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Abstract

In the main result of this paper we give a method to construct all pairs of homogeneous commuting

vector fields on C2 of the same degree d ≥ 2 (theorem 1). As an application, we classify, up to linear

transformations of C2, all pairs of commuting homogeneous vector fields on C2, when d = 2 and d = 3

(corollaries 1 and 2). We obtain also necessary conditions in the cases of quasi-homogeneous vector fields

and when the degrees are different (theorem 2).

Contents

1 Introduction 1

2 Preliminary results. 5

3 Proofs. 7

3.1 Proof of Theorem 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Proof of Corollary 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Proof of Theorem 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 Proof of Corollary 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.5 Proof of Corollary 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1 Introduction

A. Guillot in his thesis and in [G], gave a non-trivial example of a pair of commuting homogeneous vector fields

of degree two on C3. The example is non-trivial in the sense that it cannot to be reduced to two vector fields
in separated variables, like in the pair X := P (x, y)∂x + Q(x, y)∂y and Y := R(z)∂z . This suggested me the

problem of classification of pairs of polynomial commuting vector fields on Cn. This problem, in this generality,
seems very difficult, even for n = 2. Even the restricted problem of classification of pairs of commuting vector

fields, homogeneous of degree d, seems very dificult for n ≥ 3 and d ≥ 2 (see problem 3). However, for n = 2

and d ≥ 2 it is possible to give a complete classification, as we will see in this paper.

Let X and Y be two homogeneous commuting vector fields on C2, where dg(X) = k and dg(Y ) = f, and

R = x ∂x + y ∂y be the radial vector field.

Definition 1.1. We will say that X and Y are colinear if X ∧ Y = 0. In this case, we will use the notation

X//Y . When dg(X) = dg(Y ), we will consider the 1-parameter family (Zλ)λ∈P1 given by Zλ = X + λ.Y if

λ ∈ C and Z∞ = Y . It will be called the pencil generated by X and Y . The pencil will be called trivial, if

Y = λ.X for some λ ∈ C. Otherwise, it will be called non-trivial.
1This research was partially supported by Pronex.
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From now on, we will set : ⎧⎪⎪⎨⎪⎪⎩
X ∧ Y = f ∂x ∧ ∂y
R ∧X = g ∂x ∧ ∂y
R ∧ Y = h ∂x ∧ ∂y

. (1)

Since dg(X) = k and dg(Y ) = f, the polynomials f , g and h are homogeneous and dg(f) = k+f, dg(g) = k+1,

dg(h) = f+ 1. Moreover, f W≡ 0 iff X and Y are non-colinear.

Our main result concerns the case where k = f ≥ 2. In this case, if g, h W≡ 0, we will consider the meromorphic
function φ = g/h as a holomorphic function φ : P1 → P1 :

φ[x : y] =
g(x, y)

h(x, y)
.

Theorem 1. Let (Zλ)λ be a non-trivial pencil of homogeneous commuting vector fields of degree d ≥ 2 on

C2. Let X and Y be two generators of the pencil and f , g, h and φ be as before. If the pencil is colinear

then X = α.R and Y = β.R, where α and β are homogeneous polynomials of degree d − 1. If the pencil is
non-colinear then :

(a). f, g, h W≡ 0.

(b). f/g (resp. f/h) is a non-constant meromorphic first integral of X (resp. Y ).

(c). Let s be the (topological) degree of φ : P1 → P1. Then 1 ≤ s ≤ d− 1.

(d). The decompositions of f , g and h into irreducible linear factors are of the form :⎧⎪⎪⎨⎪⎪⎩
f = Πrj=1 f

2kj+mj

j

g = Πrj=1 f
kj
j .Π

s
i=1 gi

h = Πrj=1 f
kj
j .Π

s
i=1 hi

. (2)

where s+
�r

j=1 kj = d+ 1 and
�r
j=1 mj = 2s− 2. Moreover, we can choose the generators X and Y in

such a way that g1, ..., gs, h1, ..., hs are two by two relatively primes.

(e). Considering the direction (fj = 0) ⊂ C2 as a point pj ∈ P1, then

mj = mult(φ, pj)− 1 , j = 1, ..., r , (3)

where mult(φ, p) denotes the ramification index of φ at p ∈ P1.

(f). The generators X and Y can be choosen as :l
X = g.[

�r
j=1 (kj +mj)

1
fj
(fjx∂y − fjy∂x)−

�s
i=1

1
gi
(gix∂y − giy∂x)]

Y = h.[
�r

j=1 (kj +mj)
1
fj
(fjx∂y − fjy∂x)−

�t
i=1

1
hi
(hix∂y − hiy∂x)]

. (4)

Conversely, given a non-constant map φ : P1 → P1 of degree s ≥ 1 and a divisor D on P1 of the form

D =
3
p∈P1

(2k(p) +mult(φ, p)− 1).[p] , (5)

where k(p) ≥ min(1,mult(φ, p) − 1) and �p k(p) < +∞, there exists an unique pencil (Zλ)λ of homogeneous
commuting vector fields of degree d =

�
p k(p)+s−1 with generators X and Y given by (4), and the fj s, gi s and
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hi s given in the following way : let {p1 = [a1 : b1], ..., pr = [ar : br]} = {p ∈ P1 | 2k(p) +mult(φ, p) − 1 > 0} .
Set kj = k(pj), mj = mult(φ, pj) − 1 and fj(x, y) = aj y − bj x. Set φ[x : y] = G1(x, y)/H1(x, y), where G1

and H1 are homogeneous polynomials of degree s. Then the gi s and hi s are the linear factors of G1 and H1,

respectively.

Definition 1.2. Let X, Y , g = Πrj=1 f
kj
j .Π

s
i=1 gi and h = Π

r
j=1 f

kj
j .Π

s
i=1 hi be as in theorem 1. We call (fj = 0),

j = 1, ..., r, the fixed directions of the pencil.

Given λ ∈ C, the polynomial gλ = g+ λ.h plays the same role for the vector field Zλ = X + λ.Y than g and

h for X and Y . Its decomposition into irreducible factors is of the form

gλ = Π
r
j=1 f

kj
j .Π

s
i=1 gi,λ .

Definition 1.3. The directions given by (gi,λ = 0) are called the movable directions of the pencil.

In particular, the number s of movable directions coincides with the degree of the map φ = g/h : P1 → P1.

As an application of theorem 1, we obtain the classification of the pencils of homogeneous commuting vector

fields of degrees two and three.

Corollary 1. Let (Zλ)λ be a pencil of commuting homogeneous of degree two vector fields on C2. Then, after
a linear change of variables on C2, the generators X and Y of the pencil can be written as :

(a). X = g.R and Y = h.R, where g and h are homogeneous polynomials of degree one and R = x.∂x + y.∂y.

(b). X = x2∂x and Y = y
2∂y. In this case, the pencil has two fixed directions.

(c). X = y2∂x and Y = 2xy∂x + y
2∂y. In this case, the pencil has one fixed direction.

Corollary 2. Let (Zλ)λ be a pencil of commuting homogeneous of degree three vector fields on C2. Then, after
a linear change of variables on C2, the generators X and Y of the pencil can be written as :

(a). X = g.R and Y = h.R, where g and h are homogeneous polynomials of degree two and R = x.∂x + y.∂y.

(b). X = y3∂x and Y = 3xy
2∂x + y

3∂y. In this case, the pencil has one movable and one fixed direction.

(c). X = x2y∂x and Y = xy
2∂x − y3∂y. In this case, the pencil has one movable and two fixed directions.

(d). X = (2x2y + x3)∂x − x2y∂y and Y = −xy2∂x + (2xy2 + y3)∂y. In this case, the pencil has one movable
and three fixed directions.

(e). X = x3∂x and Y = y
3∂y. In this case, the pencil has two movable and two fixed directions.

Some of the preliminary results that we will use in the proof of theorem 1 are also valid for quasi-homogeneous

vector fields.

Definition 1.4. Let S be a linear diagonalizable vector field on Cn such that all eigenvalues of S are relatively
primes natural numbers. We say that a holomorphic vector field X W≡ 0 is quasi-homogeneous with respect to S
if [S,X] = mX, m ∈ C.

It is not difficult to prove that, in this case, we have the following :

(I). m ∈ N ∪ {0}.
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(II). X is a polynomial vector field.

Our next result concerns two commuting vector fields which are quasi-homogeneous with respect to the same

linear vector field S. Let X and Y be two commuting vector fields on C2, quasi-homogeneous with respect to the
same vector field S with eigenvalues p, q ∈ N (relatively primes), where [S,X] = mX and [S, Y ] = nY . Since S

is diagonalizable, after a linear change of variables, we can assume that S = p x∂x+q y∂y. Set X∧Y = f ∂x∧∂y,
S ∧X = g ∂x ∧ ∂y and S ∧ Y = h ∂x ∧ ∂y. We will always assume that X,Y W≡ 0

Remark 1.0.1. We would like to observe that f , g and h are quasi-homogeneous with respect to S, that is,

we have S(f) = (m + n + tr(S))f , S(g) = (m + tr(S))g and S(h) = (n + tr(S))h, where tr(S) = p + q. It is

known that in this case, any irreducible factor of f , g or h, is the equation of an orbit of S, that is, x, y or a

polynomial of the form yp − c xq, where c W= 0 .

Theorem 2. In the above situation, suppose that f, h W≡ 0 and n W= 0. Then :

(a). g W≡ 0 and f/g is a non-constant meromorphic first integral of X.

(b). Suppose that m,n W= 0. Then f , g and h satisfy the two equivalent relations below :

mnf2 dx ∧ dy = f dg ∧ dh+ g dh ∧ df + hdf ∧ dg (6)

(m− n)df
f
+ n

dh

h
−mdg

g
=
mnf

gh
(qy dx− px dy) (7)

(c). Suppose that m,n W= 0. Then any irreducible factor of f divides g and h. Conversely, if p = gcd(g, h)

then any irreducible factor of the p divides f . Moreover, the decompositions of f , g and h into irreducible

factors, are of the form

⎧⎪⎪⎨⎪⎪⎩
f = Πrj=1 f

fj
j

g = Πrj=1 f
mj

j .Πsi=1 g
ai
i

h = Πrj=1 f
nj
j .Π

t
i=1 h

bi
i

(8)

where r > 0, mj , nj > 0, fj ≥ mj + nj − 1, for all j, and any two polynomials in the set

{f1, ..., fr, g1, .., gs, h1, ..., ht} are relatively primes.

(d). Suppose that f , g and h are as in (8). Then vector fields X and Y can be written asl
X = 1

n
g.[
�r
j=1 (fj −mj)

1
fj
(fjx∂y − fjy∂x)−

�s
i=1 ai

1
gi
(gix∂y − giy∂x)]

Y = 1
mh.[
�r

j=1(fj − nj) 1fj (fjx∂y − fjy∂x)−
�t
i=1 bi

1
hi
(hix∂y − hiy∂x)]

(9)

As an application, we have the following result :

Corollary 3. Let X and Y be germs of holomorphic commuting vector fields at 0 ∈ C2. Let

X =

∞3
j=d

Xj

be the Taylor series of X at 0 ∈ C2, where Xj is homogeneous of degree j ≥ d. Assume that d ≥ 2 and that the
vector field Xd has no meromorphic first integral and that 0 is an isolated singularity of Xd. Then Y = λ.X,

where λ ∈ C.
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We would like to recall a well-known criterion for a homogeneous vector field of degree d on C2, say Xd, to
have a meromorphic first integral (see [C-M]). Since the radial vector field R = x ∂x+ y ∂y has the meromorphic

first integral y/x, we can assume that R ∧ Xd = g ∂x ∧ ∂y W≡ 0. Let ω = iXd
(dx ∧ dy), where i denotes the

interior product. Then the form ω1 = ω/g is closed. In this case, if g = Πrj=1 g
kj
j is the decomposition of g into

linear irreducible factors, then we have

ω1 =

r3
j=1

λj
dgj
gj

+ d(h/gk1−11 ...gkr−1r ) ,

where λj ∈ C, for all 1 ≤ j ≤ r and h is homogeneous of degree d + 1 − r = dg(Xd) + 1 − r = dg(g/g1...gr).
In this case, Xd has a meromorphic first integral if, and only if, either λ1 = ... = λr = 0, or λj W= 0 for some
j ∈ {1, ..., r}, h ≡ 0 and [λ1 : ... : λr] = [m1 : ... : mr], where m1, ...,mr ∈ Z. In particular, we obtain that
the set of homogeneous vector fields of degree d ≥ 1 with a meromorphic first integral is a countable union of
Zariski closed sets.

Let us state some natural problems related to the above results.

Problem 1. Classify the pencils of commuting homogeneous vector fields of degree d ≥ 2 on Cn, n ≥ 3.

Problem 1 seems dificult even in dimension three.

Problem 2. Let X2 be the set of germs at 0 ∈ C2 of holomorphic vector fields. Given X ∈ X2, X W= 0, to

determine the set

C(X) = {Y | [X,Y ] = 0} .
Under which conditions is C(X) of finite dimension ?

Problem 3. Classify all pairs of commuting polynomial vector fields on C2.

Observe that problem 3 has the following relation with the so called Jacobian conjecture : let f and g be two

polynomials on C2 such that fx.gy−fy.gx ≡ 1. Then their hamiltonians X = fy ∂x−fx ∂y and Y = gy ∂x−gx∂y
commute. By this reason, problem 3 seems very difficult.

2 Preliminary results.

In this section we prove some general results that will be used in the next sections. Let S, X and Y be

holomorphic vector fields defined in some domain U of C2. Assume that :

(I). [S,X] = m.X, [S, Y ] = n.Y and [X,Y ] = 0, where m,n ∈ C.

(II). X ∧ Y = f.∂x ∧ ∂y, S ∧X = g.∂x ∧ ∂y and S ∧ Y = h.∂x ∧ ∂y, where f, g, h W≡ 0.

We consider also the holomorphic 1-forms ω = iX(dx∧dy) and η = iY (dx∧dy), where i denotes the interior
product.

Lemma 2.0.1. In the above situation we have :

(a). The meromorphic functions f/g and f/h are first integrals of X and Y , respectively. Moreover, f/g (resp.

f/h) is constant if, and only if, n = 0 (resp. m = 0).
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(b). If n W= 0 (resp. m W= 0) then

ω =
g

n
[
dg

g
− df
f
] (resp. η =

h

m
[
dh

h
− df
f
]) . (10)

(c). The polynomials f , g and h satisfy the relation :

mnf2 dx ∧ dy = f dg ∧ dh+ g dh ∧ df + h df ∧ dg . (11)

Proof. Let us prove (a). Assume that n W= 0. First of all, note that

LX(S ∧X) = [X,S] ∧X + S ∧ [X,X] = −m.X ∧X = 0

and simillarly LX(X ∧ Y ) = 0, where L denotes the Lie derivative. Since X ∧ Y = (f/g).S ∧ Y , we get

0 = LX(X ∧ Y ) = LX((f/g).S ∧X) = X(f/g).S ∧X + (f/g).LX(S ∧X) = X(f/g).S ∧X =⇒

=⇒ X(f/g) = 0 .

Therefore, f/g is a first integral of X . It remains to prove that f/g is a constant if, and only if n = 0. Since

LS(X ∧ Y ) = (m+ n)X ∧ Y and LS(S ∧X) = mS ∧X, we get

(m+ n)X ∧ Y = LS((f/g).S ∧X) = S(f/g).S ∧X + (f/g).LS(S ∧X) = (S(f/g) +m.(f/g))S ∧X

which implies that S(f/g) = n.(f/g). Hence, if f/g is a constant then n = 0.

Conversely, if n = 0 then S(f/g) = 0 and f/g is a first integral of S and X simultaniously. If f/g was

not constant then the vector fields X and S would be colinear in the non-empty open subset of U defined by

d(f/g) W= 0. This would imply that S ∧X ≡ 0, and so g ≡ 0, a contradiction. Therefore, f/g is a constant.
Now, let ω = iX(dx ∧ dy) and suppose that n W= 0. Since f/g is a non-constant first integral of X , we get

ω ∧ d(f/g) = 0, which implies that
ω = k

w
dg

g
− df
f

W
,

where k is meromorphic on U . On the other hand, we have

g = −iS(iX(dx ∧ dy)) = −iS(ω) = k
w
S(f)

f
− S(g)

g

W
= k

S(f/g)

f/g
= n.k =⇒ k = g/n .

This proves (10).

Let us prove (c). Note first that ω ∧ η = f.dx ∧ dy. We leave the proof of this fact to the reader. If n = 0
(or m = 0) then (11) follows from f/g = c W= 0 (or f/h = c W= 0), where c is a constant. We leave the proof to
the reader in this case. On the other hand, if m,n W= 0 then

f.dx ∧ dy = ω ∧ η = g

n

}
dg

g
− df
f

]
∧ h
m

}
dh

h
− df
f

]
=
g.h

m.n

}
dh ∧ df
h.f

+
df ∧ dg
f.g

+
dg ∧ dh
g.h

]
,

which implies (11).

In the next result we prove a kind of converse of (11).
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Lemma 2.0.2. Let f , g and h be holomorphic functions on a domain U ⊂ C2. Suppose that f/g and f/h
are non-constant meromorphic functions on U . Define meromorphic vector fields X and Y by iX(dx ∧ dy) =
g[dg

g
− df

f
] and iY (dx ∧ dy) = h[dhh − df

f
]. Suppose that

f dg ∧ dh+ g dh ∧ df + h df ∧ dg = λ f2 dx ∧ dy ,

where λ W= 0. Then [X,Y ] = 0.

Proof. The idea is to prove that d(f/g) ∧ d(f/h) W≡ 0 and [X,Y ](f/g) = [X,Y ](f/h) = 0. This will imply that
f/g and f/h are two independent meromorphic first integrals of [X,Y ], and so [X,Y ] = 0.

Proof of d(f/g) ∧ d(f/h) W≡ 0. Note that

d(f/g) ∧ d(f/h) = f

g2h2
[f dg ∧ dh+ h df ∧ dg + g dh ∧ df ] = λ.

f3

g2h2
dx ∧ dy W= 0 =⇒

=⇒ d(f/g) ∧ d(f/h) W= 0.
Proof of [X,Y ] = 0. We have

[X,Y ](f/g) = X(Y (f/g))− Y (X(f/g)) = X(Y (f/g)) ,

because X(f/g) = 0. On the other hand, a straightforward computation shows that

Y (f/g) dx ∧ dy = d(f/g) ∧ η , (12)

where η = iY (dx ∧ dy). Since η = h[dhh − df
f ] = −h

2

f d(f/h), we get from (12) that

d(f/g) ∧ η = −h
2

f
d(f/g) ∧ d(f/h) = −λ f

2

g2
dx ∧ dy =⇒ Y (f/g) = −λ (f/g)2 =⇒

=⇒ X(Y (f/g)) = 0. In a similar way, we get [X,Y ](f/h) = 0.

3 Proofs.

3.1 Proof of Theorem 2.

Assume that n W= 0, f, h W≡ 0 and g ≡ 0. Since S has an isolated singularity at 0 ∈ C2 and S∧X = g.∂x∧∂y = 0,
we get X = ψ.S, where ψ W= 0 is a polynomial. It follows that

0 = [Y,X] = [Y,ψ.S] = Y (ψ).S − ψ.[S, Y ] = Y (ψ).S − n.ψ.Y =⇒ Y (ψ) W≡ 0

and S ∧ Y = 0, which implies h ≡ 0, a contradiction. Hence, g W≡ 0. It follows from lemma 2.0.1 that f/g is a

non-constant meromorphic first integral of X. This proves (a) of theorem 2.

Lemma 2.0.1 implies also that f , g and h satisfy relation (6). Let us prove that (6) is equivalent to (7). We

will use the following fact : let μ be a 2-form in C2 such that LS(μ) = λ.μ, where λ ∈ C. Then

d(iS(μ)) = LS(μ) = λ.μ (13)

Set μ = f dg ∧ dh + g dh ∧ df + h df ∧ dg and μ1 = mnf2 dx ∧ dy. We have seen in remark 1.0.1 that
S(f) = (m+n+ tr(S)).f , S(g) = (m+ tr(S)).g and S(h) = (n+ tr(S)).h. As the reader can check, this implies

that LS(μ) = λ.μ and LS(μ1) = λ.μ1, where λ = 2m+ 2n+ 3tr(S) W= 0.
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On the other hand, we have l
iS(μ1) = mnf

2(px dy − qy dx)
iS(μ) = −n fg dh+mfhdg + (n−m) gh df

as the reader can check. If we assume (6), we have μ1 = μ, so that iS(μ) = iS(μ1) and

mnf2(px dy − qy dx) = −n fg dh+mfhdg + (n−m) gh df =⇒ (7) .

If we assume (7), then we have

(7) =⇒ iS(μ1 − μ) = 0 (13)
=⇒ λ (μ1 − μ) = d(iS(μ1 − μ)) = 0 =⇒ (6) .

This proves (b) of theorem 2.

Let us prove (c). We will use (7) in the form

(m− n) g.h df + n f.g dh−mf.h dg = mnf2 (q y dx− p x dy) . (14)

It follows from (14) that, if k is an irreducible factor of both polynomials g and h, then k divides f2, and so it

divides f .

Let us prove that any factor of f is a factor of both polynomials g and h. Here we use that f/g is a first

integral of X . This implies that

f.X(g) = g.X(f) . (15)

Recall that any irreducible factor of f or g is the equation of an orbit of S (remark 1.0.1). Let f = Πrj=1 f
fj
j

(r, fj > 0), be the decomposition of f into irreducible factors and set F = Πj fj . It follows from (15) that

F.X(g) = F
X(f)

f
g = g.k ,where k = F

X(f)

f
=

r3
j=1

fj .f1...fj−1.X(fj).fj+1...fr . (16)

On the other hand, (16) implies that for any j = 1, ..., r, fj divides g or X(fj). If fj divides g, we are done. If

fj divides X(fj) then (fj = 0) is invariant for X. Since (fj = 0) is also invariant for S, it is a common orbit of

X and S. This implies that fj divides S ∧X, and so it divides g. Similarly, any irreducible factor of f divides
h.

Now, we can assume that the decompositions of f , g and h into irreducible factors are as in (8) :⎧⎪⎪⎨⎪⎪⎩
f = Πrj=1 f

fj
j

g = Πrj=1 f
mj

j .Πsi=1 g
ai
i

h = Πrj=1 f
nj
j .Π

t
i=1 h

bi
i

where fj ,mj , nj > 0 and any two polynomials in the set {f1, ..., fr, g1, ..., gs, h1, ..., ht} are relatively primes. Let
us prove that fj ≥ mj +nj −1. As the reader can check, it follows from (14) that f

mj+nj+fj−1
j divides f2. This

implies that mj + nj + fj − 1 ≤ 2fj , and we are done.
It remains to prove (d). Let ω = iX(dx ∧ dy). We have seen in lemma 2.0.1 that

ω =
g

n

}
dg

g
− df
f

]
=
g

n

⎡⎣ s3
i=1

ai
dgi
gi
−

r3
j=1

(fj −mj)
dfj
fj

⎤⎦
As the reader can check, this implies that X is like in (9). Similarly, Y is also as in (9).
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3.2 Proof of Corollary 3.

Let X =
�∞

j=d Xj and Y W≡ 0 be germs of holomorphic vector fields at 0 ∈ C2 such that [X,Y ] = 0. Assume
that d ≥ 2 and Xd has an isolated singularity at 0 ∈ C2 and no meromorphic first integral. Set Y =

�∞
i=r Yj ,

where Yj is homogeneous of degree j, r ≥ 0, and Yr W= 0. We have [R,Xd] = mXd, [R, Yr] = nYr, where

m = d− 1 W= 0 and n = r − 1. Note also that [Xd, Yr] = 0.

Claim 3.2.1. r = d and Yd = λ.Xd, where λ W= 0.

Proof. As before, set Xd ∧ Yr = f.∂x ∧ ∂y, R ∧ Xd = g.∂x ∧ ∂y and R ∧ Yr = h.∂x ∧ ∂y. Observe that g W≡ 0.
Indeed, if g ≡ 0 then R ∧ Xd = 0. Since 0 is an isolated singularity of R, it follows from De Rham’s division

theorem (cf. [DR]) that Xd = φ.R, where φ is a homogeneous polynomial of degree d− 1 > 0. But, this implies
that sing(Xd) ⊃ (φ = 0), and so 0 is not an isolated singularity of Xd.

Suppose by contradiction that r W= d. Let us prove that in this case we have f, h W≡ 0. Suppose by

contradiction that f ≡ 0. This implies that Xd ∧ Yr ≡ 0. Since Xd has an isolated singularity at 0 ∈ C2,
it follows from De Rham’s division theorem that Yr = φ.Xd, where φ is a homogeneous polynomial of degree

r − d > 0. Therefore,

0 = [Xd, Yr] = [Xd,φ.Xd] = Xd(φ).Xd =⇒ Xd(φ) = 0 =⇒

that φ is a non-constant first integral of Xd, a contradiction. Hence, f W≡ 0. Suppose by contradiction that
h ≡ 0. This implies that R ∧ Yr ≡ 0, so that Yr = φ.R, where φ W= 0 is a homogeneous polynomial of degree
k = r − 1. From this we get

0 = [Xd, Yr] = [Xd,φ.R] = Xd(φ).R+ φ.[Xd, R] = Xd(φ).R− (d− 1).φ.Xd =⇒

Xd(φ).R = (d− 1).φ.Xd .
If φ W= 0 is a constant then d = 1, a contradiction. If φ is not a constant then Xd(φ) W= 0, for otherwise φ would
be a non-constant first integral of Xd. In this case, we get R ∧Xd = 0, and so g ≡ 0, a contradiction. Hence,
f, g, h W≡ 0. Now, we can apply (a) of lemma 2.0.1.

If r W= 1 then n = r − 1 W= 0 and f/g is a non-constant meromorphic first integral of Xd, a contradiction. If
r = 1 then n = 0 and (a) of lemma 2.0.1 implies that f = c.g, where c ∈ C. Therefore,

0 = (f − cg) ∂x ∧ ∂y = Xd ∧ (Y1 + c.R) =⇒ Y1 = −c.R W= 0 ,

by the division theorem and the fact that d = dg(Xd) > 1. But, this implies that 0 = [Xd, Y1] = c(d−1).Xd W= 0,
a contradiction. Hence, r = d.

Now, r = d implies that n = m = d − 1 > 0 and f ≡ 0, for otherwise, f/g would be a non-constant

meromorphic first integral of Xd. It follows that Xd ∧ Yd = 0, and so Yd = λ.Xd, where λ W= 0 is a constant.

This proves the claim.

Let us finish the proof of corollary 3. Let Z = Y − λ.X. Then [X,Z] = 0. If Z W≡ 0, then we could write
Z =
�∞

j=r Zj , where r > d, Zj is homogeneous of degree j and Zr W= 0. But, this contradicts claim 3.2.1 and

proves the corollary.
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3.3 Proof of Theorem 1.

Let (Zλ)λ∈P1 be a non-trivial pencil of homogeneous of degree d ≥ 2 commuting vector fields on C2. Fix two
generators of the pencil, X and Y , and set as before X∧Y = f.∂x∧∂y, R∧X = g.∂x∧∂y and R∧Y = h.∂x∧∂y.

Suppose first that the pencil is colinear, that is, f ≡ 0. In this case, we can write X = α.Z, where α is the

greatest common divisor of the components of X and Z has an isolated singularity at 0 ∈ C2. Since Y ∧X = 0,

we get Y ∧ Z = 0, and so Y = β.Z, where β is a homogeneous polynomial with dg(β) = dg(α), by De Rham’s

division theorem. Now,

0 = [X,Y ] = [α.Z,β.Z] = (αZ(β)− β Z(α)).Z =⇒ Z(β/α) = 0 .

Since the pencil is non-trivial, β/α is non-constant. On the other hand, we can write β(x,y)
α(x,y) = φ(y/x), where

φ(t) = β(1,t)
α(1,t) , because α and β are homogeneous of the same degree. Therefore,

0 = Z(φ(y/x)) = φ I(y/x).Z(y/x) =⇒ Z(y/x) = 0 ,

because φ I W≡ 0. This implies that y Z(x) = xZ(y). If we set Z = A ∂x + B ∂y, then we get y A = xB, and

so A = λ.x and B = λ.y, where λ is a homogeneous polynomial. Since 0 is an isolated singularity of Z, it

follows that λ is a constant. Hence, X = α1.R and Y = β1.R, where α1 = λ.α and β1 = λ.β are homogeneous

polynomials of degree d− 1. This proves the first part of theorem 1.

Suppose now that the pencil is non-colinear. In this case, we have f W≡ 0. Let us prove that g, h W≡ 0. If
g ≡ 0, for instance, then X = φ.R, where φ W= 0 is a homogeneous polynomial of degree m = n = d− 1 > 0, by
the division theorem. Therefore,

0 = [Y,φ.R] = Y (φ).R−m.φ.Y .

Since m.φ.Y W= 0, the above relation implies that Y and R are colinear. Hence, X//Y , a contradiction. This

proves (a) of theorem 1.

Since m = n W= 0, it follows from (a) of theorem 2 that f/g and f/h are non-constant meromorphic first

integrals of X and Y , respectively, which proves (b) of theorem 1. Recall that f , g and h are homogeneous

polynomials, where dg(f) = 2d, dg(g) = dg(h) = d+ 1.

It follows from (c) of theorem 2 that we can write the decomposition of f , g and h into irreducible linear

factors as f = Πrj=1 f
fj
j , g = Πrj=1 f

mj

j .Πai=1 g
ai
i and h = Πrj=1 f

nj
j .Π

b
i=1 h

bi
i , where r > 0, mj , nj > 0, fj ≥

mj + nj − 1 and any two polynomials of the set {f1, ..., fr, g1, ..., ga, h1, ..., hb} are relatively primes. Set kj =
min(mj , nj).

Claim 3.3.1. The generators of the pencil can be choosen in such a way that :

(a). mj = nj = kj for all j = 1, ..., r.

(b). a = b and ai = bi = 1 for all i = 1, ..., a.

Proof. Set Xλ = X + λ.Y and R ∧Xλ = gλ.∂x ∧ ∂y,where gλ = g + λ.h. It follows from Bertini’s theorem that

for a generic set of λ ∈ C the decomposition of gλ into linear irreducible factors is of the form :

gλ = Π
r
j=1 f

kj
j .Π

s
i=1 giλ , (17)

where s+
�

j kj = d+1 and any two polynomials in the set {f1, ..., fr, g1λ, ..., gsλ} are relatively primes. Now,
it is sufficient to take λ1 W= λ2 ∈ C such that gλ1 and gλ2 are as in (17). Set X1 = Xλ1 , Y1 = Xλ2 , g = gλ1 and

h = gλ2 . Then X1 and Y1 are generators of the pencil with the properties required in claim 3.3.1.
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From now on, we will suppose that the generators X and Y of the pencil satisfy claim 3.3.1. Let us prove

that the decomposition of f into irreducible linear factors is of the form

f = Πrj=1 f
2kj+mj

j , where mj ≥ 0. (18)

Since m = n = d− 1 > 0, relation (14) implies that

g dh− h dg = mf(y dx− x dy) , m W= 0.

Set g = ψ.G1 and h = ψ.H1, where ψ = Π
r
j=1 f

kj
j . As the reader can check, we have

g dh− h dg = ψ2.(G1 dH1 −H1 dG1) = mf(y dx− x dy) =⇒ ψ2 | f .

Hence, the decomposition of f is like in (18) and we get

G1 dH1 −H1 dG1 = mΠrj=1 fmj

j (y dx− x dy) .

Now, consider the map φ : P1 → P1 given by

φ[x : y] =
g(x, y)

h(x, y)
=
G1(x, y)

H1(x, y)
.

Since G1 and H1 are relatively primes, the degree of φ is s = dg(G1) = dg(H1). Let {p1, ..., pt} ⊂ P1 be the
critical set of φ and φ(pj) = cj ∈ P1. If cj W=∞ set Kj = G1− cj .H1, and if cj =∞ set Kj = H1. Suppose that

pj is a critical point with mult(φ, pj) = fj ≥ 2. This implies that we can write Kj = ψ
fj
j .A, where ψj is a linear

polynomial, A a homogeneous polynomial and ψj does not divide A. We claim that ψ
fj−1
j |Πi fmi

i . Indeed, if

cj W=∞, we get

Kj dH1 −H1 dKj = G1 dH1 −H1 dG1 = mΠri=1 fmi
i (y dx− x dy) . (19)

Since ψ
fj−1
j divides Kj dH1 −H1 dKj , relation (19) implies the claim. If cj =∞ then ψ

fj−1
j divides G1 dH1 −

H1 dG1 and we get also the claim. Therefore, ψj = λj .fi(j), λj ∈ C∗, for some i(j) ∈ {1, ..., r} and fj−1 ≤ mi(j).

In particular, we get t ≤ r. By reordering the fi s, if necessary, we can suppose without lost of generality that
i(j) = j, j = 1, ..., t. Set fj = 1 for t < j ≤ r. With these conventions, we have mj − (fj − 1) ≥ 0 for all
j = 1, ..., r.

Let us prove that mj = fj − 1 for all j = 1, ..., r. Recall that s+
�

i ki = d+ 1. Since f = Πi f
2ki+mi
i and

dg(f) = 2 d, we get 3
i

mi = dg(Πi f
mi
i ) = 2 d− 2

3
i

ki = 2 d− 2 (d+ 1− s) = 2 s− 2 .

On the other hand, it follows from Riemann-Hurwitz formula (cf. [F-K]) and mi − (fi − 1) ≥ 0 that3
i

(fi − 1) = 2 s− 2 =
3
i

mi =⇒ 0 ≤
m3
i=1

[mi − (fi − 1)] = 0 =⇒ mi = fi − 1 , ∀ i .

This proves (d) and (e) of theorem 1. Note that (f) follows from (d) of theorem 2.

Let us prove that 1 ≤ s ≤ d− 1 and 1 ≤ r ≤ d. First of all note that

kj ≥ 1 =⇒ 2r ≤
r3
j=1

(2kj +mj) = 2d =⇒ 1 ≤ r ≤ d .
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Moreover,

s = d+ 1−
r3
j=1

kj =⇒ s ≤ d+ 1− r ≤ d =⇒ 0 ≤ s ≤ d .

Suppose by contradiction that s = 0. This implies that the map φ is constant, and so g = λ.h, where λ ∈ C∗.
It follows that

R ∧ (X − λ.Y ) = 0 =⇒ X − λ.Y = ψ.R ,

where ψ is homogeneous of degree d− 1. Therefore, the first part of theorem implies that X and Y are colinear

with the radial vector field, a contradiction. Hence, s ≥ 1. It remains to prove that s ≤ d − 1. Suppose by
contradiction that s = d. In this case, we get g = f1.g1...gd, h = f1.h1...hd and f = f2d1 . It follows that the

map φ = (g1...gd)/(h1...hd) has degree d ≥ 2 and just one ramification point, (f1 = 0), with multiplicity 2d− 1.
However, this is not possible, because this would imply that

mult(φ, (f1 = 0)) = 2d− 1 > d .

It remains to prove that in the converse construction the vector fields X and Y defined by (9) in theorem 1

commute. But, this is a consequence of lemma 2.0.2 and the fact that f , g and h satisfy (b) of theorem 2. This

finishes the proof of theorem 1.

3.4 Proof of Corollary 1.

Let X1 and Y1 be generators of a pencil of commuting of degree two homogeneous vector fields on C2. As
before, define f1, g1 and h1 by X1 ∧ Y1 = f1 ∂x ∧ ∂y, R ∧X1 = g1 ∂x ∧ ∂y and R ∧ Y1 = h1 ∂x ∧ ∂y, respectively.
If g1 ≡ h1 ≡ 0 then X1 and Y1 are multiple of the radial vector field, and so we are in case (a) of corollary 1.
If not, then f1, g1, h1 W≡ 0, by (a) of theorem 1. Moreover, the rational map φ = g1/h1 has degree s = 1, by (c)

of theorem 1. Therefore, the pencil has one movable direction and one or two fixed directions, because g1 has

degree d+ 1 = 3.

Suppose that it has two fixed directions. In this case, we can suppose that they are (x = 0) and (y = 0).

This implies that g1 = x.y.g2, h1 = x.y.h2 and f1 = x
2.y2, where g2 and h2 correspond to the movable direction.

Since g2 and h2 are relatively primes, there exist (a, b), (c, d) such that a g2 + b h2 = x and c g2 + d h2 = y.

If we set g := x2.y = x.y(a g2 + b h2) and h := x.y2 = x.y(c g2 + d h2), then we can apply lemma 2.0.2 to

f = x2.y2, g and h. We get the first integrals f/g = (x2.y2)/(x2.y) = y, f/h = (x2.y2)/(x.y2) = x, the forms

ω := g d(f/g)
f/g = x2 dy, η := h d(f/h)

f/h = y2 dx, and the vector fields X = x2 ∂x, Y = y
2 ∂y. So, we are in case (b)

of corollary 1.

Suppose that it has one fixed direction. We can suppose that it is (y = 0). In this case, we have g1 = y
2.g2,

h1 = y2.h2 and f = y4. Consider linear combinations a g2 + b h2 = x and c g2 + d h2 = y. So, we have just

to apply lemma 2.0.2 to the polynomials f = y4, g = x.y2 and h = y3. By doing this, we obtain case (c) of

corollary 1, as the reader can check.

3.5 Proof of Corollary 2.

Let f , g and h be as in theorem 1. If g ≡ h ≡ 0 then we are in case (a) of corollary 2. If not, then f, g, h W≡ 0
and φ = g/h has degree s, where s ∈ {1, 2}.

Let us consider the case where s = 2. Let φ : P1 → P1 be a map of degree two. It follows from Riemann-

Hurwitz formula that
�
p(mult(φ, p)−1) = 2 s−2 = 2, and so the map must have two ramification points, both

12



of multiplicity two. After composing the map in both sides with Moëbius transformations, we can suppose that

φ[x : y] = y2/x2. This implies that (x = 0) and (y = 0) are fixed directions of the pencil, so that x.y divides g

and h. Since dg(g) = dg(h) = 4 and s = 2, we get g = x.y.g1.g2 and h = x.y.h1.h2, and so k1 = k2 = 1 in (2)

of theorem 1. Since dg(f) = 6 and mult(φ, (x = 0)) = mult(φ, (y = 0)) = 2, we must have m1 = m2 = 1 and

f = x3.y3. In this case, we have

φ =
g

h
=
(g/x.y)

(h/x.y)
=
y2

x2
=⇒ g = x.y3 and h = x3.y .

So, when we apply lemma 2.0.2, we get f/g = x2, f/h = y2, ω = 2y3 dx and η = 2x3 dy. Hence, we can set

X = x3 ∂x and Y = y
3 ∂y. In this case we get case (e) of corollary 2.

Suppose now that s = 1. In this case, we have just one movable direction and the map φ has no ramification

points, which implies that mj = 0 for all j = 1, ..., r. This implies that f = Π
r
j=1 f

2kj
j . Since dg(f) = 6, we have

three possibilities : (1). r = 1 and k1 = 3. (2). r = 2, k1 = 1 and k2 = 2. (3). r = 3 and k1 = k2 = k3 = 1.

Case (1). In this case, we have just one fixed direction f1. After a linear change of variables in C2, we can
suppose that it is f1 = y. This implies that f = y6, g = y3.g1 and h = y

3.h1. Since g1 and h1 are relatively

primes, there exist a, b, c, d ∈ C such that a.d − b.c W= 0 and a.g1 + b.h1 = x and c.g1 + d.h1 = y. Therefore,

we can apply the construction of lemma 2.0.2 to f = y6, g = y4 and h = x.y3. This gives the first integrals

f/g = y2 and f/h = y3/x. Moreover,l
ω = iX(dx ∧ dy) = 2 y4 dyy = 2 y3 dy =⇒ X = 2 y3 ∂x

η = iY (dx ∧ dy) = x.y3 (3 dyy − dx
x ) = 3xy

2 dy − y3 dx =⇒ Y = 3xy2∂x + y
3 ∂y

.

Therefore, we get case (b) of corollary 2.

Case (2). In this case, we have two fixed directions, that we can suppose to be f1 = x and f2 = y. Since

k1 = 1 and k2 = 2, we get g = x.y2.g1, h = x.y2.h1 and f = x2.y4. After taking linear combinations, we

can suppose that g = x2.y2 and h = x.y3. This gives the first integrals y2 and x.y and so ω = 2x2 y dy and

η = xy2 dy + y3 dx and we are in case (c).

Case (3). In this case, we have three fixed directions. After a linear change of variables we can suppose that

they are f1 = x, f2 = y and f3 = x+ y. This gives g = x y (x+ y).g1, h = x y (x+ y).h1 and f = x
2 y2 (x+ y)2.

After taking linear combinations of g1 and h1, we can suppose that g = x2 y (x + y) and h = x y2 (x + y).

Therefore we get the first integrals are f/g = y (x+ y), f/h = x (x+ y) andl
ω = x2 y (x+ y) [dyy +

dx+dy
x+y ] = x

2 y dx+ (2 x2 y + x3) dy =⇒ X = (2x y2 + x3) ∂x − x2 y ∂y
η = x y2 (x+ y) [dxx +

dx+dy
x+y ] = (2x y

2 + y3) dx+ x y2 dy =⇒ Y = −x y2 ∂x + (2x y2 + y3) ∂y
.

Therefore, we are in case (d) of corollary 2.

References

[C-M] D. Cerveau, J.-F. Mattei : ”Formes intégrables holomorphes singulières”; Astérisque, vol.97(1982).
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