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‘Would you tell me, please, which way I ought to go from here?’
‘That depends a good deal on where you want to get to,’ said

the Cat.
‘I don’t much care where–’ said Alice.

‘Then it doesn’t matter which way you go,’ said the Cat.
‘–so long as I get somewhere,’ Alice added as an explanation.

‘Oh, you’re sure to do that,’ said the Cat, ‘if you only walk
long enough.’

(Lewis Carroll, Alice’s Adventures in Wonderland)
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pela amizade.

Aos professores do IMPA, em especial aos Profs. Karl-Otto Stöhr, César
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Introduction

In this work, we are interested in Group Ring Theory. Although some
issues in Semigroup Ring Theory are also presented, the main focus is group
rings.

In Chapter 1, the basic theoretical foundations in group and semigroup
rings are laid. These ideas will be used throughout the entire work.

We begin with a presentation of definitions and theorems from Ring The-
ory, establishing their particular instances in the context of group rings. We
define group rings; the augmentation mapping; involutions; the Jacobson
radical of a ring; idempotents; simple components; the character table of a
group; trivial, bicyclic and unitary units; the upper central series, the FC
center and the hypercenter of a group. Important results from Ring and
Group Ring Theory are then recalled, such as Wedderburn-Malcev theorem,
the decomposition of a semisimple ring in a direct sum of ideals, Wedderburn-
Artin theorem, Maschke theorem. For the sake of completeness and because
this may be elucidating in the sequel, some results are presented with their
proofs (Perlis-Walker theorem, the character method for obtaining primitive
central idempotents in group algebras over complex fields, Berman-Higman
lemma and its corollaries).

As a prerequisite to the study of semigroup rings, we briefly present
fundamental concepts from Semigroup Theory. We define semigroups and
special kinds of semigroups (regular, inverse, completely 0-simple, Brandt);
idempotents; principal factors and principal series of a semigroup; provide
basic results concerning the structure of semigroups, and present elucidative
and useful examples, such as Rees matrix semigroups and Malcev nilpotent
semigroups. Fundamental notions from Semigroup Ring Theory are then
exposed: we define semigroup and contracted semigroup rings, followed by
some clarifying examples, and results concerning the structure of semisimple
semigroup algebras, with special attention given to semigroup algebras over
the rational field, matrix semigroup rings and Munn algebras.

The reader who is well acquainted with all these concepts can concentrate
on the notation introduced.
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Chapter 2 is part of a joint work ([33]) with Prof. Luciane Quoos,
from the Institute of Mathematics, UFRJ. The main result in this chapter is
an alternative procedure to compute the primitive central idempotents of a
group algebra of a finite nilpotent group over the complex field, not relying
on the character table of the group, following methods previously applied
by Jespers and Leal to the rational case. As a partial result, we present
a formula for the primitive idempotents of the group algebra of the finite
abelian group over any field, which permits to build all cyclic codes over a
given finite field.

At first, some notation is fixed, and we state and prove a theorem that
yields a formula for the primitive idempotents in a semisimple group algebra
of a finite abelian group over an algebraically closed field; though the result is
extremely useful and new, the proof is quite easy and short. Next, the same
result is extended to a semisimple group algebra of a finite abelian group
over an any field, using the known method of Galois descent.

Then some technical definitions and facts, which appear in the literature
specific to the study of primitive central idempotents, are stated. A few
recent results on the subject are recalled, as they play an auxiliary role
to our main result. Finally, a fully internal description of the primitive
central idempotents of a group algebra of a finite nilpotent group over the
complex field is presented. The classical method for computing primitive
central idempotents in complex group algebras relies on the character table
of the group, whose construction has complexity growing exponentially with
the order of the group. Our tool depends only on a lattice of subgroups of the
given group, satisfying some intrinsic conditions. Though the complexity of
this new method is still unknown, it is a theoretic alternative to the classical
character method that might turn out to be simpler and faster to use.

The material in Chapter 3 is based on a joint work ([9]) with Dr. Ann
Dooms, from the Department of Mathematics, Vrije Universiteit Brussel,
where I had the opportunity of spending one year of my Ph.D. under the
support of CNPq, Brasil. We define the new concept of the normalizer of a
semigroup in the unit group of its integral semigroup ring. Several known
results and properties on the normalizer of the trivial units in the unit group
of an integral group ring are shown to hold for the normalizer of a finite
inverse semigroup. This indicates that our concept of normalizer of a semi-
group behaves as desired, and might be suitable and helpful in investigations
on the isomorphism problem in semigroup rings and partial group rings, as
is analogously done with group rings. We also construct free groups in the
unit group of the integral semigroup ring of an inverse semigroup, using a
bicyclic unit and its image under an involution.

Introduction
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We start by giving the definition of the normalizer of a semigroup in
the unit group of its integral semigroup ring. This definition coincides with
the normalizer of the trivial units in the case of an integral group ring and
behaves very much like it in inverse semigroups. These semigroups have a
natural involution, and semigroup rings of inverse semigroups are a wide
and interesting class containing, for instance, matrix rings and partial group
rings. This natural involution allows us to extend Krempa’s characterization
of the normalizer in group rings to a very useful property of the normalizer
of a semigroup. We will describe the torsion part of the normalizer and
investigate the double normalizer. Just like in group rings, the normalizer
of a semigroup contains the finite conjugacy center of the unit group of
the integral semigroup ring and the second center. It remains open what
the normalizer is in case the semigroup ring is not semisimple; we give an
example that provides some clues of how the normalizer might behave in
this case. This new concept of normalizer might be useful to tackle the
isomorphism problem for semigroup rings and partial group rings, and this
is an interesting path to follow in further studies.

The normalizer problem is then posed for integral semigroup rings, and
solved for finite Malcev nilpotent semigroups having a semisimple rational
semigroup ring. Like with integral group rings, we get that the normalizer
of a finite semigroup is a finite extension of the center of the semigroup ring.

Borel and Harish-Chandra showed the existence of free groups contained
in the unit group of an integral semigroup ring. As an additional consequence
of the investigation of the natural involution in a Brandt semigroup, we
investigate the problem of constructing free groups in the unit group of an
integral semigroup ring using a bicyclic unit and its involuted image, following
Marciniak and Sehgal.

These are, so far, my contributions to the investigation of group rings.

Introduction



Chapter 1

Preliminaries

In this beginning chapter, we shall collect most of the needed background
in group and semigroup ring theory. For a more comprehensive approach, we
refer the reader to [25], [36], [4] and [30]. Those familiar with all the required
concepts can concentrate on the notation.

1.1 Group Ring Theory

1.1.1 Basic Definitions

Definition 1.1.1. Let G be a (multiplicative) group, and R be a ring with
identity 1. The group ring RG is the ring of all formal sums α =

∑
g∈G αgg,

αg ∈ R, with finite support supp(α) = {g ∈ G; αg 6= 0}. We say that αg is
the coefficient of g in α. Two elements α and β in RG are equal if and only
if they have the same coefficients. The zero element in RG is the element
0 :=

∑
g∈G 0g, and the identity in RG is the element 1 := 1e +

∑
g∈G\{e} 0g

(with e the identity in G, which shall be denoted henceforth by 1). The
sum α + β is the element

∑
g∈G(αg + βg)g. The product αβ is the element∑

g∈G γgg, where γg =
∑

x,y∈G
xy=g

αxβy, for each g ∈ G. If R is a commutative

ring, then RG is an R-algebra and is called a group algebra.

Definition 1.1.2. Let RG be a group ring. The augmentation mapping
of RG is the ring homomorphism ε : RG → R,

∑
g αgg 7→

∑
g αg. Its

kernel, denoted by ∆(G), is the augmentation ideal of RG. We have that

∆(G) =
{∑

g∈G αg(g − 1); αg ∈ R
}

.

If N is a normal subgroup of G, then there exists a natural homomorphism
εN : RG → R(G/N),

∑
g αgg 7→

∑
g αggN . The kernel of this mapping,

denoted by ∆R(G, N), is the ideal of RG generated by {n− 1; n ∈ N}.

1



1.1. Group Ring Theory 2

We recall the definition of a ring with involution.

Definition 1.1.3. Let A be a commutative ring and R be an A-algebra. An
involution on R is an A-module automorphism τ : R → R such that, for all
x, y ∈ R

τ(xy) = τ(y)τ(x) and τ 2(x) = x.

Let G be a group. If R is a ring with an involution τ , we can define an
involution ∗ on RG extending τ as

(
∑
g∈G

αgg)∗ :=
∑
g∈G

τ(αg)g
−1.

For instance, we can define an involution on CG, known as the classical
involution as (

∑
g∈G αgg)∗ :=

∑
g∈G αgg

−1, where αg denotes the complex
conjugate of αg.

Now we need some concepts and results from Ring Theory that are rele-
vant in studying group rings.

Definition 1.1.4. Let R be a ring. The Jacobson radical of R, denoted by
Jac(R) or J (R), is defined as the intersection of all maximal left ideals in R
if R 6= 0, or as (0) if R = 0.

Evidently, if R 6= 0, maximal ideals always exist by Zorn’s Lemma.
In the definition above, we used left ideals; we could similarly define the

right Jacobson radical of R. It turns out that both definitions coincide (see
[17, §4]), so the Jacobson radical of a ring is a two-sided ideal.

The Jacobson radical of a ring has many important properties and shows
up in a number of theorems in Group and Semigroup Ring Theory. We shall
mention only the ones we need in this work.

Lemma 1.1.5. [25, Lemma 2.7.5] Let R be a ring. Then J (R/J (R)) = 0.

Definition 1.1.6. An element e in a ring R is said to be an idempotent
if e2 = e. If e is an idempotent, e 6= 0 and e 6= 1, then e is a nontrivial
idempotent . Two distinct idempotents e and f in a ring R are said to be
orthogonal if ef = fe = 0. An idempotent e is said to be primitive if it cannot
be written as e = e

′
+ e

′′
, with e

′
and e

′′
nonzero orthogonal idempotents.

Definition 1.1.7. Let R be a ring, and M be a (left) R-module. M is called
a simple (or irreducible) (left) R-module if M is nonzero and M has no (left)
R-submodules other than (0) and M . A nonzero ring R is said to be a simple
ring if (0) and R are the only two-sided ideals of R.

Preliminaries



1.1. Group Ring Theory 3

Definition 1.1.8. Let R be a ring, and M be a (left) R-module. M is
called a semisimple (or completely reducible) (left) R-module if every (left) R-
submodule of M is a direct summand of M (i.e., for every (left) R-submodule
N of M , there is a (left) R-submodule N ′ such that M = N ⊕N ′).

Evidently, an analogous definition makes sense for rings (an equivalent
definition of semisimplicity for an Artinian ring R is Jac(R) = 0 [25, Theorem
2.7.16]) . It is worth observing that the notions of left and right semisimplicity
are equivalent for rings (see, for instance, [17, Corollary 3.7]).

If R is a semisimple ring, then the inner structure of R determines all the
simple R-modules, up to isomorphism.

Lemma 1.1.9. [25, Lemma 2.5.13] Let R be a semisimple ring, L be a
minimal left ideal of R and M be a simple R-module. We have that LM 6= 0
if and only if L 'M as R-modules; in this case, LM = M .

Certain rings can be decomposed as a direct sum of ideals. Recall that
a field F is a perfect field if every algebraic extension of F is separable, or,
equivalently, char(F ) = 0 or char(F ) = p 6= 0 and F p = F .

Theorem 1.1.10 (Wedderburn–Malcev). [35, Theorem 2.5.37] Let R be
a finite dimensional algebra over a perfect field F . Then

R = S(R)⊕ J (R) (as a vector space over F ),

where J (R) is the Jacobson radical of R, and S(R) is a subalgebra of R
isomorphic to R/J (R).

In the Wedderburn–Malcev Theorem, notice that, since S(R) ' R/J (R),
we have that S(R) is a semisimple algebra by Lemma 1.1.5.

The decomposition of a ring as a direct sums of ideals has a very important
particular case when the ring is semisimple.

Theorem 1.1.11. [25, Theorem 2.5.11] Let R =
⊕s

i=1 Ai be a decomposition
of a semisimple ring R as a direct sum of minimal two-sided ideals. Then
there exists a uniquely determined family {e1, . . . , es} such that:

1. ei is a nonzero central idempotent, for i = 1, . . . , s;

2. eiej = δijei, for i, j = 1, . . . , s, where δij is Kronecker’s delta (in par-
ticular, ei and ej are orthogonal for i 6= j);

3. 1 =
∑s

i=1 ei;

Preliminaries



1.1. Group Ring Theory 4

4. ei cannot be written as ei = e′i + e′′i , where e′i and e′′i are both nonzero
central orthogonal idempotents, for 1 ≤ i ≤ s.

Conversely, if there exists a family of idempotents {e1, . . . , es} satisfying the
above conditions, then Ai := Rei are minimal two-sided ideals and R =⊕s

i=1 Ai. The elements {e1, . . . , es} are called the primitive central idempo-
tents of R.

Definition 1.1.12. The unique two-sided ideals of a semisimple ring R are
called the simple components of R

The following characterization of semisimple rings will be very important
for us:

Theorem 1.1.13 (Wedderburn–Artin). [17, Theorem 3.5] A ring R is
semisimple if and only if it is a direct sum of matrix algebras over divi-
sion rings, i.e., R ' Mn1(D1) ⊕ . . . ⊕Mns(Ds), where n1, . . . , ns are posi-
tive integers and D1, . . . , Ds are division rings. The number s and the pairs
(n1, D1), . . . , (ns, Ds) are uniquely determined (up to permutations).

Now we can proceed to translate these ring theoretical concepts into valu-
able information about group rings.

Theorem 1.1.14 (Maschke). [25, Corollary 3.4.8] Let K be field and G be
a finite group. The group algebra KG is semisimple if and only if char(K)
does not divide |G|.

The following special elements of a group ring play a major role both in
Group Ring Theory and in the present work in particular.

Definition 1.1.15. Let R be a ring with identity and let H be a finite
subset of a group G. Define the element Ĥ of RG as Ĥ :=

∑
h∈H h. If

H = 〈a〉 is a cyclic subgroup of G of finite order, we shall sometimes write â

instead of 〈̂a〉. If |H| is invertible in R, we may define the element H̃ of RG

as H̃ := 1
|H|

∑
h∈H h. If {Ci}i∈I is the set of conjugacy classes of G which

contain only a finite number of elements, then the elements Ĉi in RG are
called the class sums of G over R.

These constructions enable us to get, for instance, a basis for the center
of a group ring and idempotent elements.

Theorem 1.1.16. [25, Theorem 3.6.2] Let G be a group and R be a com-

mutative ring. The set {Ĉi}i∈I of all class sums of G over R is a basis of
Z(RG) over R.

Preliminaries



1.1. Group Ring Theory 5

Lemma 1.1.17. [25, Lemma 3.6.6] Let R be a ring with identity and let H

be a finite subgroup of a group G. If |H| is invertible in R, then H̃ is an

idempotent of RG. Moreover, H̃ is central if and only if H C G.

Group Representation Theory is a very powerful means to obtain new
results in Algebra. It is also a useful tool to “realize” an abstract group as
a concrete one. Some knowledge of Group Representation Theory is vital to
the understanding of group rings.

Definition 1.1.18. Let G be a group, R a commutative ring and V a free
R-module of finite rank. A representation of G over R, with representation
space V is a group homomorphism T : G → GL(V ), where GL(V ) denotes
the group of R-authomorphisms of V . The rank of V is called the degree
of T and denoted by deg(T ). Fixing an R-basis of V , we can define an
isomorphism between GL(V ) and GLn(R), with n = deg(T ), where GLn(R)
denotes the group of n×n invertible matrices with coefficients in R. We can
thus consider the induced group homomorphism T : G→ GLn(R), in which
case we talk about a matrix representation.

Two representations T : G→ GL(V ) and T ′ : G→ GL(W ) of G over R
are equivalent representations if there exists an isomorphism of R-modules
φ : V → W such that T ′(g) = φ ◦ T (g) ◦ φ−1, for all g ∈ G. A representation
T : G→ GL(V ) is an irreducible representation if V 6= 0 and if V and 0 are
the only invariant subspaces of V under T .

There is a strong connection between group representations and modules,
in which group rings play a major role, as it may be seen in the following
proposition:

Proposition 1.1.19. [25, Propositions 4.2.1 and 4.2.2] Let G be a group
and R be a commutative ring with identity. There is a bijection between the
representations of G over R and the (left) RG-modules which are free of finite
rank over R:

• given a representation T : G → GL(V ) of G over R, associate to
it the (left) RG-module M constructed from V by keeping the same
additive structure and defining the product of v ∈ V by α ∈ RG as
αv :=

∑
g∈G αgT (g)(v);

• if M is a (left) RG-module which is free of finite rank over R, define
the representation T : G→ GL(M) ; T (g) : m 7→ gm.

Two representations of G over R are equivalent if and only if the corre-
sponding (left) RG-modules are isomorphic. Also, a representation is irre-
ducible if and only if the corresponding (left) RG-module is simple.

Preliminaries



1.1. Group Ring Theory 6

The case when a group is represented over a field is of particular inter-
est. Historically, this was the first case to be studied and, therefore, most
applications were developed in this context.

The notion of character is of fundamental importance in Group Represen-
tation Theory and in Group Theory. It also shows up in the study of group
rings; in particular, there is a well-known formula for computing idempo-
tents of complex group algebras of finite groups that completely relies on
characters.

Definition 1.1.20. Let T : G → GL(V ) be a representation of a group G
over a field K, with representation space V . The character χ of G afforded
by T is the map χ : G→ K; g 7→ tr(T (g)), where tr(T (g)) is the trace of the
matrix associated to T (g) with respect to any basis of V over K. If T is an
irreducible representation, then χ is called an irreducible character

Proposition 1.1.21. [25, Proposition 5.1.3] Let G be a finite group and K be
a field such that char(K) - |G|. Consider χ1, . . . , χr the characters afforded by
a complete set T1, . . . , Tr of inequivalent irreducible representations of G over
K. Then the set of all characters of G over K is the set {χ =

∑r
i=1 niχi; ni ∈

Z, i = 1, . . . , r}.

Next, we give an example of a very special representation and the corre-
sponding character, which will be useful in the sequel.

Example 1.1.22 (Regular Representation and Regular Character).
Let G be a finite group of order n. Consider the representation T : G →
GL(CG) that associates to each g ∈ G the linear map Tg : x 7→ gx. This
is called the regular representation of G over C. Denote by ρ the character
afforded by T , i.e., the regular character .

Regard T as the matrix representation obtained by taking the elements
of G in some order as an R-basis of RG. It is clear that the image of each
g ∈ G is a permutation matrix. Notice that if g 6= 1, then gx 6= x, so all the
elements on the diagonal of matrix T (g) are equal to zero. Hence,

ρ(g) =

{
0 , if g 6= 1
|G|, , if g = 1.

We know that

CG 'Mn1(C)⊕ . . .⊕Mns(C) ' (CG)e1 ⊕ . . .⊕ (CG)es

(Theorem 1.1.13 and Theorem 1.1.11), with {e1, . . . , es} the primitive central
idempotents of CG, and that, for all i = 1, . . . , s, Mni

(C) ' (CG)ei '

Preliminaries



1.1. Group Ring Theory 7

Li
1⊕ . . .⊕Li

ni
, where Li

j denotes the irreducible (left) CG-module consisting
of ni × ni matrices having complex elements on the jth column and zeros
elsewhere. Clearly, by Lemma 1.1.9, for all j = 1, . . . , ni, Li

j ' Li
1 (as CG-

modules), which has dimension ni over C. So, CG ' n1L
1
1 ⊕ . . .⊕ nsL

s
1.

If Ti denotes the irreducible representation of G over C corresponding to
Li

1 and χi denotes the character Ti affords, then we have that T =
⊕s

i=1 niTi

and ρ =
∑s

i=1 niχi. Since ni = deg(Ti) = χi(1) (because χi(1) = tr(Ti(1)) =
tr(Ini

), where Ini
is the ni × ni identity matrix), it follows that

ρ =
s∑

i=1

χi(1)χi (*).

In the isomorphism CG ' Mn1(C) ⊕ . . . ⊕ Mns(C), each idempotent
ei corresponds to the element (0, . . . , 0, Ini

, 0, . . . , 0), with Ini
the identity

matrix in Mni
(C). It is clear that Ti(ei) is the linear function defined in Li

1

by multiplication by the identity element, i.e., it is the identity function on
the simple component Mni

(C). Since eiej = δijei, it follows that

Ti(ej) =

{
0 , if i 6= j,
Ini

, if i = j;

and

χi(ej) =

{
0 , if i 6= j,
tr(Ini

) = deg(Ti) , if i = j.

Lemma 1.1.23. Let G be a group and χ be a character afforded by a rep-
resentation of G. Then χ is constant on each of the conjugacy classes of
G.

Thus, the following definition makes sense:

Definition 1.1.24. Let G be a group and C1, . . . , Cr be its conjugacy classes.
Choose, for each i, an arbitrary xi ∈ Ci. The matrix (χi(xj)) is called the
character table of G.

The case of group characters over the complex field will be extremely
important for us. We would like to know the dimensions of the complex
character table of a group. Notice that we learn, from example 1.1.22, that
the number of irreducible characters of a group G is equal to s, the number
of simple components in the Wedderburn–Artin decomposition of CG. In
fact, more is known:

Preliminaries



1.1. Group Ring Theory 8

Proposition 1.1.25. [25, Proposition 3.6.3, Theorem 4.2.7] Let G be a fi-
nite group and K be an algebraically closed field such that char(K) - |G|.
Then the number of simple components of KG is equal to the number of
conjugacy classes of G, which equals the number of irreducible nonequivalent
representations of G over K.

Remark 1.1.26. Actually, the above proposition is still true in a slightly
more general setting: when K is a splitting field for G (see [25, Definition
3.6.4]).

Let A be a ring (with identity). We recall that we denote by U(A) the
multiplicative group of units of A, i.e.,

U(A) := {x ∈ A; xy = yx = 1, for some y ∈ A}.

There are not many known methods for constructing units in group rings,
most of them being either elementary or very old. Therefore, describing units
in group rings is a very active and important field of research.

Definition 1.1.27. Let R be a ring with identity and G be a group. An
element in the group ring RG of the form rg, where r ∈ U(R) and g ∈ G, is
called a trivial unit of RG, its inverse being the element r−1g−1.

For instance, the trivial units in ZG are the elements of ±G. Generally
speaking, group rings do have nontrivial units, though these may be hard to
find.

Let A be a ring with zero divisors. Take x, y ∈ A \ {0} such that xy = 0.
Then, for an arbitrary t ∈ A, η := ytx is a square zero element. Thus, 1 + η
is a unit, with inverse 1− η. A very special and important case occurs when
A is an integral group ring.

Definition 1.1.28. Let G be a group. Consider a, b ∈ G, with a of finite
order, and define

ua,b := 1 + (1− a)bâ.

Since (1− a)â = 0, ua,b is a unit in ZG, called a bicyclic unit .

Notice that the definition of bicyclic units still makes sense for integral
semigroup rings (see Section 1.2).

Proposition 1.1.29. [25, Proposition 8.1.6] Let g, h be elements of a group
G, with o(g) < ∞. Then, the bicyclic unit ug,h is trivial if and only if h
normalizes 〈g〉 and, in this case ug,h = 1.
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Next, we define a type of unit that is related to the classical involution
on an integral group ring.

Definition 1.1.30. Let G be a group. An element u ∈ ZG is said to be a
unitary unit if uu∗ = u∗u = 1, where ∗ is the classical involution on ZG (see
Definition 1.1.3).

Now we recall some definitions from Group Theory that will be helpful
when studying the unit group of group rings and semigroup rings (see [34]).

Definition 1.1.31. Let G be a group. Consider the upper central series of
G

{1} = Z0(G) ≤ Z1(G) ≤ Z2(G) ≤ . . . ,

defined inductively as Z1(G) := Z(G) and Zn(G), the nth center of G, is the
only subgroup of G such that

Zn(G)/Zn−1(G) = Z(G/Zn−1(G)).

Notice that u ∈ Zn+1(G) if and only if (u, g) ∈ Zn(G), for all g ∈ G, where
(u, g) := u−1g−1ug is the commutator of u and g.

The union
Z∞(G) :=

⋃
i

Zi(G)

is called the hypercenter of G. If there exists m ∈ N such that Z∞(G) =
Zm(G) and m is the smallest possible number with this property, then m is
called the central height of G.

Let N and H be subsets of G. The centralizer of H in N is defined by

CN(H) := {g ∈ N ; gh = hg, ∀h ∈ H}.

The finite conjugacy center of G (or FC center of G) Φ(G) is the set of
all elements of G that have a finite number of conjugates in G, i.e.,

Φ(G) := {g ∈ G; |Cg| <∞} = {g ∈ G; (G : CG(g)) <∞},

where Cg denotes the G-conjugacy class of g ∈ G. It is well known ([25,
Lemma 1.6.3]) that Φ(G) is a characteristic subgroup of G.

Let H be a subgroup of G and g, h ∈ G. We denote by Hg the conjugate
of H by g, i.e.,

Hg = gHg−1,

and we denote by hg the conjugate of h by g, i.e.,

hg = ghg−1.
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1.1.2 Some Results

In this subsection, we recall some results that will be helpful in the sequel.
Although these are basic facts from Group Ring Theory, we include their
proofs for the sake of completeness.

The next theorem deals with the problem of finding the Wedderburn–
Artin decomposition (according to Theorem 1.1.13) of a semisimple group
algebra KG of a finite abelian group G.

Theorem 1.1.32. [32, Perlis–Walker] Let G be a finite abelian group of
order n, and K be a field such that char(K) - n. Then

KG '
⊕
d|n

adK(ζd),

where adK(ζd) denotes the direct sum of ad copies of K(ζd), ζd are primitive
roots of unity of order d and ad = nd/[K(ζd) : K], with nd denoting the
number of elements of order d in G.

Proof. Let us first analyse the case when G = 〈a; an = 1〉 is a cyclic group of
order n.

Consider the map φ : K[X] → KG; f 7→ f(a). We have that φ is a ring

epimorphism with kernel (Xn − 1); thus KG ' K[X]
(Xn−1)

. Consider Xn − 1 =∏
d|n Φd, the decomposition of Xn−1 in cyclotomic polynomialnomials Φd in

K[X], i.e., Φd =
∏

j(X−ζj), where ζj runs over all the primitive roots of unity
of order d, for all d|n. For each d, let Φd =

∏ad

i=1 fdi
be the decomposition of

Φd in irreducible polynomials in K[X]. So,

Xn − 1 =
∏
d|n

ad∏
i=1

fdi
.

Since char(K) - n, it follows that Xn − 1 is a separable polynomial, i.e.,
all the fdi

’s are distinct irreducible polynomials. By the Chinese Remainder
Theorem, it follows that

KG '
⊕
d|n

ad⊕
i=1

K[X]

(fdi
)

.

Now, for each di, we have that K[X]
(fdi

)
' K(ζdi

), with ζdi
a root of fdi

. Thus,

KG '
⊕
d|n

ad⊕
i=1

K(ζdi
),
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and ζdi
are primitive roots of unity of orders d dividing n. So, for a fixed d,

we have that K(ζdi
) = K(ζdj

), for any i, j = 1, . . . , ad, and we may write

KG '
⊕
d|n

adK(ζd),

with ζd a primitive root of unity of order d. Also, deg(fdi
) = [K(ζd) : K],

for all i = 1, . . . , ad, so, taking degrees in the decomposition of Φd, we have
that φ(d) = ad[K(ζd) : K], where φ denotes Euler’s totient function. It
is well known that, since G is a cyclic group of order n, for any divisor d
of n, the number nd of elements of order d in G is precisely φ(d). Hence,
ad = nd/[K(ζd) : K].

Suppose now that G is a finite abelian noncyclic group. We proceed by
induction on the order of G. So assume the result holds for any abelian group
of order less than n.

Using the Structure Theorem of Finite Abelian Groups, we can write
G = G1 × H, with H a cyclic group of order n2 and |G1| = n1 < n.
By the induction hypothesis, we can write KG1 '

⊕
d1|n1

ad1K(ζd1), with

ad1 =
nd1

[K(ζd1
):K]

and nd1 denoting the number of elements of order d1 in G1.

Therefore,

KG ' K(G1 ×H) ' (KG1)H ' (
⊕
d1|n1

ad1K(ζd1))H '
⊕
d1|n1

ad1(K(ζd1)H)

(because, for any ring R and any groups G and H, it holds that R(G ×
H) ' (RG)H, and, if R = ⊕i∈IRi, with {Ri}i∈I a family of rings, then
RG ' ⊕i∈IRiG). Decomposing each direct summand, we get

KG '
⊕
d1|n1

⊕
d2|n2

ad1ad2K(ζd1 , ζd2),

with ad2 = nd2/[K(ζd1 , ζd2) : K(ζd1)] and nd2 denoting the number of elements
of order d2 in H. Taking d := lcm(d1, d2), it follows that K(ζd) = K(ζd1 , ζd2).
Set ad :=

∑
lcm(d1,d2)=d ad1ad2 and let us see that the result follows. In fact,

since [K(ζd) : K] = [K(ζd1 , ζd2) : K(ζd1)][K(ζd1) : K], we have that

ad[K(ζd) : K] =
∑

lcm(d1,d2)=d ad1ad2 [K(ζd1 , ζd2) : K(ζd1)][K(ζd1) : K] =∑
lcm(d1,d2)=d nd1nd2 .

From G = G1 × H, each element in g ∈ G may be written as g = g1h,
with g1 ∈ G1 and h ∈ H and, since G is abelian, o(g) = lcm(o(g1), o(h)).
Hence,

∑
lcm(d1,d2)=d nd1nd2 = nd, the number of elements of order d in G,

and ad = nd/[K(ζd) : K]. Therefore KG '
⊕

d|n adK(ζd)
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If one knows the Wedderburn–Artin decomposition of a semisimple ring,
it is only natural to search for its primitive central idempotents (Theorem
1.1.11). In Chapter 2, we develop methods to find primitive central idempo-
tents of semisimple group algebras of finite abelian groups and of complex
group algebras of finite nilpotent groups. In the latter case, there already
exists a classical method to compute the primitive central idempotents that
relies on the group’s character table.

The character table of a group provides the primitive central idempotents
of its complex group algebra by means of the following formula.

Theorem 1.1.33. [25, Theorem 5.1.11] Let G be a finite group, and
χ1, . . . , χr be all the irreducible complex characters of G. For i = 1, . . . , r,
define

ei :=
χi(1)

|G|
∑
g∈G

χi(g
−1)g.

Then e1, . . . , er are the primitive central idempotents of the complex group
algebra CG.

Proof. For each i = 1, . . . , r, we may write ei =
∑

g∈G αgg. Evaluating the
regular character ρ on ei, we get ρ(ei) =

∑
g∈G αgρ(g) = α1|G|. Thus, for

any x ∈ G, we have that ρ(x−1ei) =
∑

g∈G αxgρ(g) = αx|G|. From Example

1.1.22, (∗) it follows that αx|G| = ρ(x−1ei) =
∑r

j=1 χj(1)χj(x
−1ei). Consider

Ti the representation associated to the character χi. We get that

Ti(x
−1ei) = Ti(x

−1)Ti(ei) = Ti(x
−1),

Tj(x
−1ei) = Tj(x

−1)Tj(ei) = 0,

for i 6= j, and thus
χi(x

−1ei) = χi(x
−1),

χj(x
−1ei) = 0,

for i 6= j. As a result,

αx =
1

|G|
χi(1)χi(x

−1),

for all x ∈ G. Hence, from ei =
∑

g∈G αgg, the desired formula follows.

Now we proceed to state some results about trivial units (see Definition
1.1.27) in integral group rings that will be very relevant in the study of the
normalizer of integral semigroup rings in Chapter 3.

The next result states that the trivial units are the only unitary units
(see Definition 1.1.30); it has an elementary proof and, nevertheless, is very
useful in the study of units in group rings.
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Proposition 1.1.34. Let G be a group and γ =
∑

g∈G γgg ∈ ZG. We have
that γγ∗ = 1 if and only if γ ∈ ±G.

Proof. If γ = ±g, for g ∈ G, then γ∗ = ±g−1 = γ−1.
Conversely, if γγ∗ = 1, then we have that

1 =
∑
g∈G

γ2
g1 +

∑
g,h∈G

g 6=h

γgγhgh−1.

Thus, 1 =
∑

g∈G γ2
g1 and 0 =

∑
g,h∈G

g 6=h
γgγhgh−1. Since γg ∈ Z for all g ∈ G,

this implies that γg0 = ±1 for a unique g0 ∈ G and γg = 0 for all g 6= g0.
Hence, γ = ±g0.

The next result, due to Berman and Higman, is also valid for infinite
groups; however, we shall only need it for finite groups, and, in this case,
there is an independent proof.

Lemma 1.1.35 (Berman–Higman). Let γ =
∑

g∈G γgg be a unit of finite
order in the integral group ring ZG of a finite group G. If γ1 6= 0 then
γ = γ1 = ±1.

Proof. Let n = |G| and suppose γm = 1, for some positive integer m. Con-
sider the regular representation T and the regular character ρ (see Example
1.1.22) on the group algebra CG, and regard ZG as a subring of CG. We
have that

ρ(γ) =
∑
g∈G

γgρ(g) = γ1n.

Since γm = 1, we have that T (γ)m = T (γm) = T (1) = I; thus T (γ) is a
root of the polynomial Xm − 1 = 0, which is separable. So there is a basis
of CG such that T (γ) is an n × n diagonal matrix, with mth roots of unity
ζi in the diagonal and zeros elsewhere.

Hence,

ρ(γ) = tr(T (γ)) =
n∑

i=1

ζi = nγ1,

and, taking absolute values,

n|γ1| ≤
n∑

i=1

|ζi| = n.

Now, n|γ1| ≥ n, for γ1 ∈ Z, then we must have |γ1| = 1 and also
∑n

i=1 |ζi| =
|
∑n

i=1 ζi|, which happens if and only if ζ1 = . . . = ζn.
Therefore, nγ1 = nζ1, and consequently γ1 = ζ1 = ±1. So, T (γ) = ±I

and γ = ±1.
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The following corollaries of the Berman–Higman Lemma will be extremely
helpful for us.

Corollary 1.1.36. Let A be a finite abelian group. Then the group of torsion
units of the integral group ring ZA is the group of trivial units ±A.

Proof. Let γ =
∑

g∈A γgg ∈ ZA be a unit of finite order. Suppose that

γg0 6= 0, for some g0 ∈ A. Then, due to the commutativity of A, γg−1
0 is also

a unit of finite order in ZA and (γg−1
0 )1 = γg0 6= 0. By Lemma 1.1.35, we

have that γg−1
0 = ±1, i.e., γ = ±g0.

Corollary 1.1.37. Let G be a finite group. Then the group of all torsion
central units of the integral group ring ZG is the group of the central trivial
units ±Z(G).

1.2 Semigroup Ring Theory

Before getting to the topic of semigroup rings itself, we will need some
theory about semigroups.

1.2.1 Prerequisite: Semigroup Theory

Some notions on Semigroup Theory are generalizations of concepts from
Group Theory; however, most of them resemble Ring Theory.

Definition 1.2.1. A semigroup is a nonempty set with an associative bi-
nary operation, which will be denoted multiplicatively by juxtaposition of
elements.

An element θ of a semigroup S is called a zero element if sθ = θs = θ, for
all s ∈ S. A null semigroup is a semigroup with zero in which the product
of any two elements is the zero element.

An element 1 of a semigroup S is called an identity if s1 = 1s = s, for all
s ∈ S. A monoid is a semigroup that has an identity.

An element s in a monoid S is said to be an invertible element (or a unit)
if there exists s′ ∈ S such that ss′ = s′s = 1; the element s′ is called the
inverse element of s and is denoted s−1. The unit group of a monoid S is the
group U(S) := {s ∈ S; sr = rs = 1 , for some r ∈ S}. A group S is a monoid
in which every element is invertible, i.e., S = U(S). A group S is said to be
an abelian group (or a commutative group) if sr = rs, for all s, r ∈ S.

A semigroup homomorphism is a function f : S −→ T from a semigroup
S to a semigroup T such that f(rs) = f(r)f(s), for all r, s ∈ S.
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If S is a semigroup, then we denote by S1 the smallest monoid containing
S. So

S1 =

{
S , if S already has an identity element;
S ∪ {1} , if S does not have an identity element,

with s1 = 1s = s, for all s ∈ S1. Similarly, we denote by S0 the smallest
semigroup with a zero containing S. So

S0 =

{
S , if S already has a zero element;
S ∪ {θ} , if S does not have a zero element,

with sθ = θs = θ, for all s ∈ S0. In particular, for a group G, we say that
G0 is a group with zero.

Adjoining a zero normally simplifies arguments, while adjoining an iden-
tity is often useless, as the structure theory of semigroups relies on subsemi-
groups and ideals, which do not have an identity in general.

The following example describes a kind of matrix semigroup that is of
utmost importance in the algebraic theory of semigroups.

Example 1.2.2 (Rees Matrix Semigroup). Let G be a group, G0 =
G∪ {θ} be the group with zero obtained from G by the adjunction of a zero
element θ (as in Definition 1.2.1), and I and M be arbitrary nonempty sets.
By an I×M matrix over G0 we mean a mapping A : I×M → G0, for which
we use the notation ai,m := A(i, m), for (i, m) ∈ I ×M , and (ai,m) := A.

By a Rees I × M matrix over G0 we mean an I × M matrix over G0

having at most one nonzero element. For g ∈ G, write (g)i,m, with i ∈ I
and m ∈M , for the I ×M matrix having g in the (i, m)-entry, its remaining
entries being θ. For any i ∈ I and m ∈M , the expression (θ)i,m denotes the
I ×M zero matrix , which will be also be denoted by θ.

Now let P be a fixed arbitrary M × I matrix over G0. We define a
multiplication operation in the set of all Rees I ×M matrices over G0 as
AB := A ◦ P ◦B, where ◦ denotes the usual multiplication of matrices and,
in performing this, we agree that, for g ∈ G0, θ + g = g = g + θ. We call P
the sandwich matrix with respect to this multiplication. Clearly, the set of
all Rees I ×M matrices over G0 is closed under this operation, which is also
associative. So, we can consider the Rees I ×M matrix semigroup over the
group with zero G0 with sandwich matrix P and denote it byM0(G, I, M, P ).
When the sets I and M are finite, say |I| = n and |M | = m, we will write
M0(G, I, M, P ) simply asM0(G, n,m, P ).

In fact, this type of semigroups is very natural, for instance:
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1. In the ring of integral n× n matrices Mn(Z), denote by ei,j the n× n-
matrix with 1 as the (i, j)-entry and zeros elsewhere. We call ei,j a
matrix unit . We may multiply matrix units in the following way:

ei,jek,l =

{
ei,l, if j = k,
0, if j 6= k.

The matrix units in Mn(Z) and the n × n zero matrix form, with
this multiplication, the matrix semigroup M0({1}, n, n, In), where In

denotes the n× n-identity matrix.

2. Let G be a group with identity 1 and P =

(
1
1

)
. The matrix semi-

group M0(G, 1, 2, P ) is isomorphic to the semigroup G1 ∪ G2 ∪ {θ},
with G1 and G2 isomorphic copies of G such that G1G2 ⊆ G2 and
G2G1 ⊆ G1.

Now we define some special subsets of semigroups having a certain alge-
braic structure.

Definition 1.2.3. A subsemigroup of a semigroup is a nonempty subset
which is closed under multiplication. A submonoid of a semigroup is a sub-
semigroup with an identity. A subgroup of a semigroup is a subsemigroup
that is a group.

If T is a nonempty subset of a semigroup S, we write 〈T 〉 for the sub-
semigroup generated by T (if T is finite, say T = {t1, . . . , tn}, we often write
〈t1, . . . , tn〉 instead of 〈T 〉). A semigroup S is said to be a cyclic semigroup
if S = 〈x〉 for some x ∈ S. An element x of a semigroup S is a periodic
element if 〈x〉 is finite. A semigroup is a periodic semigroup if every cyclic
subsemigroup is finite.

Note that the identity of a subgroup G of a semigroup S need not to be
the identity of S (actually, S may not have an identity at all). As as example,
consider S := M0(G, n, n, In), where In denotes the n × n identity matrix
and G is any group; S has no identity element. But M := {s = ge1,1 ∈
M0(G, n, n, In); g ∈ G} is a subgroup of S with identity 1e1,1.

Definition 1.2.4. An element e in a semigroup S is called an idempotent
if e = e2. We write E(S) for the set of idempotent elements of a semigroup
S. The set E(S) has a natural partial order: e ≤ f ⇐⇒ ef = fe = e.
An idempotent e in a semigroup S is said to be primitive if it is a nonzero
idempotent and if it is minimal with respect to the partial order in E(S).
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Notice that the notion of primitive idempotent in a ring (Definition 1.1.6)
is equivalent to the one given above.

Observe that a finite cyclic semigroup always contains an idempotent.
In fact, let 〈s〉 be a finite cyclic semigroup. So there exist positive integers
n and k so that sn+k = sn. Hence, sn+vk = sn, for any positive integer v.
In particular, sn(1+k) = sn. So the semigroup 〈s〉 contains an element a so
that am = a, for some integer m ≥ 2. If m = 2, then a is an idempotent.
Otherwise, am−1, am−2 ∈ 〈s〉 and

(am−1)2 = am−1am−1 = (am−1a)(am−2) = amam−2 = aam−2 = am−1,

and then am−1 is an idempotent.

Definition 1.2.5. Let I be a nonempty subset of a semigroup S. We say I
is a right ideal of S if xs ∈ I, for all s ∈ S and x ∈ I, i.e., IS1 ⊆ I. A left
ideal is defined analogously. We call I an ideal of S if it is a left and a right
ideal of S.

For a ∈ S, the ideal generated by a is defined as Ja := S1aS1 = SaS ∪
Sa ∪ aS ∪ {a}.

Definition 1.2.6. A semigroup S is said to be a regular semigroup if it
satisfies the Von Neumann regularity condition, i.e., for every s ∈ S, there
exists x ∈ S such that sxs = s. A semigroup is said to be an inverse
semigroup if it is regular and its idempotents commute; or, equivalently,
every principal right ideal and every principal left ideal of S has a unique
idempotent generator; or, also equivalently, if for every s ∈ S, there exists a
unique x ∈ S such that sxs = s and xsx = x ([4, Theorem 1.17]).

Let S be a semigroup. Define the the center of S as the subset Z(S) =
{x ∈ S; xs = sx,∀s ∈ S}.

If a semigroup S has a minimal ideal K, then K is called a kernel of S.
Clearly, any two distinct minimal ideals of S are disjoint. Since two ideals A
and B of S always contain their set product AB, it follows that S can have
at most one kernel K. Notice that S may not have a kernel at all (this is the
case, for instance, if S is an infinite cyclic semigroup). If S has a kernel K,
K may be characterized as the intersection of all ideals of S, because K is
contained in every ideal of S.

Let e be an idempotent in a semigroup S. Then eSe = {ese; s ∈ S} is
a submonoid of S with identity element e. Now, eSe coincides with {x ∈
S; ex = xe = x}, the set of elements of S for which e is an identity. Consider
He := U(eSe), the unit group of the monoid eSe. Then He is a subgroup
of S and it is the largest subgroup of S for which e is the identity. Such
subgroups are called the maximal subgroups of S. Notice that all the maximal
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subgroups of S are isomorphic. There is a one-to-one correspondence between
the idempotents e and maximal subgroups He of a semigroup S, since e is
the unique idempotent element of He. He contains every subgroup of S that
meets He. Thus, distinct maximal subgroups are disjoint.

Now, the Rees matrix semigroups defined in Example 1.2.2 are important
in characterizing some special kinds of semigroups.

Lemma 1.2.7. [4, Lemma 3.1] Let G be a group, I and M be arbitrary
nonempty sets, and P be a M × I matrix over G0. Then the Rees I ×
M matrix semigroup M0(G, I, M, P ) over G0 with sandwich matrix P is a
regular semigroup if and only if each row and each column of P contains a
nonzero entry. In such a case, P is said to be a regular matrix.

Proposition 1.2.8. [30, Lemma 1.4] Let G be a group, I and M be arbitrary
nonempty sets, and P be a M×I matrix over G0. Then the nonzero idempo-
tents of the Rees I×M matrix semigroupM0(G, I,M, P ) over G0 with sand-
wich matrix P are precisely the elements e = (p−1

j,i )i,j, with pj,i 6= θ. Define
Si,j := {(g)i,j; g ∈ G0, pj,i 6= θ}. Then all the Si,j \ {θ} together with {θ} are
the maximal subgroups ofM0(G, I, M, P ). In fact, eM0(G, I,M, P )e ' Si,j.

Notice that, on the proposition above, all the Si,j are isomorphic to G0.

Definition 1.2.9. Let S be a semigroup. An equivalence relation ρ on S is
called a right congruence relation if, for all a, b, c ∈ S, it holds that aρb implies
acρbc. An equivalence relation ρ on S is called a left congruence relation if,
for all a, b, c ∈ S, it holds that aρb implies caρcb. An equivalence relation
ρ on S is a congruence relation if it is both a right and a left congruence
relation. We denote by S/ρ the set of the equivalence classes and by a the
equivalence class containing the element a ∈ S. S/ρ becomes a semigroup
with multiplication defined as ab = ab. We call S/ρ the factor semigroup of
S modulo ρ.

Let S be a semigroup and I be an ideal in S. Define ρ the Rees congruence
modulo I on S as aρb ⇐⇒ a = b or a, b ∈ I. We write S/I for S/ρ and call
this the Rees factor semigroup of S modulo I. As a convention, the Rees
factor S/∅ is defined to be S (even though the empty set ∅ is not an ideal).

Clearly, for a semigroup S and a congruence relation ρ, there is a natural
semigroup homomorphism S → S/ρ; a 7→ a. Congruence relations on groups
yield the concept of normal subgroups.

Let S be a semigroup and I be an ideal in S. Notice that the equivalence
classes of S/I are I itself and every one-element set {a}, with a ∈ S \ I.
Thus, as a set, S/I may be identified with S \ I with an element θ adjoined,
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and such that aθ = θa = θ, so θ is actually a zero element. Intuitively,
when we pass from S to S/I, we identify all the elements of I with θ and
the nonzero elements of S/I correspond with S \ I; therefore, we will usually
denote the nonzero elements of S/I as a (with a ∈ S \ I) instead of a. There
is a one-to-one correspondence between the ideals of S containing I and the
ideals of S/I.

In analogy with what happens in groups and rings, we have the following
lemma:

Lemma 1.2.10. Let S be a semigroup and I, J be ideals of S such that
I ⊆ J . Then J/I is an ideal of S/I and (S/I)/(J/I) ' S/J .

We introduce, in analogy to simple rings, special kinds of semigroups that
are “indecomposable” in some sense.

Definition 1.2.11. A semigroup is called a simple semigroup if it has no
ideals other than itself.

A semigroup S with a zero θ is said to be a 0-simple semigroup if S has
no ideals other than S and {θ}, and S2 = S, or, equivalently S has no proper
ideals other than {θ}, and S is not a null semigroup of cardinality two.

A semigroup is called a completely 0-simple semigroup if it is 0-simple
and it contains a primitive idempotent (see Definition 1.2.4).

A semigroup is said to be a Brandt semigroup if it is a completely 0-simple
inverse semigroup.

Notice that if S is a semigroup having zero element θ, then {θ} is always
an ideal of S. Thus, the definition of simple semigroup is not very interesting.
Completely 0-simple semigroups, on the other hand, will turn out to be the
building blocks of the structure theory of semigroups.

Let us characterize 0-simple semigroups and completely 0-simple semi-
groups in more detail:

Lemma 1.2.12. [4, Lemma 2.28] Let S be a semigroup with zero θ, and
such that S 6= θ. Then S is 0-simple if and only if SaS = S for every a ∈ S,
a 6= θ.

Lemma 1.2.13. ([4, §2.7, Exercise 11] A semigroup S with zero is com-
pletely 0-simple if and only if all of the following conditions are satisfied:

1. S is regular;

2. every nonzero idempotent of S is primitive;

3. if e and f are nonzero idempotents of S, then eSf 6= θ.
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The next theorem characterizes completely 0-simple semigroups and also
Brandt semigroups.

Theorem 1.2.14. [4, Theorem 3.5, Theorem 3.9] A semigroup is completely
0-simple if and only if it is isomorphic to a regular Rees matrix semigroup
over a group with zero.

Furthermore, a semigroup is a Brandt semigroup if and only if it is iso-
morphic to a Rees matrix semigroup M0(G, M, M, I|M |) over a group with
zero G0 with the M ×M identity matrix I|M | as sandwich matrix.

Definition 1.2.15. Let S be a semigroup with zero. Define the equivalence
relation J in S by xJ y ⇐⇒ Jx = Jy (see Definition 1.2.5), i.e., x and y
generate the same ideal in S. We use the notation J(x) for the J -class of
S containing x, i.e., J(x) is the set of elements that generate the ideal Jx.
Two elements are said to be J -equivalent if they determine the same J -
class. Let Ix denote the set of elements of Jx that do not generate Jx, i.e.,
Ix := {y ∈ Jx; Jy  Jx}. So Ix is an ideal of S and Jx \ Ix = J(x). The
quotient Sx := Jx/Ix is called a principal factor of S

By a principal series of S we mean a strictly decreasing chain of ideals Si

of S, begining with S and ending with {θ}, and such that there is no ideal of
S strictly between Si and Si+1, for i = 1, . . . ,m. The factors of a principal
series of S are the Rees factors Si/Si+1.

Remark 1.2.16. Notice that the definition of principal series with which we
are working is slightly different from that of [4]. Our series ends with the
zero ideal rather than the empty set; so we will always adjoin a zero to the
semigroup before considering its principal series.

From the following lemma, it becomes clear why 0-simple and completely
0-simple semigroups are said to be “building blocks” for all semigroups.

Lemma 1.2.17. [4, Lemma 2.39] Each principal factor of any semigroup
(with zero) is either 0-simple or null.

Theorem 1.2.18. [4, Theorem 2.40] Let S be a semigroup (with zero), hav-
ing principal series S = S1 ⊃ S2 ⊃ · · · ⊃ Sm ⊃ Sm+1 = {θ}. Then its factors
are isomorphic in some order to the principal factors of S. In particular, any
two principal series of S have isomorphic factors.

Corollary 1.2.19. [4, Corollary 2.56] Any periodic (in particular, any finite)
0-simple semigroup is completely 0-simple.

Theorem 1.2.20. Every finite semigroup with zero has a principal series
and the principal factors are either completely 0-simple or null semigroups.
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To end this section, we give an example of a well known class of semi-
groups.

Example 1.2.21 (Malcev Nilpotent Semigroups). [21, 26, 30] Let S
be a semigroup. Consider, for x, y in S, and w1, w2, . . . , wi, . . . ∈ S1, the
following sequence defined inductively:

x0 = x,

y0 = y,

and for n ≥ 0
xn+1 = xnwn+1yn,

yn+1 = ynwn+1xn.

If xn = yn, for all x0, y0 ∈ S and all wi in S1, and n is the least positive
integer with this property, then S is said to be a Malcev nilpotent semigroup
of class n.

Finite Malcev nilpotent semigroups have been classified by Okniński in
[31]. It is interesting to observe that a group is Malcev nilpotent of class n if
and only if it is nilpotent of class n in the classical sense [30, Theorem 7.2].

We have that a Brandt semigroup which is a matrix semigroup over a
nilpotent group (Theorem 1.2.14) is Malcev nilpotent. Actually, these are
the only Malcev nilpotent completely 0-simple semigroups [16, Lemma 2.1].
Hence, the completely 0-simple principal factors of a finite Malcev nilpotent
semigroup are Brandt semigroups, which are of the formM0(G, M, M, I|M |),
where I|M | denotes the M ×M -identity matrix and G is a nilpotent group.

1.2.2 Basic Definitions and Some Important Results

Semigroup rings arise naturally as a generalization of group rings when
we replace the group by a semigroup.

Definition 1.2.22. Let S be a semigroup, and R be a ring with identity
1. The semigroup ring RS is the ring of all formal sums α =

∑
s∈S αss,

αs ∈ R, with finite support supp(α) = {s ∈ S; αs 6= 0}. We say that αs is the
coefficient of s in α. Two elements α and β in RS are equal if and only if they
have the same coefficients. The sum α + β is the element

∑
s∈S(αs + βs)s.

The product αβ is the element
∑

s∈S γss, where γs =
∑

x,y∈S
xy=s

αxβy, for each

s ∈ S. If R is a commutative ring, then RS is an R-algebra and is called a
semigroup algebra.
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Let S be a semigroup without zero element, and R be a ring. Notice that
RS0 ' RS × Rθ. In order to “get rid of” the factor Rθ, we will need the
notion of contracted semigroup ring.

Definition 1.2.23. Let S be a semigroup with a zero element θ, and R be a
ring with identity 1. The contracted semigroup ring R0S of S over R is the
ring RS/Rθ, i.e., the elements of R0S may be identified with the set of finite
sums α =

∑
s∈S αss, αs ∈ R, s ∈ S \ {θ}, with componentwise addition and

multiplication defined on the R-basis S \ {θ} as

st =

{
st, if st 6= θ,
0, if st = θ,

and then extended by distributivity to all elements. If S is a semigroup
without zero element, we define the contracted semigroup ring of S over R
as R0S := RS.

Some natural classes of rings may be treated as contracted semigroup
rings and not as (not contracted) semigroup rings.

Example 1.2.24. 1. Let R be a ring, n > 1 be an integer, and let S be
the semigroup of n× n matrix units with zero (as in Example 1.2.2.1).
Then R0S ' Mn(R). Notice that, if K is a field, then Mn(K) is a
simple ring. But a (not contracted) semigroup algebra of a nontrivial
semigroup is never simple, as it contains the augmentation ideal, that
is, the ideal of all elements of the semigroup algebra of which the sum
of the coefficients is zero.

2. Let R be a ring, I and M be nonempty sets and P = (pm,i) be an
M × I matrix over R. Consider the set M(R, I,M, P ) of all I ×M
matrices over R with finitely many nonzero entries. For any A = (ai,m)
and B = (bi,m) ∈ M(R, I,M, P ), addition is defined entrywise and
multiplication is defined as follows:

AB := A ◦ P ◦B, with ◦ denoting the usual matrix multiplication.

With these operationsM(R, I,M, P ) becomes a ring, called a ring of
matrix type over R with sandwich matrix P . If each row and column of
P contains an invertible element of R, then we call M(R, I,M, P )
a Munn ring . Note that if i ∈ I, m ∈ M and pm,i is a unit of
R then e := (p−1

m,i)im is an idempotent of M(R, I,M, P ) such that
eM(R, I,M, P )e ' R. When the sets I and M are finite, say |I| = n
and |M | = m, we will denoteM(R, I,M, P ) simply asM(R, n,m, P ).
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Let G be a group. It is easily verified that R0M0(G0, I, M, P ) '
M(RG, I, M, P ) (see Example 1.2.2). If R = ZG, m = n and P is
the n× n identity matrix, thenM(R, n,m, P ) = Mn(ZG).

3. Let K be a field, Ω be any nonempty set, X be the free monoid on
an alphabet {xi; i ∈ Ω}, and I be an ideal in KX generated by an
ideal J of X. We call KX/I a monomial algebra. We have that KX/I
is a K-space with basis the Rees factor semigroup X/J and, thus,
KX/I ' K0(X/J) (see Lemma 1.2.25 below).

Lemma 1.2.25. [4, Lemma 5.12] Let S be a semigroup and I be an ideal in
S. Then RI is an ideal in RS and RS/RI ' R0(S/I).

The analogue of Maschke Theorem (Theorem 1.1.14) for semigroup alge-
bras is the following theorem:

Theorem 1.2.26. [30, Theorem 14.24] Let K be a field and S a finite semi-
group. The following conditions are equivalent:

1. KS is a semisimple algebra

2. S0 has a series of ideals S0 = S1 ⊃ S2 ⊃ . . . ⊃ Sn ⊃ Sn+1 = {θ}, with
each principal factor Si/Si+1 ' M0(Gi, ni, ni, Pi), a square completely
0-simple matrix semigroup, with Gi a finite group such that char(K) -
|Gi| and Pi invertible in Mni

(KGi), for all i.

In the case of inverse semigroups, which are the most useful class of
semigroups in the present work, we have the following special case, that
resembles a lot Maschke Theorem:

Theorem 1.2.27. [4, Theorem 5.26] Let K be a field and S a finite inverse
semigroup. The semigroup algebra KS is semisimple if and only if char(K)
is zero or a prime not dividing the order of any subgroup of S.

The following result shows that rings of matrix type (Example 1.2.24.2)
arise naturally from matrix semigroup rings.

Theorem 1.2.28. [30, Lemma 5.1] Let R be a ring and let S be a matrix
semigroup M0(G, I, M, P ). Then we have that R0S ' M(RG, I, M, P ),
where we consider the entries in P as elements of the group ring RG. If S
is completely 0-simple, then M(RG, I, M, P ) is a Munn ring.

Munn rings are very important in the study of semigroup algebras over a
finite semigroup, as is shown in the following corollary:
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Corollary 1.2.29. Let S be a finite semigroup with zero element θ and with a
principal series S = S1 ⊃ S2 ⊃ . . . ⊃ Sn ⊃ Sn+1 = {θ}. Then the semigroup
ring RS has a series of ideals RS = RS1 ⊃ RS2 ⊃ . . . ⊃ RSn ⊃ RSn+1 = Rθ,
where each factor RSi/RSi+1 ' R0(Si/Si+1) is either a nilpotent ring or a
Munn ring over a group ring.

Example 1.2.30. If S := {e1,1, e1,2, e2,2, θ}, then

(
Z Z
0 Z

)
' Z0S. S has

a principal series

S ⊃ {e2,2, e1,2, θ} ⊃ {e1,2, θ} ⊃ {θ},

with Rees factors S/{e2,2, e1,2, θ} ' {e1,1}0, {e2,2, e1,2, θ}/{e1,2, θ} ' {e2,2}0
and {e12, θ}/{θ} ' {e1,2, θ}, a null semigroup.

In order to investigate units in semigroup algebras, it is elucidative to
know when a Munn algebra over a group algebra contains an identity.

Theorem 1.2.31. [30, Corollary 5.26] Let S = M0(G, I,M, P ) be a Rees
matrix semigroup and K be a field. The following conditions are equivalent:

1. K0S has an identity;

2. I and M are finite sets of the same cardinality n and P is an invertible
matrix in Mn(KG).

Moreover, if both conditions hold, then K0S ' Mn(KG) and S is com-
pletely 0-simple.
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Chapter 2

Central Idempotents of Group
Algebras of Finite Nilpotent

Groups

In this chapter, the primitive central idempotents of a semisimple group
algebra of a finite abelian group over an arbitrary field are exhibited. After-
wards, we determine the primitive central idempotents in a complex group
algebra of a finite nilpotent group (without using group characters).

Let G be a finite abelian group of order n, and K be a field such that
char(K) - n. Consider the abelian group algebra KG. From Theorem 1.1.32,
we know that KG '

⊕
i K(ζi), where ζi are primitive roots of unity whose

orders divide n. Clearly, the primitive idempotents of KG are the inverse
images of each tuple of the form (0, . . . , 0, 1, 0, . . . , 0) under this isomorphism.
We shall describe the primitive idempotents of KG. In particular, we obtain
a description for all cyclic codes (Definition 2.1.7) over finite fields.

For G an arbitrary finite group, the primitive central idempotents of the
complex group algebra CG are given by the formula χ(1)

|G|
∑

g∈G χ(g−1)g, where

χ is an irreducible complex character of G and 1 is the identity of G (Theorem
1.1.33). Though theoretically important, this description is not very useful
in practical terms, because, with the known methods, the computational
complexity of calculating the character table of a given finite group grows
exponentially with respect to the order of the group.

Consider now G a finite nilpotent group. The primitive central idempo-
tents in the rational group algebra QG have been determined at [14], without
making use of the character table of G. We are going to use a similar method
and the abelian case in order to find out the primitive central idempotents
in the complex group algebra CG.

Our description allows the construction of the character table of G using a
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lattice of subnormal subgroups of G. In particular, our description is helpful
in studying counterexamples to the Isomorphism Problem in group rings ([25,
Chapter 9]).

2.1 Primitive Idempotents of Semisimple

Group Algebras of a Finite Abelian

Group

Let G ' C1 × . . . × Cs be a finite abelian group of order n, with Ci =
〈gi; g

ni
i = 1〉 the cyclic group of order ni generated by gi (Structure Theorem

of Finite Abelian Groups), and let K be a field such that char(K) - n.
Define m := lcm(n1, . . . , ns). For i = 1, . . . , s, consider ζni

a primitive
root of unity of order ni in K, an algebraic closure of K. Given an s-tuple
of integers l = (l1, . . . , ls), with 0 ≤ li ≤ ni − 1, define the polynomial
Pl ∈ K(ζm)[X1, . . . , Xs] as:

Pl =
s∏

i=1

ni−1∏
ki=0

ki 6=li

(Xi − ζki
ni

),

where ζm is a primitive root of unity of order m. Notice that Pl(ζ
k1
n1

, . . . , ζks
ns

) 6=
0 if and only if k = l. This polynomial will be useful to describe the primitive
idempotents of KG.

Suppose K is an algebraically closed field such that char(K) - n. From
Theorem 1.1.32, it follows that KG ' K ⊕ . . . ⊕ K, with n copies of K
on the right side (indeed, in this case, for each divisor d of n, we have that
K(ζd) = K and, thus, [K(ζd) : K] = 1, ad = nd

[K(ζd):K]
= nd and

∑
d|n nd = n).

The n components of the direct sum K ⊕ . . . ⊕ K will be indexed by the
s-tuple of integers l = (l1, . . . , ls), with 0 ≤ li ≤ ni − 1, in the following
manner: the first ns coordinates are the ones having li = 0, for i 6= s, and
ls varying from 0 to ns − 1; the next ns coordinates are the ones having
li = 0, for i 6= s, s − 1, ls−1 = 1 and ls varying from 0 to ns − 1; the next
ns coordinates are the ones having li = 0, for i 6= s, s − 1, ls−1 = 2 and ls
varying from 0 to ns − 1; and so on.

Lemma 2.1.1. Let G ' C1 × . . . × Cs be the finite abelian group of order
n, with Ci = 〈gi; g

ni
i = 1〉 a cyclic group of order ni generated by gi, and let

K be an algebraically closed field such that char(K) - n. The isomorphism
KG ' K ⊕ . . .⊕K maps

gx1
1 . . . gxs

s 7→ (. . . , ζx1k1
n1

. . . ζxsks
ns

, . . .)0≤ki≤ni−1,
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where ζni
∈ K is a primitive root of unity of order ni, for each i = 1, . . . , s.

Proof. We proceed by induction on s, the number of cyclic components of
G.

When s = 1, then G = 〈g; gn = 1〉 is a cyclic group of order n. De-
fine ζ := ζn, a primitive root of the unity of order n. Consider vi :=
(1, ζ i, ζ2i, . . . , ζ(n−1)i) ∈ K ⊕ . . . ⊕ K, for i = 1, . . . , n. We shall see that
{vi; i = 1, . . . , n} is a K-basis for K ⊕ . . .⊕K.

Notice that the n×n matrix having vector vi as its ith line is an invertible
Vandermonde matrix. Thus, the n vectors in the set {vi; i = 1, . . . , n} are
linearly independent. Since the K-dimension of K⊕. . .⊕K is n, we conclude
that {vi; i = 1, . . . , n} is a K-basis for K ⊕ . . .⊕K.

Consider the K-linear mapping

φ : KG −→ K ⊕ . . .⊕K,

g 7→ (1, ζ, ζ2, . . . , ζn−1).

Notice that {gi; i = 1, . . . , n} is a K-basis of KG and that φ(gi) = vi. So,

KG
φ
' K ⊕ . . .⊕K as K-vector spaces. Clearly, φ is a ring homomorphism,

and hence KG
φ
' K ⊕ . . .⊕K as rings too.

Now we consider the case where G ' C1 × . . .× Cs, with s > 1. Assume
the result holds for any abelian group having s− 1 cyclic components.

Define G1 := C1 × . . .× Cs−1. We know that

KG ' K(G1 × Cs) ' (KG1)Cs,

the isomorphisms being∑
αxg

x1
1 . . . g

xs−1

s−1 gxs
s 7→

∑
αx(g

x1
1 . . . g

xs−1

s−1 , gxs
s ),∑

αx(g
x1
1 . . . g

xs−1

s−1 , gxs
s ) 7→

∑
xs

(
∑

x1,...,xs−1

αxg
x1
1 . . . g

xs−1

s−1 )gxs
s ,

where x := (x1, . . . , xs−1, xs), with 0 ≤ xi ≤ ni − 1, for each i. By the
induction hypothesis, we have that

KG1 ' K ⊕ . . .⊕K,

gx1
1 . . . g

xs−1

s−1 7→ (. . . , ζx1k1
n1

. . . ζxs−1ks−1
ns−1

, . . .)0≤ki≤ni−1.

So, it follows that

(KG1)Cs ' (K ⊕ . . .⊕K)Cs ' KCs ⊕ . . .⊕KCs,
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where the last isomorphism is∑
xs

(
∑

x1,...,xs−1
αx(. . . , ζ

x1k1
n1

. . . ζxs−1ks−1
ns−1

, . . .), gxs
s ) 7→

(. . . ,
∑

αxζ
x1k1
n1

. . . ζxs−1ks−1
ns−1

gxs
s , . . .)0≤ki≤ni−1.

Using the cyclic group case, we have that

KCs ⊕ . . .⊕KCs ' K ⊕ . . .⊕K,

(. . . ,
∑

αxζ
x1k1
n1

. . . ζxs−1ks−1
ns−1

gxs
s , . . .) 7→

(. . . ,
∑

αxζ
x1k1
n1

. . . ζxs−1ks−1
ns−1

ζxsks
s , . . .)0≤ki≤ni−1,

which is the desired result.

Now we describe the primitive idempotents of a semisimple group algebra
of a finite abelian group over an algebraically closed field.

Theorem 2.1.2. Let G ' C1× . . .×Cs be a finite abelian group of order n,
with Ci = 〈gi; g

ni
i = 1〉 the cyclic group of order ni generated by gi, and let

K be an algebraically closed field such that char(K) - n. Then the primitive
idempotents of the abelian group algebra KG are the elements:

el :=
Pl(g1, . . . , gs)

Pl(ζ
l1
1 , . . . , ζ ls

s )
,

where 0 ≤ li ≤ ni − 1, for i = 1, . . . , s.

Proof. The image of el =
Pl(g1,...,gs)

Pl(ζ
l1
1 ,...,ζls

s )
under the isomorfism KG

φ
' K⊕ . . .⊕K

specified in Lemma 2.1.1 is

φ(el) = (. . . ,
Pl(ζ

k1
1 , . . . , ζks

s )

Pl(ζ
l1
1 , . . . , ζ ls

s )
, . . .)0≤ki≤ni−1.

Since Pl(ζ
k1
1 , . . . , ζks

s ) 6= 0 if and only if k = l, we have that all the coordinates
of φ(el) are zero, except the one in the position indexed by l, which equals

Pl(ζ
l1
1 , . . . , ζ ls

s )

Pl(ζ
l1
1 , . . . , ζ ls

s ))
= 1.

Thus, φ(el) = (0, . . . , 0, 1, 0, . . . , 0), with 1 in the position (l1, . . . , ls), and
hence el is a primitive idempotent of KG.
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Corollary 2.1.3. With the same notation as in Theorem 2.1.2, suppose that
G = 〈g; gn = 1〉 is the cyclic group of order n generated by g. Let ζ be a
primitive root of unity of order n. Then the primitive idempotents in KG
are:

el :=
ζn−l

n

n−1∏
i=0,i6=l

(g − ζ i),

where 0 ≤ l ≤ n− 1.

Proof. Notice that

Pl(ζ
l) =

n−1∏
i=0
i6=l

(ζ l − ζ i) = ζ l

n−1∏
i=1

(1− ζ i) = ζ ln.

Now, since Pl(g) =
∏n−1

i=0
i6=l

(g − ζ i), the result follows directly from Theorem

2.1.2.

When the field K is not algebraically closed, exhibiting the isomorphism
KG '

⊕
i K(ζi), with ζi primitive roots of unity, is more complicated. In

order to avoid this, we adopt an alternative method and use the algebraically
closed case to get the primitive idempotents:

Theorem 2.1.4. Let G ' C1× . . .×Cs be a finite abelian group of order n,
with Ci = 〈gi; g

ni
i = 1〉 the cyclic group of order ni generated by gi, and let

K be a field such that char(K) - n. Define m := lcm(n1, . . . , ns). Consider
A := Aut(K(ζm)|K), the Galois group of the field extension K(ζm)|K. Then,
for a fixed s-tuple of integers l = (l1, . . . , ls), with 0 ≤ li ≤ ni−1, the element
el defined below is a primitive idempotent of the abelian group algebra KG:

el :=
∑
σ∈A

P σ
l
(g1, . . . , gs)

σ(Pl(ζ
l1
n1 , . . . , ζ ls

ns
))

,

the sum of all Galois conjugates of Pl(g1, . . . , gs)/Pl(ζ
l1
n1

, . . . , ζ ls
ns

), where P σ
l

denotes the polynomial in K(ζm)[X1, . . . , Xs] obtained by applying σ to the
coefficients of Pl. Furthermore, these are all the primitive idempotents of
KG.

Proof. From the Theorem 2.1.2, it follows that

fl :=
Pl(g1, . . . , gs)

Pl(ζ
l1
n1 , . . . , ζ ls

ns
)
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is a primitive idempotent of KG, where K is an algebraic closure of K.
Therefore, fl is also a primitive idempotent in K(ζm)G. Notice that K(ζm)
is the minimal field extension K1 of K such that all the fl’s belong to K1G.
Each σ ∈ A induces a unique automorphism σ∗ of K(ζm)G, i.e., for α =∑

g∈G αgg ∈ K(ζm)G, define σ∗(α) :=
∑

g∈G σ(αg)g. Thus, σ∗(fl) is still a

primitive idempotent of K(ζm)G and of KG.
Let e be a primitive idempotent in KG. We may write e = f1 + . . . + ft,

where fi are primitive idempotents in KG. Let K2 be the minimal field
such that, for each i = 1, . . . , t, fi belongs to K2G. Take τ ∈ Aut(K2|K).
Applying τ ∗ to e, we get e = τ ∗(e) = τ ∗(f1)+ . . .+ τ ∗(ft) and, by the unique
representation in K2G (Theorem 1.1.11), we have that, for each i = 1, . . . , t,
there exists a j = 1, . . . , t, such that τ ∗(fi) = fj. Thus, all the fi are Galois-
conjugates of one another. In fact, suppose that (after reordering) f1, . . . , fs

are all conjugates of f1 and that fs+1, . . . , ft, for some 1 < s < t. Then,
defining e′ := f1 + . . .+ fs and e′′ := fs+1 + . . .+ ft, we have that e = e′ + e′′,
with e′ and e′′ orthogonal nonzero idempotents in KG, which contradicts the
primitivity of e. So e is exactly the sum of the distinct Galois-conjugates of
a primitive idempotent in KG, and thus, by definition, e = el for some l.

Notice that the primitive idempotents e in KG and the set of distinct
el’s defined exist in equal number. We conclude that each el is a primitive
idempotent in KG.

Corollary 2.1.5. With the same notation as in Theorem 2.1.4, suppose
that G = 〈g; gn = 1〉 is the cyclic group of order n generated by g. Let
ζ be a primitive root of unity of order n. Fix 0 ≤ l ≤ n − 1. Consider
A := Aut(K(ζ)|K), the Galois group of the field extension K(ζ)|K. Then
the element el defined below is a primitive idempotent of the abelian group
algebra KG:

el :=
∑
σ∈A

σ(ζn−l)

n

n−1∏
i=0
i6=l

(g − σ(ζ i)),

Furthermore, these are all the primitive idempotents of KG.

Proof. The proof is a direct application of Theorem 2.1.4 to Corollary 2.1.3.

Example 2.1.6 (Cyclic Codes). In order to make connections between
cyclic codes and the computation of primitive idempotents for semisimple
group algebras of finite abelian groups, we need some very basic concepts o
coding theory, for which the reference is [37].
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Let Fq denote the finite field of q elements, with q a power of a prime
integer p. Consider the n-dimensional vector space Fn

q , whose elements are
n-tuples a = (a0, . . . , an−1).

Definition 2.1.7. A code C is a linear subspace of Fn
q . We call n the length

of C and dimC (as a Fq-vector space) the dimension of C. A code C is said
to be a cyclic code if its automophism group Aut(C) contains the cyclic shift ,
i.e., (c0, c1, . . . , cn−1) ∈ C =⇒ (c1, . . . , cn−1, c0) ∈ C.

It is common in coding theory to identify Fn
q with the vector space Pn of

polynomials of degree less than n over Fq via the correspondence

a = (a0, . . . , an−1)←→ a(x) = a0 + a1x + . . . + an−1x
n−1 ∈ Fq[x].

Clearly, a cyclic code C of length n may be identified with the corresponding
ideal in Fq [x]

(xn−1)
.

Let G = 〈g; gn = 1〉 be the cyclic group of order n generated by g. We

have that FqG ' Fq [x]

(xn−1)
as rings, by taking the morphism g 7→ x. Thus, we

have an immediate connection between group rings and coding theory.
Determining a cyclic code of length n over a finite field K = Fq such

that char(K) = p - n corresponds to determining an ideal in the semisimple
group algebra KG, where G is a cyclic group of order n. In this case, all the
ideals of KG are direct summands ⊕l

k=1(KG)eik , where l ≤ n and e1, . . . , en

are the primitive idempotents of KG as determined in Corollary 2.1.5.

2.2 Primitive Central Idempotents of

Complex Group Algebras of a Finite

Nilpotent Group

We shall first state some definitions and results needed on this section.

Definition 2.2.1. Let R be a ring with identity and let G be a group.
For e a primitive central idempotent of RG, define the subset Ge of G as
Ge := {g ∈ G; eg = e}.

Definition 2.2.2. Let G be a finite group and K be a field. Define the
element ε(G) in KG by

ε(G) :=

{
1 , if G = {1};∏

M∈M(G)(1− M̃) , if G 6= {1},

where M(G) denotes the set of all minimal nontrivial normal subgroups of
G.
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Remark 2.2.3. Notice that if A and B are subgroups of a group G, with
A ⊆ B, then ÃB̃ = B̃ and (1 − Ã)(1 − B̃) = (1 − Ã). So we can redefine
ε(G) as

ε(G) :=
∏
NCG

N 6={1}

(1− Ñ),

when G is a nontrivial group. Notice, in particular, that if N is a nontrivial
normal subgroup of G, then (1− Ñ)ε(G) = ε(G).

The following lemma is elementary, but extremely useful.

Lemma 2.2.4. Let G be a finite group, K be a field such that char(K) - |G|,
and e be a primitive central idempotent of KG. Then:

1. Ge is a normal subgroup of G and eG̃e = e. Thus, e is also a primitive
central idempotent of (KG)G̃e, and, since (KG)G̃e ' K(G/Ge), the
image e of e in K(G/Ge) is a primitive central idempotent of K(G/Ge);

2. if N is a normal subgroup of G, then eÑ = e if and only if N ⊆ Ge;

3. Ge = {1} if and only if ε(G)e = e;

4. if H := Ge and N is a normal subgroup of G contained in H, then
(G/N)e = H/N , where e denotes the image of e in K(G/N)(we call
attention to this special case: if N is a normal subgroup of G and e is
a primitive central idempotent in K(G/N), then: (G/N)e = {1} if and
only if Ge = N , where e denotes the image of e in KG).

Proof. 1. To see that Ge is a normal subgroup of G, take h ∈ G and
g ∈ Ge. Since e is central, we have that hgh−1e = hgeh−1 = e. So
hgh−1 ∈ Ge, and thus Ge is normal in G.

By Definition 2.2.1, we have that

eG̃e =
e
∑

g∈Ge
g

|Ge|
=

∑
g∈Ge

eg

|Ge|
=

∑
g∈Ge

e

|Ge|
=
|Ge|e
|Ge|

= e.

So e is a primitive central idempotent of (KG)G̃e and e, the image of
e in K(G/Ge), is a primitive central idempotent of K(G/Ge).

2. Consider N a normal subgroup of G. Then Ñ is a central idempotent
of KG. Since e is a primitive central idempotent of KG, we have that
eÑ is either equal to zero or to e.
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Suppose eÑ = e. We have that

(KG)e = (KG)N̂e ' K(G/N)e.

Thus we have the following diagram

KG −→ K(G/N)
×e−→ K(G/N)e

'−→ (KG)e,

the maps beign
g 7→ g,

g 7→ ge,

ge 7→ gN̂e = ge.

From the diagram, it follows that the ker(KG
×e−→ (KG)e) = Ge and

that N ⊆ ker(KG
×e−→ (KG)e).

If N ⊆ Ge, then

eÑ =
e
∑

g∈N g

|N |
=

∑
g∈N eg

|N |
=

∑
g∈N e

|N |
=
|N |e
|N |

= e.

3. Suppose Ge = {1}. If N is a nontrivial normal subgroup of G, then,

by 2., we have that eÑ = 0. So, from Definition 2.2.2, it follows that

ε(G)e =
∏

M∈M(G)

(1− M̃)e =
∏

M∈M(G)

(e− M̃e) =
∏

e = e.

Suppose Ge 6= {1}. Then, by Remark 2.2.3, we have that ε(G) =

(1− G̃e)ε(G) and eε(G) = e(1− G̃e)ε(G) = 0.

4. This part of the Lemma follows directly from Definition 2.2.1.

The definitions and notations needed in the following lemma and theorem
are stated in Definition 1.1.31.

We need the following technical lemma ([14, Lemma 2.3]):

Lemma 2.2.5. Let G be a finite group, K be a field such that char(K) - |G|,
and g ∈ G. If g−1Cg ∩ Z(G) 6= {1}, then G contains a central element z of

prime order so that C̃g = C̃g 〈̃z〉.
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Proof. By assumption there exist h ∈ G and 1 6= z ∈ Z(G) so that h−1gh =
zg. Hence, for any positive integer n we get, by induction, that h−nghn = zng.
Replacing z by some power of z, if necessary, we may assume that z has
prime order. It then follows that 〈z〉Cg ⊆ Cg. So 〈z〉Cg = Cg and therefore

C̃g = C̃g 〈̃z〉.

Before actually using the lemma, let us just observe that g 6∈ CG(Z2(G))
implies g−1Cg ∩ Z(G) 6= {1}. In fact, suppose that, for g ∈ G, it holds that
g−1Cg∩Z(G) = {1}. Take l ∈ Z2(G). We have that g−1l−1gl = 1 in G/Z(G)
(because Z2(G)/Z(G) = Z(G/Z(G)), an abelian group); in other words,
there exists z1 ∈ Z(G) such that g−1l−1gl = z1, so, by hypothesis, z1 = 1.
Hence, g ∈ CG(Z2(G)).

We need a result from Jespers-Leal-Paques ([14, Proposition 2.1]). This
result is stated in the reference for the group algebra QG, where G is a finite
nilpotent group. We observe that the proof given in the article is still valid
for the case CG and we include it here for the sake of completeness.

Proposition 2.2.6. Let G be a finite nilpotent group, e ∈ CG and G1 :=
CG(Z2(G)), the centralizer in G of the second center of G. e is a primitive
central idempotent of CG with Ge trivial if and only if e =

∑
g∈G eg

1, the sum
of all distinct G-conjugates of e1, with e1 a primitive central idempotent of
CG1 satisfying

⋂
g∈G((G1)e1)

g = {1}.

Proof. Suppose e ∈ CG is a primitive central idempotent with Ge = {1}. By

Theorem 1.1.16, we may write e =
∑

g∈G αgC̃g, with each αg ∈ C.
For any g ∈ G with g 6∈ CG(Z2(G)), by Lemma 2.2.5, there exists a

nontrivial central element wg ∈ G of prime order such that C̃g = C̃g 〈̃wg〉.
Hence,

e =
∑

g∈CG(Z2(G))

αgC̃g +
∑

g 6∈CG(Z2(G))

αgC̃g 〈̃wg〉.

Because Ge = {1}, Lemma 2.2.4 yields that e = eε(G). Notice that

ε(G)〈̃wg〉 = 0, for, since wg has prime order and is central, 〈wg〉 ∈ M(G)
and, by Definition 2.2.2,

ε(G)〈̃wg〉 =
∏

M∈M(G)(1− M̃)〈̃wg〉 =

(
∏

M∈M(G)\{〈wg〉}(1− M̃))(1− 〈̃wg〉)〈̃wg〉 =

(
∏

M∈M(G)\{〈wg〉}(1− M̃))(〈̃wg〉 − 〈̃wg〉) = 0,

i.e., ε(G) ∈ 〈C̃g; g ∈ CG(Z2(G))〉C, the C-subspace of CG generated by

{C̃g; g ∈ CG(Z2(G))}.

Central Idempotents of Group Algebras of Finite Nilpotent Groups



2.2. Primitive Central Idempotents of Complex Group Algebras of a Finite Nilpotent

Group 35

So we get that

e = eε(G) =
∑

g∈CG(Z2(G))

αgC̃g · ε(G),

and thus e ∈ 〈C̃g; g ∈ CG(Z2(G))〉C too.
Notice that G1 = CG(Z2(G)) is normal in G; so if g ∈ G1 and h ∈ Cg, then

h ∈ G1. In fact, we have that h = l−1gl, for some l ∈ G. Take x ∈ Z2(G). So
x−1h−1xh = z ∈ Z(G) and lx−1l−1g−1lxl−1gl = lz. Since Z2(G) is normal in
G, we have that y = lx−1l−1 ∈ Z2(G), and thus y−1g−1yg = z = 1 (because
g ∈ G1 = CG(Z2(G))). Hence, x−1h−1xh = 1 and h ∈ G1, as desired.

Thus, we have shown that supp(e) ⊆ G1 = CG(Z2(G)). Notice that e is
not necessarily a primitive central idempotent of CG1. However, it is possible
to write

e = eg1

1 + . . . + egn

1 ,

the sum of all G-conjugates of a primitive central idempotent e1 ∈ CG1.
In fact, since e ∈ CG1 we may write, by Theorem 1.1.11, e = a1e1 +

. . . + amem, with {e1, . . . , em} all the primitive central idempotens of CG1

and ai ∈ CG1. We have, for i = 1, . . . ,m, that eei is either equal to 0 or
to ei, because eei is an idempotent and ei is a primitive idempotent. Hence,
after possibly reordering the ei’s, we have that e = e1 + . . . + ek, for some
k ≤ m. Now we only have to check that every ei is a G-conjugate of e1. For
g ∈ G, we have that e = eg = eg

1 + . . . + eg
k, and by the unique representation

in CG1 (Theorem 1.1.13), we have that, for each i = 1, . . . , k, there exists
a j = 1, . . . , k, such that eg

i = ej. Thus, all the ei are G-conjugate of one
another. So e is exactly the sum of the distinct G-conjugates of e1.

Observe that ((G1)e1)
gi = (G1)e

gi
1

(for g ∈ (G1)e
gi
1
⇐⇒ gegi

1 = egi
1 ⇐⇒

gg−1
i e1 = e1 ⇐⇒ gg−1

i ∈ (G1)e1 ⇐⇒ g ∈ ((G1)e1)
gi). Hence, it easily follows

that ∩n
i=1((G1)e1)

gi = Ge = {1}. This proves the necessity of the conditions.

Conversely, suppose that G is a finite nilpotent group, that e1 is a primi-
tive central idempotent of CG1, where G1 := CG(Z2(G)), and that
∩g∈G ((G1)e1)

g = {1}. Let e := eg1

1 + . . . + egn

1 be the sum of all dis-
tinct G-conjugates of e1. Clearly, e is a central idempotent of CG and
Ge = ∩g∈G ((G1)e1)

g = {1}.
To see that e is primitive, write e = f1+. . .+fk, a sum of primitive central

idempotents of CG. For any nontrivial central subroup N of G, by Lemma
1.1.17, Ñ is a central idempotent of CG1 (for N ⊆ Z(G) ⊆ CG(Z2(G)) = G1),

so either Ñe1 = 0 or Ñe1 = e1. However, the latter is impossible, as it
implies, by Lemma 2.2.4, that N ⊆ (G1)e1 and thus N ⊆ ∩g∈G ((G1)e1)

g =

{1}. So we get that Ñe1 = 0. Recall that, for a nilpotent group, every
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minimal normal subgroup is central ([25, Corollary 1.5.19]). Thus

ε(G)e1 =
∏

M∈M(G)

(1− M̃)e1 =
∏

M∈M(G)

(e1 − M̃e1) = e1.

The same argument used above to see that Ñe1 = 0 works to show that
Ñegi

1 = 0, for any G-conjugate egi
1 of e1. Consequently, ε(G)e = e, and

hence, by the unique representation in CG (Theorem 1.1.13), ε(G)f1 = f1.
Therefore, by Lemma 2.2.4 again, Gf1 = {1}, and, by the first part of the
proof, f1 ∈ CG1. In the first part of the proof, we saw that a primitive
central idempotent f1, having Gf1 = {1}, may be written as the sum of all
the distinct G-conjugates of e1. So, by the definition of e, it follows that
e = f1 is a primitive central idempotent of CG.

The following theorem yields an explicit formula for the primitive central
idempotents in CG when G is a finite nilpotent group.

Theorem 2.2.7. Let G be a finite nilpotent group. The primitive central
idempotents of the group algebra CG are precisely all elements of the form∑

g∈G

(eH̃m)g,

the sum of all distinct G-conjugates of e, where e is an element of CGm such
that e (the image of e in C(Gm/Hm)) is a primitive central idempotent in
C(Gm/Hm), having (Gm/Hm)e = {1}. The groups Hm and Gm are subgroups
of G satisfying the following properties:

1. H0 ⊆ H1 ⊆ . . . ⊆ Hm ⊆ Gm ⊆ . . . ⊆ G1 ⊆ G0 = G,

2. for 0 ≤ i ≤ m, Hi is a normal subgroup of Gi, Gi/Hi is not abelian for
0 ≤ i < m, and Gm/Hm is abelian,

3. for 0 ≤ i ≤ m− 1, Gi+1/Hi = CGi/Hi
(Z2(Gi/Hi)),

4. for 1 ≤ i ≤ m,
⋂

x∈Gi−1/Hi−1
Hx

i = Hi−1.

Proof. Let us first show that the element defined above, satisfying the listed
conditions, is in fact a primitive central idempotent of CG. By condition 2,
Gm/Hm is an abelian group. Let fm := e, a primitive central idempotent in

C(Gm/Hm), having (Gm/Hm)e = {1}. Since C(Gm/Hm) ' (CGm)H̃m, we

have that fm := eH̃m is a primitive central idempotent of (CGm)H̃m and,
thus, it is also a primitive central idempotent of CGm. From (Gm/Hm)e =
{1}, we have, by Lemma 2.2.4, that (Gm)fm = Hm; so (Gm/Hm−1)fm

′ =
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Hm/Hm−1 (where fm
′
is any preimage of fm in Gm/Hm−1). Define fm−1 :=∑

g ∈Gm−1/Hm−1
fm

′g
, the sum of all distinct Gm−1/Hm−1-conjugates of fm

′
.

Then it is a central idempotent of C(Gm−1/Hm−1). From condition 4,⋂
g∈Gm−1/Hm−1

(
(Gm/Hm−1)fm

′

)g

=
⋂

g∈Gm−1/Hm−1

(Hm/Hm−1)
g = {1}.

Conditions 3 and 4 provide the hypotheses for the Proposition 2.2.6, which

yields that fm−1 is primitive in C(Gm−1/Hm−1) ' (CGm−1)H̃m−1. Thus,

fm−1 := (
∑

g∈Gm−1
f g

m)H̃m−1, the image of fm−1 in (CGm−1)H̃m−1, is a prim-
itive central idempotent of CGm−1. We also have, by condition 2, that:

fm−1 = (
∑

g∈Gm−1
f g

m)H̃m−1 =
∑

g∈Gm−1
(fmH̃m−1)

g =

∑
g∈Gm−1

(eH̃mH̃m−1)
g =

∑
g∈Gm−1

(eH̃m)g,

By induction, we obtain that f0 =
∑

g∈G(eH̃m)g is a primitive central idem-
potent of CG.

Now, let f0 := d be a primitive central idempotent of CG, where G is a
finite nilpotent group with nilpotency class c. Then H0 := Gd is a normal
subgroup of G0 := G by Lemma 2.2.4, and, since f0H̃0 = f0, we have that f0 is
a primitive central idempotent of (CG0)H̃0. From (CG)H̃0 ' C(G0/H0), we
get that f0, the image of f0 in C(G0/H0), is a a primitive central idempotent
of C(G0/H0). Clearly, (G0/H0)f0

= {1}.
If G0/H0 is an abelian group, we know f0 from Theorem 2.1.2 and, triv-

ially, d = f0 =
∑

g∈G(f0H̃0)
g, because f0H̃0 = f0 and f0 is central.

If G0/H0 is not an abelian group, let G1 be the unique subgroup of G0

such that G1/H0 = CG0/H0(Z2(G0/H0)) 6= G0/H0. Then, by Proposition
2.2.6, we get:

f0 =
∑

g∈G0/H0

f1
g
,

where f1 is a primitive central idempotent of C(G1/H0), and⋂
x∈G0/H0

(H1/H0)
x = {1},

with H1 the unique subgroup of G0 containing H0 such that H1/H0 =
(G1/H0)f1

. So H1 is a normal subgroup of G1. Notice that, from the def-
inition of G1/H0, its nilpotency class is at most c − 1. Since C(G1/H1) '
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(C(G1/H0) ˜(H1/H0), we have that f1, the image of f1 in C(G1/H1), is a prim-
itive central idempotent of C(G1/H1), having (G1/H1)f1

= {1}. If G1/H1

is an abelian group, then we know f1 from Theorem 2.1.2. If G1/H1 is not
an abelian group, the result follows by induction on the nilpotency class c of
G.

Remark 2.2.8. Notice that the statement and the proof of Theorem 2.2.7
are still valid if we replace C by any algebraically closed field K provided that
char(K) does not divide the order of the group. However, historically, the
complex case is of particular interest. So, we decided to state the theorem in
this context.

Remark 2.2.9. Given a finite nilpotent group G, we know the primitive
central idempotents ei of CG from Theorem 2.2.7. We can then readily com-
pute the irreducible complex characters χi of G from the formula (Theorem
1.1.33)

ei =
χi(1)

|G|
∑
g∈G

χi(g
−1)g,

obtaining the character table of G.
It is known that if two finite groups G and H have the same character

table, then CG ' CH ([25, Theorem 5.22]). Thus our description of the
primitive central idempotents of CG is useful in studying counterexamples
to the Isomorphism Problem in group rings ([25, Chapter 9]).

2.3 Some Questions for Further

Investigation

The results of [14], in which we base our method, were extended and
simplified in [29], providing an algorithm using only elementary methods
for calculating the primitive central idempotents of QG, when G is a finite
nilpotent group, among other cases, but not of CG. These improvements
were implemented in a package ([27]) of programs for GAP System, version
4. An experimental comparison of the speed of the algorithm in [27] and
the character method (computing primitive central idempotents from the
character table of the group) was presented in [28] and showed that the first is
usually faster. These improvements, however, do not carry on automatically
to the complex case.

Notice that the computational complexity of the method proposed in
Theorem 2.2.7 is still not known. It provides, however, a theoretic alternative
to the usual character method that might be simpler.
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Hence, calculating the computational complexity of the proposed method
and trying to adapt the ideas in [29] to the complex case may be natural
directions to follow in further studies of the subject.
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Chapter 3

The Normalizer of a Finite
Semigroup and Free Groups in
the Unit Group of an Integral

Semigroup Ring

Given a group G and a commutative ring R, one of the central problems in
Group Ring Theory is deciding to which extent the group ring RG reflects the
properties of the group G. More precisely, one might wonder: is it true that
if RG ' RH as R-algebras, then G ' H? This problem was stated for the
first time in Higman’s Ph.D. Thesis [13] and is known as the Isomorphism
Problem ([25, Chapter 9]). The answer strongly depends on the ring R
(for instance, from Theorem 1.1.32, it is known that if K is an algebraicaly
closed field, G and H are both finite abelian groups having the same order,
and |G| = |H| - char(K), then KG ' KH) and early results seemed to
suggest that, for a given family of groups, it might be possible to obtain
an adequate field for which the isomorphism problem would have a positive
answer. However, Dade gave an example in [5] of two nonisomorphic groups
such that their respective group algebras over any field are isomorphic.

Of primary importance is the case when R = Z, for if ZG ' ZH, then
RG ' RH as R-algebras, for any commutative ring R.

The normalizer of the trivial units ±G in the unit group of an integral
group ring ZG of a finite group G has turned out to be very useful ([15],
[24]) in tackling the isomorphism problem for integral group rings. In par-
ticular, Hertweck’s investigations in [12] have led to a counterexample to the
isomorphism problem.

Quite naturally, the same problem also makes sense for semigroup rings
([25, Chapter 9]). Studying the normalizer for semigroup rings might be
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3.1. The Normalizer of a Semigroup 41

helpful in investigating the isomorphism problem for semigroup rings them-
selves, or for group rings, via the connection between these two subjects
provided by partial group rings ([6]). However, in the context of semigroup
rings, very little is known. When we want to investigate this problem for
semigroup rings in a similar way as was done for group rings, we need a
suitable concept of normalizer, as we can no longer speak of trivial units.

In this chapter, we introduce a concept of normalizer of a semigroup S in
the unit group of the integral semigroup ring ZS. We show that this defini-
tion coincides with the normalizer of a group in case of integral group rings
and behaves very much like it in the class of semigroups that are the most
related with groups, namely inverse semigroups. These semigroups have a
natural involution with which we can extend Krempa’s characterization of
the normalizer of the trivial units using the classical involution ([36, Proposi-
tion 9.4]). We will describe the torsion part of the normalizer and study the
double normalizer. Just like in group rings ([8]), the normalizer of a semi-
group contains the finite conjugacy center and the second center of the unit
group of the integral semigroup ring. We will pose the normalizer problem for
integral semigroup rings and solve it for finite Malcev nilpotent semigroups
such that the rational semigroup ring is semisimple. Furthermore, just like
in integral group rings ([36, Proposition 9.5]), we get that the normalizer of a
semigroup is a finite extension of the center of the semigroup ring. All of this
indicates that our concept of normalizer of a semigroup behaves as desired.

Also, using the natural involution on inverse semigroups, we will con-
struct free groups in the unit group of the integral semigroup ring, following
Marciniak and Sehgal [23], using a bicyclic unit and its image under the
involution.

Semigroup rings of inverse semigroups are a wide and interesting class
containing for example matrix rings and partial group rings, for which the
isomorphism problem recently has been investigated (see [6] and [7]).

3.1 The Normalizer of a Semigroup

We start by giving the definition of the normalizer of a semigroup in
the unit group of its integral semigroup ring. This definition coincides with
the normalizer of the trivial units in the case of an integral group ring and
behaves very much like it for some semigroups. Many results that hold for
the normalizer of the trivial units in the unit group of an integral group ring
will be extended to the context of integral semigroup rings by means of this
definition.

Let S be a semigroup. Consider the contracted integral semigroup ring

The Normalizer of a Finite Semigroup and Free Groups in the Unit Group
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with identity (Z0S)1. We denote by U((Z0S)1) the group of units of (Z0S)1.
Define the normalizer of ±S as

N(±S) := {u ∈ U((Z0S)1); usu−1 ∈ ±S, for all s ∈ ±S},

which is clearly a semigroup.
Let M0 be the subsemigroup of S which is the union of all the maximal

subgroups of S (see Definition 1.2.6) with a zero θ adjoined, i.e.,

M0 := (∪iU(Ei,iSEi,i)) ∪ {θ},

where the Ei,i are the idempotents of S. We can hence consider N(±M0)

N(±M0) := {u ∈ U((Z0S)1); usu−1 ∈ ±M0, for all s ∈ ±M0}.

More generally, let H be a subset of U((Z0S)1). Define the normalizer of
±H in U((Z0S)1) as

N(±H) := {v ∈ U((Z0S)1); v−1uv ∈ ±H , for all u ∈ ±H}.

As a special case of this definition, we call attention to N(N(S).
Given a group G, denote by ∗ the classical involution in the integral group

ring ZG (Definition 1.1.3), i.e., for α =
∑

g∈G αgg ∈ ZG, with αg ∈ Z, we

have that α∗ :=
∑

g∈G αgg
−1. Denote by U(ZG) the group of units in ZG

and by NU(ZG)(±G) the normalizer of the trivial units ±G in U(ZG), i.e.,

NU(ZG)(±G) := {u ∈ U(ZG); ugu−1 ∈ ±G, for all g ∈ ±G}.

Krempa’s characterization of the normalizer in group rings ([36, Propo-
sition 9.4]) states that an element u ∈ U(ZG) belongs to the normalizer
NU(ZG)(±G) if and only if uu∗ is a central element in U(ZG). So, there
is a close connection between the normalizer and the classical involution.
Therefore, inverse semigroups (Definition 1.2.6) are the most interesting and
suitable class of semigroups for investigating normalizers in semigroup rings.

For an inverse semigroup S (Definition 1.2.6), we can define the morphism

� : S → S; s 7→ s′,

where s′ is the unique element in S such that ss′s = s and s′ss′ = s′ (as
in Definition 1.2.6). Clearly, � is an involution in S (see [4, Lemma 1.18])
and can be extended linearly to an involution in (Z0S)1, with �(1) := 1. We
will often denote �(a) by a�, for a ∈ (Z0S)1. Notice that, if a ∈ (Z0S)1 and
supp(a) ∈ G, a subgroup of S, then a� = a∗. Also, if u ∈ U((Z0S)1), then it
is easy to see that (u�)−1 = (u−1)�.
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Let S be a finite inverse semigroup. It is well known ([4, §3.3, Exercise 3])
that every principal factor of S is a Brandt semigroup (i.e., a matrix semi-
group of the formM0(G, n, n, In), where In is the n× n identity matrix and
G is a maximal subgroup of S, according to Theorem 1.2.14 and Proposition
1.2.8). Moreover, the rational semigroup algebra QS is semisimple (Theorem
1.2.27). By Corollary 1.2.29, QS has a series of ideals QS = QS1 ⊃ QS2 ⊃
. . . ⊃ QSs ⊃ QSs+1 = Qθ, where Si are ideals in a principal series of S
and Si/Si+1 'M0(Gi, n, n, In) and QSi/QSi+1 ' Q0(Si/Si+1) 'Mni

(QGi),
with G1, . . . , Gs the maximal subgroups of S (up to isomorphism). We have
that

Q0S = Q0S1 '
Q0S1

Q0Ss

×Q0Ss '
Q0S1

Q0Ss

×Mns(QGs),

and

Q0S1

Q0Si+1

' Q0S1

Q0Si

× Q0Si

Q0Si+1

' Q0S1

Q0Si

×Q0(Si/Si+1) '
Q0S1

Q0Si

×Mni
(QGi),

for i = 1, . . . , s−1. Thus, (Q0S)1 'Mn1(QG1)⊕ . . .⊕Mns(QGs). Repeating
the same argument for Z, we have that (Z0S)1 'Mn1(ZG1)⊕. . .⊕Mns(ZGs).
Therefore U((Z0S)1) ' GLn1(ZG1) ⊕ . . . ⊕ GLns(ZGs). Hence, we can
work “coordinatewise” and we will therefore make the reduction to S a
finite Brandt semigroup and G a maximal subgroup of S. In this case,
(Z0S)1 'Mn(ZG) and, for a = (ai,j) ∈ (Z0S)1, we have that (ai,j)

� = (a∗j,i).
Given a group G, we denote by Mon(±G) the group of monomial matrices

over ±G. Notice that for a ∈Mon(±G) we have that

(a�)i,j =

{
a−1

j,i , if aj,i 6= 0;
0, if aj,i = 0.

Denote by Diag(±G) the subgroup of Mon(±G) consisting of matrices over
±G having nonzero elements only on the diagonal, and denote by Scal(±G)
the matrices of Diag(±G) having the same element on the diagonal.

Remark 3.1.1 (Partial Group Rings). We recall the definition of partial
group rings and some properties, which will make it possible to relate these
objects with the present work.

Definition 3.1.2. Given a group G and a ring R with identity, we consider
the semigroup SG generated by the set of symbols {[g]; g ∈ G}, with the
following relations:

1. [s−1][s][t] = [s−1][st];

2. [s][t][t−1] = [st][t−1];
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3.1. The Normalizer of a Semigroup 44

3. [s][e] = [s];

4. [e][s] = [s];

for all s, t ∈ G. The partial group ring RparG is the semigroup ring of SG

over R, i.e.
RparG := RSG.

(Notice that relation (4) follows from the previous ones, and thus could be
removed from the list.)

Given a group G, the semigroup SG is an inverse semigroup ([10, Theorem
3.4]) and does not contain a zero element.

Remark 3.1.3. Let S be a finite semigroup. If all principal factors of S are
of the formM0(G, n, n, P ), with P invertible in Mn(ZG), then, by Theorem
1.2.26, (Q0S)1 is a semisimple semigroup algebra and (Q0S)1 'Mn1(QG1)⊕
. . . ⊕Mns(QGs), where G1, . . . , Gs are the maximal subgroups of S (up to
isomorphism). Again, (Z0S)1 'Mn1(ZG1)⊕ . . .⊕Mns(ZGs). By considering
the ring isomorphism

f : ZM0(G, n, n, In) −→ ZM0(G, n, n, P ) defined by A 7→ f(A) := AP−1,

we can work “coordinatewise”, and transport all the results obtained on
inverse semigroups to such a semigroup S.

3.1.1 Characterization of N(±S) and Some Results

Recall that, for any semigroup , all maximal subgroups are ismomorphic
(see Definition 1.2.6). In case S is a Rees matrix semigroup over a group G,
then all the maximal semigroups are isomorphic to G (see Proposition 1.2.8).

We shall now characterize the normalizer of a semigroup and prove several
interesting properties.

Theorem 3.1.4. Let S be a finite Brandt semigroup, let M denote the union
of all maximal subgroups of S, and let G be a maximal subgroup of S. We
have that:

1. N(±S) = Scal(NU(ZG)(±G))Mon(±G) and N(±S) ⊆ N(±M0);

2. N(±M0) = Mon(NU(ZG)(±G));

3. if u ∈ N(±M0) then uu� ∈ Diag(Z(U(ZG)));

4. if u ∈ N(±S) then uu� ∈ Z(U(Z0S)1)).
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Proof. Being a Brandt semigroup, we have that (see Theorem 1.2.14) S '
M0(G, n, n, In) and M0 ' {s = gei,i ∈ M0(G, n, n, In); g ∈ G, i = 1, . . . , n},
where In is the n × n identity matrix and ei,j are matrix units (Example
1.2.2.1). Let u =

∑n
i,j=1 ui,jei,j ∈ U((Z0S)1).

1. For u to be in N(±S), we need that for all s ∈ ±S, there exists a t ∈ ±S,
such that us = tu. Now, s = gek,l and t = hem,p, for some g, h ∈ ±G and
then us =

∑
i ui,kgei,l and tu =

∑
j hup,jem,j.

Thus, us = tu means that
um,kg = hup,l;
ui,k = 0, for all i 6= m;
up,j = 0, for all j 6= l.

When we take k = l (i.e., s = gek,k ∈ ±M0), we deduce that
um,kg = hup,k;
ui,k = 0, for all i 6= m;
up,j = 0, for all j 6= k.

(∗)

Suppose that m 6= p. Then we get that up,k = 0; hence, up,j = 0 for
1 ≤ j ≤ n, which contradicts that u is a unit.

Therefore, m = p (i.e., t = hem,m ∈ ±M0) and (∗) becomes
um,kg = hum,k;
ui,k = 0, for all i 6= m;
um,j = 0, for all j 6= k.

Since g and k are arbitrary, we get that u is a monomial matrix∑
k umk,kemk,k, with umk,k ∈ NU(ZG)(±G).
Now, consider s = gek,l ∈ ±S, with k 6= l (i.e., s ∈ ±S \ ±M0). So

u ∈ N(±S), if
ugek,lu

−1 = umk,kgu−1
ml,l

emk,ml
∈ ±S

(since u−1 =
∑

i u
−1
mi,i

ei,mi
). As umk,k ∈ NU(ZG)(±G), we have umk,kgu−1

ml,l
=

humk,ku
−1
ml,l
∈ ±G, for some h ∈ ±G; so umk,ku

−1
ml,l

must be in ±G. Hence, all
entries in u differ up to trivial units. Thus u ∈ Scal(NU(ZG)(±G))Mon(±G).
So, N(±S)) ⊆ Scal(NU(ZG)(±G))Mon(±G).

Now, to see that Scal(NU(ZG)(±G))Mon(±G) ⊆ N(±S), consider u ∈
Scal(NU(ZG)(±G))Mon(±G), i.e., u =

∑n
i,j=1 vai,jei,j monomial, with v ∈

NU(ZG)(±G) and ai,j = 0 or ai,j ∈ ±G. For s = gek,l ∈ ±S, with g ∈
±G, we have that us =

∑
i vai,kgei,l = vaik,kgeik,l, where aik,k is the only

nonzero element in the kth column of u. Since v ∈ NU(ZG)(±G), we have
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that us = vaik,kgeik,l = hvajl,leik,l, where ajl,l is the only nonzero element
in the lth column of u, for h := vaik,kga−1

jl,l
v−1 ∈ ±G. So, us = tu, with

t = heik,jl
∈ ±S.

2. Notice that the proof that N(±M0) ⊆ Mon(NU(ZG)(±G)) is contained
in the proof of 1., as we have seen that for u =

∑n
i,j=1 ui,jei,j ∈ U((Z0S)1)

and s = gek,k ∈ ±M0, us = tu automatically implies that t = hem,m ∈ ±M0

(hence, u ∈ N(±M0)) and u ∈Mon(NU(ZG)(±G)).
To see that Mon(NU(ZG)(±G)) ⊆ N(±M0), take u ∈Mon(NU(ZG)(±G)),

i.e., u =
∑n

i,j=1 ui,jei,j monomial, with ui,j = 0 or ui,j ∈ NU(ZG)(±G), and

s = gek,k ∈ ±M0, with g ∈ ±G. We have that us =
∑

i ui,kgei,k = uik,kgeik,k,
where uik,k is the only nonzero element in the kth column of u. Since uik,k ∈
NU(ZG)(±G), we have that us = uik,kgeik,l = huik,keik,k, for some h ∈ ±G.
So, us = tu, with t = heik,ik ∈ ±M0.

3. Take u ∈ N(±M0). From the first part of the proof, we know that
u ∈ Mon(NU(ZG)(±G)), i.e., u = (ui,j) monomial, with ui,j = 0 or ui,j ∈
NU(ZG)(±G). So u� = (u∗j,i). By computing uu�, we get a diagonal matrix
with ui,ju

∗
i,j in the (i, i) position, when ui,j 6= 0. From [36, Proposition 9.4],

we know that ui,ju
∗
i,j ∈ Z(U(ZG)). So, we have the desired result.

4. Following the same lines of 3., we get the analogue result for N(±S).

We get, as an easy but important consequence, that an element of the
normalizer commutes with its image under the involution �.

Corollary 3.1.5. Let S be a finite Brandt semigroup, let M denote the
union of all maximal subgroups of S, and let G be a maximal subgroup of S.
If u ∈ N(±M0), then uu� = u�u.

Proof. Take u ∈ N(±M0), say u = (ui,j) monomial, with ui,j = 0 or ui,j ∈
NU(ZG)(±G). From Theorem 3.1.4, (3), uu� ∈ Diag(Z(U(ZG))), i.e., for
each i, j such that ui,j 6= 0, we have that ui,ju

∗
i,j ∈ Z(U(ZG)). So, for all i, j,

(ui,ju
∗
i,j)u

−1
i,j (u∗i,j)

−1 = u−1
i,j (ui,ju

∗
i,j)(u

∗
i,j)

−1 = 1.

Thus ui,ju
∗
i,j = u∗i,jui,j, for all i, j, and we have that uu� = u�u.

For group rings, we know that the only unitary units (Definition 1.1.30)
for the classical involution are the trivial units (Proposition 1.1.34). We now
describe the analogous “�-unitary elements”.

Theorem 3.1.6. Let S be a finite Brandt semigroup and G a maximal sub-
group of S. For v ∈ (Z0S)1, vv� = 1 if and only if v ∈Mon(±G).
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Proof. This proof is very similar to the proof of Proposition 1.1.34.
Being a Brandt semigroup, we have that (see Theorem 1.2.14) S '

M0(G, n, n, In) and (Z0S)1 'Mn(ZG) (see Example 1.2.24).
Let v = (vi,j) ∈ (Z0S)1, with vi,j =

∑
g∈G vi,j(g)g ∈ ZG. From vv� = 1 =

In, we get in particular that, for all i,
∑

j vi,jv
∗
i,j =

∑
j(

∑
g∈G vi,j(g)2) = 1.

Hence, for each i, exactly one vi,j(g) = 1, i.e., for each i, exactly one vi,j is
a trivial unit and all the other ones are zero. Again, from vv� = In, we can
deduce relations between the rows and columns from which it follows that
v ∈Mon(±G).

Cleary, if v ∈Mon(±G), then v� = v−1.

Next, we prove some results for the normalizer in semigroup rings, that
were proved for group rings in [18], [22] , [24].

The following Lemma is, in a certain sense, the semigroup ring analogue
of a famous corollary of Berman–Higman Lemma for group rings (Corollary
1.1.36). It will be very helpful on many of the results to be proved, and it
has an interesting immediate Corollary.

Lemma 3.1.7. Let S be a finite Brandt semigroup and G a maximal subgroup
of S. If c ∈ Diag(Z(U(ZG))) and c is a torsion unit, then c ∈ Diag(±Z(G)).

Proof. Take c ∈ Diag(Z(U(ZG))) a torsion unit, say c = (ci,j), with ci,j = 0,
if i 6= j, and ci,i ∈ Z(U(ZG)) torsion units in ZG. We have from Corollary
1.1.37, that, for all i, ci,i ∈ ±Z(G), i.e., c ∈ Diag(±Z(G)).

Corollary 3.1.8. Let S be a finite Brandt semigroup, let M denote the
union of all maximal subgroups of S, and let G be a maximal subgroup of S.
If u ∈ N(±M0), then either uu� has infinite order, or uu� = 1 and, in this
case, u ∈Mon(±G).

Proof. Take u ∈ N(±M0), say u = (ui,j) monomial, with ui,j = 0 or ui,j =∑
g∈G ui,j(g)g ∈ NU(ZG)(±G). From Theorem 3.1.4, (3), we know that uu� =

c ∈ Diag(Z(U(ZG))). Suppose c is a torsion unit. We have, from Lemma
3.1.7, that c = (ci,j) ∈ Diag(±Z(G)).

For each i, ci,i = ui,ju
∗
i,j is a trivial unit with ci,i(1) =

∑
g∈G ui,j(g)2 6= 0.

It follows that, for each i, ci,i = 1, i.e., uu� = 1. From Theorem 3.1.6, it now
follows that u ∈Mon(±G).

Denote by T (N(±M0)) the set of torsion units in N(±M0). We can prove
that the elements in Mon(±G) are the only torsion elements in N(±M0) and
in N(±S).
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Proposition 3.1.9. Let S be a finite Brandt semigroup, let M denote the
union of all maximal subgroups of S, and let G be a maximal subgroup of S.
We have that T (N(±M0)) = Mon(±G) = T (N(±S)).

Proof. Take u ∈ T (N(±M0)). From Corollary 3.1.5, we know that uu� is
a torsion unit and, from Corollary 3.1.8, we get uu� = 1, and thus u ∈
Mon(±G).

The other inclusion is obvious.
The proof is similar for T (N(±S)).

We can now characterize when the normalizer coincides with the torsion
units.

Proposition 3.1.10. Let S be a finite Brandt semigroup, let M denote the
union of all maximal subgroups of S, and let G be a maximal subgroup of S.
The following are equivalent:

1. N(±M0) = T (N(±M0));

2. N(±S) = T (N(±S));

3. Z(U(ZG)) = ±Z(G).

Proof. From 1. to 2., it is obvious, using that N(±S) ⊆ N(±M0) and
Proposition 3.1.9.

Now, suppose 2. is true. Since Z(U(Z0S)1)) ' Scal(Z(U(ZG))) is con-
tained in N(±S) = T (N(±S)), we have by Lemma 3.1.7 that Z(U(ZG)) =
±Z(G).

If 3. holds, then from Theorem 3.1.4, (3) it follows that for all u ∈
N(±M0), uu� ∈ Diag(±Z(G)); in particular, uu� has finite order. Thus,
from Corollary 3.1.8, u ∈ Mon(±G) ⊆ T (N(±M0)). The other inclusion is
always true.

For a finite group G, a well known result due to Krempa [36, Proposition
9.4] states that: for u ∈ U(ZG), we have that u ∈ NU(ZG)(±G) ⇐⇒ uu∗ ∈
Z(U(ZG)). We will prove a similar result for N(±Mon(G)), but first we
need the following lemma.

Lemma 3.1.11. Let S be a finite Brandt semigroup, S 6= M({1}, 2, 2, I2)
and G a maximal subgroup of S. If t ∈ U((Z0S)1) is such that ta = at, for
all a ∈Mon(±G), then t ∈ Z(U(Z0S)1)).
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Proof. We have that S 'M0(G, n, n, In), with In the n×n identity matrix.
We divide the proof in two parts.

Part 1: If t ∈ (Z0S)1 and ta = at, for all a ∈ Mon(±G), then there exist

α ∈ Z(ZG) and β ∈ ZĜ such that t = (ti,j), with ti,j =

{
α, if i = j
β, if i 6= j

We prove this by induction on n.
For n = 1 the result is obvious.
So, assume the result is valid for n − 1 and we will verify it for n. Take

t ∈ (Z0S)1 ' Mn(ZG) such that ta = at, for all a ∈ Monn(±G) (i.e., the

monomial n × n matrices over ±G). So, t =

 t1,1 . . . t1,n
... t′

tn,1

, where

t′ ∈ Mn−1(ZG) and it is easy to see that t′b = bt′, for all b ∈ Monn−1(±G),
as e1,1 + b ∈ Monn(±G). Hence by the induction hypothesis, there exist

α ∈ Z(ZG) and β ∈ ZĜ such that t′i,j =

{
α, if i = j
β, if i 6= j

Take a =
∑

giei,i ∈ Mon(±G). We have that ta =
∑

ti,jgjei,j and
at =

∑
giti,jei,j. Thus, for every i and j,

ti,jgj = giti,j.(∗∗)

This means, in particular, that ti,igi = giti,i and, since this is valid for an
arbitrary gi ∈ G, we have that ti,i ∈ Z(ZG), for every i. For i 6= j, we get

that ti,j ∈ ZĜ.
Now, take a =

∑
giei,n+1−i ∈ Mon(±G). Then ta =

∑
ti,n+1−jgn+1−jei,j

and at =
∑

gitn+1−i,jei,j. Thus, for every i and j, ti,n+1−jgn+1−j = gitn+1−i,j.
So, for all j, g1tn,j = t1,n+1−jgn+1−j = g1t1,n+1−j, the last equality following
from (∗∗). Hence, for all j, t1,n+1−j = tn,j, and, by the induction hypoth-
esis, for j 6= 1, n, we have that t1,j = tn,n+1−j = β. Similarly, for all i,
gitn+1−i,1 = ti,ngn = giti,n, the last equality following from (∗∗). Hence, for
all i, t(n+1−i),1 = ti,n, and, by the induction hypothesis, for i 6= 1, n, we have
that ti,1 = t(n+1−i),n = β. Also, we get t1,1 = tn,n = ti,i = α, by the induction
hypothesis again.

So, the only entries in t that are still unknown are t1,n and tn,1.
Consider a = g1e1,1 +

∑n
i=2 giei,n+2−i ∈ Mon(±G). Then we have that

ta =
∑n

i=1(ti,1g1ei,1 +
∑n

j=2 ti,n+2−jgn+2−jei,j) and at =
∑n

j=1(g1t1,je1,j +∑n
i=2 gitn+2−i,jei,j). Thus, g1t1,n = t1,2g2 = g2t1,2, the last equality following

from (∗∗). Hence, t1,n = t1,2 = β, by the induction hypothesis.
Finally, consider a = gnen,n +

∑n−1
i=1 giei, n− i ∈ Mon(±G). We have

that ta =
∑n

i=1(ti,ngnei,n +
∑n−1

j=1 ti,n−jgn−jei,j) and at =
∑n

j=1(gntn,jen,j +
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∑n−1
i=1 gitn−i,jei,j). Thus, gntn,1 = tn,n−1gn−1 = gntn,n−1, the last equality

following from (∗∗). Hence, tn,1 = tn,n−1 = β, by the induction hypothesis.
And this concludes the proof of the first part of the Lemma.

Part 2: If t ∈ U((Z0S)1) is such that t = (ti,j), with ti,j =

{
α, if i = j
β, if i 6= j

,

for some α ∈ Z(ZG) and β = bĜ ∈ ZĜ, then t ∈ Z(U((Z0S)1)).

The case n = 1 is trivial.
For the rest of the proof, we assume n > 2 or |G| > 1.
Take t as in the statement above. Notice that, by performing elementary

operations on t, det(t) is multiplied by ±1 (since we are working on integral
matrices). Then, by bringing t to its row-echelon form, it is easy to see
that det(t) = ±(α − β)n−1(α + (n − 1)β). Since t is a unit, we have that
det(t) ∈ U(ZG). Consider ε the augmentation mapping in ZG. If we take
ε(det(t)), we get that it is in Z and it is a unit; so

ε(det(t)) = ±(ε(α)− b|G|)n−1(ε(α) + (n− 1)b|G|) = ±1.

We claim that the only integer solutions to these equations are ε(α) = ±1
and b = 0.

Let us first take a look at (ε(α) − b|G|)n−1(ε(α) + (n − 1)b|G|) = 1. So,
either (ε(α)−b|G|)n−1 = 1 and (ε(α)+(n−1)b|G|) = 1, or (ε(α)−b|G|)n−1 =
−1 and (ε(α) + (n− 1)b|G|) = −1. If n is odd, the second option can never
occur, and the only possible integer solutions for the first case are ε(α) = ±1
and b = 0 (since the case n = 1 has already been dealt with and is excluded).
If n is even, we have the desired result immediately.

Analyzing equation (ε(α) − b|G|)n−1(ε(α) + (n − 1)b|G|) = −1, we get
either (ε(α)−b|G|)n−1 = −1 and (ε(α)+(n−1)b|G|) = 1, or (ε(α)−b|G|)n−1 =
1 and (ε(α) + (n− 1)b|G|) = −1. If n is odd, the first option is not possible,
and the only existing integer solutions for the second case are ε(α) = ±1 and
b = 0. If n is even, then the only possible integer solutions are the desired
ones (since we have already dealt with the cases n = 2 and G trivial, and
n = 1) .

Because t is a unit and a diagonal matrix with α on all nonzero entries,
we have that α ∈ Z(U(ZG)), which finishes the proof.

Theorem 3.1.12. Let S be a finite Brandt semigroup, let G be a maximal
subgroup, and let u ∈ U((Z0S)1). We have that u ∈ N(Mon(±G)) if and
only if uu� ∈ Z(U((Z0S)1)).

Proof. We examine separately the case where S =M({1}, 2, 2, I), with I the
2 × 2 identity matrix. We have that (Z0S)1 = M2(Z) and Z(U((Z0S)1)) =
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±I2. By means of elementary matrix computations, we see that

N(Mon(±{1})) = {
(
±1 0
0 ±1

)
,

(
0 ±1
±1 0

)
},

and u ∈ N(Mon(±G)) implies uu� = I2. Now, if uu� = ±I2, for u ∈
U(M2(Z)), then, making elementary matrix computations, we get that u =(
±1 0
0 ±1

)
or u =

(
0 ±1
±1 0

)
. In either case, u ∈ N(Mon({±1})).

For the rest of the proof, we assume S 6=M({1}, 2, 2, I).
Take u ∈ U((Z0S)1) and a ∈ Mon(±G). Assume u ∈ N(Mon(±G)).

Then b := uau−1 ∈ Mon(±G). Hence, applying � to both sides, b� = b−1 =
(u−1)�a−1u�. Taking inverses in this equality, b = (u�)−1au�. Thus,

a = u�b(u�)−1.

So,

u�ua(u�u)−1 = u�uau−1(u�)−1 = u�b(u�)−1 = u�(u�)−1au�(u�)−1 = a.

We have proved that u�u commutes with elements from Mon(±G). By
Lemma 3.1.11, it follows that u�u ∈ Z(U(Z0S)1)). So u�u = (u�)−1u�uu� =
uu� ∈ Z(U(Z0S)1)).

Now, suppose uu� ∈ Z(U((Z0S)1)). Then uu� = u�u and (u�u)−1 =
u−1(u−1)� ∈ Z(U((Z0S)1)). We want to show that uau−1 ∈ Mon(±G), for
all a ∈Mon(±G). We have that

(uau−1)(uau−1)� = ua(u−1(u−1)�)a−1u� = uu−1(u−1)�u� = 1.

So, by Theorem 3.1.6, uau−1 ∈Mon(±G), as desired.

By Theorem 3.1.4, (4) we get the following Corollary:

Corollary 3.1.13. Let S be a finite Brandt semigroup and let G be a maximal
subgroup of S. Then N(±S) ⊆ N(Mon(±G)).

The reverse inclusion remains an open and interesting problem.
When the central units of ZG are trivial, the problem is solved.

Proposition 3.1.14. Let S be a finite Brandt semigroup and let G be a
maximal subgroup of S. We have that N(±S) = Mon(±G) = N(Mon(±G))
if and only if Z(U(ZG)) = ±Z(G).
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Proof. Suppose N(±S) = Mon(±G) = N(Mon(±G)). As Z(U(Z0S)1)) '
Scal(Z(U(ZG))) is contained in N(±S) = Mon(±G), we have by Lemma
3.1.7 that Z(U(ZG)) = ±Z(G).

In case Z(U(ZG)) = ±Z(G), then from Theorem 3.1.4, (4) it follows
that for all u ∈ N(±S), uu� ∈ Scal(±Z(G)); in particular, uu� has finite
order. Thus, from Corollary 3.1.8, u ∈ Mon(±G). The other inclusion is
always true. Take u = (ui,j) ∈ N(Mon(±G)) with ui,j =

∑
g∈G ui,j(g)g ∈

ZG. We have, by Theorem 3.1.12, that uu� = (ci,j) ∈ Z(U((Z0S)1)) =
Scal(±Z(G)). For each i, ci,i =

∑
j ui,ju

∗
i,j is a trivial unit with ci,i(1) =∑

j(
∑

g∈G ui,j(g)2) 6= 0. It follows that, for each i, ci,i = 1, i.e., uu� = 1, and
thus u ∈Mon(±G) by Theorem 3.1.6. The other inclusion is obvious.

Next, we prove a result for the double normalizer in semigroup rings, that
was shown for group rings by Li in [18].

Theorem 3.1.15. Let G be a finite group. Then N(N(Mon(±G))) =
N(Mon(±G)).

Proof. Take v ∈ N(N(Mon(±G)) and a ∈Mon(±G). Clearly, Mon(±G) ⊆
N(Mon(±G)). So, from Theorem 3.1.12, v−1av(v−1av)� ∈ Z(U(Z0S)1)) '
Scal(Z(U(ZG))). Since u := v−1av and u� = (v−1av)� are commuting torsion
units, their product is also a torsion unit. Thus, by Lemma 3.1.7 we have
that c := uu� ∈ Scal(±Z(G)).

Now let u = (ui,j), with ui,j =
∑

g∈G ui,j(g)g ∈ ZG. For each i, ci,i =∑
j ui,ju

∗
i,j is a trivial unit, with ci,i(1) =

∑
j(

∑
g∈G ui,j(g)2) 6= 0. So, it

follows that, for each i, ci,i = 1, i.e., uu� = 1. Thus a(vv�) = (vv�)a, for
a� = a−1. From Lemma 3.1.11, this means that vv� ∈ Z(U(Z0S))). Hence,
v ∈ N(Mon(±G)), as desired.

The other inclusion is obvious.

Remark 3.1.16. The definitions of the hypercenter Z∞(G) and the finite
conjugacy center Φ(G) of a group G are stated in Definition 1.1.31.

The hypercenter and the finite conjugacy center of the unit group of an
integral group ring and of an integral semigroup ring have been given special
attention in recent years.

It is a well known result that, if G is a finite group, then Z∞(U1(ZG)) =
Z2(U1(ZG)) (see [1]) and that Z∞(U1(ZG)) ⊆ NU1(ZG)(G) (see [20] and [19]),
where U1(ZG) stands for the normalized units of ZG, i.e., the units in ZG
having augmentation 1.

In Corollary 5.2 and 5.3 in [8], a description is given for the finite conju-
gacy center Φ(U((Z0S)1)) and second center Z2(U((Z0S)1)) of the unit group
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of an integral semigroup ring of a finite semigroup S such that QS is semisim-
ple. The result shows that both groups equal the hypercenter Z∞(U((Z0S)1))
and are central if and only if S has no principal factors which are so called
Q∗-groups. A torsion group G is said to be a Q∗-group if G has an abelian
normal subgroup A of index 2 which has an element a of order 4 such that,
for all h ∈ A and all g ∈ G \ A, g2 = a2 and g−1hg = h−1; or, equiva-
lently, U(ZG) contains an abelian periodic normal subgroup H ⊆ G such
that H 6⊆ Z(G) (see [2], [3]).

From the description of N(±S) we gave, it follows that the finite conju-
gacy center Φ(U((Z0S)1)) and the second center Z2(U((Z0S)1)) (hypercenter)
are always contained in N(±S), similarly to the group ring case, i.e.,

Z2(U((Z0S)1)) = Z∞(U((Z0S)1)) = Φ(U((Z0S)1)) ⊆ N(±S).

3.1.2 The Normalizer Problem for Semigroup Rings

The normalizer problem for group rings [36, Problem 43] asks whether

NU(ZG)(±G) = Z(U(ZG))(±G),

where G is a group. It has a positive answer for many classes of finite groups,
among which finite nilpotent groups [36, Corollary 9.2]. One can now state
this problem in the setting of semigroup rings: is it true that

N(±S) = Z(U((Z0S)1))Mon(±G)?

In the case of a Malcev nilpotent semigroup S such that QS is semisimple
we have a positive answer to the analogous problem in semigroup rings.
The only Malcev nilpotent completely 0-simple semigroups are the Brandt
semigroups over a nilpotent group ([16, Lemma 2.1]). As observed before,
we can assume that the principal series of S has only one Rees factor.

Theorem 3.1.17. Let S be a finite Brandt semigroup over a finite nilpotent
group G and let M denote the union of all maximal subgroups of S. Then

N(±M0) = Mon(Z(U(ZG))(±G)) and N(±S) = Z(U(Z0S)1)Mon(±G).

Proof. From Theorem 3.1.4, (2), N(±M0) = Mon(NU(ZG)(±G)). Because S
is Malcev nilpotent, we have that G is a finite nilpotent group (see Example
1.2.21). Thus, the normalizer problem for ZG has a positive answer and
NU(ZG)(±G) = Z(U(ZG))(±G). So,

N(±M0) = Mon(NU(ZG)(±G)) = Mon(Z(U(ZG))(±G)).

Following the same lines, we get the result for N(±S).
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In general, the normalizer problem does not hold for group rings, though
the normalizer is known up to finite index [36, Proposition 9.5]. We get the
same result in semigroup rings.

Proposition 3.1.18. Let S be a finite Brandt semigroup, let M denote the
union of all maximal subgroups of S, and let G be a maximal subgroup of S.
If u ∈ N(±M0), then u2 ∈ Diag(Z(U(ZG)))Mon(±G), and if u ∈ N(±S),
then u2 ∈ Z(U(Z0S)1))Mon(±G).

Proof. Take u ∈ N(±M0). Define v := u�u−1, then vv� = u�u−1(u−1)�u =
u�(u�u)−1u. From Corollary 3.1.5, we have vv� = u�(uu�)−1u = 1. Hence by
Theorem 3.1.6 we have that v ∈ Mon(±G). So, u� = vu and uu� = u�u =
vu2 ∈ Diag(Z(U(ZG))) by Theorem 3.1.4, (3).

The same reasoning gives the result for u ∈ N(±S).

Corollary 3.1.19. Let S be a finite Brandt semigroup and G a maximal
subgroup of S. Then

N(±S)

Z((U(Z0S)1))Mon(±G)

is an elementary abelian 2-group.

3.2 Free Groups generated by Bicyclic Units

By Hartley and Pickel [11], we know that there are free groups contained
in the unit group of an integral semigroup ring. Marciniak and Sehgal [23]
constructed a free group of rank 2 in the unit group of an integral group ring
using a nontrivial bicyclic unit (Definition 1.1.28) and its image under the
classical involution (Definition 1.1.3).

Since a Brandt semigroup S has the involution � (see Section 3.1 and Def-
inition 1.2.11), we can investigate the same problem for a nontrivial bicyclic
unit of (Z0S)1.

Theorem 3.2.1. Let S be a Brandt semigroup. Take s ∈ S such that the
cyclic semigroup 〈s〉 is a group of order n, and t ∈ S such that us,t = 1 +
(1− s)tŝ is a nontrivial bicyclic unit in (Z0S)1. Then:

1. if st is in a maximal subgroup G of S and if 〈s〉 is not normal in 〈t〉,
then 〈us,t, (us,t)

�〉 is a free subgroup of U((Z0S)1);

2. if st = 0 and o(s) ≥ 2, then 〈us,t, (us,t)
�〉 is a free subgroup of

U((Z0S)1);
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3. if st = 0 and o(s) = 1, then 〈us,t, (us,t)
�〉 is not a free subgroup of

U((Z0S)1).

Proof. Recall that, being a Brandt semigroup, we have that (see Theorem
1.2.14) S ' M0(G, n, n, In) and M0 ' {s = gei,i ∈ M0(G, n, n, In); g ∈
G, i = 1, . . . , n}, where In is the n × n identity matrix and ei,j are matrix
units (Example 1.2.2.1).

Since s generates a subgroup of order n in S, it is of the form s = gei,i,
for g ∈ G, i = 1, . . . , n. Notice that in order for us,t to be nontrivial we must
have t = hej,i, for h ∈ G, j = 1, . . . , n.
1. If st is in a maximal subgroup G of S, then we must have j = i. So
us,t = ug,hei,i and, since 〈s〉 is not normal in 〈t〉 (i.e., h 6∈ NG(〈g〉), us,t is a
nontrivial bicyclic unit in (Z0S)1 and ug,h is a nontrivial bicyclic unit in ZG.
So (us,t)

� = u∗g,hei,i. Thus, Marciniak and Sehgal’s main result in [23] gives
us that 〈us,t, (us,t)

�〉 is a free subgroup of U((Z0S)1).
2. If st = 0, this means that j 6= i. Then us,t = 1 + hĝej,i and (us,t)

� =
1 + ĝh−1ei,j.

When o(g) ≥ 2, consider the ring homomorphism

φ : (Z0S)1 −→Mn(Z) given by α = (αi,j) ∈ (Z0S)1 7→ (ε(αi,j)) ∈Mn(Z),

where ε is the augmentation mapping in ZG. By Sanov’s Theorem ([25, The-
orem 10.1.3]) applied to the 2× 2 nonzero submatrix of φ(us,t) and φ(us,t)

�),
we obtain the result.
3. Since st = 0, we have that j 6= i and us,t = 1+hĝej,i, (us,t)

� = 1+ ĝh−1ei,j.
When g = 1, then us,t = 1+hej,i, (us,t)

� = 1+h−1ei,j and ((us,t)
�)−1 = 1−

h−1ei,j. Thus, by performing elementary matrix computations, us,t((us,t)
�)−1

is of order 6. Hence, 〈us,t, (us,t)
�〉 is not a free group.

3.3 Some Questions for Further

Investigation

So far, in this chapter, we have always considered semigroups for which
the rational semigroup algebra is semisimple. It remains open what N(±S) is
in case there is a Jacobson radical (see Definition 1.1.4 and Theorem 1.1.10).
The following example indicates that N(±S) might always be central.

Example 3.3.1. Let G be a finite group. Define S := {Ge1,2, Ge1,3, G2,3},
where ei,j are 3 × 3 matrix units (Example 1.2.2.1). Then T := (S0)1 is a
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finite semigroup with zero element and identity and

Γ := (Z0T )1 = Z0T =


 z ZG ZG

0 z ZG
0 0 z

 ; z ∈ Z


is an integral semigroup ring, having Jacobson radical J (Γ) = ZGe1,2 +
ZGe1,3 + ZGe2,3. Observe that U(Γ) = 1 + J (Γ).

Let us now compute N(±T ). Take u = ±(
∑3

i=1 ei,i)+ te1,2 +ve1,3 +xe2,3,
where t, v, x ∈ ZG. In order to normalize ge1,2, with g ∈ ±G, it follows that
x = 0. Note that u already normalizes ge1,3, and that ge2,3 is normalized by
u if and only if t = 0.

Hence,

N(±T ) = {±(
3∑

i=1

ei,i) + ve1,3; v ∈ ZG} = Z(U(Γ)).

As it has been said in the beginning of this chapter, the study of the
normalizer for semigroup rings, in analogy to what happens in group rings,
might be elucidative in tackling the isomorphism problem. However, this
connection still has to be made in the context of semigroup rings, and this
is a natural direction for further studies on the subject.

It should also be interesting to investigate the usefulness of the results
obtained to the isomorphism problem for partial group rings, for which it may
be necessary to further explore the structure of the semigroup SG associated
to a given group G.
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