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curso de Tópicos em Geometria Riemanniana, pelas esclarecedoras conversas sobre
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Aos Professores Lúcio Rodrigues e Luis Florit do grupo de geometria diferencial

do Impa.

Aos demais Professores do Impa e a Professora Bárbara.

A todos os funcionários do Impa.
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Koiller e João Pedro dos Santos, que me proporcionaram um ambiente competitivo e

ao mesmo tempo muito saudável para aprender matemática nos meus primeiros anos
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Prefácio

Nesta tese apresentamos resultados em três linhas distintas da área de Geometria
Diferencial.

No primeiro caṕıtulo provamos que qualquer bola contida na bola fechada menos
um conjunto finito de pontos é estritamente convexa em qualquer métrica Rieman-
niana, completa conforme à métrica Euclidiana, que tem curvatura escalar constante
positiva e curvatura média do bordo não negativa com respeito à normal que aponta
para o interior. A demonstração deste teorema é baseada no estudo de uma equação
a derivadas parciais não linear onde, após o uso de uma transformação conveniente,
aplicamos o Método dos Planos Móveis.

No segundo caṕıtulo, que faz parte de um trabalho feito em colaboração com
J. H. de Lira, estudamos superf́ıcies de curvatura média constante em variedades
tri-dimensionais que são produtos de esferas ou planos hiperbólicos pela reta ou
pelo espaço Lorentziano unidimensional. Inicialmente fazemos um estudo qualita-
tivo das superf́ıcies de curvatura média constante do tipo espaço que são invariantes
por rotações. A seguir mostramos que a diferencial de Abresch-Rosenberg para su-
perf́ıcies imersas nesses espaços pode ser obtida como uma combinação linear de
duas diferenciais de Hopf; como subproduto deste fato damos uma nova prova de
que essa diferencial é holomorfa quando a superf́ıcie tem curvatura média constante.
Também apresentamos uma nova prova de que esferas de curvatura média constante
nestes espaços são esferas de rotação, bem como a versão Lorentziana deste resul-
tado. Finalizamos apresentando dois teoremas de classificação de discos de curvatura
média constante nestes espaços como aplicações do fato que a diferencial de Abresch-
Rosenberg é holomorfa.

No terceiro e último caṕıtulo melhoramos um teorema de Alencar, do Carmo
e Elbert que dá condições suficientes para que um domı́nio de uma hipersuperf́ıcie
r-mı́nima e r-especial do espaço Euclidiano com curvatura de Gauss-Kronecker difer-
ente de zero seja r-estável. Mostramos que as mesmas condições ainda são suficientes
no caso em que a curvatura de Gauss-Kronecker se anula num conjunto de capaci-
dade zero. Para mostrar esse teorema provamos antes uma relação entre auto-valores
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de certos operadores eĺıpticos de domı́nios onde retiramos um subconjunto pequeno
e a capacidade do conjunto removido.

M.P.A.C.
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Chapter 1

Convex Balls in Locally
Conformally Flat Metrics

1.1 Introduction

Let B1 denote the open unit ball of Rn, n ≥ 3. Given a finite set of points Λ =
{p1, . . . , pk} ⊂ B1, k ≥ 1, we will consider a complete Riemannian metric g on B1\Λ
of constant positive scalar curvature R(g) = n(n− 1) and conformally related to the
Euclidean metric δ. We will also assume that g has nonnegative boundary mean
curvature. Here, and throughout this chapter, second fundamental forms will be
computed with respect to the inward unit normal vector.

In this chapter we prove

Theorem 1.1 If B ⊂ B1 \ Λ is a standard Euclidean ball, then ∂B is convex with
respect to the metric g.

Here, we say that ∂B is convex if its second fundamental form is positive definite.
Since ∂B is umbilical in the Euclidean metric and the notion of an umbilical point
is conformally invariant, we know that ∂B is also umbilic in the metric g. In that
case ∂B is convex if its mean curvature h is positive everywhere.

This theorem is motivated by an analogous one on the sphere due to R. Schoen
[35]. He shows that if Λ ⊂ Sn n ≥ 3, is nonempty and g is a complete Riemannian
metric on Sn \ Λ, conformal to the standard round metric g0 and with constant
positive scalar curvature n(n−1), then every standard ball B ⊂ Sn\Λ is convex with
respect to the metric g. Schoen used this geometrical result to prove the compactness
of the solutions to the Yamabe problem in the locally conformally flat case. Later,
D. Pollack also used Schoen’s theorem to prove a compactness result for the singular

1
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Yamabe problem on the sphere where the singular set is a finite colection of points
Λ = {p1, . . . , pk} ⊂ Sn, n ≥ 3 (see [31]). In this sense our results can be viewed as
the first step to prove compactness for the singular Yamabe problem with boundary
conditions.

We shall point out that to find a metric satisfying the hypotheses of Theorem
1.1 is equivalent to finding a positive solution to an elliptic equation with critical
Sobolev exponent. The idea of the proof is to get geometrical information from that
equation by applying the Moving Planes Method as in [21].

1.2 Preliminaries and Examples

In this section we will introduce some notations and we shall recall some classical
results that will be used in the proof of Theorem 1.1. We will also describe an useful
example.

Let (Mn, g0) be a smooth compact orientable Riemannian manifold possibly with
boundary, n ≥ 3. Let us denote by R(g0) its scalar curvature and by h(g0) its

boundary mean curvature. Let g = u
4

n−2 g0 be a metric conformal to g0. Then
the positive function u satisfies the following nonlinear elliptic partial differential
equation of critical Sobolev exponent ∆g0u−

n−2
4(n−1)R(g0)u+ n−2

4(n−1)R(g)u
n+2
n−2 = 0 in M,

∂u
∂ν −

n−2
2 h(g0)u+ n−2

2 h(g)u
n
n−2 = 0 on ∂M,

(1.1)

where ν is the inward unit normal vector field to ∂M .
The problem of existence of solutions to (1.1), when R(g) and h(g) are constants,

is referred to as the Yamabe problem. It was completely solved when ∂M = ∅ in a
sequence of works, beginning with H. Yamabe himself [38], passing by N. Trudinger
[37] and T. Aubin [4], and finally by R. Schoen [36]. In the case of nonempty
boundary, J. Escobar solved almost all the cases (see [15], [16]) followed by Z. Han
and Y. Li [22], F. Marques [26] and others. In this article, however, we wish to study
solutions of (1.1), with R(g) constant, which become singular on finite set of points
Λ = {p1, . . . , pk} ⊂ M . In the case that Λ ⊂ M is a general closed set this is the so
called singular Yamabe problem. This singular behavior is equivalent, at least in the
case that g0 is conformally flat, to requiring g to be complete on M \Λ. The existence
problem (with ∂M = ∅) displays a relationship between the size of Λ and the sign
of R(g). It is known that for a solution with R(g) < 0 to exist, it is necessary and
sufficient that dim(Λ) > n−2

2 (see [5], [27] and [19]), while if a solution exists with
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R(g) ≥ 0, then dim(Λ) ≤ n−2
2 . Here dim(Λ) stands for the Hausdorff dimension of Λ.

Those existence problems are more difficult when R(g) > 0 and the most well-known
examples are given by the Fowler solutions which we will now discuss briefly.

Example. Let u > 0 be such that{
∆u+ n(n−2)

4 u
n+2
n−2 = 0 in Rn \ {0}, n ≥ 3,

0 is an isolated singularity.
(1.2)

In this case g = u
4

n−2 δ is a metric of constant scalar curvature n(n− 1). Using
the invariance under conformal transformations we may work in different background
metrics. The most convenient one here is the cylindrical metric gcyl = dθ2 + dt2 on

Sn−1 × R. In this case g = v
4

n−2 gcyl, where v is defined in the whole cylinder and
satisfies

d2v

dt2
+ ∆θv −

(n− 2)2

4
v +

n(n− 2)

4
v
n+2
n−2 = 0. (1.3)

One easily verifies that the solutions to equation (1.2) and (1.3) are related by

u(x) = |x|
2−n

2 v(x/|x|,− log |x|). (1.4)

By a deep theorem of Caffarelli, Gidas and Spruck (see [9], Theorem 8.1) we
know that v is rotationally symmetric, that is v(θ, t) = v(t), and therefore the PDE
(1.3) reduces to the following ODE:

d2v

dt2
− (n− 2)2

4
v +

n(n− 2)

4
v
n+2
n−2 = 0.

Setting w = v′ this equation is transformed into a first order Hamiltonian system{
dv
dt = w,

dw
dt = (n−2)2

4 v − n(n−2)
4 v

n+2
n−2 ,

whose Hamiltonian energy is given by

H(v, w) = w2 − (n− 2)2

4
v2 +

(n− 2)2

4
v

2n
n−2 .
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Figure 1.1: Typical phase plane of H

The solutions (v(t), v′(t)) describe the level sets of H and we note that (0, 0) and

(±v0, 0), where v0 = (n−2
n )

n−2
4 , are the equilibrium points. We restrict ourselves

to the half-plane {v > 0} where g = v
4

n−2 gcyl has geometrical meaning. On the
other hand we are looking for complete metric. Those will be generated by the
Fowler solutions : the periodic solutions around the equilibrium point (v0, 0). They
are symmetric with respect to v-axis (see figure 1.1) and can be parametrized by the
minimum value ε attained by v, ε ∈ (0, v0], (and a translation parameter T ). We
will denote them by vε. We point out that v0 corresponds to the scaling of gcyl which
makes the cylinder have scalar curvature n(n− 1). We observe that one obtains the
Fowler solutions uε in Rn \ {0} by using the relation (1.4).

We can now construct metrics satisfying the hypotheses of Theorem 1.1 (with
Λ = {0} an R(g) = n(n − 1)) from the Fowler solutions. To do this, we just take a
Fowler solution v defined for t ≥ t0, where t0 is such that we have w = dv

dt ≤ 0, or
equivalently,

h(g) = − 2

n− 2
v
− n
n−2

dv

dt
≥ 0.

This concludes our Example.
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By another result of Caffarelli, Gidas and Spruck (see Theorem 1.2 in [9]) it is
known that, given a positive solution u to

∆u+
n(n− 2)

4
u
n+2
n−2 = 0 (1.5)

which is defined in the punctured ball B1 \ {0} and which is singular at the origin,
there exists a unique Fowler solution uε such that

u(x) = (1 + o(1))uε(|x|) as |x| → 0.

Also, from Theorem 2 in [25], either u extends as a smooth solution to the ball, or
there exist positive constants C1, C2 such that

C1|x|(2−n)/2 ≤ u(x) ≤ C2|x|(2−n)/2. (1.6)

From now on we will work in the Euclidean space with the metric g = u
4

n−2 δ. In
that context, u is a positive function on Rn \ {0} which satisfies (1.5). In the study
of the equation (1.5) we will make use of the inversion map in Rn and some related
properties. We begin with the definition:

The map I : Rn \ {0} → Rn \ {0} defined by I(x) = x
|x|2 is called inversion with

respect to Sn−1(1). The inversion is a conformal map that takes a neighborhood of
infinity onto a neighborhood of the origin. It follows immediately that I is its own
inverse and is the identity on Sn(1).

We will now describe the Kelvin Transform, which is closely related to the inver-
sion map. We define the Kelvin transform of a function u as the function ũ = K[u]
given by

ũ(x) = |x|2−nu(|x|−2x).

The Kelvin transform appears naturally when we consider the pull back of g =

u
4

n−2 δ by I. In fact, since I is conformal we get I∗g = v
4

n−2 δ and therefore

v
4

n−2 (x) = I∗g(x)(∂xi , ∂xi)

= u
4

n−2 (I(x))〈I∗∂xi , I∗∂xi〉

= u
4

n−2 (I(x))
1

|x|4
.
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That is v = K[u].
The main property of the Kelvin transform is that it preserves harmonic functions.

Actually, a computation gives that

∆ṽ(x) = K[|x|4∆v].

As a consequence we get

Proposition 1.2 The Kelvin transform preserves the equation (1.5).

Proof:

Suppose that ∆v + n(n−2)
4 v

n+2
n−2 = 0 on Ω ⊂ Rn \ {0}. Then we get

∆ṽ = K[|x|4∆v] = K[− n(n− 2)

4
|x|4v

n+2
n−2 ]

= |x|2−n
(
− n(n− 2)

4
|x|x|−2|4v

n+2
n−2 (x|x|−2)

)
= −n(n− 2)

4
|x|−(n+2)v

n+2
n−2 (x|x|−2)

= −n(n− 2)

4

(
|x|−(n−2)v(x|x|−2)

)n+2
n−2

= −n(n− 2)

4
ṽ
n+2
n−2 ,

where ṽ = K[v]. 2

Now assume that g = u
4

n−2 δ is defined on a neighborhood of origin and consider
the Taylor expansion of u

u(x) = a+
∑

bixi +O(|x|2), (1.7)

where a = u(0) > 0.
Using the expansion (1.7) for v = K[u] we obtain the asymptotic expansion:

v(x) = |x|2−n
(
a+

∑
bix

i|x|−2
)

+O(|x|−n), (1.8)

in a neighborhood of infinity.
And consequently we also find
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v
xk

(x) = (2− n)a
xk

|x|n
+O(|x|−n), (1.9)

v
xkxl

(x) = O(|x|−n). (1.10)

These asymptotic expansions are necessary to start the process of moving planes.
We use the notation xλ = (x′, 2λ − xn) to denote the reflection of the point x =
(x′, xn) with respect to the plane xn = λ.

Lemma 1.3 (see [9], page 227.) Let v be a function in a neighborhood of infinity
satisfying the asymptotic expansions (1.8) to (1.10). Then there exist large positive
constants λ̄, R such that, if λ ≥ λ̄,

v(x) > v(xλ) for xn < λ, |x| > R.

To end this section we present another geometrical result concerning conformally
flat metrics.

Lemma 1.4 Small Euclidean balls Br in Rn away from the singular set are convex

with respect to g = u
4

n−2 δ.

Proof:
We know that ∂Br is umbilical with respect to g and so, we just need to show

that the mean curvature of ∂Br is positive with respect to the inward unit normal
vector ν. From the boundary condition in problem (1.1) we have that the mean
curvature can be computed as

h(g) =
2

n− 2
u
− n
n−2

(
− ∂u

∂ν
+
n− 2

2r
u
)
. (1.11)

On the other hand, there exist c1 > 0 and c2 > 0 such that |∂u∂ν | < c1 and u > c2
in Br. Therefore,

−∂u
∂ν

+
n− 2

2r
u > −c1 +

n− 2

2r
c2.

Thus, if r is sufficiently small we have that h(g) > 0 on ∂Br.
2
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1.3 Proof of Theorem 1.1

The proof will be by contradiction. Suppose ∂B is not convex. Then there exists a
point q ∈ ∂B such that the mean curvature of ∂B in q with respect to g is h(q) ≤ 0.

If we write g = u
4

n−2 δ we have that u is a positive smooth function on B1 \ Λ
satisfying {

∆u+ n(n−2)
4 u

n+2
n−2 = 0 in B1 \ Λ,

∂u
∂ν −

n−2
2 u+ n−2

2 hu
n
n−2 = 0 on ∂B1.

(1.12)

We point out that the condition for the metric g to be complete should be equiv-
alent to requiring that the set Λ consist of non removable singularities of u.

Now, we will choose a point p ∈ ∂B, p 6= q and let us consider the inversion

I : Rn \ {p} → Rn \ {p}.

This map takes B1 \ ({p} ∪ Λ) on Rn \ (B(ā, r) ∪ Λ), where B(ā, r) is an open
ball of center ā ∈ Rn and radius r > 0 and Λ still denotes the singular set. Let us
denote by Σ the boundary of B(ā, r), that is, Σ = I(∂B1).

The image of ∂B \ {p} is a hyperplane Π and by a coordinate choice we may
assume Π = Π0 := {x ∈ Rn : xn = 0}. We may suppose that the center of the ball
B(ā, r) lies on the xn−axis, below Π0. Notice also that Λ lies below Π0.

Since I is a conformal map we have I∗g = v
4

n−2 δ, where v is the Kelvin transform
of u on Rn \ (B(ā, r) ∪ Λ).

This metric has constant positive scalar curvature n(n− 1) in Rn \ (B(ā, r) ∪Λ)
and nonnegative mean curvature h on Σ.

As before v is a solution of the following problem ∆v + n(n−2)
4 v

n+2
n−2 = 0 in Rn \ (B(ā, r) ∪ Λ),

∂v
∂ν + n−2

2r v + n−2
2 hv

n+2
n−2 = 0 on Σ.

Furthermore, we know that Π0 is umbilical and we are also assuming hI∗g(I(q)) ≤
0, where the mean curvature is computed with respect to ∂

∂xn . On the other hand

we have ∂v
∂xn (I(q)) + n−2

2 hI∗g(I(q))v
n
n−2 = 0. Hence, ∂v

∂xn (I(q)) ≥ 0.
Now we start with the Moving Planes Method. We will denote by xλ the reflection

of x with respect to the hyperplane Πλ := {x ∈ Rn : xn = λ} and set Ωλ = {x ∈
Rn \ (B(ā, r) ∪ Λ) : xn ≤ λ}. We define

wλ(x) = v(x)− vλ(x) for x ∈ Ωλ,
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where vλ(x) := v(xλ).
Since the infinity is a regular point to I∗g, the expansions (1.8) to (1.10) hold to

v. It follows from Lemma 1.3 that there exist R > 0 and λ̄ > 0 such that wλ > 0
in Ωλ \B(0, R), if λ ≥ λ̄. Without loss of generality we can choose R > 0 such that
B(a, r) ∪ Λ ⊂ B(0, R).

Now we remark that v has a positive infimum v > v0 > 0 in B(0, R)\(B(ā, r)∪Λ).
It follows from the fact that v is a classical solution to (1.5) in B(0, R)\ (B(ā, r)∪Λ)
and v(x) blows up as x approaches to some pj ∈ Λ as we seen in (1.6). So, by using
(1.8), we may choose λ > 0 large enough such that vλ(x) < v0/2, for x ∈ B(0, R)
and for λ ≥ λ.

Thus, for sufficiently large λ we get wλ > 0 in int(Ωλ), and we may write

∆wλ + cλ(x)wλ = 0 in int(Ωλ), (1.13)

where

cλ(x) =
n(n− 2)

4

v(x)
n+2
n−2 − vλ(x)

n+2
n−2

v(x)− vλ(x)
.

Notice that, by definition, wλ always vanishes on Πλ. In particular, setting
λ0 = inf{λ > 0 : wλ > 0 on int(Ωλ),∀λ ≥ λ} we obtain by continuity that wλ0
satisfies (1.13), wλ0

≥ 0 in Ωλ0
and wλ0

= 0 on Πλ0
. Hence, by applying the strong

maximum principle, we conclude that either wλ0
> 0 in int(Ωλ0

) or wλ0
= v − vλ0

vanishes identically. But in the second case Πλ0
is a symmetry hyperplane to v,

which is a contradiction, since there are no singularities above Πλ0
. Thus wλ0

> 0
in int(Ωλ0

).
Now, by the E. Hopf maximum principle,

∂wλ0

∂xn
= 2

∂v

∂xn
< 0 in Πλ0

, (1.14)

and since ∂v
∂xn (I(q)) ≥ 0, we have λ0 > 0. In this case, by definition of λ0, we can

choose sequences λk ↑ λ0 and xk ∈ Ωλk such that wλk(xk) < 0.

We recall that vλ satisfies (1.5) on Ωλ in the classical sense, while v satisfies
(1.5) on Ωλ in the distributional sense. In particular we conclude that wλ is a weak
supersolution on Ωλ, and thus can be redefined on a set of measure zero so as to be
upper semicontinuos. Hence wλ achieves its infimum.

Then we may assume, without loss of generality, that xk is a minimum of wλk in
Ωλk . We have that xk /∈ Πk because wk always vanishes on Πk. So, either xk ∈ Σ
or is an interior point. Even when xk is an interior point we claim that (xk)k is a
bounded sequence. More precisely,
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Claim 1.5 [see §2 in [12]] There exists R0 > 0, independent of λ, such that if wλ
is negative somewhere in int(Ω), and x0 ∈ int(Ω) is a minimum point of wλ, then
|x0| < R0.

For completeness we present a proof in the Appendix A.
So, we can take a convergent subsequence xk → x̄ ∈ Ωλ0

. Since wλk(xk) < 0 and
wλ0

≥ 0 in Ωλ0
we necessarily have wλ0

(x̄) = 0 and therefore x̄ ∈ ∂Ωλ0
= Πλ0

∪ Σ.
We point out that ∇wλk(xk) = 0 because xk is a interior minimum point to wλk
and hence ∇wλ0

(x̄) = 0. In particular, by inequality (1.14), xk /∈ Πλ0
. Therefore we

have x̄ ∈ Σ and by E. Hopf maximum principle again,

∂wλ0

∂η
(p̄) =

∂v

∂η
(p̄)− ∂v

∂η
(p̄λ0

) < 0, (1.15)

where η := −ν is the inward unit normal vector to Σ. In the following we will denote
by Σλ the reflection of Σ with respect to Πλ.

Since Σλ is an umbilical sphere in (Rn, δ) we have Σλ is umbilical in (Rn, g),
consequently the second fundamental form of Σλ0

with respect to η is IIη = hηId.
Now, we recall that

∂v

∂ν
+
n− 2

2r
v +

n− 2

2
hv

n+2
n−2 = 0 on Σ (1.16)

So, since v(x̄) = v(x̄λ0
) we have from (1.15) and (1.16) that

hη(x̄λ0
) < hη(x̄) = −h,

Since h ≥ 0, we have that x̄λ0
is a non convex point in Σλ0

. Considering the

problem back in B1, we denote by P1 the ball corresponding to Π+
λ0

and by K1 the

ball corresponding to B(ā, r)λ0
. Then we get K1 ⊂ P1 ⊂ B. Furthermore, ∂K1 is

the reflection of ∂B1 with respect to ∂P1.
We have shown that if ∂B has a non convex point, the smaller ball K1 has a non

convex point on ∂K1. We repeat this argument to obtain a sequence of balls with
non convex points on the boundaries, B ⊃ K1 ⊃ · · · ⊃ Kj ⊃ · · ·.

This sequence cannot converge to a point, since, from Lemma 1.4 small balls are
always convex. On the other hand, if Kj → K∞ where K∞ is not a point, then
K∞ ⊂ B is a ball in B1 \ Λ such that its boundary is the reflection of ∂B1 with
respect to to itself, that is a contradiction.



Chapter 2

CMC Surfaces of Genus Zero in
M2(κ)× R

This chapter is part of a joint work with J. H. de Lira [11].

2.1 Introduction

U. Abresch and H. Rosenberg have recently proved that there exists a quadratic
differential for an immersed surface in M2(κ) × R which is holomorphic when the
surface has constant mean curvature. Here, M2(κ) denotes the two-dimensional
simply connected space form with constant curvature κ. This differential Q plays the
role of the usual Hopf differential in the theory of constant mean curvature surfaces
immersed in space forms. Thus, they were able to prove the following theorem:

Theorem. (Theorem 2, p. 143, [1]) Any immersed cmc sphere S2 → M2(κ)× R in
a product space is actually one of the embedded rotationally invariant cmc spheres
S2
H ⊂ M2(κ)× R.

The rotationally invariant spheres referred to above were constructed by W.-Y.
Hsiang and W.-T. Hsiang in [24] for κ < 0 and by R. Pedrosa and M. Ritore in
[30] for any value of κ. The theorem quoted above proves affirmatively a conjecture
stated by Hsiang and Hsiang in their paper [24]. More importantly, it indicates that
some tools often used for surface theory in space forms could be redesigned to more
general three dimensional homogeneous spaces, the more natural ones after space
forms being M2(κ)×R. The price to be paid in abandoning space forms is that the
technical difficulties are quite involved. The method in [1] is to study very closely
the revolution surfaces in M2(κ)× R in order to find out the suitable differential.

11
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Our idea here is to relate the Q differential with the usual Hopf differential after
embedding M2(κ) × R in some Euclidean space E4. We prove that Q is written as
a linear combination of the two Hopf differentials Ψ1 and Ψ2 associated to the two
normal directions to the surface in E4. More precisely

Theorem 2.2 Let x : Σ → M2(κ)×R be an isometric immersion with mean curva-
ture H. If H is constant, the quadratic differential Q = 2HΨ1− ε

rΨ
2 is holomorphic

on Σ.

Here, ε and r are constants such that κ = ε/r2.
After that, we present another proof of the result of Abresch-Rosenberg (see

Theorem 2.7). We also prove an extension of the well-known Nitsche’s theorem
about free boundary surfaces.

Theorem 2.10 Let X : D → M2(κ) × R be an immersion with constant mean
curvature such that X(∂D) lies in some slice M2(κ)×{t0} and makes constant angle
along its boundary. Then X(Σ) is part of a rotationally invariant surface.

Finally, we obtain a characterization of stable CMC discs with circular boundary
on M2(κ)× R.

Theorem 2.11 Let Σ be a disc type surface immersed with constant mean curvature
H in M2(κ) × R. Suppose that ∂Σ is contained in a geodesic circle in some slice
M2(κ) × {t0} and that the immersion is stable. Then Σ is part of a rotationally
invariant surface. Moreover, if H = 0 then Σ is a totally geodesic disc.

These results have counterparts in Lorentzian product spaces. In fact, the rota-
tionally invariant surfaces are the predominant examples in our cases and although
these surfaces are well known in the Riemannian product spaces some new properties
appear when we consider the Lorentzian product. We begin with a qualitative study
of such surfaces.

2.2 Rotationally Invariant CMC Discs

Let (M2(κ), dσ2) be a two dimensional surface endowed with a complete metric with
constant sectional curvature κ. We fix the product metric dσ2 + εdt2, ε ∈ {−1, 1},
on the product M2(κ) × R. This metric is Lorentzian if ε = −1 and Riemannian
if ε = 1. In the Lorentzian products we will consider only space-like surfaces, i.e.,
surfaces for which the metric induced on them is a Riemannian metric.

A tangent vector v to M2(κ)×R is projected in a horizontal component vh and a
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vertical component vt that belong, respectively, to the TM2(κ) and TR factors. We
denote by 〈, 〉 and D respectively the metric and covariant derivative in M2(κ)× R.
The curvature tensor in M2(κ)× R is denoted by R̄.

Let (ρ, θ) be polar coordinates centered at some point p0 of M2(κ). So, we obtain
cylindrical coordinates (ρ, θ, t) in M2(κ)×R. We point out that the metric of M2(κ)
is given in these polar coordinates by dσ2 = dρ2+sn2

κ(ρ)dθ
2 and therefore the metric

on M2(κ)× R can be written as dρ2 + sn2
κ(ρ)dθ

2 + εdt2. Here

snκ(ρ) =


1√
κ

sin(
√
κρ), if κ > 0,

ρ, if κ = 0,
1√
−κ sinh(

√
−κρ), if κ < 0.

Let us fix a curve s 7→ (ρ(s), 0, t(s)) in the plane θ = 0. If we rotate this curve
along the t-axis we obtain a rotationally invariant surface Σ in M2(κ) × R whose
axis is {p0} ×R. This means that this surface has a parametrization X, in terms of
the cylindrical coordinates defined above, of the following form

(s, θ) 7→ (ρ(s), θ, t(s)).

The tangent plane to Σ at a point (s, θ) is spanned by the coordinate vector fields

Xs = ρ̇ ∂ρ + ṫ ∂t and Xθ = ∂θ,

and an unit normal vector field to X is given by

n =
1

W
(ṫ ∂ρ − ερ̇ ∂t),

where W 2 := (ρ̇2 + εṫ2) and so 〈n, n〉 = ε. Notice that when ε = −1 Σ is space-like
and W 2 > 0.

The induced metric on Σ is given by

〈dX, dX〉 := Eds2 + 2Fdsdθ +Gdθ2

= (ρ̇2 + εṫ2) ds2 + sn2
κ(ρ) dθ2.

Using the fact that s 7→ ρ(s) parametrizes a geodesic on M2(κ) and the vector
field ∂t is parallel we can compute the derivatives

Xss := DXsXs

= ρ̈ ∂ρ + ρ̇D∂ρ∂ρ + ẗ ∂t = ρ̈ ∂ρ + ẗ ∂t,

Xsθ := DXsXθ = 0,

Xθθ := DXθ
Xθ = D∂θ

∂θ.
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Now we can compute the coefficients of the second fundamental form in these
cylindrical coordinates. First, we obtain,

e := 〈Xss, n〉 =
ρ̈ṫ− ẗρ̇

W
.

And since 〈D∂θ
∂θ, ∂t〉 = 0, we have,

g := 〈Xθθ, n〉 =
ṫ

W
〈D∂θ

∂θ, ∂ρ〉

= − ṫ

W
〈∂θ, D∂θ

∂ρ〉 = − ṫ

W
〈∂θ, D∂ρ∂θ〉

= − ṫ

2W
∂ρ〈∂θ, ∂θ〉 = − ṫ

2W
∂ρ(sn

2
κ(ρ))

= − ṫ

W
snκ(ρ)csκ(ρ),

where csκ(ρ) stands for the derivative of function snκ(ρ). Of course, the mixed term
f := 〈Xsθ, n〉 is null.

Using the formula H = eG−2fF+gE

2(EG−F2)
for the mean curvature of X, we get

2W 3snκ(ρ)H = (ρ̈ṫ− ẗρ̇)snκ(ρ)−W 2ṫcsκ(ρ). (2.1)

We now assume that s is arc length of the profile curve. Thus, we have W 2 = ρ̇2+
εṫ2 = 1. We denote by ϕ the angle with the horizontal axis ∂ρ. When ε = 1 we have
ρ̇ = cos ϕ and ṫ = sin ϕ, while for ε = −1 we have ρ̇ = cosh ϕ and ṫ = sinh ϕ. So, we
get ρ̈ṫ− ẗρ̇ = −ϕ̇ sin2(ϕ)−ϕ̇ cos2(ϕ), for ε = 1 and ρ̈ṫ− ẗρ̇ = ϕ̇ sinh2(ϕ)−ϕ̇ cosh2(ϕ),
for ε = −1. In both cases, ρ̈ṫ − ẗρ̇ = −ϕ̇. Therefore, the equation (2.1) takes the
following form

2snκ(ρ)H = −ϕ̇snκ(ρ)− ṫcsκ(ρ).

We restrict ourselves to the analysis of the Lorentzian case, since the Riemannian
case was extensively studied in [30], [24] and [1]. Taking the value of ϕ̇ in the last
equation we conclude that Σ has constant mean curvature H if and only if the profile
curve (ρ(s), t(s), ϕ(s)) is solution to the following ODE system

ρ̇ = coshϕ,
ṫ = sinhϕ,
ϕ̇ = −2H − sinhϕ ctκ(ρ),

(2.2)
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where ctκ(ρ) = csκ(ρ)/snκ(ρ) is the geodesic curvature of the geodesic circle centered
at p0 with radius ρ in M2(κ). The first integral for this system (given by the flux
through an horizontal plane M2(κ)× {t}) is

I = sinhϕ snκ(ρ) + 2H

∫ ρ

0
snκ(τ) dτ. (2.3)

By definition, I = I(s) is constant along any solution of (2.2). We can integrate the
last term in (2.3). For simplicity, we fix κ > 0. We obtain

I = sinhϕ snκ(ρ) +
2H√
κ

∫ ρ

0
sin(

√
κτ) dτ

= sinhϕ snκ(ρ) + 2H
(
− 1

κ
cos

√
κρ+

1

κ

)
= sinhϕ snκ(ρ) + 2H

(
− 1

κ
( cos2

√
κρ

2
− sin2

√
κρ

2
) +

1

κ

)
= sinhϕ snκ(ρ) +

4H

κ
sin2√κ ρ

2
.

In the general case the equation (2.3) can be written as

I = sinhϕ snκ(ρ) + 4Hsn2
κ
ρ

2
. (2.4)

It is clear that solutions to the system (2.2) are defined on the whole real line
and, since coshϕ never vanishes, the profile curve may be written as a graph over the
ρ-axis.

Now, we will describe the maximal surfaces, i.e., solutions for H = 0. Given a
fixed value for I we obtain for H = 0 that

I = sinhϕ snκ(ρ). (2.5)

We point out that the horizontal planes are the unique maximal revolution surfaces
with I = 0. In fact if we put I = 0 in (2.5) we necessarily have sinhϕ = 0 for ρ > 0.
Thus, ṫ = 0 and we conclude that the solution is an horizontal plane. Hence we may
assume I 6= 0. In this case, since snκ(ρ) → 0 when ρ→ 0 it follows that sinhϕ→∞
when ρ → 0. So, Σ has a singularity and is asymptotic to the light cone at p0 (the
light cone corresponds to ϕ = ∞). Moreover sinhϕ→ 0 if ρ→∞ in the case κ ≤ 0.
This means that these maximal surfaces are asymptotic to an horizontal plane for
ρ → ∞, i.e., these surfaces have planar ends. We refer to these singular surfaces as
Lorentzian catenoids. These examples are not complete in the spherical case κ > 0,
since we have sinhϕ→∞ if ρ→ π√

κ
.
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Consider now the case H 6= 0. We observe that the solutions for (2.2) have no
positive minimum ρm > 0 for ρ. Otherwise, either the solutions must have vertical
tangent plane at the minimum points (this is impossible since the solutions are space-
like and, in fact, are graphs over the horizontal axis), or they are not complete (they
have a singularity at the line ρ = ρm). The rotation of the profile curve in this last
case generates a line t = t0 of singularities for the solution. So, the unique possibility
for the existence of an isolated singularity instead of a line of singularities is that
ρ → 0. In this case the solutions are regular if and only if ϕ → 0 as ρ → 0 what
implies that sinhϕ → 0 as ρ → 0. So, necessarily I = 0 as we can see taking the
limit ρ → 0 in (2.4). So, examples of solutions for the system above, which meet
orthogonally the revolution axis, have I = 0. Conversely, if we put I = 0 in (2.4) we
get

0 = sinhϕ snκ(ρ) + 4Hsn2
κ(
ρ

2
).

Dividing the above expression by sn2
κ(
ρ
2) (recall that ρ > 0 by definition) we have

−4H = sinhϕ
2snκ(ρ/2)csκ(ρ/2)

sn2
κ(ρ/2)

,

that is,

−2H = sinhϕ ctκ(
ρ

2
). (2.6)

Since ctκ(
ρ
2) > 0, we conclude that −H and sinhϕ have the same sign. Moreover,

one sees that sinhϕ → 0 if ρ → 0. So, all solutions for (2.2) with I = 0 meet the
revolution axis orthogonally, as we claimed. Thus, these solutions correspond to the
initial conditions t(0) = t0 ( we may assume t0 = 0 after translating the solution
along the revolution axis), ρ(0) = 0 and ϕ(0) = 0 for the system (2.2). Now, using
(2.6) we obtain

ctκ(ρ) :=
csκρ

snκρ
=

cs2κ
ρ
2

2snκ
ρ
2 csκ

ρ
2

− κ
sn2
κ
ρ
2

2snκ
ρ
2 csκ

ρ
2

=
1

2

(
csκ

ρ
2

snκ
ρ
2

− κ
snκ

ρ
2

csκ
ρ
2

)
=

1

2

(
ctκ

ρ

2
− κ

1

ctκ
ρ
2

)
=

1

2

(
−2H

sinhϕ
+ κ

sinhϕ

2H

)
=

−4H2 + κ sinh2 ϕ

4H sinhϕ
.
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Replacing this on the third equation in (2.2) we see that

dϕ

ds
=

1

4H
(−4H2 − κ sinh2 ϕ) (2.7)

or equivalently that ϕ̇ = −H − κ sinh2 ϕ
4H . (We observe that ϕ̇ = −H is the cor-

responding equation for the case κ = 0, i.e., for L3 . This can be obtained as a
limiting case if we take κ → 0.) So, in the case κ < 0, the range for the angle ϕ is
ϕ < ϕ0 = arcsinh(−2H√

−κ). This can be seen taking d
dsϕ0 = 0 in (2.7). The surface

necessarily is asymptotic to a space like cone with angle ϕ0. There are no complete
solutions for κ > 0 and H 6= 0, since the angle at ρ = 0 and at ρ = π√

κ
are not the

same unless we have H = 0.
Next, we study the case when ϕ → ϕ0 as ρ → 0 for some positive value of ϕ0.

This means that the solution is asymptotic to a space-like cone at p0. In this case
sinhϕ → sinhϕ0 < ∞ as ρ → 0. Thus taking the limit ρ → 0 in (2.4) we obtain
I = 0. So, as we seen above, necessarily ϕ0 = 0. This contradiction implies that
there are no examples with ϕ0 > 0.

It remains to look at the case ϕ→∞ as ρ→ 0 (since the case ϕ→ −∞ as ρ→ 0
is similarly). In this case, the solution is asymptotic to the light cone at p0. For any
non zero value of I and for κ < 0, we obtain after dividing (2.4) by sn2

κ(ρ/2) that,

I

snκ(ρ/2)
=

2 sinhϕsnκ(ρ/2)csκ(ρ/2)

sn2
κ(ρ/2)

+ 4H

= 2 sinhϕ ctκ(
ρ

2
) + 4H.

and so, taking limit for ρ→∞ we have that sinhϕ→ −2H/
√
−k.

We summarize the facts above in the following theorem.

Theorem 2.1 Let Σ be a rotationally invariant space like surface with constant
mean curvature H in the Lorentzian product M2(κ) × R with κ ≤ 0. Then Σ is a
vertical graph. Moreover,

1. If H = 0, either Σ is a horizontal plane M2(κ) × {t} or Σ is asymptotic to a
light cone with vertex at some point p0 of the rotation axis. In this case, Σ has
a singularity at p0 and has horizontal planar ends.

2. If H 6= 0 either Σ is a complete disc-type surface meeting orthogonally the
rotation axis or Σ is asymptotic to a light cone with vertex p0 at the rotation
axis. In the last case, the surface is singular at p0 and is asymptotic to a
space-like cone with vertex at p0 and slope ϕ0, where sinhϕ0 = −2H√

−κ .
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2.3 Hopf Differentials in Some Product Spaces

Let Σ be a Riemannian surface and X: Σ → M2(κ) × R an isometric immersion. If
κ ≥ 0, we may consider Σ as immersed in R4 = R3 × R. If κ < 0, we immerse Σ
in L3 × R. In fact, we may write X = (p, t), with t ∈ R and p ∈ M2(κ) ⊂ R3 for
κ ≥ 0 and p ∈ M2(κ) ⊂ L3 for κ < 0. By writing M2(κ)×R ⊂ E4 we mean all these
possibilities. The metric and covariant derivative in E4 and are also denoted by 〈, 〉
and D respectively.

Let (u, v) be local coordinates in Σ for which X(u, v) is a conformal immersion
inducing the metric E (du2 + dv2) in Σ. Let ∂u, ∂v be the coordinate vectors and

e1 = E−1
2∂u, e2 = E−1

2∂v the associated local orthonormal frame tangent to Σ. The
unit normal directions to Σ in E4 are denoted by n1, n2 = p/r, where r2 = sgnκ〈p, p〉.
We denote by hkij the components of hk, the second fundamental form of Σ with
respect to nk, k = 1, 2. Then

hkij = 〈Dei
ej , nk〉.

It is clear that the h1
ij are the components of the second fundamental form of the

immersion Σ → M2(κ)× R. We have for the components of h2 that

h2
ij = 〈Dei

ej , n2〉 = 〈Dei
ej , p/r〉 = −1

r
〈ehi , ehj 〉 =

1

r
(ε〈eti, etj〉 − δij)

=
1

r
(ε〈ei, ∂t〉〈ej , ∂t〉 − δij).

In what following we will consider κ 6= 0. Denoting ε = sgnκ, we remark that
κ = ε/r2. The components of h1 and h2 in the frame ∂u, ∂v are given by

e = h1(∂u, ∂u) = Eh1
11, f = h1(∂u, ∂v) = Eh1

12, g = h1(∂v, ∂v) = Eh1
22,

ẽ = h2(∂u, ∂u) = Eh2
11, f̃ = h2(∂u, ∂v) = Eh2

12, g̃ = h2(∂v, ∂v) = Eh2
22.

The Hopf differential associated to hk is defined by Ψk = ψkdz2, where z = u + iv
and the coefficients ψ1, ψ2 are given by

ψ1 =
1

2
(e− g)− i f, ψ2 =

1

2
(ẽ− g̃)− i f̃ .

Now we compute the derivatives,

Eu = 2〈Du∂u, ∂u〉 = −2〈Dv∂v, ∂u〉 = 2〈Du∂v, ∂v〉, (2.8)

Ev = 2〈Dv∂v, ∂v〉 = −2〈Du∂u, ∂v〉 = 2〈Du∂v, ∂u〉. (2.9)
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We point out that Dun1 = − e
E∂u −

f
E∂v and Dvn1 = − f

E∂u −
g
E∂v. So, we have,

ev = −∂v〈Dun1, ∂u〉 = −〈DvDun1, ∂u〉 − 〈Dun1, Dv∂u〉

= −〈DvDun1, ∂u〉+
e

E
〈∂u, Dv∂u〉+

f

E
〈∂v, Dv∂u〉

= −〈DvDun1, ∂u〉+
eEv
2E

+
fEu
2E

,

fv = −∂v〈Dun1, ∂v〉 = −〈DvDun1, ∂v〉 − 〈Dun1, Dv∂v〉

= −〈DvDun1, ∂v〉+
e

E
〈∂u, Dv∂v〉+

f

E
〈∂v, Dv∂v〉

= −〈DvDun1, ∂v〉 −
eEu
2E

+
fEv
2E

,

fu = −∂u〈Dvn1, ∂u〉 = −〈DuDvn1, ∂u〉 − 〈Dvn1, Du∂u〉

= −〈DuDvn1, ∂u〉+
f

E
〈∂u, Du∂u〉+

g

E
〈∂v, Du∂u〉

= −〈DuDvn1, ∂u〉+
fEu
2E

− gEv
2E

,

gu = −∂u〈Dvn1, ∂v〉 = −〈DuDvn1, ∂v〉 − 〈Dvn1, Du∂v〉

= −〈DuDvn1, ∂v〉+
f

E
〈∂u, Du∂v〉+

g

E
〈∂v, Du∂v〉

= −〈DuDvn1, ∂v〉+
fEv
2E

+
gEu
2E

.

Thus,

ev − fu = −〈DvDun1, ∂u〉+
eEv
2E

+ 〈DuDvn1, ∂u〉+
gEv
2E

= 〈DuDvn1, ∂u〉 − 〈DvDun1, ∂u〉+
Ev
2E

(e+ g)

= −〈R̄(∂u, ∂v)n1, ∂u〉+HEv, (2.10)

fv − gu = −〈DvDun1, ∂v〉 −
eEu
2E

+ 〈DuDvn1, ∂v〉 −
gEu
2E

= 〈DuDvn1, ∂v〉 − 〈DvDun1, ∂v〉 −
Eu
2E

(e+ g)

= −〈R̄(∂u, ∂v)n1, ∂v〉 −HEu, (2.11)

where in the last equalities of (2.10) and (2.11) we used the Codazzi Equation (see
(B.5) and (B.6) in Appendix B).
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Now since e+ g = 2HE we get,

eu + gu = 2HEu + 2EHu

= −2fv + 2gu − 2〈R̄(∂u, ∂v)n1, ∂v〉+ 2EHu,

ev + gv = 2HEv + 2EHv

= 2ev − 2fu + 2〈R̄(∂u, ∂v)n1, ∂u〉+ 2EHv.

Hence,

eu − gu
2

= −fv − 〈R̄(∂u, ∂v)n1, ∂v〉+ EHu,

ev − gv
2

= fu − 〈R̄(∂u, ∂v)n1, ∂u〉 − EHv.

On the other hand, it is easy to see that (see (B.3) and (B.4) in Appendix B):

〈R̄(∂u, ∂v)n1, ∂u〉 = −κE〈∂hv , nh1〉,
〈R̄(∂u, ∂v)n1, ∂v〉 = κE〈∂hu , nh1〉,

that is, we obtain that

∂u<ψ1 = ∂v=ψ1 − κE〈∂hu , nh1〉+ EHu, (2.12)

∂v<ψ1 = −∂u=ψ1 + κE〈∂hv , nh1〉 − EHv. (2.13)

We also calculate

∂u<ψ2 =
ε

2r
∂u

(
〈∂u, ∂t〉2 − 〈∂v, ∂t〉2

)
=
ε

r

(
〈∂u, ∂t〉 〈D∂u∂u, ∂t〉

−〈∂v, ∂t〉 〈D∂u∂v, ∂t〉
)

=
ε

r

(
〈∂u, ∂t〉 〈D∂u∂u, ∂t〉 − 〈∂v, ∂t〉 〈D∂v∂u, ∂t〉

)
=
ε

r

(
〈∂u, ∂t〉 〈D∂u∂u, ∂t〉 − 〈∂v, ∂t〉 ∂v〈∂u, ∂t〉

)
=
ε

r

(
〈∂u, ∂t〉 〈D∂u∂u, ∂t〉 − ∂v(〈∂v, ∂t〉 〈∂u, ∂t〉) + 〈D∂v∂v, ∂t〉 〈∂u, ∂t〉

)
=
ε

r
〈∂u, ∂t〉 〈D∂u∂u +D∂v∂v, ∂t〉 −

ε

r
∂v(〈∂u, ∂t〉 〈∂v, ∂t〉).

On the other hand, by (2.8) and (2.9) we get

D∂u∂u +D∂v∂v = 〈D∂u∂u +D∂v∂v, ∂u〉∂u +

〈D∂u∂u +D∂v∂v, ∂v〉∂v + ε〈D∂u∂u +D∂v∂v, n1〉n1

=
(1

2
Eu − 〈Du∂v, ∂v〉

)
∂u +

(
− 〈Du∂v, ∂u〉+

1

2
Ev

)
∂v + ε(e+ g)n1

= ε(e+ g)n1 = 2εHEn1.
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Therefore, we have

∂u<ψ2 =
ε

r
〈∂u, ∂t〉 〈2εHEn1, ∂t〉 −

ε

r
∂v(〈∂u, ∂t〉 〈∂v, ∂t〉)

= −2εHE

r
〈∂hu , nh1〉+ ∂v=ψ2.

Similarly, we prove that

∂v<ψ2 = −∂u=ψ2 +
2εHE

r
〈∂hv , nh1〉.

Then using the above mentioned fact that κ = ε/r2, we conclude that the function
ψ := 2Hψ1 − ε εrψ

2 satisfies

∂u<ψ = ∂v=ψ + 2<ψ1Hu − 2=ψ1Hv + 2EHHu

= ∂v=ψ + 2eHu + 2fHv

∂v<ψ = −∂u=ψ + 2<ψ1Hv + 2=ψ1Hu − 2EHHv

= −∂u=ψ − 2gHv − 2fHu.

Now, using the complex differentiation ∂
∂z = 1

2( ∂∂u − i ∂∂v ),
∂
∂z̄ = 1

2( ∂∂u + i ∂∂v ) we
get

∂z̄ψ =
1

2
(∂u<ψ − ∂v=ψ) +

i

2
(∂v<ψ + ∂u=ψ)

= eHu + fHv − ifHu − igHv

= 2ψ1Hz̄ + 2EHz.

That is, defining the quadratic differential Q := 2H Ψ1 − ε εr Ψ2 we have that Q is
holomorphic on Σ if H is constant. Namely,

Theorem 2.2 Let x : Σ → M2(κ)×R be an isometric immersion with mean curva-
ture H. If H is constant the quadratic differential Q = 2HΨ1−ε εrΨ

2 is holomorphic
on Σ.

If Q is holomorphic then

eHu + fHv = 0, fHu + gHv = 0.

This implies that A∇H = 0, where, A is the shape operator for X and ∇H is the
gradient of H on Σ. If ∇H = 0, i.e., Hu = Hv = 0 on Σ, then H is constant. On
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the other hand, if ∇H 6= 0 on an open set Σ′ ⊂ Σ we have Kext = detA = 0 on
Σ′. We have that e1 := ∇H/|∇H| is a principal direction with principal curvature
κ1 = 0. Moreover, H = κ2, where, κ2 is the principal curvature of Σ calculated on a
direction e2 perpendicular to e1. So, the only planar (umbilical) points on Σ are the
points where H vanishes. Moreover, the integral curves of e2 are the level curves for
H = κ2 since they are orthogonal to ∇H. Thus H is constant along such each line.

These considerations imply that if there exist examples of surfaces with holomor-
phic Q and non constant mean curvature, these examples cannot be compact, have
zero extrinsic Gaussian curvature and are foliated by curvature lines along which H
is constant. Recently, I. Fernández and P. Mira announced that they had constructed
such examples (see [18]).

For the case ε = 1 this quadratic form coincides with that one obtained by
U. Abresch and H. Rosenberg in [1]. If we denote by q the quadratic form q =
2H h1− ε εrh

2 then it is clear that Q is the complexification of the traceless part of q.

A simple computation shows that Q = 0 if only if q = 1
2trace(q)I. As a conse-

quence we have the following rigidity result for minimal surfaces.

Lemma 2.3 If X : Σ → M2(κ)×R is a minimal immersion with Q = 0, then X(Σ)
is part of a slice Pt := M2(κ)× {t}.

Proof:
Given an arbitrary local orthonormal frame field {e1, e2} we get,

2Hh1
12 − ε

ε

r
h2

12 = 0

2Hh1
11 − ε

ε

r
h2

11 =
1

2
(4H2 − ε

ε

r
(h2

11 + h2
22))

2Hh1
22 − ε

ε

r
h2

22 =
1

2
(4H2 − ε

ε

r
(h2

11 + h2
22))

Thus,

2Hh1
12 = ε

ε

r
h2

12

= ε
ε

r

1

r
(ε〈e1, ∂t〉〈e2, ∂t〉)

= κ〈e1, ∂t〉〈e2, ∂t〉 (2.14)

2Hh1
11 = 2H2 + ε

ε

2r
h2

11 − ε
ε

2r
h2

22



23

= 2H2 + ε
ε

2r

1

r
(ε〈e1, ∂t〉2 − 1)− ε

ε

2r

1

r
(ε〈e2, ∂t〉2 − 1)

= 2H2 +
κ

2
〈e1, ∂t〉2 −

κ

2
〈e2, ∂t〉2 (2.15)

2Hh1
22 = 2H2 − ε

ε

2r
h2

11 + ε
ε

2r
h2

22

= 2H2 − ε
ε

2r

1

r
(ε〈e1, ∂t〉2 − 1) + ε

ε

2r

1

r
(ε〈e2, ∂t〉2 − 1)

= 2H2 − κ

2
〈e1, ∂t〉2 +

κ

2
〈e2, ∂t〉2 (2.16)

Now, if H = 0 it follows from these equations that the vector field ∂t is always normal
to Σ. So, the surface is part of a slice Pt := M2(κ)× {t}, for some t ∈ R. 2

We also say something about umbilical points of such immersions. We recall that
here κ 6= 0.

Lemma 2.4 Let X : Σ → M2(κ) × R be a CMC immersion with Q = 0. Then
p0 ∈ Σ is an umbilical point of X if and only if Σ has a horizontal plane at p0.

Proof:
Without loss of generality we may suppose that H 6= 0. At p0 we have that for

an arbitrary frame, h1
12 = 0. So, either 〈e1, ∂t〉 = 0 or 〈e2, ∂t〉 = 0 at p0. Since

h1
11 = h1

22 = H at that point the equations (2.15) and (2.16) imply that both angles
〈ei, ∂t〉 are null, since κ 6= 0. So, Σ has horizontal tangent plane, and conversely. 2

The next lemma is a fundamental tool in the proof of Abresch-Rosenberg’s The-
orem.

Lemma 2.5 If X : Σ → M2(κ) × R is an immersion with Q = 0 and constant
nonzero mean curvature, then each intersection Σ ∩ Pt occurs with constant angle.
Moreover, this angle is zero if and only if all points of this intersection are umbilical.
In particular, the umbilical points are isolated.

Proof:
If we are at a non-umbilical point, we may choose the frame {e1, e2} as a locally

defined principal frame field (on a neighborhood Σ′ of that point). Thus, h1
12 = 0

and therefore 〈e1, ∂t〉 = 0 or 〈e2, ∂t〉 = 0 on Σ′. We fix 〈e1, ∂t〉 = 0.
We conclude that on Σ′ the lines of curvature of Σ with direction e1 are locally

contained in the slices Pt. Conversely, the connected components σ of Σ′ ∩ Pt are
lines of curvature of Pt with tangent direction given by e1. Thus, if we parametrize
such a line by its arc length, we have

d

ds
〈n1, ∂t〉 = 〈Dσ′n1, ∂t〉 = 〈De1

n1, ∂t〉 = h1
11〈e1, ∂t〉 = 0. (2.17)
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We conclude that, for a fixed t, Σ′ and Pt make a constant angle θ(t) along each
connected component of their intersection. We recall that these conclusions hold
whenever we are away from the umbilical points of X(Σ). So, if a connected compo-
nent of the intersection between Pt and Σ has a non umbilical point, then the angle is
constant, non zero, along this component, unless that there exists also an umbilical
point on this same component. However, at this point the angle is necessarily zero.
So, by continuity of the angle function, either all points on a connected component
Σ ∩ Pt are umbilical and the angle is zero, or all points are non umbilical and the
angle is non zero. However, if all points on a connected component σ are umbilical
points for h1, then, as we noticed above, Σ is tangent to Pt along σ. So, along σ we
have n1 = ∂t and consequentely,

h1
11 = 〈De1e1, n1〉 = −〈e1, De1n1〉 = 0.

Thus, h1
22 = h1

11 = 0 and H = 0. From this contradiction, we conclude that there
are no umbilical points on curves Σ ∩ t−1(a, b), where [a, b] is the maximal interval
for which Σ intersects some slice Pt. The only possibility is that there exists isolated
umbilical points (the umbilical points may not be on any curve on Σ ∩ Pt) as may
occur on the top and bottom levels. 2

Before we present another consequence we will fix some notation. First, as we
indicated in the previous Lemma, θ is the positive angle between n1 and ∂t, so that
cos θ(t) = 〈n1, ∂t〉 for ε = 1 and cosh θ(t) = −〈n1, ∂t〉 for ε = −1. We denote

sn(t) =

{
sin θ(t), ε = 1
sinh θ(t), ε = −1

, cs(t) =

{
cos θ(t), ε = 1
cosh θ(t), ε = −1.

Thus, if we denote by τ the tangential part ∂t − ε〈∂t, n1〉n1 of the field ∂t, then
τ = 〈e2, ∂t〉 e2 and we may write ∂t = τ + ε〈∂t, n1〉n1 = sn(t)e2 + cs(t)n1.

Lemma 2.6 If X : Σ → M2(κ)×R is an immersion with Q = 0 and nonzero mean
curvature, then each curve of Σ ∩ Pt has constant geodesic curvature on Pt.

Proof:
By Lemma 2.5 we have that there exists an orthonormal principal frame field

{e1, e2} on a dense subset of Σ (the subset obtained by taking away the isolated
umbilical points of Σ) and on this dense subset we have τ 6= 0. Then we may choose
a positive sign for sn(t). Now, we calculate the geodesic curvature 〈De1e1, ν〉 of the
curvature lines on Pt. Here ν := Je1 is the positively oriented (with respect to ∂t)
unit vector field on Pt normal to such a curve. We have

e2 =
τ

|τ |
=

1

sn(t)
τ =

1

sn(t)
(∂t − cs(t)n1).



25

Since 〈n1, ∂t〉 is constant along this curve, and therefore sn(t) and cs(t) are constants,
we conclude that

De1e2 =
1

sn(t)
(De1∂t − cs(t)De1n1) =

cs(t)

sn(t)
h1

11e1.

So, the geodesic curvature 〈De1e1, e2〉 of the lines of curvature in the direction e1, is

given by −(cs(t)/sn(t))h1
11. Now we write

ν = Je1 = 〈ν, n1〉n1 + 〈ν, e2〉 e2 = sin θ(t)n1 − cos θ(t) e2,

for ε = 1 and

ν = Je1 = −〈ν, n1〉n1 + 〈ν, e2〉 e2 = − sinh θ(t)n1 − cosh θ(t) e2,

for ε = −1. In general
ν = Je1 = εsn(t)n1 − cs(t) e2.

We calculate

〈De1ν, e1〉 = −εsn(t)h1
11 − cs(t)

cs(t)

sn(t)
h1

11 = − 1

sn(t)
h1

11.

Thus, since h1
11 is constant along the e1-curve, we have that the geodesic curvature

of this line relatively to the slice Pt is also constant and equal to h1
11/sn(t). We

conclude that for each t, Σ∩Pt consists of constant geodesic curvature lines of Pt. 2

For topological spheres Σ ' S2 it is well known that holomorphic differentials
vanish everywhere. Using this fact, we can present another proof of the Theorem of
Abresch and Rosenberg quoted in the introduction of this chapter.

Theorem 2.7 (Abresch-Rosenberg): Any immersed cmc sphere S2 → M2(κ) × R
in a Riemannian product space is an embedded rotationally invariant cmc sphere.

Proof:
Let [a, b] be the maximal interval of points t such that Σ∩Pt is nonempty. Then

Σ is tangent to Pb. Suppose that Σ ∩ Pb contains two distinct points. For small
δ > 0 we have by Lemma 2.6 that, for t ∈ (b − δ, b), Σ ∩ Pt is the union of two
disconnected geodesic circles of Pt. Let t1 be the smaller t ∈ [a, b] with this property.
At t1 only two possibilities may occur. First, one of this geodesic circles disappear
at a point and in this case we conclude that Σ is a disconnected surface. Second,
the two geodesic circles meet at a point and in this case we do not have a curve with
constant geodesic curvature.
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A similar argument shows that each nonempty intersection Σ∩Pt is single closed
curve with constant geodesic curvature on Pt; This implies that Σ is foliated by
circles.

To conclude the proof we fix a geodesic circle σ of Pt0 contained on Σ. Let p0 be
the center of this circle in Pt0 and denote by s the length in Pt0 measured starting
from some meridian passing through p0. So, each value for s in [0, 2π) determines a
plane Πs containing some meridian of Pt0 and the t-axis. Let us denote by γs the
curve of intersection between the plane Πs and Σ. Then γs(t) is determined by its
initial data γ′s(t0) and by its curvature θ′(t). Changing the point on σ, the initial
data differ by a rigid motion (an isometry on Pt0) and the angle function θ(t) remains
the same at points of equal height t. Then, by the uniqueness of the fundamental
theorem on planar curves, the two curves differ by the same rigid motion that fix
σ. Therefore, all the curves γs differ by a rotation about the t-axis (because all
these curves pass through a point of the same circle σ with congruent initial tangent
vector). Thus, Σ is contained on a surface of revolution in the sense we defined in
§2.2. Since Σ is complete and connected, it follows that Σ is rotationally invariant.

2

In the case that the product is Lorentzian, we can say a little more about im-
mersed discs.

Theorem 2.8 Let X : D → M2(κ)×L1 be a complete space like cmc immersed disc
in the Lorentzian product with κ < 0. If Q = 0, then X(D) is rotationally invariant
graphic over some Pt.

Proof:
Since the immersion is space like, the projection π : (p, t) 7→ p of X(Σ) over

M2(κ) is a local diffeomorphism. Furthermore, it increases Riemannian distances

〈dπV, dπV 〉 = 〈V h, V h〉
= 〈V, V 〉 + 〈V t, V t〉
≥ 〈V, V 〉.

Thus by an standard reasoning (see e.g. [10]), this projection is a covering map.
Since X(Σ) is a disc, then in fact we have a global diffeomorphism between X(Σ)
and M2(κ). So, we conclude that X(Σ) is a graphic over M2(κ) and, in particular,
over each Pt. Now, since X(Σ) is space-like, it is not possible that t → ±∞ when
we approaches X(∂Σ). Thus X(Σ) lies in a slab M2(κ) × [a, b] with finite [a, b]. So
X(∂Σ) is a closed curve on ∂∞M2(κ)×R and, consequently, the interior intersections
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X(Σ)∩ Pt do not meet the asymptotic boundary (since X(Σ) is a graph). Again by
Lemma 2.6, is a round circle in Pt and by Lemma 2.5 has constant angle function
θ(t) and the proof follows as we before. 2

To conclude this section we state another uniqueness result. This is a direct
consequence of the proof of Theorem 2.7 and will be used in the proof of Theorem
2.10 below.

Corollary 2.9 Let x : D → M2(κ) × R be a cmc immersed disc with x(∂D) ⊂
M2(κ)×{t0}, for some t0 ∈ R. Then, if Q ≡ 0, Σ is part of a rotationally invariant
surface.

2.4 Free Boundary Surfaces in Product Spaces

A classical result of J. Nitsche (see, e.g., [28] and [34]) characterized discs and spheri-
cal caps as equilibria solutions for the free boundary problem in space forms. We will
be concerned now how to reformulate this problem in the product spaces M2(κ)×R.

Let Σ be an orientable compact surface with non empty boundary and X : Σ →
M2(κ) × R be an isometric immersion. By a volume-preserving variation of X we
mean a family Xs : Σ → M2(κ) × R, with small s, of isometric immersions such
that X0 = X and

∫
〈∂sXs, ns〉dAs = 0, where dAs and ns represent, respectively, the

element of area and an unit normal vector field to Xs. In the sequel we write ξs =
∂sXs for the variational field and write fs = 〈∂sXs, ns〉. For simplicity we set ξ = ξ0
and f = f0. We say that Xs is an admissible variation if it is volume-preserving and
at each time s the boundary Xs(∂Σ) of Xs(Σ) lies on a slice M2(κ) × {t0}. This
mean that the variation Xs has free boundary on M2(κ)× R. We denote by Ωs the
compact domain in M2(κ)×{t0} whose boundary is ∂Σ (in the spherical case κ > 0,
we choose one of the two domains bounded by X(∂Σ)). A stationary surface is by
definition a critical point for the following functional

E(s) =

∫
Σ

dAs + α

∫
Ωs

dΩ,

for some constant α, where dΩ is the volume element for Ωs induced from M2(κ).
The first variation formula for this functional is (see ([33] for this formula in general
Riemannian manifolds)

E′(0) = −2

∫
Σ
HfdA+

∫
∂Σ
〈ξ, ν + αν̄〉 dσ,



28

where dσ is the line element for ∂Σ and ν, ν̄ are the unit co-normal vector fields
to ∂Σ relatively to Σ and to M2(κ), respectively. If we prescribe α = − cos θ in
the Riemannian case and α = − cosh θ in the Lorentzian case, we conclude that a
stationary surface Σ has constant mean curvature and makes constant angle θ along
∂Σ with the horizontal plane and conversely.

As before, we suppose that the surface is space like when we consider immersion
in Lorentzian products. Now we have,

Theorem 2.10 Let X : D → M2(κ) × R be an immersion with constant mean
curvature such that X(∂D) lies in some slice M2(κ)×{t0} and makes constant angle
along its boundary. Then X(D) is part of a rotationally invariant surface.

Proof:
The proof follows the idea of the proof of Nitsche’s Theorem in R3 (see [28]). We

write z = u+iv ∈ D. If we put ∂z = 1
2(∂u−i∂v), then the C-bilinear complexification

of q satisfies

qC(∂z, ∂z) := q(∂u, ∂u)− q(∂v, ∂v)− 2iq(∂u, ∂v) = 2Q(∂z, ∂z).

Now if X(∂D) is contained in a horizontal slice t = t0 then q(τ, ν) = 0 on X(∂D).
Here τ = E−1(−v∂u+u∂v) is the unit tangent vector to ∂D and ν = E−1(u∂u+v∂v) is
the unit outward co-normal to ∂Σ. In fact h2(τ, ν) = 0 since τ is a horizontal vector
and h1(τ, ν) = 0 since X(∂Σ) is a line of curvature for X(D) by Joachimstahl’s
Theorem.

On the other hand, we have on ∂Σ that

0 = q(τ, ν) = (u2 − v2)q(∂u, ∂v)− uvq(∂u, ∂u) + uvq(∂v, ∂v) = =(z2Q(∂z, ∂z))

From this we conclude that =(z2Ψ) ≡ 0 on ∂Σ. Since z2Ψ is holomorphic on x(D),
then =(z2Ψ) is harmonic. So, z2Ψ ≡ 0 on Σ and hence Q ≡ 0 on X(D). Thus, X(D)
is part of a CMC rotationally invariant surface. 2

We also obtain a result about stable CMC discs in M2(κ)×R. Here stability for
a CMC surface Σ means that the quadratic form

J [f ] :=

∫
Σ

(
∆f + ε(|h1|2 + Ric(n1, n1))f

)
f dA,

is non-negative with respect to the variational fields f generating volume - preserving
variations. In the formula above, Ric denotes the Ricci curvature of M2(κ) × R.
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In other words, the first eigenvalue of the stability operator L := ∆ + ε(|h1|2 +
Ric(n1, n1)) is greater than or equal to 0.

The result we will state below was proved for surfaces in space forms by Alias,
Lopez and Palmer in [3]. They had used a classical result due to R. Courant
about nodal domains of eigenfunctions. We recall that a nodal set of a C0 function
f : Σ → R is a connected component of the complementar of f−1(0). Now, given an
operator L = ∆ + q, where q is a bounded function, let λ1 < λ2 ≤ . . . denote the
eigenvalues of the Dirichlet problem of L, repeated according to its multiplicity, and
{f1, f2, . . .} a complete orthonormal basis of eigenfunctions associated to {λ1, λ2, . . .}.
The Courant’s Nodal Domain Theorem says that the number of nodal domains of
fk is less than equal to k, k = 1, 2, . . .. We will apply this Theorem to the stability
operator.

Theorem 2.11 Let Σ be a disc type surface immersed with constant mean curvature
H in M2(κ) × R. Suppose that ∂Σ is contained in a geodesic circle in some slice
M2(κ)×t0 and that the immersion is stable. Then Σ is part of a rotationally invariant
surface. Moreover, if H = 0 then Σ is a totally geodesic disc.

Proof:
We consider the vector field V (t, p) = a∧ ∂t ∧ p, where a is the vector in R3 (L3,

if ε = −1) perpendicular to the plane where ∂Σ lies and ∧ stands for the vector cross
product in E4, which is determined by

〈v1 ∧ v2 ∧ v3, v〉 = det(v1, v2, v3, v),

where det is calculated in the canonical basis.
It is easy to see that V is is a Killing field in M2(κ) × R. Then f := 〈V, n1〉

satisfies trivially J [f ] = 0. On the other hand, since divV = 0 in M2(κ) × R and
∂Σ ⊂ M2(κ)× {t0} we have,∫

Σ
〈V, n1〉dA =

∫
Σ
fdA = 0.

Moreover, since X(∂D) is a geodesic circle on a slice Pt0 we have f = 0 on X(∂D).
Now let ν be the exterior unit conormal direction to Σ along the boundary ∂Σ.

The normal derivative of f is calculated as

ν(f) = ν〈V, n1〉 = 〈a ∧ ∂t ∧Dνp, n1〉+ 〈a ∧ ∂t ∧ p,Dνn1〉
= 〈a ∧ ∂t ∧ ν, n1〉+ 〈a ∧ ∂t ∧ p,Dνn1〉 = 〈τ,Dνn1〉 = −h1(τ, ν),
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where, τ = p ∧ a ∧ ∂t is the tangent positively oriented unit vector to ∂Σ. Since
〈τ, ∂t〉 = 0 and 〈τ, ν〉 = 0 it follows that

h2(τ, ν) = −〈τh, νh〉 = 0.

Thus,
2H ν(f) = −2H h1(τ, ν) = −q(τ, ν).

However, if u, v denote the usual cartesian coordinates on Σ then

q(τ, ν) = E−1 q(u∂u + v∂v,−v∂u + u∂v) = −=(z2Q)

on ∂Σ. We conclude that 2H ν(f) = =(z2Q). Proceeding as in ([3]) we verify that
ν(f) vanishes at least three times, since Σ is disc type. We point out that, since
J [f ] = 0, f is an eigenfunction to the stability operator L whose eigenvalue is 0. To
conclude the proof we need to show that f vanishes identically.

Let us suppose that f 6= 0 on Σ and let {λ1, λ2, . . .} the eigenvalues of the
Dirichlet problem of the stability operator L as above. Then f does not correspond
to λ1, since f changes of sign in Σ. We claim that f does not correspond to λ2 either.
It follows by applying Courant’s theorem on nodal domains since f can partition Σ
into at most two nodal domains whose common boundary can intersect ∂Σ in either
two or zero points. By E. Hopf maximum principle, f has non-vanishing normal
derivative at all other points on ∂Σ. Thus λ1 < λ2 < 0 and this implies that the
immersion is unstable. So this allows us to conclude that f vanishes on the whole
disc. So, X(Σ) is foliated by the flux lines of V , i.e. by horizontal geodesic circles.
Moreover, Q = 0 on X(Σ). Thus, X(Σ) is a rotationally invariant surface 2



Chapter 3

The r-stability of Hypersurfaces
with Zero Gauss-Kronecker
Curvature

3.1 Introduction

Let M be an oriented hypersurface of the (n + 1)-dimensional Euclidean space and
let g : M → Sn denote its Gauss map. The shape operator of M is the self-adjoint
map given by B := −dg, that is, for each p ∈M ,

Bp : TpM → TpM, Bp(X) = −dgp(X).

The eigenvalues of Bp are called the principal curvatures of M at p. We denote
them by k1(p), . . . , kn(p) and we define the r-mean curvature of M as the normalized
r-elementary symmetric function of the principal curvatures of M , namely,

H0 = 1, Hr =

(
n

r

)−1

Sr, r = 1, . . . , n,

where
Sr =

∑
i1<...<ir

ki1 ...kir .

Notice that H1, H2 and Hn are the mean, scalar and Gauss-Kronecker curvatures of
M , respectively.

We say that M is r-minimal when Hr+1 = 0. It is well known that the r-minimal
hypersurfaces of the Euclidean space are critical points of the r-area functional Ar =∫
M SrdM for compactly supported variations of M .
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In order to state our results we need introduce more notations. Let Pr be the
Newton transformations of B, which can be defined inductively by

P0 = I, Pr = SrI −BPr−1, r = 1, 2, . . . , n.

Let C∞
0 (M) denote the set of smooth functions with compact support on M . Using

the Newton transformations we define the linearized operator

Lr(f) = div(Pr∇f), for f ∈ C∞
0 (M). (3.1)

We denote by Tr the Jacobi operator,

Trf = Lrf − (r + 2)Sr+2f,

and by Ir(f1, f2) = −
∫
M f1Tr(f2)dM the associated bilinear symmetric form.

Let D be a regular domain on M , that is, D is bounded and has piecewise
smooth boundary. We say that D is r-stable if Ir(f, f) ≥ 0 for all f ∈ C∞

0 (D) or if
Ir(f, f) ≤ 0 for all f ∈ C∞

0 (D). Otherwise we say that D is r-unstable.
In the study of r-stability we need to suppose Lr is elliptic. This is equivalent

to Pr being positive definite or negative definite everywhere. On the other hand, by
a Theorem of Hounie-Leite in [23], it is known that, when Hr+1 = 0, then Lr is
elliptic if and only if rank(B) > r. In the following, without loss of generality, we
will fix Pr > 0. Also, the eigenvalues of the operator

√
PrB appear naturally and we

will denote them by θ1(r), θ2(r), ..., θn(r).
In [2] Alencar, do Carmo and Elbert gave sufficient conditions for a regular do-

main on a r-minimal hypersurface of the Euclidean space to be r-stable. Their

general result assumes that the quotient |Hn|
‖
√
PrB‖2

is constant. In this case the hy-

persurface is said to be r-special.

Theorem A (Theorem 1.3 of [2] ) Let x : Mn → Rn+1 be an oriented r-special
hypersurface with Hr+1 = 0 and Hn 6= 0 everywhere. Let D ⊂M be a regular domain
such that the area of g(D) ⊂ Sn is smaller than the area of a spherical cap whose
first eigenvalue for the spherical Laplacian is

τ = max
i,D

(∑
j θ

2
j (r)

θ2
i (r)

)
.

Then D is r-stable.
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This Theorem is a generalization of a classical result to minimal surfaces of R3

due to Barbosa and do Carmo in [8]. We point out that the hypothesis of M to
be r-special occurs naturally when r = n − 2. In fact, a computation shows that

|Sn|
‖
√
Pn−2B‖2

= 1
n .

In this chapter we are interested to improve the condition on the Gauss-Kronecker
curvature considering points on M for which Hn = 0. A simple example, like a
cylinder over a plane curve, shows that Hn cannot be identically zero. In [2], remark
4.2, it was conjectured that Theorem A holds if the set of zeros of Hn is contained in
a submanifold of codimension ≥ 2. Here we answer this conjecture affirmatively as
a consequence of a more general result. We will consider hypersurfaces with Hn = 0
on a subset of capacity zero (see below the definition of capacity). It is known
( [32] §2, p. 35) that submanifolds of codimension d ≥ 2 have capacity zero. Later,
in Proposition 3.5 we will present another proof of this fact for completeness. In
section 3.2 we will give definitions and develop some facts about capacity. To state
our result we will denote by A the set A = {p ∈ M : Hn(p) = 0} and by λ1(D) the
first eigenvalue for the Laplacian on D. We also point out that, since symmetrization
of domains in the sphere does not increase eigenvalues, the hypothesis on the first
eigenvalue of the spherical image of D in Theorem A implies that λ1(g(D)) ≥ τ . For
simplicity we will use this condition on our result below.

Theorem 3.1 Let M be an oriented r-minimal hypersurface of Rn+1, which is r-
special on M\A. Let D ⊂M be a regular domain such that A ⊂ D and λ1(g(D)) ≥ τ .
Then, if Cap(A) = 0, D is r-stable.

The idea of the proof is to use a relation between the eigenvalues of domains
from which we remove a subset and the capacity of the removed subset. Actually, we
need just a comparison between the first eigenvalues of Pr on D and on D \A. This
relation is well known (for the Laplacian) and we can find in [32], for domains of the
Euclidean space, and in [13], for domains of a closed Riemannian manifold. Here
we obtain such results for an elliptic operator L in divergence form on a bounded
domain D of a n-dimensional Riemannian manifold M . Given A ⊂ D, let λk(D)
and λk(D \ A) denote the k-th eigenvalue of the Dirichlet problem of L on D and
on D \ A, respectively. We have the following result that will be proved in the next
section

Theorem 3.2 In the above conditions there exist positive constants εk and Ck, such
that if CapA ≤ εk, then

λk(D) ≤ λk(D \ A) ≤ λk(D) + Ck CapA
1
2 .
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In particular, λk(D) = λk(D \ A) if CapA = 0.

3.2 The Spectrum of Domains and the Capacity

In this section we introduce the notion of capacity and prove the Theorem 3.2.
Let (Mn, 〈 , 〉) be a smooth Riemannian manifold and D ⊂M a bounded domain.

As usual, we define H1
0 (D) as the closure of C∞

0 (D) with respect to the norm H1:

|u|2
H1 :=

∫
D
u2dM +

∫
D
|∇u|2dM, for u ∈ C∞

0 (D)

where ∇ is the gradient, |.| is the norm of vector, and dM is the volume element
with respect to the metric 〈 , 〉. Now, given A ⊂ D, we set H(D;A) = {u ∈ H1

0 (D) :
∃U ⊂ D open, A ⊂ U and u = 1 in U} and H(D;A) as the closure of H(D;A) with
respect to H1. With this notation we define the Capacity of A as

CapA = inf
{∫

D
|∇u|2dM : u ∈ H(D;A)

}
.

Below we have some known consequences of this definition (see, e.g. [17], §4.7).

Proposition 3.3 For any A ⊂ D we have,
i) CapA = inf{CapU : U open, A ⊂ U};
ii) If A1 ⊂ . . . ⊂ Ak ⊂ . . . are compact subsets of D, then

lim
k→∞

CapAk = Cap ( ∩k Ak).

We will use the notation V ε(A) to denote the tubular neighborhood of A of radius
ε, that is, V ε(A) = {x ∈ M : dist(x,A) < ε}, where dist( , ) stands for the distance
function on M . Using this notation we have the following consequence of the above
proposition:

Corollary 3.4 If A is compact, then

lim
ε→0

CapV ε(A) = CapA.

In the case that A is a submanifold of codimension d ≥ 2 we can say more:

Proposition 3.5 If A is an embedded submanifold of codimension d ≥ 2 then

CapV ε(A) → 0 as ε→ 0.

In particular, CapA = 0.
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Proof:
We will show that there exist sequences εk → 0 and ζk ∈ C∞

0 (D) with supp ζk ⊂
V εk and ζ = 1 in some neighborhood of A, whose energy

∫
D |∇ζk|

2dM → 0, as
k →∞.

Fix α > 0 and consider a smooth function ψ : D → R such that

ψ(x) =

{
1, if dist(x,A) < α/2,
0, if dist(x,A) > α,

and ψ(x) = ψ(y), if dist(x,A) = dist(y, A). Naturally, ψ ∈ C∞
0 (D) if α is small

enough and |∇ψ| is uniformly bounded on D. Now, as ψ(x) depends only on distance
of x to A, we can define a sequence ψk : D → R, given by ψk(x) = ψ(kx), where kx
denotes a point on D whose distance to A is dist(kx,A) = k dist(x,A).

Then ψk is an uniformly bounded sequence whose support is contained in the

neighborhood of radius α/k of A, k = 1, 2, . . .. Namely, suppψk ⊂ V
α
k (A).

In particular,

|ψk|2L2(D)
:=

∫
D
ψ2
kdM → 0 as k →∞. (3.2)

Since A is a submanifold of codimension d, the Jacobian of the change of variables
given by h(y) := 1

ky = x has range d. Thus,∫
D
|∇ψk(x)|2dM = k2

∫
D
|∇ψ(kx)|2dM = k2

∫
D
|∇ψ(y)|2k−ddM

= k2−d
∫
D
|∇ψ(y)|2dM.

We conclude that when d ≥ 2, the sequence ψk is bounded in H1. In particular there
exists a constant C > 0, independent of k, such that∫

D
|∇ψk|2dM ≤ C.

We point out that supp |∇ψk| ⊂ V
α
k (A) \V

α
2k (A). Hence, passing to a subsequence,

we may suppose that ∪j supp∇ψj ⊂ D and supp∇ψi ∩ supp∇ψj = ∅, if i 6= j.

Now set Sk = 1 + 1
2 + . . . + 1

k and define ζk = 1
Sk

∑k
j=1

ψj
j . It is clear that ζk

is a smooth function whose support is contained in V
α
k (A) and ζk = 1 in V

α
2k (A).
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Therefore, ∫
D
|∇ζk|2dM ≤ 1

S2
k

∫
D

( k∑
j=1

|∇ψj |
j

)2
dM

≤ 1

S2
k

k∑
j=1

1

j2

∫
D
|∇ψj |2dM

≤ C

S2
k

k∑
j=1

1

j2
→ 0, as k →∞.

2

Remark: Sets of zero capacity in a Riemannian manifold could not be smooth sub-
manifolds.

Now recall that, H1
0 (D) is a Hilbert space with respect to

〈u1, u2〉∗ =

∫
D
〈∇u1,∇u2〉dM.

In fact 〈 , 〉∗ and 〈 , 〉H1 are equivalents, as we can see by using the Poincaré inequality

|u|L2(D) ≤ C|∇u|L2(D).

HenceH(D;A) is a closed (affine) subspace ofH1
0 (D) with respect to 〈 , 〉∗. Let uA be

the orthogonal projection of 0 onH(D;A). By definition we get |∇uA|2L2(D)
= CapA.

Now we start the proof of Theorem 3.2 following some ideas contained in [13].
Here we will consider nonempty boundary domains and general elliptic operators in
the divergence form.

For each x ∈ D, let Px : TxM → TxM be a symmetric, positive (or negative)
defined operator. We define, for eachf ∈ C∞

0 (D),

Lf = div(P∇f) + qf,

where q : D → R is a bounded function.
We consider the unique extension of L to H1

0 (D). Then, L is an elliptic operator
and let us denote by {λ0 < λ1 ≤ λ2 ≤ . . .} the spectrum of the Dirichlet problem of
L on D, repeated according to its multiplicity.
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We recall the Courant’s minmax principle for the eigenvalues of L on domains of
M :

λk(D \ A) = min
E∈Ek

max
f∈E\{0}

∫
D\A(〈P∇f,∇f〉+ qf2)dM∫

D\A f
2dM

,

where Ek is the set of k-dimensional subspaces of H1
0 (D \A). The quotient above is

called Rayleigh quotient for f .
By using the analogous characterization for λk(D) we easily obtain the first

inequality of Theorem 3.2. In order to obtain the second inequality we choose
f1, . . . , fk, an orthonormal basis of eigenfunctions associated to λ1(D), . . . , λk(D),
and set Fk the space generated by f1, . . . , fk. Then Fk ⊂ H1

0 (D) and

λk(D) = max
f∈Fk\{0}

∫
D(〈P∇f,∇f〉+ qf2)dM∫

D f
2dM

.

We now define Ek = {g = f(1− uA) : f ∈ Fk}. It is clear that Ek ⊂ H1
0 (D \ A)

is a finite dimensional subspace. We will see that, when A has small capacity, then
Ek has dimension equal to k. In fact, the functions gj = fj(1 − uA), j = 1, . . . , k
form a basis for Ek. We have that

〈gi, gj〉L2(D) = δij − 2

∫
D
fifjuAdM +

∫
D
fifju

2
AdM.

Thus, using the Cauchy-Schwarz and Poincaré inequalities we have

|〈gi, gj〉L2(D) − δij | ≤ 2
∣∣∣ ∫

D
fifjuAdM

∣∣∣+ ∣∣∣ ∫
D
fifju

2
AdM

∣∣∣
≤ 2
(∫

D
(fifj)

2dM
)1

2
(∫

D
u2
AdM

)1
2

+ max
D

(fifj)

∫
D
u2
AdM

≤ Ck

(∫
D
u2
AdM

)1
2

+ C ′
k

∫
D
u2
AdM

≤ Bk(CapA
1
2 + CapA),

where Bk is a positive constant depending only on volD and maxi=1,...,k |fi|L∞(D).
On the other hand, we may choose εk > 0 sufficiently small such that, if CapA < εk
then

Bk(CapA+ CapA
1
2 ) < min{〈gi, gj〉L2(D) − δij : i, j = 1, . . . , k}.
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For such εk we have that g1, . . . , gk form an orthonormal basis and consequently
Ek has dimension equal to k as we claimed. Now we look for estimates of the
numerator of the Rayleigh quotient for g = f(1− uA) ∈ Ek such that |f |L2(D) = 1.

We first observe that for any A ⊂ D with CapA < εk,

|g|2
L2(D)

= 1− 2

∫
D
f2uAdM +

∫
D
f2u2

AdM ≥ 1−B′
kCapA

1
2 . (3.3)

Now we have,∫
D
〈P∇g,∇g〉+ qg2dM =∫

D
〈P (∇f − uA∇f − f∇uA),∇f − uA∇f − f∇uA〉dM +∫

D
q(f2 − 2f2uA + f2uA)dM

=

∫
D
〈P∇f,∇f〉 − 〈P∇f, uA∇f〉 − 〈P∇f, f∇uA〉 − uA〈P∇f,∇f〉dM +∫

D
u2
A〈P∇f,∇f〉+ uAf〈P∇f,∇uA〉 − f〈P∇f,∇uA〉dM +∫

D
(uAf〈P∇f,∇uA〉+ f2〈P∇uA,∇uA〉+ qf2 − 2qf2uA + qf2u2

A)dM

=

∫
D

([〈P∇f,∇f〉+ qf2]− 2〈P∇f,∇f〉uA + 〈P∇f,∇f〉u2
A)dM +

+

∫
D

(〈P∇uA,∇uA〉f2 − 2〈P∇f,∇uA〉f(1− uA)− 2f2uA + f2u2
A)dM

≤ λk +D1
k CapA1/2 +D2

k CapA+D3
k CapA+D4

k CapA+

D5
k CapA1/2 +D6

k CapA ≤ λk(D) +B′′
k(CapA+ CapA1/2),

where B′′
k depends only on volD, maxi=1,...,k |fi|L∞(D), maxi=1,...,k |∇fi|L∞(D) and

maxD ||P ||.
Therefore, choosing εk > 0 such that |g|2

L2(D)
> 0 in (3.3), we have∫

D〈P∇g,∇g〉+ qg2dM∫
D g

2dM
≤ λk(D)

1−B′
k CapA1/2

+
B′′
k(CapA+ CapA1/2)

1−B′
k CapA1/2

= λk(D) +
λk(D)B′

k CapA1/2 +B′′
k(CapA+ CapA1/2)

1−B′
k CapA1/2

.
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We observe now that, if CapA < εk, then 1−B′
k CapA1/2 > 1−B′

kε
1/2
k and therefore

we can estimate the second term above

λk(D)B′
k CapA1/2 +B′′

k(CapA+ CapA1/2)

1−B′
k CapA1/2

≤
λk(D)B′

k CapA1/2

1−B′
kε

1/2
k

+

(B′′
k CapA1/2 +B′′

k) CapA1/2

1−B′
kε

1/2
k

≤
(λk(D)B′

k +B′′
kε

1/2
k +B′′

k) CapA1/2

1−B′
kε

1/2
k

= Ck CapA1/2.

So, ∫
D〈P∇g,∇g〉+ qg2dM∫

D g
2dM

≤ λk(D) + Ck CapA1/2.

This implies that

λk(D \ A) = max
g∈Ek\{0}

∫
D(〈P∇g,∇g〉+ qg2)dM∫

D g
2dM

≤ λk(D) + Ck CapA1/2,

and we conclude the proof of Theorem 3.2.

Corollary 3.6 Given a closed subset A ⊂ D with CapA = 0 let λεk be the k-th
eigenvalue of the Dirichlet problem of the operator L in D \ V ε(A). Then

λεk → λk(D).

In particular, if λεk ≥ 0 for all ε > 0, then λk(D) ≥ 0.

3.3 Proof of Theorem 3.1

We start presenting an equivalent condition for r-stability. A simple computation
shows that

trace(B2Pr) = ||
√
PrB||2 :=

n∑
i=1

θ2
i (r).

On the other hand, Lemma 2.1 of [7] says that trace(B2Pr) = S1Sr+1− (r+ 2)Sr+2.
Thus, for r-minimal immersions, the Jacobi operator can be written as

Tr = Lr + trace(B2Pr) = Lr + ||
√
PrB||2.
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Using integration by parts, we have that

Ir(f, f) =

∫
D
〈Pr∇f,∇f〉 − ||

√
PrB||2f2dM

=

∫
D
|
√
Pr∇f |2 − ||

√
PrB||2f2dM.

So, in the case Pr > 0, to check that a regular domain D ⊂M is r-stable we just
need to show that the last term above is always nonpositive or nonnegative for all
f ∈ C∞

0 (D). Similarly in the case Pr < 0.
Now we fix ε > 0 and denote Dε = D \ V ε(A). Then, the Gauss map g is a local

diffeomorphism on Dε. Let ϕ : g(Dε) → R be the positive first eigenfunction of the

spherical Laplacian ∆̃ on g(Dε), that is,

 ∆̃ϕ+ λε1ϕ = 0 in g(Dε),
ϕ > 0 in g(Dε),
ϕ = 0 on ∂g(Dε),

where λε1 = λ1(D
ε) is the first eigenvalue of ∆̃ on g(Dε). Recall that, since Dε ⊂ D,

we have λε1 ≥ λ1.
In the following we will consider the pull back metric s̃ by g on Dε and denote

by ∇̃ the gradient, by [ ] the norm of a vector, and by dS the volume element in this

metric. By Lemma 2.9 in [2] one have ∇̃f = B−2∇f , for smooth functions f on
M and a simple computation gives [X] = |BX|, for any tangent vector X. Also we
point out that, in the metric s̃, the Gauss map g : Dε → Sn is a local isometry. Now
let ψ = ϕ ◦ g defined in Dε. Then ψ is positive and satisfies ∆̃ψ + λε1ψ = 0 in Dε.
Thus, by Corollary 1 in [20], we have that the first eigenfunction of the operator

∆̃ + λε1 is nonnegative:

0 ≤ inf
{∫

Dε
([∇̃f ]2 − λε1f

2)dS : f ∈ C∞
0 (Dε),

∫
Dε
f2dS = 1

}
. (3.4)

Now, since det g = Sn and the immersion is r-special on Dε, we have dS = |Sn|dM =
c||
√
PrB||2dM , where c is positive constant. Also, by hypothesis, λε1 ≥ λ1 ≥ τ . Thus∫

Dε
([∇̃f ]2 − λε1f

2)dS ≤ c

∫
Dε

([∇̃f ]2 − τf2)||
√
PrB||2dM. (3.5)
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Observe now that ρi =
θ2i (r)
P
j θ

2
j (r)

, i = 1, . . . , n, are the eigenvalues of the operator
√
PrB

||
√
PrB||

. Therefore, by definition

τ := max
i,D

1

ρ2
i

= max
D

∣∣∣∣∣
( √

PrB

||
√
PrB||

)−1
∣∣∣∣∣
2

.

So,

[∇̃f ]2 ≤

[( √
PrB

||
√
PrB||

)−1
]2 [(√

PrB∇̃f
||
√
PrB||

)]2

≤ τ

[(√
PrB∇̃f

||
√
PrB||

)]2

.

Using this on (3.5), we have

c

∫
Dε

([∇̃f ]2 − τf2)||
√
PrB||2dM ≤ cτ

∫
Dε

( [
√
PrB∇̃f ]2

||
√
PrB||2

− f2
)
||
√
PrB||2dM

= cτ

∫
Dε

(
[
√
PrB∇̃f ]2 − ||

√
PrB||2f2

)
dM.

Now, we recall that ∇̃f = B−2∇f and [X] = |BX| to find

[
√
PrB∇̃f ]2 = |

√
Pr∇f |2.

We conclude that, for any f ∈ C∞
0 (Dε) with

∫
Dε f

2dS = 1,

0 ≤ cτ

∫
Dε

(
|
√
Pr∇f |2 − ||

√
PrB||2f2

)
dM.

This implies that the first eigenvalue of the Jacobi operator Tr is nonnegative on
Dε and thus, by Corollary 3.6, we have that first eigenvalue of the Jacobi operator
Tr is nonnegative in all D. This shows that D is r-stable.

Remark: In the case Pr < 0 we may set Qr = −Pr in the above computations to
conclude that

0 ≤ cτ

∫
Dε

(
|
√
Qr∇f |2 − ||

√
QrB||2f2

)
dM.

On the other hand the Jacobi operator is given by

Trf = div(Pr∇f) + trace(B2Pr)

= −div(Qr∇f) + trace(B2Qr).

We conclude that the first eigenvalue of Tr is nonpositive on D and therefore we
obtain r-stability according to our definition.



Appendix A

Proof of Claim 1.5

First write (1.13) setting cλ(x) = 0 when wλ(x) = 0. Fix 0 < µ < n − 2 and define

g(x) = |x|−µ and φ(x) =
wλ(x)

g(x) . Then, using the equation (1.13),

∆φ+
2

g
〈∇g,∇φ〉+

(
cλ(x) +

∆g

g

)
φ = 0.

By a computation we get ∆g = −µ(n− 2− µ)|x|−µ−2, that is,

∆g

g
= −µ(n− 2− µ)|x|−2.

On the other hand, the expansion (1.8) implies that wλ(x) = O(|x|2−n) and
consequently cλ(x) = O(|x|−n−2−2+n) = O(|x|−4). Hence we obtain

cλ(x) +
∆g

g
≤ C(|x|−4 − µ(n− 2− µ))|x|−2).

In particular c(x) + ∆g
g < 0 for large |x|. Choose R0 with B(ā, r)∪Λ ⊂ B(0, R0)

such that
C(|x|−4 − µ(n− 2− µ))|x|−2) < 0, for |x| ≥ R0. (A.1)

Now let x0 ∈ int(Ωλ) so that wλ(x0) = infint(Ωλ)wλ < 0.

Since lim|x|→+∞ φ(x) = 0 and φ(x) ≥ 0 on ∂Ωλ, there exists x̄0 such that φ
has its minimum at x̄0. By applying the maximum principle for φ at x̄0 we get

cλ(x̄0) +
∆g(x̄0)

g ≥ 0 and by (A.1), |x̄0| < R0. Now we have

wλ(x0)

g(x̄0) ≤ wλ(x̄0)

g(x̄0) = φ(x̄0)

≤ φ(x0) =
wλ(x0)

g(x0) .

42
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This implies |x0| ≤ |x̄0| ≤ R0 and proves the claim.



Appendix B

Some Basic Formulas for
Immersed Surfaces in M2(κ)× R

In this appendix we deduce formulas (B3)-(B6) used in § 2.3.
For a Riemannian or Lorentzian product Mn × R we have that

〈R(X, Y )Z,W 〉 = 〈R(Xh, Y h)Zh,W h〉,

where R stands for the Riemannian tensor of M × R and we are using the notation
X = Xh +Xt ∈ TM × TR. Thus, if M has constant sectional curvature κ,

〈R(X, Y )Z,W 〉 = κ(〈Xh, Zh〉〈Y h,W h〉 − 〈Xh,W h〉〈Y h, Zh〉) (B.1)

Now, given an isometric immersion Σn → M × R of an oriented Riemannian
manifold, let n1 ∈ Σ⊥ be an unit normal vector field. Then DXn1 is a tangent
vector and

(R(X,Y )n1)
> = −DXDY n1 +DYDXn1 +D[X,Y ]n1, for X, Y ∈ TM, (B.2)

where D is Levi-Civita connection of M × R.
In the following we will fix n = 2 for simplicity. Let ∂u, ∂v ∈ TΣ tangent vectors

such that 〈∂u, ∂u〉 = 〈∂v, ∂v〉 =: E and 〈∂u, ∂v〉 = 0. If we denote by ∂t the paralel
unit vector field tangent to the factor R we can write

E = 〈∂hu , ∂hu〉+ ε〈∂u, ∂t〉2

= 〈∂hv , ∂hv 〉+ ε〈∂v, ∂t〉2

and

0 = 〈∂u, ∂v〉 = 〈∂hu , ∂hv 〉+ ε〈∂u, ∂t〉〈∂v, ∂t〉

44



45

Also,

〈∂hv , n1〉 = −ε〈∂v, ∂t〉〈n1, ∂t〉,
〈∂hv , n1〉 = −ε〈∂v, ∂t〉〈n1, ∂t〉.

Then, using the above identities in (B.1) we obtain

〈R(∂u, ∂v)n1, ∂u〉 = κ(〈∂hu , nh1〉〈∂hv , ∂hu〉 − 〈∂hu , ∂hu〉〈∂hv , nh1〉)
= κ(〈∂hu , nh1〉(−ε〈∂u, ∂t〉〈∂v, ∂t〉)− (E − ε〈∂hu , ∂t〉2)〈∂hv , nh1〉)
= κ(−ε〈∂hu , nh1〉〈∂u, ∂t〉〈∂v, ∂t〉 − E〈∂hv , nh1〉+ ε〈∂hu , ∂t〉2〈∂hv , nh1〉)
= −κE〈∂hv , nh1〉 (B.3)

and similarly

〈R(∂u, ∂v)n1, ∂v〉 = κE〈∂hu , nh1〉. (B.4)

Finally, from (B.2), we obtain the Codazzi Equations

〈R̄(∂u, ∂v)n1, ∂u〉 = −〈DuDvn1, ∂u〉+ 〈DvDun1, ∂u〉 (B.5)

and

〈R̄(∂u, ∂v)n1, ∂v〉 = −〈DuDvn1, ∂v〉+ 〈DvDun1, ∂v〉. (B.6)
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