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1 Introduction

The study of germs of holomorphic diffeomorphisms and finitely generated
groups of analytic germs of diffeomorphisms fixing the origin in one complex
variable was started in the XIX century, and has been intensively studied
by mathematicians in the past century. Such groups appear naturally when
we study the holonomy group of some leaf of codimension one holomorphic
foliation.
From the Poincaré-Siegel linearization theorem, (See [2] or [14]) it follows
the study of local topology and the analytical and topological classification
of diffeomorphisms of (Cn, 0) having linear part in the Poincaré domain, or in
the Siegel domain that satisfy the Brjuno condition. The resonant case in one
dimension is well known too, the local topology and topological classification
was giving in Camacho [3] and Camacho and Sad [5]. Moreover the analytical
classification in the resonant case is due to Écalle [9], Voronin [25], Martinet
and Ramis [16] and Malgrange [17].
The topological classification in dimension 2 in the partially hyperbolic case
with resonances has been studied by Canille [6] and the topological behavior
in dimension ≥ 2 in the partial hyperbolic case by Ueda [23]. In the case,
tangent to the identity, Hakim [13] and Abate [1], have shown the existence
of parabolic attractive points.
In addition, there is an almost complete analytic classification of the group of
one dimensional germs when we assume some algebraic hypothesis as finite-
ness (See [18]), abelian, solvable (see [7] and [19]). See [11] for a complete
survey of this classification.
In this work, we deal with germs of diffeomorphisms in (C2, 0) and the finitely
generated group of germs.
In section 2 we give the definitions and preliminary results. In section 3
we study the finite groups of diffeomorphisms. We prove a generalization of
Mattei-Moussu topological criteria about finiteness of a group,

Theorem 3.2 Let F ∈ Diff(C2, 0). The group generated by F is finite if and
only if there exists a neighborhood V of 0, such that |OV (F,X)| <∞ for all
X ∈ V and F leaves invariant infinite analytic varieties at 0.

We show a relationship between finite groups and the existence of a complete
set of first integrals.
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Theorem 3.5 Let G < Diff(Cn, 0). G is a finite group if and only if there
exist F1, . . . , Fn germs of holomorphic first integrals such that 0 is an isolated
point of F−1

1 (0) ∩ · · · ∩ F−1
n (0).

Finally, we compare a topological conjugacy class of some finite diffeomor-
phisms with their analytical conjugacy class, i.e. we construct the moduli
space (topological vs analytical) of the diffeomorphisms that are conjugate
with some finite order diffeomorphism,

Theorem 3.6 Let F ∈ Diff(Cn, 0) such that FN = Id. Then

Htop(F )

Hhol(F )
' ± SL(n,Z)

SLA(n,Z)
,

where A = DF (0) =

 e
2πi

p1
N · · · 0

...
. . .

...
0 · · · e2πi

pn
N

, SL(n,Z) is the special linear

group of n× n matrices over the ring Z and

SLA(n,Z) =

B ∈ SL(n,Z)|(B − I)

 p1
...
pn

 ∈ NZn

 .
In particular, we prove that the moduli space topological vs C∞ is trivial.
In section 4 we deal with the linearizable groups. Proposition 4.3 shows that
in a special case the topological linearization implies the analytical lineariza-
tion. In addition, we prove a generalization of theorem 3.6 in this special
case. Moreover, we show that a group of diffeomorphisms is linearizable if
and only if there exists a vector field with radial first jet invariant by the
group-action, i.e.

Theorem 4.2 A group G ⊂ Diff(Cn, 0) is analytically linearizable if and only

if there exists a vector field X = ~R+ · · ·, where ~R is a radial vector field such
X is invariant for every F ∈ G, i.e. F ∗X = X .

In section 5 we study the groups of diffeomorphisms supposing that they have
some algebraic structure. We prove that if G ⊂ Diff(C2, 0) is a solvable group
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then its 7th commutator subgroup is trivial. Furthermore, we characterize the
abelian subgroup of diffeomorphisms tangent to the identity, and in the case
when the group contains a dicritic diffeomorphism, i.e. the group contains
a diffeomorphism F (X) = X + Fk+1(X) + · · · where Fk+1(X) = f(X)X
and f is a homogeneus polynomial of degree k, we prove that the group is
a subgroup of a one parameter group. We write Diff1(C2, 0) to denote the
group of diffeomorphisms tangent to the identity at 0 ∈ C2.

Theorem 5.5 Let G < Diff1(C2, 0) be abelian group, and F ∈ G a dicritic
diffeomorphism. Suppose that exp(f)(x, y) = F (x, y) where

f = (f(x, y)x+ pk+2(x, y) + · · ·) ∂
∂x

+ (f(x, y)y + qk+2(x, y) + · · ·) ∂
∂y
,

f(x, y) is a homogeneous polynomial of degree k and g.c.d(f, xqk+2(x, y) −
ypk+2(x, y)) = 1, then

G < 〈exp(tf)(x, y)|t ∈ C〉.

In section 6 we show that the Milnor number of the diffeomorphisms tangent
to the identity is a topological invariant. Furthermore, we show that this
number is determined by a finite jet of the diffeomorphism.
In the section 7 we analyze the behavior of the orbits of a diffeomorphism
tangent to the identity. We prove a generalization of the one dimensional
flower theorem to two dimensional dicritic diffeomorphisms, i.e.

Theorem 7.3 Let F : (C2, 0) → (C2, 0) be a dicritic diffeomorphism fixing
zero, i.e. F can be represented by a convergent series

F (x, y) =
(
x+ xpk(x, y) + pk+2(x, y) + · · ·
y + ypk(x, y) + qk+2(x, y) + · · ·

)
,

and F̃ = Π∗F : (C̃2, D) → (C̃2, D) be the continuous extension of the dif-
feomorphism after making the blow-up in (0, 0). Then there exist open sets
U+, U− ⊂ C̃2 such that

1. U+ ∪ U− is a neighborhood of D \ {(1 : v) ∈ D|pk(1, v) = 0}.
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2. For all P ∈ U+, the sequence {F̃ n(P )}n∈N converge and lim
n→∞

F̃ n(P ) ∈
D.

3. For all P ∈ U−, the sequence {F̃−n(P )}n∈N converge and lim
n→∞

F̃−n(P ) ∈
D.

An equivalent local theorem is proven in the non dicritic case.
Finally, in section 8 we show the formal classification of diffeomorphisms
tangent to the identity using the notion of the semiformal conjugacy. We
show that a representative diffeomorphism found using semiformal conjugacy
and a cocycle determine its formal conjugacy class.
In the case of dicritic diffeomorphisms, we find a rational function that it is
going to play an equivalent role to the residue in a one dimension diffeomor-
phism.

Theorem 8.3 Let F̃ ∈ D̂iff1(C2, 0) be dicritic diffeomorphism and F (x, v) =(
x+ xk+1p(v) + xk+2(· · ·)

v + xk+1(· · ·)

)
be the continuous extension of the diffeomor-

phism after making the blow-up in (0, 0). Then there exists a unique rational
function q(v) such that F is semiformally conjugate to

GF =
(
x+ xk+1p(v) + x2k+1q(v)

v

)

in C \ {p(v) = 0}. In addition, q(v) = s(v)
p(v)2k+1 where s(v) is a polynomial of

degree 2k + 2 + 2k∂(p(v)).

2 Preliminaries

Let D̂iff(Cn, 0) denote the group of n-dimensional formal diffeomorphisms
fixing zero, i.e.

D̂iff(Cn, 0) = {H(X) = AX + P2(X) + · · · |A ∈ Gl(n,C), Pi ∈ Cn[[X]]i},

where X = (x1, . . . , xn) and Cn[[X]]i is the set of n-dimensional vectors with
coefficients homogeneous polynomials of degree i.
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Let Diff(Cn, 0) ⊂ D̂iff(Cn, 0) denote the pseudo-group of germs of holo-
morphic diffeomorphisms, i.e. the power series that represent every H ∈
Diff(Cn, 0) convergent in some neighborhood of 0 ∈ (Cn, 0).

For each j ≥ 2, let D̂iffj(Cn, 0) (resp. Diffj(Cn, 0)) denote the subgroup

of formal (resp. analytic) diffeomorphisms j-flat, i.e. F (X) ∈ D̂iffj(Cn, 0)
(resp. F (X) ∈ Diffj(Cn, 0)) then F (X) = X + Pj(X) + · · ·.
The same way define χ̂j(Cn, 0) the Lie algebra of formal vector fields of Cn,
j-flat in 0 ∈ Cn, i.e.

χ̂j(Cn, 0) = {F1(X)
∂

∂x1

+ · · ·+ Fn(X)
∂

∂xn
| where Fk ∈

∞
⊕
i=j

C[[X]]i}.

Proposition 2.1 The exponential map exp : χ̂j(Cn, 0) → D̂iffj(Cn, 0) is a
bijection for every j ≥ 2.

Proof: The proof follows from a straightforward generalization of the propo-
sition 1.1. in [16]. 2

Notice that χ̂j(Cn, 0) is the formal Lie algebra associate to the formal Lie

group D̂iffj(Cn, 0). It is not difficult to prove that if the vector field is holo-
morphic, then the associated diffeomorphism is also holomorphic. The con-
verse is false in general.

Definition 2.1 H,G ⊂ D̂iff(Cn, 0) are called formally (analytically) con-

jugate if there exists g ∈ D̂iff(Cn, 0) (g ∈ Diff(Cn, 0)) such that g◦H◦g−1 =
G.

Definition 2.2 H,G ⊂ Diff(Cn, 0) are called topologically conjugate if
there exists t : H → G bijective group homomorphism and g : U → g(U)
local homeomorphism at 0, such that F ◦ g = g ◦ t(F ) for all F ∈ H in some
neighborhood of 0.

In particular, some group G is called linearizable if there exists g such that
g ◦G ◦g−1 is a linear group action. Moreover, if g is a diffeomorphism formal,
analytic or continuous then the group is called formally, analytically or topo-
logically linearizable respectively. Let ΛG denote the set {DG(0)|G ∈ G}. To
understand when a diffeomorphism is formally and analytically linearizable
we need the following definition
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Definition 2.3 Let G ∈ Diff(Cn, 0). G is called resonant if the eigenvalues
of G′(0), λ := (λ1, . . . , λn), satisfies some relation like

λm − λj = λm1
1 · · ·λmn

n − λj = 0

for some j = 1, . . . , n and m ∈ Nn where |m| = m1+· · ·+mn ≥ 2. Otherwise,
it is called non resonant.

Definition 2.4 Let A ∈ Gl(n,C) and suppose that A is not resonant. We
say that A satisfies the Brjuno condition if

∞∑
k=0

2−k log(Ω−1(2k+1)) < +∞

where Ω(k) = inf
2≤|j|≤k
1≤i≤n

|λj − λi|.

Theorem 2.1 Let G ∈ Diff(Cn, 0), where G(X) = AX + · · ·, A diagonal-
izable, non resonant. Then G is formally linearizable. In addition, if G
satisfies the Brjuno condition, then this linearization is in fact holomorphic.

Notice that in the case n = 1, we can write A = exp(2πiα). The non
resonance condition is equivalent to say α ∈ R \Q.

Let α = [a0 : a1 : a2 : · · ·] = a0 +
1

a1 +
1

a2 + · · ·

be the continued fraction of

α and
{
pn

qn

}
n∈N the convergent of α. The Brjuno condition is equivalent to

say
∞∑
j=0

q−1
n log qn+1 < +∞.

The most common proofs of this theorem use marjorant series or rapid iter-
ation methods and the so called KAM techniques.
When the diffeomorphism is not linearizable, the analytic classification is very
complicated. In the one dimensional case we have 2 cases: The resonant case,
i.e. when f(x) = λx+ · · · where λn = 1 for some n ∈ Z+, and the Liouvillian
case, i.e. λ = e2πiα where α does not satisfies the Brjuno condition.
In the Liouvillian case, there exists an analytic germ that is not equivalent
to its linear part, see Perez Marco [22].
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In the resonant case is easy to see that f(x) = g ◦ h(x) where g and h
commute, gn = id and h is tangent to the identity. Notice that g and h are
in general, formal diffeomorphisms.

Theorem 2.2 (Camacho [3]) Let h(x) = x + axk+1 + · · ·, then h is topo-
logically conjugate with x 7→ x+ xk+1.

Thus, the topological classification is very simple. In the same way the formal
classification is simple

Theorem 2.3 Let h(x) = x+ axk+1 + · · ·, then there exists ρ such that h is

formally conjugate with fa,k,ρ(z) = exp(a zk+1

1+ρzk
∂
∂z

).

ρ(h) is called the residue of h and ρ(h) =
1

2πi

∮ 1

h(x)− x
dx. In particular,

h is formally conjugate with x 7→ x+ xk+1 + ρx2k+1.
In addition, there exists a unique gh tangent to the identity such that g∗hh =

gh ◦ h ◦ g−1
h = exp(aχk,ρ) where χk,ρ = zk+1

1+ρzk
∂
∂z

. This gh is called the nor-
malizer transformation of h.
It is clear that if two diffeomorphisms are analytically conjugate, in particu-
lar they are formally. Thus, fixing the formal class, the analytic classification
can be obtained by several ways, using theory of resurgent function as Écalle,
or using quasi conformal conjugacy as Voronin, or using the theory of resum-
mation as Martinet and Ramis. Notice that this classification depends on
two facts: first, the construction of sectorial normalizer transformation, and
second, the characteristic cocycles obtained from that transformation, in fact

Theorem 2.4 Let h be a diffeomorphism tangent to the identity, formally
conjugate with fa,k,ρ, and gh its normalizer transformation. Then for every
θ ∈ S1 there exists a unique germ gh,θ in (Sk(θ), 0), where

Sk(θ) = {x ∈ C| | arg(x)− θ| < π

k
},

such that

1. The asymptotic development of gh,θ in 0 is gh.

2. g∗h,θh = fa,k,ρ|(Sk(θ),0).
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Theorem 2.5 The collection of germs

Cj(h) = gh, 2π
k

(j+1) ◦ g−1
h, 2π

k
j
:

(
S k

2
(
π(2j + 1)

2
), 0

)
→
(
S k

2
(
π(2j + 1)

2
), 0

)

where j = 0, . . . , k − 1 define the analytic conjugacy class of h.

2.1 Classification of one dimensional groups

Suppose that G ⊂ Diff(C, 0) is a finitely generated group. If we suppose
some algebraic properties both the topological behavior and the analytic
classification are known. If |G| < ∞, then G is analytically conjugate with
a rotation. In the case G commutative

Theorem 2.6 Let G be a commutative non finite group of germ of holomor-
phic diffeomorphism of (C, 0) and ΛG = {g′(0) ∈ C|g ∈ G}. Then

1. If ΛG is finite, i.e. ΛG = 〈e 2πi
k 〉, G is formally conjugate to some

subgroup of
〈a exp(bχk,ρ)|a ∈ ΛG, b ∈ C〉

where ρ is a fixed complex number.

2. If a ∈ A, where |a| 6= 1 or a is a Brjuno number, i.e. a = e2πiα, where
α satisfies the Brjuno condition, then G is analytically conjugate to A.
Otherwise G is formally conjugate with A.

Theorem 2.7 Let G be a solvable non commutative group of germs of dif-
feomorphism of (C, 0). Then G is formally conjugate to

〈a exp(bχ(z))|a ∈ C∗, b ∈ C〉

where χ = zk+1 ∂
∂z

. In addition,

1. If G0, the subgroup of G of the elements tangent to the identity, is non
isomorphic to Z then this conjugacy is analytic.

2. If G0 is isomorphic to Z then |A| = n < ∞ and k = n
2
, 3n

2
, . . .. Fur-

thermore, G is generate by f and g, where f is a k-flat element with
ρ(f) = k+1

2
, g with a linear term λ, λ2k = −1 and f ◦ g = g ◦ f (−1). In

this case the group G is called exceptional.
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When the group G is non solvable, the topological classification is the same
as the analytic classification.

Definition 2.5 G ⊂ Diff(Cn, 0) is called rigid if for all H ⊂ Diff(Cn, 0),
such that H,G are topologically conjugate then they are analytically conju-
gates.

Theorem 2.8 (Il’yashenko)

1. Suppose that G is non commutative but solvable and ΛG is dense in C,
them G is rigid.

2. Suppose that G and G′ are topologically conjugate and G is non solv-
able. Let h be the homeomorphism that conjugates G and G′. If h is
orientation preserving then h is holomorphic.

Theorem 2.9 (Cerveau, Moussu [7]) Suppose that G and G′ are non com-
mutative, non exceptional and formally conjugates. Then the formal conju-
gacy is convergent.

3 Finite Groups

The finite group of germs of holomorphic diffeomorphisms in one dimension
appears naturally in the study of the holonomy group of the local foliation
with holomorphic first integral around a singular point.
Other question that relates finite groups with holomorphic foliation is the
question posed by Haefliger: when a compact foliation is a stable foliation?
i.e. the leaf space is Hausdorff?. Partial answers to this problem arose in the
works of Eptein, Edwards-Millet-Sullivan, Kaup, Holmann, etc. The stability
of complex 1-codimension holomorphic foliation on a complex spaces has
been investigated by Kaup and Holmann. One of the equivalent condition for
stability is finiteness of holonomy groups of the leaves. In this section we give
a criteria for finiteness of finitely generated subgroups of Diff(C2, 0), using
some topological and analytic properties. In addition, we find a relationship
between a finite group and a complete set of first integrals. Last, we construct
a moduli space of every finite groups that are topologically conjugate with
one generator finite group.
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Proposition 3.1 LetH be a finite subgroup of D̂iff(Cn, 0) (resp. Diff(Cn, 0))
then H is formally (analytic) linearizable, and it is isomorphic to a finite sub-
group of Gl(n,C).

Proof: Let g(X) =
∑
H∈H

(H ′(0))−1H(X). Note that g is a diffeomorphism

because g′(0) = #(H)I, and moreover for all F ∈ H

g◦F (X) =
∑
H∈H

(H ′(0))−1H◦F (X)

= F ′(0)
∑
H∈H

((H◦F )′(0))−1H◦F (X)

= F ′(0)g(X)

Thus g◦F◦g−1(X) = F ′(0)X. In fact, we obtain a injective groups homo-
morphism

H Λ−→Gl(n,C)

F −→(g◦F◦g−1)′(0). 2

Denote by ΛH ⊂ Gl(n,C) the group of linear parts of the diffeomorphisms
in H, and p = #(H), then for all matrix A ∈ ΛH, Ap = I. We claim that A
is diagonalizable, in fact, for the Jordan canonical form theorem there exists
B ∈ Gl(n,C) such that BAB−1 = D +N where D is a diagonal matrix and
N is such that ND = DN and N l = 0 for some l ∈ N, but Ap = I then
(D +N)p = I. To prove the claim we need the following lemma

Lemma 3.1 Let l be the least integer such that N l = 0, then I,N, . . . , N l−1

are C-linearly independent.

Proof: Let amN
m + · · ·+ al−1N

l−1 = 0 be a linear combination with am 6= 0
m ≥ 0, multiply by N l−m−1 we obtain that amN

l−1 = 0, and for the mini-
mality of l we conclude that am = 0, it is a contradiction. 2

We can suppose, that each block of the Jordan canonical form is of the
form D = λI, thus (D+N)p = (λI+N)p = I, therefore (λp−1)I+pλp−1N+
· · ·+Np = 0, for the lemma we have that λp = 1 and N = 0.
One necessary formal condition for F ∈ D̂iff(Cn, 0) in order to have F [m+1](X) =
X is that F has no resonant term, in fact if we suppose F (X) = AX+Pk(X)+
· · · where A = Diag(λj) and (Diag(λj))

m+1 = I then we have that

F [m+1] = X + (AmPk(X) + Am−1Pk(AX) + · · ·+ Pk(A
mX)) + · · · .
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Suppose Pk(X) = (f1(X), . . . , fn(X))t, where each fj is a homogeneous poly-
nomial of degree k we have that

λmj fj(X)+λm−1
j fj(λ·X)+· · ·+fj(λm·X) = 0, where λmX = (λm1 x1, . . . , λ

m
n xn)

i.e., coefficient to coefficient has to be zero, but fj(X) =
∑

α∈Nn

|α|=k
aj,αX

α, then

the coefficient of Xα in that sum is

aj,α(λ
m
j +λm−1

j (λ)α+· · ·+λj(λm−1)α+(λm)α) =

{
(m+ 1)aj,αλ

m
j if λα = λj

0 if λα 6= λj.

In general we have

Theorem 3.1 (Brjuno [14]) Let F ∈ Diff(Cn, 0) be a diffeomorphism such
that DF (0) = diag(λ1, . . . , λn) is ressonant. Then there exists a formal
conjugation h such that

h∗F (X) =

 λ1x1 +
∑
m∈S1

a1mX
m

...
λnxn +

∑
m∈Sn

anmX
m


where Sj = {m ∈ Nn| λm − λj = 0}.

In order to show a topological criteria to know when a diffeomorphism is
finite we need the following modification of the Lewowicz lemma.

Lemma 3.2 Let M , 0 ∈ M , be a complex analytic variety of Cn and K a
connected component of 0 in Br(0)∩M . Suppose that f is a homeomorphism
from K to f(K) ⊂ M such that f(0) = 0. Then there exists x ∈ ∂K such
that the number of iterations fm(x) ∈ K is infinity.

Proof: Denote by µ = µ|K and µ = µ| ◦
K

the number of iteration in K and
◦
K.

It is easy to see that µ is upper semicontinuous, µ is under semicontinuous

and µ(x) ≥ µ(x) for all x ∈
◦
K. Suppose by contradiction that µ(x) <∞ for

all x ∈ ∂K, therefore exists n ∈ N such that µ(x) < n for all x ∈ ∂K. Let

A = {x ∈ K|µ(x) < n} ⊃ ∂K and B = {x ∈
◦
K |µ(x) ≥ n} 3 0 open set,

and A ∩B = ∅ since µ(x) ≥ µ(x).
Using the fact that K is a connected set, there exists x0 ∈ K \ (A ∪ B) i.e
µ(x0) ≥ n > µ(x0), then the orbit of x0 intersects the border of K, which is
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a contradiction since ∂K ⊂ A implies x0 ∈ A. 2

Let f : U → f(U) be a homeomorphism with f(0) = 0 and x ∈ U . We denote
by OU(f, x) the f -orbit of x that do not leave U , i.e. y ∈ OU(f, x) if and
only if {x, f(x), . . . , y = f [k](x)} ⊂ U or {x, f [−1](x), . . . , y = f [−k](x)} ⊂ U
for some k ∈ N.

Theorem 3.2 Let F ∈ Diff(C2, 0). The group generated by F is finite if
and only if there exists a neighborhood V of 0, such that |OV (F,X)| <∞ for
all X ∈ V and F leaves invariant infinite analytic varieties at 0.

Proof: (⇒) Let N = #〈F 〉 and h ∈ Diff(C2, 0) such that h◦F◦h−1(x, y) =
(λ1x, λ2y) where λN1 = λN2 = 1. It is clear than |O(F,X)| ≤ N for all X in
the domain of F , and Mc = {h(x, y)|xN − cyN = 0} is a complex analytic
variety invariant by F for all c ∈ C.
(⇐) Without loss of generality we suppose that V = Br(0) where F (V )
and F−1(V ) are well defined. Let M be a F -invariant complex analytic
variety and KM the connected component of 0 in M ∩ V . Let A1 = K,
Aj+1 = K∩F−1(Aj) and Cn the connected component of 0 in An. It is clear,
by construction that An is the set of point of KM with n or more iterates
in KM . Moreover, since An is compact and Cn is compact and connected,
it follows that CM = ∩∞j=1Cn is compact and connected too, and therefore
CM = {0} or CM is non enumerable.
We claim that CM ∩ ∂K 6= ∅ and then this is non enumerate. In fact,
if CM ∩ ∂K = ∅ there exists j such that Cj ∩ ∂K = ∅. Let B compact
connected neighborhood of Cj such that (Aj \ Cj) ∩ B = ∅, therefore for all
X ∈ ∂B we have OK(F,X) < N , that is a contradiction by the lemma.
In particular, C = CC2 is a set of point with infinite orbits in V and therefore
every point in C is periodic. If we denote Dn = {X ∈ C|F n!(X) = X}, it
is clear that Dn is a close set and Dn ⊂ Dn+1, moreover C = ∪∞n=1Dn, then
exists n ∈ N such that C = Dn. Let G = F n! where it is well defined, observe
that C is in the domain U of G and C ⊂ {X ∈ U |G(X) = X} = L. Since L
is a complex analytic variety of U that contain C then its dimension is 1 or
2. The case dimL = 1 is impossible because CM ⊂ C ⊂ L for all M analytic
variety F -invariant, contradicting that fact that O2 is Noetherian ring. In
the case dimL = 2 follows that F n!(X) = X for all X ∈ U , therefore 〈F 〉 is
finite. 2
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This theorem can be extended to Cn if we suppose that there exist infinitely
many one dimensional invariant analytic varieties at 0 in general position.

Definition 3.1 Let G < Diff(Cn, 0) be a group of germs of diffeomorphisms.

a) G is called periodic if every element F ∈ G has finite order.

b) G is called locally finite if every subgroup finitely generated is finite.

c) G is called a group of exponent d, if F [d] = id, for every element
F ∈ G.

Proposition 3.2 Let G be a periodic group, then the homomorphism

G Λ−→Gl(n,C)

G 7−→ G′(0),

is injective.

Proof: In fact, suppose by contradiction that there exists F ∈ G such that
Λ(F (X)) = I, i.e., F (X) = X +Pk(X)+ · · ·, then, by straightforward calcu-
lation we have that F [r](X) = X + rPk(X) + · · · 6= Id, therefore, the unique
element of G tangent to the identity is itself. 2

Corollary 3.1 Let G < Diff(Cn, 0) such that, every element F ∈ G has finite
order, then G1 ≤ G the subgroup of element tangent to the identity is trivial,
i.e., G1 = {id}.

Proposition 3.3 Let G < Diff(Cn, 0)

a) If there exists p ∈ N∗ such that, for every F ∈ G, F p = id, then G is
finite.

b) If G is periodic then every finitely generated subgroup is finite.

For the proposition above we only need to prove that the item a) and b) are
true for the group ΛG < Gl(n,C). This fact follows from the next theorems

Theorem 3.3 (Burnside) If G < Gl(n,C) is a group with finite exponent
m, then |G| < mn3

.
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Proof: Since the trace of g is the sum of the eigenvalues of g and they are
m-th roots of unity, we have that trace(g) can take mn or less values. In
the first case we are going to suppose that there exist g1, . . . gn2 in G linearly
independent over C, i.e. Mn×n(C) = g1C⊕ · · · ⊕ gn2C. Let

Tr : G −→ Cn2

g 7→ (tr(g1g), tr(g2g), . . . , tr(gn2g))
,

where tr(g) is the trace of g. Observe that Tr is one to one. In fact, if
Tr(h1) = Tr(h2) then tr(gih1) = tr(gih2) for i = 1, . . . n2. Since g1, . . . , gn2

generate Mn×n(C) and tr is a linear map we have that tr(ah1) = tr(ah2) for
every a ∈ Mn×n(C), therefore h1 = h2. But |Tr(G)| ≤ |tr(G)|n2 ≤ mn3

, this
conclude the proof of the theorem. 2

Theorem 3.4 (Schur) If G < Gl(n,C) is a periodic group then G is locally
finite.

Proof: Suppose G is finitely generated. By the Burnside theorem we only
need to prove that G has finite exponent. Let g1, . . . gl generate G and
K the subfield of C generated by the entries of these matrices, then G <
Gln(K). Since K is finitely generated, there exists a finite transcendence
basis x1, . . . , xm of K over Q. Let E the field generated by x1, . . . , xm. From
the definition [K : E] = d < ∞. It is easy to prove that K ' Gld(E) and
then G is isomorphic to a subgroup H of Glnd(E).
For each g ∈ H, let Fg(X) ∈ E[X] the monic minimal polynomial for g.
Since g has finite order, the zeros of Fg(X) are all roots of 1. Thus the
coefficients of Fg(X) are sums of roots of the unity and hence algebraic in-
tegers. By the definition of E, the set of algebraic numbers in E is Q, then
the coefficient of Fg(X) are integers. Moreover, if Fg(X) =

∑m
j=0 ajX

j, it is

clear that m ≤ nd and |aj| <
(
nd
j

)
. Hence there are only a finite number of

different polynomial in the set {Fg(X)| g ∈ H}. Since two elements g1 and
g2 has the same minimal polynomial implies that they have the same order,
we conclude that there are a finite numbers of orders and then H has a finite
exponent. 2

Corollary 3.2 Let F be a regular codimension two foliation of Mn and L ⊂
M be a compact leaf such that

14



• No other leaf accumulate at L.

• There exist infinitely many codimension one subvarieties N invariant
by F , such that L ⊂ N ⊂M .

Then

1. The holonomy group of the leaf L is finite.

2. There exists a local first integral in some neighborhood of L.

Definition 3.2 Let G < Diff(Cn, 0). A function F : (Cn, 0) → (C, 0) is
called a first integral if F ◦G(X) = F (X) for all G ∈ G in some neighborhood
of 0.

Theorem 3.5 Let G < Diff(Cn, 0). G is a finite group if and only if there
exist F1, . . . , Fn germs of holomorphic first integrals such that 0 is an isolated
point of F−1

1 (0) ∩ · · · ∩ F−1
n (0).

Proof: (⇒) If G is a finite group, there exists a holomorphic change of coordi-
nates h such that for all G ∈ G, h◦G◦h−1(X) = G′(0)X, i.e. h◦G◦h−1 = ΛG.
Claim: there exist an invertible matrix A such that for each choice of vectors
v1, . . . , vn, where vj is a j row of arbitrary element of A ·ΛG, they are linearly
independent.
Proof of the claim. We are going to construct the matrix A = (a1, . . . , an)

t

row by row. Let a1 = e1 = (1, 0 . . . , 0). Suppose that we have already con-
structed the rows a1, . . . aj−1 and the matrix Aj−1 = (a1, . . . , aj−1, ej, . . . , en)

t

is a lower-triangular invertible matrix.
Let S = {(v1, . . . , vj−1)| where vk is a k-row of arbitrary matrix in Aj−1ΛG}.
Notice that the set U =

⋃
S Cv1 ⊕ · · · ⊕ Cvj−1 is a finite union of (j − 1)-

dimensional subspaces of Cn. Then for each element B ∈ Aj−1ΛG the set

UB = {a ∈ Cn| a = (b1, . . . , bj, 0, . . . , 0), a ·B /∈ U, bj 6= 0}

is a dense open subset of Cj ×~0, it follows that

Uj = ∩
B∈Aj−1ΛG

UB 6= ∅,

then choosing aj like an arbitrary element of Uj, we conclude the claim.
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Returning with the proof of the theorem, see that

F̃i(X) =
∏
G∈ΛG

πj(A ·G(X))

is a holomorphic first integral of ΛG, where πi is a projection in the i coor-
dinate. Moreover, from the claim, 0 is the unique solution of the systems
of equations {F̃i(X) = 0}i=1,...,n. Now, it is easy to see that Fi = F̃i ◦ h
(i = 1, . . . , n), are holomorphic first integrals of G and 0 is an isolated point
of F−1

1 (0) ∩ · · · ∩ F−1
n (0).

(⇐) Let G ∈ G, notice that for all points p near to 0, we have that

#{Gj(p)}j∈Z ≤ #(F−1
1 (F1(p)) ∩ · · · ∩ F−1

n (Fn(p))

≤ dimC
On

〈F1, . . . , Fn〉
= m <∞

then Gm!(X) = X and from the Burnside theorem it follows that G is a finite
group. 2

3.1 Moduli space

For all F ∈ Diff(Cn, 0), let

Htop(F ) = {G ∈ Diff(Cn, 0)|G is topologically conjugate with F}

and

Hhol(F ) = {G ∈ Diff(Cn, 0)|G is holomorphically conjugate with F}.

Theorem 3.6 Let F ∈ Diff(Cn, 0) such that FN = Id. Then

Htop(F )

Hhol(F )
' ± SL(n,Z)

SLA(n,Z)
,

where SL(n,Z) is the special linear group of n× n matrices over the ring Z,

A = DF (0) =

 e
2πi

p1
N · · · 0

...
. . .

...
0 · · · e2πi

pn
N

 and

SLA(n,Z) =

B ∈ SL(n,Z)|(B − I)

 p1
...
pn

 ∈ NZn

 .
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Proof: We only prove in the case n = 2, because the general case is similar.
Suppose that G ∈ Diff(C2, 0) is topologically conjugate with F , i.e. there
exists H : (C2, 0) → (C2, 0) local homeomorphism such that F ◦ H = H ◦
G in some neighborhood of 0. Since F has finite order, we can suppose,
making a holomorphic change of coordinates, that F is a linear diagonal
transformation, i.e. F (x, y) = (e2πi

p1
N x, e2πi

p2
N y) where g.c.d(p1, p2, N) = 1

and 0 ≤ p1, p2 < N . It is clear that the order of G = H ◦ F ◦H−1 is N too,
then, we can suppose in the same way that G(x, y) = (e2πi

r1
N x, e2πi

r2
N y).

Let h := H|S1×S1 , f = F |S1×S1 and g = G|S1×S1 . If h = (h1, h2), since the
norm of h1 and h2 are invariant by F and G, we can suppose without loss
of generality that h(S1 × S1) = S1 × S1 and then the following diagram
commute

S1 × S1 h−→ S1 × S1

↓f ↓g

S1 × S1 h−→ S1 × S1.

Let Π : R2 → S1 × S1, (z1, z2) 7→ (e2πiz1 , e2πiz2) be a universal covering of
S1×S1, A(x, y) = (x, y) + (p1

N
, p2
N

), B(x, y) = (x, y) + ( r1
N
, r2
N

) lifting of f and
g respectively and C lifting of h such that C(0, 0) = (0, 0). It is clear that

Π(C ◦ A(z1, z2)) = Π(B ◦ C(z1, z2)),

and therefore C ◦ A(z1, z2)−B ◦ C(z1, z2) ∈ Z2.
Claim: there exist vectors v1, v2 such that the net Zv1+Zv2 is invariant for the
A-action and the translations (z1, z2) 7→ (z1+1, z2) and (z1, z2) 7→ (z1, z2+1).
Moreover, if V is the parallelogram V = {θ1v1 + θ2v2|0 ≤ θ1, θ2 < 1} then
Π|V : V → Π(V ) = W is injective and

S1 × S1 =
N−1
t
j=0

f j(W ).

In fact, let be m = g.c.d(N, p2), v1 = ( 1
m
, 0) and v2 = ( a

N
, m
N

) where a is the
solution of p2

m
a ≡ p1 (mod N

m
) with 0 ≤ a < N

m
. It is easy to check that

A(0, 0) = bv1 +
p2

m
v2 where b =

p1m− ap2

N
∈ Z,

(1, 0) = mv1 and (0, 1) = −av1 + N
m
v2. In addition, V ⊂ [0, 1)2 then Π|V is

injective.
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Now, we only need to prove that S1 × S1 =
N−1
t
j=0

f j(W ). First we are going

to prove that this is a disjoint union. In fact if f j(W ) ∩ fk+j(W ) 6= ∅ then
W ∩ fk(W ) 6= ∅.
Let (x0, y0) ∈ W such that fk(x0, y0) ∈ W . If (x0, y0) = Π(θ1v1 +θ2v2) where
0 ≤ θ1, θ2 < 1, then Ak(θ1v1 + θ2v2) = (bk + θ1)v1 + (kp2

m
+ θ2)v2, it follows

that there exist integers s, t such that Ak(θ1v1 + θ2v2) + (s, t) ∈ V i.e.

0 ≤ bk + θ1 +ms− at < 1, 0 ≤ kp2

m
+ θ2 +

N

m
t < 1,

it is equivalent to say

bk +ms− at = 0,
kp2

m
+
N

m
t = 0.

For the second equation we know that k has to be a multiple of N
m

, i.e.
k = k′N

m
and then t = −k′ p2

m
. Replacing in the first equation we obtain

p1k
′ + ms = 0, but p1 and m have not common factors different that 1, it

follows that m|k′ and k is a multiple of N , i.e. k has to be 0. Now, it is easy
to see that the union is all S1 × S1 since the area of V is 1

N
.

Now, since Zv1 + Zv2 is invariant by the A-action, and the translations
(z1, z2) 7→ (z1 + 1, z2) and (z1, z2) 7→ (z1, z2 + 1), then ZC(v1) + ZC(v2)
is invariant for the B-action and the translations (z1, z2) 7→ (z1 + 1, z2) and
(z1, z2) 7→ (z1, z2 + 1). In addition, from the continuity of h it is clear that
C(n1v1 + n2v2) = n1C(v1) + n2C(v2), i.e. C|Zv1+Zv2 is a linear transforma-
tion, and since [0, 1)2 is a fundamental domain of S1 × S1 then C([0, 1)2)
is also a fundamental domain. Notice that C(1, 0) = (m11,m21) ∈ Z2 and
C(0, 1) = (m12,m22) ∈ Z2, let M = (mij) be the representation of C|Zv1+Zv2
in the canonical base, it is easy to see that M ∈ ±SL(2,Z) since the area of
C([0, 1)2) is one, and since

M(A(0, 0))−B(M(0, 0)) = M(
p1

N
,
p2

N
)− (

r1
N
,
r2
N

)

= (
p1

N
m11 +

p2

N
m12 −

r1
N
,
p1

N
m21 +

p2

N
m22 −

r2
N

) ∈ Z2,

we conclude that (r1, r2) is determinated by one element

[M ] (mod N) ∈ ±
SL(2,Z)

SLA(2,Z)
.
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Finally, for each element M ∈ ± SL(2,Z)

SLA(2,Z)
it is easy to see that a linear holo-

morphic diffeomorphism G

(x, y) 7→ (e2πi
r1
N x, e2πi

r2
N y) where

(
r1
r2

)
≡M

(
p1

p2

)
(mod N),

and the C∞- diffeomorphism H

H(x, y) = (|x|em11 arg(x)+m12 arg(y), |y|em21 arg(x)+m22 arg(y))

satisfies H ◦ F = G ◦H (here we suppose F linear). 2

Corollary 3.3 Let F,G ∈ Diff(Cn, 0) such that they are topologically conju-
gates and FN = I, then they are C∞ conjugate.

Proof: Let h1, h2 holomorphism diffeomorphisms such that F1 = h1 ◦F ◦ h−1

and G1 = h1 ◦ G ◦ h−1 are linear transformations. From the theorem there
exists a matrix M = (mij) ∈ ±SL(n,Z) such that the C∞-diffeomorphism

H(X) =
(
|x1|e

∑n

j=1
m1j arg(xj), . . . , |xn|e

∑n

j=1
mnj arg(xj)

)
conjugate F1 and G1.

Therefore h−1
2 ◦H ◦ h1 conjugate F and G. 2

4 Linearizable groups of diffeomorphisms

Proposition 4.1 Let G < Diff(Cn, 0) be an abelian subgroup of analytic
diffeomorphism germs. There exists a linear change of coordinates such that
DG(0) is a upper triangular matrix for all G ∈ G. Moreover, if G has an
element F such that the eigenvalues of DF (0) are different, then we can find
a linear change of coordinates such that for all G ∈ G, DG(0) is a diagonal
matrix.

Proof: See [20]. 2

Proposition 4.2 Let G < Diff(Cn, 0) be an abelian subgroup of analytic dif-
feomorphism germs. Suppose G has a element G linearizable, non resonant,
then there exists h, formal diffeomorphism, that linearize every element of G.
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Proof: We can suppose without loss of generality that AX ∈ G where AX is
non resonant. We have to show that each element of G is linear. In fact, let
F ∈ G be an arbitrary element. We know F (AX) = AF (X). Rewrite F like
F (X) =

∑∞
k=1 Fk(X) where Fk(X) is vector of homogeneous polynomials of

degree k, and comparing terms of the same degree, we have that Fk(AX) =
AFk(X) for all k ∈ N∗. We claim that this relation imply Fk ≡ 0 for k ≥ 2.
Let v1, . . . , vn be a bases of eigenvectors of A, i.e. Avj = λjvj, such bases
exists because the eigenvalues are different. By the fact that {vj} is bases
and Fk is homogeneous of degree k,

Fk(v1y1 + · · ·+ vnyn) =
n∑
l=1

pl(y1, . . . , yn)vl,

where pl is homogeneous polynomial of degree k for all l = 1, . . . n. Thus by
the commutativity with A

Fk(A(v1y1 + · · ·+ vnyn)) = AFk(v1y1 + · · ·+ vnyn)
n∑
l=1

pl(λ1y1, . . . , λnyn)vl =
n∑
l=1

pl(y1, . . . , yn)λlvl,

pl(λ1y1, . . . , λnyn) = λlpl(y1, . . . , yn) for l = 1, . . . , n. Since this is a polyno-
mial equality, comparing monomial to monomial, if amy

m is a monomial of pl,
m ∈ Nn, |m| = k then amλ

mym = amλlym, but A is non resonant, therefore
am = 0 and pl ≡ 0 for all l = 1, . . . , n. 2

Proposition 4.3 Let F ∈ Diff(Cn, 0) such that A = DF (0) is a diago-
nalizable matrix and the eigenvalues have norm 1. Then F is analytically
linearizable if and only if F is topologically linearizable.

Proof: Suppose that F is topologically linearizable and A is a diagonal matrix,
i.e. there exists a homeomorphism h : U → h(U) where U is a neighborhood
of 0 ∈ Cn, such that h ◦ F (X) = Ah(X) where X ∈ F−1(U) = W .
Claim: there exists a neighborhood V ⊂ W of 0 ∈ Cn such that F (V ) = V .
In fact, let r > 0 such that B(0, r) ⊂ h(U) ∩W and V = h−1(B(0, r)), it is
clear that

F (V ) = h−1(Ah(V )) = h−1(A(B(0, r))) = h−1(B(0, r)) = V.
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Since Hm(X) = 1
m

m−1∑
j=0

A−jF j(X) is a normal family of holomorphic diffeo-

morphisms defined from V to the smaller Reinhardt domain that contains
V , then

H(X) = lim
m→∞

1

m

m−1∑
j=0

A−jF j(X)

is holomorphic in V , with H ′(0) = Id, it follows that H is a local diffeomor-
phism at 0 ∈ Cn. Moreover, notice that

Hm(F (X)) = AHm(X) +
1

m
(Am−1Fm(X)−X)

and limm→∞
|Am−1Fm(X)−X|

m
= 0. We conclude therefore that H(F (X)) =

AH(X) for all X ∈ V . 2

Notice that in the case when F has finite order, the moduli space topological
vs analytical is very simple. This is a particular case when the eigenvalues
have norm 1. In fact,

Theorem 4.1 Let be F ∈ Diff(Cn, 0), where A = DF (0) is a diagonalizable
matrix with norm 1 eigenvalue, i.e. A = diag(e2πiλ1 , . . . , e2πiλn) where λj ∈
R. Suppose that F is topologically linearizable. Then

Htop(F )

Hhol(F )
' ± SL(n,Z)

SLA(n,Z)

where
SLA(n,Z) = {B ∈ SL(n,Z)|(B − I)λ ∈ Zn}.

Proof: From the proposition 4.3, we know that every element of Htop(F ) is
analytically linearizable. Let G ∈ Htop(F ), H local homeomorphism such
that F ◦H = H ◦G and C be a lifting of H|S1×···×S1 as in the theorem 3.6.
Observe that C|Zn : Zn → Zn can be represented as a linear transformation,
and since the volume of C([0, 1]n) is 1, then C|Zn = M ∈ ±SL(n,Z). There-
fore, C(Z) = M([[Z]])+ θ({Z}), where [[Z]] = ([[z1]], . . . , [[zn]]), {Z} = Z− [[Z]]
and θ = C|[0,1)n . In addition,

C(Z) + µ+ C(Z + λ) ∈ Zn
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where µ = (µ1, . . . , µn) and DG(0) = diag(e2πiµ1 , . . . , e2πiµn). In particular,
making Z = 0 we have

C(jλ)− jµ ∈ Zn, for all j ∈ Z

and replacing µ by µ+m for some m ∈ Zn, we can suppose that C(jλ) = jµ.
It follows that

M([[jλ]])− [[jµ]] = {jµ} − θ({jλ}).
From the continuity of θ and using that there exists a positive integers in-
creasing sequence {an}n∈N such that {anλ} −→

n→∞
0 and {anµ} −→

n→∞
0, we have

that M([[anλ]]) = [[anµ]] for all n� 0, therefore

Mλ = lim
n→∞

1

an
M([[anλ]]) = lim

n→∞

1

an
[[anµ]] = µ.

Thus, if we have two homeomorphism that conjuge F and G, each one
has associated a matrix M1,M2 ∈ SL(n,Z) such that M1λ − µ ∈ Zn and
M2λ− µ ∈ Zn, then (M1M

−1
2 − I)λ ∈ Zn, as we want to prove. 2

Now observe that the radical vector field is invariant by the action of every
linear diffeomorphism. This fact characterizes every linearizable group

Theorem 4.2 G ⊂ Diff(Cn, 0) is a group analytically linearizable if and only

if there exists a vector field X = ~R+ · · ·, where ~R is a radial vector field such
X is invariant for every F ∈ G, i.e. F ∗X = X .

Proof: (⇒) Suppose that G is linearizable, i.e. there exists g : (Cn, 0) →
(Cn, 0) such that g−1 ◦ G ◦ g = {DF (0)Y |F ∈ G}. Since (AY )∗ ~R = ~R for all
A ∈ Gl(2,C), in particular for every element F ∈ G we have

~R = (g−1 ◦ F ◦ g)∗ ~R = D(g−1 ◦ F ◦ g)(g−1◦F−1◦g(Y )) · ~R(g−1 ◦ F−1 ◦ g(Y ))

= Dg−1
(g(Y )) ·DF(F−1(g(Y )) ·Dg((g−1◦F−1◦g(Y )) · (g−1 ◦ F−1 ◦ g(Y ))

Replacing X = g(Y ) and multiplying by Dgg−1(Y ) we have that

DF(F−1(X) ·Dg((g−1◦F−1(X)) · (g−1 ◦ F−1(X)) = Dgg−1(Y )g
−1(X),

i.e. denoting X = Dgg−1(X)g
−1(X) we have that F ∗X = X . It is easy to see

that X = ~R + · · ·.
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(⇐) Now suppose that F ∗X = X for every element F ∈ G, where X = ~R+· · ·.
Since every eigenvalue of the linear part of X is 1, then X is in the Poincaré
domain without resonances, therefore there exists a analytic diffeomorphism
g : (Cn, 0) → (Cn, 0) such that g∗X = ~R, i.e. X = (Dg(X))

−1 · g(X).
We claim that g ◦ F ◦ g−1(Y ) = DF (0)Y for every F ∈ G. In fact, from the
same procedure as before we can observe that

(g ◦ F ◦ g−1)∗ ~R = ~R.

Now, if we suppose that g ◦ F ◦ g−1 = AX + Pl(X) + Pl+1(X) + · · ·, where
Pj(X) is a polynomial vector field of degree j, then it is easy to see using the
Euler equality that

(g ◦ F ◦ g−1)∗ ~R = AX + lPl(X) + (l + 1)Pl+1(X) + · · · ,

and therefore Pj(X) ≡ 0 for every j ≥ 2. 2

5 Groups with some algebraic structure

In this section we are going to study the groups of diffeomorphisms, when
they have some additional algebraic structure as abelian, nilpotent or solv-
able.
Let G < Diff(Cn, 0). The upper central series

Z0 = {id} ⊂ Z1(G) ⊂ · · · ⊂ Zn(G) ⊂ · · ·

of G is defined inductively where Zj+1(G)/Zj(G) is the center of G/Zj(G).
The group Zj(G) is called the j-th hypercenter of G. G is called nilpotent
if G = Zl(G) for some l. The smallest l for which G = Zl(G) is the nilpotency
class of G.
In the same way for any subalgebra L ⊂ χ̂(Cn, 0), we define Zj[L] the jth hy-
percenter of L inductively such that Zj+1(L)/Zj(L) is the center of L/Zj(L)
and we say that L is nilpotent of class l if l is the smallest integer such that
Zl(L) = L.
The lower central series

Z0(G) = G ⊃ Z1(G) ⊃ · · · ⊃ Zj(G) ⊃ · · ·

23



of G is also defined inductively like Zj+1(G) = [G, Zj(G)] where [G, Zj(G)] is
the commutator subgroup of G and Zj(G), i.e. the group generated from the
elements {f◦g◦f−1◦g−1|f ∈ G, g ∈ Zj(G)}. It is known that G is nilpotent
of class l if and only if Z l(G) = {id}.
Let G be a group generated by {g1, . . . , gi, . . .}. Define S0 = G and for all
j ∈ N define Sj+1 the set of commutators [g, h] = ghg−1h−1 with g ∈ S0 and
h ∈ Sj. It is known that if Sk is the identity element of G for some integer k
then G is a nilpotent group of height k.
The commutator series

G0 = G ⊃ G1 ⊃ · · · ⊃ Gj ⊃ · · ·

is defined inductively where Gj = [Gj−1,Gj−1] is the j-th commutator
subgroup. G is called solvable, if there exists a positive integer l such that
Gl = {Id}. It is obvious that every nilpotent group is solvable.
Denoting G1 C G the normal subgroup of the diffeomorphisms tangent to the
identity, it is easy to see that

G/G1 ∼ ΛG = {DG(0)|G ∈ G},

therefore G is solvable if and only if ΛG is solvable and G1 is solvable.
In addition, if G is solvable, and let {id} = Gl C Gl−1 C · · · C G1 C G the
resolution string, then using the group homomorphism Λ we obtain a new
resolution string

Gl C Gl−1 C · · · C G1 C G
↓Λ ↓Λ ... ↓Λ ↓Λ

Gl C Gl−1 C · · · C G1 C G

where Gj = Λ(Gj). Denote by height(G) = l the height of the resolution
string of G, then it is clear height(G) ≤ height(G). Note that in the case
where G < Gl(n,C) is a linear solvable group, it is known that height(G) is
limited by a function that only depends on n, ρ(n) ≤ 2n (Zassenhaus). In
fact,

Theorem 5.1 (Newman)

ρ(n) =


1 if n = 1
4 if n = 2
9 + τ((n− 2)/8) if n ∈ {6, 7, 17, 59, 60, 61, 62, 63, 64, 65}
10 + τ((n− 2)/8) in other case.
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where τ is a function over the positive rational numbers like

τ(q) =



5a(q) where 9a(q) ≤ q < 16 · 9a(q)−1

5a(q) + 1 where 16 · 9a(q)−1 ≤ q < 3 · 9a(q)
5a(q) + 2 where 3 · 9a(q) ≤ q < 4 · 9a(q)
5a(q) where 4 · 9a(q) ≤ q < 64 · 9a(q)−1

5a(q) where 64 · 9a(q) ≤ q < 9a(q)+1

where a(q) = [[log9 q]].

Let Gj = {G ∈ G1|where G is k-flat, k > j}. It is easy to see that

· · · C G3 C G2 C G1

is a normal series and Gj/Gj+1 are abelian groups.

If G1∩D̂iffk(Cn, 0) = {id} for some k ∈ N the following lemma show that G1 is
solvable, and provide a necessary condition in order to two diffeomorphisms
tangent to the identity commute.

Lemma 5.1 Let F ∈ D̂iffr+1(Cn, 0) and G ∈ D̂iffs+1(Cn, 0), then

F (G(X))−G(F (X))= ∇Fr+1(X)·Gs+1(X)−∇Gs+1(X)·Fr+1(X)+O(|X|r+s+2).

In particular, [F,G] ∈ D̂iffr+s+1(Cn, 0)

Proof: Let F (X) = X +
r+s∑
k=r

Fk+1(X) + O(|X|r+s+2) and G(X) = X +

r+s∑
k=s

Gj+1(X) +O(|X|r+s+2), then

F (G(X)) = X +
r+s∑
k=s

Gj+1(X) +O(|X|r+s+2)+

+
r+s∑
k=r

Fk+1

(
X +

r+s∑
k=s

Gj+1(X) +O(|X|r+s+2)
)

+O(|X|r+s+2)

= X +
r+s∑
k=s

Gj+1(X) +
r+s∑
k=r

(
Fk+1(X) +∇Fk+1(X) ·Gs+1(X)

+O(|X|k+s+2)
)

+O(|X|r+s+2)

= X +
r+s∑
k=s

Gj+1(X) +
r+s∑
k=r

Fk+1(X) +∇Fr+1(X) ·Gs+1(X) +O(|X|r+s+2)

(1)
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In the same way we have

G(F (X)) = X+
r+s∑
k=s

Gj+1(X)+
r+s∑
k=r

Fk+1(X)+∇Gs+1(X)·Fr+1(X)+O(|X|r+s+2).

(2)
The lemma follows subtracting the equations (1) and (2). 2

Corollary 5.1 Let G be a group of diffeomorphisms and suppose that there
exists l ∈ N such that G ∩Diff l(Cn, 0) = {id}. Then G is solvable if and only
if Gρ(n) ⊂ Diff1(Cn, 0), where ρ(n) is the Newman function.

This is a particular case of the Epstein & Thurston theorem. In fact, it is
clear that every finite generated group G = 〈G1, . . . , Gl〉 ⊂ Diff1(Cn, 0) is a
discrete subgroup of the formal Lie Group

G =
〈
f

[t1]
1 ◦ · · · ◦ f [tk]

k |tj ∈ R and fj ∈ {G1, . . . , Gl}
〉
.

In general the dimension of this Lie group is not finite. In the case that G is
finite dimensional we have

Theorem 5.2 (Epstein & Thurston) Let G be a finite dimensional Lie
group as above, then

1. If G is nilpotent, then height(G) ≤ n.

2. If G is solvable, then height(G) ≤ n+ 1.

Theorem 5.3 Let G be a solvable subgroup of D̂iff(Cn, 0), then Gρ(n)+1 is a
nilpotent group.

Proof: Observe that If G is a solvable group, then H = Gρ(n) ⊂ Diff1(Cn, 0) is
a solvable group. Let L be the algebra associate to the group H by the exp

function. For every integer i ≥ 0 denote VFi = χ̂(Cn,0)

χ̂i(Cn,0)
. Notice that for all

j > i there exists a natural projection VFj → VFi, therefore we can think of
χ̂(Cn, 0) as a projective limit lim

j→∞
VFj, moreover VFj has a natural structure

of finite dimensional complex algebraic linear algebra. Let [L]i be the projec-
tion of L in VFi, and [L]i the algebra of every linear combination . It follows

26



that [L]i is a connected solvable Lie algebra of the same height as L. Since [L]i
is isomorphic to a linear Lie algebra, we know from the Lie-Kolchi theorem
that they can be represented by upper triangular matrices, then [[L]i, [L]i]
is represented by nilpotent triangular matrices for every i ∈ N. It follows
that L1 = lim

j→∞
[L1]j is a nilpotent algebra and then H1 is a nilpotent group.2

Corollary 5.2 Let G a solvable subgroup of D̂iff1(Cn, 0), then G1 = [G,G] is
a nilpotent group.

From the proposition 2.1 is clear that if G ⊂ Diff1(Cn, 0) is solvable (nilpo-
tent) if and only if the algebra associate to G by the exp function has to be
solvable (nilpotent). In particular in dimension 2 we have

Proposition 5.1 Every nilpotent subalgebra L of χ̂(C2, 0) is metabelian.

Proof: Let R be the center of L. Since R is non trivial then R ⊗ K̂(C2) is
a vector space of dimension 1 or 2 over K̂(C2), where K̂(C2) is the fraction
field of O(C2).
In the case when the dimension is 2, there exist formal fields f and g linearly
independent over K̂(C2), thus every element h ∈ L, can be written as h =
uf + vg, and since f, g ∈ R follows f(u) = f(v) = g(u) = g(v) = 0, i.e. u and
v are constants, therefore L is abelian algebra.
If the dimension of the center is 1, let f be a non-trivial element of R, and
S = K̂(C2)f ∩ L, is clear that R ⊂ S is an abelian subalgebra of L. In the
case L = S we have nothing to proof. Otherwise, since S is an ideal of L, let
g be an element of L such that its image at L/S is in the center of L/S. In
the same way every element of L is of the form uf+vg where f(u) = f(v) = 0,
moreover since [uf + vg, f] ∈ S, i.e. g(v) = 0, follows that v is constant, and
then L is a metabelian algebra. 2

Corollary 5.3 Let G a subgroup of Diff(C2, 0), then

a) If G is solvable then G7 = {id}.

b) If G is nilpotent then G6 = {id}.

Observe that b) is weaker that the Ghys theorem
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Theorem 5.4 (Ghys) Let G be a nilpotent subgroup of D̂iff(C2, 0), then G
is a metabelian group.

The proposition 5.1 gives a characterization of abelian subgroup of Diff1(C2, 0).

Corollary 5.4 If G < Diff1(C2, 0) be a abelian group, then one of the fol-
lowing items are true

1. G <
〈
exp(NX ) ∈ Diff1(C2, 0)

∣∣∣∣N rational holomorphic function
such that X (N) = 0

〉
where

exp(X ) ∈ G.

2. G < 〈F [t]◦G[s]|t, s ∈ C〉, where F,G ∈ G and [F,G] = Id.

If F and G are two elements of an abelian group of diffeomorphisms tangent
to the identity then from the lemma 5.1 we have

∇Fr+1(X) ·Gs+1(X)−∇Gs+1(X) · Fr+1(X) ≡ 0. (3)

It is clear that in the particular case when the dimension is 1 the equation
(3) is equivalent to say r = s. In general, this is false in dimension > 1,
for example F (X) = exp(f)(X) ∈ Diff2(C2, 0) and G(X) = exp(g)(X) ∈
Diff3(C2, 0), where

f = (x2 + 3xy)
∂

∂x
+ (3xy + y2)

∂

∂y

and

g = (3x3 − 5x2y + xy2 + y3)
∂

∂x
+ (x3 + x2y − 5xy2 + 3y3)

∂

∂y
.

Since [f, g] = 0 it follows that F (X) and G(X) commute. In addition, F
and G are holomorphic diffeomorphisms because f and g are holomorphic. In
fact, we have

Proposition 5.2 Let F,G ∈ Diff1(Cn, 0) be commuting diffeomorphism and
f, g be formal vector fields such that F = exp(f) and G = exp(g). Suppose
that f = P ∂

∂x
+ Q ∂

∂y
and g = R ∂

∂x
+ S ∂

∂y
where P,Q,R, S are formal series.

Then the formal variety V := PS − RQ = 0 is invariant by the actions of f

and g.
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Proof: Since [f, g] = 0 then

P
∂R

∂x
+Q

∂R

∂y
= R

∂P

∂x
+ S

∂P

∂y
and P

∂S

∂x
+Q

∂S

∂y
= R

∂Q

∂x
+ S

∂Q

∂y
.

It follows that

f(V ) = P (S
∂P

∂x
+ P

∂S

∂x
−Q

∂R

∂x
−R

∂Q

∂x
) +Q(S

∂P

∂y
+ P

∂S

∂y
−Q

∂R

∂y
−R

∂Q

∂y
)

= (PS −RQ)(
∂P

∂x
+
∂Q

∂y
) = V (

∂P

∂x
+
∂Q

∂y
)

2

Definition 5.1 Let F ∈ Diffr+1(Cn, 0). F is called dicritic if F (X) = X +
Fr+1(X)+ · · ·, where Fr+1(X) = f(X)X and f is a homogeneous polynomial
of degree r.

We are going to prove a generalization of the dimension one classification of
abelian group for dicritic diffeomorphisms.

Proposition 5.3 Let F ∈ D̂iffr+1(Cn, 0) and G ∈ D̂iffs+1(Cn, 0). Suppose
that F is a dicritic diffeomorphism, and F (G(X)) = G(F (X)), then r = s
and G is also a dicritic diffeomorphism.

Proof: For the lemma 5.1 we have

∇Fr+1(X)Gs+1(X)−∇Gs+1(X)Fr+1(X) =

= (f(X)I + (xi
∂f

∂xj
)) ·Gs+1(X)−∇Gs+1(X) · f(X)X

= (f(X)I + (xi
∂f

∂xj
)) ·Gs+1(X)− (s+ 1)f(X)Gs+1(X)

= (−sf(X)I + (xi
∂f

∂xj
)) ·Gs+1(X)

(4)
From the identity det(aI + AB) = det(aI +BA)
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det(− sf(X)I + (xi
∂f

∂xj
))

=

∣∣∣∣∣∣∣∣∣∣

−sf(X) + x1
∂f
∂x1

x2
∂f
∂x2

· · · xn
∂f
∂xn

x1
∂f
∂x1

−sf(X) + x2
∂f
∂x2

· · · xn
∂f
∂xn

...
...

. . .
...

x1
∂f
∂x1

x2
∂f
∂x2

· · · −sf(X) + xn
∂f
∂xn

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
−sf(X) 0 · · · sf(X)

0 −sf(X) · · · sf(X)
...

...
. . .

...
x1

∂f
∂x1

x2
∂f
∂x2

· · · −sf(X) + xn
∂f
∂xn

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
−sf(X) 0 · · · 0

0 −sf(X) · · · 0
...

...
. . .

...
x1

∂f
∂x1

x2
∂f
∂x2

· · · (r − s)f(X)

∣∣∣∣∣∣∣∣∣∣
= (−s)n−1(r − s)(f(X))n

So multiplying by the adjoint matrix of−sf(X)I+(xi
∂f
∂xj

) we obtain (−s)n−1(r−
s)(f(X))nGs+1 = 0 and then r = s. Denoting Gr+1 = (g1, . . . , gn)

t, it is easy
to see, multiplying the i row in (4) by xn and subtracting the last row mul-
tiplied by xi, that −sf(X)xngi + sf(X)xign = 0. Therefore xn|gn. Defining
g = gn

xn
, we conclude gi = xig for all i. 2

Theorem 5.5 Let G < Diff1(C2, 0) be abelian group, and F ∈ G dicritic
diffeomorphism. Suppose that exp(f)(x, y) = F (x, y) where

f = (f(x, y)x+ pk+2(x, y) + · · ·) ∂
∂x

+ (f(x, y)y + qk+2(x, y) + · · ·) ∂
∂y
,

f(x, y) is a homogeneous polynomial of degree k and g.c.d(f, xqk+2(x, y) −
ypk+2(x, y)) = 1, then

G < 〈exp(tf)(x, y)|t ∈ C〉.
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Proof: Let G ∈ G, for the proposition 5.3, G is a k+1-flat dicritic diffeomor-
phism. Let g such that exp(g)(x, y) = G, then

g = g(X)~R + (sk+2 + · · ·) ∂
∂x

+ (tk+2 + · · ·) ∂
∂y
,

where ~R = x ∂
∂x

+ y ∂
∂y

and X = (x, y). Since [f, g] = 0, each j-jet has to be

zero. The 2k + 2-jet is [f ~R, sk+2
∂
∂x

+ tk+2
∂
∂y

] + [pk+2
∂
∂x

+ qk+2
∂
∂y
, g ~R] = 0, by

a straightforward calculation we have

[f ~R, sk+2
∂

∂x
+ tk+2

∂

∂y
] = (k+ 1)f(sk+2

∂

∂x
+ tk+2

∂

∂y
)− (sk+2

∂f

∂x
+ tk+2

∂f

∂y
)~R,

therefore

(k + 1)(fsk+2 − gpk+2) = x(sk+2
∂f

∂x
+ tk+2

∂f

∂y
− pk+2

∂g

∂x
− qk+2

∂g

∂y
)

(k + 1)(ftk+2 − gqk+2) = y(sk+2
∂f

∂x
+ tk+2

∂f

∂y
− pk+2

∂g

∂x
− qk+2

∂g

∂y
)

In particular,
fsk+2 − gpk+2

x
=
ftk+2 − gqk+2

y
,

or equivalently, f(xsk+2 − ytk+2) = g(xqk+2 − ypk+2), but gcd(f, xqk+2 −
ypk+2) = 1, it follows that f |g, and since f and g have the same degree then
g = rf where r ∈ C. Substituting g we obtain the system of equations(

(k + 1)f − x∂f
∂x

−x∂f
∂y

−y ∂f
∂x

(k + 1)f − y ∂f
∂y

)(
sk+2 − rpk+2

tk+2 − rqk+2

)
=
(

0
0

)

multiply by the adjoint matrix (k+1)f 2

(
sk+2 − rpk+2

tk+2 − rqk+2

)
=
(

0
0

)
then sk+2 =

rpk+2 and tk+2 = rqk+2. Notice that this last calculation is true in arbi-
trary dimension. Finally, suppose that sk+j = rpk+j and tk+j = rqk+j for

j = 2, . . . , i. The (2k+ i+1)-jet of the bracket is [f ~R, sk+i+1
∂
∂x

+ tk+i+1
∂
∂y

] +

[pk+i+1
∂
∂x

+ qk+i+1
∂
∂y
, g ~R] = 0 because the symmetrical terms of the summa-

tion
i∑

j=2

[pk+j
∂

∂x
+ qk+j

∂

∂y
, sk+i+2−j

∂

∂x
+ tk+i+2−j

∂

∂y
]
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is zero. Then the equalities sk+i+1 = rpk+i+1 and tk+i+1 = rqk+i+1 follows in
the same way to the case k + 2. 2

Observation: The condition over F is generic and means that (0, 0) ∈ C2 is an
isolated singularity of f0 = (f(x, y)x+pk+2(x, y))

∂
∂x

+(f(x, y)y+qk+2(x, y))
∂
∂y

.
With a similar condition the theorem is true in arbitrary dimension.

6 Milnor number of a diffeomorphism tan-

gent to the identity

Let F : (Cn, 0)−→(Cn, 0) be a germ of holomorphic diffeomorphism, i.e., F
is given by a convergent power series in a neighborhood of 0 as

F (X) = X + Pk+1(X) + Pk+2(X) + · · ·
where Pm is a homogeneous polynomial vector field of degree m ≥ k+1 ≥ 2.
We say that G is analytic (resp. topological, Ci) conjugate to F if there exists
a analytic diffeomorphism (resp. homeomorphism, Ci-homeomorphism) φ
such that G = φ−1◦F◦φ.
Let φ : (Cn, 0)−→(Cn, 0) be a C1 change of coordinates, i.e, φ a germ of
homeomorphism C1 fixing 0, such that φ(X) = AX + R(X) where A ∈
Gl(n,C) and |R(X)|

|X| → 0 when X → 0, then φ−1(X) = A−1X + S(X) where
|S(X)|
|X| → 0 when X → 0. Conjugating F by φ we have

φ−1◦F◦φ = A−1(F◦φ) + S(F◦φ)

= A−1(F◦φ) + S(φ+ Pk+1(φ) + · · ·)
= A−1(φ) + A−1Pk+1(φ) + o(|X|k+1) + S(φ)

+
(∫ 1

0
∇S(φ+ t(Pk+1(φ) + · · ·))dt

)
· (Pk+1(φ) + · · ·)

= (A−1 + S)(φ(X)) + A−1Pk+1(AX +R(X)) + o(|X|k+1)

= X + A−1Pk+1(AX) + o(|X|k+1)

.

Notice that if [X0] ∈ CP (n) is a fixed point of Pk+1 : CP (n) → CP (n),
then [A−1X0] is a fixed point of A−1Pk+1◦A : CP (n) → CP (n). In addi-
tion, the class of similarity of ∇Pk+1[X0] is a C1 invariant, in particular, the
eigenvalues of ∇Pk+1[X0] are invariant.
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It is clear that the constant k is a C1-invariant. In fact, we are going to prove
that k is a topological invariant when Pk+1(X) does not have zeros different
from X = 0.
Suppose that there exists ε > 0 such that F (X) 6= X for all X ∈ Bε \ {0}.
For 0 < r ≤ ε define

fr : S2n−1 −→ S2n−1

X −→ F (rX)−rX
||F (rX)−rX||

where S2n−1 = {X ∈ Cn| ||X|| = 1}. For 0 < r1 < r2 ≤ ε the functions fr1
and fr2 are homotopic, in particular we have that degree fr1 = degree fr2 .
In fact, there exists a homotopy

H : (0, ε)× S2n−1 −→ S2n−1

(t,X) −→ F (tX)−tX
||F (tX)−tX||

such that H(r1, X) = fr1(X) and H(r2, X) = fr2(X).

Definition 6.1 Let F ∈ Diff1(Cn, 0). Define the Milnor number of F , µ(F )
as the topological degree of fr where r is sufficient small such that 0 is a
isolated fixed point of F , and ∞ otherwise.

Observation: If F (X) = X+Pk+1(X)+· · · where Pk+1(X) = 0 only if X = 0,
then µ(F ) = (k + 1)n. In fact, in the homotopy above we have

lim
t→0

H(t,X) = lim
t→0

F (tX)− tX

||F (tX)− tX||
= lim

t→0

Pk+1(tX) + pk+2(X) + · · ·
||Pk+1(tX) + pk+2(X) + · · · ||

= lim
t→0

Pk+1(X) + t(pk+2(X) + · · ·)
||Pk+1(X) + t(pk+2(X) + · · ·)||

=
Pk+1(X)

||Pk+1(X)||

.

Since Pk+1(X) 6= 0 for X 6= 0 it is possible to define F0 like this limit and f0

is homotopic to fr. Moreover, it is easy to proof that degree f0 = (k + 1)n.
In general, if we suppose that R(X) = Pk+1(X) + · · · + Pm(X) has 0 as an
isolated zero, then

H : [0, 1]× S2n−1 −→ S2n−1

(t,X) −→ R(rX)+t(Pm+1(rX)+Pm+2(rX)+···)
||R(rX)+t(Pm+1(rX)+Pm+2(rX)+···)||
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is a homotopy between H(0, X) = R(rX)
||R(rX)|| and H(1, X) = fr where r is

sufficient small. To estimate r, we define the function ρ : S2n−1−→(0, ε]
where

ρ(Y ) = max

{
t ∈ (0, ε]

∣∣∣∣∣ ||Pm+1(tY ) + · · · ||
||Pk+1(tY ) + · · ·+ Pm(tY )||

≤ 1

2
∀t ∈ (0, ε]

}
.

This function is well defined, in fact, we know that exists l with k+1 ≤ l ≤ m
such that Pl(Y ) 6= 0 and Ps(Y ) = 0 for all s < l, because 0 is an isolated
zero. Then

lim
t→0

||Pm+1(tY ) + · · · ||
||Pk+1(tY ) + · · ·+ Pm(tY )||

= lim
t→0

tm+1−l||Pm+1(Y ) + · · · ||
||Pl(Y ) + · · ·+ tm−lPm(tY )||

= 0.

By the continuity in the variable t, we conclude that ρ is well defined and
0 < ρ(Y ) ≤ ε for all Y ∈ S2n−1, moreover as ρ is upper semi-continuous, we
define r = minY ∈S2n−1 ρ(Y ) > 0.
Now, it is easy to prove that H is a homotopy because

||R(rX) + t(Pm+1(rX) + Pm+2(rX) + · · ·)|| ≥ ||R(rX)|| − t||Pm+1(rX) + · · · ||

≥
(
1− t

2

)
||R(rX)|| > 0

For example, in the case F (x, y) =
(
x+ f(x, y)pl(x, y) + pk+2(x, y)
y + f(x, y)ql(x, y) + qk+2(x, y)

)
where

(0, 0) is an isolated fixed point and g.c.d.(pl, ql) = 1, calculation the local
degree of F in (0, 0) is equivalent to calculating the multiplicity of the solution
(0, 0) in the system

f(x, y)pl(x, y) + pk+2(x, y) = 0

f(x, y)ql(x, y) + qk+2(x, y) = 0
.

Multiplying the first equation by ql and the second by pl and subtracting we
obtain

pk+2(x, y)ql(x, y)− pl(x, y)qk+2(x, y) = 0,

this is a homogeneous polynomial of degree (l + k + 2), therefore the solu-
tions of this equation are of the form x = λjy where j = 1, . . . , l + k + 2.
Substituting in the first equation we have

xk+1(f(1, λj)pl(1, λj)− pk+2(1, λj)x) = 0.
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Using the Bezout theorem, the number of solutions of the initial system is
(k + 2)2, it follows that the multiplicity of (0, 0) is

(k + 2)2 − (k + l + 2) + #{λj|f(1, λj) = 0}.

Theorem 6.1 (Camacho, Lins, Sad) The Milnor number is topologically
invariant, i.e. if F,G ∈ Diff1(Cn, 0) are topologically conjugate then µ(F ) =
µ(G).

Proof: It follows from the proof of the theorem A in [4]. 2

7 Convergent Orbits

Definition 7.1 Let F ∈ Diffk+1(Cn, 0), where F (X) = X + Fk+1(X) + · · ·.
We say that [V ] ∈ CP (n−1) is a characteristic direction of F , if there exists
λ ∈ C such that

Fk+1(V ) = λV

Moreover the direction [V ] is called non degenerate if λ 6= 0.

Definition 7.2 Let F ∈ Diff2(Cn, 0). A parabolic curve for F at the origin
is an injective map ϕ : D1 → Cn, where D1 = {x| |x− 1| ≤ 1}, holomorphic
in int(D1), such that ϕ(0) = 0, ϕ(D1) is invariant under F and (F |D1)

n → 0
when n→∞

Theorem 7.1 (Hakim [13]) Let F ∈ Diffk+1(Cn, 0), then for every non-
degenerate characteristic direction [V ] there are a parabolic curves tangent to
[V ] at the origin.

Theorem 7.2 (Abate [1]) Let F ∈ Diffk+1(C2, 0) such that the origin is a
isolated fixed point. Then there exist k parabolic curves for F at the origin.

Denote r(v) = qk+1(1, v)− vpk+1(1, v) and p(v) = pk+1(1, v).

Lemma 7.1 Let F ∈ Diffk+1(C2, 0) and suppose that (xn, yn) = F (xn−1, yn−1)
is a sequence converging to 0 such that yn

xn
→ v when n→∞. Then

lim
n→∞

1

nxkn
= −kp(v)

35



Proof: After a blow up at 0 ∈ C2 in the chart y = xv, we obtain the diffeo-
morphism(

x1

v1

)
= F̃ (x, v) =

(
x+ xk+1p(v) + xk+2pk+2(1, v) + · · ·

v + xkr(v) + · · ·

)

Rewriting the first equation

1

xk1
=

1

(x+ xk+1p(v) + xk+2pk+2(1, v) + · · ·)k

=
1

xk
(1 + xkp(v) + xk+1pk+2(1, v) + · · ·)−k

=
1

xk
− kp(v) + o(x).

Let’s define (xj, vj) = F (xj−1, vj−1). From the equation above we get the
telescopic sum

1

xkn
− 1

xk
=

n∑
j=1

1

xkj
− 1

xkj−1

= −
n∑
j=1

(kp(vj−1) + o(xj−1))

Divide by n and make n tends to ∞, we deduce

lim
n→∞

1

nxkn
= −k lim

n→∞

1

n

n∑
j=1

kP (vj−1) + lim
n→∞

n∑
j=1

1

n
o(xj−1) = −kp(v). 2

Proposition 7.1 Let (x0, y0) ∈ U open neighborhood of 0 such that the
sequence (xj, yj) = F (xj−1, yj−1) converge to 0, and yj

xj
converge to v ∈

CP (1) = C, then r(v) = 0.

Proof: From the lemma 7.1. we have limn→∞
1
nxk

n
= −kpk+1(1, v) and the

same way limn→∞
1
nyk

n
= −kqk+1(

1
v
, 1). Dividing these relations we get

1

vk
= lim

n→∞

xkn
ykn

=
limn→∞

1
nyk

n

limn→∞
1
nxk

n

=
qk+1(

1
v
, 1)

pk+1(1, v)
,

therefore vk+1qk+1(
1
v
, 1)− vpk+1(1, v) = r(v) = 0. 2
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Theorem 7.3 Let F : (C2, 0) → (C2, 0) be a dicritic diffeomorphism fixing
zero, i.e. F can be represented by a convergent series

F (x, y) =
(
x+ xpk(x, y) + pk+2(x, y) + · · ·
y + ypk(x, y) + qk+2(x, y) + · · ·

)
,

and F̃ = Π∗F : (C̃2, D) → (C̃2, D) the continuous extension of the diffeo-
morphism after making the blow-up in (0, 0). Then there exist open sets
U+, U− ⊂ C̃2 such that

1. U+ ∪ U− is a neighborhood of D \ {(1 : v) ∈ D|pk(1, v) = 0}.

2. For all P ∈ U+, the sequence {F̃ n(P )}n∈N converge and lim
n→∞

F̃ n(P ) ∈
D.

3. For all P ∈ U−, the sequence {F̃−n(P )}n∈N converge and lim
n→∞

F̃−n(P ) ∈
D.

Proof: Making a blow up at (0, 0), and regarding the diffeomorphism in the
chart (x, v), v = y

x
we obtain(

x1

v1

)
= F̃ (x, v) =

(
x+ xk+1p(v) +

∑∞
j=2 ak+j(v)x

k+j

v +
∑∞
j=1 bk+j(v)x

k+j

)
,

where aj and bj are polynomial of degree less than j+2. Let q be a arbitrary
point in D \ {(1 : v) ∈ D|p(v) = 0}. We can suppose making a linear
change of coordinates that q = (0, 0) ∈ C̃2. Since F̃ is holomorphic in some
neighborhood of (0, 0) there exist r1, r2 > 0 and constants C1, C2 > 0 such
that

|| sup
|v|≤r1

aj(v)|| ≤ C1r
j
2, and || sup

|v|≤r1
bj(v)|| ≤ C2r

j
2 for all j.

Now making a ramificated change of coordinates w = 1
xk , it follows that(

w1

v1

)
= F (w, v) =

w − kp(v) +
∑∞
j=1 cj(v)

1

w
j
k

v +
∑∞
j=1 bk+j(v)

1

w
1+

j
k

 ,
is holomorphic in {(w, v) ∈ Ck ×C| |v| < r1, |w| > rk2}, where Ck is a k-fold
covering of C∗. In particular there exist C3, C4 > 0 such that

|| sup
|v|≤r1

cj(v)|| ≤ C3r
j
2 for all j and

∣∣∣∣∣∣
∞∑
j=1

bk+j(v)
1

w1+ j
k

∣∣∣∣∣∣ < C4

|w|1+ 1
k

.
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Choose r1 > r > 0 such that
∣∣∣p(v)
p(0)

− 1
∣∣∣ < 1

4
for all |v| < r, and

R > max

rk2
(

4C3

k|p(0)|
+ 1

)k
,
(2C4)

k

rk

(
1 +

4C(k)

k|p(0)|

)k
, 1

 ,
where C(k) =

∫ ∞

0

1

(1 + x2)
k+1
2k

dx < k + 1. Let

V +
q (a) =

{
(w, v) ∈ Ck × C

∣∣∣ |v| < a,

∣∣∣∣∣arg

(
− w

p(0)
− 2R

|p(0)|

)∣∣∣∣∣ < 2π

3

}
,

where arg is defined from C∗
k to (−π, π]. It is easy to prove that V +

q (r) ⊂
{(w, v) ∈ Ck × C| |v| < r, |w| > R}.

Claim: For all p = (w0, v0) ∈ V +
q ( r

2
) we have

1. F
n
(p) = (wn, vn) ∈ V +

q (r) for all n ∈ N.

2. The sequence {vn}n∈N converge.

3. |wn| → ∞ when n→ +∞.

Proof of the claim: For a arbitrary point (w, v) in V +
q (r) we have

|w1 − (w − kp(0))| ≤

∣∣∣∣∣∣k(p(0)− p(v)) +
∞∑
j=1

cj(v)
1

w
j
k

∣∣∣∣∣∣
≤ k|p(0)− p(v)|+

∞∑
j=1

C3
rj2

|w| j
k

< k
|p(0)|

4
+ C3

r2

|w| 1k − r2

< k
|p(0)|

4
+ C3

r2

r2
(

4C3

k|p(0)| + 1
)
− r2

= k
|p(0)|

2
.

Let p = (w0, v0) ∈ V +
q ( r

2
) and suppose that (wi, vi) ∈ V +

q (r) for i = 0, . . . , j − 1.
Then

|wj−(w0−jkp(0))| =
∣∣∣ j∑
i=1

wi−(wi−1−kp(0))
∣∣∣ ≤ j∑

i=1

|wi−(wi−1−kp(0))| < jk
|p(0)|

2
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therefore wj = w0 − jkp(0)(1 + δj) where |δj| < 1
2
, and

− wj
p(0)

− 2R

|p(0)|
= − w0

p(0)
− 2R

|p(0)|
+ jk(1 + δj),

but since | arg(1 + δj)| < π
3

it follows that | arg(− wj

p(0)
− 2R

|p(0)|)| <
2π
3

. Now

notice that |vi| < |vi−1|+ C4

|wi−1|1+
1
k

for all i = 1, . . . , j, therefore

|vj| < |v0|+
j∑
i=1

C4

|wi−1|1+ 1
k

,

but
j∑
i=1

1

|wi−1|1+ 1
k

<
∞∑

i=−∞

1

(R2 + ( ik|p(0)|
2

)2)
k+1
2k

<
1

R1+ 1
k

+ 2
∫ ∞

0

1

(R2 + (k|p(0)|
2

)2x2)
k+1
2k

dx

<
1

R
1
k

+
4

k|p(0)|R 1
k

∫ ∞

0

1

(1 + x2)
k+1
2k

dx =
1

R
1
k

(
1 +

4C(k)

k|p(0)|

)

<
r

2C4

,

(5)
it follows that |vj| < r, and therefore (wj, vj) ∈ V +

q (r). Now we have trivially
that |wj| = |w0−jkp(0)(1+δj)| → ∞ when n→∞ and {vj}j∈N is a Cauchy

sequence because
∑∞
i=0

C4

|wi|1+
1
k

is a Cauchy series.

In the same way we can obtain the open set V −
q changing in the proof

the diffeomorphism germ F by F−1. Finally we conclude the proof mak-
ing U+ =

⋃
V +
q and U− =

⋃
V −
q where q ∈ D \ {(1 : v) ∈ D|pk(1, v) = 0}. 2

Theorem 7.4 Let F ∈ Diffk+1(C2, 0), where F (x, y) =
(
x+ pk+1(x, y) + · · ·
y + qk+1(x, y) + · · ·

)
and r(v) = vpk+1(1, v) − qk+1(1, v) 6≡ 0. Suppose that v0 ∈ C satisfies

r(v0) = 0 and <( r
′(v0)
p(v0)

) > 0. Then there exist open sets U+ and U− such

that (0, 0) ∈ ∂U± and for each point (a+, b+) ∈ U+ and (a−, b−) ∈ U− the
sequences (a±n , b

±
n ) = F±n((a±, b±)) converge and

lim
n→∞

F±n(a±, b±) = 0 and lim
n→∞

b+n
a+
n

= lim
n→∞

b−n
a−n

= v0.
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Proof: For a linear change of coordinates we can suppose that v0 = 0. Let
r(v) = vs(v), α = s(0), β = p(0) and F̃ : (C̃2, D) → (C̃2, D) the continuous
extension of the diffeomorphism after making the blow-up Π at (0, 0), i.e. in
the chart (x, v) where y = vx

(x1, v1) = F̃ (x, v) =
(
x+ xk+1p(v) + xk+2(· · ·)
v + xkr(v) + xk+1(· · ·)

)
.

Since F̃ |D = id|D we can forget the dynamic in D = {x = 0} and make
a ramificate change of coordinates w = 1

xk . Then F is representing in the
(w, v) coordinates system as

(w1, v1) = F (x, v) =

(
w − kp(v) + o( 1

w1/k )

v + s(v)
w
v + o( 1

w1+1/k )

)
.

In particular, there exists a neighborhood A = {(w, v) ∈ C∗
k × C| |w| >

R1, |v| < r1} of (∞, 0) and constants C1, C2 > 0 such that

|w1 − (w − kp(v))| < C1
1

|w|1/k
and

∣∣∣∣∣v1 − v
(
1 +

s(v)

w

)∣∣∣∣∣ < C2
1

|w|1+1/k
.

Let denote θ = π
2
− | arg(α

β
)| > 0. Choose 0 < r < r1 such that

∣∣∣∣∣p(v)β − 1

∣∣∣∣∣ < 1

2
sin

θ

2
,

∣∣∣∣∣arg
s(v)

α

∣∣∣∣∣ < θ

2

and R > max

{
R1 + 1,

(
2C1

|β|k sin θ
2

)k
, (2C2)k

rk

(
1 + 2C(k)

k(1−sin θ
2
)|β|

)k}
. Let define

V +(a) = {(w, v) ∈ A| |v| < a, <(
w

α
e±

θ
2
i) < −R}.

See that for all (w, v) ∈ V +(r) we have <( w
s(v)

) < −R, i.e. s(v)
w

is in the disc

of center − 1
R

and radius 1
R
, it follows that∣∣∣∣∣1 +

s(v)

w

∣∣∣∣∣ < 1.
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In addition

|w1 − (w − kβ)| ≤ |k(β − p(v))|+ C1
1

|w|1/k

≤ k|β|
2

sin
θ

2
+
k|β|
2

sin
θ

2

= k|β| sin θ
2
.

Let p = (w0, v0) ∈ V +( r
2
) and suppose that (wi, vi) ∈ V +(r) for i = 0, . . . , j − 1.

Then

|wj − (w0 − jkβ)| ≤
j∑
i=1

|wi − (wi−1 − kβ)| < jk|β| sin θ
2
,

therefore wj = w0 − jkβ(1 + δj) where |δj| < sin θ
2
. Now since wj

α
= w0

α
−

jk β
α
(1 + δj), and∣∣∣∣∣arg(

β

α
(1 + δj))

∣∣∣∣∣ ≤
∣∣∣∣∣arg

β

α

∣∣∣∣∣+ | arg(1 + δj)| ≤
π

2
− θ +

θ

2
=
π

2
− θ

2
,

it follows that <(β
α
(1 + δj)e

± θ
2
i) ≥ 0 and therefore <(wj

α
e±

θ
2
i) < −R.

In order to bound vj, see that

|vi| <
∣∣∣∣∣
(

1 +
s(vi−1)

wi−1

)
vi−1

∣∣∣∣∣+ C2

|wi−1|1+
1
k

≤ |vi−1|+
C2

|wi−1|1+
1
k

for all i = 1, . . . , j, using a similar calculation as the inequality in (5) we
have

|vj| < |v0|+
j∑
i=1

C2

|wi−1|1+ 1
k

< r.

It follows that (wj, vj) ∈ V +(r), |wj| = |w0 − jkp(0)(1 + δj)| → ∞ when
n → ∞ and {vj}j∈N is a Cauchy sequence because

∑∞
i=0

C2

|wi|1+
1
k

is a Cauchy

series. Moreover from the proposition 7.1 we know that {vj}j∈N converge to
0. 2

41



8 Normal forms

Let F̃ , G̃ ∈ Diffk+1(C2, 0) such that their (k + 1)-jet are equal and suppose

that they are formally conjugate. Let F (x, v) =
(
x+ xk+1p(v) + · · ·
v + xkr(v) + · · ·

)
and

G(x, v) =
(
x+ xk+1p(v) + · · ·
v + xkr(v) + · · ·

)
be the diffeomorphisms obtained after the

blow-up at 0 where r(v) and p(v) are polynomials of degree (k + 2) and
(k + 1) respectively. Let H be a formal diffeomorphism that conjugates F

and G. Notice that H(x, v) =
(
x+

∑∞
l=1 x

l+1h1,l(v)
v +

∑∞
l=1 x

lh2,l(v)

)
where h1,l and h2,l are

polynomial of degree l + 1 and l + 2 respectively, in particular h1,l and h2,l

are holomorphic functions in C. The following definition is borrowed from
[26].

Definition 8.1 A formal Taylor series in x is called semiformal in U if its
coefficients holomorphically depend on v in the same domain U . A formal
change of coordinates is called semiformal in U if its components are semi-
formal series in U .

It is clear that if H is a semiformal change of coordinates in C, then F
and G are semiformally conjugates in C. We are interested in finding some
semiformal invariant, for that we need the following lemma.

Lemma 8.1 Let F and G as above. Suppose that G−F =
(
xk+l+1φ1(v) + · · ·
xk+lφ2(v) + · · ·

)
and that H(x, v) =

(
x+ xl+1h1(v) + · · ·
v + xlh2(v) + · · ·

)
conjugates F and G, i.e. G◦H =

H◦F . Then

r(v)
(
h1(v)
h2(v)

)′
−
(

(k − l)p(v) p′(v)
kr(v) r′(v)− lp(v)

)(
h1(v)
h2(v)

)
=
(
φ1(v)
φ2(v)

)
. (6)
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Proof: For the lemma 5.1 we have

0 = G◦H −H◦F = G◦H −H◦(G + (F −G))

= G◦H −H◦G−∇H(G) · (F −G) +

(
x2k+2l+2(· · ·)
x2k+2l(· · ·)

)

=
(

(k + 1)xkp(v) xk+1p′(v)
kxk−1r(v) xkr′(v)

)(
xl+1h1(v)
xlh2(v)

)
−
(

(l + 1)xlh1(v) xl+1h′1(v)
lxl−1h2(v) xlh′2(v)

)(
xk+1p(v)
xkr(v)

)
+

(
xk+l+1φ1(v)
xk+lφ2(v)

)
+

(
xk+l+2(· · ·)
xk+l+1(· · ·)

)

=
(

xk+l+1((k − l)p(v)h1(v) + p′(v)h2(v)− r(v)h′1(v) + φ1(v))
xk+l(kr(v)h1(v) + (r′(v)− lp(v))h2(v)− r(v)h′2(v) + φ2(v))

)
+

(
xk+l+2(· · ·)
xk+l+1(· · ·)

)

In particular, we obtain the linear differential equation (6). 2

Proposition 8.1 Let F and G as in the lemma 8.1. Suppose that r(v) 6≡ 0
and U is a simply connected open set of C \ {r(v) = 0}. Then (6) has
holomorphic solution in U .

Proof: Substituting gi = e
∫

lp(v)
r(v)

dvhi and ψi = e
∫

lp(v)
r(v)

dvφi, i = 1, 2, in (6), we
obtain the system of equations

r(v)g′1(v) = kp(v)g1(v) + p′(v)g2(v) + ψ1(v) (7)

r(v)g′2(v) = kr(v)g1(v) + r′(v)g2(v) + ψ2(v) (8)

Finding g1(v) in (8) and substituting in (7) we obtain

r

(
g′2 −

r′

r
g2 −

ψ2

r

)′
= kp

(
g′2 −

r′

r
g2 −

ψ2

r

)
+ kp′g2 + kψ1.

This equation is equivalent to(
g′2 −

r′ + kp

r
g2

)′
=

(
ψ2

r

)′
+ k

rψ1 − pψ2

r2
.

Now integrating and multiplying by 1
r
e−k

∫
p
r
dv it follows that(

1

r
e−k

∫
p
r
dvg2

)′
=
ψ2

r2
e−k

∫
p
r
dv +

k

r
e−k

∫
p
r
dv
∫ rψ1 − pψ2

r2
dv.
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Integrating once more, and substituting g1, ψ1 and ψ2 we conclude that

h2 = r

[
e(k−l)

∫
p
r
dv
∫ (

φ2

r2
e−(k−l)

∫
p
r
dv +

k

r
e−k

∫
p
r
dv
∫ rφ1 − pφ2

r2
el
∫

p
r
dvdv

)
dv

]

and

h1 =e−l
∫

p
r
dv
∫ rφ1 − pφ2

r2
el
∫

p
r
dvdv+

+ p

[
e(k−l)

∫
p
r
dv
∫ (

φ2

r2
e−(k−l)

∫
p
r
dv +

k

r
e−k

∫
p
r
dv
∫ rφ1 − pφ2

r2
el
∫

p
r
dvdv

)
dv

]
.

Observe that (h1, h2) is a holomorphic solution of (6) where the integrals
are calculated from a fixed point p0 ∈ U and independent of the path taken
because U is simply connected. 2

Proposition 8.2 Let v0 be a root of r(v). Suppose that p(v0)
r′(v0)

/∈ Q. Then

there exists a holomorphic solution (h1, h2) of (6) in some neighborhood of
v0 if and only if one of the following condition is true

1. l 6= k.

2. l = k and p′(v0)φ2(v0) = (r′(v0)− kp(v0))φ1(v0).

Moreover, that neighborhood is independent of the integer l.

Proof: Let r(v) = (v− v0)s(v) and a = p(v0)
s(v0)

/∈ Q, we are interested in finding
a solution of

(v − v0)X
′ −

 (k − l)p(v)
s(v)

p′(v)
s(v)

k(v − v0)
r′(v)−lp(v)

s(v)

X =
1

s(v)

(
φ1(v)
φ2(v)

)
(9)

in some neighborhood of v0.

Since the difference between the eigenvalues of

 (k − l)p(v0)
s(v0)

p′(v0)
s(v0)

0 r′(v0)−lp(v0)
s(v0)


is not a integer, it is known (See [27]) that there exists a holomorphic change

44



of coordinates Z = P (v)X (P (v0) = Id) in some neighborhood V = B(v0, R)
of v0 such that the system of differential equations (9) is equivalent to

(v − v0)Z
′ −

(
(k − l)a ap

′(v0)
p(v0)

0 1− la

)
Z =

(
ψ1(v)
ψ2(v)

)
(10)

In addition, R only depend on the radius of convergence of the series that
defines locally each function in (9) around v0, and then independent of l.

Thus, we know that
(
ψ1(v)
ψ2(v)

)
=

∞∑
j=0

Bj(v− v0)
j for all |v− v0| < R, and then

if we write Z =
∑∞
j=0Aj(v − v0)

j, we obtain for each j a linear equation(
j − (k − l)a −ap

′(v0)
p(v0)

0 j − (1− la)

)
Aj = Bj.

Notice that, in the case l 6= k or j 6= 0 this equation has solution because
a /∈ Q, and when l = k and j = 0 we obtain the linear equation 0 −p′(v0)

r′(v0)

0 −1 + k p
′(v0)
r′(v0)

Aj =
1

r′(v0)

(
φ1(v0)
φ2(v0)

)
,

which has solution if and only if p′(v0)φ2(v0) = (r′(v0)−kp(v0))φ1(v0). More-
over

lim
j→∞

||Aj||
1
j ≤ lim

j→∞

∥∥∥∥∥∥
(
j − (k − l)a −ap

′(v0)
p(v0)

0 j − 1− la

)−1
∥∥∥∥∥∥

1
j

· ||Bj||
1
j =

1

R
,

Therefore that the solution is holomorphic in B(v0, R). 2

Theorem 8.1 Let F (x, v) =
(
x+ xk+1p(v) + · · ·
v + xkr(v) + · · ·

)
and v0 be a root of r(v).

Suppose that 0 6= p(v0)
r′(v0)

/∈ Q. Then there exists λv0 ∈ C such that F is
semiformally conjugate with

Fλv0
=
(
x+ xk+1p(v) + λv0x

2k+1

v + xkr(v)

)
in some neighborhood of v0.
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Proof: We will go to construct the semiformal conjugation H by successive
approximations. Define by induction the sequences Fl and Hl from the initial
condition F0 = F and H0 = id.
Now for l ≥ 1 and l 6= k, from the proposition 8.1 we know that the system
of differential equations (6) in the lemma 8.1, where G = Fl−1 and

Fl−1 − Fλv0
=
(
xk+l+1φ1,l(v) + · · ·
xk+lφ2,l(v) + · · ·

)
,

has holomorphic solution (h1,l, h2,l) in some neighborhood U that is indepen-
dent of l.
In the case l = k see that

Fk−1 − Fλv0
=
(
x2k+1(φ1,k(v)− λv0) + · · ·

x2kφ2,k(v) + · · ·

)
,

then if we define

λv0 = φ1(v0)−
p′(v0)φ2(v0)

r′(v0)− kp(v0)
,

it follows for the proposition 8.1, that there exists holomorphic solution
(h1,k, h2,k) of (6).
In any case we could define

Hl(x, v) =
(
x+ xl+1h1,l(v)
v + xlh2,l(v)

)
and Fl = H−1

l ◦ Fl−1 ◦Hl.

See that in this case Fl and Hl are holomorphic diffeomorphisms in U .
Moreover, H = limn→∞Hn ◦ · · · ◦ H0 is a semiformal diffeomorphism that
conjugates F and Fλv0

in U . 2

Since this conjugation is defined locally around some root of r(v), and we are
interested in some global conjugation defined at some neighborhood of the
divisor, first we need to construct some diffeomorphism that can be locally
conjugate with F around every point of the divisor.
For that, let LF (v) denote the Lagrange interpolation Polynomial of the
points

(v1, λ1), . . . , (vk+2, λk+2),

where vj is root of r(v) = 0 and λj is the constant found in the theorem 8.1.
It is a simple consequence of the theorem 8.1 that for all U simply connected
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open set that contains only one root of r(v) = 0 there exists a semiformal
conjugation in U that conjugates F and(

x

v

)
7→
(
x+ xk+1p(v) + LF (v)x2k+1

v + xkr(v)

)
. (11)

Notice that the diffeomorphism represented by (11) does not necessarily come
from the blow up of some element of Diff(C2, 0).
But it is easy to see, using the theorem 8.1 that the blow up of

FL(x, y) =
(
x+ Pk+1(x, y) + LF ( y

x
)x2k+1

y +Qk+1(x, y)− x2k−1yLF ( y
x
)

)
is locally semiformally conjugate with (11), and then it is locally semiformally
conjugate with F for k ≥ 2. Moreover, in the chart (x, v) the diffeomorphism
FL has the following representation

Π∗FL(x, v) =
(

x+ xk+1p(v) + LF (v)x2k+1

v + xkr(v)− x2kr(v)p(v) + x3k(· · ·)

)
.

Let U = {Ui}i=1,...,k+2 a covering of CP (1) = Π−1(0) such that Ui, Ui ∩ Uj
are simply connected open sets, such that no four of them have a nonempty
intersection and vi is in Uj if and only if i = j. For each j there exists a
semiformal diffeomorphism Hj such that Hj ◦ F = FL ◦Hj in Uj.
Let Hij = Hj ◦ Hi semiformal diffeomorphism defined in Uj ∩ Ui. Observe
that each Hi,j commutes with FL.

Theorem 8.2 The cocycle {Hij} determine the class of formal conjugation
of F .

First, we are going to prove that the cocycle {Hij} determine the class of
semiformal conjugation of F . In fact suppose that {Hij = H ′

j ◦H ′
i
−1} is the

cocycle associate to G. Then

Hj ◦Hi
−1 = H ′

j ◦H ′
i
−1

in Ui∩Uj, thus H = Hj
−1 ◦H ′

j = Hi
−1 ◦H ′

i is a global semiformal diffeomor-
phism that conjugate F and G. Let

(
x

v

)
7→


x+

∞∑
j=k+1

a1j(v)x
j

v +
∞∑
j=k

a2j(v)xj
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be the representation of H at the chart (x, v) ∈ U1 and

(
y

s

)
7→


y +

∞∑
j=k+1

b1j(s)y
j

s+
∞∑
j=k

b2j(s)yj


be the representation ofH at the chart (y, s) ∈ U2 where U1 ' U2 ' (C, 0)×C
and the change of coordinates between U1 and U2 is given by

U1 ∩ U2 → U1 ∩ U2

(x, v) 7→ (y, s) = (vx, 1
v
)
.

Therefore, we have thatys+
∞∑

j=k+1

a1j(
1

s
)(ys)j

1

s
+

∞∑
j=k

a2j(
1

s
)(ys)j

 = y +
∞∑

j=k+1

b1j(s)y
j

and
1

1
s

+
∑∞
j=k a2j(

1
s
)(ys)j

= s+
∞∑
j=k

b2j(s)y
j

for every (y, s) ∈ (C, 0)× C∗.
Thus, it is easy to prove making the product and proceeding by induction
that a2j(

1
s
)sj−1 is holomorphic function in C and therefore a2j(v) has to be

a polynomial of degree ≤ j − 1, the same way a1j(v) has to be a polynomial
of degree ≤ j. Then, we can conclude that H is a blow up of the formal
diffeomorphism in the variables x, y that conjugate F and G. 2

Observe that in the dicritic case, i.e. r ≡ 0, the system of equations (6) of
the lemma 8.1 reduces to(

(k − l)p(v) p′(v)
0 −lp(v)

)(
h1(v)
h2(v)

)
=
(
φ1(v)
φ2(v)

)
(12)

Theorem 8.3 Let F̃ ∈ D̂iffk+1(C2, 0) be dicritic diffeomorphism and F (x, v) =(
x+ xk+1p(v) + xk+2(· · ·)

v + xk+1(· · ·)

)
. Then there exists a unique rational function

q(v) such that F is semiformally conjugate to

GF =
(
x+ xk+1p(v) + x2k+1q(v)

v

)
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in C \ {p(v) = 0}. In addition, q(v) = s(v)
p(v)2k+1 where s(v) is a polynomial of

degree 2k + 2 + 2k∂(p(v)).

Proof: Follows the same procedure to the proof of theorem 8.1. Define by
induction the sequences Fn and Hn from the initial condition F0 = F and
H0 = id, and for j > 0 (j 6= k), if

Fj−1 −GF =
(
xk+j+1φ1,j(v) + · · ·
xk+jφ2,j(v) + · · ·

)
define

Hj = (x, v) =
(
x+ xj+1h1,j(v)
v + xjh2,j(v)

)
and Fj = H−1

j ◦ Fj−1 ◦Hj,

where (h1,j, h2,j) is the unique solution of (12), i.e. h1,j = φ1,j(v)

(k−j)p(v) + p′(v)φ2,j(v)

jp(v)2

and h2,j(v) = −φ2,j(v)

jp(v)
. See that the degree of h1,j and h2,j are j+1 and j+2.

In the case j = k we have that

Fk−1 −GF =
(
x2k+1(φ1,k(v)− q(v)) + · · ·

x2kφ2,k(v) + · · ·

)
,

where q(v) is the unique function such that the system of equations (12) has

solution, i.e. h2,k(v) = −φ2,k(v)

kp(v)
=

φ1,k(v)−q(v)
p′(v)

, therefore

q(v) = φ1,k(v)−
p′(v)φ2,k(v)

kp(v)
.

Finally, it is easy to prove inductively that φi,j (i = 1, 2) are of the form
ψi,j

p(v)2j where ψ1,j and ψ2,j are polynomials of degree k + j + 1 + 2j∂(p(v))

and k + j + 2 + 2j∂(p(v)) respectively, and then we conclude that q(v) is of

form q(v) = s(v)
p(v)2k+1 where s(v) is a polynomial of degree 2k+2+2k∂(p(v)).2
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