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Abstract. We develop the convergence analysis for a numerical scheme proposed for approxi-
mating the solution of the elliptic problem

Lεuε = −

∂

∂xi
aij(x/ε)

∂

∂xj
uε = f in Ω, uε = 0 on ∂Ω,

where the matrix a(y) = (aij(y)) is symmetric positive definite and periodic with period Y . The
major goal is to develop a numerical scheme capturing the solution oscillations in the ε scale on a
mesh size h > ε (or h >> ε). The proposed method is based on asymptotic analysis and on numerical
treatments for the boundary corrector terms, and the convergence analysis is based on asymptotic
expansion estimates and finite elements analysis. We obtain discretization errors of O(h2 +ε3/2 +εh)
and O(h + ε) in the L2 norm and the broken H1 semi-norm, respectively.
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1. Introduction. This paper develops the convergence analysis of the numerical
scheme proposed in [43] to approximate uε, the solution of the problem:

Lεuε = −
∂

∂xi
(aij(x/ε)

∂

∂xj
uε) = f in Ω, uε = 0 on ∂Ω,(1.1)

where a(y) = (aij(y)) is a positive symmetric definite matrix and ε ∈ (0, 1) is the pe-
riodicity parameter. We assume the aij ∈ L∞

per(Y ), i.e. aij ∈ L∞(R2) and Y -periodic,

Y = (0, 1)2, and there exists a positive constant γa such that aij(y)ξiξj ≥ γa‖ξ‖
2

for all ξ ∈ R
2 and y ∈ Y . We always use the Einstein summation convention, i.e.

repeated indices indicate summation, except for the index k, which refers to variables
or functions associated to edges of the polygonal domain Ω.

We note that when the mesh size h > ε, standard finite element methods do
not yield good numerical approximations; see [27]. Recently, new numerical methods
have been proposed for solving the Problem (1.1) such as the multi-scale finite element
methods [23, 26, 4, 13, 21], the residual-free bubble function methods [11, 5, 6, 38, 12],
and the generalized FEM for homogenization problems [39]. There are also related
methods for the case the homogenized equation is not known; see the heterogeneous
multiscale method [18, 19, 2] and [22, 20] . The numerical method considered here,
opposed to the methods in [5, 26, 38, 4, 11] is based strongly on the asymptotic
expansion of uε. We also explore the periodicity of the matrix a to obtain a very
efficient method for approximating uε.

One of the first mathematical tools used to handle this problem was homogeniza-
tion theory [8, 9]. Based on this theory a first order expansion of uε plus a bound-
ary corrector term is considered and then each term is numerically approximated in
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[42, 43]. These methods were designed to work with a mesh size h > ε (or h >> ε),
however they also work in the case h < ε. The article [42] presents the numerical al-
gorithm when the domain Ω is a rectangular region, while [43] generalizes the method
to the case where the domain Ω is a convex polygon with rational boundary normals.
This generalization is possible due to the Lagrange multiplier space introduced to
approximate ∂ηu0 on ∂Ω.

The convergence analysis for the numerical method is performed in two parts.
First we estimate the error between uε and u0 + εu1 + εφε in L2 and H1 norms,
where φε denotes the theoretical approximation for the boundary corrector term θε.
The theory developed for approximating θε is similar to the one proposed in [3, 34].
We note that Propositions 6.1 and 6.4, which estimates the error between uε and
u0 + εu1 + εθε on the H1 and L2 norms, respectively, extend the results in [3, 34].
More specifically, Proposition 6.1 gives the same error estimate of Theorem 2.2 in [3],
however here we assume u0 ∈ W 2,p(Ω) and χj ∈ W 1,q

per(Ω) for 1/p+ 1/q ≤ 1/2 while

in Theorem 2.2 in [3] it is assumed u0 ∈ W 2,∞(Ω) and χj ∈ H1
per(Ω). We also note

that Propositions 6.1 and 6.4 generalize respectively, Propositions 2.1 and 2.3 from
[34]. In Proposition 6.1 we assume aij ∈ L∞

per(Y ), u0 ∈ W 2,p(Ω) and χj ∈ W 1,q
per(Ω)

for 1/p+ 1/q ≤ 1/2, and Ω ⊂ R
2,3, while in Proposition 2.1 from [34] it is assumed

aij ∈ C1,β
per(Y ), u0 ∈ H2(Ω) and Ω ⊂ R

2. In Proposition 6.4 we assume aij ∈ L∞
per(Y ),

u0 ∈ W 3,p(Ω), χj and χij ∈ W 1,q
per(Ω) for 1/p + 1/q ≤ 1/2, and Ω ⊂ R

2,3, while in

Proposition 2.3 from [34] it is assumed aij ∈ C1,β
per(Y ), u0 ∈ H3(Ω) and Ω ⊂ R

2.
The importance of considering a theory that handles the case aij ∈ L∞

per(Y ) comes
from applications to composite materials where the coefficients aij are often piecewise
constant; see also Theorem 1.1 from [32] which gives conditions on the discontinuities
of the functions aij so that χj and χij ∈W 1,∞

per (Y ). We also observe that Proposition
2.1 from [34] is used in the convergence analysis of the numerical methods presented in
[23, 27, 38], and therefore the analysis presented here can be helpful for extending the
convergence proofs of these numerical methods assuming less regularity on a or u0. In
the second part of the convergence analysis we use finite elements theory to estimate
the error due to the discrete approximation. The main difficulty here lies in the fact
that we use a discrete approximation of ∂ηu0 as Dirichlet boundary condition for the
boundary corrector problem. We observe that if uh

0 is a finite element approximation
for u0, then ∂ηu

h
0 does not necessarily belong to the trace of the finite element space

used to obtain uh
0 , hence we introduce the Lagrange multiplier space to approximate

∂ηu0 and we develop error estimates between ∂ηu0 and its discrete approximation in
W 1,1−1/p spaces; see Lemma 4.3.

To simplify the exposition we perform the analysis in the case Ω = (0, 1)2, al-

though the same theory holds in the case Ω =
∏2

i=1(ai, bi), ai < bi ∈ R. We note that
Propositions 6.1 and 6.4 are proved in the case Ω ⊂ R

d d = 2, 3, is a convex domain
and Y = (0, 1)d. The analysis presented here can also be extended to the case where
the domain Ω is a convex polygon with rational boundary normals; see [41].

We now introduce some norms and semi-norms. Let B ⊂ R
2 be an open set and

define

‖v‖m,∞,B = max
|α|≤m

{ess. sup
x∈B

|∂αv(x)|},

|v|m,∞,B = max
|α|=m

{ess. sup
x∈B

|∂αv(x)|},
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and for 1 ≤ q <∞

‖v‖m,q,B =





∫

B

∑

|α|≤m

|Dαv|qdx





1/q

,

|v|m,q,B =





∫

B

∑

|α|=m

|Dαv|qdx





1/q

.

We also define the non-conforming norms related to a partition Th = K1,K2, ...,KN

of B by

‖v‖m,h =

√

∑

Kj∈Th

‖v‖2
Hm(Kj)

.

Throughout this paper we do not make reference to the domain B, or to the
coefficient q when B = Ω, or q = 2, respectively. In what follows c denotes a generic
constant independent of ε and mesh parameters.

This paper is organized as follows. Section 2 introduces the asymptotic expansion
of uε considered in [42, 43], describes a theoretical approximation for the boundary
corrector term, and presents the main theorems for estimating the errors due to the
asymptotic expansion approximation. Section 3 describes the numerical algorithm,
Section 4 treats the discretization errors due to the finite element approximation, and
Section 5 presents the numerical experiments. The Appendix contains the proofs of
the main results from Section 2.

2. Theoretical Approximation.

2.1. The Asymptotic Expansion. Consider the following anzats

uε(x) = u0(x, x/ε) + εu1(x, x/ε) + ε2u2(x, x/ε) + · · ·,(2.1)

where the functions uj(x, y) are Y periodic in y. Using (2.1) in Equation (1.1) and
matching the terms with the same order in ε, one may define functions uj such that
u0(x, x/ε) + εu1(x, x/ε) + ε2u2(x, x/ε) approximates uε, for instance if u0 ∈ C2(Ω)
and χj ∈ W 1,∞(Y ) we have

‖uε(x) − u0(x, x/ε) − εu1(x, x/ε)‖1 ≤ cε1/2‖u0‖2,∞

where the constant c depends on a, χj and Ω. These terms are defined below; for
more details, including the proof of the above inequality see [9, 29].

Let χj ∈ H1
per(Y ), i.e. χj ∈ H1

loc(R
2) and Y -periodic, be the weak solution with

zero average over Y of

∇y · a(y)∇yχ
j = ∇y · a(y)∇yyj =

∂

∂yi
aij(y),(2.2)

and define the matrix

Aij =
1

|Y |

∫

Y

alm(y)
∂

∂yl
(yi − χi)

∂

∂ym
(yj − χj)dy.(2.3)
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It is easy to check that the matrix A is symmetric positive definite. Define u0 ∈ H1
0 (Ω)

as the weak solution of

−∇.A∇u0 = f in Ω, u0 = 0 on ∂Ω,(2.4)

and let

u1(x,
x

ε
) = −χj

(x

ε

) ∂u0

∂xj
(x).(2.5)

Note that u0 + εu1 does not satisfy the zero Dirichlet boundary condition on ∂Ω
imposed for uε. In order to overcome this, the boundary corrector term θε ∈ H1(Ω)
is introduced as the solution of

−∇ · a(x/ε)∇θε = 0 in Ω, θε = −u1(x,
x

ε
) on ∂Ω,(2.6)

hence u0 + εu1 + εθε ∈ H1
0 (Ω). Propositions 6.1 and 6.6 provide error estimates

between uε and u0 + εu1 + εθε in the norms ‖ · ‖1 and ‖ · ‖0, respectively.
We also define the term u2, which is used in the proof of Proposition 6.4. Set

bij = −aij + aim
∂χj

∂ym
+

∂

∂ym
(amiχ

j)

and observe that bij = Aij , where bij =
∫

Y
bijdy. Define χij ∈ H1

per(Y ) as the weak
solution with zero average over Y of

∇y · a∇yχ
ij = bij − bij(2.7)

and let

u2(x,
x

ε
) = −χij

(x

ε

) ∂2u0

∂xi∂xj
(x).(2.8)

2.2. Boundary Corrector Approximation. The coefficients aij(x/ε) and the
boundary values −u1(x,

x
ε ) in the Equation (2.6) are highly oscillatory, hence it is

not a trivial problem to obtain a good discrete approximation for θε . We propose an
analytical approximation for θε, denoted by φε, which satisfies the oscillating boundary
condition and is suitable for numerical approximation. The approximation for θε

proposed here is similar to the one used in [3, 34].
Note that u0 vanishes on ∂Ω, therefore ∇u0|∂Ω = η∂ηu0, where η denotes the

unity outward normal vector to ∂Ω and ∂ηu0 denotes the unity outward derivative of
u0 on ∂Ω. Hence in order to obtain the approximation φε for θε, we introduce the
following decomposition θε = θ̃ε + θ̄ε, where

−∇ · a(x/ε)∇θ̃ε = 0 in Ω, θ̃ε = (χj(
x

ε
)ηj − χ∗)∂ηu0 on ∂Ω(2.9)

and

−∇ · a(x/ε)∇θ̄ε = 0 in Ω, θ̄ε = χ∗∂ηu0 on ∂Ω,(2.10)
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where χ∗|Γk
= χ∗

k, k ∈ {e, w, n, s} are properly chosen constants defined in Subsection
2.2.1, and Γe = {1}× [0, 1], Γw = {0}× [0, 1], Γn = [0, 1]×{1}, and Γs = [0, 1]×{0}.
In Remark 2.1 we show that χ∗∂ηu0 and χj(x

ε )ηj∂ηu0 ∈ H1/2(∂Ω), therefore the
Problems (2.9) and (2.10) are well posed. Later in this section we define the functions
φ̃ε and φ̄ε, which are the approximations for θ̃ε and θ̄ε respectively, and define φε =
φ̃ε + φ̄ε.

Remark 2.1. Let Ω ⊂ R
2 be a convex polygon and assume u0 ∈ H2(Ω)∩H1

0 (Ω).

We have by Theorem A.2 [37] that ∂ηu0|Γk
∈ H

1/2
00 (Γk) and ‖∂ηu0‖H

1/2

00
(Γk)

≤ c‖u0‖2,

therefore

‖χ∗∂ηu0‖H1/2(∂Ω) ≤ c(χ∗)‖u0‖2.

Note also that u1(x,
x
ε ) = −χj

(

x
ε

)

∂u0

∂xj
(x) and ∂u1

∂xl
= −

(

∂χj

∂xl

)

∂u0

∂xj
− χj

(

∂2u0

∂xl∂xj

)

. If

we assume u0 ∈W 2,p(Ω) and χj ∈ W 1,q
per(Y ), for p ≥ 2 and q > 2 or p > 2 and q ≥ 2,

by a direct application of Sobolev embedding Theorem (5.4 [1]) we obtain u1 ∈ H1(Ω).
In addition, from regularity theory of elliptic equations we obtain χj ∈ L∞(Y )∩H1(Y )

(see Theorem 13.1 [30] and 4.28 [15]), hence we also have u1|Γk
∈ H

1/2
00 (Γk).

2.2.1. Calculating the Constants χ∗
k. We define the constants χ∗

k such that

the function φ̃ε decays exponentially to zero away from the boundary and satisfies the
Dirichlet boundary condition φ̃ε(x) = −u1(x,

x
ε ) − χ∗∂ηu0(x) for x ∈ ∂Ω.

Associated to each side of Ω define the functions vk, k ∈ {e, w, n, s} as

1. Let Ge = {(−∞, 0] × [0, 1]} and ve the solution of

−∇y · a(y1, y2)∇yve = 0 in Ge,

ve(0, y2) = χ1(1/ε, y2) for 0 < y2 < 1,

ve(y1, ·) [0, 1]-periodic for −∞ < y1 < 0,

and ∂yiveexp(−γy1) ∈ L2(Ge) i = 1, 2.

2. Let Gw = {[0,∞) × [0, 1]} and vw the solution of

−∇y · a(y1, y2)∇yvw = 0 in Gw,

vw(0, y2) = −χ1(0, y2) for 0 < y2 < 1,

vw(y1, ·) [0, 1]-periodic for 0 < y1 <∞,

and ∂yivwexp(γy1) ∈ L2(Gw) i = 1, 2.

3. Let Gn = {[0, 1]× (−∞, 0]} and vn the solution of

−∇y · a(y1, y2)∇yvn = 0 in Gn,

vn(y1, 0) = χ2(y1, 1/ε) for 0 < y1 < 1,

vn(·, y2) [0, 1]-periodic for −∞ < y2 < 0,

and ∂yivnexp(−γy2) ∈ L2(Gn) i = 1, 2.

4. Let Gs = {[0, 1]× [0,∞)} and vs the solution of

−∇y · a(y1, y2)∇yvs = 0 in Gs,

vs(y1, 0) = −χ2(y1, 0) for 0 < y1 < 1,

vs(·, y2) [0, 1]-periodic for 0 < y2 <∞,

and ∂yivnexp(γy2) ∈ L2(Gs) i = 1, 2.
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The above problems have been studied by several authors, see [36, 33, 29, 34]. The-
orem 10.1 in Section 10.4 from [33] guarantees the existence of a unique solution for
each of the above equations. In addition, by Theorem 3 [36] there exists constants
χ∗

k, such that

|vk(y) − χ∗
k| ≤ cexp(γy · ηk) as y · ηk → −∞,

where ηk denotes the unity outward normal on Γk.

2.2.2. Approximating θ̃ε. We note by Remark 2.1 that (u1(x,
x
ε )−χ∗∂ηu0)|Γk

∈

H
1/2
00 (Γk). Thus, we can split θ̃ε =

∑

k∈{e,w,n,s} θ̃
k
ε where

Lεθ̃
k
ε = 0 in Ω, and θ̃k

ε =

{

−u1(x,
x
ε ) − χ∗∂ηu0 on Γk

0 on ∂Ω \ Γk.
(2.11)

We approximate θ̃k
ε by φ̃k

ε given as

φ̃e
ε(x1, x2) = ϕe(x1)

(

ve(
x1 − 1

ε
,
x2

ε
) − χ∗

e

)

∂u0

∂x1
(x1, x2),(2.12)

φ̃w
ε (x1, x2) = −ϕw(x1)

(

vw(
x1

ε
,
x2

ε
) − χ∗

w

) ∂u0

∂x1
(x1, x2),

φ̃n
ε (x1, x2) = ϕn(x2)

(

vn(
x1

ε
,
x2 − 1

ε
) − χ∗

n

)

∂u0

∂x2
(x1, x2),

φ̃s
ε(x1, x2) = −ϕs(x2)

(

vs(
x1

ε
,
x2

ε
) − χ∗

s

) ∂u0

∂x2
(x1, x2),

where ϕk are nonnegative smooth functions satisfying

ϕe(s) = ϕn(s) =

{

1 if s ∈ [2/3, 1]
0 if s ∈ [0, 1/3],

ϕw(s) = ϕs(s) =

{

0 if s ∈ [2/3, 1]
1 if s ∈ [0, 1/3].

Hence

φ̃ε =
∑

k∈{e,w,n,s}

φ̃k
ε(2.13)

approximates θ̃ε, and φ̃ε = θ̃ε on the boundary of Ω.

2.2.3. Approximating θ̄ε. The boundary condition imposed on Equation (2.10)
does not depend on ε. An effective approximation for θ̄ε is given by φ̄ ∈ H1(Ω) the
weak solution of

−∇ · A∇φ̄ = 0 in Ω, φ̄ = χ∗∂ηu0 on ∂Ω.(2.14)

By Propositions 6.3 and 6.5, we have that φ̄ is a good approximation for θ̄ε

only on the L2 norm, since ‖φ̄ − θ̄ε‖0 is O(ε) and ‖φ̄ − θ̄ε‖1 is O(1). We note,
however, that the asymptotic expansion considered here to approximate uε is given by
u0+εu1+εθ̄ε+εθ̃ε, and by a triangular inequality we obtain ‖uε−u0−εu1−εφ̄−εθ̃ε‖1 ≤
cε+‖uε−u0−εu1−εθε‖1. Hence, when estimating the error on the H1 norm between
uε and its theoretical approximation, the contribution due to the approximation of θ̄ε

by φ̄ is O(ε).
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2.2.4. Approximating uε. We finally define the theoretical approximation for
uε as u0 + εu1 + εφε, where

φε = φ̃ε + φ̄.(2.15)

Note that φε|∂Ω = θε|∂Ω, therefore u0 + εu1 + εφε = 0 on ∂Ω.

2.2.5. Error estimates. The following theorems provide error estimates be-
tween uε and u0 − εu1 − εφε on the H1 and L2 norms. Theorem 2.1 estimates the
error on the H1 norm, while Theorems 2.2 and 2.3 estimate the error on the L2 norm.
Theorem 2.2 assumes more regularity on u0 and less regularity on a that is assumed
in Theorem 2.3.

Theorem 2.1. Let uε be the solution of the Problem (1.1), u0, u1 and φε defined
by Equations (2.4), (2.5) and (2.15), respectively. Assume aij ∈ L∞

per(Y ), u0 ∈

W 2,p(Ω), χj ∈ W 1,q
per(Y ), ve and ∇(ve − χ∗

e)exp(−γy1) ∈ Ls(Ge), for 1/s+ 3/p ≤ 1,
s ≥ 2 and 1/p+1/q ≤ 1/2. We also assume similar hypothesis for the other functions
vk. Then there exists a constant c independent of ε such that

‖uε(·) − u0(·) − εu1(·, ·/ε) − εφε(·)‖1 ≤ cε‖u0‖2,p.

Proof. See Subsection 6.1
Theorem 2.2. Let uε be the solution of Problem (1.1), u0, u1, φε, φ̄ and χij

defined by Equations (2.4), (2.5), (2.15), (2.14) and (2.7), respectively. Assume
aij ∈ L∞

per(Y ), u0 ∈ W 3,p(Ω), and φ̄ ∈ W 2,p(Ω) and χij ∈ W 1,q
per(Y ), for p > 2 and

1/p+1/q ≤ 1/2. Assume also χj ∈W 1,∞(Y ), ve and ∇(ve−χ
∗
e)exp(−γy1) ∈ L∞(Ge).

We also assume similar hypothesis for the other functions vk. Then there exists a
constant c independent of ε such that

‖uε(·) − u0(·) − εu1(·, ·/ε) − εφε(·)‖0 ≤ cε3/2‖u0‖3,p.

Proof. See Subsection 6.2
Theorem 2.3. Let uε be the solution of Problem (1.1), u0, u1 and φε be defined

by Equations (2.4), (2.5) and (2.15), respectively. Assume aij ∈ C1,β
per(Y ), β > 0,

u0 ∈ H3(Ω). Then there exists a constant c independent of ε such that

‖uε(·) − u0(·) − εu1(·, ·/ε) − εφε(·)‖0 ≤ cε3/2‖u0‖3.

Proof. See Subsection 6.3
Remark 2.2. Due to the Proposition 6.2, which under the hypothesis of Theorems

2.2 and 2.3 gives that ‖θ̃ε− φ̃ε‖0 is O(ε1/2), we obtain a factor ε3/2 in these theorems,
rather than ε2 as in Propositions 6.4 and 6.6.

3. Finite Element Approximation. We now describe how to approximate the
terms u0, u1, φ̃ε and φ̄ numerically.

• Approximate the solution of Problem (2.2) with a second order accurate con-
forming finite element on a partition Tĥ(Y ). Denote these solutions by χj

ĥ
.

• Define Aĥ
ij = 1

|Y |

∫

Y
alm(y) ∂

∂yl
(yi − χi

ĥ
) ∂

∂ym
(yj − χj

ĥ
)dy.
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• Let V h(Ω) be a conforming second order accurate finite element space on a

mesh Th(Ω) and let V h
0 (Ω) = V h(Ω) ∩ H1

0 (Ω). Define uh,ĥ
0 ∈ V h

0 (Ω) as the
solution of

∫

Ω

Aĥ∇uh,ĥ
0 · ∇vhdx =

∫

Ω

fvhdx, ∀vh ∈ V h
0 (Ω).

• Since ∂ηu0 appears as boundary condition imposed in Equation (2.14), it is
important to obtain a good discrete approximation for it. In oder to ap-
proximate ∂ηu0 we define Y h = V h(Ω)|∂Ω, Y h

k = Y h|Γk
and Y h

0,k = {λh ∈

Y h
k ;λh = 0 at ∂Γk}. Let λh,ĥ

k ∈ Y h
0,k be the solution of

∫

Γk

λh,ĥ
k φhdσ =

∫

Ω

Aĥ
ij∂iu

h,ĥ
0 ∂jφ

hdx−

∫

Ω

fφhdx,(3.1)

∀ φh ∈ V h(Ω), such that φh|∂Ω\Γk
= 0. Later in Proposition 4.3 we show

that λh,ĥ
k is a good approximation for A∇u0 ·ηk on Γk, hence we approximate

∂ηu0 by µh,ĥ where

µh,ĥ|Γk
= λh,ĥ

k /Aĥ
lklk

, lk =

{

1 if k = e, w
2 if k = n, s.

• We observe that we use µh,ĥ as the approximation for ∂ηu0 in Equation (3.5),
hence in order to guarantees that the final numerical approximation for uε

satisfies the zero Dirichlet boundary condition we define the approximation
for ∇u0 as

Ψh,ĥ = ∇uh,ĥ
0 +

∑

k∈{e,w,n,s}

Eh
k (µh,ĥ −∇uh,ĥ

0 · ηk)ηk .(3.2)

Here Eh
k (·) denotes a non-conforming discrete extension of µh,ĥ −∇uh,ĥ

0 · ηk

by zero on Ω. More specifically, Eh
k (µh,ĥ −∇uh,ĥ

0 · ηk)(z) = 0, if z is a vertex

of Th(Ω) \Γk, Eh
k (µh,ĥ −∇uh,ĥ

0 · ηk)(z) = µh,ĥ −∇uh,ĥ
0 · ηk(z), if z is a vertex

of Γk, and Eh
k (µh,ĥ −∇uh,ĥ

0 · ηk)|Ki ∈ V h(Ω)|Ki , ∀ Ki ∈ Th(Ω).
• Define

uh,ĥ
1 (x, x/ε) = −Ψh,ĥ

j (x)χj

ĥ
(x/ε).(3.3)

Note that this leads to a nonconforming approximation for u1 in the partition
Th(Ω).

• Let τ be a positive integer and Gτ
e = {y ∈ R

2; −τ ≤ y1 ≤ 0 and 0 ≤ y2 ≤ 1}.
Define ṽe ∈ H1(Gτ

e ) as the weak solution of

−∇y · a(y)∇yṽe = 0 in Gτ
e ,

ṽe(y) = χ1
ĥ
(1/ε, y2) on {y ∈ Gτ

e , y1 = 0},

∂η ṽe = 0 on {y ∈ Gτ
e ; y1 = −τ},

and ve(y1, 0) = vk(y1, 1) for − τ ≤ y1 ≤ 0.
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Let vĥ,τ
e be a numerical approximation of ṽe using a second order accurate

conforming finite element on a mesh Tĥ(Gτ
e ), and define

χ∗,ĥ,τ
e =

∫ 1

0

vĥ,τ
e (−τ, y2)dy2.

The other cases k ∈ {w, n, s} are treated similarly.
• Observe that the term ve(

x1−1
ε , x2

ε ) appears in Equation (2.12). The approxi-

mation vĥ,τ
e is defined in Gτ

e , hence we have defined vĥ,τ
e (x1−1

ε , x2

ε ) only when
x1 ≥ 1 − ετ . Since the functions ve − χ∗

e decays exponentially to zero in the
−ηe direction, its is natural to define the following approximation

φ̃e,h,ĥ,τ
ε (x1, x2) =

{ (

vĥ,τ
e

(

x1−1
ε , x2

ε

)

− χ∗,ĥ,τ
e

)

Ψh,ĥ if x1 > 1 − ετ

0 otherwise.

• Let

φ̃h,ĥ,τ
ε =

∑

k∈{e,w,n,s}

φ̃k,h,ĥ,τ
ε ,(3.4)

where the others terms φ̃k,h,ĥ,τ
ε are defined in a similar way.

• Let φ̄h,ĥ,τ be a second order accurate finite element approximation on a mesh
of size h for the following equation (for the well posedness of the equation
bellow see Remark 3.1)

−∇ · Aĥ∇ψ = 0 in Ω, and ψ = χ∗,ĥ,τµh,ĥ on ∂Ω.(3.5)

• Approximate θε by φh,ĥ,τ
ε = φ̃h,ĥ,τ

ε + φ̄h,ĥ,τ and finally define the numerical
solution for Equation (1.1) as

uh,ĥ,τ
ε = uh,ĥ

0 + εuh,ĥ
1 + εφh,ĥ,τ

ε .(3.6)

Remark 3.1. By construction µh,ĥ vanishes at the corners of Ω, therefore

χ∗,ĥ,τµh,ĥ ∈ H1/2(∂Ω). This implies that Equation (3.5) is well posed. In addi-

tion χ∗,ĥ,τµh,ĥ ∈ V h|∂Ω, hence we can look for a numerical solution of Equation (3.5)
in V h(Ω).

4. Finite Element Approximation Error Analysis. For the discrete error

analysis we assume ĥ = 0 and τ = ∞, i.e. vĥ,τ
k = vk, χj

ĥ
= χj and Aĥ = A, and for this

reason we will note make reference to the indices τ and ĥ when we make reference
to the the numerical approximation for u0, ∇u0, φ̄, φ̃ε and uε, i.e. uh

ε = uh,ĥ,τ
ε

and similar for the other terms; an error analysis including the error due to the
numerical approximation of the functions vk and χj , and the matrix A is currently
work under progress. We also assume that linear or bilinear finite elements are used to
approximate u0. Theorems 4.1 and 4.2 give the main results of this section. Theorem
4.1 provides error estimates for the broken H1 semi-norm and the L2 norm between
the exact solution uε and its numerical approximation uh

ε . Theorem 4.2 assumes more
regularity from u0 resulting in a better error estimate on the L2 norm.

Theorem 4.1. Let uε be the solution of the Problem (1.1), u0, χ
j and uh

ε be
defined by Equations (2.2), (2.4) and (3.6), respectively, and the functions vk and the
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constants χ∗
k be defined as in Subsection 2.2.1. Assume aij ∈ L∞

per(Y ), u0 ∈ W 2,p(Ω),

χj ∈ W 1,q
per(Y ), ve and ∇(ve − χ∗

e)exp(−γy1) ∈ Ls(Ge), for 1/p + 1/q ≤ 1/2 and
1/s+ 3/p ≤ 1. We also assume similar hypothesis for the other functions vk. Then
there exists a constant c independent of ε and h such that

|uε − uh
ε |1,h ≤ c(h+ ε)‖u0‖2,p

and

‖uε − uh
ε ‖0 ≤ c(h2 + ε+ εh)‖u0‖2,p.

Proof. By the triangular inequality we have

|uε − uh
ε |1,h ≤ |uε − u0 − u1 − φε|1 + |u0 − uh

0 |1,h + ε|u1 − uh
1 |1,h

+ε|φ̄− φ̄h|1,h + ε|φ̃ε − φ̃h
ε |1,h,

and the theorem follows from Theorem 2.1, the approximation error (4.1), and Propo-
sitions 4.2, 4.3 and 4.4.

Theorem 4.2. Let uε be the solution of the Problem (1.1), χj , u0, χ
ij , φ̄ and

uh
ε be defined by Equations (2.2), (2.4), (2.7), (2.14) and (3.6), respectively, and

the functions vk and the constants χ∗
k be defined as in Subsection 2.2.1. Assume

aij ∈ L∞
per(Y ), u0 ∈ W 3,p(Ω), φ̄ ∈ W 2,p(Ω) and χij ∈ W 1,q

per(Y ), for p > 2 and

1/p + 1/q ≤ 1/2. Also assume χj ∈ W 1,∞(Y ), and ve and ∇(ve − χ∗
e)exp(−γy1) ∈

L∞(Ge). We also assume similar hypothesis for the other functions vk. Then there
exists a constant c independent of ε and h such that

‖uε − uh
ε ‖0 ≤ c(h2 + ε

3
2 + εh)‖u0‖3,p.

Furthermore, if aij ∈ C1,β
per(Y ) and u0 ∈ H3(Ω), then

‖uε − uh
ε ‖0 ≤ c(h2 + ε

3
2 + εh)‖u0‖3.

Proof. The same proof of Theorem 4.1 holds here, except that (4.1) is replaced
by (4.2) and Theorem 2.1 is replaced by Theorems 2.3 and 2.2.

We now prove the propositions used in the proofs of Theorems 4.1 and 4.2.
For the approximation error of the term u0 we use standard finite element analysis

to obtain

‖u0 − uh
0‖1,p ≤ ch‖u0‖2,p, for 2 ≤ p ≤ ∞,(4.1)

‖u0 − uh
0‖0,p ≤ ch2‖u0‖2,p, for 2 ≤ p <∞(4.2)

and

‖u0 − uh
0‖0,∞ ≤ ch2ln(h)‖u0‖2,∞;(4.3)

see Corollary 7.1.2, Theorem 4.4.20 and inequality (7.5.4) from [10]. Let Ih be the
usual local point-wise P1 or Q1 interpolate and K ∈ Th(Ω), then

|u0 − uh
0 |2,p,K ≤ |u0 − Ihu0|2,p,K + |Ihu0 − uh

0 |2,p,K .
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Using an interpolation error estimate, see Theorem 4.4.20 [10], we obtain

|u0 − Ihu0|s,p,h ≤ chm−s|u0|m,p,h, for 0 ≤ s ≤ m,(4.4)

and from an inverse inequality, see Lemma 4.5.3 [10], we have

|Ihu0 − uh
0 |2,p,K ≤ ch−1‖Ihu0 − uh

0‖1,p,K .(4.5)

Finally from (4.4), (4.5) and (4.1) we obtain

‖u0 − uh
0‖2,p,h ≤ c‖u0‖2,p.(4.6)

In order to estimate the L2 and the broken H1 semi-norm of u1 −u
h
1 , (see Propo-

sition 4.2) we note that u1 − uh
1 = (∂xju0 −Ψh

j )χj hence by a Cauchy inequality and

the Sobolev embedding Theorem we obtain ‖u1 −uh
1‖0 ≤ c‖∂xju0 −Ψh

j ‖0,p‖χ
j‖0,q for

1/p + 1/q ≤ 1/2. Therefore we have to estimate the error between Ψh and ∇u0 on
the Lp and on the broken W 1,p semi-norm, (see Proposition 4.1) this is done by first
estimating the error between A∇u0 · η and λh in the trace space of W 1,p(Ω) over Γk

in different norms; see Lemma 4.3. Lemmas 4.1 and 4.2 are auxiliary results used for
obtaining Lemma 4.3.

Consider the following spaces:
Case 2 < p <∞: Since W 1−1/p,p(Γk) ↪→ C0(Γk), we define the spaces

W
1−1/p,p
00 (Γk) = {ϕ ∈ W 1−1/p,p(Γk); ϕ = 0 on ∂Γk} equipped with the norm

‖ · ‖
W

1−1/p,p
00

(Γk)
= ‖ · ‖W 1−1/p,p(Γk).

Case p = 2: We set W
1−1/p,p
00 (Γk) = H

1/2
00 (Γk) and ‖·‖

W
1−1/p,p
00

(Γk)
= ‖·‖

H
1/2

00
(Γk)

;

see [31] for the definition of H
1/2
00 (Γk).

Case 1 < p < 2: We define W
1−1/p,p
00 (Γk) = W 1−1/p,p(Γk) equipped with the

norm ‖ · ‖
W

1−1/p,p
00

(Γk)
= ‖ · ‖W 1−1/p,p(Γk).

These spaces have the following important feature. Denote by ϕ̃ the extension by

zero to ∂Ω \ Γk of a given function ϕ ∈ W
1−1/p,p
00 (Γk). Then by the Trace Theorem

and the Lift Theorem 1.5.2.3 from [24] there exists a function ψϕ ∈ W 1,p(Ω) such
that ψϕ|∂Ω = ϕ̃ and

c1‖ϕ‖
W

1− 1
p

,p

00
(Γk)

≤ ‖ψϕ‖1,p ≤ c‖ϕ̃‖
W

1− 1
p

,p
(∂Ω)

≤ c2‖ϕ‖
W

1− 1
p

,p

00
(Γk)

.(4.7)

We also introduce the dual space of W
1−1/p,p
00 (Γk), denoted by W−1+1/p,p′

(Γk), where
1/p+ 1/p′ = 1.

The following inverse inequality is required in the proof of Lemma 4.3.
Lemma 4.1. Let 1 < p <∞ and vh ∈ Y h

0,k. Then

‖vh‖
W

1−1/p,p
00

(Γk)
≤ ch−1‖vh‖W−1+1/p′,p(Γk).(4.8)

Proof. Consider the following inverse inequality (see Theorem 4.5.11 [10])

‖vh‖s,q,∂Ω ≤ ch−s‖vh‖0,q,∂Ω, ∀ vh ∈ Y h, 1 ≤ q ≤ ∞ and 0 ≤ s ≤ 1.(4.9)

Given vh ∈ Y h
0,k let ṽh ∈ Y h be the extension of vh to ∂Ω \ Γk by zero. Using (4.7)

and (4.9) we obtain

‖vh‖
W

1−1/p,p
00

(Γk)
≤ c‖ṽh‖W 1−1/p,p(∂Ω)

≤ ch−1+1/p‖ṽh‖Lp(∂Ω) = ch−1+1/p‖vh‖Lp(Γk).(4.10)
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Let P0,k denote the L2 projector to Y h
0,k and assume that vh ∈ Y h

0,k. Then

‖vh‖Lp(Γk) = sup
φ∈Lp′ (Γk)

〈vh, φ〉

‖φ‖Lp′(Γk)

= sup
φ∈Lp′ (Γk)

〈vh,P0,kφ〉

‖φ‖Lp′(Γk)

.

By Theorem 1 in [17] we have

‖P0,kφ‖Lp′ (Γk) ≤ c‖φ‖Lp′(Γk) 1 ≤ p′ ≤ ∞.(4.11)

Hence

‖vh‖Lp(Γk) ≤ c sup
φ∈Lp′(Γk)

‖vh‖
W

−1+ 1

p′
,p

(Γk)
‖P0,kφ‖

W
1− 1

p′
,p′

00
(Γk)

‖P0,kφ‖Lp′ (Γk)

≤ ch
−1+ 1

p′ ‖vh‖
W

−1+ 1

p′
,p

(Γk)
,(4.12)

where on the last inequality we have used (4.10) for bounding ‖P0,kφ‖W
1−1/p′,p′

00
(Γk)

.

Combining inequalities (4.10) and (4.12) we obtain (4.8).
The following lemma provide stability and error estimates concerning P0,k, the

L2 projector to Y h
0,k. These results are required in the proof of Lemma 4.3.

Lemma 4.2. Let 2 ≤ p <∞ and P0,k : W−1+ 1
p ,p′

(Γk) → Y h
0,k be the L2 projector

to Y h
0,k. Then we have

‖P0,kφ‖
W

1− 1
p

,p

00
(Γk)

≤ c‖φ‖
W

1− 1
p

,p

00
(Γk)

∀ φ ∈W
1− 1

p ,p

00 (Γk),(4.13)

‖φ−P0,kφ‖Lp(Γk) ≤ ch1− 1
p ‖φ‖

W
1− 1

p
,p

00
(Γk)

∀ φ ∈W
1− 1

p ,p

00 (Γk),(4.14)

‖φ−P0,kφ‖
W

−1+ 1
p

,p′

(Γk)
≤ ch1− 1

p ‖φ‖Lp′ (Γk) ∀ φ ∈ Lp′

(Γk)(4.15)

and

‖P0,kφ‖
W

−1+ 1
p

,p′

(Γk)
≤ c‖φ‖

W
−1+ 1

p
,p′

(Γk)
∀ φ ∈ W−1+ 1

p ,p′

(Γk).(4.16)

Proof of (4.13):

Case p > 2: Observe that P0,k : Lp(Γk) → Y h
0,k is stable in Lp and W 1,p,

i.e. ‖P0,kφ‖Lp(Γk) ≤ c‖φ‖Lp(Γk) ∀ φ ∈ Lp(Γk), and ‖P0,kφ‖W 1,p(Γk) ≤ c‖φ‖W 1,p(Γk)

∀ φ ∈ W 1,p(Γk), respectively; see Theorems 1 and 2 in [17]. Since W 1− 1
p ,p(Γk) =

[Lp(Γk),W 1,p(Γk)]1−1/p,p; see Theorem 12.2.3 in [10], we obtain the stability of P0,k

in W 1− 1
p ,p(Γk) by the real interpolation method, see Proposition 12.1.5 in [10], and

the inequality (4.13) follows.

Case p = 2: By definition H
1/2
00 (Γk) = [L2(Γk), H1

0 (Γk)]1/2 and the proof is
analogue to the case p > 2.

Proof of (4.14):
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Case p > 2: Let Ih : Lp(Γk) → V h(Ω)|Γk
denote the standard P1 or Q1 interpo-

lation operator. Then we have

‖φ−P0,kφ‖Lp(Γk) ≤ ‖φ− Ihφ‖Lp(Γk) + ‖P0,k(φ− Ihφ)‖Lp(Γk)

≤ c‖φ− Ihφ‖Lp(Γk), by (4.11)

≤ ch1− 1
p ‖φ‖

W
1− 1

p
,p

00
(Γk)

, by (4.4).(4.17)

Case p = 2: Follows similarly to the case p > 2 by replacing Ih by the Clement
interpolation operator defined by (2.13) in [40] and use the real interpolation method
to obtain (4.17).

Proof of (4.15):

‖φ−P0,kφ‖
W

−1+ 1
p

,p′

(Γk)
= sup

v∈W
1− 1

p
,p

00
(Γk)

〈φ −P0,kφ, v〉

‖v‖
W

1− 1
p

,p

00
(Γk)

= sup

v∈W
1− 1

p
,p

00

〈φ−P0,kφ, v −P0,kv〉

‖v‖
W

1− 1
p

,p

00
(Γk)

= sup

v∈W
1− 1

p
,p

00

〈φ, v −P0,kv〉

‖v‖
W

1− 1
p

,p

00
(Γk)

≤ sup

v∈W
1− 1

p
,p

00

‖φ‖Lp′(Γk)‖v −P0,kv‖Lp(Γk)

‖v‖
W

1− 1
p

,p

00
(Γk)

≤ ch1− 1
p ‖φ‖Lp′(Γk),(4.18)

where we have used (4.14) to obtain the last inequality.
Proof of (4.16):

‖P0,kφ‖
W

−1+ 1
p

,p′

(Γk)
= sup

v∈W
1− 1

p
,p

00
(Γk)

〈P0,kφ, v〉

‖v‖
W

1− 1
p

,p

00
(Γk)

≤ c sup

v∈W
1− 1

p
,p

00
(Γk)

〈P0,kφ,P0,kv〉

‖P0,kv‖
W

1− 1
p

,p

00
(Γk)

, by (4.13)

≤ c sup

v∈W
1− 1

p
,p

00
(Γk)

〈φ,P0,kv〉

‖P0,kv‖
W

1− 1
p

,p

00
(Γk)

≤ c‖φ‖
W

−1+ 1
p

,p′

(Γk)
.

�

The following lemma estimate the error between A∇u0 · η and its numerical ap-
proximation λh. This lemma is used in the proof of Proposition 4.1.

Lemma 4.3. Let λh be defined by Equation (3.1) and λ = ∂ηAu0 = Aij∂ju0ηi,
where ηi is the ith component of the normal vector to Γk. Assume that u0 ∈ W 2,p(Ω).
Then we have

‖λ− λh‖
W

1−1/p,p
00

(Γk)
≤ c‖u0‖2,p for 2 ≤ p <∞,(4.19)
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‖λ− λh‖Lp(Γk) ≤ ch1− 1
p ‖u0‖2,p for 2 ≤ p ≤ ∞(4.20)

and

‖λ− λh‖W−1+1/p,p′ (Γk) ≤ ch‖u0‖2,p for 2 ≤ p <∞.(4.21)

Proof of (4.19): From Remark 2.1 if p = 2, or from the Sobolev embedding theorem
if p > 2, we have

‖λ‖
W

1−1/p,p
00

(Γk)
≤ c‖u0‖2,p.(4.22)

In order to prove inequality (4.19) observe that

‖λ− λh‖
W

1−1/p,p
00

(Γk)
≤ ‖λ‖

W
1−1/p,p
00

(Γk)
+ ‖λh‖

W
1−1/p,p
00

(Γk)
,

and

‖λh‖
W

1− 1
p

,p

00
(Γk)

= sup

φ∈W
−1+ 1

p
,p′

(Γk)

〈λh, φ〉

‖φ‖W−1+1/p,p′ (Γk)

.

Since λh ∈ Y h
0,k then 〈λh, φ〉 = 〈λh,P0,kφ〉, and using (4.16) we obtain

‖λh‖
W

1− 1
p

,p

00
(Γk)

≤ c sup

φ∈W
−1+ 1

p
,p′

(Γk)

〈λh,P0,kφ〉

‖P0,kφ‖
W

−1+ 1
p

,p′

(Γk)

.(4.23)

Now we recall the discrete extension operator, Eh : Y h → V h(Ω) defined by (5.5)
in [40], which satisfies

‖Ehg‖1,p′ ≤ c‖g‖W 1−1/p′,p′ (∂Ω)

for g ∈ Y h. Hence if gh ∈ Y h
0,k and g̃h denotes the extension of gh by zero to ∂Ω \ Γk

it follows

‖Ehg̃
h‖1,p′ ≤ c‖gh‖

W
1−1/p′,p′

00
(Γk)

.(4.24)

Let P̃0,kφ denote the discrete extension of P0,kφ to ∂Ω \ Γk by zero. From the
definition of λh and inequalities (4.24) and (4.1), we obtain

〈λh,P0,kφ〉 = 〈λ,P0,kφ〉 + a(uh
0 − u0, EhP̃0,kφ)

≤ ‖λ‖
W

1−1/p,p
00

(Γk)
‖P0,kφ‖W−1+1/p,p′ (Γk) + ch‖u0‖2,p‖P0,kφ‖W

1−1/p′,p′

00
(Γk)

≤ c
(

‖λ‖
W

1−1/p,p
00

(Γk)
+ c‖u0‖2,p

)

‖P0,kφ‖W−1+1/p,p′ (Γk).(4.25)

Here we used the inverse estimate (4.8) applied to P0,kφ to obtain (4.25) . Inequality
(4.19) follows from (4.25), (4.23) and (4.22).

Proof of (4.21): We observe that

‖λ− λh‖W−1+1/p,p′(Γk) = sup

φ∈W
1− 1

p
,p

00
(Γk)

〈λ− λh, φ〉

‖φ‖
W

1− 1
p

,p

00
(Γk)

≤ c sup

φ∈W
1− 1

p
,p

00
(Γk)

〈λ− λh, φ−P0,kφ〉

‖φ‖
W

1− 1
p

,p

00
(Γk)

+ c sup

φ∈W
1− 1

p
,p

00
(Γk)

〈λ− λh,P0,kφ〉

‖P0,kφ‖
W

1− 1
p

,p

00
(Γk)

.(4.26)
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In order to estimate the second term on the right hand side of (4.26) we use the
definition of λ and λh, and the inequality (4.24) to obtain

〈λ− λh,P0,kφ〉 = a(uh
0 − u0, EhP̃0,kφ)

≤ ch‖u0‖2,p‖P0,kφ‖W
1−1/p′,p′

00
(Γk)

≤ ch‖u0‖2,p‖P0,kφ‖W
1−1/p,p
00

(Γk)
since p > p′.(4.27)

For estimating the first term on the right hand side of (4.26) we note that

‖φ−P0,kφ‖
W

−1+ 1
p

,p′

(Γk)
= sup

v∈W
1− 1

p
,p

00
(Γk)

〈φ−P0,kφ, v −P0,kv〉

‖v‖
W

1− 1
p

,p

00
(Γk)

≤ sup

v∈W
1− 1

p
,p

00
(Γk)

‖φ−P0,kφ‖L2(Γk)‖v − P0,kv‖L2(Γk)

‖v‖
W

1−1/p,p
00

(Γk)

≤ ch‖φ‖
W

1−1/p,p
00

(Γk)
.(4.28)

In the last inequality we used (4.14) and the fact that W
1−1/p,p
00 (Γk) ↪→ H

1/2
00 (Γk) for

p > 2. Hence,

〈λ− λh, φ−P0,kφ〉 ≤ ‖λ− λh‖
W

1−1/p,p
00

(Γk)
‖φ−P0,kφ‖W−1+1/p,p′ (Γk)

≤ ch‖u0‖2,p‖φ‖W
1−1/p,p
00

(Γk)
, by (4.19) and (4.28),(4.29)

and the inequality (4.21) follows from (4.26), (4.27) and (4.29).
Proof of (4.20):

Case 2 ≤ p <∞: We have

‖λ− λh‖Lp(Γk) ≤ sup
φ∈Lp′(Γk)

〈λ− λh, φ−P0,kφ〉

‖φ‖Lp′ (Γk)

+ sup
φ∈Lp′ (Γk)

〈λ− λh,P0,kφ〉

‖φ‖Lp′ (Γk)

.(4.30)

The first term on the right hand side of (4.30) is bounded as follows:

sup
φ∈Lp′(Γk)

〈λ − λh, φ−P0,kφ〉

‖φ‖Lp′ (Γk)

≤ sup
φ∈Lp′(Γk)

‖λ− λh‖
W

1− 1
p

,p

00
(Γk)

‖φ−P0,kφ‖
W

−1+ 1
p

,p′

(Γk)

‖φ‖Lp′(Γk)

≤ ch1− 1
p ‖u0‖2,p.(4.31)

Here we have used (4.15) and (4.19) to arrive in (4.31). In order to estimate the
second term on the right hand side of (4.30) we use the definition of λ and λh to
obtain

sup
φ∈Lp′(Γk)

〈λ − λh,P0,kφ〉

‖φ‖Lp′(Γk)

≤ sup
φ∈Lp′(Γk)

∫

Y
aij∂i(u0 − uh

0 )∂j(EhP̃0,kφ)dy

‖P0,kφ‖Lp′ (Γk)

≤ ch sup
φ∈Lp′(Γk)

‖u0‖2,p‖P0,kφ‖
W

1− 1

p′
,p′

00

‖P0,kφ‖Lp′ (Γk)

≤ ch1− 1
p ‖u0‖2,p, by (4.10).
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Case p = ∞: Let z ∈ Γk, then

|λ(z) − λh(z)| ≤ |λ(z) −P0,kλ(z)| + |λh(z) −P0,kλ(z)|.(4.32)

For the first term of (4.32), by Theorem 3.1 in [44] there exists a positive constant c
such that

|λ(z) −P0,kλ(z)| ≤ c‖λ− vh‖0,∞,Γk
+ c exp(−ch)‖λ− vh‖0,1,Γk

, ∀ vh ∈ Y0,k.(4.33)

The use of Q1 elements to approximate u0 implies A∇uh
0 · ηk|Γk

∈ Y0,k, therefore we
can take vh = A∇uh

0 · ηk in (4.33) and use (4.1) to obtain

‖λ−P0,kλ‖0,∞ ≤ ch‖u0‖2,∞.(4.34)

When P1 elements are used A∇uh
0 ·ηk is piecewise constant, hence A∇uh

0 ·ηk|Γk
/∈ Y0,k.

We then consider a rectangular mesh T̃ h(Ω) such that the approximation ũh
0 using

bilinear elements on T̃ h(Ω) for u0 satisfies A∇ũh
0 · ηk|Γk

∈ Y0,k. Hence we take
vh = A∇ũh

0 · ηk in (4.33) and use (4.1) to obtain (4.34).
To estimate the second term on the right hand side of (4.32) we follow ideas from

[44]. Let Ez ⊂ Γk denote an edge of an element Kz ∈ T h(Ω) such that z ∈ Ez , and
define δz as the polynomial of degree 1 on Ez such that

∫

Ez

δz(s)v(s)ds = v(z), for any v polynomial of degree 1.

Regard δz as extended by zero to Γk \ Ez and denote by δ̃h
z ∈ V h(Ω) the extension

by zero of P0,kδz to Ω. Then we have

λh(z) −P0,kλ(z) =

∫

Γk

P0,k(λh − λ)δzds =

∫

Γk

(λh − λ)P0,kδzds

=

∫

Ω

Aij∂i(u0 − uh
0 )∂j(δ̃

h
z )dx(4.35)

where we have used the definition of λh to obtain (4.35). From (4.1) and (4.35) follows

|λh(z) −P0,kλ(z)| ≤ ch‖u0‖2,∞‖δ̃h
z ‖1,1.

Using an inverse estimate followed by a Poincare inequality we have

‖δ̃h
z ‖1,1 ≤ ch−1‖δ̃h

z ‖0,1 ≤ c‖P0,kδz‖0,1,Γk
.

Finally, we use the fact that ‖P0,kδz‖0,1,Γk
≤ c, see Lemma 3.5 in [44], and (4.20)

follows. �

Proposition 4.1 estimates the error between ∇u0 and its proposed numerical ap-
proximation Ψh. This Proposition is required in the proof of Proposition 4.2.

Proposition 4.1. Let u0 and Ψh be defined by Equations (2.4) and (3.2), re-
spectively. Assume u0 ∈ W 2,p(Ω) and that linear or bilinear finite elements are used
to approximate u0. Then for 2 ≤ p ≤ ∞ we have

‖(∇u0 − Ψh) · ν‖0,p ≤ ch‖u0‖2,p, ∀ ν ∈ R
2 with |ν| = 1(4.36)
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and

‖(∇u0 − Ψh) · ν‖1,p,h ≤ c‖u0‖2,p, ∀ ν ∈ R
2 with |ν| = 1.(4.37)

Proof of (4.36): From the triangular inequality we have

‖(∇u0 − Ψh) · ν‖0,p ≤ ‖(∇u0 −∇uh
0) · ν‖0,p + ‖(∇uh

0 − Ψh) · ν‖0,p.(4.38)

Use (4.1) to estimate the first term on the right hand side of (4.38). For the second
term, by the definition of Ψh, we have

‖(∇uh
0 − Ψh) · ν‖0,p ≤ c

∑

k∈{e,w,n,s}

‖Eh
k (µh −∇uh

0 · ηk)‖0,p.

Consider k = e and that bilinear elements are used to approximate u0; the other
cases, k ∈ {w, n, s} or when P1 elements are used, follow in a similar way. From

definition, the function Eh
e

(

µh −
∂uh

0

∂x1

)

is linear in the x1 direction and equal to zero

in x1 ≤ 1 − h, hence

‖Eh
e (µh −∇uh

0 · ηk)‖0,p ≤ h1/p
∥

∥∂x1
uh

0 − µh
∥

∥

0,p,Γe
, if 2 ≤ p <∞

or

‖Eh
e (µh −∇uh

0 · ηk)‖0,∞ ≤
∥

∥∂x1
uh

0 − µh
∥

∥

0,∞,Γe
, if p = ∞.

Case 2 ≤ p <∞: The triangular inequality gives

∥

∥∂x1
uh

0 − µh
∥

∥

0,p,Γe
≤
∥

∥∂x1
uh

0 − ∂x1
u0

∥

∥

0,p,Γe
+
∥

∥∂x1
u0 − µh

∥

∥

0,p,Γe
.(4.39)

In order to estimate the first term on the right hand side of (4.39), let K ∈ Th(Ω)
containing an edge E ⊂ Γk. Applying a Trace Theorem we have

∥

∥∂x1
uh

0 − ∂x1
u0

∥

∥

0,p,E
≤

c
(

h−1
∥

∥∂x1
uh

0 − ∂x1
u0

∥

∥

p

0,p,K
+ hp−1‖∂x1

uh
0 − ∂x1

u0‖
p
1,p,K

)1/p

.(4.40)

From (4.1), (4.6) and (4.40) we obtain

∥

∥∂x1
uh

0 − ∂x1
u0

∥

∥

0,p,Γe
≤ ch1−1/p‖u0‖2,p.(4.41)

For second term on the right hand side of (4.39), we apply the definition of λ and λh

to obtain
∥

∥∂x1
u0 − µh

∥

∥

0,p,Γe
= A11

∥

∥λ− λh
∥

∥

0,p,Γe
, and therefore from (4.20) we have

∥

∥∂x1
u0 − µh

∥

∥

0,p,Γe
≤ ch1−1/p‖u0‖2,p.(4.42)

From (4.39), (4.41) and (4.42) we obtain

‖Ee(µ
h −∇uh

0 · ηe)‖0,p ≤ ch‖u0‖2,p,

and hence estimate (4.36) holds for p <∞.
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Case 2 = ∞: We have

∥

∥∂x1
uh

0 − µh
∥

∥

0,∞,Γe
≤ ‖∂x1

uh
0 − ∂x1

u0‖0,∞,Γe + ‖∂x1
u0 − µh‖0,∞,Γe ,

and applying (4.20) and (4.1) we have

∥

∥∂x1
u0 − µh

∥

∥

0,∞,Γe
≤ ch‖u0‖2,∞,

and hence estimate (4.36) follows for p = ∞.
Proof of (4.37): We have

‖(∇uh
0 − Ψh) · ν‖0,p ≤ c‖(∇u0 − Ψh) · ν‖0,p + ‖(∇u0 −∇uh

0) · ν‖0,p

≤ ch‖u0‖2,p, by (4.1) and (4.36)(4.43)

and from an inverse inequality, see Lemma 4.5.3 from [10], follows that

‖(∇uh
0 − Ψh) · ν‖1,p,h ≤ c‖u0‖2,p.

Since

‖(∇u0 − Ψh) · ν‖1,p,h ≤ c
(

‖(∇uh
0 −∇u0) · ν‖1,p,h + ‖(∇uh

0 − Ψh) · ν‖1,p,h

)

,

we obtain (4.37) from (4.6). �

The following proposition estimates the error between u1 and uh
1 . These estimates

are required in the proof of Theorems 4.1 and 4.2.
Proposition 4.2. Let u1 and uh

1 be defined by (2.5) and (3.3), respectively.
Assume that u0 ∈ W 2,p(Ω) and χi ∈ W 1,q

per(Y ), for 1/p+1/q ≤ 1/2. Then there exists
a constant c independent of ε and h such that

|u1 − uh
1 |1,h ≤ c‖u0‖2,p‖χ‖1,q,Y

(

h2

ε2
+ 1

)1/2

(4.44)

and

‖u1 − uh
1‖0 ≤ ch‖u0‖2,p‖χ‖1,q,Y ,(4.45)

where ‖χ‖1,q,Y =
∑

i ‖χ
i‖1,q,Y .

Proof of (4.44): We have

|u1 − uh
1 |

2
1,h ≤(4.46)

2
∑

Kj∈Th(Ω)

∫

Kj

∑

j∈1,2

((∂xiu0 − Ψh
i )∂xjχ

i(·/ε))2 + (χi(·/ε) · ∂xj (∂xiu0 − Ψh
i ))2dx.

For the first term on the right hand side of (4.46) we have

∑

Kj∈Th(Ω)

∫

Kj

∑

j∈1,2

((∂xiu0 − Ψh
i )∂xjχ

i(·/ε))2dx ≤ |∂xiu0 − Ψh
i |

2
0,p‖∂xjχ

i(·/ε)‖2
0,q

≤ ε−2|∂xiu0 − Ψh
i |

2
0,p‖χ‖

2
1,q,Y ≤ cε−2h2‖u0‖

2
2,p‖χ‖

2
1,q,Y ,(4.47)

where we have used (4.36) to obtain (4.47).
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The second term on the right hand side of (4.46) is bounded by a Cauchy inequal-
ity, ‖χi∂j(∂iu0 − Ψh

i )‖2
0 ≤ ‖χ‖2

0,q|∂iu0 − Ψh
i |

2
1,p,h.

Proof of (4.45): It follows from a direct application of Cauchy inequality and the
approximation error estimate (4.1). �

The following proposition estimates the error between φ̃ε and φ̃h
ε . This Proposi-

tion is required in the proof of Theorems 4.1 and 4.2.
Proposition 4.3. Let φ̃ε and φ̃h

ε be defined by (2.13) and (3.4), respectively.
Assume that u0 ∈ W 2,p(Ω) and vk ∈W 1,q(Gk), for 1/p+ 1/q ≤ 1/2. Then

|φ̃ε − φ̃h
ε |1,h ≤ c

(

h2

ε2
+ 1

)1/2

max
k

‖vk‖1,q,Gk
‖u0‖2,p(4.48)

and

‖φ̃ε − φ̃h
ε ‖0 ≤ chmax

k
‖vk − χ∗

k‖0,q,Gk
‖u0‖2,p.(4.49)

Proof. From definition of φ̃ε and φ̃h
ε we have

|φ̃ε − φ̃h
ε |1,h ≤

∑

k∈{e,w,n,s}

|φ̃k
ε − φ̃k,h

ε |1,h,

and the proposition follows from arguments similar to the ones given in the proof of
Proposition 4.2.

Finally, we prove the last proposition used in the proof of Theorems 4.1 and 4.2.
Proposition 4.4 estimates the error between φ̄ and φ̄h.

Proposition 4.4. Let φ̄ be defined by Equation (2.14), φ̄h be the finite element
approximation to the Equation (3.5), and assume that u0 ∈ H2(Ω). Then we have

‖φ̄− φ̄h‖1 ≤ c‖u0‖2(4.50)

and

‖φ̄− φ̄h‖0 ≤ ch‖u0‖2.(4.51)

Proof of (4.50): We note that χ∗µh ∈ H1/2(∂Ω), see Remark 3.1, hence we define

ψ ∈ H1(Ω) as the solution of

∇ · A∇ψ = 0 in Ω ψ = χ∗µh on ∂Ω.(4.52)

From regularity theory and (4.19) we have

‖ψ‖1 ≤
∑

k

c‖χ∗µh‖
H

1/2

00
(Γk)

≤ c‖u0‖2,(4.53)

and from triangular inequality

‖φ̄− φ̄h‖1 ≤ ‖φ̄− ψ‖1 + ‖φ̄h − ψ‖1.

Since χ∗µh ∈ V h(Ω), the problem of finding φ̄ reduces to a conforming finite element
problem, hence standard finite element analysis and (4.53) gives

|φ̄h − ψ|1 ≤ c‖u0‖2.
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Finally, from regularity theory and Lemma 4.3 we obtain

|φ̄− ψ|1 ≤ ‖χ∗µh − χ∗∂ηu0‖H1/2(∂Ω)

≤
∑

k

‖χ∗µh − χ∗∂ηu0‖H
1/2

00
(Γk)

≤ c‖u0‖2.

Proof of (4.51): From the triangular inequality

‖φ̄− φ̄h‖0 ≤ c‖φ̄− ψ‖0 + ‖φ̄h − ψ‖0,

and from standard finite element analysis and (4.53) we obtain

‖φ̄h − ψ‖0 ≤ ch‖ψ‖1 ≤ ch‖u0‖2.

Theorem 6.1 from [37] states

‖φ̄− ψ‖0 ≤ c(
∑

k

‖χ∗∂ηu0 − χ∗µh‖2
H−1/2(Γk))

1/2

≤ ch‖u0‖2 by (4.21).

�

5. Numerical Results. As in [26] we consider the case

a(x) =

(

2 + 1.8sin(2πx1/ε)

2 + 1.8cos(2πx2/ε)
+

2 + sin(2πx2/ε)

2 + 1.8sin(2πx1/ε)

)

I2×2, and f(x) = −1.

We compare the solution obtained by our method with the solution obtained by a
second order accurate finite element method on a fine mesh with size hf , which we

call u∗ε . Table 5.1 provide absolute errors estimates for u∗ε − uh,ĥ,τ
ε . We have used

τ = 2, ĥ = 1/128, hf = 1/2048, and a triangular mesh with continuous piecewise

linear functions to approximate χj

ĥ
and vĥ,p

k .

Table 5.1

u∗
ε − uh,ĥ,τ

ε error

‖ · ‖0 error
ε ↓ h→ 1/8 1/16 1/32 1/64
1/16 2.7085e-04 7.7993e-05
1/32 2.6300e-04 6.6246e-05 1.7773e-05
1/64 2.5388e-04 5.8069e-05 1.6020e-05 1.2137e-05

| · |1,h error
1/16 0.0097 0.0067
1/32 0.0086 0.0051 0.0036
1/64 0.0086 0.0044 0.0025 0.0018

From Table 5.1, we see that for ε << h we have errors of order O(h2) and O(h)
for the L2 norm and H1 semi norm , respectively. We observe that when we fix h
and decrease ε the errors almost do not change. This is evidence that in this case the
dominant error term is O(h). Also looking at the diagonal values in this table we see
clearly that the numerical error agrees with the theoretical rates from Theorems 4.1
and 4.2.
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Table 5.2

ε = 1/64, h = 1/32, hf = 1/1024
‖ · ‖0 | · |1,h

u∗ε − uh,ĥ
0 0.0287 0.0215

u∗ε − uh,ĥ
0 − εuh,ĥ

1 0.0213 0.0026

u∗ε − uh,ĥ
0 − εuh,ĥ

1 − εφ̄h,ĥ,τ 5.0450e-05 0.0026

u∗ε − uh,ĥ
0 − εuh,ĥ

1 − ε(φ̄h,ĥ,τ + φ̃h,ĥ,τ
ε ) 5.1865e-05 0.0025

Table 5.2 shows the improvement obtained in the final approximation when the

term φh,ĥ,τ
ε is taken into account. It can be appreciated from this table that a better

improvement on the ‖ · ‖0 norm rather than on | · |1,h semi norm is clearly seen. The
improvement on the L2 norm is an evidence that we were able to obtain, through the
proper calculation of χ∗, the asymptotic L2 behavior of the boundary corrector θε

in the interior of the domain Ω. We also note that the term φ̃ε primarily forces the

final approximation uh,ĥ,τ
ε to satisfy the zero Dirichlet boundary condition, and since

it has support only in a thin boundary layer of ∂Ω, then no much error improvement
is obtained on the | · |1,h semi norm.

We also consider the following example:

a(y) =

{

2 if 2/5 < y1 < 3/5 or 2/5 < y2 < 3/5
1 otherwise.

and f = −1

Table 5.3

u∗
ε − uh,ĥ,τ

ε error

‖ · ‖0 error, hf = 1/2000
ε ↓ h→ 1/10 1/20 1/40
1/20 4.8318e-04 1.3043e-04
1/40 4.7578e-04 1.1954e-04 3.0805e-05
1/64 2.5388e-04 5.9446e-05 1.4414e-05

Table 5.4

u∗
ε − uh,ĥ,τ

ε error

| · |1,h error, hf = 1/2000
ε ↓ h→ 1/10 1/20 1/40
1/20 0.0180 0.0092
1/40 0.0179 0.0090 0.0046
1/64 0.0086 0.0045 0.0026

We compare the solution obtained by our method with the solution obtained by a
second order accurate finite element method in a fine mesh of size hf , which we call u∗ε .

Tables 5.3 and 5.4 provide absolute errors estimates for u∗
ε −u

h,ĥ,τ
ε , on the ‖ · ‖0 norm

and | · |1,h semi norm for different values of h and ε. We have used τ = 2, ĥ = 1/128,

and a triangular mesh with continuous piecewise linear functions to approximate χj

ĥ

and vĥ,τ
e .
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Although the convergence analysis presented here are not intended for the quasi
periodic case aij(x, x/ε) the numerical approximation presented here can be gen-
eralized for this case. This would be done by approximating matrix a(x, x/ε) by
∑

j a
j(x/ε)IKj (x), where IKJ is the characteristic function for Kj ∈ Tk(Ω), and then

solving a cell problem in each sub-domain Kj .

6. Appendix.

6.1. Proof of Theorem 2.1. By the triangular inequality we have

|uε − u0 − u1 − φε|1,h ≤ |uε − u0 − u1 − θε|1

+ε|θ̄ε − φ̄|1 + ε|θ̃ε − φ̃ε|1,

and the theorem follows from Propositions 6.1, 6.2 and 6.3. �

We now prove the propositions used in the proof of Theorem 2.1. The following
proposition gives the same error estimate of Theorem 2.2 in [3], however here we
assume u0 ∈ W 2,p(Ω) and χj ∈ W 1,q

per(Ω) for 1/p + 1/q ≤ 1/2 while in Theorem 2.2

in [3] it is assumed u0 ∈ W 2,∞(Ω) and χj ∈ H1
per(Ω). It also generalizes Proposition

2.1 from [34] where it is assumed aij ∈ C1,β
per(Y ), u0 ∈ H2(Ω) and Ω ⊂ R

2. We
note here that Theorem 1.1 from [32] gives conditions concerning the discontinuities
of the functions aij such that χj ∈ W 1,∞

per (Y ). Finally, we observe that in the case

aij ∈ C1,β
per(Y ) a error estimate similar to Proposition 6.1 can be obtained in the case

a zero Neumann boundary condition is used to define uε; see [35].
Proposition 6.1. Let Ω ⊂ R

d, d = 2, 3 be a convex domain, uε be the solution
of Problem (1.1) and u0, u1, and θε be defined by Equations (2.4), (2.5) and (2.6),
respectively. Assume aij ∈ L∞

per(Y ), u0 ∈ W 2,p(Ω), and χj ∈ W 1,q
per(Y ) for 1/p+1/q ≤

1/2. Then there exists a constant c independent of u0 and ε, such that

‖uε(·) − u0(·) − εu1(·, ·/ε) − εθε(·)‖1 ≤ cε‖u0‖2,p.

Proof. Define

v0(x, y) = a(y)∇xu0(x) + a(y)∇yu1(x, y) = a(y)(∇yyj −∇yχ
j(y))

∂u0

∂xj
(x).(6.1)

From the definition of χj we have

∫

Y

(

a(y)(ej −∇yχ
j(y)) −Aej

)

∇yφ(y)dy = 0, ∀ φ ∈ H1
per(Y ).

Since the vector a(y)(ej −∇yχ
j(y)) −Aej is Y periodic and has zero average entries

over Y , by Lemma 6.1 there exists φj(y) ∈ H1
per(Y ) with zero average over Y such

that

a(y)(∇yyj −∇yχ
j(y)) −Aej = −curlyφj(y).(6.2)

Let

φ = φj(y)
∂u0

∂xj
(x)(6.3)
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and define

v1(x, y) = −curlxφ(x, y)

=

(

−φj(y)
∂2u0

∂x2∂xj
(x)

φj(y)
∂2u0

∂x1∂xj
(x)

)

.

In the case d = 2 we have |curlyφj |0,q = |φj |1,q. Since χj ∈ W 1,q
per(Y ) and φj has zero

average over Y , we apply a Poincare inequality to obtain

‖φj‖1,q,Y ≤ c|curlyφj |0,q,Y ≤ c(‖χ1‖1,q,Y + ‖χ2‖1,q,Y ).

In the case d = 3 by the Remark 3.11 in [25] we also obtain that φj ∈ W 1,q
per(Y )3 if

χj ∈W 1,q
per(Y ). From hypothesis u0 ∈ W 2,p(Ω) for 1/p+1/q ≤ 1/2, hence v1(x, x/ε) ∈

L2(Ω) and ‖v1‖0 ≤ c(‖χ1‖1,q,Y + ‖χ2‖1,q,Y )‖u0‖2,p. Moreover, by Lemma 6.1,

∇x · v1(x, y) = 0,(6.4)

and simple calculations give

∇y · v1(x, y) = ∇y · curlx
(

φj(y)∂xju0(x)
)

= −∇x · curly
(

φj(y)∂xju0(x)
)

= −∇x · v0(x, y) − f.(6.5)

Let

zε(x) = uε(x) − u0(x) − εu1(x, x/ε)

and

ηε(x) = a(x/ε)∇uε(x) − v0(x, x/ε) − εv1(x, x/ε).

Then

a(x/ε)∇zε(x) − ηε(x)
= a(x/ε)∇uε(x) − a(x/ε)∇xu0(x) − εa(x/ε)∇xu1(x, x/ε)
− a(x/ε)∇yu1(x, x/ε) − a(x/ε)∇uε(x) + v0(x, x/ε) + εv1(x, x/ε)

= ε(v1(x, x/ε) − a(x/ε)∇xu1(x, x/ε)),

and so

‖a(·/ε)∇zε − ηε‖0 ≤ ε‖v1(·, ·/ε) − a(·/ε)∇xu1(·, ·/ε)‖0.(6.6)

Given g ∈ L2(Ω), let wε ∈ H1
0 (Ω) be the solution of

∫

Ω

a(x/ε)∇wε(x)∇ψ(x)dx =

∫

Ω

g(x)ψ(x)dx, ∀ψ ∈ H1
0 (Ω),(6.7)

hence
∫

Ω

g(zε − εθε)dx =

∫

Ω

a(·/ε)∇wε · ∇(zε − εθε)dx

=

∫

Ω

a(·/ε)∇wε · ∇zεdx− ε

∫

Ω

a(·/ε)∇wε · ∇θεdx

=

∫

Ω

a(·/ε)∇wε · ∇zεdx.(6.8)
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Now observe that
∫

Ω

a(·/ε)∇wε · ∇zεdx =

∫

Ω

a(·/ε)∇wε · (∇zε − ηε)dx +

∫

Ω

ηε · ∇wεdx.(6.9)

In order to estimate the second term on the right hand side of (6.9) we apply the
definition of ηε to obtain

∫

Ω

ηε · ∇wεdx =

∫

Ω

(a(x/ε)∇uε(x) − v0(x, x/ε) − εv1(x, x/ε)) · ∇wε(x)dx

=

∫

Ω

fwεdx−

∫

Ω

(v0(x, x/ε) − εv1(x, x/ε)) · ∇wε(x)dx.(6.10)

We note that
∫

Ω

v1(x, x/ε) · ∇wε(x)dx =

∫

Ω

∇ · v1(x, x/ε)wε(x)dx

=

∫

Ω

(∇x + 1/ε∇y) · v1(x, y)|(y=x/ε)wε(x)dx

= −
1

ε

∫

Ω

(∇x · v0 + f)wεdx,(6.11)

where we have used (6.4) and (6.5) to obtain (6.11). Using the definition of v0 we
have

∫

Ω

v0(x, x/ε) · ∇wε(x)dx =

∫

Ω

a(x/ε)(ej −∇yχ
j(x/ε))

∂u0

∂xj
(x) · ∇wε(x)dx,

and by the chain rule we obtain

∫

Ω

v0(x, x/ε) · ∇wεdx =

∫

Ω

a(x/ε)(ej −∇yχ
j(x/ε)) · ∇

(

∂u0

∂xj
wε(x)

)

dx(6.12)

−

∫

Ω

a(x/ε)(ej −∇yχ
j(x/ε)) ·

(

wε∇
∂u0

∂xj
(x)

)

dx.

In this paragraph we evaluate the first term on the right hand side of (6.12).
Let ( ε

3Yi)i=1,...,im be a finite set of translated cells of ε
3Y , recovering Ω, and consider

a partition of unity ρi, such that suppρi ⊂ 2ε
3 Yi, where 2ε

3 Yi denotes the cell 2ε
3 Y

centered in ε
3Yi. We note that

supp(ρiwε) ⊂
2ε

3
Yi ∩ Ω ⊂ εYi(6.13)

hence
∫

Ω

a(x/ε)(ej −∇yχ
j(x/ε)) · ∇(

∂u0

∂xj
wε(x))dx =

∑

i=1:im

∫

εYi

a(x/ε)(ej −∇yχ
j(x/ε)) · ∇(ρi

∂u0

∂xj
wε(x))dx = 0.(6.14)

Here to obtain (6.14) we first note that u0 has a stable extension to W 2,p(R2), which
we also denote u0 applying (6.13) we obtain that the function ρi∂xju0wε is defined
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uniquely as zero outside of Ω and since 1/p + 1/q ≤ 1/2 we obtain ρi∂xju0wε ∈

W 1,q′

(R2) for 1/q′ = 1 − 1/q. We then observe that χj ∈ W 1,q
per(Y ), H1

per(Y ) ↪→

W 1,q′

per (Y ) and (2.2) implies

∫

Y

aij(y)∂yl
(χj − yj)∂ymψ = 0, ∀ ψ ∈ W 1,q′

per (Y ).

Finally, since ρi∂xju0wε has a compact support contained in the interior of εYi, see

(6.13), then ρi∂xju0wε ∈ W 1,q′

per (εYi) and (6.14) follows.
For the second term on the right hand side of equation (6.12), we use the definition

of v0 and it follows that

−

∫

Ω

a(x/ε)(ej −∇yχ
j(x/ε)) ·

(

wε∇
∂u0

∂xj
(x)

)

dx = −

∫

Ω

∇x · v0(x, x/ε)wε(x)dx.

Hence
∫

Ω

v0(x, x/ε) · ∇wε(x)dx = −

∫

Ω

∇x · v0(x, x/ε)wε(x)dx.(6.15)

From Equations (6.10), (6.11) and (6.15) we obtain

∫

Ω

ηε · ∇wεdx = 0,

and from (6.9)

∫

Ω

a(·/ε)∇wε · ∇zεdx =

∫

Ω

a(·/ε)(∇zε − ηε) · ∇wε)dx.(6.16)

From Equations (6.8) and (6.16) we have

∣

∣

∣

∣

∫

Ω

g(zε − εθε)dx

∣

∣

∣

∣

≤ c‖a(·/ε)∇zε − ηε‖0‖wε‖1

≤ ε‖v1(·, ·/ε) − a(·/ε)∇xu1(·, ·/ε)‖0‖g‖−1 by (6.6).

Dividing by ‖g‖−1 and taking the supremum for g 6= 0 we get

‖zε(x) − εθε‖1 ≤ cε‖v1(·, ·/ε) − a(·/ε)∇xu1(·, ·/ε)‖0

≤ cε(‖χ1‖1,q,Y + ‖χ2‖1,q,Y )‖u0‖2,p.

The following remark is used in the proof of Proposition 6.5.
Remark 6.1. Let f ∈ H−1(Ω), g ∈ H1/2(∂Ω) and define uε ∈ H1(Ω) as the

weak solution of the following problem

Lεuε = f in Ω, uε = g on ∂Ω.

It is easy to see that Proposition 6.1 extends immediately to this case if u0, defined as
the solution of

−∇.A∇u0 = f in Ω, u0 = g on ∂Ω,
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belongs to W 2,p(Ω).
The following corollary follows from Proposition 6.1 and is used in the proof of

Proposition 6.5.
Corollary 6.1. Let Ω ⊂ R

d, d = 2, 3, be a convex domain, uε and u0 be defined
by Equations (1.1) and (2.4), respectively. Assume aij ∈ L∞

per(Y ), u0 ∈Wm,p(Ω) and

χj ∈ W 1,q
per(Y ) for (m− 1)p > 2 and 1/p+ 1/q ≤ 1/2. Then there exists a constant c

independent of u0 and ε such that

‖uε − u0‖0 ≤ cε‖u0‖m,p.

Proof. The hypothesis u0 ∈ Wm,p(Ω), (m − 1)p > d implies ∂xiu0 ∈ C(Ω), and
χj ∈ C(Y ) see Remark 2.1, therefore ‖u1‖0 ≤ c‖u0‖m,p. From the maximum principle
‖θε‖0,∞ ≤ ‖∂xiu0‖0,∞,∂Ω‖χ

i‖0,∞,∂Ω, and hence the corollary follows from Proposition
6.1.

The following proposition estimates the H1 norm of θ̃ε − φ̃ε, and is used in the
proof of Theorem 6.1.

Proposition 6.2. Let u0, θ̃ε and φ̃ε be defined by Equations (2.4), (2.9) and
(2.13), respectively, and the functions vk be defined as in Subsection 2.2.1. Assume
u0 ∈W 2,p(Ω), and ve and ∇(ve−χ

∗
e)exp(−γy1) ∈ Ls(Ge) for s ≥ 2 and 1/s+3/p≤ 1.

We also assume similar hypothesis for the other functions vk. Then there exists
positive constants 0 < δ(p, s) ≤ 1/2, and c(δ, γ) independent of ε such that

‖θ̃ε − φ̃ε‖1 ≤ c(δ, γ)εδ‖a‖0,∞ ‖u0‖2,p max
k

(

‖∇(vk − χ∗
k)exp(−γy · ηk)‖0,s,Gk

+ ‖vk − χ∗
k‖1,s,Gk

) .

In addition, when p, s→ ∞ then δ → 1/2 with c(δ, γ) bounded independent of δ.
Proof. By definition

‖θ̃ε − φ̃ε‖1 ≤
∑

k∈{e,w,n,s}

‖θ̃k
ε − φ̃k

ε ‖1.

Consider the case k = e, the other cases are treated in a similar way. We denote
vε

e(x) = ve(
x1−1

ε , x2

ε ) and aε(x) = a(x/ε), and let g ∈ H1
0 (Ω). Then applying the

definition of φ̃e
ε we obtain

∫

Ω

aε∇(θ̃e
ε − φ̃e

ε)∇gdx =

∫

Ω

−aε∇

(

(vε
e − χ∗

e)ϕe
∂u0

∂x1

)

∇gdx

= −

∫

Ω

(

ϕe
∂u0

∂x1
aε∇(vε

e − χ∗
e)

)

∇gdx−

∫

Ω

(

(vε
e − χ∗

e)a
ε∇

(

ϕe
∂u0

∂x1

))

∇gdx.(6.17)

We note that due to the Sobolev embedding Theorem 5.4 from [1], the integrals above
are well defined. For the first term on the right hand side of Equation (6.17) we have

∫

Ω

(

ϕe
∂u0

∂x1
aε∇(vε

e − χ∗
e)

)

∇gdx =

∫

Ω

aε∇(vε
e − χ∗

e)∇

(

ϕe
∂u0

∂x1
g

)

dx−

∫

Ω

aε∇(vε
e − χ∗

e) · g∇

(

ϕe
∂u0

∂x1

)

dx.(6.18)
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We now estimate the first term of the right hand side of (6.18). Let Ii = {(i −
1)ε/6−ε/6 < x2 < iε/6+ε/6, }, im = 1+supi∈N(i3/ε < 1), and consider a partition of
unity ρi of Ω, subject to (0, 1)× Ii. Let Iε

i be the interval centered in Ii with |Iε
i | = ε.

Since supp(ρig) ⊂ [0, 1] × Iε
i we have

∫

Ω

aε∇(vε
e − χ∗

e)∇

(

ϕe
∂u0

∂x1
g

)

dx =(6.19)

∑

i=0:im

∫ 1

0

∫

Iε
i

aε∇(vε
e − χ∗

e)∇

(

ρiϕe
∂u0

∂x1
g

)

dx2dx1 = 0,

where to arrive in (6.19) we have used the definition of ve and arguments similar to
the ones used to obtain (6.14).

For the second term on the right hand side of Equation (6.18), we apply a Cauchy
inequality to obtain

∣

∣

∣

∣

∫

Ω

aε∇(vε
e − χ∗

e) · ∇

(

ϕe
∂u0

∂x1

)

gdx

∣

∣

∣

∣

≤(6.20)

‖a‖∞|ϕe∇u0|1,p

∥

∥

∥

∥

∇vε
eexp(−γ

x1 − 1

ε
)

∥

∥

∥

∥

0,s

(

ε

γ

)1/l ∥
∥

∥

∥

(γ/ε)1/lexp(γ
x1 − 1

ε
)g

∥

∥

∥

∥

0,l

,

where 1/l = 1 − 1/p− 1/s. Taking y1 = (x1 − 1)/ε and y2 = x2/ε, and exploring the
[0, 1]-periodicity of ve(y1, ·) we have
∥

∥

∥

∥

∇(vε
e − χ∗

e)exp(−γ
x1 − 1

ε
)

∥

∥

∥

∥

s

0,s

≤ (
1

ε
+ 1)

∫ 0

−1/ε

∫ 1

0

|∇yveexp(−γy1)|
sε2−sdy2dy1

≤ cε(1−s)‖∇yveexp(−γy1)‖
s
0,s,Ge

.(6.21)

Let gn ∈ C∞
0 (Ω), gn → g in H1 and In = (0, 1) ∩ |gn| > 0, then integrating by parts

in x1

∥

∥

∥

∥

(γ/ε)1/lexp(γ
x1 − 1

ε
)gn

∥

∥

∥

∥

0,l

=

(∫ 1

0

∫

In

γ

ε
exp(lγ

x1 − 1

ε
)|gn|

ldx1dx2

)1/l

=

(

−

∫ 1

0

∫

In

1

l
exp

(

lγ
x1 − 1

ε

)

∂|gn|
l

∂x1
dx1dx2

)1/l

(6.22)

≤ c

(

∥

∥

∥

∥

exp

(

lγ
x1 − 1

ε

)∥

∥

∥

∥

0,r′

‖gn‖
l−1
0,s′(l−1)

∥

∥

∥

∥

∂gn

∂x1

∥

∥

∥

∥

0

)1/l

(6.23)

≤ c(Ω)(s′(l − 1))(l−1)/l

(

ε

r′lγ

)1/(r′l)

|gn|
2
1.(6.24)

To obtain (6.23) we have used a Cauchy inequality with 1/r′ + 1/s′ = 1/2. In order
to obtain (6.24), we note that the last inequality in the proof of Lemma 5.10 in [1]
states

‖gn‖0,s′(l−1) ≤ 2(t−1)/t

(

2t− t

2 − t

)

‖gn‖1,t, for 2t/(2− t) = s′(l − 1), 1 ≤ t < 2

≤ 2(t−1)/t

(

2t− t

2 − t

)

vol(Ω)(1/t−1/2)‖gn‖1, by Theorem 2.8 in [1]

≤ c(Ω)

(

2t− t

2 − t

)

|gn|1, by a Poincare inequality.
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Hence (6.24) follows from (6.23). Taking the limit n→ ∞ we obtain inequality (6.24)
for g.

Since 1/s+ 3/p < 1, there exists r′ > 2 such that 1/lr′ + 1/l+ 1/s− 1 > 0, and
hence from (6.18), (6.19), (6.20), (6.21), and (6.24) it follows

∫

Ω

ϕe
∂u0

∂x1
aε∇(vε

e − χ∗
e)∇gdx ≤ c(Ω, γ)(s′(l − 1))(l−1)/lεδ

′

‖a‖∞|ϕe∇u0|1,p

‖∇(ve − χ∗
e)exp(−γy1)‖0,s,Ge |g|1,(6.25)

where δ′ = 1/lr′ + 1/l+ 1/s− 1.
For estimating the second term on the right hand side of (6.17), we apply a Cauchy

inequality with 1/r + 1/p = 1/2 to obtain

∣

∣

∣

∣

∫

Ω

(vε
e − χ∗

e)a
ε∇

(

ϕe
∂u0

∂x1

)

· ∇gdx

∣

∣

∣

∣

≤ ‖a‖0,∞

∣

∣

∣

∣

ϕe
∂u0

∂x1

∣

∣

∣

∣

1,p

(

ε

∫

Ge

(ve − χ∗
e)

rdy

)1/r

|g|1

≤ c(r)ε1/r‖a‖0,∞

∣

∣

∣

∣

ϕe
∂u0

∂x1

∣

∣

∣

∣

1,p

‖vε
e − χ∗

e‖1,Ge |g|1,(6.26)

where we have used the Sobolev embedding Theorem 5.4 in [1] to obtain the last
inequality.

Taking g = θ̃e
ε − φ̃e

ε and using the ellipticity of a

|θ̃e
ε − φ̃e

ε |
2
H1

0
(Ω) ≤ γ−1

a

∫

Ω

(aε∇(θ̃e
ε − φ̃e

ε)) · ∇(θ̃e
ε − φ̃e

ε)dx

≤
c(r)

γa
εδ‖a‖0,∞|ϕe∇u0|1,p (‖∇(ve − χ∗

e)exp(−γy1)‖0,s,Ge

+ ‖∇(ve − χ∗
e)‖1,Ge) |θ̃

e
ε − φ̃e

ε |H1
0
(Ω),

where δ = min{δ′, 1/r}.
Observe that s, p→ ∞ implies l → 1. Choosing s′ = 1/(l−1) in Inequality (6.24)

we have that (s′(l−1))(l−1)/l (ε/(r′lγ))1/(r′l) → ε1/2/(2γ). In inequality (6.26) p→ ∞
implies 1/r → 1/2 and c(r)ε1/r → cε1/2.

Finally, we prove the last proposition used in the proof of Theorem 6.1. Proposi-
tion 6.3 estimates the H1 norm of φ̄− θ̄ε,

Proposition 6.3. Let Ω be a convex polygon, and the functions u0, θ̄ε and φ̄ be
defined by Equations (2.4), (2.10) and (2.14), respectively. Assume that u0 ∈ H2(Ω),
then there exists a positive constant c independent of ε and u0 such that

‖φ̄− θ̄ε‖1 ≤ c
‖a‖0,∞,Y

γa
‖u0‖2.

Proof. Consider the notation aε(x) = a(x/ε), the same will be used for aij . Since
(φ̄− θ̄ε) = 0 on ∂Ω we have

∫

Ω

aε
ij

∂(φ̄− θ̄ε)

∂xi

∂(φ̄− θ̄ε)

∂xj
dx =

∫

Ω

aε
ij

∂φ̄

∂xi

∂(φ̄− θ̄ε)

∂xj
dx

≤ ‖a‖0,∞,Y

(∫

Ω

|∇φ̄|2dx

)1/2 (∫

Ω

|∇(φ̄ − θ̄ε)|
2dx

)1/2

,
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and from the ellipticity of a we obtain

|φ̄− θ̄ε|1 ≤
‖a‖0,∞,Y

γa
|φ̄|1.

The regularity theory gives that |φ̄|1 ≤ c‖χ∗∂ηu0‖H1/2(∂Ω), and since Ω is a convex
polygon by Remark 2.1

|φ̄− θ̄ε|1 ≤ c‖u0‖2.

The proposition follows from a Poincare inequality.

6.2. Proof of Theorem 2.2. Use a triangular inequality similar to the one used
in the proof of Theorem 2.1 and Propositions 6.4, 6.2 and 6.5. �

We now prove the propositions used in the proof of Theorem 2.2. The following
proposition generalizes Proposition 2.3 from [34], where it is assumed aij ∈ C1,β

per(Y ),
u0 ∈ H3(Ω) and Ω ⊂ R

2. We note here that Theorem 1.1 from [32] gives conditions
concerning the discontinuities of the functions aij such that χj and χij ∈W 1,∞

per (Y ).

Proposition 6.4. Let Ω ⊂ R
d, d = 2, 3 be a convex domain, uε be the solution

of Problem (1.1), and χj , u0, u1, θε and χij be defined by Equations (2.2), (2.4),
(2.5), (2.6) and (2.7), respectively. Assume aij ∈ L∞

per(Y ), u0 ∈ W 3,p(Ω), χj and

χij ∈ W 1,q
per(Y ), for p, q > d and 1/p + 1/q ≤ 1/2 . Then there exists a constant c

independent of u0 and ε such that

‖uε(·) − u0(·) − εu1(·, ·/ε) − εθε(·)‖0 ≤ Cε2‖u0‖3,p(max
j

‖χj‖0,q + max
kj

‖χkj‖1,q).

Proof.
Define the field v1 by

(v1(x, y))k = −aki(y)χ
j ∂2u0

∂xj∂xi
(x) + akl(y)

∂χij

∂yl

∂2u0

∂xj∂xi
(x),(6.27)

hence

a(y)∇xu1(x, y) + a(y)∇yu2(x, y) = v1(x, y).(6.28)

Let q(y) = φ(y), φ defined by Equation (6.3) and let ψij ∈ W 1,q
per(Y ) such that

curlyψ1j = ψ̃1j =







−a11χ
j + a1l∂lχ

1,j − c11j

−a21χ
j + a2l∂lχ

1,j − φ
(3)
j − c21j

−a31χ
j + a3l∂lχ

1,j + φ
(2)
j − c31j






,

curlyψ2j = ψ̃2j =







−a12χ
j + a1l∂lχ

2,j + φ
(3)
j − c12j

−a22χ
j + a2l∂lχ

2,j − c22j

−a32χ
j + a3l∂lχ

2,j − φ
(1)
j − c32j







and

curlyψ1j = ψ̃3j =







−a13χ
j + a1l∂lχ

3,j − φ
(2)
j − c13j

−a23χ
j + a2l∂lχ

3,j + φ
(1)
j − c23j

−a33χ
j + a3l∂lχ

3,j − c33j






,
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where the constants clij are chosen such that each entry of the vectors ψ̃ij has integral

zero over Y , e.g. c11j =
∫

Y −a11χ
j +a1l∂lχ

1,jdy. It is easy to check that ∇y · ψ̃kj = 0,
what guarantees by Lemma 6.1 the existence of such functions ψkj , and by Remark
3.11 in [25] we have

‖ψkj‖1,q ≤ c(‖χj‖0,q + ‖χkj‖1,q).(6.29)

Define

p(x, y) = ψkj(y)
∂2u0

∂xk∂xj
(x)(6.30)

and let

v2(x, y) = −curlxp(x, y),

and a simple calculation gives

∇y · v2 = −∇x · v1, ∇x · v2 = 0(6.31)

and

‖v2(·, ·/ε)‖0 ≤ c‖u0‖3,p max
kj

‖ψkj‖1,q,Y

≤ c‖u0‖3,p(‖χ
j‖0,q + ‖χkj‖1,q) by (6.29).(6.32)

Define

ψε(x) = uε(x) − u0(x) − εu1(x, x/ε) − ε2u2(x, x/ε)

and

ξε(x) = a(x/ε)∇uε(x) − v0(x, x/ε) − εv1(x, x/ε) − ε2v2(x, x/ε),

where v0 is defined by (6.1). Then

a(x/ε)∇ψε − ξε(x) = a(x/ε)∇uε(x) − a(x/ε)∇u0(x) − εa(x/ε)∇u1(x, x/ε)

−ε2a(x/ε)∇u2(x, x/ε)

−a(x/ε)∇uε(x) + v0(x, x/ε) + εv1(x, x/ε) + ε2v2(x, x/ε)

= −a(x/ε)∇xu0(x) − εa(x/ε)∇xu1(x, x/ε) − a(x/ε)∇yu1(x, x/ε)

−ε2a(x/ε)∇xu2(x, x/ε) − εa(x/ε)∇yu2(x, x/ε)

+v0(x, x/ε) + εv1(x, x/ε) + ε2v2(x, x/ε)

= ε2(v2(x, x/ε) − a(x/ε)∇xu2(x, x/ε)), by (6.1), and (6.28).

From the definition of u2 and (6.32) we obtain

‖a(x/ε)∇ψε − ξε‖0 ≤ cε2‖u0‖3,p max
kj

(‖χj‖0,q + ‖χkj‖1,q).(6.33)

Define ϕε ∈ H1(Ω) as the weak solution of

−∇ · a(x/ε)∇ϕε = 0 in Ω, and ϕε(x) = u2(x, x/ε) on ∂Ω.(6.34)
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We observe that the Sobolev embedding theorem and the hypothesis p, q > d, implies
the function u2 is continuous. Therefore, we use the maximum principle to obtain

‖ϕε‖0 ≤ c‖ϕε‖0,∞

≤ cmax
ij

‖χij‖0,∞,Y ‖∂xixju0‖0,∞

≤ cmax
ij

‖χij‖1,q,Y ‖u0‖3,p.(6.35)

Given g ∈ L2(Ω), let wε ∈ H1(Ω) denotes the solution of

∫

Ω

a(x/ε)∇wε(x)∇ψ(x)dx =

∫

Ω

g(x)ψ(x)dx, ∀ψ ∈ H1
0 (Ω).(6.36)

Since ψε + εθε + ε2ϕε ∈ H1
0 (Ω) we obtain

∫

Ω

g(ψε + εθε + ε2ϕε)dx =

∫

Ω

a(x/ε)(∇ψε + ε∇θε + ε2∇ϕε)∇wε(x)dx

=

∫

Ω

a(x/ε)∇ψε∇wε(x)dx,(6.37)

where we have used the definition of θε and ϕε to obtain (6.37). We observe that

∫

Ω

aε∇ψε∇wεdx =

∫

Ω

(aε∇ψε − ξε) · ∇wεdx+

∫

Ω

ξε · ∇wεdx,(6.38)

and we estimate the second term on the right hand side of (6.38) as follows

∫

Ω

ξε · ∇wεdx =

∫

Ω

(a(x/ε)∇uε(x) − v0(x, x/ε) − εv1(x, x/ε)

−ε2v2(x, x/ε)) · ∇wε(x)dx

=

∫

Ω

fwε(x) + ∇x · v0(x, x/ε)wε(x)

−εv1(x, x/ε) · ∇wε(x) + ε∇xv1(x, x/ε)wε(x)dx,(6.39)

here we used the definition of uε, (6.15), integration by parts and (6.31) to obtain
(6.39). Using (6.27) we have

∫

Ω

v1(x, x/ε) · ∇wε(x) =

∫

Ω

(

−aε
kiχ

j
ε

∂2u0

∂xj∂xi
(x)

+ aε
kl

∂χij
ε

∂yl

∂2u0

∂xj∂xi
(x)

)

∂wε

∂xk
(x)dx.(6.40)

Consider the partition of unit ρi defined in the proof of Proposition 6.1, then

∫

Ω

aε
kl

∂χij
ε

∂yl

∂2u0

∂xj∂xi

∂wε

∂xk
(x)dx =

=

im
∑

1

∫

εYi

aε
kl

∂χij
ε

∂yl
ρi

∂2u0

∂xj∂xi

∂wε

∂xk
dx
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=

im
∑

1

∫

εYi

aε
kl

∂χij
ε

∂yl

∂

∂xk

(

ρi
∂2u0

∂xj∂xi
wε(x)

)

− aε
kl

∂χij
ε

∂yl
wε(x)

∂

∂xk

(

ρi
∂2u0

∂xj∂xi

)

dx

=

im
∑

1

∫

εYi

ε−1

(

aε
ij − aε

ik

∂χj
ε

∂yk

+Aij

)

ρi
∂2u0

∂xj∂xi
wε

+aε
kiχ

j
ε

(

∂

∂xk

(

ρi
∂2u0

∂xj∂xi
(x)

)

wε(x) + ρi
∂2u0

∂xj∂xi
(x)

∂wε

∂xk

(x)

)

dx

−

∫

Ω

akl
∂χij

ε

∂yl
wε(x)

∂

∂xk

(

∂2u0

∂xj∂xi

)

dx(6.41)

=

∫

Ω

ε−1

(

∇xv0
∂2u0

∂xj∂xi
(x) − f

)

wε(x)dx

−

∫

Ω

aε
kiχ

j
ε

∂2u0

∂xj∂xi

∂wε

∂xk

(x)dx −

∫

Ω

∇x · v1dx.(6.42)

Here we used the definition of χij to arrive in (6.41), and from (6.39), (6.40) and
(6.42) we obtain

∫

Ω

ξε · ∇wε(x)dx = 0,

and hence from (6.33) and (6.38)

∣

∣

∣

∣

∫

Ω

g(ψε + εθε + ε2ϕε)dx

∣

∣

∣

∣

≤ ‖aε∇ψε − ξε)‖0‖wε‖1

≤ cε2‖u0‖3,p(‖χ
j‖0,q,Y + ‖χkj‖1,q,Y )‖g‖−1.

Dividing by g and taking the supremum over g, we have

‖uε − u0 − εu1 − εθε − ε2u2 − ε2ϕε‖ ≤ cε2‖u0‖3,p max
kj

(‖χj‖0,q + ‖χkj‖1,q).

Observe that u2(x, x/ε) and ϕε(x) are bounded in L2(Ω) by ‖u0‖3,p maxkj ‖χ
kj‖1,q,

independent of ε, see (6.35). Hence

‖uε − u0 − εu1 − εθε‖ ≤ cε2‖u0‖3,p(max
j

‖χj‖0,q + max
kj

‖χkj‖1,q).

The following proposition estimates the L2 norm of φ̄ − θ̄ε, and it is used in the
proof of Theorem 2.2

Proposition 6.5. Let u0, χ
j , θ̄ε and φ̄ be defined by (2.4), (2.2), (2.10) and

(2.14), respectively. Assume that u0 ∈ W 3,p(Ω), φ̄ ∈W 2,p(Ω) and χj ∈W 1,q
per(Y ), for

1/p+ 1/q ≤ 1/2. Then we have

‖θ̄ε − φ̄‖0 ≤ cε‖u0‖3,p.

Proof. Observe that φ̄ ∈ W 2,p(Ω) and p ≥ 2, hence from Corollary 6.1 and
Remark 6.1 we obtain

‖θ̄ε − φ̄‖0 ≤ cε‖φ̄‖2,p.
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Since

φ̄|∂Ω =
∑

k

ϕkχ
∗
k∇u0 · ηk|∂Ω,

by regularity theory, see Theorems 4.3.1.4 and 4.3.2.4 [24], ‖φ̄‖2,p ≤ c(χ∗)‖u0‖3,p, and
the proposition follows.

6.3. Proof of Theorem 2.3. Use a triangular inequality similar to the one
used in the Proof of Theorem 2.1 and Propositions 6.6, 6.2 and 6.5. Observe that
if aij ∈ C1,β

per(Y ), β > 0, by regularity theory χj ∈ C1,β
per , ve ∈ C1,β and ∇(ve −

χ∗
e)exp(−γy1) ∈ L∞(Ge); see Theorem 15.1 in [30] and Remark 6.4 in [34]. By the

Sobolev embedding theorem u0 ∈W 2,∞(Ω), hence Proposition 6.2 holds for δ = 1/2.
�

The following proposition is used in the proof of Theorem 2.3. Proposition 6.6
generalizes Proposition 2.3 from [34] to the case Ω ⊂ R

3.
Proposition 6.6. Let Ω ⊂ R

d, d = 2, 3 be a convex domain, uε be the solution
of Problem (1.1), and u0, u1, and θε be defined by Equations (2.4), (2.5) and (2.6),
respectively. Assume aij ∈ C1,β(Y ), β > 0 and u0 ∈ H3(Ω). Then there exists a
constant c independent of u0 and ε, such that

‖uε(·) − u0(·) − εu1(·, ·/ε) − εθε(·)‖0 ≤ Cε2‖u0‖3.

Proof. Since aij ∈ C1,β(Y ) by regularity theory χi ∈ C2,β(Y ), χij ∈ C1(Y ) and
by Theorem 3 in [7] we obtain

‖ϕε‖0 ≤ c‖u2(·, ·/ε)‖0,∂Ω ≤ c‖u0‖3‖χ
ij‖0,∞,

where the function ϕε is defined by (6.34) and we have used the trace theorem in the
last inequality. The rest of the proof of follows exactly as the proof of Proposition
6.4.

6.4. Auxiliary Result . The following lemma is used in the proof of Proposi-
tions 6.1 and 6.4.

Lemma 6.1. A function v ∈ L2
per(Y )2, (v ∈ L2

per(Y )3) satisfies

∇ · v = 0,(6.43)

and
∫

Y
vidy = 0 iff there exists a function φ ∈ H1

per(Y ) (φ ∈ H1
per(Y )3) such that:

v = curlφ.(6.44)

Proof. Similar to the proof of Theorem 3.4 from [25] using discrete Fourier trans-
forms rather than continuous Fourier transforms, see [41].

7. Conclusions. We perform the convergence analysis for the proposed numer-
ical method for approximating the solution of Equation (1.1). The error estimates
obtained in the numerical experiments agree with the theoretical errors estimates from
Theorems 4.1 and 4.2. The method presented here is strongly based on the periodicity
of the coefficients aij , and for this reason it has relative low computational cost with
optimal error convergence rate.
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We generalize results found in the literature for estimating the error between uε

and its first order asymptotic expansion u0 + εu1 approximation plus the boundary
corrector term θε. Such generalization permit us to develop sharp finite element error
estimates with very weak assumptions on the regularity of a(y), including composite
materials applications.
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