice that the terrain-following velocity componef{(¢, 0,1) is a tangential
derivative on the boundary for problem (2.23). Hence it carobtained as the

Hilbert transform on the strip (see [15]) applied to the Nammdata. Namely

$:(€,0,t) = T [ 4,(£,0,9)] (&),

and substituting the Neumann data from problem (2.23),

$:(€.0.1) = T [M@m(x(.0).)| (&),

where

TIE = 55 £ 1@ cotn( 1-E-9) o (2.24)

is the Hilbert transform on the strip of height In this caseh = hy/L. The
singular integral must be interpreted as a Cauchy principliev The &ect of
the two-dimensional undisturbed layer below the interfad®eing collapsed onto
a one-dimensional singular integral without any approxiama The results above

are used in (2.21) by noting tha, is obtained after taking the time derivative of
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problem (2.22). Therefore,

P, = _p2 (Ux \/E

> T |M@E)rnu(X(E. ). 1)] (5)) +O(B). (2.25)

M (§)

Now, ¢«(X, 0, 1) is a tangential derivative on the flat upper boundary fobpro
lem (2.22), whose domain is a corrugated strip. Hence, ilsis expressed as a

Hilbert transform acting on Neumann data. Since

#x(%.0,1) = M@ (. 0).1) com(;—;@ _é(x 0») o

L
2h,M(4(x, 0)) JC

a Hilbert-like transform on the corrugated strip has beemntified as:

T = M@ f(x(E 0) coth( E - £(x 0»)

L
2h;M(&(x, 0)) JC

which is not a convolution operator, unlike Eq. (2.24).
Finally, substituting the expression fB obtained in Eg. (2.25) in the upper

layer averaged equations (2.18) gives

- [(1- U)u_l]x =0

o 2
Up; + Uy Upy + (1—&)Ux =
P1

L o2 1 - 5 al . )
\/BZ_hZEWX,O)) M(&E)nu(X(£,0), 1) COth(z—hz(g — &(X, 0))) d + O(p).

In a compact notation this becomes

- [(1 - U)U_l]x = O’

G T+ (1= 22) = VB2 L MO, 0101 @) + O),
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where the dot indicates the variable on which the operatar applied.

It remains to make a few manipulations with this set of equmsti elimi-
nate the second order derivative in time and write all spdggivatives in the
&-variable.

Note that the first equation is exact. According toyit = ((1 — )t),, SO
only the first time derivative dfi; needs to enter the right-hand side of the second
equation.

In conclusion, the reduced one-dimensional internal waedehis:

- [(A-mt], =0
Uy + T T + (1 - f)—)n — VBT (MO~ )T .00
(2.26)
The transform in the forcing term is in curvilinear coordem For practical
purposes both sides must be in the same coordinate systaah wheadily ad-
justed via the conformal mapping: evexyderivative is equal to &-derivative
divided by the JacobiaM(¢). Therefore, system (2.26) in the terrain-following

coordinates reads

M- o [(L- )l =
M(f) . (2.27)
VISR M(f)( p) - B [@-

This is a Boussinesq-type system with variable (time inddpet) codficients
depending onM(¢) for the perturbation of the interface and the mean-layer
horizontal upper velocity;. We will show that this is a dispersive model, where

the dispersion term comes in through the Hilbert transfo8imce no smallness
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assumption was made on the wave amplitude up to now, the niedieled is
strongly nonlinear. It involves a Hilbert transform on thescharacterizing the
presence of harmonic functions (hence the potential flolgvbéhe interface.

System (2.27) is a reduction of the original Euler equationsstituted by
a pair of 2D-systems of PDEs to a single 1D-system of PDEsairiterface.
Instead of the integration of the Euler equations in thegmes of a free interface,
a single 1D-system of PDEs is to be solvedtidtent computational methods can
be produced for this accurate reduced model which goveorieading order, a
complex two-dimensional problem.

Remarks:

1. If the bottom is flatM(£) = 1 and the same system derived in [8] is recov-

ered, which is a nice consistency check.

2. When the lower depth tends to infinith,(— o) the limit for this model
is the same one obtained in [8] because the bottom is not sgenoae

(M(&) — 1 and x€,0) — &). Therefore

1-n)up), (X - —
a0, = F DD g gl -y 9

whereH is the usual Hilbert transform defined as

HIFI(X) = Ef X g5

7 ) X=X

In this (shallow upper layer) infinite lower layer regimestgm (2.26) be-
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comes

m—[(A-nu], =0,

Un, + Ug Uiy + (1 - ’f) My = x/B’;—jW[((l - n)u—l)xt].

1

(2.28)

. The Fourier Transform (FT) of a Hilbert transform is easibmputed. We
now make a comment regarding the use of FTs in numerical sehefhe

operatory/ [ f] andH| f] have Fourier transforms

T1f] =i coth(%) f,

HT] = isgnk)f,

where the operator symbol multiplies the transfornf ofvhich is f. There-
fore in Eqgs. (2.27) and (2.28) a pseudospectral scheme vequly a DFT
to the terms inside the square brackets. FFTs are only ajgichrectly

whenM(¢) = 1 and the waves are weakly nonlinear.

2.3 Dispersion relation for thelinearized model

Consider the flat bottom case in system (2.26), thatliss 1:

ne— [(1-n)t], =0,

Uy + Up Upy + (1 - ﬁ_j) Nx = /’;_i \/BT[((]. - n)u_l)xt] + O(B).
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Its linearization around the undisturbed state 0, U; = O gives:

r]t _u_lX = O,
Ty, + (1—’2)nx = 2 BT [Tl
P1 P1

By differentiating once im, n can be eliminated from the second equation:

Ugy + (1 - p_z)u_lxx = p_2 \/IET [u_lxtt] .
P1 P1

LetT; = Aé®Y and substituting above,
glkx-ot) (_wz _ (1 _ &) kz) _ P2 kw? et 7 [_igkx] .
P1 P1 \/B [ ]

Since7 [€] = icoth(%)e"‘x,

(-9

2 _ pP1

_ , (2.29)
khp
1+ Z—i \/BkCOth(T)

w

which is the correct approximation for the full dispersiehation

e
du coth(%) + 2 \/Ekcoth(%)

2:

whenkhy is near zero. A nonvanishing value of the paramgterthe dispersion
relation makes the phase velocity a function of the wave renkbObserve that

w2

7 — 0 ask — oo, so bounded phase velocities are obtainek lascomes large.

This is a good property for numerical schemes.

In the limit h, — oo the operatof” becomesH. SinceH[e*] = i sgnk)e*,
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the dispersion relation for system (2.28) is

(-3¢

2 _ \m

1+ 2B

2
and% — 0 ask — .

2.4 Unidirectional wave regime

For weakly nonlinear unidirectional waves and slowly vagytopography, our
model reduces to a single ILW equation with variablefioents.
Consider again system (2.26), except for the Jacobian ofahfoanal map-

ping which now is

M(éo) =

LTl [ Plexte, /L)

4h2 J costf (2 (£ - &))

—00

since we assume a slowly varying bottom topography destiibb@éon-dimen-
sional coordinates as= —h—f + h—Lzh(sx), with ¢ <« 1. The restriction to a slowly
varying topography is consistent with the objective of thesgnt Section, which
is to find equations to model the unidirectional wave profiagaHence there will
be no reflection nor any backward evolution opposite to t@agation direction.
To study the weakly nonlinear regime, we introduce the jaenplitudea for
the perturbation of the interface and introduce the noalitygparametes = hﬁl of
orderO(vB). As usual in a weakly nonlinear theory we et an". With this, the
original dimensional perturbatianis non-dimensionalized as= ahyp* = an*.

We also state thaf; = acouy", t = g wherec? = (Z—i — 1). Depending on the root
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Co chosen, there will be a right- or left-travelling wave.

Then, dropping the asterisks, Eq. (2.26) becomes

—[(1 - an)ui], = 2.30)
Ui, + ol iy f @Wfr [M@[(1 - en)til, | + OE).
Note that
=T+ 0(@); 7 =Tg+O(e, B). (2.31)

As in [8], we look for a solution, up to a first order correctione and+/3, in
the form

n= AUp +CZA2U1 + \/—Ag

1 P
g (M@ (2.32)

Substituting in the system of Egs. (2.30) up to ordex/B, two equations for

U; are obtained:

1 ~
0= Alult + 2aAouq Uy Ugt + 2aAU; Uy Uiy — le + \/—A3 M(é;) [M(f)um]
and
0 = Uy, + ol Ury — | Aclink + 20 AUy Uy + VB As— = M(‘f) [M(E)u_lxt]] -
1 __
- B&—T (M@ + O(e?.8.a yB).

1 M(é)

For compatibilityA; = +1 and to choose a right-going wave we taige= —1.

Therefore

Ny = =Tz + O (e, B), (2.33)
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SOUp = —Upy + O(a/, \/B) andUp; = —Upy + O(a/, \/[3) and the two equations are
consistent ifA; = -1, A, = —;11 andAz = —%. As a result, the evolution equation

for Uy is

3 __  _ pB 1 -
Ut + Eaul Uiy + Uy — p—iTWT [M(g)ulxt] = O(ﬁ, CL’Z, (04 \/,E) .

For the elevation of the interfagea similar equation can be obtained through
asymptotic relations which permit (to leading order) tolextge derivatives in
by derivatives ini;, as well as time derivatives for spatial derivatives. TBisii

consequence of (2.32). To begin with, use that

Uyt = —Nxt + O(a" \/E)

SO

VBp2 1 oo |- _VBpa 1 z
2 ot MGl =~ g (M@ + O . VB). (239

In virtue of Egs. (2.33) and (2.32)

gau—lu_lx = ga(—nx +O(a, VB)) (=1 + O(a. vB)).

= ga/rmx +0 (afz, o \/B) , (2.35)
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and for similar reasons

1 ~
M+ 1x = — (Ug + Upy) — %U_l(u_lt + Uny) — g%WT[M@‘)(U_m + u_lxt)] )

= — (Uz + Uny) + O(e?, @ yB. ). (2.36)

Substituting all these expressions in the evolution equdir U; we obtain

the evolution equation for the elevation of the interface,

M+ Mx— gannx - Z—iﬁi‘f['\ﬂ@)nxt] = O(B,a% aB).

Finally, in curvilinear coordinates we have

3 « p2 VB 1 _
e+ Wﬂs - EWW‘ - E?WT[U&] =0. (2.37)

This is an ILW equation with variable cfiients accounting for the slowly
varying bottom topography. Instead of the usual Hilbemsfarm on the half-
space, a Hilbert transform on the strip appears. The digperslation for the flat

bottom caseNI(¢) = 1) is

k
- B kp )’
1+ Z‘f?kCOth(T)

w (2.38)

The equation reduces to aregularized dispersive modehlogywith the Benjamin-
Bona-Mahony equation (BBM), [4].

Remarks:

1. The constant cdicient version of Eq. (2.37) fters from the ILW consid-
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ered in [8], Eq. (4.33), page 23, in that the latter has a dsspe term with
spatial derivatives only, as in the KdV equation. Both comistaeficient
equations are equivalent up to the order considered sinceawesubsti-
tute i by —n in the dispersion term up to ordé}(ﬁ,ax/ﬁ). There are
two advantages for our choice. First, for every change fro@agtesian
x-derivative to a curvilinea£-derivative we need the presence of the met-
ric term M(¢). Hence for the Camassa-Choi model with the second order
x-derivative we would end up with a variable ¢beient within the nonlo-
cal operator. Second, the regularized dispersive opefasmnely with an
xt-derivative) leads to the stable dispersion relation (Pr8garding numer-
ical schemes. Short waves have bounded propagation spgdesisloes not
happen with the ILW equation considered in [8], whose disjperrelation

is

wok_ 2B coth(@).
p1 2 L

. One step remains to be explained in the substitution o{Z8§2) into the

second equation of system (2.30), namely why it is valid ¢fowly varying

topography) that
B vewl| = B e
(WT [M(f)ult])x “ve” M@t +0®).  (2.39)

This approximation was not presented in [8] since the prtesenk con-
tains for the first time the conformal mapping technique usedhe lower
layer. The approximation (2.39) is justified through thestauction of an

auxiliary PDE problem. See Appendix A for details.
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3. For system (2.28) a similar unidirectional reduction barbtained leading

to

3
M+ 1x — zmﬁlx _ b2 —\/Bq‘[[ﬂxt] =0,
p1 2

which is a regularized Benjamin-Ono (BO) equation over aniitgfimottom

layer.

Hence Eg. (2.37) is a generalization of the BO equation farmediate
depth and the presence of a topography. This equation ©& @aly when

backscattering is negligible.

2.5 Solitary wave solutions

The ILW equation we referred to in Section 2.4 and derivedjrif, 17] is of the

form

M+ Mg + Cume + CT [1ze] =0 (2.40)

wherec; = —ga andc; = Z—ig. Eq. (2.40) admits a family in the parameteof

solitary wave solutions [14, 8]

acog
X) = , X=&-—ct, 2.41
n(x) cog 0 + sintf(x/ 1) ¢ (2.41)
where
4c,0tand hy 2c,
=———— A=—, c=1-—6cot(d),
h,cy 0 h, ( )

with 0 < 6 < n/2. Alternatively, we consider a Regularized Intermediated.o

Wave equation

M+ Mg + Cuqne — C2T [na] = 0 (2.42)
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to the same order of approximation. It also admits the sglitgave solution
Eq. (2.41) with

4c, ftand h2 1

a= 2C ’ ’ c= 2C; '
haC1 1+ £26 cot(2) 6 1+ 726 cot()

In the numerical section we will present a few experiments$ wolitary waves
over a flat bottom. In the near future we intend to study sgiitgaves interacting

with highly varying topography and submarine structures.
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Chapter 3

A higher-order reduced model

Since we want to study wave interaction with highly variatdpographies and
submarine structures, we need to be able to account for hayler (vertical)

coupling terms between the two layers. Namely we want tosigate if these
higher order terms do indeed play a role in the dynamics. El@mthis chapter
we improve the model from the previous chapter regardingptiesure term by

allowing nonhydrostatic terms to come into play.

3.1 Higher-order upper layer equations

The purpose of this chapter is to improve the order of appnakon of sys-
tem (2.27) by using higher precision approximations for gphessure term with
respect to the dispersion paramegernstead of ordes, we seek orde©(5%?).

We start with the mean-layer equations (2.10) and (2.1@iobt in Section 2.1.
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For convenience they are repeated here:

N1 + (mUp)x =0, (3.1)

Up + Uy - Uy = —Pry + O(B9). (3.2)

To approximat@yg, with orders®2 we need to expang (X, z t) with one more

term:

pa(x 2 t) = P2+ splY + 02,

so its vertical derivative is expanded as

pr(xzt) = P2 _+8pD + 0. (3.3)

Again, from the vertical momentum equation
P1, = =1 = B(Way + UtWay + WiW1,)

we have that

pO =-1.

This is the hydrostatic contribution to the pressure. We hbve that
(1) _ 0) (0),,,0) 0), , (0)
pl Z—_(va_ t+u1 \Ng. x+\N§. \NSL z)'

Even though the upper layer is shallow, throyghwe can compute the leading
order nonhydrostatic correction.

Let D; = dt + u”dx be the leading order material derivative. We rewrite the
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expression above as

), = ~Datl? w9 ) 6

Let us express the quantitied” andw” in terms ofy andT;. We begin by

expanding the incompressibility equation to obtain
W = —ul (x,1). (3.5)

Integrating Eq. (3.5) fromy to z < 1 and taking into account treindependence
expressed by Eq. (2.12) we have that

WP(x,28) = —uP (- m) + )

z=n(xt) *
Now, from the kinematic condition in EqQ. (2.2), to leadingler

w9 (0
|z—77(x t) = T+ Up 1

SO

WP (x 2 1) = —u (X Oz =n) + 7+ U,

that is,

W (x 2 1) = ~u? (x t)(z—n) + Dan. (3.6)

Substituting Egs. (3.6) and (3.5) in Eq. (3.4):

p, = @ 1) (Du(u?,) - uP%) - DZo).
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Since

= u? + 0(p), (3.7)

it is also valid that

p{", = (z- 1) (D1(Uz) — Tr3) - D3() + O(B).

Recall thaty; = 1 — n and now define

1 2

Gi(x, 1) = —(D1n).

m

It can be showhthat
Gi1(x,1) = Dy(Ur,) — Urs + O(B).

Therefore,

Y, = (- mGa(x.1) — mGu(x. 1) + O(B)

Lwrite the conservation of mass Eq. (2.10) in the form

(0t + UrdX)m1 + mtix = 0,
which together with the approximation (3.7) leads to
Dy + mUix = O(p),
which is the same a3;n = iUz, + O(B). Apply D; to it,
D25 = D1(m1Uix) + O(B).
Expanding the right-hand side above we have

D1(n71U1x) + O(B) = n1(Urxt + U Urxx) + Urx(771¢ + Uinay) + O(B),
= N1 (Ury + Ur Uryx — Uz, Ury) + O(B),

= n1 (D1 (T - Trg) + O(B).

ThenD2y = i1 (Dy(Ux,) — Trs) + O(B) as desired.
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and substituting in the asymptotic expansion Eq. (3.3)pfomwe have

P, (X z 1) = =1+ B(z - 1)Gy(x, 1) + O(B?).

Integrating fromz = n(x,t) to z < 1 we obtain

_1\2 _1\2
pr(x.2.0 = P(x) - (2- 1) + poatx ) (E52 - U5 o
Differentiating once irx,
puc = 1+ Pux )+ (1000 (£ - L1 o

and taking means

- 1
P = 1t Pol) - £ ZuiGutx0) + o)

Substituting in Eq. (3.2) we have

. 1

0+ U T = - (nx +Px -2 (gniel(x, t)) ) Lo@).  (38)
If the lower fluid layer is neglected and is regarded as the external pressure
applied to the free surface, Egs. (3.1) and (3.8) are the et of evolu-
tion equations for one homogeneous layer derived by Su andh@gain [27] and

independently by Green and Naghdi in [11].
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3.2 Improved approximation for pressure at thein-
terface

Now we want an approximation of ordé)(,B%) for Py(x,t) = (pz(x, n(x, t),t))
from the Euler equations for the lower fluid layer. This ordélapproximatioxn
is suficient to make the nonhydrostatic orgieterms explicit in the asymptotic
expansion. Again, the scal¢s comes from the lower layer reduction.

From the Bernoulli law for the lower layer:

PO = 22 (VBo+ 5@+ o) +nrc)
P1 Z=\Br(xt)

Using a Taylor expansion abonit 0 we obtain that

NI

P(xt) = —f;—j (n + VB ($thomo + VBN $iddono) + 5 (03,0 + #2],) + C(t))+0<ﬁ%>.

Since from Eq. (2.20) we have that = 7 + VBrxdx = n + O(\/B) atz =
\VBn(x, t), it follows that

¢Z|z:0 = ¢Z|z:\/ﬁn + O(‘/B) =t O( \/B)

and

Pielro = Palo vy + O( \/B) =Mu + O(\/,E)

Therefore
_ P2 B .o 2 3
P(x,1) = _/?_1 (77 + \/,E Btlyo + Brimy + > (¢X|z=0 + nt) + C(t)) + O(B2)
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and it is easy to take-derivatives since all quantities are evaluatedat0:

p 1 1 3
Px(x. 1) = —;i (nx + \/,E dixl -0 +,3(7777tt + Eﬂtz + > ¢§|Z:0) ) + 0O(52).
X

Note from the previous chapter that|,_, is already known up to ordes/3,

namely that

BXE.0.0.0 = =T MENKED|@ +O(V) @)

which is all we need to approxima§e¢§|zzo.

We will obtain ¢«|,_, with order of approximatiog via the Hilbert transform
on the corrugated strip. Assuming that our potential probier the lower deep
layer is defined in a region surrounding the physical domaimaining the in-
terface at rest = 0, we restrict our potential problem to the unperturbedaegi
There the potential problem satisfies a certain upper Nenranndary condition
(¢l,-0) to be determined up to ordgr This order of approximation is ficient
to obtain anx-derivative of ordeB because we are solving a linear problem and
we have the Hilbert transform connecting these two dexigati The calculation
is as follows.

To obtaing,|,_, a Taylor expansion is used as before:

62 (% VB11) = 6% 0) + \BrgAx, 0) + O(B).

Since the boundary conditio;n(x, \/[_'377) is known we have

#2(X,0) = ny + \/,E’quﬁx(X, 0)- \/Bn‘pzz(x’ 0) + O(B)
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and due to the Laplace equation,

¢Z(Xa 0) =n+ \/an¢x(x’ O) + \/anbxx(X, 0) + O(ﬁ)

which is the same as

$2(%,0) = 1t + \B(1¢x(%, 0)), + O(B).

Using Eg. (3.9) in the expression above,

#4x.0) = m+JTRR5nM@m0+owx

ol

1
"+ g g IM@m) 0w

M(é)

Thus by means of the Hilbert transform on the corrugateg,stri

0x(%.0) = —— T IM@(x. 0},

M@

_ 1 : B 1

-M@y{M@{m N@OQM@)[ @»m)]+owx
walM@m+f(Mo )+O®'

It is easy to take a time-derivative of this expression stheecodficientM is

independent of:

Pix(x, 0) = + O(B),

M (6)

7| M@+ B T
£t
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which together with

e = ((1-nt),, = ((1- n)u_l)gt/M(f)

leads to

+0(8?),

&

\/,5’ _ B n _
VB $ixlyo = NG [((1—n)u1)§t]+WT[WT[((l—n)uog]

and as we saw

NI

/—’_\

lg (¢>2<|z:0)x =

2
[M(S)m]} ] + o),

|

1
)
L rm 1 4o
5o 7 M@} L* 6.
p

1 1 :
= M@ ({M(f) [((1‘”)”1)f]} )$+0</3 )

Summarizing, the higher order pressure term connectingapend lower

‘m

2M

—~

layer is
Pu(X,t) = ( Mx + %T [((1— n)u_l)gt] +
B n o
vt (@ - T, ] .

B ([ X ra—mm )
T 2ME) ({ v (@ ”)ul)f]} L ’

Mﬁ(‘f) (Uﬂtt + 5 ! ))+O(ﬁ )-

This order of approximation is compatible with the nonhydatic corrections
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added to the upper shallow water layer model since it make®itters terms
explicit.

Notice that composition of the Hilbert operatbrarises in this case. A sim-
ilar situation also occurred in the fully dispersive Boussip model obtained by
Matsuno in [19] and Artiles and Nachbin in [1] for surface\gtgawaves.

The above pressure term is substituted into the system of(Bd9 and (3.8)

in curvilinear coordinates, that is,

M = M(§)(( — mU1),,
U+ T T = e + 2 ((1 - 1)°Gy), - Py + O(F?)
M(f) TME T A- n)3l\/|(§) ¢
where

1 _ Uy 1 1 _
6160 = e * vy (i@ 1‘-"‘”) [VIGEE

As a result, the strongly nonlinear model of orﬂéris:

= M(f)(( )u_l)g,
. 1 1 P2 02 VB
Uy + M(f)ululﬁ M@ (1—p—l)ng— EWT[G MUl +
ﬂ 1 P2 ﬁ 77((1 n)ul)‘ft 1 _\2
e (70 g T 2 -
I B B —
* M(f)plT[M(f)T[(l Dol *
B[ L rra-pmyl) +o
2M(§)pl({M(f) { ‘”)ul)f]} L+ =
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For the weakly nonlinear model of orqe% introducer*, U;" such that

with a = O(\/B) a typical scaling used for solitary waves. After droppihg t

asterisks we have

= g @ - i,
_ a P2 P2 \/_
mﬁW“l”l“M(f) (1_/71)% le(g)T[(1 et
B (1 _
RIS (W“m)g + 060

The higher-order weakly nonlinear model has exactly theestorm as the

lower-order strongly nonlinear model when the last ternmely,

s 10,

of the weakly nonlinear model is neglected. This implies thaweakly nonlinear
higher-order model should serve as a good model for modamagditude inter-
nal waves in a deep water configuration. Furthermore, whemdditional term
from the upper layer is included, the linear dispersiontiefefor the higher-order
weakly nonlinear model becomes the closest to the exactrisispersion relation
when compared to lower-order models, as will be shown in the Section. In
other words, the weakly nonlinear higher-order model migive a large domain

of validity so that the model can be used for a moderate (aghcstill large) ra-
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tio of h,/h;, where the fects of bottom topography are more pronounced. This
might be a justification for using a higher-order weakly moshr model and will

be thoroughly explored in the near future.

3.3 Dispersion relation for the higher-order model.
Comparison with the previous model

To obtain the dispersion relation for the improved modehsider its linearization

around the undisturbed state so that

nt = u_lfa

P1 P1 3

in the presence of a flat bottom.

Taking derivatives once ity n can be eliminated from the second equation,

Uy + (1 - P_l) Utge — — \/_T[_]g-‘tt - —Ulsgtt 0.

LetT; = Ad&-“Y Substituting above and using again tAge*] = i coth(%) g

we get

o {5

P1

that is,
P
1+ 4k2 + 22 yBkcoth(r)

(3.10)
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Again, ‘;(422 — 0 ask — o, so bounded phase velocities are obtainekllzscomes
large.

Now, let us make a comparison between th#edent dispersion relations ob-
tained throughout this work. Initially, we have the dimamsl full dispersion

relation

2 glo2 — p1)k’

@1 = K cothkhy) + pok cothkhy)

(3.11)

that comes from the linearized Euler equations around tliésturbed state, see
for example [18]. To compare it with the dimensionless disjom relations (2.29)

and (3.10) it must be taken into account that because of thr@mensionalization,
k

k=-—, = —w.

L (0] w

Therefore, (2.29) in dimensional form becomes

o2 = (o2 — p1)k?
' ’ﬁ—i + p2k COthG(hg)

(3.12)

As it has been stated, the reduced model (2.27) capturessibersion relation for

the shallow water (long waves) regime in the upper layeresinc

pik cothkhy) — 22,
h

aSkhl — 0

On the other side, the relation (3.10) in dimensional form is

9(p2 — pr)k®
ﬁ—i + %hlplkz +p2k COtha(hz)

0 =
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Notice that both approaches are fully dispersive regarthiedottom layer, since
the second coth is completely retained. For the shallownvadper layer regime
(khy near zero) we obtain again the correct approximation of ditledfspersion
relation, but here the terpyk cothkh,) in the denominator is expanded with one
more term, namely

(khy)?
3

Plih, cothkhy) = 22 (1+
1 hl

. +0 ((khl)“)) :

and consequently

of = 0f + O((khy)*).

while

of = of + O((khy)?).

This means that the linear dispersion relation from the drigitrder nonlinear
modelm? is closer to the full (exact) linear dispersion relatied than the lin-
ear dispersion relation from the lower-order mo@giis. See Fig. 3.1 and a detail
in Fig. 3.2 where the corresponding phase velocities areteh

The inclusion of the higher order pressure term has impréivecccuracy of
the phase speed over a much wider wavenumber band. Thisyignwgortant in

reflection-transmission problems as shown byfldziand Nachbin in [23].
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2.6

24F T

Figure 3.1: Phase velocities fpy = 1,0, = 2,h; = 1, h, = 2,8 = 0.01. Dotted
line: full phase velocity, dashed line: phase velocity toe higher order model,
solid line: phase velocity for the lower order model.
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Figure 3.2: Detail from Fig. 3.1.
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Chapter 4

Numerical results

4.1 Hierarchy of one-dimensional models

For numerical implementations, we first normalize the sivailater velocityci =
¢

(g—i - 1) of system (2.27) by setting = 7*, Uy = CoUs’, t = . Dropping the
asterisks, the following Strongly Nonlinear Corrugated BottModel (SNCM) is

obtained,
1
= = [(L— U], =
B (i) . 1 4.1)
U1t+M(§)U1 VI ﬁ’p M(g)ﬂozf][(l MU -

We will work on the periodic domaig € II[0, 2¢], so that instead of the
operatory its periodic versior/g 2, appears above. See Appendix C for the
definition of 77 o4. The choice of a computational periodic domain was made to
be able to use spectral methods. To avoid the influence ofdhedaries on the

evolution of the perturbation interacting with the bottom profile we added two
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homogeneuous (flat) regions at the extremes and keep thendygraway from
these regions. Hence both profile and initial disturbandeb&idefined and kept
away from¢ = 0 = 2¢.

From system (4.1), a hierarchy of one-dimensional modeaisheaderived by
considering the dierent regimes (linear, weakly nonlinear or strongly nogdir)
as well as the flat or corrugated bottom cases. The Weaklyingarl Corrugated
Bottom Model (WNCM) was already obtained in (2.30). In cunelam coordi-

nates for a periodic domain it reads

1
m— (1 —an)ug], =

M(g) 1 (4.2)
Uy + M(é:)ululg M(f)ﬂgz ﬁp M(f)T[ozz][Ul]

Settinga = 0 we obtained the Linear Corrugated Bottom Model (LCM)

Th — ﬁu_lg =0,
A 1 (4.3)
Uy, — M@ Bp M(f)(/"[o 20 [Ut]y -

The flat bottom versions are obtained by simply takM{) = 1 for all ¢
I1[0, 2¢]. To fix a notation, let us use the abbreviations in Table d refer to each

model.

4.2 Method of lines

To find the solution for the initial value problem of systemCGV, WNCM,
SNFM, WNFM, LCM is a nontrivial task. That is why we resort to nemcal

methods to find approximate solutions.
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Linear Weakly non-| Strongly non-
linear linear
Flat bottom | LFM WNFM SNFM
Rough LCM WNCM SNCM
bottom

Table 4.1: Abbreviations for the sixfé&rent models.

In order to use the method of lines to solve numerically tretesys of equa-
tions (4.1, 4.2, 4.3) and their flat bottom versions, let wgrite them in a more
convenient way,

n = E(n, W),

(4.4)
Vt = F('], U_]_),

whereV is an auxiliary variable defined for each model in Table 4.Be Torre-
sponding vector fieldH, F) is defined in Table 4.3. The mean-layer horizontal
upper velocityu; can be recovered frommandV by inverting the relations in Ta-
ble 4.2 in a way to be specified later on for each case. For e Ibieing, let us
assume thai; = ¥(n, V), given a certain operatar.

According to the method of lines, we can discretize in spacksalve a cou-
pled system of ODEs by a finiteféérence formula inlike, for example, a Runge-
Kutta integration scheme or a predictor-corrector solviénan Adams-Bashforth
predictor and an Adams-Moulton corrector.

First, an approximation scheme for thelerivatives involved in the right-hand

side of the systems above must be used for the discretizatigmace. A choice
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Vv Flat bottom \ Rough bottom

Linear Ur — VB 2T 024 (U1, U1~ VB 2 5its To.2a (U,
eBKY | T~ VB 2T oz [T, Ui~ VB2 570 (Ui,
|\? ;:ﬁ;%zr U — VB Z_i(r[O,ZL’] [(1- U)U_l]g U - VB g—iﬁ(r[o,zt’] [(1- U)U_l]g

Table 4.2: The auxiliary variabM.

| (E.F) | Flat bottom Rough bottom

Linear (U_lga 77;5) i) (u_lf’ ’If)
Nvgsﬁ:le);r ([(1 — an)U],, ne - a'u_lu_lg) @ ([(1 — an)uyl,, n; — au_lu_lf)
h?;ﬁ{:ggr ([(1 = MUl 7 = U_lu_l,s) 0E ([(1 — U], me — u_lu_lg)

Table 4.3: The fieldE, F).

55




is to approximate thé&-derivative of a functiorf (¢) by the fourth order, five point

formula
8(fjr1— fj) + fio — fjo
12A¢

fe(&5) = +0(Ag%), (4.5)

wheref; = f(¢j), & = jJAE, Aé = 2¢/N, | = 1,...,N. So the spatial discretization
for the LFM with 8 = 0 (which is just the wave equation) leads to the system of

Ordinary Diferential Equations (ODES)

N = Cuy,

u_lt = Cn’

wheren = [n1,....nn]" with ) = p(jAE, 1) andUy = [Ugy, ..., Uiy]Y with Uy =

Ur(JAE, 1), j = 1,...,N. Cis the skew-symmetric, circulant matrix,

0 2/3 -1/12 0 0 1/122 -2/3 ‘
-2/3 0 2/3 -1/12 1/12
1/12 -2/3 0 2/3 . 0

0 1/12 -2

C:i / /3 0
A&

0 0 2/3 -1/12
-1/12 .. =2/3 0 2/3
2/3 -1/12 0 12 -2/3 0

Since it is a skew-symmetric matrix, it has imaginary eigdngs. The same is

true for the block matrix
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which has the same eigenvaluesofvith double multiplicity.
Another choice to approximate téiederivatives is to use the spectfafierivative,

whose corresponding matrix is

0 ~1 cot(®?)
~lcot(®f) - 1 cot(%t)
o 1 cot(%%) ~1cott)
~1 cot®?)
~1 cot(™2)
~1 cot(®%) 0

Here we also have a skew-symmetric, Toeplitz, circulantimatith imaginary
eigenvaluesk, k = —N/2+ 1,...,N/2 - 1, with zero having multiplicity 2. With
it, the discretization of the non-dispersive LFM leads t@4DESs system fon and

Uy involving the block matrix

D
This block matrix has the same imaginary eigenvalueb ofith double multi-
plicity.

The rule of thumb for stability (valid for normal matrices)[R8]: the method
of lines is stable if the eigenvalues of the linearized spdiscretization operator,
scaled byAt, lie in the stability region of the time-discretization optor.

In Fig. 4.1 we depict the stability regions for the fourth@réRunge-Kutta in-
tegration scheme (RK4), the fifth order, four step Adams-Mouscheme (AM4)

and the fourth order, three step Adams-Moulton scheme (AMRB)Ng the imag-

57



inary axis (where the eigenvalues of the linearized spdisairetization operators
lie), RK4 is less restrictive, allowing larger time steps andnerical evolution
over longer time intervals, as we will see in the experiméatieow. For a better
visualization, in Fig. 4.2 we compute the amplification &¢R(z)| wherez = 1At
andA represents the largest (in the sense of absolute value)wailge of the lin-
earized spatial discretization operator, see for exangjle The AM3 scheme
has the smallest stability interval along the imaginarysasince the amplifica-
tion factor becomes greater than one very quickly. This ieggh more restrictive
stability condition when using the AM3 scheme to solve thdirbctional wave
equation, for example. However, for the regularized disipersystems consid-
ered here, we obtained less instability since the phaseitelactually decreases
as the wavenumber grows accommodating high wave-numb#es bean in the
hyperbolic case (see the dispersion relation in Section RBpersion comes in
as a physical regularization in comparison with its undadyhyperbolic counter-
part. Still, the classical fourth order Runge-Kutta seemsetthe best choice.

The spectral approximation of tiiederivative is more accurate than the five
point formula exhibited above. However, we cannot use nigakvelocity one
(At = A¢) with it, in correspondence with the theoretical velocibgcause of
stability restrictions of the method of lines already dissed. The reason for
choosing the Courant number as one is to avoid a numericat detae travelling
wave speed that could interfere with the expected delayniagtresult from the
interaction of the wave with a rapidly-varying bottom prefill his particular issue
will be investigated in the near future. For the time being,clioose the five point
formula (4.5) in all the numerical experiments presenteithis chapter.

The time domain is discretized &s= nAt, n = 0,..., Tna With At = A&,
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— RK4
— AM3
— AM4

-2 -1 ReO(Z)

Figure 4.1: Stability regions for RK4, AM4, AM3.
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Figure 4.2: Amplification factor along the imaginary axis RK4, AM3, AM4.
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So the numerical velocity equals the theoretical one in th&ilabove and the
Courant numbets- = 1 x At/A¢ equals one. This choice is maintained throughout
the numerical experiments with thefldirent systems.

The time evolution step foj andV using RK4 is
n+1 n At
n"t=n +€(K1+2K2+2K3+ K4)

A
VAR VLT Et(KK1+ 2KK2 + 2KK3 + KK4),

wheren" andV" areN x 1 vectors with componentﬁ1 = n(jA¢, nAt) andV" =
V(jA€,nAt) respectively. After each evolution step thex 1 vectorTy" with
componentdl;; = Ui(jA, nAt) must be recovered from" and V" via U" =

P, V).
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Also, recall that

K1=E@®" "),

KK1=F@"w",

T = P(7" + 0.5AtK1, V" + 0.5AtK K 1),
K2 = E(y" + 0.5AtK 1, Tpy),

KK2 = F(" + 0.5AtK 1, Tpy),

T = (7" + 0.5AtK2, V" + 0.5AtK K 2),
K3 = E(" + 0.5AtK2, Tyy,),

KK3 = F(5" + 0.5AtK 2, Ugy,),

T = (7" + AtK3, V" + AtKK3),
K4 = E(p" + AtK3, Tyys),

KK4 = F(" + AtK3, Tia).

Notice that the projection frorm(V) back tou; must be done after each stage.
These intermediate values are denotedifpy i = 1,2, 3.

Now we will specify how to deal with the operat®tin order to recovet; in
terms ofV andz. Since the Fast Fourier Transform (FFT) of a Hilbert transfo
is easily computed, as well as the FFT faf-derivative, we can go to frequency
space and solve; in terms ofV for the linear and constant ciieients relation

that appears in Table 4.2 for both LFM and WNFM. In Fourier gpae have

V(K) = (1 + B ‘;—ik—” coth(@)) (k)
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fork=-N/2+1,...,N/2. Therefore,

V(K)
(1 + \B f}—j'% coth(%))’

(K =

since the denominator is alwaydtérent from zero.

The remaining models are essentiallffelient from the previous ones, as well
as from the terrain following Boussinesq system obtaine@4} nd solved nu-
merically in [22] and the extended Boussinesq equationyeldithy Nwogu and
solved numerically in [29]. This is due to the fact that in fresent work, either
the dispersive term has a nonlinear dependence betywaedu, or it has a vari-
able codficient accompanying it. The use of the FFT is no longer sttéoghard,
so we use a matrix formulation to find" in terms ofV" ands.

For the SNCM (4.1) we have

p2 1

V=10 - 5/;1%(7[0,25] [(1-n)uy], . (4.6)

Note a nonlinear term with th@ operator and also a variable ¢beient in

front of it. The discrete version in matrix form of Eq. (4.@ads

V= (1— \/BZ—iM‘lT DA)u_l, (4.7)

where theN x N matrices involved are
e Mjj = M(¢)), and zero elsewhere,
o Ajj = 1-n(¢;), and zero elsewhere,

e D is the Fourier spectral spatialftérentiation matrix,
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e T is the convolution matrix fo7 o 2. The composition of convolution and
differentiation can be computed with the help of the Fouriersfiaim ma-
trix F,

Fy=wi-D0-D = i,

leading to the operator with symbol matrix

— L coth( L), i=j=1...,N/2
Aij =1 - coth(U=32"), i=j=N/2+1,....N-1,
0 elsewherg

where

TD=DT = %FAE.

Although the original expression (4.6) is nonlinear, thiatien (4.7) is a linear
algebraic system to be solved i@rsincen andV are already known at the current
time stepn + 1. So at this stage, by using a spectral matrix instead of an\w&
are only paying a price in complexity but not in accuracy.l&@ah4 sumarizes the
discretizations used for each model, including the diszagons for the LFM and
WNFM cases. These cases were implemented with the help oRheafd also
using a matrix formulation as a way to validate the methodtierother models.
We also implemented in Matlab two predictor-corrector sobg, one that uses
a third order, three step, explicit Adams-Bashforth sol¥83) as predictor and
a fourth order, three step implicit Adams-Moulton (AM3) asrector. The other
scheme uses a fourth order, four step Adams-Bashforth @\8:t) as predictor

and a fifth order, four step implicit Adams-Moulton (AM4) asrector.
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Vv | Flatbottom | Rough bottom |

Linear | (1- VBZTD)T; | (1- VBZM'TD)T

Weakly
Nonlinear

(1- VB2TD)T | (1- VBZM'TD)Ty

Strongly o _ - B
Nonlinear (1“/Ep‘iTDA)U1 (1—x/Bp—§M TDA)T;

Table 4.4: Discretizations for the relations in Table 4.2.

The AB3 scheme used is:

WhereE;.1 =

At . .
ny™ =} + T5(236] - 16E] + 5E]),

1 At i i
Oj™ = T} + 5(23F] — 16F] " + 5F]),

E(jA&, nAt) andF] = F(jAS, nAt). The AM3 scheme used is:

At 1, e
ni =1+ 54(9ET + 19E] — 5Ef + ),

At
Ut =g+ zl(9|:jn+1 +19F] — BF + F2),

The AB4 scheme used is:

At
7t =nl + Zl(55Ej” - B9E[ + 37E[% - 9E]Y),

At
Ut =g+ Zl(55F;1 — BOF™T + 37F2 — oF9),
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The AM4 scheme used is:

At
1_ 1 -1 -2 -3
mi =) + 255 (251E]" + 646E] — 26457 + 106E] — 19E]),
A
Ut =g+ 755 2to(251':?+1 + 64677 — 2648 + 106FT% — 19F]%).

To initialize both predictor-corrector schemes, the RK4cdegsd above is

employed.

4.3 Flat bottom experiments

Example 4.1. We first consider the LFM for the non dispersive cAase0,

Uy = Ne.

This is just the bidirectional wave equation #pr

Mt — Nee = 0

with initial contidions

n(£,0) = no(£),

m(&, 0) = Uro.(¢).
This model (whose exact solution is well known) is usefuMalidating and com-
paring the numerical schemes, since it is more demanding ttia dispersive

models regarding numerical stability, as we commentedarptievious Section.
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Consider the initial condition
o) = 0.5 %284 ¢ ¢ 1[0, 16m],

with a = 50, 7t(¢, 0) = Tro:(¢) = —n0,(¢), wherell[0, 16x] is the interval [Q 16r]
with periodic boundary conditions. If we sef initially to —no(¢) then the Rie-
mann invariants for the nondispersive LFM,= n + U; andB = n — Uy, will be

A(&,1) = 0 andB(¢,t) = n(¢ - t,0). Therefore

A+B
2

n= =n(¢-1,0)

will be a right-travelling wave as shown in Fig. 4.3, where tltumerical solution
obtained with the AM4 scheme is shown until titne 39.2699. The solution for
the final time is also plotted in Fig. 4.4, the absolute ersdd 0098872, a little
less than with RK4 (0.0013). Nevertheless, with RK4 we aretadelvance much
more in time, untik = 1511891, while with AM4 instabilities set fdr= 49.0874.
AM3 is unstable as early ds= 9.8175.

Example 4.2. Another interesting example from the wave equation is th#t®

fission of the wave. Take the initial condition fpias
no(€) = 0.5 €8I0 £ ¢ 1[0, 16n],

andug, = 0. If we setu; initially to zero then the Riemann invariants will be

A1) = n(€ +1,0) andB(&,t) = n(€ —t,0). Therefore

_A+B € +t,0)+n(-1t0)
=T T 2
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Figure 4.3: Travelling wave on a periodic domdifj0, 167]. The numerical
solution was obtained using AM4 witNl = 512, A¢é¢ = 2n/N = 0.098175,
At = A¢é = 0.098175.

0.6
0.5~
0.4
0.3
0.2

0.1

o 10 20 350 40 50 60
Figure 4.4: Travelling wave. Dotted line: numerical saatfor the nondispersive
LFM using AM4 fort = 39.2699 andN = 512,A¢ = 2I/N = 0.098175,At =

A¢ = 0.098175, dashed line: initial condition, solid line: exaaiusion.
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Figure 4.5: Fission of the wave on a periodic domid[0, 16r].

and the amplitude is half of the original one, see Fig. (4.Bis is consistent
with D’Alembert’s solution for the wave equation. When thetiravelling waves
coincide (overlap) in space and time the initial conditisrrécovered with an
error of Q00374 by the RK4 method with = 512, A¢ = 2I/N = 0.098175,
At = A¢ = 0.098175, see Fig. 4.6. This is a nice consistency check for the

numerical conservation of mass of two waves colliding.

Example 4.3. Let us study the numerical solutions for the LFM for the dispe
caseB # 0. The initial value problem for this case can be solved eihti by
means of Fourier Series as follows.

Consider the initial value problem (IVP) for the LFM on the ipelic domain
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Figure 4.6: Fission of the wave. Dotted line: numerical 8olufor the nondis-
persive LFM using RK4 fot = 50.2655 andN = 512,A¢ = 2I/N = 0.098175,
At = A¢ = 0.098175, dashed line: initial condition, solid line: exaalusion.

& € 1[0, 24],
nt - u_lf = 0’

U -7 = B &(7[0,2(] (Uil »
p1 (4.9)

77(5» O) = 770(‘,’;),
U (£, 0) = Ugo(é).

First, let us perform the change of variables: n£/¢, T = nt/¢ to the standard
periodic domair¥ € II[0, 2r]. The time variable is modified in order to maintain

the wave velocity as one for the hyperbolic regimie<(0). In these coordinates
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the IVP reads

e = Uig = 0.

u_lf — né—t = \/B &710,25] [u_l]ff ’
01 (4.10)

n(f, O) = 770@:)’

(€, 0) = Tio(é).

The symbol of the operataf 2 [ ], (that is the composition of one spatial deriva-

tive with the Hilbert transform) in the new coordinates is

kr
- Coth(Yr

kr h,
[ s

see Appendix C. Applying Fourier Transform (see Appendix C,(EQR) for its

definition) to problem (4.10) we have

7 = iKUy,

uilf(l + 13/2%” coth(%ﬂ%)) =ikn, fork+0
P1 (4.11)

1(k, 0) = 10(K),

Tk, 0) = Trg(K).

Substituteuil from the first equation into the second:

k2

1+ VB2 coth(tle

i = - 7=~ Wi

The general solution for this ODE is
n(k,t) = ¢y expliw(K)t) + ¢, exp(—iw(K)t), k=0,
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wherec, andc; are two functions of the wavenumblerUsing Fourier Series we

can write the general solution fgr at least in a formal manner, as

(o)

n(.1) = > Z cu(k) explio(K)t) e + = ! Z Co(K) exp(—iw(K)t)ek.

k=—co k_—o"

Each term represents one wave mode, see [30]. Since thesi@peelationw(k)
is odd, each wave propagates in one direction: the first wavels to the left, the
second one to the right. Returning to Fourier space, fromrtitialicondition in

(4.11) we have,
C1(K) + c2(K) = 170(K),

K (4.12)
(k) — ca(k) = (K )Ulo(k)
Therefore,
ci(k) = 05( (K) + K — 0 (k))
1 o w(K) 10
and
ek) = 0 5(770(k) - )Ulo(k))

For one propagation direction we sgt= 0, then
2¢1 = 7o(K) + Kigg(K)/w(K) = O,

which implies the following relation between each ampléwd the initial condi-

tion for U; and the amplitude of the initial condition fgr

Tl = ~ 27509, k%0

We use this relation to provide the initial condition 1o (by means of an FFT)

72



for n to propagate in only one direction. Moreoves(k) = no(k) = 77(k, 0). The

exact solution is

%(0)9 k = O,
i0(K) exp(—iw(K)t), k# 0.

(k1) =

Although the amplitude of each mode is preserved as timermega each com-
ponent of the wavetrain travels with its own phase velociflg)/k. As a result,
an initial Gaussian shape will disperse into an oscillatoayn as shown in the
numerical experiments. The exact solution can be emplayéskt the numerical
scheme precision and stability properties. We considefdhewving Gaussian

function as the initial perturbation of the interface,
10(&) = 0.5 ¢4n)?/128

with a = 50. The LFM parameters afe= 16r, p; = 1,p, = 2,8 = 0.05,a = 0.

The numerical parameters dde= 256,A¢ = 2¢/N = 0.3927,At = A¢ = 0.3927 .

See Fig. 4.7 were the numerical solutionfer 785398 is depicted together with
the initial condition. The numerical solution shows verypdagreement with the
exact solution. The same experiment with a finer gNd= 512,A¢ = 2¢/N =
0.19635,At = A¢ = 0.19635 is depicted in Fig. 4.8. The result is the same as the
one obtained in the first experiment, which indicates cayemce of the numerical

method.
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Figure 4.7: Pulse propagating over a flat bottom in the likspersive regime.
Dotted line: numerical solution for the LFM using RK4 for= 785398 and
N = 256, dashed line: initial condition, solid line: exact g@un.
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Figure 4.8: Pulse propagating over a flat bottom in the lirkspersive regime.
Dotted line: numerical solution for the LFM using RK4 for= 785398 and
N = 512, dashed line: initial condition, solid line: exact gaun.
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4.4 Periodic topography experiments

When the bottom is flat, the topography dependentfment M(¢) is identically
one. For the time being, we avoid the computatioiMdg§) from the variable depth
bottom, which can be costly even using Driscoll's packady.[1 et us assume
that it is a function of the fornrM(¢) = 1+ n(¢) wheren(¢) describes periodic fluc-
tuations. This choice is not far from the real fio@ent that comes from mapping
a periodic piecewise linear topography, see [21, 24, 22js $tnategy will prove

useful for testing the models and observing the phenomerarevimterested in.

Example 4.4. As a first example of a rough bottom let us consider a periodic

slowly-varying codicient M(¢) defined on the domain [Q6r] as

1+05sin(%), for6r <é&<12r,
M(¢) =
1, elsewhere
The bottom irregularities are located in the region$ ¢ < 12r. There are 15

oscillations. The period of the bottom irregularitiesl is= 1.2566. The initial

perturbation of the interface is the Gaussian function
o(é) = 0.5 /%8

with a = 200, therefore its ffective width isL = 2.4 and the ratio inhomo-
geneitiegvavelength is about.B236. For the mean velocity; we choose the
corresponding initial condition that gives one propagatiaection for the LFM
with 8 = 0.0001,a = 0, as done in Section 4.3. See Fig. 4.9 where the numerical

solution fort = 36.3247 is depicted together with the solution for the flat botto
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Figure 4.9: Pulse propagating over a synthetic periodiwlgtvarying topogra-
phy. Dotted line: numerical solution for the LCM using RK4 fot 36.3247 and
N = 1024, dashed line: initial condition, solid line: flat batt@xact solution.

and the initial condition. The other parameters gge= 1, p, = 2, N = 1024,
A¢ = 2¢/N = 0.0491,At = A¢ = 0.0491.

A detailed analysis of Fig. 4.9 shows that twice the periothefbottom os-
cillations (25133) is in very good agreement with the reflected waveleragh
expected from Bragg's phenomenon theory [12]. See Fig. 4Aiérevvertical
bars marking spatial intervals of size5233 fall together with the end of each
period of the reflected signal. A comparison between thetisolsifor the flat and
periodic bottoms suggests that the attenuation in the wenditde is mainly
due to the dispersive term. It is also patent that the o$ioiia behind the pulse

correspond to the reflected wave due to the topography.

Example 4.5. The present example adds the nonlinearity ingredient tpthe

vious example. We consider again the periodic slowly-vayyiodficient M(&)
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Figure 4.10: Pulse propagating over a synthetic periodwlgtvarying topogra-
phy. Dashed line: initial condition. Dotted line: numetisalution for the LCM
using RK4 fort = 36.3247 andN = 1024, vertical bars mark spatial intervals of
size 25133 that fall together with the end of each period of the céfié signal.

defined on the domain [Q6r] as

1+0.5sin(%), for6r<é&<12x,
M(©) = i

1, elsewhere

The initial perturbation of the interface is the Gaussianction
7o(£) = 0.5 ¢-)"/64

with a = 200 and &ective widthL = 2.4. The ratio inhomogeneitiasavelength
is about 06236. The physical parameters are= 1, p, = 2,8 = 0.0001,a =
0.01. We employN = 1024,A¢ = 2¢/N = 0.0491,At = A¢ = 0.0491. InFig. 4.11

the numerical solution far= 323977 is depicted together with the exact solution
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Figure 4.11: Pulse propagating over a synthetic periodwlgtvarying topogra-
phy. Dotted line: numerical solution for the WNCM using RK4 for 323977
andN = 1024, dashed line: initial condition, solid line: exactwgan for the
LFM.

for the LFM and the initial condition. Again, twice the pedi@f the bottom
oscillations (25133) is in very good agreement with the reflected wavelergth
Fig. 4.12 vertical bars marking spatial intervals of siz&133 fall together with

the end of each period of the reflected signal.

Example 4.6. Let us consider now a periodic rapidly-varying ogent M(¢)

defined on the domain [Q6r] as

1+ 0.5sin(1%), for6r < &< 12x,
M(¢) =
1, elsewhere

The bottom irregularities are located in the regian$6 ¢ < 12r. The period of

the bottom irregularities is= 0.4189. The initial perturbation of the interface is
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Figure 4.12: Pulse propagating over a synthetic periodwlgtvarying topogra-
phy. Dotted line: numerical solution for the WNCM using RK4 for 323977
andN = 1024, vertical bars mark spatial intervals of siz&133 that fall together
with the end of each period of the reflected signal.

now the Gaussian function
no(£) = 0.5ga¢-21°/64

with a = 50, therefore its #ective width isL = 4.8 and the ratio inhomo-
geneitiegvavelength is about.0873. For the mean velocity; we choose the
corresponding initial condition to ensure one propagatimaction for the LFM
with 8 = 0.0001,a = 0, as done in Section 4.3. See Fig. 4.13 where the numerical
solution fort = 35.3429 is depicted together with the solution for the flat botto
and the initial condition. The other parameters gre= 1, p, = 2, N = 1024,

A¢ = 2¢/N = 0.049087,At = A¢ = 0.049087. Note that the solution is very
similar to that of the flat bottom case. The wave is not modifigdhe rapidly-

varying topography and no reflections are generated. Orlptbpagation speed
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Figure 4.13: Pulse propagating over a synthetic periogpdraarying topogra-
phy. Dotted line: numerical solution for the LCM using RK4 with= 1024 for
t = 35.3429, dashed line: initial condition, solid line: flat batte@xact solution.

should be slightly decreased as predicted in Rosales anchiealzeu [26]. But

this change is only noticeable over very large distances.

Example 4.7. Let us add the nonlinearity ingredient & 0.005) to the previous
example. We consider again the periodic rapidly-varyimgptraphy defined in
Example 4.6, together with the same Gaussian shapfegtee widthL = 4.8.
Therefore the ratio inhomogeneitiemvelength is kept at 0873. In Fig. 4.14 the
numerical solution fot = 35.3429 is depicted together with the exact solution for
the LFM and the initial condition. The other parametersre 0.0001,p; = 1,

02 = 2, N = 1024,A¢ = 2¢/N = 0.049087,At = A¢ = 0.049087. Again,
the solution is very similar to that of the LFM. The wave is nebdified by the

rapidly-varying topography and no reflections are gendrate
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Figure 4.14: Pulse propagating over a synthetic periogpdraarying topogra-
phy. Dotted line: numerical solution for the WNCM using RK4 wiNh= 1024 for
t = 35.3429, dashed line: initial condition, solid line: flat batte@exact solution.

4.5 Computing solitary waves solutions

Now we present two examples of internal solitary waves frbm Regularized
ILW equation evolving according to the WNFM. That is, we takeratial condi-
tion for the WNFM a solitary wave from its unidirectional rediion. We expect
the wave to behave almost like a solitary wave. In partictler balance between
nonlinearity and dispersion should be maintained and thvewhould travel with-
out a significant change of shape. The velocity of propagatfwuld be similar
to that in the ILW equation. The numerical solutions are wigtd by the RK4
numerical solver for the WNFM with, = 1, p, = 2,8 = 0.0001,a = 0.01,
N = 256,A¢ = 2¢/N = 0.1963,¢ = 8r, At = A¢ = 0.1963.

Example 4.8. In Fig. 4.15 the evolution of an approximate solitary wavieison

is shown. As initial condition for, the parameter8 = 7/8, a = —0.09953
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Figure 4.15: Numerical solution of the WNFM with= 0.0001,a = 0.01 for the
propagation of a single solitary wave.

and 1 = 0.3323 are selected in the solitary wave solution of Eq. (2.4R)is
taken to be the corresponding dispersive solution for onpayation direction,
see Section 4.3.

The expected behaviour of the wave is captured by the nuaieniethod for
long times as shown in Fig. 4.16. The pulse propagates withpgmoximate
velocity of 09884 in conformity with its propagation velocity= 0.9961 in the
Regularized ILW equation (2.42). The shape of the solitaryena preserved for
long times as shown in Fig. 4.17. The error between the irdtadition and the
solution that returns to the original position at approxienimet = 50.8545 is
0.0047. Taking into account that the choicetgfis an approximation from the

linear cased = 0), the result is satisfactory.

Example 4.9. In Fig. 4.18 the fission of a single approximate solitary wage
lution is simulated. As initial condition fon, the same parametefs= /8,

a = —0.099536 andt = 0.3323 are used, whila;; = 0. We observe two waves
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Figure 4.16: Propagation of a single solitary wave unil50.8545.
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Figure 4.17: A single solitary wave, dashed line: initiahddion, dotted line:
numerical solution fot = 50.8545.
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Figure 4.18: Numerical solution of the WNFM for the fission dfiagle solitary
wave.

traveling in opposite directions with approximate sped&B86. When they coin-

cide (overlap) in space and time, the initial condition isaxeered with an error

of 9.8510x 1074, see Fig. 4.19. This behaviour of the wave is observed fay lon
times as shown in Fig. 4.20.

The examples in this chapter suggest that the model progonsétapter 2

can be implemented numerically and that its basic qualdégiroperties are well

captured by the numerical solutions.
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Figure 4.19: Dashed line: initial condition, dotted linaitial wave recovered at
t = 510509, error= 9.8510x 104,
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Figure 4.20: Fission of a single solitary wave unt# 1021018.
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Conclusions and futurework

In the present work, a one-dimensional strongly nonlineatable coéicient
Boussinesqg-type model for the evolution of internal waves itwo-layer sys-
tem is derived. The regime considered is a shallow water gorgtion for the
upper layer and an intermediate depth for the lower layee. @dttom has an arbi-
trary, not necessarily smooth nor single-valued profileegalizing the flat bottom
model derived in [8]. This arbitrary topography is dealtiwlty performing a con-
formal mapping as in [24]. In the unidirectional propagatiegime the model
reduces to an ILW equation when a slowly varying topograpghgssumed. The
adjustment for the periodic wave case and its computatiomalementation are
also performed. We study the interaction of internal wavieh periodic bottom
profiles and the evolution of approximate solitary wave soihs. The expected
gualitative behaviour is captured. A higher-order redumeeldimensional model
is also obtained, though it has not being implemented coatipuaially yet. Both
reduced models have dispersion relations that reproducectly the limit from
the Euler equations for the shallow water (long waves) regimthe upper layer.
The higher-order model, by taking into account the nonhsigrtac correction term
for the pressure, approximates better the full dispersatation. It will be inter-

esting to study numerically the behaviour of the weakly imadr higher-order
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model regarding this property.

The work initiated here points out some lines of researchinfémd to use the
strongly nonlinear model and the weakly nonlinear higheleomodel to study
the interaction of large amplitude internal waves with nsckle topography pro-
files. The refocusing and stabilization of solitary wavestfee large levels of
nonlinearity allowed by these models is the goal of curresearch. A diiculty
arises to this end, due to the nonlocal dispersive term: nbiseasy to find ex-
plicit solitary wave solutions for the strongly nonlinegiseem, and the solitary
waves suggested by the weakly one-directional lower-atftsory steepen with
higher nonlinearity. In [8] the strategy to overcome thiffidulty is to use the
weakly one-directional solitary wave from the ILW equatias an initial guess
for the solitary wave profile. Then find a numerical solitargvwe iteratively via
the Newton-Raphson method. The profile obtained will servimitial data for

the propagating model.
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Appendix A

Approximation for the horizontal
derivatives at the unperturbed

Interface

We want to justify the use o{%T[M(S)u_m] instead of(%T[M(S)u_lt])x in

the substitution ofj, in system (2.30), in the case of slowly varying topography.

Hence we identi%f/‘ [M(E)u_lt] as the tangential derivative of the solution of

the Laplace equation with Neumann conditions defined in tixdiary problem

Oy + D, =0, on—% + %h(gx) <z<0,

O, = Uy, atz=0, (A.1)
h h, h

o, - sfh'(gx)cpx =0, atz= —f + fh(gx),
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wheree is the small parameter defined at the beginning of this tek{/adt was
already shown that

D(x.0.9 = =T M@

via conformal mapping. Now we seek an approximatio®g{x, 0, t), our term of
interest, where is kept frozen. Letu(X, 2) = (X, z t). The tangential derivative

of w atz= 0is our goal. From Eqgs. (A.1), satisfies

h, h
Wxx + w7z =0, on—f + fh(sx) <z<0,
wz = Upx, atz=0,

hy AL _ _ h h
wz—grh (eX)wx — & th (eX)w =0, atz= —t+th(gx).
A conformal mapping taking a flat strip into the corrugatetpsabove trans-

forms this problem into

h
w§§:+w§§:0, On—fﬁfso,

w; = M(€) Up(x(£, 0), 1), ats =0,

wy — Sz%h"(SX(f, 0)w =0, atl/= —%.

Note that a mixed boundary condition (Robin condition) is et = —h—f
instead of a Neumann condition as in all previous problemsaBge of the Robin
condition, the tangential derivative:(¢, 0, t) is no longer7 [M(E)u_lxt(x(g, 0), t)],
but it can be approximated by this term up to a certain order. ifollowing a

perturbation approach, consider

w:wo+8w1+82w2+~--
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thenwy satisfies the Neumann problem

h
woge + woge = 0, on—f <(<0,
(,L)Og = M(é:) u_lxt(x(él:’ O), t)’ até/ = 0!
h
wo; =0, atd = —f,

with tangential derivativev:(£,0) = 7 [M(S)u_lxt(X(E, 0), t)] (é). Thuswoy, =
woz/ M(£). The subsequent termds; = 0 because both boundary conditions are

homogeneous tO(e). Nextw, satisfies

h
Wage + w2z = 0, On_f <(¢<0,
w2, =0, ats =0,
ha , hy
wze = T (eX(, 0))wo = 0, atd = -
Therefore
w = wp + O(&). (A.2)

If we establish a relation between 8 ande of the types? = O(8Y), with q > %

Eq. (A.2) leads to

1 ~ 1 ~
(WT[M@)UH])X = i@ M@+ 0(B).

which justifies the approximation done in Eq. (2.39).
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Appendix B

The Dirichlet-to-Neumann operator

Due to the importance of the Dirichlet-to-Neumann operé@N,) in modelling
water waves we pointed here its relation with the Hilber$farm on the flat strip
used througout this work.

Given the problem

21717+ZEE:O’ —hS@SO,
Zz = 9(v), w=0,

25:0, w:—h,

the operatof/” returns the tangential derivative(z, 0) from the Neumann data
z5(v,0) = g(v), that is
T[g] = ZU(E’ O)

Therefore, its inversg satisfies

9(v) = z5(v, 0) = T [2:(v, 0)]. (B.1)
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The inversel of 7~ has a symboki tanh(kh). Alternatively it can be defined

by the principal value integral

1 V) dv. (B.2)

UL sinf(z(v-2)/2h)

The DtN, for the problem

Zgg+255:0, —hSESO,

z(v,0) = f(v),
2@, -h) = 0,

returns the normal derivative (Neumann condition) from Ehachlet data. In
light of (B.1) we have
DtNo[ f] = T f'].

It means that the Dirichlet-to-Neumann operator applies differentiation plus
the inverse operatdf to the Dirichlet data in order to obtain the Neumann con-

dition.
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Appendix C

The periodic counterpart of the

operator 7

Due to the nonlocal definition of the Hilbert transform, iiscessary to redefine
it when restricting our problem to the periodic domain fonrarical implemen-
tations. To that end we keep in mind its geometrical intdgtien, that is, the
operator that takes a harmonic function’s normal derieasivthe boundary and
transforms it into its tangential derivative at the bourydar

Consider the following problem for periodice I1[0, 2¢],

Pee + Pr = 0, ~hy/L<2<0,0<&<2¢,
$(0,0) = ¢(2¢,4).

¢:(£,0) = 9(5),

¢, (€, —hg/L) = 0.
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Seté = n£/¢. In the new coordinates(é, ) = ¢(&, ) satisfies

(g)zagﬂa“ =0, —h/L<{<0,0<&x<2nm,
9(0.8) = #(2n.2),

¢, 0) =G(),

¢, (€,~hy/L) = 0.

(C.1)

We consider the Fourier Seriesdre [0, 2r] with its coeficients given by

2r
(k) = f f@e™ &,
5 (C.2)
(@=5 > e

k=—c0

The Discrete Fourier Transform (DFT) éis

o

N
flo=ng) 1E)e". &=jaf af=7T)

j=1
exactly the same one used by Trefethen [28] together witmtrezse
N/2

_ 1 A _
fE) =5 > fed, j=1....N

k=—N/2+1

wherek € {—~N/2 + 1,...,N/2} because in the discrete domaifi®é = gkizt/N g

there is no diterence fok = ko mod N.
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Apply the Fourier Transform to problem (C.1):

(- |k)2( ) $+8,=0, on-hyL<<0,
${(k, 0) = G(K), (C.3)
6 (k ~hy/L) = 0.

The solution for problem (C.3) is

= Gk cosh(7 (¢ + )
k )= k # 0.
¢(k. ) wJC sinn(2) , k#0
Therefore, foiCt initial Neumann data,
3.0 = Z o(k. )X,
Z 69 cosh(7 (¢ + 2)) 4 4(0)
27'(' ﬂk/f Slnh(k—ﬂh—) 2’
M et

the convergence is uniform in©& < 27 and also in-h,/L < ¢ < 0 since

, (C.4)

for all integerk # 0.

We wantg,; returning to the original variables

k_ﬂ he =
$(.0) = Z g(k) COS ¢ (§+ L))eikgn/€+ %
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Takingé&-derivatives,

s

—_

{4+

t)
L

)) eik_fn/f'

i cosh(&
¢6.0) = ZﬂZgo At

Pt sinh(

~F

The tangential derivative at the boundary is obtain makirg O:

dk%h_l—z) eik_fﬂ/f'
sinh(‘x"2)

¢e(£.0) = o Z B

k;eo

The convergence is still uniform because of Eq. (C.4).

Therefore,

_ LS i cotn( e e
Toal 110 = 5, 3 icot 7 ) T,
k#0

where

21

T = [T@e™dE, E=nest,

0

that is, the Fourier cdBcients inII[O, 2r].

It is also convenient to write the composition of one spaliaivative with

the Hilbert transforn¥p o [-] because they always come together in the models

considered here,

h
Toanl (le(E/m) = 5 Z % oot T2 ) 700,

k:tO

Finally, for the discretization of the periodic domain (aymg the aliasing
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effect) we have that

1 E krhy\ e =
Tl @)~ =~ > - coth(——)ék‘fi (9, j=1...N,
D v
k#0
where

~ N _
Tl = a2 ) TE)e™.
j=1

In conclusion, the symbol of the operatgp > [-]: (that is the composition of

one spatial derivative with the Hilbert transform) in theveoordinate is

—— coth
£

kr k7rh2
t L
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