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ABSTRACT. We examine the question of the minimal Sobolev regularity required
to construct local solutions to the Cauchy problem for the Benney-Luke (BL) and
generalized Benney-Luke (gBL) equations. As a consequence we prove that the initial
value problems are globally well-posed in the energy space.

1. Introduction

An intermediate model for the evolution of weakly nonlinear, long water waves of
small amplitude is given by the following equation

Oy — AD + p(aA*® — bAD,) + ¢(P,AD +2VD - VD,) =0, (1.1)

where ®(,x) is a real valued function, (¢,x) € R, x R* R, = [0,00), a,b, i, and € are
positive real constants and V and A are the two-dimensional gradient and Laplacian,
respectively.

In the equation (1.1), ® is the velocity potential on the domain. After rescaling the
variables, we can suppose the constants a and b are positive and such that a — b =
a— % # 0, where « is the Bond number, e (nonlinearity coefficient) is the amplitude
parameter and p = (hy/L)? is the long-wave parameter (dispersion coefficient), where
hg is the equilibrium depth and L is the length scale. This equation was first derived by
Benney and Luke (see [2]) when a = 1/6 and b = 1/2 with no surface tension (a = 0).

Pego and Quintero [7] showed that the Benney-Luke equation reduces formally to
the Kadomtsev-Petviashvili (KP-I or KP-II) equation after a suitable renormalization.
Indeed, putting 27 = et, X =2 —, Y = /ey and ®(¢t,z,y) = f(7, X,Y), neglecting
O(e) terms we find that n = fy satisfies

1
(nr — (= g)UXXX + 3mmx)x + vy = 0. (1.2)

We recall that if @ > 1/3 this equation is KP-1, if o < 1/3 it is KP-II and, if we
suppose that f does not depend on the Y variable we obtain the Korteweg de-Vries
(KdV) equation. They also found traveling-wave solutions of (1.1), i.e. solutions of
the form ®(t,z,y) = \/Tﬁv(z;\/gt, \/Lﬁ) and they showed that if the wave speed c¢ satisfies
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c* < min(1, a/b) then there exists a nontrivial finite-energy solution v, where the energy
associated to v is given by

1
E(v) = 5 R2{(1 + A+ vl + (a4 bP)o2, + (2a + be*)v3, + av) Ydady.  (1.3)

Quintero in [10] proved that the solitary waves are orbitally stable if the wave speed
c is near 0 or 1. He also showed in [9] the existence and analyticity of lump solution
for generalized Benney-Luke equation

Dy — AP + p(aA’® — bADy) + (DA, + 2VPD - VO,) = 0, (1.4)

where VP and A, given by are
VPP = ((0,2)", (9,2)") (1.5)
A =V - (VPD) =0,(0,P)" + 0,(0,P)". (1.6)

We will call equations (1.1) and (1.4) as (BL) and (gBL) equations respectively through-
out this work. The family of Benney-Luke equations includes the effect of surface ten-
sion and a variety of equivalent forms of dispersion. Let us remark that the model
(1.1) does not hold for a = b (o = 1/3). Paumond in [6], derived an equation that is
still valid when we suppose that « is equal or close to 1/3. More precisely,

Oy — A® +\/e(aA*® —bDAD,) + e(BA? Dy — AN?D) +¢(D,ADP +2VD-Vd,) =0 (1.7)

where € = p? and the parameters A, B are linked. In [5], it was rigorously shown
that the L?(R?)-norm of the difference between the amplitude of the wave given by
equation (1.2) and the one given by Benney-Luke (BL) equation is of order O(e%/4)
during a growing with € time. Paumond in [5] also studied the Cauchy problem

{% — AD + p(aA?® — bAD,) + €(B,AD + 2VD - Vd,) = 0 18)

O(0,x) = Pp(x), P(0,x) = Py(x)

and proved that it is globally well-posed for initial data in H*(R?)x H*~!(R?), s integer
and s > 2.

In this work we study the local regularity of Benney-Luke and generalized Benney-
Luke equation and the well-posedness in the energy space, H?(R?)N H'(R?) x H'(R?).
Our main purpose is to prove global well-posedness in the energy space. It is important
to remember that the solitary wave of the IVP associated to (BL) and (gBL) equations
lies in this space.

We obtain the well-posedness result for Benney-Luke equations using the fixed point
argument and the generalized Strichartz inequalities for the wave equation. We showed
a similar result for the generalized Benney-Luke equation (gBL). We also prove that
the lower bound for the Sobolev exponent can be reduced from 5/2 to 2 in three
space dimensions using the Strichartz estimates and the ideas of Ponce and Sideris
[8]. Klainerman and Machedon [12], working in three dimensions, showed that if the
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nonlinearity of the inhomogeneous wave equation satisfies an “null condition”, then
the Sobolev exponent s = 2 can be achieved.
In our case if we define u such that

B(t,x) = \\/Zu (# %x) , (1.9)

with @ satisfying the Benney-Luke equation when p = 1 and if p > 1 ® satisfies the
generalized Benney-Luke equation, then the initial value problem (1.8) is equivalent to

{(1 — bA) (uy — *Au) = (1 — ) Au — F,(Oyu, VPu, Vou) (1.10)

u(0,x) = up(x) u(0,%x) = uy(x)

where ¢? = %, ui(x) = \/Eq)i(\/ﬁx), i=0,1, x € R* and

\/ﬂ
F,(Owu, VPu, Vou) = p@tu(ux)p_lum + p@tu(uy)p_luyy + 204, (uy)? + 20yuy(uy)?,
(1.11)

(notice that F), is the nonlinear term of Benney-Luke equation when p = 1). The
nonlinear term

(1 — bA) ' F, (0w, VPu, Voyu)

does not satisfy a “null condition” but it is possible to prove that exponent s = 2 can
be achieved in two dimensions.

We will consider the Cauchy problem (1.10) instead of the initial value problem
associated to (BL) and (gBL).

This work is divided as follows: In the second section we present the main results for
the BL equation in two and three space dimensions and the global result for the gBL
equation in the case p > 2 integer. In the third section we will prove some lemmas and
propositions that will be used in the last section for the proofs of the main results.

Notation.

The notation to be used is mostly standard. For any ¢ € [1, 00|, we denote by ¢’ its
conjugate, i.e. % + & = 1. Let L9 := L9(R") be the Lebesgue space, the norm on L7 is
denoted by ||-||,- The homogeneous spaces and the Sobolev spaces H o(R"™) and H;(R"),
respectively, are defined by (—A)~*/2L(R") and J~*LY(R") with J := (1 — A)/2. We
denote H3(R") and H(R"™) by H® and H®, respectively. The norms on H;(R”) and
H3(R™) are denoted by || - | 13 and | - |71, respectively. We will use the Sobolev spaces

LyH?(R") and Ly H?(R"™) endowed with the norm

1/r T
||u||L;Hg=(/R ||u<t>||;-,gdt) , llullL;H;:(/ llu@)ll?fgdt)
0

Throughout this note C' = 0 will stand for constants that can be changed from line
to line, a < b means that a < Cb for some constant C' greater than zero.

1/r
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2. Main results

Our first result recover the one obtained by Paumond in [5], but by using the
Strichartz inequalities for the wave equation. We also show that the local solution
of the Cauchy problem associated to the BL equation (1.1) possesses certain local
regularity, like for example (Vu,u;)(t) € L>®(R?) a.e. t € (0,T).

Theorem 2.1. Let p = 1. Assume that ug € H*(R?) and u; € H'(R?). Then there
exists T = T(||uol| m2(r2), ||u1|| g1 (r2)) > 0 such that (1.10) has a unique solution u
satisfying u(0, %) = uo(x), (0, %) = tr(x)

u € C(0,T; H*(R?)),u; € C(0,T; H*(R?)),
T 1/r T 1/r
([ 1earrueoa) <o ([CICartutlar) - <,
0 0

T
| Ivu @ < o
0

4q 9 3
——,0=—-+—and 2 < q < o0.
=2 o 3 + 1q an q < o0

Moreover, for all T' < T there exists a neighborhood V' of (ug,uy) € H*(R?) x H'(R?)
such that the map data solution

V. — C(0,T; H*(R?) N L"(0,T"; H¥~1(R?))
(ﬂo,ﬂl) - ﬂ(t)

with r =

18 Lipschitz.
Our main result for the BL equation is in the energy space.

Theorem 2.2. Let p = 1. Assume that ug € H'(R?) N H*(R?) and u; € H'(R?).
Then there exists T = T(|[uo| g1 (r2), [|woll g2 (e): [|url[mr2)) > 0 such that (1.10) has a
unique solution u satisfying u(0,x) = uy(x), u(0,%x) = u;(x)

ue C(0,T; H*(R*) N H'(R?)) N L"(0,T; H(R?)),
w € C(0,T; H'(R?) N L"(0,T; Hy*(R?)),

Vu,u; € C(0,T; H'(R?) N L*(0, T; L=(R?)).

 Moreover, for all T" < T there exists a neighborhood V' of (ug,u1) € HY(R?) N
H?(R?) x H'(R?) such that the map data solution

V. — C(0,T; H*(R*) N HY(R?))NL(0,T"; H*~(R?))
(g, 1) — u(t)

1s Lipschitz.
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Remark 2.3. It is important to observe that the flow of (1.10) preserves the Hamil-
tonian

H(u)(t) = 0u(t)|13 + 1 0l|0su(®) 3, + Nu@®)Z, +p allu®)|F. = H(w)(0), (2.12)
for all p > 1, integer. See [5] for the proof of (2.12).

Using previous Remark, it is possible to establish an a prior: estimate to prove the
following global result for BL in the energy space.

Corollary 2.4. Let p=1. For any T > 0, ug € H'(R?) N H*(R?) and u, € H'(R?)
there exists a unique solution w of (1.10) such that

Vu € C(0,T; H{(R?)), du € C(0,T; H'(R?)).

Using the Strichartz estimates and mixed norms we prove that the (gBL) equation
is locally and globally well-posed in the energy space.

Theorem 2.5. Assume that p > 2 integer and uo € H'(R?) N H2(R?), u; € H'(R?).
Then there exist T = T(||luoll sr (me)s [uoll gr2(reys [lutll i we)) > 0 and a unique solution
w of (1.10) such that

we C(0,T; H*(R*) N H'(R?)) N L(0,T; H(R?)),
Opu € C(0, T3 H'(R?) N L7(0, T; H*(R?)),

and
T 1/r
([ a2t o) <o
0
T 1/r
([ 1artu i) <
0
4 9 3
with r = q—qQ’ 0:§—|—4—q and 2 < q < q(p), where
m? p - 27 37 4’
= 2 2.1
Q(p) p ., p>4. ( 3)
p—4

Moreover, for all T' < T there ezists a neighborhood V of (ug,u) € H'(R?)NH?(R?) x
HY(R?) such that the map data solution

V. — (0,7 HA(R?) N H'Y(R?)) N L(0,T"; H(R?))
(o, @) — ult)
18 Lipschitz.
Corollary 2.6. Let p > 2 integer and T > 0. Then for all the functions ug,u; such
that ug € H'(R?) N H*(R?), uwy € H'(R?), exists a unique solution u of (1.10) such

that
Vu € C(0,T; H'(R?)), du € C(0,T, H'(R?)),
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and .
/ (Y, Opu) (-, t)||fecdt < 0.
0

We also consider the Cauchy problem of the Benney-Luke equation (1.8) in three
spatial dimensions. In this case we have the following.

Theorem 2.7. Assume that (ug,u;) € H*(R?) x H*71(R3) and 2 < s < 5/2. Then
there exists T' > 0 such that the Cauchy problem:

{(1 — b2 A) (uyy — Au) = ¢ (1 — A)Au — ¢ (wAu + 2Vu - V),

u(0,%) = up(x),  ue(0,%) = uy(x), (2.14)

where u is such that
ot x) = Yy L C
NN
with ® satisfying the Benney-Luke equation, ¢* = a/b, (t,x) € Ry x R}, R, = [0, 00),
a and b are positive real constants and V and A are the three-dimensional gradient and
Laplacian, respectively, has a unique solution u satisfying

u € C(0,T; H¥(R%)), O,u € C(0,T; H1(R?)),

x),

T r T 1/r
([ 1) <o ([IEa e lha) <o
0 0
and
T
| 1m0 < oo
0
2 1
withr—q_qu‘f—nga and (s —2)7' < ¢ < oc.

3. Linear and Nonlinear Estimates

To show our results we will use some estimates for solutions of linear problem as well
as the commutators of Kato-Ponce type [4].

3.1. Linear Estimates. The linear problem associated to (1.10) is

U — Au 4 aA*u — bAuy =0
{wamzf@» w(0,2) = o). (3:19)
1+ ale]?\'"?
Le”@:(Hw) ’
(W (£)9)(€) = (I€(€)) " sin (|€[A(€)) §(€)
and

(W (t) £)(€) = cos ([Eh(E)t) f(£).
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Then a solution of

g — Au + aA*u — bAuy = G(u)
3.16
{u(@x) — @), w(0,2) = g(a) (310
when a # b and f, g are smooth, is given by
ult,z) = W (e f + W (g + / W(t — )G (u)(#)dt. (3.17)
0
If @ =0 and f, g are smooth, the solution of (3.16) is given by
u(t,z) =K(t)f + K(t)g + /t Kt —t)(1—bA) PG (u)(t)dt, (3.18)
0
where {K(t)}; is the classical wave semigroup,
(K(1)g)(€) = l¢|* sin([€l1)(€)
with
(K(8)£)(€) = cos(|&[t) f(£),
and (1 — bA)'G(u) is defined via the Fourier transform as
(1= b2)" G ()~ (€) = (1 +blel*) " Clu) €).
It is clear that W (¢) is bounded in L*(R™), for all a,b > 0, since
W (Dgllz = | (W(1)g) ()
<L 1R sin (- TR s llg 0l
and [|h]|o < max{1,+/a/b}.
Then
W (t)gll2 < [tlllgll2- (3.19)
Moreover, for all s >0
W gl < max{1, /ool e 50
W@ fllize < 1Fllgpe-
Remark 3.1. If we write equation (1.10) as
(1 —bc2A)(uy — Au) = ¢ 2(1 — ) Au — ¢ 2 (wAu + 2Vu - V) (3.21)
u(0,x) = up(x) u(0,x) = uy(x) '

we will see that it is sufficient to have the estimates (3.19) and (3.20) for K(t).
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3.2. Strichartz Estimates for K( ) and K(t). Let
K(t)ug + K(t)u,

/Kt—t t)dt'.

Proposition 3.2. If2 <r;,ry <00, 2 < qq,q < 00, p1, p2, b € R satisfy

Og%gmin{l,(n—l) (%—ql)} i=1,2, (3.22)
(%7(n_ 1) G _ 5)) £(1,1) i=1,2 (3.23)
p1+n<%—%>—r—11=u (3.24)

+ L2 1—1 + L 2 = (3.25)
p1n2 il reo p2n2 42 ry) '

then the following generalized Strichartz estimates for K(t) and K(t) hold :

[Vl g gy + 1950 s groa =+ < C ([0l o+ [l rus) (3.26)
ol g + 100l 1 < OIS (3.27)
a2
Proof. See [3]. O
3.3. Nonlinear Estimates.
Proposition 3.3. If f,g € S(R"), s € Z* then ezists C = C,, s > 0 such that
> Mo, Aglla =D 102(fg) — gl
o= o= ] , (3.28)
<C(IV Il D 102gll2+ llgllse D 1102£112)

|B|=s—1 |Bl=s
Proof. It follows by Leibniz rule and Gagliardo-Nirenberg Inequality. [J

Proposition 3.4. Commutators of Kato-Ponce type. If f,g € S(R"), s > 1 then
there exists C = C,, s > 0 such that

1175 flgll < CUIV Flloo 17 gll2 + glloc 17 f]12). (3.29)
Proof. See [4]. O

9 3 2
Lemma 3.5. If f € S(R?),2 < ¢< 00, 0= §+4— and 0 < so=1— = < 1, then
q q

o + 1 llges) (3.30)

I£le < C (I
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Proof. By Sobolev’s inequality we have
11l SCI(L =AY 1l
<C|flly + Cll(=2)"* ]l (3.31)
<ON(=AY° flla + CI(=2)"" flg-
Since our assumptions imply that 1/¢ < ¢ — 1 we have the result. [J

2 9 3
Lemma 3.6. If f,g € S(R?),2<g< o0, sp=1— - anda—§+4—then
q q

1A, flglls < CLIV Fllgeo + 1(=2)72 g} lgl g
+C{llgll 0 + 1(=2)""gll I f Il 72-
Proof. By Proposition 3.3 with s = 2, we have

1A, flglla < C IV fllsollgll g + llglloollf 1l 72) - (3.33)
An application of Lemma 3.5 yields the result. [J

(3.32)

Remark 3.7. We notice that for 0 < s < 1 we have the following interpolated inequality
i S wlli wll - (3.34)

(see [1]).

]

1 1

It follows by Holder’s inequality with p = — and q = 1
S JR—
4. Proof of the main results

4.1. Proof of Theorem 2.1. We begin by rewriting the equation (1.10) when p =1
in the equivalent form

(1 —bc2A)(uy — Au) = ¢ (1 — &) Au — ¢ 2[A, uluy. (4.35)
We will use the notation G(u) = G1(u) + G2(u) where
Gi(u) =c (1 = A)A(1 = bc2A) (4.36)
and
Go(u) = —c (1 — be 2A) A, u]uy. (4.37)

Then we can write the solution of the IVP associated to (4.35) as
t
u(t) = K(t)uo + K(t)u, + / K(t —t')(G1(u) + Ga(u))(t')dt'. (4.38)
0

We first prove the local well-posedness for the IVP associated to (4.35) in H* x H'.
To do so we will use the fixed point argument as we mentioned in the introduction.

For M,T > 0 and 2 < ¢ < 00, define the complete metric space
X7t ={u e C((0,T]; H*(R?)) « [[Jull| < M},
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where
ulll = llullzgez + llwellzgern + lull p gze—r 4 Nuell 1y 2o (4.39)
. 3
with r = and 0 = — + —.
q—2 8 4q

We shall prove that for an appropriate choice of T and M the operator
t
Fuo,uny (0)(t) = F(u)(t) = K(t)uo + K(t)us + / K(t — t)G(u)(t')dt (4.40)
0

is a contraction on XM,
We estimate ||F(u)| g2 and ||0;F(u)||z: using the linear estimate (3.19), as follows,

IO+ IEOln S Bl 0Ol
+ [ =GOt + [ 1A G . (4.41

Note that
1(=2) V2G5 (w) (1) l2 < 1A, ulug(#)]2 (4.42)

ifl1<s<3, n>1.
Using (4.42), Lemma 3.6 and Holder’s inequality we have

t
L= [ (= OG0 2
0
¢ 1
<0 [ =l (fulls + -2 2ul,) dv

t
+C/O (t =) lull > (11— [+ luella + 1(=2)7 uelg) dt’

(4.43)
<21? HUHL%°H2HWHL°°H1 + 1 - 02\ T2 [|ul| e 12
' l (7 Lo gn1/r
+ uellpgom (f (=) v || 2| dt’)
0
/ L o— r r
R / (t— )" dt') / [N
Then
LS =3 T? ullpserz + T7 |ullzee e e+
. g g (4.44)

T {|uell gz Nuull gz + Nl nge e el oy sg2o-23,

1 7
where =1+ Z
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Again using (4.42), Lemma 3.6, (3.34) and Holder’s inequality we have

- / N~ A Gu)(t) 2t
' (4.45)

ST ||UHL§9H2||utHL%°H1 + 111 =] JJufl e

o+ Tl e Nl o el

T uellger all g gzos + Jull o Nl g a2}

L"OH2

Then using (4.41), (4.44) and (4.45) it follows that
[F(w) ()] Lge 2 + NOF (u) || L <Clluol| a2 + C(1+ T)[Jua || 0 (4.46)
+C (11 =T + P(T)||[ull]) [l '

where P(T) =T° + T* + TP~ + T.
3 1
Now we want to estimate the mixed norms. First, we recall that 0 — 1 = 1o + 3’
q
4
r:—q 2<qg<ocandn=2.Ifry=r, ¢g=9q, 19 =00, @ =2, pp =20 — 1,

qg—2’
pw=2and —py = 1 then r;, q;, p; and u, ¢ = 1,2, satisfy (3.22), (3.23), (3.24) and
(3.25) and using the Strichartz estimates (3.26) and (3.27) we have

Iy =)y 2o + O (W)l o>
T . . (4.47)
<0 (Juale + alln + [ -1 GO ).
Using the same technique used to estimate I, we get
(4.48)

15 < C (ol + (U Tl + 11 = | [l gees + PCT) e

Putting together the estimates (4.46) and (4.48) it follows that
IIE@IIl < € (Nluollaz + 1+ D) uallz) + C (11 = (T +T%) + P(D)]]]ulll) ||(IU||| |
4.49

Let § = ||uol|m2 + ||u1||gr, M =2C(1 4+ T)é and T such that
Cl—=(T+T)+C(T*+ TP +T+ T MM <1/2 (4.50)
then we have that F(XM) c XM,

Noticing that

[F (u) — F(a)]] 5/ (T = )G () (') = G(a) () [[2dt’
0, (4.51)
+/0 I(=2)2 (G(u)(t') = G(@)() [l2dt',
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and using the fact that
Go(u) — Go(@t) = —c2(1 — be 2A) YA, (u — @)]0u + [A, 4]0, (u — @) (4.52)
it follows from Lemma 3.6 that if u, @ € X1, then
P @)~ F@NI| S (T+T[ =+ (T+T)M) u—alll.  (453)

Thus, there exists a unique fixed point of IF which is a solution of the integral equation
(4.40) if

C ((T+ T2 — 2| + (T + Tl/’"’)M) <1. (4.54)

Thus, we have proved the existence and uniqueness in an apropiate class of the solution
of equation (4.38). For standards arguments it is possible to prove the uniqueness of
the solution in the space H*(R?) x H'(R?).

To prove the continuous dependence of F(u)(t) = F(uu,)(u)(t) with respect to
(up, u1), note that if u, v are the corresponding solutions of (4.40) with initial data
(uo, u1), (vo,v1), respectively, then

u(t) — v(t) = K(t)(up — vo) + K(t)(ug — v1) + /0 K(t —t")(G(u) — G(v))(t)dt'.

(4.55)
Therefore, the same argument used in (4.41) and (4.47) implies
v =[[| <C (luo = voll a2 + (1 + T)lur — w1l
T
/ / /
0 [ =G =~ GOt .

+CAHPAWWQM—Gwmme-

Using the fact that G(u) = G (u) + Gs(u) and (4.52) it follows from Lemma 3.6 that
if u,v € X%, then

c/ T )(G(u) - G(v)) fuw+0/n AV (Glu) — G))(t) |2t

(4.57)
< (T+ TN =+ (T +TY)M) [[Ju =l
As a consequence, if T > 0 satisfies (4.50) and (4.54), then
= olll < O — vl + s — vl (4.59

which completes the proof. [



BENNEY-LUKE EQUATION 13

4.2. Proof of Theorem 2.2. Fix ¢, 2 < ¢ < oo. Let ug € H'(R?) N H2(R?),u; €
H'(R?) and

Fug,u) (w)(t) = Fu)(t) = K (t)ug + K(t)u;, + /0 K(t —t")G(u)(t')dt'. (4.59)

We define the complete metric space
Y = {ue ([0, T); H*(R*) N H'(R?)) : |[Jullly < M}
with

wllly = llullpge gz + lull pge grr + [l g

c([car )+ ([esrmona)”
4q 9 3

2778 1
Wg shall prove thaqt for an appropriate choice of T and M the operator given by
(4.59) is a contraction on Y.
Letri=r, ¢q=q, ro=00, ¢ =2, py=20—1, pu=2and —py, = 1 then r;, ¢;, p;
and u, ¢ = 1,2, satisfy (3.22), (3.23), (3.24), (3.25). Now, using the linear estimate
(3.19), the Strichartz estimates (3.26) and (3.27) with 7;, ¢;, p; and p, 1 = 1,2 we get

IF ()l e 2 + IF @) pge i + IOF (W)l e + [[F ()l 1y grze—1 + [1OF ()| 1y 202

T . o (4.61)
S Mol gz + lluoll g + (1 + T [l +/0 [(=2)2G(u) ()] 2dt’,
From (4.45) we have
IE@)lly <C ([uollg + lluoll g + (1 +T)|Jual| ) (462)

+C (|1 =T + (@7 + Dlfullly) [[ullly,

1 7
where =1+ — > —.
r 4

Let 0 = |Juoll g + |Juwoll g2 + ||ur]| g2, M =2C(1 +T)6 and T such that
CNl—AT+C(T+T M <1/2 (4.63)
then we have that F(Y) C Y.

Since

IIF() = F@llly S [ 1=8)" (G) - G@E) lade. (464
Using (4.52) and Lemma 3.6 we get

[[F(w) = F@)|lly < C (11 =T + (T + T)M) ||ju — allly (4.65)

whenever u, @ € Y.
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Then, there exists a unique fixed point of I if
C1 =T +(T '+ T)M) < 1.

Therefore, the existence and uniqueness of the solution of the problem (4.38) have
been proved in the metric space Y. The uniqueness of the solution in the space
H'(R?) N H%(R?) x H'(RR?) is obtained by standard arguments.

Using similar arguments to the those applied in the continuous dependence proof in
Theorem 2.1 one can show that the map data solution is locally Lipschitz. [

4.3. Proof of Corollary 2.4. Now we will show that the local solution obtained in
Theorem 2.2 can be extended to [0, T], for any T > 0, time interval. It suffices to prove
the existence of a uniform bound for [[u(t)[%,, ||u( )22, 10wu(t)||3 and [|9u(t)]%,
This allows us to establish an a prior: estimate and then make use of the local theory
to extend the solution. To do so we use the following conserved quantity

0 < H(u)(t) = [|0u(®)ll3 + o bl10pu(®)[[3 + lu(®)]3: + e allu(t)|[F. = H(u)(0), (4.66)
satisfied by the flow of (1.10) for p > 1 integer.
4.4. Proof of Theorem 2.5. The basic tools of the proof are the same one: Fixed
point theorem, generalized Strichartz estimates for the wave equation and Lemma 3.5.

Using the scale change x = ¢x and denoting the new function with the same variable
we get the following equivalent equation for (gBL)

uy — Au = B~ G(u) (4.67)
with
G(u) = Go(u) + Gp(u),
Go(u) = (1 — )2 Au = myAu,
Gy(u) = —c~ PV E (9yu, VPu, Vo) = k,F,(Oyu, VPu, Vou), (4.68)
b2
B = (1—miA)g, mj= o
4
Fix p > 2 integer, 2 < ¢ < ¢(p) where ¢(p) is giving by (2.13) and let r = —q2,
q—
= 2 + % and for T, M > 0 define the complete metric space
X3t ={uec(0,T]; H'(R*) N H*(R?)) : |||ul||x < M},
where
ulllx = llull oo i + [1ull oo iz + NOsull Lo + [0l oy 2o + |1Orull 1y 22y (4.69)
and let

Fuo,un) (w)(t) = F(u)(t) = K (t)ug + K(t)u; + /0 K(t —t\B'G(u)()dt',  (4.70)
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where G and B are given by (4.68). Using the linear estimates for K(¢) and K(t) we
have

[E ()@ 2+ [F () @) 2+ | OF () ()| 1

_ t . N (4.71)
S ol + llwoll g + (L4 D)lluallan + [ [[(=4)2 B G(u)(t)|2dt".
0
Now the Strichartz estimates imply
IF (| g 2o -1 + |1OF (W)l 1 gr20-2
(4.72)

T
S lluoll g2 + llwall e +/ [(=A)2 B~ G(u)(t)|2dt'.
0
Therefore,

HF)x S (1+T)(Hu0||H1+HU0”H2+”U1”H1)+/O I(=2)2 BTG (u)(t')||»dt'. (4.73)

Remark 4.1. Note that, from Plancherel’s identity and the definition of B (see (4.68))
we can get

[(=2)2 BT G(u)(t)]|2 = [I(=A)2 B~ (myAu + k, Fy (9, VPu, Voru)(¥)) |2

S malllu@) i + (Rl | Fp (B, VPu, Vo) (#)) -
This remark and (4.73) imply that

T
IF)llx < (1+T)(Huo\|m+Ilungz+HulHHl)+T!m2|HuHLg,oH1+!ka/0 £ (w)l2dt’.

(4.74)
We have from (1.11)

T T
L= / |Ey(w)lod’ < p / 10t o [ Va5t | e
0 0

T
2 / IVt |2, [0t o
0

So from Lemma 3.5
T
np [ {loa)
0
x {llu()|
T
2ol [ (Jutt)
0

i 110t -2

p-1 / ’
[u()|| 2t

rons -+ (@)l gz }

P
o+ (@) zo )t
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Therefore

T p—1
[45p||atu||L%oHso||u||L%oH2/ <||u(t’)||Hso+1+||u(t')||yga—1> dat’
0

T
p
il [ 10 (1) gons + Nt ) ™ (079
0

T
p
2ol i [ (s + )l o)
0

Hence

T
I SanatuHL"oHsO||u||L°°H2||u||LooHso+1 +p||atu||L%°H50”u”L%°H2/ [Ju(t )||H2o 1
0

plhul el / 00t a2l
0

. (4.76)
Ly G P G e
T
2Tl 0+ 200l / Jult) 7
Using the Holder inequality we have
T
| g < 7O
T
| 10 et < T B o,
0 (4.77)

p—1
Ly Hz7™

T
[ 10 et s < T Dl el

T
() o dt” < TP fulff, s
0 THq

From (4.74), (4.76), (4.77) we have
IF@)[llx < CA+T)([uoll iz + lluollze + lwallen) + CTma| M+ Clky| P(T) M
(4.78)
with P(T) =T + T'=p/m 4 7i+0=p)/r 4 pi=1/r,
Let 0 = |Juoll g + |Juwoll g + ||ur]l g2, M =2C(1 + T)6 and T such that
Clma|T + Clk,|P(T)M? < 1/2 (4.79)

then we have that F(XM) c XM,
Now we proceed to show that, with suitable choice of T and M, F is a contraction.
We have

F(u)(t) = F(a)(t) =/0 K(t —t)B7H(G(u) — G(a))(t)dt',
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from (4.71) and (4.72)

N[

| (u) = F(a)l|x < C/O I(=2)2 B~ (G(u) — G(@)(t')2dt'.

The Remark 4.1 implies

1F(u) = F(a)l|lx < CTlmalllu — | e + |kp|/0 1(Fp(u) = Fp(@) ()2t

To estimate the last term we notice that
[VPu — Vil S

— p 1— k ~\k — p—1—k ~\k (480)
IV (= @)oo § 1D (Oatt) 0xi1) oo + 11 > (yu) 0y @) [loc ¢ -
k=0 k=0
Using
[Apu — Ayti|
S pll(0: ) — (020|105 ull2 + pllOp a2 107 (u — @) 2
+p[[(Oyu)’" — (9, ) Mool Bgullo + plldyall2 |05 (u — @)
p—
S plIV(u— )|l Z (D)2 (0, 0) | oo || 2 (4.81)
=0
—2
+ pl[V(u — 1)l Z (D)2 (9y@)* [l llull 72
+pl| Va5 u — UIlm :
Since

F,(u) — F(a) =2V (u — @) - VPu + (u — @) Apu
_’_QVth : (Vpu - Vpﬂ) + lNLt(ApU - Apﬂ)
and using the definitions of VPu and A,u (see (1.5) and (1.6)) we have

T
/0 | (Ey) — Ey(@)) (1) 2
T T
< / 19%ullo (0 — @l o 48+ p / = @)oo |Vl o d (4.82)
0 0

T T
+/ IVPu = NPt |oo | e | 1 dt’+/ e ]loo || Ay — Aptl|2 di”
0 0

Remark 4.2. We notice that using Lemma 3.5 and interpolation result (3.34) we have

IVwlloo S 1wl gaoss + Wl g1 S Tl llwll3g, + llwll 2o
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also
T ! !
| IVt S Tl o+ T ol oot S (T4 T ol

Therefore we only consider the following terms

T
[ e = @l g kgt de (4.83)
0

and
r 1-k
/ el gl — @l rsoeer [1ull oo [ 2 @t (4.84)
0 a a
to illustrate the proof of
[ (u) — F(a@)]|]x
S(T|ms| + [ky|(T + TP/ 4 TP T NP || — || x-
(4.85)

Using Holder inequality we have

T
/0 laall gl = @ll el oo Nl oo

(4.86)
_ 1=k~ -
< Tl Bl —
and
! 1-k
[ Wl = gl Nl
T
- 1= ~ 11—k ~ (487)
S Naellpomllu = gl = e | Nl Nl

_ ~1-ky|| i
S TPl 5 e —

Hence by standard arguments we can guarantee the existence and uniqueness of a
solution of the Cauchy problem associated to the equation (1.4).

We will show that the map data solution is locally Lipschitz using the similar argu-
ment to the one used in the continuous dependence proof in Theorem 2.1.

Let u and v be the corresponding solutions of (4.70) with initial data (ug, u1), (vo, v1),
respectively, then

u(t) —v(t) = K(t)(uo — vo) + K(t)(ug —v1) + /tK(t —t)B~1(G(u) — G(v))(t")dt'.
’ (4.88)
The same arguments used in (4.71) and (4.72) imply
[llu = vlllx <C([luo = voll g2 + lluo = wollgr + (L +T)lur = vi[mr) +

T 4.89
C/O I(=2)"2B7H(G(u) = G(v))(t)] 2" 5
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By Remark 4.1 we have

/ I(=2)2BH(G (1) — G(0))(¢)l|l2dt” SCT|mallu — v]] oo g1+
0 (4.90)

eyl / 1(Fy(u) — Fy()(¢)]d

The arguments used for estimate (4.82) imply

T
/0 I(Fy(w) = Fp(0)(#)ll2dt’ < C(T + TP 4 T 4 PV MP)|[|u = o x,

(4.91)
if u,v € XM. Using (4.79) we have

Ilu = vlllx <C (o — voll 2 + lluo = voll g + llur = vilan) (4.92)

which completes the proof. [J

4.5. Proof of Corollary 2.6. To prove that the local solution obtained in Theorem
2.5 can be extended to [0, 7], for any 7" > 0, we use, as we mentioned in Remark 2.3,
that the flow of (1.10) satisfies the conserved quantity

H(u)(t) = [10u(t)]l5 + p bllOsu(®) |17 + lu(®)]F: + 1 allu@®)fe = H(w)(0).  (4.93)

2

According to the above, we can establish an a priori estimate for [lu(t)|%,, lu(t)(%.,

|0su(t)||3 and ||Opu(t)||%, and then apply the local theory. [J

"

4.6. Proof of Theorem 2.7. Fix s, 2 < s < 5/2, and take ¢ € (1/(s — 2),00). For
T, M > 0 define the complete metric space

X' ={u e C0,T; H (R?)) : |||ul|| < M}

where
[ull] =lullzsoms + |||l Lo prs—
“/OT (=)~ 2u(t) )" + ( / lCap- w0
with r = 2 =2 + 1 It is not difficult to prove that F is a contraction in X:]F”

q—2 2
using the same arguments as in [8], (4.42) and Proposition 3.3.00
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