Homogeneous commuting vector fields on \mathbb{C}^2

by A. Lins $Neto¹$

Abstract

In the main result of this paper we give a method to construct all pairs of homogeneous commuting vector fields on \mathbb{C}^2 of the same degree $d \geq 2$ (theorem 1). As an application, we classify, up to linear transformations of \mathbb{C}^2 , all pairs of commuting homogeneous vector fields on \mathbb{C}^2 , when $d = 2$ and $d = 3$ (corollaries 1 and 2). We obtain also necessary conditions in the cases of quasi-homogeneous vector fields and when the degrees are different (theorem 2).

Contents

1 Introduction

A. Guillot in his thesis and in [G], gave a non-trivial example of a pair of commuting homogeneous vector fields of degree two on \mathbb{C}^3 . The example is non-trivial in the sense that it cannot to be reduced to two vector fields in separated variables, like in the pair $X := P(x, y)\partial_x + Q(x, y)\partial_y$ and $Y := R(z)\partial_z$. This suggested me the problem of classification of pairs of polynomial commuting vector fields on \mathbb{C}^n . This problem, in this generality, seems very difficult, even for $n = 2$. Even the restricted problem of classification of pairs of commuting vector fields, homogeneous of degree d, seems very dificult for $n \geq 3$ and $d \geq 2$ (see problem 3). However, for $n = 2$ and $d \geq 2$ it is possible to give a complete classification, as we will see in this paper.

Let X and Y be two homogeneous commuting vector fields on \mathbb{C}^2 , where $dg(X) = k$ and $dg(Y) = \ell$, and $R = x \partial_x + y \partial_y$ be the radial vector field.

Definition 1.1. We will say that X and Y are colinear if $X \wedge Y = 0$. In this case, we will use the notation $X//Y$. When $dg(X) = dg(Y)$, we will consider the 1-parameter family $(Z_\lambda)_{\lambda \in \mathbb{P}^1}$ given by $Z_\lambda = X + \lambda Y$ if $\lambda \in \mathbb{C}$ and $Z_{\infty} = Y$. It will be called the pencil generated by X and Y. The pencil will be called trivial, if $Y = \lambda.X$ for some $\lambda \in \mathbb{C}$. Otherwise, it will be called non-trivial.

¹This research was partially supported by Pronex.

From now on, we will set :

$$
\begin{cases}\nX \wedge Y = f \partial_x \wedge \partial_y \\
R \wedge X = g \partial_x \wedge \partial_y \\
R \wedge Y = h \partial_x \wedge \partial_y\n\end{cases}.
$$
\n(1)

Since $dg(X) = k$ and $dg(Y) = \ell$, the polynomials f, g and h are homogeneous and $dg(f) = k+\ell$, $dg(g) = k+1$, $dg(h) = \ell + 1$. Moreover, $f \neq 0$ iff X and Y are non-colinear.

Our main result concerns the case where $k = \ell \geq 2$. In this case, if $g, h \neq 0$, we will consider the meromorphic function $\phi = g/h$ as a holomorphic function $\phi \colon \mathbf{P}^1 \to \mathbf{P}^1$:

$$
\phi[x:y] = \frac{g(x,y)}{h(x,y)}.
$$

Theorem 1. Let $(Z_\lambda)_{\lambda}$ be a non-trivial pencil of homogeneous commuting vector fields of degree $d \geq 2$ on \mathbb{C}^2 . Let X and Y be two generators of the pencil and f, g, h and ϕ be as before. If the pencil is colinear then $X = \alpha.R$ and $Y = \beta.R$, where α and β are homogeneous polynomials of degree d – 1. If the pencil is non-colinear then :

- (a). $f, g, h \not\equiv 0.$
- (b). f/g (resp. f/h) is a non-constant meromorphic first integral of X (resp. Y).
- (c). Let s be the (topological) degree of $\phi \colon \mathbf{P}^1 \to \mathbf{P}^1$. Then $1 \le s \le d-1$.
- (d). The decompositions of f, g and h into irreducible linear factors are of the form:

$$
\begin{cases}\nf = \Pi_{j=1}^r f_j^{2k_j + m_j} \\
g = \Pi_{j=1}^r f_j^{k_j} \cdot \Pi_{i=1}^s g_i \\
h = \Pi_{j=1}^r f_j^{k_j} \cdot \Pi_{i=1}^s h_i\n\end{cases} (2)
$$

where $s + \sum_{j=1}^{r} k_j = d + 1$ and $\sum_{j=1}^{r} m_j = 2s - 2$. Moreover, we can choose the generators X and Y in such a way that $g_1, ..., g_s, h_1, ..., h_s$ are two by two relatively primes.

(e). Considering the direction $(f_j = 0) \subset \mathbb{C}^2$ as a point $p_j \in \mathbf{P}^1$, then

$$
m_j = mult(\phi, p_j) - 1 \ , \ j = 1, ..., r \ , \tag{3}
$$

where $mult(\phi, p)$ denotes the ramification index of ϕ at $p \in \mathbf{P}^1$.

(f). The generators X and Y can be choosen as :

$$
\begin{cases}\nX = g \cdot \left[\sum_{j=1}^{r} (k_j + m_j) \frac{1}{f_j} (f_{jx} \partial_y - f_{jy} \partial_x) - \sum_{i=1}^{s} \frac{1}{g_i} (g_{ix} \partial_y - g_{iy} \partial_x)\right] \\
Y = h \cdot \left[\sum_{j=1}^{r} (k_j + m_j) \frac{1}{f_j} (f_{jx} \partial_y - f_{jy} \partial_x) - \sum_{i=1}^{t} \frac{1}{h_i} (h_{ix} \partial_y - h_{iy} \partial_x)\right]\n\end{cases} (4)
$$

Conversely, given a non-constant map $\phi \colon \mathbf{P}^1 \to \mathbf{P}^1$ of degree $s \geq 1$ and a divisor D on \mathbf{P}^1 of the form

$$
D = \sum_{p \in \mathbf{P}^1} (2k(p) + mult(\phi, p) - 1).[p],
$$
\n(5)

where $k(p) \ge min(1, mult(\phi, p) - 1)$ and $\sum_p k(p) < +\infty$, there exists an unique pencil $(Z_\lambda)_\lambda$ of homogeneous commuting vector fields of degree $d = \sum_p k(p)+s-1$ with generators X and Y given by (4), and the $f_{j's}$, $g_{i's}$ and $h_{i's}$ given in the following way : let $\{p_1 = [a_1 : b_1], ..., p_r = [a_r : b_r]\} = \{p \in \mathbf{P}^1 \mid 2k(p) + mult(\phi, p) - 1 > 0\}$. Set $k_j = k(p_j)$, $m_j = mult(\phi, p_j) - 1$ and $f_j(x, y) = a_j y - b_j x$. Set $\phi[x : y] = G_1(x, y)/H_1(x, y)$, where G_1 and H_1 are homogeneous polynomials of degree s. Then the $g_{i's}$ and $h_{i's}$ are the linear factors of G_1 and H_1 , respectively.

Definition 1.2. Let X, Y, $g = \prod_{j=1}^r f_j^{k_j} \cdot \prod_{i=1}^s g_i$ and $h = \prod_{j=1}^r f_j^{k_j} \cdot \prod_{i=1}^s h_i$ be as in theorem 1. We call $(f_j = 0)$, $j = 1, ..., r$, the fixed directions of the pencil.

Given $\lambda \in \mathbb{C}$, the polynomial $g_{\lambda} = g + \lambda \cdot h$ plays the same role for the vector field $Z_{\lambda} = X + \lambda \cdot Y$ than g and h for X and Y . Its decomposition into irreducible factors is of the form

$$
g_{\lambda} = \Pi_{j=1}^{r} f_{j}^{k_{j}} . \Pi_{i=1}^{s} g_{i,\lambda} .
$$

Definition 1.3. The directions given by $(g_{i,\lambda} = 0)$ are called the movable directions of the pencil.

In particular, the number s of movable directions coincides with the degree of the map $\phi = g/h : \mathbf{P}^1 \to \mathbf{P}^1$.

As an application of theorem 1, we obtain the classification of the pencils of homogeneous commuting vector fields of degrees two and three.

Corollary 1. Let $(Z_\lambda)_\lambda$ be a pencil of commuting homogeneous of degree two vector fields on \mathbb{C}^2 . Then, after a linear change of variables on \mathbb{C}^2 , the generators X and Y of the pencil can be written as:

- (a). $X = g.R$ and $Y = h.R$, where g and h are homogeneous polynomials of degree one and $R = x.\partial_x + y.\partial_y$.
- (b). $X = x^2 \partial_x$ and $Y = y^2 \partial_y$. In this case, the pencil has two fixed directions.
- (c). $X = y^2 \partial_x$ and $Y = 2xy\partial_x + y^2\partial_y$. In this case, the pencil has one fixed direction.

Corollary 2. Let $(Z_\lambda)_{\lambda}$ be a pencil of commuting homogeneous of degree three vector fields on \mathbb{C}^2 . Then, after a linear change of variables on \mathbb{C}^2 , the generators X and Y of the pencil can be written as :

- (a). $X = g.R$ and $Y = h.R$, where g and h are homogeneous polynomials of degree two and $R = x.\partial_x + y.\partial_y$.
- (b). $X = y^3 \partial_x$ and $Y = 3xy^2 \partial_x + y^3 \partial_y$. In this case, the pencil has one movable and one fixed direction.
- (c). $X = x^2y\partial_x$ and $Y = xy^2\partial_x y^3\partial_y$. In this case, the pencil has one movable and two fixed directions.
- (d). $X = (2x^2y + x^3)\partial_x x^2y\partial_y$ and $Y = -xy^2\partial_x + (2xy^2 + y^3)\partial_y$. In this case, the pencil has one movable and three fixed directions.
- (e). $X = x^3 \partial_x$ and $Y = y^3 \partial_y$. In this case, the pencil has two movable and two fixed directions.

Some of the preliminary results that we will use in the proof of theorem 1 are also valid for quasi-homogeneous vector fields.

Definition 1.4. Let S be a linear diagonalizable vector field on \mathbb{C}^n such that all eigenvalues of S are relatively primes natural numbers. We say that a holomorphic vector field $X \neq 0$ is quasi-homogeneous with respect to S if $[S, X] = m X, m \in \mathbb{C}$.

It is not difficult to prove that, in this case, we have the following :

(I). $m \in \mathbb{N} \cup \{0\}$.

(II). X is a polynomial vector field.

Our next result concerns two commuting vector fields which are quasi-homogeneous with respect to the same linear vector field S. Let X and Y be two commuting vector fields on \mathbb{C}^2 , quasi-homogeneous with respect to the same vector field S with eigenvalues $p, q \in \mathbb{N}$ (relatively primes), where $[S, X] = m X$ and $[S, Y] = n Y$. Since S is diagonalizable, after a linear change of variables, we can assume that $S = p x \partial_x + q y \partial_y$. Set $X \wedge Y = f \partial_x \wedge \partial_y$, $S \wedge X = g \partial_x \wedge \partial_y$ and $S \wedge Y = h \partial_x \wedge \partial_y$. We will always assume that $X, Y \neq 0$

Remark 1.0.1. We would like to observe that f , g and h are quasi-homogeneous with respect to S , that is, we have $S(f)=(m + n + tr(S))f$, $S(g)=(m + tr(S))g$ and $S(h)=(n + tr(S))h$, where $tr(S) = p + q$. It is known that in this case, any irreducible factor of f, g or h, is the equation of an orbit of S , that is, x , y or a polynomial of the form $y^p - c x^q$, where $c \neq 0$.

Theorem 2. In the above situation, suppose that $f, h \neq 0$ and $n \neq 0$. Then :

- (a). $g \not\equiv 0$ and f/g is a non-constant meromorphic first integral of X.
- (b). Suppose that $m, n \neq 0$. Then f, g and h satisfy the two equivalent relations below :

$$
mn f2 dx \wedge dy = f dg \wedge dh + g dh \wedge df + h df \wedge dg
$$
 (6)

$$
(m-n)\frac{df}{f} + n\frac{dh}{h} - m\frac{dg}{g} = \frac{m\,n\,f}{gh}(qy\,dx - px\,dy)
$$
\n⁽⁷⁾

(c). Suppose that $m, n \neq 0$. Then any irreducible factor of f divides g and h. Conversely, if $p = gcd(g, h)$ then any irreducible factor of the p divides f. Moreover, the decompositions of f, g and h into irreducible factors, are of the form

$$
\begin{cases}\nf = \Pi_{j=1}^r f_j^{\ell_j} \\
 g = \Pi_{j=1}^r f_j^{m_j} . \Pi_{i=1}^s g_i^{a_i} \\
 h = \Pi_{j=1}^r f_j^{n_j} . \Pi_{i=1}^t h_i^{b_i}\n\end{cases} \tag{8}
$$

where $r > 0$, $m_j, n_j > 0$, $\ell_j \geq m_j + n_j - 1$, for all j, and any two polynomials in the set ${f_1, ..., f_r, g_1, ..., g_s, h_1, ..., h_t}$ are relatively primes.

(d). Suppose that f, g and h are as in (8) . Then vector fields X and Y can be written as

$$
\begin{cases}\nX = \frac{1}{n}g \left[\sum_{j=1}^{r} (\ell_j - m_j) \frac{1}{f_j} (f_{jx} \partial_y - f_{jy} \partial_x) - \sum_{i=1}^{s} a_i \frac{1}{g_i} (g_{ix} \partial_y - g_{iy} \partial_x) \right] \\
Y = \frac{1}{m}h \left[\sum_{j=1}^{r} (\ell_j - n_j) \frac{1}{f_j} (f_{jx} \partial_y - f_{jy} \partial_x) - \sum_{i=1}^{t} b_i \frac{1}{h_i} (h_{ix} \partial_y - h_{iy} \partial_x) \right]\n\end{cases}
$$
\n(9)

As an application, we have the following result :

Corollary 3. Let X and Y be germs of holomorphic commuting vector fields at $0 \in \mathbb{C}^2$. Let

$$
X = \sum_{j=d}^{\infty} X_j
$$

be the Taylor series of X at $0 \in \mathbb{C}^2$, where X_j is homogeneous of degree $j \geq d$. Assume that $d \geq 2$ and that the vector field X_d has no meromorphic first integral and that 0 is an isolated singularity of X_d . Then $Y = \lambda.X$, where $\lambda \in \mathbb{C}$.

We would like to recall a well-known criterion for a homogeneous vector field of degree d on \mathbb{C}^2 , say X_d , to have a meromorphic first integral (see [C-M]). Since the radial vector field $R = x \partial_x + y \partial_y$ has the meromorphic first integral y/x , we can assume that $R \wedge X_d = g \partial_x \wedge \partial_y \neq 0$. Let $\omega = i_{X_d}(dx \wedge dy)$, where i denotes the interior product. Then the form $\omega_1 = \omega/g$ is closed. In this case, if $g = \prod_{j=1}^r g_j^{k_j}$ is the decomposition of g into linear irreducible factors, then we have

$$
\omega_1 = \sum_{j=1}^r \lambda_j \, \frac{dg_j}{g_j} + d(h/g_1^{k_1-1} \dots g_r^{k_r-1}) \;,
$$

where $\lambda_j \in \mathbb{C}$, for all $1 \leq j \leq r$ and h is homogeneous of degree $d+1-r = dg(X_d)+1-r = dg(g/g_1...g_r)$. In this case, X_d has a meromorphic first integral if, and only if, either $\lambda_1 = ... = \lambda_r = 0$, or $\lambda_j \neq 0$ for some $j \in \{1, ..., r\}, h \equiv 0 \text{ and } [\lambda_1 : ... : \lambda_r] = [m_1 : ... : m_r], \text{ where } m_1, ..., m_r \in \mathbb{Z}.$ In particular, we obtain that the set of homogeneous vector fields of degree $d \geq 1$ with a meromorphic first integral is a countable union of Zariski closed sets.

Let us state some natural problems related to the above results.

Problem 1. Classify the pencils of commuting homogeneous vector fields of degree $d \geq 2$ on \mathbb{C}^n , $n \geq 3$.

Problem 1 seems dificult even in dimension three.

Problem 2. Let \mathcal{X}_2 be the set of germs at $0 \in \mathbb{C}^2$ of holomorphic vector fields. Given $X \in \mathcal{X}_2$, $X \neq 0$, to determine the set

$$
C(X) = \{ Y \mid [X, Y] = 0 \} .
$$

Under which conditions is $C(X)$ of finite dimension ?

Problem 3. Classify all pairs of commuting polynomial vector fields on \mathbb{C}^2 .

Observe that problem 3 has the following relation with the so called Jacobian conjecture : let f and g be two polynomials on \mathbb{C}^2 such that $f_x.g_y-f_y.g_x \equiv 1$. Then their hamiltonians $X = f_y \partial_x - f_x \partial_y$ and $Y = g_y \partial_x - g_x \partial_y$ commute. By this reason, problem 3 seems very difficult.

2 Preliminary results.

In this section we prove some general results that will be used in the next sections. Let S, X and Y be holomorphic vector fields defined in some domain U of \mathbb{C}^2 . Assume that :

- (I). $[S, X] = m.X, [S, Y] = n.Y$ and $[X, Y] = 0$, where $m, n \in \mathbb{C}$.
- (II). $X \wedge Y = f \cdot \partial_x \wedge \partial_y$, $S \wedge X = g \cdot \partial_x \wedge \partial_y$ and $S \wedge Y = h \cdot \partial_x \wedge \partial_y$, where $f, g, h \neq 0$.

We consider also the holomorphic 1-forms $\omega = i_X(dx \wedge dy)$ and $\eta = i_Y(dx \wedge dy)$, where i denotes the interior product.

Lemma 2.0.1. In the above situation we have :

(a). The meromorphic functions f/g and f/h are first integrals of X and Y, respectively. Moreover, f/g (resp. f/h) is constant if, and only if, $n = 0$ (resp. $m = 0$).

(b). If $n \neq 0$ (resp. $m \neq 0$) then

$$
\omega = \frac{g}{n} \left[\frac{dg}{g} - \frac{df}{f} \right] \ (resp. \ \eta = \frac{h}{m} \left[\frac{dh}{h} - \frac{df}{f} \right]) \ . \tag{10}
$$

(c). The polynomials f, g and h satisfy the relation:

$$
mn f2 dx \wedge dy = f dg \wedge dh + g dh \wedge df + h df \wedge dg . \qquad (11)
$$

Proof. Let us prove (a). Assume that $n \neq 0$. First of all, note that

$$
L_X(S \wedge X) = [X, S] \wedge X + S \wedge [X, X] = -m.X \wedge X = 0
$$

and simillarly $L_X(X \wedge Y) = 0$, where L denotes the Lie derivative. Since $X \wedge Y = (f/g) \cdot S \wedge Y$, we get

$$
0 = L_X(X \wedge Y) = L_X((f/g).S \wedge X) = X(f/g).S \wedge X + (f/g).L_X(S \wedge X) = X(f/g).S \wedge X \implies X(f/g) = 0.
$$

Therefore, f/g is a first integral of X. It remains to prove that f/g is a constant if, and only if $n = 0$. Since $L_S(X \wedge Y) = (m + n) X \wedge Y$ and $L_S(S \wedge X) = m S \wedge X$, we get

$$
(m+n) X \wedge Y = L_S((f/g).S \wedge X) = S(f/g).S \wedge X + (f/g).L_S(S \wedge X) = (S(f/g) + m.(f/g)) S \wedge X
$$

which implies that $S(f/g) = n.(f/g)$. Hence, if f/g is a constant then $n = 0$.

Conversely, if $n = 0$ then $S(f/g) = 0$ and f/g is a first integral of S and X simultaniously. If f/g was not constant then the vector fields X and S would be colinear in the non-empty open subset of U defined by $d(f/g) \neq 0$. This would imply that $S \wedge X \equiv 0$, and so $g \equiv 0$, a contradiction. Therefore, f/g is a constant.

Now, let $\omega = i_X(dx \wedge dy)$ and suppose that $n \neq 0$. Since f / g is a non-constant first integral of X, we get $\omega \wedge d(f/g) = 0$, which implies that

$$
\omega = k \left(\frac{dg}{g} - \frac{df}{f} \right)
$$

,

where k is meromorphic on U . On the other hand, we have

$$
g = -i_S(i_X(dx \wedge dy)) = -i_S(\omega) = k \left(\frac{S(f)}{f} - \frac{S(g)}{g} \right) = k \frac{S(f/g)}{f/g} = n.k \implies k = g/n.
$$

This proves (10).

Let us prove (c). Note first that $\omega \wedge \eta = f \cdot dx \wedge dy$. We leave the proof of this fact to the reader. If $n = 0$ (or $m = 0$) then (11) follows from $f/g = c \neq 0$ (or $f/h = c \neq 0$), where c is a constant. We leave the proof to the reader in this case. On the other hand, if $m, n \neq 0$ then

$$
f. dx \wedge dy = \omega \wedge \eta = \frac{g}{n} \left[\frac{dg}{g} - \frac{df}{f} \right] \wedge \frac{h}{m} \left[\frac{dh}{h} - \frac{df}{f} \right] = \frac{g.h}{m.n} \left[\frac{dh \wedge df}{h.f} + \frac{df \wedge dg}{f.g} + \frac{dg \wedge dh}{g.h} \right] ,
$$

which implies (11) .

In the next result we prove a kind of converse of (11).

 \Box

Lemma 2.0.2. Let f, g and h be holomorphic functions on a domain $U \subset \mathbb{C}^2$. Suppose that f/g and f/h are non-constant meromorphic functions on U. Define meromorphic vector fields X and Y by $i_X(dx \wedge dy) =$ $g[\frac{dg}{g} - \frac{df}{f}]$ and $i_Y(dx \wedge dy) = h[\frac{dh}{h} - \frac{df}{f}]$. Suppose that

$$
f\,dg\wedge dh + g\,dh\wedge df + h\,df\wedge dg = \lambda\,f^2\,dx\wedge dy\ ,
$$

where $\lambda \neq 0$. Then $[X, Y] = 0$.

Proof. The idea is to prove that $d(f/g) \wedge d(f/h) \neq 0$ and $[X, Y](f/g) = [X, Y](f/h) = 0$. This will imply that f/g and f/h are two independent meromorphic first integrals of $[X, Y]$, and so $[X, Y] = 0$.

Proof of $d(f/g) \wedge d(f/h) \neq 0$. Note that

$$
d(f/g) \wedge d(f/h) = \frac{f}{g^2h^2}[f\,dg \wedge dh + h\,df \wedge dg + g\,dh \wedge df] = \lambda \cdot \frac{f^3}{g^2h^2}\,dx \wedge dy \neq 0 \implies
$$

 $\implies d(f/q) \wedge d(f/h) \neq 0.$

Proof of $[X, Y] = 0$. We have

$$
[X,Y](f/g) = X(Y(f/g)) - Y(X(f/g)) = X(Y(f/g)),
$$

because $X(f/g) = 0$. On the other hand, a straightforward computation shows that

$$
Y(f/g) dx \wedge dy = d(f/g) \wedge \eta , \qquad (12)
$$

 \Box

 \Box

where $\eta = i_Y(dx \wedge dy)$. Since $\eta = h\left[\frac{dh}{h} - \frac{df}{f}\right] = -\frac{h^2}{f}d(f/h)$, we get from (12) that

$$
d(f/g) \wedge \eta = -\frac{h^2}{f}d(f/g) \wedge d(f/h) = -\frac{\lambda f^2}{g^2} dx \wedge dy \implies Y(f/g) = -\lambda (f/g)^2 \implies
$$

 $\implies X(Y(f/g)) = 0$. In a similar way, we get $[X, Y](f/h) = 0$.

3 Proofs.

3.1 Proof of Theorem 2.

Assume that $n \neq 0$, $f, h \neq 0$ and $g \equiv 0$. Since S has an isolated singularity at $0 \in \mathbb{C}^2$ and $S \wedge X = g.\partial_x \wedge \partial_y = 0$, we get $X = \psi.S$, where $\psi \neq 0$ is a polynomial. It follows that

$$
0 = [Y, X] = [Y, \psi.S] = Y(\psi).S - \psi.[S, Y] = Y(\psi).S - n.\psi.Y \implies Y(\psi) \neq 0
$$

and $S \wedge Y = 0$, which implies $h \equiv 0$, a contradiction. Hence, $g \not\equiv 0$. It follows from lemma 2.0.1 that f/g is a non-constant meromorphic first integral of X . This proves (a) of theorem 2.

Lemma 2.0.1 implies also that f, g and h satisfy relation (6). Let us prove that (6) is equivalent to (7). We will use the following fact : let μ be a 2-form in \mathbb{C}^2 such that $L_S(\mu) = \lambda \mu$, where $\lambda \in \mathbb{C}$. Then

$$
d(iS(\mu)) = LS(\mu) = \lambda \cdot \mu
$$
\n(13)

Set $\mu = f dg \wedge dh + g dh \wedge df + h df \wedge dg$ and $\mu_1 = mn f^2 dx \wedge dy$. We have seen in remark 1.0.1 that $S(f)=(m+n +tr(S))$.f, $S(g)=(m+tr(S))$.g and $S(h)=(n+tr(S))$.h. As the reader can check, this implies that $L_S(\mu) = \lambda \mu$ and $L_S(\mu_1) = \lambda \mu_1$, where $\lambda = 2m + 2n + 3tr(S) \neq 0$.

On the other hand, we have

$$
\begin{cases}\ni_S(\mu_1) = mn f^2(px\,dy - qy\,dx) \\
i_S(\mu) = -n\,fg\,dh + m\,fh\,dg + (n - m)\,gh\,df\n\end{cases}
$$

as the reader can check. If we assume (6), we have $\mu_1 = \mu$, so that $i_S(\mu) = i_S(\mu_1)$ and

$$
mn f2(px dy - qy dx) = -n fg dh + m fh dg + (n - m) gh df \implies (7).
$$

If we assume (7), then we have

$$
(7) \implies i_S(\mu_1 - \mu) = 0 \stackrel{(13)}{\implies} \lambda(\mu_1 - \mu) = d(i_S(\mu_1 - \mu)) = 0 \implies (6).
$$

This proves (b) of theorem 2.

Let us prove (c) . We will use (7) in the form

$$
(m-n) g.h df + n f.g dh - m f.h dg = m n f2 (q y dx - p x dy).
$$
 (14)

It follows from (14) that, if k is an irreducible factor of both polynomials g and h, then k divides f^2 , and so it divides f.

Let us prove that any factor of f is a factor of both polynomials g and h. Here we use that f/g is a first integral of X . This implies that

$$
f.X(g) = g.X(f) . \tag{15}
$$

 \Box

Recall that any irreducible factor of f or g is the equation of an orbit of S (remark 1.0.1). Let $f = \prod_{j=1}^r f_j^{\ell_j}$ $(r, \ell_j > 0)$, be the decomposition of f into irreducible factors and set $F = \prod_j f_j$. It follows from (15) that

$$
F.X(g) = F\frac{X(f)}{f}g = g.k \text{ ,where } k = F\frac{X(f)}{f} = \sum_{j=1}^{r} \ell_j \cdot f_1 \dots f_{j-1} \cdot X(f_j) \cdot f_{j+1} \dots f_r \tag{16}
$$

On the other hand, (16) implies that for any $j = 1, ..., r$, f_j divides g or $X(f_j)$. If f_j divides g, we are done. If f_j divides $X(f_j)$ then $(f_j = 0)$ is invariant for X. Since $(f_j = 0)$ is also invariant for S, it is a common orbit of X and S. This implies that f_j divides $S \wedge X$, and so it divides g. Similarly, any irreducible factor of f divides h.

Now, we can assume that the decompositions of f, g and h into irreducible factors are as in (8) :

$$
\left\{ \begin{aligned} f &= \Pi_{j=1}^r \, f_j^{\ell_j} \\ g &= \Pi_{j=1}^r \, f_j^{m_j} . \Pi_{i=1}^s \, g_i^{a_i} \\ h &= \Pi_{j=1}^r \, f_j^{n_j} . \Pi_{i=1}^t \, h_i^{b_i} \end{aligned} \right.
$$

where $\ell_j, m_j, n_j > 0$ and any two polynomials in the set $\{f_1, ..., f_r, g_1, ..., g_s, h_1, ..., h_t\}$ are relatively primes. Let us prove that $\ell_j \geq m_j + n_j - 1$. As the reader can check, it follows from (14) that $f_j^{m_j+n_j+\ell_j-1}$ divides f^2 . This implies that $m_j + n_j + \ell_j - 1 \leq 2\ell_j$, and we are done.

It remains to prove (d). Let $\omega = i_X(dx \wedge dy)$. We have seen in lemma 2.0.1 that

$$
\omega = \frac{g}{n} \left[\frac{dg}{g} - \frac{df}{f} \right] = \frac{g}{n} \left[\sum_{i=1}^{s} a_i \frac{dg_i}{g_i} - \sum_{j=1}^{r} (\ell_j - m_j) \frac{df_j}{f_j} \right]
$$

As the reader can check, this implies that X is like in (9). Similarly, Y is also as in (9).

3.2 Proof of Corollary 3.

Let $X = \sum_{j=d}^{\infty} X_j$ and $Y \neq 0$ be germs of holomorphic vector fields at $0 \in \mathbb{C}^2$ such that $[X, Y] = 0$. Assume that $d \geq 2$ and X_d has an isolated singularity at $0 \in \mathbb{C}^2$ and no meromorphic first integral. Set $Y = \sum_{i=r}^{\infty} Y_j$, where Y_j is homogeneous of degree j, $r \geq 0$, and $Y_r \neq 0$. We have $[R, X_d] = m X_d$, $[R, Y_r] = n Y_r$, where $m = d - 1 \neq 0$ and $n = r - 1$. Note also that $[X_d, Y_r] = 0$.

Claim 3.2.1. $r = d$ and $Y_d = \lambda \cdot X_d$, where $\lambda \neq 0$.

Proof. As before, set $X_d \wedge Y_r = f.\partial_x \wedge \partial_y$, $R \wedge X_d = g.\partial_x \wedge \partial_y$ and $R \wedge Y_r = h.\partial_x \wedge \partial_y$. Observe that $g \neq 0$. Indeed, if $g \equiv 0$ then $R \wedge X_d = 0$. Since 0 is an isolated singularity of R, it follows from De Rham's division theorem (cf. [DR]) that $X_d = \phi.R$, where ϕ is a homogeneous polynomial of degree $d-1 > 0$. But, this implies that $sing(X_d) \supset (\phi = 0)$, and so 0 is not an isolated singularity of X_d .

Suppose by contradiction that $r \neq d$. Let us prove that in this case we have $f, h \neq 0$. Suppose by contradiction that $f \equiv 0$. This implies that $X_d \wedge Y_r \equiv 0$. Since X_d has an isolated singularity at $0 \in \mathbb{C}^2$, it follows from De Rham's division theorem that $Y_r = \phi \cdot X_d$, where ϕ is a homogeneous polynomial of degree $r - d > 0$. Therefore,

$$
0 = [X_d, Y_r] = [X_d, \phi. X_d] = X_d(\phi). X_d \implies X_d(\phi) = 0 \implies
$$

that ϕ is a non-constant first integral of X_d , a contradiction. Hence, $f \neq 0$. Suppose by contradiction that $h \equiv 0$. This implies that $R \wedge Y_r \equiv 0$, so that $Y_r = \phi \cdot R$, where $\phi \neq 0$ is a homogeneous polynomial of degree $k = r - 1$. From this we get

$$
0 = [X_d, Y_r] = [X_d, \phi.R] = X_d(\phi).R + \phi.[X_d, R] = X_d(\phi).R - (d-1).\phi.X_d \implies
$$

$$
X_d(\phi).R = (d-1).\phi.X_d \ .
$$

If $\phi \neq 0$ is a constant then $d = 1$, a contradiction. If ϕ is not a constant then $X_d(\phi) \neq 0$, for otherwise ϕ would be a non-constant first integral of X_d . In this case, we get $R \wedge X_d = 0$, and so $g \equiv 0$, a contradiction. Hence, $f, g, h \neq 0$. Now, we can apply (a) of lemma 2.0.1.

If $r \neq 1$ then $n = r - 1 \neq 0$ and f/g is a non-constant meromorphic first integral of X_d , a contradiction. If $r = 1$ then $n = 0$ and (a) of lemma 2.0.1 implies that $f = c.g$, where $c \in \mathbb{C}$. Therefore,

$$
0 = (f - cg) \partial_x \wedge \partial_y = X_d \wedge (Y_1 + c.R) \implies Y_1 = -c.R \neq 0,
$$

by the division theorem and the fact that $d = dg(X_d) > 1$. But, this implies that $0 = [X_d, Y_1] = c(d-1) \cdot X_d \neq 0$, a contradiction. Hence, $r = d$.

Now, $r = d$ implies that $n = m = d - 1 > 0$ and $f \equiv 0$, for otherwise, f/g would be a non-constant meromorphic first integral of X_d . It follows that $X_d \wedge Y_d = 0$, and so $Y_d = \lambda$. X_d , where $\lambda \neq 0$ is a constant. \Box This proves the claim.

Let us finish the proof of corollary 3. Let $Z = Y - \lambda X$. Then $[X, Z] = 0$. If $Z \neq 0$, then we could write $Z = \sum_{j=r}^{\infty} Z_j$, where $r > d$, Z_j is homogeneous of degree j and $Z_r \neq 0$. But, this contradicts claim 3.2.1 and \Box proves the corollary.

3.3 Proof of Theorem 1.

Let $(Z_\lambda)_{\lambda \in \mathbf{P}^1}$ be a non-trivial pencil of homogeneous of degree $d \geq 2$ commuting vector fields on \mathbb{C}^2 . Fix two generators of the pencil, X and Y, and set as before $X \wedge Y = f \cdot \partial_x \wedge \partial_y$, $R \wedge X = g \cdot \partial_x \wedge \partial_y$ and $R \wedge Y = h \cdot \partial_x \wedge \partial_y$.

Suppose first that the pencil is colinear, that is, $f \equiv 0$. In this case, we can write $X = \alpha \cdot Z$, where α is the greatest common divisor of the components of X and Z has an isolated singularity at $0 \in \mathbb{C}^2$. Since $Y \wedge X = 0$, we get $Y \wedge Z = 0$, and so $Y = \beta.Z$, where β is a homogeneous polynomial with $dg(\beta) = dg(\alpha)$, by De Rham's division theorem. Now,

$$
0 = [X, Y] = [\alpha. Z, \beta. Z] = (\alpha Z(\beta) - \beta Z(\alpha)).Z \implies Z(\beta/\alpha) = 0.
$$

Since the pencil is non-trivial, β/α is non-constant. On the other hand, we can write $\frac{\beta(x,y)}{\alpha(x,y)} = \phi(y/x)$, where $\phi(t) = \frac{\beta(1,t)}{\alpha(1,t)}$, because α and β are homogeneous of the same degree. Therefore,

$$
0 = Z(\phi(y/x)) = \phi'(y/x).Z(y/x) \implies Z(y/x) = 0,
$$

because $\phi' \neq 0$. This implies that $y Z(x) = x Z(y)$. If we set $Z = A \partial_x + B \partial_y$, then we get $y A = x B$, and so $A = \lambda.x$ and $B = \lambda.y$, where λ is a homogeneous polynomial. Since 0 is an isolated singularity of Z, it follows that λ is a constant. Hence, $X = \alpha_1 \cdot R$ and $Y = \beta_1 \cdot R$, where $\alpha_1 = \lambda \cdot \alpha$ and $\beta_1 = \lambda \cdot \beta$ are homogeneous polynomials of degree $d-1$. This proves the first part of theorem 1.

Suppose now that the pencil is non-colinear. In this case, we have $f \neq 0$. Let us prove that $g, h \neq 0$. If $g \equiv 0$, for instance, then $X = \phi.R$, where $\phi \neq 0$ is a homogeneous polynomial of degree $m = n = d - 1 > 0$, by the division theorem. Therefore,

$$
0 = [Y, \phi.R] = Y(\phi).R - m.\phi.Y.
$$

Since $m.\phi.Y \neq 0$, the above relation implies that Y and R are colinear. Hence, $X//Y$, a contradiction. This proves (a) of theorem 1.

Since $m = n \neq 0$, it follows from (a) of theorem 2 that f /g and f /h are non-constant meromorphic first integrals of X and Y, respectively, which proves (b) of theorem 1. Recall that f, g and h are homogeneous polynomials, where $dg(f) = 2d$, $dg(g) = dg(h) = d + 1$.

It follows from (c) of theorem 2 that we can write the decomposition of f, g and h into irreducible linear $\text{factors as } f = \prod_{j=1}^r f_j^{\ell_j}, \ g = \prod_{j=1}^r f_j^{m_j} \cdot \prod_{i=1}^a g_i^{a_i} \text{ and } h = \prod_{j=1}^r f_j^{n_j} \cdot \prod_{i=1}^b h_i^{b_i}, \text{ where } r > 0, \ m_j, n_j > 0, \ \ell_j \geq 0$ $m_j + n_j - 1$ and any two polynomials of the set $\{f_1, ..., f_r, g_1, ..., g_a, h_1, ..., h_b\}$ are relatively primes. Set $k_j =$ $min(m_i, n_i)$.

Claim 3.3.1. The generators of the pencil can be choosen in such a way that:

- (a). $m_j = n_j = k_j$ for all $j = 1, ..., r$.
- (b). $a = b$ and $a_i = b_i = 1$ for all $i = 1, ..., a$.

Proof. Set $X_{\lambda} = X + \lambda Y$ and $R \wedge X_{\lambda} = g_{\lambda} \partial_x \wedge \partial_y$, where $g_{\lambda} = g + \lambda.h$. It follows from Bertini's theorem that for a generic set of $\lambda \in \mathbb{C}$ the decomposition of g_{λ} into linear irreducible factors is of the form :

$$
g_{\lambda} = \Pi_{j=1}^{r} f_j^{k_j} \cdot \Pi_{i=1}^{s} g_{i\lambda} , \qquad (17)
$$

where $s + \sum_j k_j = d + 1$ and any two polynomials in the set $\{f_1, ..., f_r, g_{1\lambda}, ..., g_{s\lambda}\}\$ are relatively primes. Now, it is sufficient to take $\lambda_1 \neq \lambda_2 \in \mathbb{C}$ such that g_{λ_1} and g_{λ_2} are as in (17). Set $X_1 = X_{\lambda_1}$, $Y_1 = X_{\lambda_2}$, $g = g_{\lambda_1}$ and $h = g_{\lambda_2}$. Then X_1 and Y_1 are generators of the pencil with the properties required in claim 3.3.1. \Box

From now on, we will suppose that the generators X and Y of the pencil satisfy claim 3.3.1. Let us prove that the decomposition of f into irreducible linear factors is of the form

$$
f = \Pi_{j=1}^{r} f_j^{2k_j + m_j}, \text{ where } m_j \ge 0.
$$
 (18)

Since $m = n = d - 1 > 0$, relation (14) implies that

$$
g\,dh - h\,dg = m\,f(y\,dx - x\,dy),\,\,m \neq 0.
$$

Set $g = \psi . G_1$ and $h = \psi . H_1$, where $\psi = \prod_{j=1}^r f_j^{k_j}$. As the reader can check, we have

$$
g dh - h dg = \psi^2 \cdot (G_1 dH_1 - H_1 dG_1) = m f(y dx - x dy) \implies \psi^2 | f
$$
.

Hence, the decomposition of f is like in (18) and we get

$$
G_1 dH_1 - H_1 dG_1 = m \prod_{j=1}^r f_j^{m_j} (y dx - x dy).
$$

Now, consider the map $\phi \colon \mathbf{P}^1 \to \mathbf{P}^1$ given by

$$
\phi[x:y] = \frac{g(x,y)}{h(x,y)} = \frac{G_1(x,y)}{H_1(x,y)}.
$$

Since G_1 and H_1 are relatively primes, the degree of ϕ is $s = dg(G_1) = dg(H_1)$. Let $\{p_1, ..., p_t\} \subset \mathbf{P}^1$ be the critical set of ϕ and $\phi(p_j) = c_j \in \mathbf{P}^1$. If $c_j \neq \infty$ set $K_j = G_1 - c_j$. H_1 , and if $c_j = \infty$ set $K_j = H_1$. Suppose that p_j is a critical point with $mult(\phi, p_j) = \ell_j \ge 2$. This implies that we can write $K_j = \psi_j^{\ell_j}$. A, where ψ_j is a linear polynomial, A a homogeneous polynomial and ψ_j does not divide A. We claim that $\psi_j^{\ell_j-1} | \Pi_i f_i^{m_i}$. Indeed, if $c_i \neq \infty$, we get

$$
K_j dH_1 - H_1 dK_j = G_1 dH_1 - H_1 dG_1 = m \prod_{i=1}^r f_i^{m_i} (y dx - x dy) . \qquad (19)
$$

Since $\psi_j^{\ell_j-1}$ divides $K_j dH_1 - H_1 dK_j$, relation (19) implies the claim. If $c_j = \infty$ then $\psi_j^{\ell_j-1}$ divides $G_1 dH_1 H_1 dG_1$ and we get also the claim. Therefore, $\psi_j = \lambda_j f_{i(j)}, \lambda_j \in \mathbb{C}^*$, for some $i(j) \in \{1, ..., r\}$ and $\ell_j - 1 \leq m_{i(j)}$. In particular, we get $t \leq r$. By reordering the $f_{i's}$, if necessary, we can suppose without lost of generality that $i(j) = j, j = 1, ..., t$. Set $\ell_j = 1$ for $t < j \leq r$. With these conventions, we have $m_j - (\ell_j - 1) \geq 0$ for all $j = 1, ..., r$.

Let us prove that $m_j = \ell_j - 1$ for all $j = 1, ..., r$. Recall that $s + \sum_i k_i = d + 1$. Since $f = \prod_i f_i^{2k_i + m_i}$ and $dg(f)=2 d$, we get

$$
\sum_i m_i = dg(\Pi_i f_i^{m_i}) = 2 d - 2 \sum_i k_i = 2 d - 2 (d + 1 - s) = 2 s - 2.
$$

On the other hand, it follows from Riemann-Hurwitz formula (cf. [F-K]) and $m_i - (\ell_i - 1) \geq 0$ that

$$
\sum_{i} (\ell_i - 1) = 2s - 2 = \sum_{i} m_i \implies 0 \leq \sum_{i=1}^{m} [m_i - (\ell_i - 1)] = 0 \implies m_i = \ell_i - 1, \forall i.
$$

This proves (d) and (e) of theorem 1. Note that (f) follows from (d) of theorem 2.

Let us prove that $1 \leq s \leq d-1$ and $1 \leq r \leq d$. First of all note that

$$
k_j \ge 1 \quad \Longrightarrow \quad 2r \le \sum_{j=1}^r (2k_j + m_j) = 2d \quad \Longrightarrow \quad 1 \le r \le d \; .
$$

Moreover,

$$
s = d + 1 - \sum_{j=1}^{r} k_j \implies s \le d + 1 - r \le d \implies 0 \le s \le d.
$$

Suppose by contradiction that $s = 0$. This implies that the map ϕ is constant, and so $g = \lambda \cdot h$, where $\lambda \in \mathbb{C}^*$. It follows that

$$
R \wedge (X - \lambda.Y) = 0 \implies X - \lambda.Y = \psi.R ,
$$

where ψ is homogeneous of degree d – 1. Therefore, the first part of theorem implies that X and Y are colinear with the radial vector field, a contradiction. Hence, $s \geq 1$. It remains to prove that $s \leq d-1$. Suppose by contradiction that $s = d$. In this case, we get $g = f_1.g_1...g_d$, $h = f_1.h_1...h_d$ and $f = f_1^{2d}$. It follows that the map $\phi = (g_1...g_d)/(h_1...h_d)$ has degree $d \geq 2$ and just one ramification point, $(f_1 = 0)$, with multiplicity $2d - 1$. However, this is not possible, because this would imply that

$$
mult(\phi, (f_1 = 0)) = 2d - 1 > d.
$$

It remains to prove that in the converse construction the vector fields X and Y defined by (9) in theorem 1 commute. But, this is a consequence of lemma 2.0.2 and the fact that f , g and h satisfy (b) of theorem 2. This finishes the proof of theorem 1. □

3.4 Proof of Corollary 1.

Let X_1 and Y_1 be generators of a pencil of commuting of degree two homogeneous vector fields on \mathbb{C}^2 . As before, define f_1, g_1 and h_1 by $X_1 \wedge Y_1 = f_1 \partial_x \wedge \partial_y$, $R \wedge X_1 = g_1 \partial_x \wedge \partial_y$ and $R \wedge Y_1 = h_1 \partial_x \wedge \partial_y$, respectively. If $g_1 \equiv h_1 \equiv 0$ then X_1 and Y_1 are multiple of the radial vector field, and so we are in case (a) of corollary 1. If not, then $f_1, g_1, h_1 \neq 0$, by (a) of theorem 1. Moreover, the rational map $\phi = g_1/h_1$ has degree $s = 1$, by (c) of theorem 1. Therefore, the pencil has one movable direction and one or two fixed directions, because g_1 has degree $d+1=3$.

Suppose that it has two fixed directions. In this case, we can suppose that they are $(x = 0)$ and $(y = 0)$. This implies that $g_1 = x.y.g_2$, $h_1 = x.y.h_2$ and $f_1 = x^2.y^2$, where g_2 and h_2 correspond to the movable direction. Since g_2 and h_2 are relatively primes, there exist $(a, b), (c, d)$ such that $a g_2 + b h_2 = x$ and $c g_2 + d h_2 = y$. If we set $g := x^2 \cdot y = x \cdot y(a \, g_2 + b \, h_2)$ and $h := x \cdot y^2 = x \cdot y(c \, g_2 + d \, h_2)$, then we can apply lemma 2.0.2 to $f = x^2 \cdot y^2$, g and h. We get the first integrals $f/g = (x^2 \cdot y^2)/(x^2 \cdot y) = y$, $f/h = (x^2 \cdot y^2)/(x \cdot y^2) = x$, the forms $\omega := g \frac{d(f/g)}{f/g} = x^2 dy$, $\eta := h \frac{d(f/h)}{f/h} = y^2 dx$, and the vector fields $X = x^2 \partial_x$, $Y = y^2 \partial_y$. So, we are in case (b) of corollary 1.

Suppose that it has one fixed direction. We can suppose that it is $(y = 0)$. In this case, we have $g_1 = y^2 \cdot g_2$, $h_1 = y^2 \cdot h_2$ and $f = y^4$. Consider linear combinations $a g_2 + b h_2 = x$ and $c g_2 + d h_2 = y$. So, we have just to apply lemma 2.0.2 to the polynomials $f = y^4$, $g = x \cdot y^2$ and $h = y^3$. By doing this, we obtain case (c) of corollary 1, as the reader can check. \Box

3.5 Proof of Corollary 2.

Let f, g and h be as in theorem 1. If $g \equiv h \equiv 0$ then we are in case (a) of corollary 2. If not, then $f, g, h \neq 0$ and $\phi = q/h$ has degree s, where $s \in \{1, 2\}$.

Let us consider the case where $s = 2$. Let $\phi \colon \mathbf{P}^1 \to \mathbf{P}^1$ be a map of degree two. It follows from Riemann-Hurwitz formula that $\sum_{p}(mult(\phi, p) - 1) = 2s - 2 = 2$, and so the map must have two ramification points, both of multiplicity two. After composing the map in both sides with Moëbius transformations, we can suppose that $\phi[x:y] = y^2/x^2$. This implies that $(x = 0)$ and $(y = 0)$ are fixed directions of the pencil, so that x.y divides g and h. Since $dg(g) = dg(h) = 4$ and $s = 2$, we get $g = x.y.g_1.g_2$ and $h = x.y.h_1.h_2$, and so $k_1 = k_2 = 1$ in (2) of theorem 1. Since $dg(f) = 6$ and $mult(\phi, (x = 0)) = mult(\phi, (y = 0)) = 2$, we must have $m_1 = m_2 = 1$ and $f = x^3 \cdot y^3$. In this case, we have

$$
\phi = \frac{g}{h} = \frac{(g/x.y)}{(h/x.y)} = \frac{y^2}{x^2} \implies g = x.y^3 \text{ and } h = x^3.y.
$$

So, when we apply lemma 2.0.2, we get $f/g = x^2$, $f/h = y^2$, $\omega = 2y^3 dx$ and $\eta = 2x^3 dy$. Hence, we can set $X = x^3 \partial_x$ and $Y = y^3 \partial_y$. In this case we get case (e) of corollary 2.

Suppose now that $s = 1$. In this case, we have just one movable direction and the map ϕ has no ramification points, which implies that $m_j = 0$ for all $j = 1, ..., r$. This implies that $f = \prod_{j=1}^r f_j^{2k_j}$. Since $dg(f) = 6$, we have three possibilities : (1). $r = 1$ and $k_1 = 3$. (2). $r = 2$, $k_1 = 1$ and $k_2 = 2$. (3). $r = 3$ and $k_1 = k_2 = k_3 = 1$.

Case (1). In this case, we have just one fixed direction f_1 . After a linear change of variables in \mathbb{C}^2 , we can suppose that it is $f_1 = y$. This implies that $f = y^6$, $g = y^3 \cdot g_1$ and $h = y^3 \cdot h_1$. Since g_1 and h_1 are relatively primes, there exist $a, b, c, d \in \mathbb{C}$ such that $a.d - b.c \neq 0$ and $a.g_1 + b.h_1 = x$ and $c.g_1 + d.h_1 = y$. Therefore, we can apply the construction of lemma 2.0.2 to $f = y^6$, $g = y^4$ and $h = x.y^3$. This gives the first integrals $f/g = y^2$ and $f/h = y^3/x$. Moreover,

$$
\begin{cases}\n\omega = i_X(dx \wedge dy) = 2y^4 \frac{dy}{y} = 2y^3 dy \implies X = 2y^3 \partial_x \\
\eta = i_Y(dx \wedge dy) = x.y^3 (3 \frac{dy}{y} - \frac{dx}{x}) = 3xy^2 dy - y^3 dx \implies Y = 3xy^2 \partial_x + y^3 \partial_y\n\end{cases}
$$

.

 \Box

Therefore, we get case (b) of corollary 2.

Case (2). In this case, we have two fixed directions, that we can suppose to be $f_1 = x$ and $f_2 = y$. Since $k_1 = 1$ and $k_2 = 2$, we get $g = x.y^2 \cdot g_1$, $h = x.y^2 \cdot h_1$ and $f = x^2 \cdot y^4$. After taking linear combinations, we can suppose that $g = x^2 \cdot y^2$ and $h = x \cdot y^3$. This gives the first integrals y^2 and $x \cdot y$ and so $\omega = 2 x^2 y dy$ and $\eta = xy^2 dy + y^3 dx$ and we are in case (c).

Case (3). In this case, we have three fixed directions. After a linear change of variables we can suppose that they are $f_1 = x$, $f_2 = y$ and $f_3 = x + y$. This gives $g = xy (x + y) \cdot g_1$, $h = xy (x + y) \cdot h_1$ and $f = x^2 y^2 (x + y)^2$. After taking linear combinations of g_1 and h_1 , we can suppose that $g = x^2 y (x + y)$ and $h = xy^2 (x + y)$. Therefore we get the first integrals are $f/g = y(x + y)$, $f/h = x(x + y)$ and

$$
\begin{cases}\n\omega = x^2 y (x + y) \left[\frac{dy}{y} + \frac{dx + dy}{x + y} \right] = x^2 y dx + (2 x^2 y + x^3) dy & \implies X = (2 x y^2 + x^3) \partial_x - x^2 y \partial_y \\
\eta = x y^2 (x + y) \left[\frac{dx}{x} + \frac{dx + dy}{x + y} \right] = (2 x y^2 + y^3) dx + x y^2 dy & \implies Y = -x y^2 \partial_x + (2 x y^2 + y^3) \partial_y\n\end{cases}
$$

Therefore, we are in case (d) of corollary 2.

References

[C-M] D. Cerveau, J.-F. Mattei : "Formes intégrables holomorphes singulières"; Astérisque, vol.97(1982).

- [DR] G. de Rham : "Sur la division des formes et des courants par une forme lin´eaire"; Comm. Math. Helvetici, 28 (1954), pp. 346-352.
- [F-K] H.M.Farkas & I.Kra: "Riemann Surfaces"; Springer-Verlag, NY 1980.
	- [G] A. Guillot : "Sur les exemples de Lins Neto de feuilletages alg´ebriques"; C. R. Math. Acad. Sci. Paris 334 (2002), no. 9, pp. 747-750.

A. Lins Neto Instituto de Matemática Pura e Aplicada Estrada Dona Castorina, 110 Horto, Rio de Janeiro, Brasil E-Mail - alcides ϱ impa.br