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Abstract

In the present paper it is proved that given a maximal invariant at-
tracting homoclinic class for a smooth three dimensional Kupka-Smale dif-
feomorphism, it follows that the homoclinic class is either hyperbolic or
the diffeomorphisms is C'— approximated by another map exhibiting a
homoclinic tangency or a heterodimensional cycle.

1 Introduction and statements.

For a long time (mainly after Poincaré) it has been a goal of the theory of dy-
namical systems to describe the dynamics from the generic viewpoint, that is, to
describe the dynamics of “big sets” (residual, dense, etc.) within the space of all
dynamical systems.

It was briefly thought in the sixties that this could be realized by the so-called
hyperbolic ones: systems with the assumption that the tangent bundle over the
limit set L(f) splits into two complementary subbundles Ty,;)M = E*®E" so that
vectors in E* (respectively E") are uniformly forward (respectively backward)
contracted by the tangent map D f. Under this assumption, it is proved that the
limit set decomposes into a finite number of disjoint transitive sets such that the
asymptotic behavior of any orbit is described by the dynamics in the trajectories
in those finite transitive sets (see [S]). Moreover, this topological description
allows to get the statistical behavior of the system. In other words, hyperbolic
dynamics on the tangent bundle characterizes the dynamics over the manifold
from a geometrical, topological and statistical point of view.

Uniform hyperbolicity was soon realized to be a less universal property than
was initially thought: it was shown that there are open sets in the space of dynam-
ics which are nonhyperbolic. The initial mechanisms to show this nonhyperbolic
robustness (see [AS], [Sh]) were the existence of open sets of diffeomorphisms



exhibiting hyperbolic periodic points of different stable indices inside a transitive
set (the stable index of a hyperbolic periodic point is the number of eigenvalues
with modulus smaller than one counted with multiplicity). It is said that has .

Related to this is the notion of heterodimensional cycle where two periodic
points of different indices are linked through the intersection of their stable and
unstable manifolds (notice that at least one of the intersections is non-transversal;
a more precise definition follows).

In all of the above examples the underlying manifolds must have dimension at
least three, so the case of surfaces was still unknown at the time. It was through
the seminal works of Newhouse (see [N1], [N2], [N3]) that hyperbolicity was shown
not to be dense in the space of C" diffeomorphisms (r > 2) of compact surfaces.
The underlying mechanism here was the presence of a homoclinic tangency: non-
transversal intersection of the stable and unstable manifold of a periodic point.

These results naturally suggested the following question:

1. What mechanisms lead to generic (meaning generic perturbation of the ini-
tial system) nonhyperbolic behavior?

2. Is it possible to identify the dynamical mechanism underlying any generic
nonhyperbolic behavior?

We have mentioned two basic mechanisms which are obstruction to hyperbol-
icity, namely heterodimensional cycles and homolicinic tangencies. In the early
80’s Palis conjectured (see [P] and [PT]) that these are very common in the
complement of the hyperbolic systems:

1. Every C" diffemorphism of a compact manifold M can be C" approximated
by one which is hyperbolic or by one exhibiting a heterodimensional cycle or
by one exhibiting a homoclinic tangency.

2. When M 1s a two-dimensional compact manifold every C™ diffemorphism of
M can be C" approximated by one which is hyperbolic or by one exhibiting
a homoclinic tangency.

This conjecture may be thought as a starting point to obtaining a generic
description of C"-diffeomorphisms. If it turns out to be true we may focus on the
two mechanisms mentioned above in order to understand the dynamics. Never-
theless, the unfolding of these homoclinic bifurcations is mainly a local study.

To be precise, a hyperbolic diffeomorphism means a diffeomorphism such that
its limit set is hyperbolic. A set A is called hyperbolic for f if it is compact, f-
invariant and the tangent bundle Ty M can be decomposed as TAM = E°* & E*



invariant under D f and there exist C' > 0 and 0 < A < 1 such that
D f sl < CA™

and
IDf g ll < CA”

for all x € A and for every positive integer n.

Moreover, a diffeomorphism is called Axiom A, if the non-wandering set is
hyperbolic and it is the closure of the periodic points.

We recall that the stable and unstable sets

W?(p) ={y € M : dist(f*(y), f"(p)) = 0 as n — oo},

W(p) ={y € M : dist(f"(y), /" (p)) = 0 as n — —oo}

are C"-injectively immersed submanifolds when p is a hyperbolic periodic point
of f. A point of intersection of these manifolds is called a homoclinic point.

Definition 1 Homoclinic tangency. We say that f exhibits a homoclinic tan-
gency if there is a periodic point p such that there is a point x € W*(p) N W*"(p)
with T,W*(p) + TuW*(p) # T, M. Given an open setV, we say that the tangency
holds in'V if p and = belongs to V.

The above conjecture was proved to be true [PS1] for the case of surfaces and
the C! topology. The case of higher topologies (C™,r > 2) is, at this point, far
from being solved:

Theorem ([PS1]): Let M? be a two dimensional compact manifold. Every
f € Dif f1{(M?) can be

C'-approzimated either by a diffeomorphism exhibiting a homoclinic tangency
or by an Axiom A diffeomorphism

In dimensions higher than two, the theorem stated above is false, due to an-
other kind of homoclinic bifurcation that breaks the hyperbolicity in a robust
way: the so-called heterodimensional cycles (intersection of the stable and unsta-
ble manifolds of points of different indices, see [D1] and [D2]).

Definition 2 Heterodimensional cycle. We say that f exhibits a heterodi-
mensional cycle if there are two periodic points q and p of stable index 1 and 2
respectively, such that W*(q) N W*(p) # 0 and W*(p) N W*(q) # 0. Given an
open set V', we say that the cycle holds in V' if p, q and the points where the stable
and unstable manifolds intersects belongs to V.



The unfolding of these kinds of cycles implies the existence of striking dynam-
ics: the appearance of non-hyperbolic robust transitive sets is more important.
Moreover, any non-hyperbolic robust transitive set exhibits (generically) a het-
erodimensional cycle.

It is remarkable to say that for a compact manifold with dimension larger
than and equal to three, there are C'—open sets of diffeomorphisms containing a
dense set of diffeomorphisms exhibiting either a tangency or a heterodimensional
cycle. On the other hand, the conjecture states that the systems exhibiting
either a tangency or a heterodimensional cycle are dense in the complement of
the hyperbolic ones.

The present paper proves the conjecture formulated by Palis in the C! topol-
ogy for an attracting homoclinic class of a three dimensional C?—diffeomorphisms.
Observe that the conjecture is stated for the whole Limit set and recall that this
set is the closure of the accumulation points of any orbit. In this paper, we could
say that we go in the direction to deal with the “attracting region of the Limit
set”. To be precise, first we have to introduce some definitions.

Definition 3 Homoclinic class. Given a periodic point p, we define the homo-
clinic class associated to p as the closure of the set {W?*(p) N W*(p)}.

Definition 4 Attracting homoclinic class. Given a homoclinic class we say

that H, is an attracting homoclinic class if there exists an open set U such that
H, CU and H, = Np>of™(U)

Different kind of examples of attracting homoclinic classes can be found: the
solenoid attractor, the Henon attractor, the Plykin attractor or partially hyper-
bolic attractors (see [BD] and [BV] for the last kind of examples).

Main Theorem: Let f € Diff%(M3) be a Kupka-Smale system. Let H, =
Nnsof™(U) be an attracting homoclinic class associated to a periodic point p.
Then, one of the following options holds:

1. H, is hyperbolic,

2. there exists g C'—arbitrarily close to f ezhibiting a homoclinic tangency in
U;

3. there exists g C'—arbitrarily close to f ezhibiting a heterodimensional cycle

inU.

Observe that under the hypothesis of the previous theorem, if the systems
cannot be approximated by heterodimensional cycles or tangencies, then the ho-
moclinic class is hyperbolic. In other words, the statement in the context of
homoclinic classes is stronger than the goal of the conjecture.



Concerning the proof of Maim Theorem A, we show that if a diffeomorphism
f cannot be approximated by one having a homoclinic tangency, then the homo-
clinic class is hyperbolic or it is approximated by a system exhibiting a heterodi-
mensional cycle.

This is done in two steps. First, it is shown that if no tangencies can be
created by C'—perturbations, then it is possible to find a continuous splitting,
namely dominated splitting (see next section for the definition) over the tangent
bundle of the homoclinic class. Later, the possible dynamic scenarios under
the assumption of dominated splitting are studied. It is shown that under the
assumption of dominated splitting, the “strong stable” and “strong unstable” set
of every point are embedded manifolds. Using this, the following two scenarios
could hold: either we are dealing essentially with a two dimensional system,
meaning that the attractor is contained in a two dimensional submanifold, or
the system is essentially three dimensional. This alternative is related to the
fact that if “the strong manifolds is or not involved in the dynamic”. When
we are dealing with “a two dimensional system” we prove that the homoclinic
class is hyperbolic. When we are dealing with a “three dimensional system” we
prove that if the homoclinic class is not hyperbolic, a heterodimensional cycle can
be created by perturbation. To deal with this last situation, new perturbation
arguments are developed.

The previous theorem can be improved in terms of the nature of the homo-
clinic tangency that can be created by perturbation. To clarify this, we need
to recall some results about homoclinic tangencies and how tangencies are also
related to the presence of heterodimensional cycles. For surfaces maps, the un-
folding of a homoclinic tangencies leads to the nowadays so-called “Newhouse
phenomena”, i.e., residual subsets of diffeomorphisms displaying infinitely many
periodic attractors. In particular, this shows that the unfolding of tangencies “de-
stroys” transitive sets. This phenomena is not valid in higher dimension. In fact,
robust transitive sets can coexist with the presence of an homoclinic tangency
(see for instances the examples showed in [BV] of robust transitive systems). In
these examples, tangencies and heteroclinic cycles are coexisting.

On the other hand, it was shown in [PV] that in dimension larger than two,
the unfold of tangencies associated to sectional dissipative periodic points (the
modulus of the product of any pair of eigenvalues is smaller than one) leads to
the same Newhouse phenomena that holds in dimension two.

Regarding the previous comments, in the direction to improve the maim the-
orem, it would be useful to obtain a version that states that under the same
hypothesis then either the homoclinic

class is hyperbolic, or it is C' —approzimated by a system exhibiting a heterodi-
mensional cycle or by one exhibiting a sectional dissipative homoclinic tangency.

Unfortunately, this result is not completely obtained. However, some partial



result are concluded. These results are stated in the last section.
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2 Systems far from tangencies.

In the sequel, given two diffeomorphisms f and g we say that g is C" — d—close
to f is |f — g/, < & where |.|, is the usual norm in the C"—topology. To avoid
notation sometimes, it is said that given f there is ¢ C"—arbitrarily close to f
(or simply that there is g C"—close to f) if for any ¢ there is g C" — d—close to
f-

We start assuming that it is not possible to create a tangency by a C'—pertur-
bation.

Definition 5 Let p be a saddle periodic point and let H, = Ngnsoy f™(U) be an
attracting homoclinic class. We say that the homoclinic class is C'—far from
tangencies, if there is a neighborhood U C Dif f*(M?3) of f such that any g € U
does not exhibit a tangency in U.

In the case that H, is C'—far from tangencies, we show that H, exhibits a
dominated splitting.

Definition 6 An f-invariant set A is said to have a dominated splitting, if the
tangent bundle is decomposed in two invariant subblundles T\M = E @ F, and
such that there exist C > 0 and 0 < A < 1 with the following property:

1D f75@) 1Df (pn@yl < CA", for allz € A,n > 0.

Definition 7 Given an f-invariant set A exhibiting a dominated splitting ThA M =
E @ F, it is said that E (F) is contractive (expansive) if there exist C > 0
and 0 < X\ < 1 such that |Df|’}5($)| < CNY, forallx € A,bn > 0 (|Df|;3’(’z)| <
CA\™, for allx € A,n >0).

In our context, we show that the tangent bundle is either decomposed in
two directions £ @ F' such that either £ or F' has dimension two and they are
contractive or expansive respectively, or it is decomposed in three directions £y &
E2 D E3.

In the first case, follows from [PS3] that the homoclinic class is hyperbolic
(see subsection 3). In the later, it is shown that either the homoclinic class is
hyperbolic or it is created a heterodimensional cycle (see subsection 4). In what
follows, any decomposition is assumed to be dominated.

Theorem 2.1 Let us assume that H, is C'—far from tangencies.
If the point p has stable index one, then one of the next options holds:

1. Ty,M = E®F* with the property that dim(F*) = 2 and F* is an expansive
subbundle;



2. Ty,M = E; ® Ey @ Es.
If the point p has stable index two, then one of the next options holds:

1. Ty,M = E*® F with the property that dim(E®) = 2 and E*® is a contractive
subbundles;

2. Ty, M = Ey, ® E, ® Es.

This result follows from techniques introduced in [PS1], [PPV] and in [LW].

Consider the set
U= Diff' (M?*)\ {f € Dif f'(M?) : exhibits a homoclinic tangency}

In [PS1] it is proved in Lemma 2.0.2 that generically in the set U, the diffeomor-
phisms exhibit a finite number of sinks and repeller and its non-wandering set
has dominated splitting.

This results was extended in [LW]. To state the result, first we recall some
definitions: It is said that a hyperbolic periodic point has stable index d if the
number of stable eigenvalues (or eigenvalues with modulus smaller than one)
counted with multiplicity is d. It is said that a dominated splitting £ & F' is a
d—dominated splitting if dim(FE) = d. The d-preperiodic set of a C' diffeomor-
phism f, is the the set of points for which there is a diffeomorphisms g C! close
to f such that p is a periodic point of g of stable index d.

Theorem 2.2 ([LW]) The following assertions are equivalent:

1. f cannot be C' approrimated by a diffeomorphism exhibiting homoclinic
tangencies associated to a periodic point of stable index d.

2. The closure of the periodic set of f with stable inder equal to d, has a
d-dominated splitting.

3. The d-preperiodic set of f has a d-dominated splitting.

In our context, if the homoclinic class is associated to a periodic point of stable
index one and by C'—perturbation cannot be created a homoclinic tangency, fol-
lows from the theorem 2.2 that H, has dominated splitting £'® F' with dimension
of F' equal to two. If the homoclinic class is associated to a periodic point of sta-
ble index two and by C!—perturbation cannot be created a homoclinic tangency,
follows from theorem 2.2 that H, has dominated splitting £ @ F' with dimension
of E equal to two. However, using that we are dealing with a homoclinic class,
this result can be improved. In fact, it is proved that if the direction E cannot



be splitted in two direction F; @ Es exhibiting a dominated splitting and f is
C!'—far from tangencies then E is contractive. The strategy to prove that goes
by contradiction: if the direction £ cannot be splitted in two direction E; @ Fs
exhibiting a dominated splitting and E is not uniformly contractive, then it can
be created a tangency associated to a periodic point with stable index one; i.e.:
a tangency associated to point with one dimensional stable manifold and a two
dimensional unstable manifold.

To precise, we say that £ cannot be decomposed in two subbundles exhibiting
dominated splitting, if it follows that any decomposition of £ in two subbundles is
not a dominated splitting. Related to this, it is proved the following proposition:

Proposition 2.1 Let H, = Nyenf"(U) be a mazimal invariant homoclinic class
associated to a periodic point of stable index two. Let us assume that Ty, M =
E & F with dim(F) = 1 such that E cannot be decomposed into two invariant
subbundles ezhibiting domination and f is C'—far from tangencies in U. Then
follows that E is contractive

A similar result can be stated for the case that p has stable index one:

Proposition 2.2 Let H, = Nyenf"(U) be a mazimal invariant homoclinic class
associated to a periodic point of stable index one. Let us assume that Ty,M =
E & F with dim(FE) = 1 such that F cannot be decomposed into two invariant
subbundles ezhibiting domination and f is C'—far from tangencies in U. Then
follows that F' is expansive.

Assuming the previous proposition, now we can show how it is obtained the
theorem 2.1.

Proof of theorem 2.1:
To prove theorem 2.1, first observe that from theorem 2.2 follows that if p has
stable index two, then

Ty,M = E® F with dim(F) = 1.
If p has stable index one, then
Ty,M = E @ F with dim(E) = 1.

To conclude the theorem 2.1 observe that if dim(F) = 1 and E cannot be
decomposed in two other direction, then by the proposition 2.1 follows that E is
uniformly contracted by D f. The case that dim(E) = 1 is treated in similar way.

]



2.1 Proof of proposition 2.1 and 2.2.

We give the proof of proposition 2.1; the proof of proposition 2.2 is similar.

We prove the proposition 2.1 assuming that the thesis is false. The goal is to
show that if the thesis is false then we can create an homoclinic tangency. First
we introduce the notion of angle of two vectors:

Definition 8 Let v and w be two vectors of R?. It is defined the angle a(v, w)
as the unique positive number in [0, ] such that
<v,w >
cos(a(v,w)) ol
where < .,. > s the internal product induced by the riemanniam metric. Given
two one-dimensional subspaces, it is defined the angle between them as the angle
between two generators.

It is used the following lemma, which is a simple yet powerful perturbation
technique (in the C! topology):

Lemma 2.1.1 [Fr, Lemma 1.1] Let M be a closed n-manifold and f : M — M
be a C' diffeomorphism, and let a neighborhood of f, U(f) be given. Then, there
exist Up(f) C U(f) and 6 > 0 such that if g € Up(f), S C M is a finite set,
S ={p1,p2,...Pm} and L;; i = 1,...,m are linear maps L; : T, M — Ty, M
satisfying ||Li — Dp,g|| < 6,7 = 1,...,m then there exists § € U(f) satisfying
9(p;) = g(pi) and D,,,g = L;, i =1,...,m. Moreover, if U is any neighborhood of
S then we may chose § so that §(x) = g(z) for all x € {p1,ps...pm} U (M\U).

This results says, for instance, that any small perturbation of the linear maps
along a periodic orbit can be realized through a diffeomorphism C!—nearby.

Lemma 2.1.2 Let us assume that the thesis of proposition 2.1 is false. Then,
given v > 0, 61 > 0, 02 > 0 there exists a saddle periodic point q of f and a
diffeomorphism g C' — 6;—close to f such that q is a periodic point for g such
that

1. q has two different real contractive eigenvalues;
2. (]_ - 52)7741 < |Df|Eq§(q)| < 1;
3. a(Ei(q), E5(q)) <7

where n, 1s the period of q and E5(q), E5(q) are the two stable eigenspaces asso-
ciated to the two real contractive eigenvalues of D f™(q).

10



We postpone the proof of the lemma to the next subsubsection. The following
lemma states that assuming the thesis of the previous lemma we can create a
tangency by a C'—perturbation.

Lemma 2.1.3 Let us assume that the thesis of lemma 2.1.2 holds. Then, there is
g C'— close to f ezhibiting a homoclinic tangency associated to a periodic point
q with stable index one.

Proof: If there is a point q as in the thesis of lemma 2.1.2, using the lemma 2.1.1
we can perform a C!—perturbation to get a new system g such that ¢ remains
periodic for it and such that

1. the directions Ej(q) and E5(q) remains invariant,

2. the modulus of the eigenvalue associated to the direction F3(q) become
larger than one,

3. the modulus of the eigenvalue associated to E3(q) is smaller than one.

So, the periodic point ¢ for g has a stable manifold of dimension one and an
unstable manifold of dimension two with small angle. By lemma 2.2.2 proved in
[PS1], it is possible to create with a new perturbation, a tangency between the
mentioned manifolds.

|
So, to finish the proof of proposition 2.1 is enough to prove the lemma 2.1.2.

2.1.1 Proof of lemma 2.1.2.

To prove the lemma, we state a result proved in [PPV]. This result states that
if F is not uniformly contractive then there is a periodic point in the homoclinic
class with rate of contraction close to one.

Definition 9 Given two hyperbolic periodic points, it is said that they are homo-
clinically related if the stable manifold of each point intersects transversally the
unstable manifold of the other periodic point.

Proposition 2.3 ([PPV]) Let f € Dif f2(M®) and H, a homoclinic class asso-
ciated to a periodic point of stable index two and such that Ty,M = E @® F with
dim(F) = 1. If E is not uniformly contractive then for any § > 0 and m > 0
follows that there is a periodic point ¢ € H, such that

1. q is homoclinically related with p,

11



3. ng>m

where ng is the period of ¢ and E*(q) is the stable eigenspace associated to D f™.

Now we continue with the proof of lemma 2.1.2: Let us consider the set of
periodic points such that they have two contractive real eigenvalues. Let us call
E$(q) and E%(q) the two eigenspaces associated to the two contractive eigenvalues,
and let us assume that the absolute value of the eigenvalue associated to F:(q)
is smaller that the absolute value of the eigenvalue associated to E3(q).

Given § > 0, let us consider the set P; formed by periodic points ¢; € H,
such that

(1 =&)< |Dflgsgyl <1 forsome 0 <§' <4

We have to consider three different situations:

e Case 1. For every A < 1, any positive integer ng and § > 0 there is ¢; € Ps
and m > ng such that
[ Df™(E5 (1))l

[Df™(E5(q1))|

e Case 2. There is A > 0 and a positive integer ng such that for every § > 0
and ¢, € Ps follows that Ef(q1) (A, ng)—dominates F3(q); i.e.:

| D™ (B3 (f7 (1))
| Df(E5(f7(a1)))]

for every n > ng and any j.

> A

<A

e Case 3. There is dy such that for any § < §g the set Ps either is finite or
empty.

Case 1.

In the first case, it is proved that after a C'—perturbation we can get a new
periodic point exhibiting two directions with small angle and one eigenvalue close
to one. In fact, first it is used the following folklore lemma and the proof it can

be found [M1]:

Lemma 2.1.4 Let us assume that the for any § the set Ps does not exhibit a
dominated splitting. Then, for any v > 0 there is g C'—arbitrarily close to f
exhibiting a periodic point ¢ with arbitrarily large period n, and such that

1. (1=0)" <|Dfigpl <1 and

12



2. a(Ei(q), E5(q)) < -

Observe that it could happen that (1 —4)" < |[Df/5, | < 1 and [D f&%(qﬂ <
As? for some \; < 1, i.e.: the eigenvalues in the stable direction are much smaller
than the norm in this direction. In this case, we perform another perturbation
to get what we want.

Lemma 2.1.5 Let us assume that the thesis of the previous lemma holds. Then
there is g C1—close to f exhibiting a periodic point q¢ with large period such that
(1—08)" < |Dfigipl <1 and a(Ei(q), E5(q)) < 7-

As a consequences of the previous lemma, follows that lemma 2.1.2 is proved in
the case that Ps has not dominated splitting.
Proof of lemma 2.1.5: Let us consider the basis B in E*(q) given by two
orthonormal vectors vy, vy such that v; € Ef(q). Let B; basis in E*(f*(q) given
by |g; 81;' and an orthonormal vector to it.

Let A; = Df : E*(f"'(q)) — E*(f(¢q)) and in theses basis we can assume

that:
a; kz
=[5 5]

ng _ Tna A4 _ | & k
b [2 ]

Observe that

with
o <AJ9 18] < Age, (1 —8)™ < |k[ <1
Let us consider the following linear maps which are small perturbations of the
maps A;:

14§
B, = {O(‘) Z” 6] 1<i<n-—2
)
Bn—l — [ (o7 | kn—l% :|
€ B
So, R
n, (6% k‘
I B;, = N
=1 { Qe ke—i—ﬁ}
where -
(14 6)™ <k< (1—6)

13



Then, for

1-46,,

1+46 )

holds that one of the eigenvalues Of B is close to one and the eigenspaces has
small angle. By lemma 2.1.1, the linear maps can be realized as the derivative
along the orbit of ¢q of a perturbation of f.

e<(

m
Case 2.

The second case (i.e.: the set Ps has dominated splitting) is more delicate. For
that, we need another two lemmas that basically state that assuming that if the
direction E' is not contractive and it cannot be decomposed in two subbundles,
follow that it is possible to get two periodic points ¢s, g3 homoclinically related
such that:

1. the eigenvalue associated to the direction E for ¢, is a complex eigenvalues;

2. Dfmes : T,,M — T,,M (where ng, is the period of gs3) has two eigenspaces
with small angle.

Observe that for the points ¢, and g3 it could occur that the rate of contraction
of Df in the direction E is exponentially far from one. However, using that there
is another periodic point ¢; such the rate of contraction of Df in the direction
E for ¢ is close to one (see proposition 2.3) and that the three periodic points
(g1, 42, q3) are homoclinicaly related, follows that we can get a another periodic
points verifying the thesis of the lemma 2.1.2.

We start enunciating the following lemma which is the proposition 2.1 proved
in [BDP] (page 376).

Lemma 2.1.6 Let H, be a homoclinic class exhibiting an splitting E ® F' with
dim(E) = 2 and such that E cannot be decomposed in two direction. Then for any
§ > 0 there exists a periodic point q of f and a diffeomorphisms g C' —§—close to
f such that q is a periodic point for g with complex eigenvalue and homoclinically
related with p.

The next lemma, is a folklore one and a proof of it can be found in [DPU]J.

Lemma 2.1.7 Let q be a periodic point with complex eigenvalue and let us as-
sume that there is a transversal intersection of the stable and unstable manifold
of q. Then, for any 6 > 0 and v > 0 there exists a periodic point ¢’ of f and a
diffeomorphisms g C* — §—close to f such that ¢' is homoclinically related with
q, ¢’ is a periodic point for g and a(E5(q), E5(q)) < .

14



First, we take a point ¢, in the condition of lemma 2.1.6, i.e.: g, has a complex
contractive eigenvalue and exhibiting a transversal intersection of their invariant
manifolds. Using the C'—connecting lemma it is possible to perturb f in a way
such that ¢; and ¢ are homoclinically related (recal that ¢; is a point in Pj).
Then, also follows that the unstable manifold of ¢, intersect the stable manifold
of g2. Now, we introduce a second perturbation to get a point g3 that verifies the
thesis of lemma 2.1.7. Observe that the points ¢;, g2 and g3 are homoclinically
related. Using that, we can get a new periodic point ¢ such that

L (1=42)" < |Dfi | <1and

q)

2. a(F;(q), E5(q)) is small.

In fact, we take three neighborhood V;, V2 and V5 of the orbit of ¢; ¢» and
g3 respectively (in what follows we can assume that these points are fixed) and
we can assume that for each neighborhood V; follows that D fiy; = D f(g;). Using
that the therre periodic points ¢, g2, g3 are homoclinically related follows that we
can get a periodic point g with period nz + k3 +ni + ki +ny + k; +n2 + k2 such
that

1. ny,nd, n3,n? arbitrarially large,
2. kq, k3, ks, k2 uniformly bounded by some kg,
3. fi(q) € V3 for 0 < j < ng,
4. fi(q) € V; for ng + k3 < j < ng + ks + n3,
5. fi(q) eViforng+ks+nd+ki<j<mng+ks+nl+ki+n
6. and fi(q) € Vs for nz+ks+ni+ki+ni+k, < j < ng+ks+ni+ki+n+ki+n3.
We consider the following linear maps
Ay =Df(q1) : Ty,M — Ty, M; Ay =Df(q): Ty,M — Ty, M

Ag = Df(Q3) : TV3M — TV:,,M
Tso = Df* : Ty, M — Ty, M; Toy = Df* : Ty, M — Ty, M

Ty = Df* : Ty, M — Ty, M; Tys = Df* : T\, M — Ty, M
See figure 1.
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Figure1

We consider the vectors wy, we such that wy € Ej(q3), we € E5(q3). Assuming
that the complex eigenvalue has irrational imaginary part (if it is not the case
with after a small perturbation it would b the case), we can take n} and an small
perturbation of T5; (we keep the same notation for the perturbation) such that

T21A;2T32(w2) € ES(QI)

Moreover, we can take an small perturbation of Ty (let us call it Th3) and n32
such that for any n, follows that

n2 n n% S
To3 Ay Tio AT T Ay Taa(w2) € E5(q3)
In other word, follows that the direction E$(q) is invariant for
Tos Ay Tyo AT Toy Ay T
Observe that O[(TglA;%ng(’wg), TQIA;L%T:),Q (wl)) is small.

Since T21AZ%T32 (wy) € E5(q1) and E$(q1) is dominated by F3(q1), follows that

nl n nl
O[(AYILITQIA22T32(U}1), A11T21A22T32(w2)) <7
with v being small. Then we can get another small perturbation of T3 such
that
n2 n nl s
T23A22T12A11T21A22T32(w1) € E2 (Ch)

So, we obtain a new linear map close to the initial one such that has two
eigenspaces with small angle. Moreover, if n; is chosen larger than the others,
follows that the new linear map along w; and ws is weak contractive.
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Case 3.

If it follows that for some §g holds that for any § < do that Ps is empty or
finite, by proposition 2.3 follows that there is a peridic point having a contractive
complex eigenvalue with modulus close to one. By lemma 2.1.7 we get a periodic
point with two contractive real eigenvalues and such that teir stable eigenspacer
has small angle. Moreover, we can assume that this periodic point expends a
large part of its orbit close to the periodic point with complex eigenvalue and so
its the rate of contraction is also close to one. Then, we can apply the lemma
2.1.5.
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3 Case that either Ty M = E°® F or Ty M =
E o Fv.

First we will consider the case such that either Ty, M = FE°* @® F or Ty, M =
E® F*. To do that, we use a theorem proved in [PS4] that studies the dynamical
consequences of a codimension one dominated splitting in any dimension.

Theorem 3.1 Let f € Dif f>(M™) be a Kupka-Smale system. Let A be a com-
pact invariant set contained in an homoclinic class such that exhibits a dominated
splitting Ty, M = E*®F where E* is uniformly contracted and dim(F') = 1. Then
A is hyperbolic.

The central argument follows from the fact that F' has dimension one and
the complementary direction are uniformly contractive. This allows to perform
similar argument developed in [PS1].

In [Z] similar results was obtained: in the mentioned paper was proved that
given a topological minimal compact invariant set A such that exhibits a domi-
nated splitting Ty, M = E*@®F where E° is uniformly contracted and dim(F) = 1
follows that F'is hyperbolic.

In our context we get the next two corollaries:

Corollary 3.1 If Ty,M = E° ® F with dim(E°) = 2, then H, is hyperbolic. If
Ty,M = E ® F* with dim(F*") = 2, then H,, is hyperbolic.

Corollary 3.2 Let f € Dif f*(M?) be such that Tuy,M = Ey ® E, ® E3. If E,
s hyperbolic, then the homoclinic class is hyperbolic.

The last corollary is immediate and holds in the following way: if E5 is uni-
formly contractive, by domination holds that F; is also uniformly contractive.
Then we are in the presence of a contractive codimension one dominated splitting
and we can apply the theorem 3.1. if F5 is uniformly expansive, by domination
holds that FEj is also uniformly expansive. Then we are in the presence of a
expansive codimension one dominated splitting and we can apply the theorem
3.1.
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4 Case that Tyg,M = E1 © E» @ Es.

To finish with the maim theorem we have to deal with the most difficult case i.e.:
Ty,M = E, ® E> ® E3. In fact, the rest of the paper is devoted to deal with this
situation. The study in this case goes through different steps:

Step I: First, we conclude that under the assumption of attracting set, the local
tangent manifold of the extremal directions (E; and E,) are dynamically defined.
More precisely we show that the local tangent manifold to the direction E; and Ej3
are stable and unstable manifolds respectively. This is the statement of theorem
4.1 and it is formulated in the subsection 4.1.

Step II: Using that the local tangent manifold associated to the extremal di-
rections are dynamically defined, it is proved that if the center direction is not
hyperbolic, then there are periodic points homoclinically related with p such that
the eigenvalue associated with the central direction is close to one. This is the
theorem 4.2 and it is formulated in the subsection 4.2. This theorem is a refor-
mulation of the proposition 2.3 stated in section 2.

Step III: We consider independently the case where the periodic point p has
either stable index one or stable index two (where stable index means the number
of eigenvalues smaller than one). In the case that p has stable index one, using the
connecting lemma and the fact that we are dealing with an attractor, it is possible
to get an intersection between the tangent manifold to the extremal direction of
a periodic point with central eigenvalue close to one. From this, the periodic
point is bifurcated in a way to obtain a heterodimensional cycle. This is done in
subsection 4.3. The rest of the steps deals with the case that p has stable index
two.

Step IV: In the case that the periodic point p has stable index two (see subsection
4.4), first we study the dynamical behavior of the manifold tangent to the center
direction. If the center manifold is not a stable manifold then it is proved that by
a C!'— perturbation it is obtained a periodic point with center eigenvalue close to
one and such that the tangent manifold associated to the extremal direction has
an intersection. From this, the periodic point is bifurcated in a way to obtain a
heterodimensional cycle (see subsection 4.4.1). If the center manifold is a stable
manifold we proceed with the next step.

Step V: At this point, we are dealing with a homoclinic class such that for every
point there are two transversal dynamically defined local manifold of uniform size:
one is a two dimensional local stable manifold and the other is a one dimensional
unstable manifold. Observe that the local stable manifold contains a strong stable
one tangent to ;. We consider two situation: either each strong stable manifold
intersects the attractor in only one point, or it is not the case (see subsection
4.4.2). In the former, by a result proved in [BC] follows that there exists a two
dimensional normally hyperbolic submanifold containing the attractor; i.e: we

19



are dealing with a two dimensional system normally hyperbolic (see section 6)
and from there, using a result similar to the second theorem proved in [PS1],
it is shown that the homoclinic class is hyperbolic. In the latter, a series of
different suitable perturbation are performed, with the goal to make a connection
between the tangent manifold to the extremal direction of a periodic point with
central eigenvalue close to one, and again the periodic point is bifurcated in a
way to obtain a heterodimensional cycle. Large part of the paper is devoted
to introduce new perturbation techniques that allows to obtain a intersection
between the strong manifolds associated to a periodic points. These perturbation
performed in this context are possible using the structure that was obtained for
the homoclinic class. This is done in the sections 7 and 8.

4.1 Dynamical behavior of the tangent manifolds associ-
ated to the extremal directions.

First, we state the existences of center manifold tangent to each subbundle of the
dominated splitting. Recall by [HPS] that there are 1—dimensional manifolds
WEi(z) tangents to each E;. More precisely, let us define first I; = (—1,1) and
I. = (—¢,¢), and denote by Emb'(I;, M) the set of C'-embedding of I; on M.

Lemma 4.1.1 For each subbundle E; there exists a continuous functions ¢ :
H, — Emb'(Iy, M) such that for any z € H, it is defined WFi(z) = ¢*(z)I. and
verifies:

1. T,WFi(z) = Ei(z),
2. if f(WF(z)) C B(f(z)) then f(WE(z)) C WE(f(2)),
8. if fTH(WE(z)) C Be(f~H(z)) then fH(WEi(z)) C WE(fH(2)).

The previous lemma does not state any dynamical meaning for the tangent
manifold. Later it is proved that under some assumption, these manifolds can be
dynamically defined.

To precise, first recall the definition of local stable and unstable manifold of size
€

We(z) = {y € M : dist(f"(y), f*(p)) = 0n — oo, dist(f"(y), f*(p)) <€},

W(p) ={y € M : dist(f"(y), f*(p)) = 0n = —oo,dist(f"(y), /" (p)) < €}

With this definition in mind, we say that the tangent manifold W is dynamically
defined if there exists, €; > 0 and e, > 0 such that for any z € H, follows that

Wik (z) € We(2)
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In the same way, we say that Wt is dynamically defined if there exists e; > 0
and e > 0 such that for any z € H, follows that

Wfl (x) Cc W) ()

In this case, we call W** and W the strong unstable and strong stable manifolds
respectively. Observe that in this case the tangent manifold are unique.

The next theorem states that assuming that the system is C? and the ho-
moclinic class being a maximal invariant set follows that the tangent manifolds
associated to the extremal direction are dynamically defined (see figure 2). The
theorem is a consequences of a result stated in [PS4] and holds in any dimension
assuming that the extremal directions are one dimensional. The precise statement
of this theorem

is formulated in next section.

Theorem 4.1 Let f € Dif f>(M3). If H, is a mazimal invariant homoclinic
class exhibiting a dominated splitting with three directions Ty, M = E) ® Ex® Es,
then there exists €.0 such that W and W are dynamical defined (see figure 2).

E2

S E u
Wi o> Welk Wed) © W)

Figure 2

Remark 4.1 Observe that we are not assuming in this case that the homoclinic
class is an attractor. It is only assumed that the homoclinic class is mazximal
invariant; i.e.: Hy, = Ngpeny f(U) for some open neighborhood U.

As a consequences of the previous theorem we can get the next lemma that it
shows that either the periodic points in the homoclinic class has the same stable
index or it is possible to get a diffeomorphisms arbitrarily close to the initial one
exhibiting a heterodimensional cycle.
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Lemma 4.1.2 Let f € Dif f>(M?) and let H, = Ngpezy f"(U) be a mazimal
invariant homoclinic class exhibiting a dominated splitting with three directions
Tyg,M = E, ® E> @ E3. Then, one of the following options holds:

1. there ezists a neighborhood U of H, such that all the periodic points in U
has the same stable index;

2. there is g C' arbitrarily close to f ezhibiting a heterodimensional cycle.

Proof:

Let us assume that the point p in the homoclinic class has stable index two.
We have to show that all the periodic points in the neighborhood U has stable
index two. If it is not the case, we have to show that we can C!—approximate
f by another diffeomorphism g exhibiting an heterodimensional cycle. If there
exists a periodic point g of stable index one in a small neighborhood of Hp,
from the fact that the homoclinic class is maximal invariant, follows that it is
contained in H,. Since we are assuming that the homoclinic class exhibits three
directions, follows that any intersection of the stable and unstable manifold of p is
a transversal intersection. Then, there is a sequences of points g, of stable index
two homoclinically related to p and accumulating on q. Due to the fact that the
strong stable manifold has uniform size for any point g, close to g follows that the
strong stable manifold of them intersects transversally the unstable manifold of
q. Let us take a point ¢’ of the sequences ¢,. Observe that the intersection of the
stable manifold of ¢’ with the unstable manifold of ¢ is robust by perturbation.

(From the fact that ¢ is in H, and it has stable index one *the local stable
manifold of ¢ is one-dimensional), follows that there are points in the homoclinic
class that accumulates in the stable manifold of the point g. Since H,, is an attrac-
tor, the unstable manifold of ¢ is contained in H, and so there exist a point in H,
with orbit accumulating in the unstable manifold of ¢’ and in the stable manifold
of gq. So, using the connecting lemma, we get that with a C'—perturbation it
is possible to connect the unstable manifold of ¢’ with the stable manifold of q.
Then it was created an heterodimensional cycle involving ¢ and some ¢’ close to
q
The case that p has stable index one is treated in the same way.

]

So, from now on, we assume that all the periodic points in U has the same
stable index.

At this point, we split the proof of the maim theorem in two cases:

e Case A: The periodic point p has stable index one,

e Case B: The periodic point p has stable index two.
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Before to deal with both situation, we need some results proved elsewhere.
We enunciate these results in the next subsection, and in the subsections 4.3 and
4.4 we return to both cases enunciated above.

4.2 Previous results.

First, we start reformulating the proposition 2.3 to the case that the splitting has
three directions. The present reformulation states that under the assumption of
dominated splitting over a homoclinic class for a C? diffeomorphisms in a three
dimensional manifold, holds that if the direction Es is not hyperbolic then there
are periodic points contained in H, and homoclinically related to p such that the
eigenvalue associated to the center direction is close to one.

Theorem 4.2 ([PPV]) Let f € Dif f2(M?®) and let H, be a homoclinic class
exhibiting a dominated splitting Ty, M = E, ® E; ® Ej3.

e If p has stable index two and the direction Es is not hyperbolic, then for
any 0 > 0 there exists a periodic point g with period n, and homoclinically
related to p such that (1 — 6)™ < |Df|7;i’2(q)| < 1 (in this case we say that q
has §—weak contraction along the center direction).

e If p has stable indexr one and the direction Fs is not hyperbolic, then for
any 6 > 0 there exists a periodic point q with period ng and homoclinically
related to p such that 1 < |Df|7]22’2(q)| < (14 &)™ (in this case we say that q
has §—weak expansion along the center direction).

This version follows immediately from the proposition 2.3 and from the fact
that we are assuming that all the periodic points in the homoclinic class has the
same stable index. For instance, in the case that p has stable index two, and the
homoclinic class is not hyperbolic, from proposition 2.3 follows that there is a
periodic point with weak rate of contraction along the direction E; & E5. Since
the angle between both direction is uniformly bounded from

below and from the domination property, follows that

|D fe,@E,| = max{|Dfig|, |D fig,|} = |DfiE.|

and therefore follows the previous theorem.

It is important to remark that the previous theorem is not a perturbation
theorem. More precisely, the theorem 4.2 shows that the obstruction of the
hyperbolicity (in the context that we are considering) come from the fact that
there are periodic points with eigenvalues close to one in the center direction.

An immediate corollary is the following result:
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Corollary 4.1 Let H, be a homoclinic class exhibiting a dominated splitting
Ty,M = E, ® E; @ E3

o If the direction Fy is not contractive and p has stable index two, then for
any & > 0 the periodic points exhibiting 0 —weak contraction are dense.

e [f the direction Fy is not expansive and p has stable index two, then for any
0 > 0 the periodic points exhibiting 6—weak expansion are dense.

In fact, to conclude this corollary from the theorem 4.2 it is enough to recall
that the point point ¢ with weak contraction (expansion) is homoclinically related
to the point p. So, taking any point x in the homoclinic class, we can approximate
it by a periodic point z homoclinically related to p and so homoclinically related
to g. Then, we can take periodic points in horseshoes that contains z and ¢ with
the property that they accumulate on z but they expends more time close to q.
So, these points have a weak contraction (expansion) along the center direction.
This kind of arguments are folklore (see for instance [BDP]) and we state it

here for sake of completeness. To be precise, we get the following lemma:

Lemma 4.2.1 Let f € Diff"(M) having two periodic points q and g5 such that
there are homoclinically connected and such that gs has %—weak contraction along
the center direction. Then, for any r > 0 there is a periodic point q5 homoclin-
ically connected with q such that dist(q,q5) < v and g5 has —weak contraction
along the center direction.

For some periodic points in the homoclinic class follows that they exhibits
a transverse intersection of its stable and unstable manifold. If this intersection
holds along the strong stable and unstable manifolds we say that there is a strong
homoclinic connection:

Definition 10 Strong homoclinic connection. Given a periodic point q, we
say that it has a strong homoclinic connection if the strong stable and strong
unstable manifolds of ¢ has an intersection.

Now, let assume that there is a periodic point with weak contraction (expan-
sion) along the center direction and also exhibiting a strong homoclinic connec-
tion. In this case, after a C' perturbation, it is possible to show that it is created
a heterodimensional cycle.

Proposition 4.1 Given dg > 0, there exists § such that if there is a periodic point
with 6—weak contraction (expansion) along the central direction and ezhibiting
and strong homoclinic connection, then there is g C' — 6y—close to f exhibiting
a heterodimensional cycle.
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The proof of this proposition is given in section 5.

Now we formulate a lemma proved in [H| that allows to connect the strong

stable and unstable manifolds when they are orbits that accumulates on both
manifolds.
Lemma ([H]): (C'- connecting lemma:) Let f € Dif fr(M™) and let p be a
periodic point such that there are points x in the strong unstable manifold and y
in the strong unstable manifold, a sequence of points x, accumulating in x and
points f*(z,) in the forward orbit of the sequences x,, accumulating on y. Then,
there is a diffeomorphisms g C1—close to f such that p remains periodic for g, x
s in the strong unstable manifold, y is in the strong unstable manifold and y is
in the forward orbit of x.

4.3 Case A: p has stable index one.

In this case, we show that if the homoclinic class is not hyperbolic then we can
get a heterodimensional cycle.

First, we get the following proposition (the proof of this proposition is given in
section 5):

Proposition 4.2 Let H, be an attracting homoclinic class associated to a peri-
odic point of of stable index one and ezhibiting a dominated splitting Ty M =
E\ & Ey® F3. If H, is not hyperbolic, then for any & > 0 there exists g C'—close
to f and a periodic point q with 6—weak expansion along Es such that q exhibits
and strong homoclinic connection.

After that, we use proposition 4.1 finishing the proof of the Maim Theorem
when the periodic point p has stable index one.

4.4 Case B.

To continue, we consider two cases: either the center manifold is dynamically
defined or it is not the case.

More precisely, we say that W2 is dynamically defined if there exist € > 0
and v > 0 such that for any z € H), follows that

L fr(WE(z)) C Wy(f*(z)) for any n > 0,
2. L(f"(WF2(z))) = 0 as n — oo.

In other words, we are saying that W2(z) is dynamically defined if it is contained
in W5(z) for some € > 0.

Related to the previous option (if the center manifold is either dynamically defined
or not) we get the following proposition (the proof of this proposition is given in
section 5):

25



Proposition 4.3 Let f € Dif f2(M?®). Let H, be an attracting homoclinic class
associated to a periodic point of of stable index two and exhibiting a dominated
splitting Ty,M = Ey ® Ey @ E3. Then, one of the following option holds (see
figure 3):

1. Case B.1: for any 6 > 0, there is a periodic point q with 6—weak contraction
along Es such that

(W )\ g} N Hy #0

In this case we say that the homoclinic class has a point in the strong stable
manifold of the point q.

2. Case B.2: the center manifold WE2(z) tangent to E is dynamical defined.

E; \ w Sz av f

CASEB1 CASE B2

Figure 3

€

The first case is similar to the case A and it is treated
similarly. This is done in the next subsection.

4.4.1 Case B.1l.: the center is not a stable manifold.

In this case we have that for any § > 0 there exists a periodic point ¢ homoclini-
cally related to p such that

1. (1—0)" < |Dgg, | <1 where n, is the period of g,

2. the homoclinic class has a point in the strong stable manifold of ¢ (i.e.:

(W (@ \ A} N H, #0).
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Then for any § > 0 using the C''—connecting lemma, we get that by a
C'—perturbation follows that there is ¢ C'— close to f with a periodic point g
which  —weak contractive along E; and exhibiting a strong homoclinic connection

(see figure 4).

connecting lemma

Figure 4

Using the proposition 4.1 follows the existence of a heterodimensional cycle
and so finishing the proof of the Maim Theorem in the case B1, i.e.: we finished
showing the existence of a heteroclinic cycle in the case that the homoclinic class
is not hyperbolic and it has stable index one and in the case that the homoclinic
class has stable index two and the center direction is not dynamically defined.

4.4.2 Case B.2.: the center manifold is a stable manifold.

Recall that in this case we are assuming that the central manifold tangent to F,
is dynamically defined. Under this assumption, we get the following proposition
(the proof of this proposition is given in section 5):

Proposition 4.4 If the center manifold tangent to Es is dynamically defined
then follows that Fy is uniformly contracted.

. From the fact that the dominated splitting is decomposed in one dimensional
subbundles, we can assume that there is an adapted metric such that the constant
of domination is A < 1 and C' = 1. Moreover, we can assume that there is A\, < 1
such that

|D f | E1 | < As

Now we get that taking £ = E; @ E; and F' = Ej follows that for any point
x € H, there is a stable and unstable manifold of uniform size tangents to E
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and F respectively. From now on, we call the manifold tangent to E;, the strong
stable manifold; the manifold tangent to Fs, the center manifold; the manifold
tangent to Fy @ E,, the center-stable manifold; the manifold tangent to E3, the
unstable manifold; the manifold tangent to E3® Fj3, the center-unstable manifold.
In the present context, follows that the center-stable manifold is contained in the
local stable manifold.

More precisely: there exist continuous functions

¢° : H, — Emb*(Dy, M)
¢* . H, — Emb' (I, M)
¢°: H, — Emb' (I, M)
¢* : H, — Emb'(I;, M)

where I} = (=1,1), I. = (—€,¢); D1 = {2 € R?> : ||z|]| < 1}; D. = {# € R* :
||z|| < €} such that for any z € H, it is defined

We(z) = ¢%(z) D Wi(z) = ¢*(x)I; Wiz) = ¢°(2)1; We(z) = ¢"(2) 1
and verifying
1. T,We(z) = E(z), LW (z) = Ey(z), TWe(z) = Es(z), TW(z) = F(z)
2. Wei(z) = {y € M : dist(f"(x), f"(y)) — 0, dist(f"(x), f"(y)) < €},
3. We(z) = {y € M : dist(f"(z), f"(y)) < A7, dist(f*(z), f"(y)) < e}
4. W) c Wes(z) = W)

5. We(x) ={y € M : dist(f™"(z), f"(y)) = 0,dist(f"(z), f"(y)) < e}

Definition 11 Topologically hyperbolic homoclinic class:

Given a mazimal invariant homoclinic class exhibiting a dominated splitting
E, & Ey; ® E3, it is said that the homoclinic class is a topologically hyperbolic
homoclinic class if the direction Ey is contractive, the local tangent manifold to
FE5 is contained in the local stable manifold and the local tangent manifold to Fs
s contained in the the local unstable manifold.

To study this case we consider the next obvious alternative:

1. Case B.2.1. The strong stable direction is not involved: there exists
€ > 0 such that for any x € H, follows that [W*(z) \ {z}] N H, = 0.
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2. Case B.2.2. The strong stable direction is involved: there is a pair
of points x,y in the homoclinic class such thaty € W (x).

In other words, we consider the set
T ={z € Hy: W) \{z}] N H, # 0}

and in the case B.2.1 we assume that T is empty and in the case B.2.2 we suppose
that 7 is not empty.

The two previous cases are possible. For instances, in the case of the three
dimensional solenoid we get that the strong stable direction is involved in the
dynamic. To get an example of the second situation, consider a two dimensional
attractor for a two dimensional diffeomorphisms f (for instance a Plykin’s at-
tractor) in a two dimensional manifold, and then, embeds this manifold in three
dimensional manifold in a way that the three dimensional diffeomorphism coin-
cide with f in the two submanifold and such that this submanifold is invariant and
normally hyperbolic for the new dynamic (see section 6 for precise definitions).

The rough idea to deal with the two previous case is the following;

1. In the case that T = (0, observe that projecting along the strong stable
manifold we get a two dimensional diffeomorphisms exhibiting dominated
splitting.

2. In the case that T # 0, assuming that the direction Ey is not hyperbolic,
using a suitable perturbation argument we get a periodic point q with a
weak contraction along the direction Fs and exhibiting a connection along
the strong directions. After that, again it is created a heterodimensional
cycle.

Case B.2.1. The strong stable direction is not involved (7 = 0).

In this case, observe that “II** o f is a two dimensional diffeomorphism”,
where I1°¢ is the projection along the strong stable manifold over some center-
unstable manifold. More precisely, from a result proved in [BC], the attractor
is contained inside a two dimensional normally hyperbolic submanifold. Observe
that in this case, there is no chance to perturb the system in a way to create a
heterodimensional cycle. In fact, if the submanifold that contains the attractor is
normally hyperbolic, follows that it is robust by perturbation and the perturbed
homoclinic class will be contained in this submanifold. So, for any g close to f
follows that for any = € Ay = Ngns039™(U) we get that We*(z,g) N Ay = {z}.
Therefore, there is not possible to get an heterodimensional cycle for g.

Therefore, to prove the maim theorem in this case, we have to prove that the
homoclinic class is hyperbolic. To conclude that, we prove the following theorem.
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Theorem 4.3 Let f € Dif f2(M?®) and let H, be an attracting topologically hy-
perbolic homoclinic class such that T = (0. Then, the homoclinic class is hyper-
bolic.

The proof of this theorem is given in section 6.
This finish the maim theorem in the case B.2.1.

Case B.2.2. The strong stable direction is involved (7 # 0).

Here we are assuming that there exist € > 0 such that for some z € H,, follows
that [W2*(z) \ {z}] N H, # 0. We do not know a priori if the point z is periodic.
If it is the case, we could do the same kind of argument done in the case A and
in case B.1. If = is not periodic (in particular, it could happen that the orbit
of = is dense or at least it could accumulate in the point y) it is not possible to
apply the connecting lemma kind of arguments. However, using the geometrical
structure of the system, it is possible to perform a series of suitable perturbation
to get a periodic point with a strong homoclinic connection.

Theorem 4.4 Let H, be a topologically hyperbolic attracting homoclinic class.
Let also assume that H, is not hyperbolic. If the strong stable manifold is involved
in the dynamic (i.e.: T # 0), then for every 6 > 0 there is g C' close to f such
that it has a periodic point q¢ having a d—weak contraction along Es and exhibiting
a strong homoclinic connection.

The proof of this theorem is given in section 7. In fact, to conclude the existence
of a heterodimensional cycle we apply again the proposition 4.1. This finish the
maim theorem in the case B.2.2.

To prove the previous theorem, we consider either if the interior of 7 is empty
or if it is not; where the interior is taken in the topology restricted to the set H,.

If the interior is not empty, from the density of the periodic points and corol-
lary 4.1 follows that there is a periodic point with weak contraction along the cen-
ter direction contained in 7. Then, it is applied the connecting lemma to obtain
a periodic point with weak contraction along the center direction and exhibiting
a strong connection. Using proposition 4.1, we obtain a heterodimensional cycle.
If the interior of T is empty, we cannot assume that x is a

periodic point, and so it is performed a perturbation in a way to be back to
a similar situation to the one previously considered.

Before to end the section we would like to make some remarks. Observe that
in the case B.2.1 (when 7 is empty) it was proved that the homoclinic class is
hyperbolic. It could be asked if it is possible to get a similar result when T
is not empty: given a Kupka-Smale topologically hyperbolic class such that the
strong direction is involved in the dynamic, is it true that the homoclinic class is
hyperbolic?
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The answer is no and it is easy to construct a counterexample:

Let H, = N{n>03.f"(U) be a hyperbolic attracting homoclinic class for a surface
diffeomorphism f.
Let M be a minimal set contained in H,.
Let h: U — R be a C*° function such that

1. 0<h(z) <1lforall z € U,

2. ha = 1,

3. hype < 1.

Let F: U x [-1,1] = U x [—1,1] defined as

F(z,y) = (f(z), h(z)y — v°)

Observe that the set
H, x {0}

is an attracting homoclinic class. In fact, H, x {0} = Nusoy F™(U %[5, 3])-
Moreover, the homoclinic class has dominated splitting E{® Ea® E3 and Fiyx—1,1)
is a Kupka-Smale system. This follows from the fact that the periodic points of
F' are contained in the complement of M and in this set the center direction is
contractive from the fact that |DFg, )| = h(z). However, F is not hyperbolic
from the fact that |DFg,(,)| is equal to one when z € M.
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5 Proof of propositions and theorems of subsec-
tions 4.1, 4.3, 4.4.

First, we appeal to some results and definitions proved in [PS4] for “codimension
one dominated splitting”.

Definition 12 Let f: M — M be a C? diffeomorphism and let A be a compact
invariant set having dominated splitting E ® F with dim(F) = 1. Let U be an
open set containing A where is possible to extend the previous dominated splitting.
We say that a C?-arc I in M (i.e, a C*-embedding of the interval (-1,1)) is a
0-E-arc provided the next two conditions holds:

1. f~(I) C U, and |f™(I)| <6 for alln > 0.
2. f™(I) is always transverse to the E-direction.

Related to this kind of arcs it is proved in [PS4] the following result.

Theorem 5.1 There exists 69 such that if I is a 0-E-interval with 6 < &g, then
one of the following properties holds:

1. w(I) = Ugenw(x) is a periodic simple closed curve C normally hyperbolic
and f}z :C — C (where m is the period of C) is conjugated to an irrational
rotation,

2. w(I) C J where J is the a periodic arc normally hyperbolic.

Now we can proceed to show how the theorem 4.1 follows from the previous
result.

Proof of theorem 4.1:

First, we prove that the manifold tangent to E3 is an unstable manifold.
We start showing that there exist € > 0 and v > 0 such that f~"(WZX(z)) C
W (f(@)).

Let us assume that this is not the case. So it follows that there are a positive
number 7, a sequences of positive numbers ¢, — 0, points z, and a strictly
increasing sequences of positive integers k,, such that

L (W (za)) = v

and
fFWE () <y 0<j <k,

Taking
I= lim f* (W (z,))

n—-+o00
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follows that I does not growth for positive iteration and it is transversal to F,® Fs;
ie.:

fI)<yVji>0

Then, we can apply theorem 5.1 and follows that w(I) is a periodic normally
hyperbolic curve with dynamic conjugated to an irrational rotation or it is con-
tained in a periodic arc. Both situation cannot hold inside a homoclinic class.
To prove that £(f~"(WF3(z))) — 0 as n — oo we repeat the same argument. In
fact, if it is not the case, we can find an arc I transversal to £y, @ Es that does
not growth by positive iterations and the same conclusion is obtained.

To show that W* is dynamically defined, we take f~! and it is done the same
argument changing backward by forward iterations.

|
Proof of lemma 4.2.1:

To prove the lemma, observe that using that ¢ and ¢s are homoclinically
connected, follows that there is a horseshoes containing ¢ and ¢s. Moreover, we
can take two small neighborhoods W and Wj of ¢ and g5 respectively such that
there exists two positive integers k; and ks and for some positive integer n and
ng arbitrarily large, there exists a periodic point z such that

1. the period of z is n + k1 + ns + ks,
2. for any 0 < i < n follows that fi(z) € W,

3. for any 0 < i < ng follows that f"*1+¢(z) € Wj.

Observe that for any r > 0 there is n = n(r) such that the corresponding
periodic point z has an iterate such its distance to ¢ is smaller than 7.

To see that z is §—weakly contractive along the Es direction we proceed as
follows:

Observe on one hand that in the neighborhood W of ¢s follows that if y € W
then

1)
(1— 5) < |Dgimyw)| <1

(we can suppose for simplicity that gs is fixed). On the other hand, observe that
there is a positive constant C' such that

C ' <|Dg,|<C C'<|Dg}|<C

So, given the periodic point z

— n 4 n n+ki1+ns+k n
C 2|Dg|E2(z)|(1 - 5) * < |D9|E_;(;)+ TR < C2|D9|Ez(z)|
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If n is large enough, follows that
C*| Dy (| < 1

Fixed n, we take ns large enough such that
(1 o 5)n+k1+n5+k2 < C_2|D n |(1 . é)n,;
9|Es(2) 9

,From both inequalities the lemma follows.
]

Proof of proposition 4.1.

The proof consist in to bifurcate the periodic point with center eigenvalue
close to one in two periodic points of different stable index and to control the
behavior of the unstable manifold of the periodic point that is created by the
bifurcation. We use the lemma 2.1.1 to bifurcate the periodic point that has an
eigenvalue close to one.

Let us take a point ¢ with §—weak contraction along the direction and ex-
hibiting a strong homoclinic connection. Let us take a point = contained in
(WE(q)\ {g}]N[WE(q)\ {q}] and let v* be a connected compact arc containing
z and contained in a fundamental domain of W¥3(q). Let also takes 7** the com-
pact arc contained in W1 (q) that connects ¢ with z. Using the lemma 2.1.1 we
bifurcate ¢ into three periodic points g_1, qo, ¢1 for a diffeomorphisms g C*—close
to f such that ¢_; and ¢g; has stable index two and ¢y has stable index one. On
one hand observe that W*(qo) N W"(q1) # 0. Observe also that for each point g;
there is an arc 4$° contained in W' (g;) \ {¢;} which remains close to y**. On the
other hand, we can perform the bifurcation such that g='(y*) € W*(q_;). So,
a heterodimensional cycle is created (see figure 5).

|
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Figure 5

Proof of proposition 4.2.

Let us take a point ¢ with weak expansion along the center direction.

On one hand, since ¢ and p are homoclinically related and both points has
stable index one, follows that W (q)NW 2 (p) # 0 and so [W (¢)\{q}|NH, # 0
(recall that W1 (q) and WF3(q) are the local strong stable and unstable mani-
fold). On the other hand, again since H, is a attractor, follows that W*(q) C H,.
Then, there are orbits in H, accumulating in W (q) \ {q} with positive iterates
also accumulating in W21(q) \ {¢}. By the connecting lemma, we can get a peri-
odic point with weak expansion along the center direction and exhibiting a strong
homoclinic connection.

]

Proof of proposition 4.3

Recall that all the periodic points has the same stable index.

First, we start proving that either

1. there exist € > 0 and y > 0 such that f*(W(z)) ¢ W.2(f"(z)) for any
n > 0 or,

2. there exists a periodic point ¢ having weak contraction along the center
direction and such that [W"(q) \ {¢}] N H, # 0.

Let us assume that the first option does not hold. Then follows that for any
small positive number +, there is a sequences of positive numbers ¢,, points z,
and an increasing sequences of positive integers k, such that

U™ (W2 () =
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and .
LW (za) <y 0S5 < kg
Taking
J = limp_qoof* (W‘ft2 (zn))
follows that J does not growth for negative iteration; i.e.:
UfF(I) <y V>0

Then, it follows that '
fPJ)cUVvji>0

If v > 0 is small enough then
f(J)cUVji>0

and so J is contained in H(p). So, it is approximated by periodic points and we
can assume that these points have j—weak contraction along the direction FE.
Now we take

WE(J) = Uaen W (z)

and a sequences of periodic point ¢, close to some point in the interior of J.

We have that either the periodic points are not contained in W*(J) or they are
contained in W*(J). In the first case, we have that the strong stable manifold
of some g of the sequences g, intersect W*(J) and q ¢ W*(J). Taking y =
WE (q) "nW2(J) follows that the backward orbit of the point y remains in U and
so the point belongs to the homoclinic class and then we conclude that there is a
periodic point such that its strong stable manifold intersects the homoclinic class.

So, to conclude the proof it is enough to conclude that the second case cannot
occur. If the periodic point ¢ is contained in J, using the fact that ¢ is periodic
and J does not increase the size for negative iterates, we conclude that there is a
point of different stable index in J which is an absurd. In fact, if ¢ is contained in
J observe that J C W£2(q). Let r be the period of q, so f~*(J) C WE2(q) for any
positive k, and so taking L = U~ f*(J) follows that L C WZ2(q). Moreover, L
is invariant by f~" and f/_LT : L — L is an homeomorphism where ¢ is a repelling
fixed point. Taking ¢’ € W#(q) N L we get that there is ¢’ = limy o f*"(y') € L
and y is an attracting fixed point for f~7, i.e.: ¢’ is a repelling periodic point for
f- Which is an absurd.

In the case that the periodic point ¢ is not contained in J but contained in
W(J), we get that the unstable manifold of g intersects J. Using again that
J does not increase the size by negative iteration, we conclude that there is an
arc I contained in the center manifold of ¢ such that does not increase the size
by negative iterations, and again this implies that there is a periodic point of
different stable index in U which is an absurd.

To finish, we prove that either
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1. (f"(WF2(z))) = 0 as n — +o0 or

2. there exists a periodic point ¢ having weak contraction along the center
direction and such that [W(¢) \ {q¢}] N H, # 0.

The argument to prove it, is similar to the one already performed and we leave
it to the reader.
]

Proof of proposition 4.4: To prove it, we start with the following lemma:

Lemma 5.0.1 For any § > 0 small, there is ng = no(d) such that for any n > nyg
holds
1D fig,| < (L+6)"

Observe that this lemma implies the proposition 4.4: In fact, since :g}t:?: <A
2

then [D [, | < (M1 +6))" so if § is small enough follows that A(1+ ) < 1.
To proceed with the proof of the lemma, we have to state a lemma due to
Pliss:

Pliss’s Lemma: Given 0 < 79 < 1 and a > 0, there exist Ny = Ny(v0,71,a)
and ! = (70,71,a) > 0 such that for any sequences of numbers {a;}o<i<, with
n > Ny, a ' < a; <aand 17 ja; < 7" then there exist ng with ng < In such that

I a; <™ ng<j<n

1=ng

So, if the lemma is not true, we get that there is a sequences of points x,, and

an increasing sequences of positive integers k, such that |D f|';5‘2(zn)| > (1+6)k,
ie. |Df|TE’:?fkn($ ))| < (1 + 9)7*. Using Pliss’s lemma holds that there exist

points y,, and integer ng and an increasing sequences of positive integers j, such
that [Dfz ., | < (1+ 8)~3 for ng < j < jn. Taking an accumulation point z of
the sequences vy, follows that

—n g —n

Then, the center manifold along z is stable for f~!, which is a contradiction. In
fact, to see that it is proved a folklore claim that we repeat here for completeness.
The claim states the following

Claim 1 Let g € Diffr(M) having a dominated splitting T\M = ®%_E; on a
compact invariant set A follows that if for some direction E = E; and some x € A
holds that there exists 6 > 0 and ng such that

1" 3 | Dgip(gi(ey| < (1—6)" Vn > ng

then there exists 09 such that
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1. (Wi (z)) C Wy (g™ (z)) for any n > n,
2. U(g"(WE(x))) = 0 as n — +o0.

To get that observe that given d; > 0 there exists d3 > 0 such that for any
y € A and z € W (y) follows that

|D9|E‘(z)|

< 1+ 6, where E(2) = T,WE(y)
1D9j5w)| "

Then, it is taken d5 such that (1 — §)(1 + ) < v < 1 for some v < 1. Then we
can take dg > 0 such that dy < d3 and

Ug* (Wi (2))) € Wi (g"()) 1 < k < no
;From that, follows if z € W, (z) then
P52l _ oy
2

and so

3% 1D pgicap| < 1Dgimgiyl (1 +82)™ < (1= 8)(1+83))" < ™

and so
9" (Wi (z)) € Wi (9™ (2))|
Making and induction argument, the claim follows.
[ |
Coming back to the proof of the lemma, we can apply the previous claim to
the direction Ej because E, is one dimensional and so | D fl, | = ILZ0|D fig, (5(2)) -
[ |
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6 Case B.2.1. Proof of Theorem 4.3

In this case, we use a theorem proved in [BC] that allows us to reduce the problem
to a problem for surfaces diffeomorphisms. First we start recalling the definition
of normally hyperbolic submanifold. We say that an invariant manifold S is
normally hyperbolic there is an splitting TsM = E & F' such that

1. E* is uniformly contractive (or expansive);
2. |Df|Es(z)||Df|}1(f(x))| <A<lforanyzeS
3. T,S=Fforanyz € S.
If it holds that f € Dif f"(M) and
|Df|ES(a:)||Df|;7‘%f(z))|T <A<
it is said that S is r—normally hyperbolic and follows that S is C".

Theorem 6.1 ([BC]) Let f € Diff"(M) (r > 1) be a diffeomorphism on a
compact manifold M. Let A be a compact invariant set exhibiting a dominated
splitting Ty = E° ® F where E*® is uniformly contractive. Let also assume that
for every x € A holds that W (x) N A = {x} (where W**(x) is the local strong
stable manifold tangent to E°). Then, there exist two C1—submanifold normally
hyperbolic S and S such that,

1. T,S = F(x),
2. 8CS,
8. ACS, f(S)c S and f71(S) C S.

Applying the previous theorem to the homoclinic class H, follows the next
corollary:

Corollary 6.1 Let H, be a topological hyperbolic homoclinic class such that T =
0. Then there is a C*'—submanifold S containing H,, and such that fis is a surface
map exhibiting a dominated splitting.

Even f is C2, the manifold obtained by 6.1 it could be only C!. In fact, if
there is a periodic point ¢ in H, with stable eigenvalues A\; and Ay such that
A1 < Ag but A2 < \; follows that S can not be 2—normally hyperbolic.

For surfaces maps exhibiting dominated splitting it is possible to obtain a well
description of the limit set:
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Theorem 6.2 (/PS1]) Let g € Dif f2(M?) and assume that A C Q(g) is a
compact invariant set exhibiting a dominated splitting such that any periodic point
is a hyperbolic saddle periodic point. Then, A = A{UAy where Aq is hyperbolic and
A5 consists of a finite union of periodic simple closed curves Cy,...C,, normally
hyperbolic, and such that f™ : C; — C; is conjugated to an irrational rotation (m;
denotes the period of C;).

Due to the fact that S is C?, the restriction of f to the submanifold S is
only C! (even f is C?). So, the two dimensional result stated above cannot be
directly applied. However, we have some extra properties associated to f: the
manifold tangent to E5 and E5 are dynamically defined, being stable and unstable
respectively. So, we are in a situation that we have more information for the two
dimensional system. Later, using an extra property that holds along the stable
and unstable manifold and called bounded distortion, we can use a generalization
of the theorem 6.2 for C'— diffeomorphism.

To be more precise, we have to introduce some definitions for two dimensional
diffeomorphisms.

Let S be a 2-dimensional manifold and g € Dif f*(S). Let us assume that g
has an invariant set A exhibiting a two dimensional dominated splitting £ @ F'.
Recall that for each direction and for every point x € A we have associated the
tangent manifolds WZ(z) and W (z) .

Definition 13 We say that WX (z) has bounded distortion property if there exists
Koy and § > 0 such that for all x € A and J C WF(z) we have for all z,y € J
andn >0, if £(f7%(J)) <6 for 0 < i < n then
1. e < exp(Ko S £(F (7))
IDf 2] ¢

2 1Df | < U™ exp(Ko S (FH)) Fly) = T,WE (@)

We say that WE(z) has bounded distortion property if there exists Ko, and
§ > 0 such that for allx € A and J C WE(z) we have for all z,y € J and n > 0,
if L(f(J)) <6 for 0 <i < n then

! < exp(Ko Y00 67 ()

2. D7 | < LI exp(Ky S U(F(T))) Fy) = TWE(2)

With this definition in mind, it is possible to get the following result which is
a generalization of the theorem 6.2:
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Theorem 6.3 (/PS1]) Let g € Dif f'(M?) and assume that A C Q(g) is a
compact invariant set exhibiting a dominated splitting EGF such that any periodic
point is a hyperbolic saddle periodic point. Moreover, assume that WE(z) and
WE(x) has bounded distortion. Then, A = A; U Ay where Ay is hyperbolic and
A5 consists of a finite union of periodic simple closed curves Cy,...C,, normally
hyperbolic, and such that f™ : C; — C; is conjugated to an irrational rotation (m;
denotes the period of C;).

The proof is similar to the one done for the theorem 6.2. In fact, in the proof
it is used that f is C? to show that the center manifolds are C? (see lemma 3.0.3
in [PS1]) and as a consequences of it it is proved that the center manifolds have
bounded distortion property (see lemma 3.5.1 in [PS1]). In the theorem 6.3, the
distortion property are taken for grant. For details we refer to [PS1].

Therefore, to apply theorem 6.3 to the map f,5 where S is the submanifold
given by proposition 6.1, it is necessary to show that along the local unstable
manifold and the local center-stable hold the bounded distortion property. Actu-
ally, in the case of the unstable arcs (which are contained in the attractor and so
they are contained in S), it is proved that they are C2. On the other hand, the
center manifold are not unique so it could happen that the one chosen are not
contained in S. However, if we take the manifold defined as We*(z) N S follows
that this manifolds are invariant by f, T,(W(z) N S) = Ea(z) and they are
stable.

Proposition 6.1 Let f € Diff%(M3) and let H, be a topologically hyperbolic
homoclinic class. Let us assume that there ezists a two dimensional C'—normally
submanifold S such H, C S. Then, the tangent manifolds W*(x) and We(z)NS
have bounded distortion property.

First, we start proving that for f, the stable discs and the unstable manifold
are C2. At this point, it is used that the manifold are dynamically defined. For
that, we need the following lemma:

Lemma 6.0.2 There ezist a constant C > 0 and 0 < o < 1 such that for every
x € A and for all positive integer n the following holds:

Dffsor,  1Df,
Dfr P DS, P
D flor,” 1D, P
B

< Co™

< Co™
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Proof:
Recall that the manifold tangent to Fj5 is a unstable manifold. ;From this,
we claim that for any 6 > 0 there is ng = no(d) such that for any n > ng holds

D fi| > (1= 0)"

So, if the claim is not true, we get that there is a sequences of points x,, and
an increasing sequences of positive integers k, such that |D fl%s @y < (1= §)kn.
Using Pliss’s lemma holds that there exist points y,, and integer ng and an
increasing sequences of positive integers j, such that |D fng(yn)| < (1 =2y for
ng < j < jn. Taking an accumulation point z of the sequences y, follows that
|Dfl,| < (11— 8)n for n > ng. Then, using the observation 1, follows that the
manifold W*(x) is a stable manifold for f, which is a contradiction.

Then,

|Df|7}22| - |Df|%2| 1 <" 1 —( A %
IDfl > DS, | DS, (T=38)r "1-2A

for n > nyg; so if § is small enough follows the desired property.

For the second inequality, we repeat a similar argument using that the mani-
fold tangent to Fj, is a stable manifold and arguing as in lemma 5.0.1.

]

Now, we can apply a result in [HPS] that establish that if the inequality stated
in the previous proposition, then the manifold tangent to F; & F5 and to F3 are
C2.
As a consequences of the previous lemma, follows that along the unstable manifold
the bounded distortion property holds. To get the bounded distortion property
along the center-stable we have to be more careful. Observe that even the map
is C?, the central leaves could be only C! inside the stable discs. However, we
can show that they have distortion property:

Lemma 6.0.3 There ezists a constant K such that if y € We(z) = We(z) N S
follows that

= < exp( K Ifz = W)
Proof:
We want to control .
|Df£‘2(y)|

where z,y € J.
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Observe that we can assume that |D fig| = |Dfg,| where E = E; ® E,. So

1DfEyw)|  |DfEw)
Dl 1Dy

Moreover

1D fEw)| = 1D fEy@)| = o | Dfey(rite))| = Wicol D fr(ri@))l

For each z we have defined the map y € W2(z) — log|D fir)| and recalling
that the discs W (z) are C? follows that the maps y € log|D fig(,)| are Lipschitz.
Since A is compact follows that there is a constant K independent of the discs
such that

[log(|D fie@)|) — log(| D fiew|)| < K|z —y| Vy € W ()

where K is the Lipschitz constant for log(|D fig|).
So

Dfes , .
log(%) = 2109(|DfE(fi(m))|) —10g(|D fr(si@yl) < KZ |f*(z) = f*(y)]
E(y

Then we get that

ex K z 1
|DfE2(y)|< b 2|f O

[ |
To finish showing that the manifold has the bounded distortion property, we
have to show that they verifies the two second items. This is immediately since
the submanifold are C*.
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7 Case B.2.2. Proof of Theorem 4.4.

In this section we assume that
T={z€ H,: W)\ {z}| N Hp, # 0} #0

Observe that the set 7 is not necessary either open or close.

The proof of the theorem 4.4 goes considering different situations related to
the set 7. More precisely, we consider if the interior of T in the homoclinic class
is or not empty, where the topology is the restricted topology to H,,.

In the case that the interior of 7 is not empty, from the fact that the periodic
points with weak contraction are dense, follows immediately that there exists
a periodic point ¢ with weak contraction along the center direction such that
[W22(q) \ {q}] N H, # 0. Then, applying the C'—connecting lemma, we con-
clude the theorem 4.4 in this case. In other words, we have proven the followinf
proposition:

Proposition 7.1 Let H, be an attracting topological hyperbolic homoclinic class.
If the interior of T is not empty then the thesis of the theorem 4.4 follows.

If the interior of T is empty we show that:
there is a C' suitable perturbations of f, exhibiting a pair of periodic points q
and g homoclinically related and such that W"(qa) N W55 (q1) # 0.
After that, we can produce a C* perturbation to get a periodic point with weak
contraction along the center direction and also exhibiting an strong homoclinic
connection. More precisely, we get the following proposition:

Proposition 7.2 Let g € Dif fr(M3) and § > 0 such that
1. g has two hyperbolic periodic points ¢, and qo such that

(a) q1 and qo are homoclinically connected,

(b) W*(g2) N W (q1) # 0;

2. there exists a periodic points qs with g—weak contraction along the center
direction and homoclinically related with q,.

Then, there is § arbitrarily C*—close to g and a periodic point §s with 6—weak

contraction along the center direction and exhibiting a strong homoclinic connec-
tion.
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Observe that the previous proposition implies the theorem 4.4. So the goal is
to show that if the interior of T is empty, for any 6 > 0 we can get by pertur-
bation a diffeomorphisms g C!—arbitrarily close to f verifying the hypothesis of
proposition 7.2.

Before to do that, let us show the proof of proposition 7.2.

Proof of propositions 7.2:

By lemma 4.2.1 we get a sequences of periodic points ¢§ such that ¢ accu-
mulates on ¢y, they are homoclinically connected with ¢; and they have §—weak

contraction along the center direction. Moreover, we can suppose that the
orbits of this point does not accumulate in ¢» and so they do not accumulate
over the point of intersection between the unstable manifold of g and the strong
stable manifold of ¢;. Observe that the strong stable manifold of the points
g5 accumulates over the local strong stable manifold of ¢;. Since the points gf
are homoclinically connected with ¢; and so with gs, follows that their unstable
manifolds accumulate over the connected arc of the unstable manifold of ¢; that
contains ¢ and a point z € W*(qz) N W2*(q1). Then, it is possible to unfold the
intersection of the unstable manifold of ¢, with the strong stable manifold of ¢;
in a way that the unstable manifold of some ¢§ intersect the local strong stable
manifold of the same ¢J.

More precisely, we can do that in two steps: First, it is performed an arbitrarily
small perturbation such that the unstable manifold of g, intersect the strong
stable manifold of same gj sufficiently close to g;. Since g§ remains homoclinically
connected with ¢o, follows that they are arc contained in the unstable manifold
of ¢§ that accumulates over the connected arc of the unstable manifold of ¢, that
contains ¢y and a point z € W*(ga) N W2*(q1). The second perturbation consist
in unfolding the intersection of the unstable manifold of ¢» with the strong stable
manifold of ¢§ in a way that the unstable manifold of g intersect the local strong
stable manifold of the same point.

The first perturbation is straightforward from the fact that the orbits of the
points ¢§ do not accumulate over go For the second one, we take a sequences of
compacts arcs {l,, }mm contained in the unstable manifold of ¢} such that:

1. the arcs {l,,} accumulates in a compact arc [ which is contained in the
unstable manifold of g, and it contains the point ¢; and a point in W*(gz) N

We(g3);
2. for each m follows that {f~*(i;n)}i>0p does not accumulate on I.
So, perturbing ¢ in a way to unfold the intersection of { with W?*(¢}) and
at the same time not perturbing gj, follows that the unstable manifold of g}

intersects W2*(q}) and this conclude the proof of the proposition 7.2.
n
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To get the pair of periodic points in the hypothesis of the proposition 7.2, we
have to consider two alternatives: In one alternative, we are able to show that
there exist two periodic points ¢; and ¢, such that there are  and y in the unstable
manifold of ¢; and ¢, respectively and such that also holds that y € W2*(z) (see
proposition 7.3). Then, by a C*perturbation (k > 1 see proposition 7.4), which
consist essentially to move the unstable manifold of one of the periodic point, we
obtain a pair of points in the hypothesis of proposition 7.2. In the second case,
we have two points z,y € H, such that y € W2*(z) but we cannot guarantee
that the points z and y belongs to the unstable manifold of some periodic points.
Therefore, the perturbation considered before it does not work in the present
situation. However, we can get some extra properties in the system that allows
us to introduce another kind of perturbation that get the pair of periodic points
verifying the hypothesis of the proposition 7.2 (see proposition 7.5).

The mentioned alternative depends on the “joint integrability of the stable
and unstable manifolds”.

Let us consider the pair of points z,y such that y € W2*(z). Let us take
Wt (z) = Ugews@n W' (2)

and observe that W¥(z) splits We(z) in two connected components. Let us
consider

I1°* : B(z) —» W (z)

where B(z) is a neighborhood of z contained in U and such that contains y
and the local strong unstable manifold of both points. With II°** we denote the
projection induces by the strong stable foliation. To say that there is pair of
points z,y such that y € W?*(z) is equivalent to assert that

(W (y)) N W*(z) # 0

To avoid notation, in some cases, we denote the set TI**(W(z)) "W (y) with
W(z) Ns WX(y) and if II**(W*(z)) N W*(y) # 0 we say that W*(z) s-intersects
We(y).

The strategy of the proof of theorem 4.4, splits in different parts related to
the kind of intersection of II**(W*(z)) with W*(y).

As we already said, it depends on the “joint integrability of the strong manifolds”.

Definition 14 Joint integrability: We say that strong stable foliation and the
strong unstable foliation are jointly integrable if there exist 0 < €; < €3 such that
for any = and y in the homoclinic class with y € W2*(x) holds

Vz e WH(z) then W (2) " WH(y) # 0
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in other words, for all x,y € A such that y € W*¥(x) follows that

(W2 (y)) € We(2).

Without loss of generality, we can assume that € = €; = €3 and

(W (y) = W(=).
Another equivalent way to formulate the previous definition, is to consider
the following two sets

W (z) = Upzews @} (W (2) NA] W (2) = Upzewss(@)nay W' (2)

To assert that the strong foliation are jointly integrable is equivalent to assert
that for any z,y such that y € W**(z) holds that

Wet(z) = Wk (z)

We consider independently the case that the strong foliation are jointly inte-
grable and the case that this does not happen. In the case that the strong foliation
are not jointly integrable, we can conclude there are a pair of periodic points p,, p,
such that the local unstable manifold of p, s-intersect the local unstable manifold
of p,. Later, performing a suitable perturbation it is concluded the existence of
a new diffeomorphisms verifying the hypothesis of proposition 7.2. In the case
that the strong foliation are jointly integrable, it is necessary to perform another
perturbation different that the one done in the previous case. The goal of the
next subsection are devoted to consider both situations.

7.1 The strong foliations are not jointly integrable.

In the case that the strong foliation are not jointly integrable we get the following
proposition (the proof is given in subsection 7.3):

Proposition 7.3 Let H, be a topologically hyperbolic attracting homoclinic class
such that T # 0 and the strong foliations are not jointly integrable. Then, there
are a pair of points x,y in the homoclinic class and a pair of periodic points pg, py
also in the homoclinic class such that

1.y e W (z) \ {=}],
2. € W¥%(p,) and
3. y € W*(py).
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We do not know if the hypothesis of proposition 7.3 imply that there are
two periodic points in the hypothesis of proposition 7.2. However, if the thesis
of proposition 7.3 it is possible to get a diffeomorphisms g C*—close to f, that
verifies the hypothesis of proposition 7.2 for a perturbation

of the initial map. This is the purpose of the following proposition. Observe
that the perturbation is C* for any k < co. It remains the question if the previous
proposition is true assuming that the strong foliations are jointly integrable.

To conclude the proof of theorem 4.4 in the present situation we get the next
proposition (the proof is given in subsection 7.4):

Proposition 7.4 Let f € Difff"(M3). Let H, be a non-hyperbolic topologi-
cally hyperbolic attracting homoclinic class verifying the thesis of proposition 7.35.
Then, for any 6 > 0 there exists a diffeomorphisms g arbitrarily C*—close to f
and periodic points qs,q1,q2 of g verifying the hypothesis of proposition 7.2.

Observe that in the two previous proposition was not assumed that the interior
of T is empty. Moreover, it is not difficult to show also that the proposition can
be generalized to higher dimension assuming that the center direction is one
dimensional.

This finished the proof of theorem 4.4 in the case that the strong foliations
are not jointly integrable.

7.2 The strong foliations are jointly integrable.

Now we have to address the case that the strong foliations are jointly integrable.
It is not clear if under the hypothesis of joint integrability it is possible to get two
points as in the proposition 7.3. Moreover, we do not know if in the present case
it could occur that 7 N Per(f) = 0. If it was the case, the present case would be
treated similarly as the the case that the interior of 7 is not empty.

However, it is possible to perform a C!—perturbation to get two periodic
points as in the proposition 7.2. To perform such perturbation, it is necessary the
following theorem that state if the interior of 7 is empty, then there is a subset
A containing a pair of points z,y such that y € W2¥(z) and Ej is uniformly
expansive on A. Observe that in this theorem it is not assumed that the strong
foliations are jointly integrable (the proof is given in section 8).

Theorem 7.1 Let H, be a topologically hyperbolic attracting homoclinic class
such that T # O and the interior of T is empty. Then, there is a compact
transitive invariant subset A such that

1. there is a pair of points x,y € A such thaty € W2*(z),
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2. Ej3 is uniformly expansive in A.

Corollary 7.1 For any g C'—close to f and any compact set A, close to A
follows that the direction E3(g) is uniformly hyperbolic.

Observe that in section 6 was proved that if 7 = 0 (i.e.: for any z € H,
follows that [W2*(x) \ {z}] N H, # 0) then H, is hyperbolic. In the context of
theorem 7.1 it is only assumed that the interior of 7 is empty. Even with this
weak hypothesis we can manage to guarantee that Fj5 is hyperbolic in same set
A which also has the property that 7, # 0, where

Ta={e e A: W)\ {e}]NA £ 0},

The previous theorem is necessary to control the perturbation done in the
next proposition (the proof is given in section 7.5).

Proposition 7.5 Let H, be a topologically hyperbolic attracting homoclinic class
such that the strong foliations are jointly integrable and the interior of T is empty.
Then, for any 6 > 0 there exists a diffeomorphisms g arbitrarily C'—close to f
and periodic points qs,q1,q2 of g verifying the hypothesis of proposition 7.2.

We want to remark, that the previous proposition is also true if it is not
assumed that the interior of 7 is empty but assuming that there is a compact
invariant subset A with T3 # 0 and verifying that F3 is uniformly expansive in A.
Actually, it is used that the interior of 7 is empty to use the theorem 7.1 which
it guarantees the existence of a set A with the above property mentioned.

Again we conclude the theorem 4.4 when the strong foliation are jointly inte-
grable.

7.3 Proof of proposition 7.3.

To prove the proposition, it is equivalent to show that they are a pair of periodic
points py, ps such that their local unstable manifold s-intersect each other.

Definition 15 We say that II°*(W*(z)) intersect transversally W*(y) if
1% (Wx(x)) intersect both components of W (y) \ W*(y).

To prove the proposition 7.3, basically it is done the following: If there is a
pair of points z,y such that y € W2*(x) and the intersection of their unstable
manifolds is s-transversal, then it follows from the continuity of the local unstable
manifolds that there are two local unstable manifold of two periodic points with
the property that they s-intersect each other (see item 1 in the following). If the
intersection is not transversal, it can be introduced the notion of boundary point
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(see item 2). Using the fact that the interior of 7 is empty the it is shown the
existence of these boundary points (see lemma 7.3.1). Related to this notion it
is proved that either the boundary point are contained in the unstable manifold
of some periodic points or again we can find two periodic points such that their
local unstable manifolds intersect each other (see item 2.1). Assuming that the
boundary points belong to the unstable manifold of some periodic points, it is
repeated a similar argument as the one done when W¥(z) s-intersect transversally
W(y) to show that they are two periodic points such that their local unstable
manifolds s-intersect each other (see item 2.2. for this last part).

1. There exists x,y such that II°*(W(z)) intersect transversally W*(y).

Observe that the unstable manifold of the periodic points accumulate over
W (z) and W(y) and since W*(x) and W (y) s-intersects transversally, follows
that there are two periodic points such that their unstable manifold s-intersect
transversally. In fact, let us consider the map II*° defined from a neighborhood of
z to the center-unstable manifold of z. Let us a take a periodic point p, close to
z and a periodic point p, close to y. So, the local unstable manifold of p, and p,
are closed to the local unstable manifold of x and y respectively. So, follows that
I1**(W*(p,)) and II**(W*(p,)) are closed to W*(z) and II**(W*(y)) respectively
and therefore, IT**(W*(p,)) and II**(W*(p,)) intersects transversally (see figure
6).

W)

wie [ VR

Figure 6

2. Vz,y € Hy, I**(W¥(z)) does not intersect transversally W*(y).

Now, let us assume that for any pair of points x,y in the homoclinic class
such that y € W?*(z) then II°**(W*(z)) and W*(y) do not intersect transversally.
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Observe that in the present situation, given z,y € H, with y € W**(z) if we
take

I1°° : B(z) —» W(x)

follows that II3*(W*(y)) is contained in the closure of one of the connected com-
ponents of W (z) \ WX (z).

Observe that given a point in the homoclinic class, the local strong stable
manifold of it, splits the local stable manifold in two disjoint sets; i.e.. W2(z) \
W2*(z) has two disjoint connected components. Using this, we introduce the
following definition:

Definition 16 Stable boundary point: We say that a point z is a stable
boundary point, if there are point of the homoclinic class contained in the local

stable manifold of x and accumulating on x from only one connected component
of We(z) \ W ().

Now we prove that under the assumption of nonintegrability of the strong
foliation and that there are not transversal intersection then there are stable
boundary points.

Lemma 7.3.1 If for any pair of points z,y € H, such that y € W2*(x) follows
that II**(W(x)) does not intersect transversally W (y) and the strong foliations
are not jointly integrable, then there exist stable boundary points.

Proof: Let us assume that there are not stable boundary points. If there are
not stable boundary points we have two situations to consider: either for every
z € H, follows that [W¢(z) \W2*(z)|NH, = 0 or for every x € H,, the homoclinic
class intersect both components of W2 (z) \ W2*(z).

In the first case, follows that the the strong foliations are jointly integrable.
In fact, recall that there are not isolated point in the homoclinic class. So, given
x, and a point z’ close to z and contained in the stable manifold of x, follows that
it is contained in the strong stable manifold of . Now we take the local unstable
manifold of x and the local unstable manifold of z’. It follows that for any z” in
the local unstable manifold of z holds that the strong stable manifold of z” has
to intersect the local unstable manifold of z’: if it is not the case, it would follows
that the local unstable manifold of =’ would intersect the stable manifold of z”
out of the strong stable manifold of z”, which is a contradiction.

To finish the proof, it is enough to show that if for every z € H),, the homo-
clinic class intersect both components of W?#(x) \ W**(z) and the strong foliation
are not jointly integrable then we can find a pair of points such that their local
unstable manifold s-intersect transversally. Which is a contradiction with the
hypothesis of the lemma.
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To prove that, let us consider a pair of point x and y such that they belong
to the same strong stable manifold. Moreover, since that we are assuming that
the strong foliations are not jointly integrable, we can suppose that II*5(W*(z))
does not coincide with W*(y). Then II**(W(z)) is contained in the closure of
one of the connected component of W (y) \ W*(y) and there is a point z’ in
I1*¢(W(x)) which is properly contained in We*(y) \ W¥(y). This is equivalent
to say that, there is a point y' € W¥(y) such that is properly contained in
Wer(y) \ I (W(x)); ie. dist(y,11**(W*(x))) > ro > 0. Since y is not a
boundary points, we can take a point z close to y contained in W?(y) \ W*(y)
such that I1°*(2) is contained in the same connected component of W (y)\ W (y)
that contains z’. Moreover, follows that II**(z) is contained in the connected
component of W (y) \ II**(W*(z)) that does not contain y’. Therefore, since
there are not transversal intersections, follows that II**(WW*(z)) is contained in
the closure of the connected component of We*(y) \ II**(W*(z)) that does not
contain y' and so dist(y’,II**(W¥(z))) > ro > 0. However, if z is close enough
to y follows that II**(W*(2)) is close to W¥(y) and in particular II**(W(2)) is
arbitrarily close to 3’ which is a contradiction.

n
Now, we have consider two cases: either there is a boundary point which is not
contained in the unstable manifold of any periodic point or any boundary points
is contained in the unstable manifold of some periodic point.

2.1 There is a boundary point which is not contained in the unstable manifold of
any periodic point.

Let z be a boundary point not contained in the unstable manifold of any periodic
point. Let us take the sequence {f "(x)},>0 and take ni, ny, n3 arbitrarily large
such that the points f " (z), f ™ (), f "3(z) are close enough one to each other.
Observe that f"(z) ¢ W*(f ™ (z)) for i # j i,j = 1,2,3. If it is not the case,
follows that f~™(x) is contained in the local unstable manifold of a periodic
point.

Lemma 7.3.2 The local unstable manifold of at least two of the three points
™ (z), f™(x), f"3(z) s-intersects each other.

Proof:

Assume now that the local unstable manifold of the three points do not s-
intersect each other. In this case, follows that there is one of the three points,
for instance f "?(z) such that the unstable manifold of f "' (z) and f "3(z)
intersects the stable manifold of f~"2(z) on opposite connected components of

We (™ (2)) \ Wz (f7(z)) of it.
Now, taking

Zny = WE(fT (@) NWE(FT(2)) 20, = WE(FT(2)) N W2(FT™ ()
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follows that they are in different components of W2(f~"2(z)) \ W5 (f~"2(z)).
Then, using that ni, no, n3 are arbitrarily large and for each point there is defined
a local stable manifold of uniform size, follows that f"*(z,,) — « and f"*(2},) —
x as ny — 400 accumulating on z from different components of W?(z) \ W2*(z),
which is a contradiction since we are assuming that x is a boundary point.

]
Let us suppose without lose of generality that the local unstable manifold of
f~™ (=) s-intersects the local unstable manifold of f~"2(x), with n; and n, arbi-
trarily large. We prove that in this case the proposition 7.3 follows.

We consider the following two obvious cases:
i— W™ (@) nWe(f () =0 or
iw— W(f () NWE(f () # 0.

In the first situation, observe that the unstable manifold of f~"2(z) intersect the
stable manifold of f ™ (z) on one component of W2(f " (z)) \ W2 (f ™ (x)).

We claim that the point f~"(z) is accumulated by points of the homoclinic
class only in the same component of W?*(f~"(z)) \ W2*(f~(z)) where the un-
stable manifold of f~"2(z) intersects W2 (f~™(z)). In fact, if this is not the case,
using that n; and ns are arbitrary large follows that x is not a boundary point;
i.e.: if there are points z € H, close to f ™ (z) in the opposite component of
We(f ™ (@) \Wes(f " (x)) that contains zn, = W (f ™ (z)) NWe(f ™ () fol-
lows that z is accumulated by f™(z) and by f™(z,,) from different connected
components of W2(z) \ W2*(z), which is an absurd since we are assuming that z
is a boundary point.
As a consequences of this, we can take any periodic point g such that its un-
stable manifold intersect the stable manifold of f~"(z) in the same connected
component where the unstable manifold of f~"2(z) intersect the stable manifold
of f~™(z) and such that the distance from W¥*(q) N W(f~"(z)) to f~™ (=) is
smaller than the distance

from W (f7"2(z)) N W2(f™ (z)) to f7™ (2),
Since there are not transversal intersection, follows that W*(q) s-intersects
W(f~™(z)) at least in the points contained in W*(f " (z)) N W*(f " (z)).
In fact, taking

I B(f ™ (2) > W™ (2))

follows that T1**(W*(q)) and II**(W*(f "2(z))) are in the same component of
We(f (@) \ We(f ™ (z)).

Since there are not transversal intersection and IT**(W*(q) "W?2(f ™ (z))) is con-
tained in the region bounded by IT**(W*(f~™*(x))) and W*(f~™(x)) follows that
I1°5(W*(q)) intersects the points contained in II**(W*(f~"2(z))) N W*(f~"(z)).
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Taking another periodic points ¢’ in the same way that we have chosen ¢, also
follows that IT5¢(W*(q")) intersects the points contained in II*(W*(f~"2(z))) N
W(f~™(z)). Therefore we conclude that there are two periodic points such
that their local unstable manifold intersects (see figure 7) and the proof of the
proposition is finished in this case..

f"2(x)

W (g0 )

M¥w (260 ))

")

4
nwl @) 1w @)

w0 )

Figure 7

In the second case (W2*(f~™ (z)) NW2(f"2(x)) # 0), again we have to consider
two situations:

iid— WA (2)) N WE(FT™ () = W2 (™ (2))
it — WX(f™(z)) Ns WA(f~™(z)) is properly contained in W*(f~"(z))

We show that in the case 4.7 the thesis of the proposition holds and latter it
is proved that the case .47 can not occur.
Observe that the first situation can hold even we are assuming that the strong
foliation are not jointly integrable. In the first case, we can assume without
lose of generality, that ny < n; and ny — ns is arbitrarily large. We take an arc [
containing f~™ (x) and such that [ C W*(f~™ (z))NsW*(f~"2(z)). Then we take
f*(l) where k = ny — ny and observe that f*(I) C W*(f ™(x)) and II**(f*(l))
contains | (where II** projects over W (f ™ (x))). So, there is a periodic point
g such that W*(q) contains II**(W*(f~"2(z))) and II**(W*(f~"1(z))) (where the
projection is done over the center unstable manifold of ¢).
We can also assume that for another pair of integer ny < nj, < n) the situation
that we are considering also holds;

ie: Wr(f™(x)) N, W2(f"2(z)) = W(f ™ (z)). Repeating the argument,
follows that there is another periodic point ¢’ such that the strong stable manifold
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of W¥(f™™2(x)) intersect the local unstable manifold of ¢’ and so its unstable
manifold s-intersect the strong stable manifold of f"2~"2(f~"2(zx)) = f"2(x) and
this implies that the unstable manifold of ¢’ s-intersect the unstable manifold of
q- Therefore, the thesis of the proposition holds.

Now we show that the second situation can not occur. First observe that changing
f™(z) with f~"2(z) also follows that

W (™ (@) N WE(F ™ () # 0

In fact if it is not the case, we can repeat the arguments done in case 7. If
f™(xz) € W2(f~™2(x)) follows that z is periodic and we are assuming that it is
not the case.

So Wpe(f2(z)) Ns WA(f~™(z)) and W25(f"2(z)) Ns W2X(f ™ (z)) are different
points.

Let us take IT** : B(f~™(x)) — W(f~ (x)) Let us take IT**(W*(f~"2(x)))
and W*(f ™ (x)) and points z; € W*(f ™ (x)), zo € W2(f "(z)) such that
1%°(22) ¢ W ™ (), 21 § T (WE(F ™ (2))).

Let us take the connected component of We(f~(z)) \ W*(f~™(z)) and we
named L}L_nl (@) the one that contains I1**(z;). Let us take the connected com-

ponent of We*(f~"(z)) \ II**(W(f~"*(z))) and we named L, f-n2(y) the one that

contains zq; with LJr we named the other component. Related to this com-

fm2(z)
ponents, observe that LJZ 2(m) C L i) and L;,nl( ) C L’
Let go be a periodic point close to zy; observe that HSS(W“(qg)) is contained in
the closure of LT fna(g 10 fact, if it is not the case, since I1°5(W(go)) is close to
s (We(f™(z ))) follows that T1°*(W*(q)) intersect transversally W*(f~™(z))
which is an absurd. Now, if it happens that f~"(z) € II*¥(W¥(q2)) we take
another periodic point ¢ and we do the same analysis; if it happens again that
f™(z) € I*(W*(q,)) we are in the case that we have two periodic points
such that their local unstable manifold s-intersect each other and the proof is
finished. In the case that f~"(x) ¢ II%(W¥(gs)), this implies that II5°(W(gs))
intersect LT(f"(z)) N W(f ™ (x)). Let ¢; be a periodic point close to z;
observe that I1**(W¥(q,)) is contained in the closure of Ly in fact, if it is
not the case, since I1**(W¥(q,)) is close to W*(f~™(x)) follows that II**(WW*(q))
intersect transversally IT1°*(W*(f~™(z))) which is an absurd. Now, if it happens
that f~"(z) € II**(W¥(q1)) we take another periodic point ¢ and we do the
same analysis; if it happens again that f~"1(z) € II**(WX(q})) we are in the
case that we have two periodic points such that their local unstable manifold
s-intersect each other, and again the proof is finished. In the case that f"!(z) ¢
I1%¢(W*(q1)), this implies that II**(W*(gs)) intersect L~ (f~"(z))NWZ(f~™(z)).
Therefore f~™(z) is accumulated by points on both connected components of

"2(z)"
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Ws(f~™(x)) \ W(f~"(z)), which is an absurd because we are assuming that
they are not transversal intersections (see figure 8).

n*(Wg(aq) >
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Figure 8

Now, we have to consider the case that the boundary points are contained in the
unstable manifolds of periodic points

2.2. The boundary points are contained in the unstable manifolds of some periodic
points.

In this case, we can prove the following the lemma:

Lemma 7.3.3 Let us assume that there are not transversal intersection and the
stable boundary points are contained in the unstable manifold of some periodic
points. Then, there exists a pair of points x,y such that y € W (x) and such
that x and y are boundary points.

Proof:

Let us assume that the lemma is false. Then we can take x,y such that
y € W2*(z). and for instances y is not a boundary point. Moreover, if the
unstable foliations are not jointly integrable, we can assume that IT**(W*(y))
intersect the interior of one of the connected components of We*(y) \ W¥(y).
Let us take a periodic point ¢ close to y such that II°*(g) is in the connected
component of W*(y) \ W*(y) that its closure contains II**(WW*(z)). Then, since
[1°*(W¥(q)) is close to W¥(y), II**(W(q)) is in the connected component of
We(y) \ W(y) that its closure contains II**(W*(z)). Since II**(W*(z)) and
W(y) do not coincide, follows that II**(W*(q)) intersects W*(z) transversally
(see figure 9). Which is an absurd because we are assuming that they are not
transversal intersection.
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This finish the proof of proposition 7.3.

nsy( £ (x))
NS (w g (a)
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NSy =y |
we ()
&~ )
M5 0weg(4))
Figure 9

7.4 Proof of proposition 7.4:

To prove the proposition, we introduce a one parameter family of diffeomorphisms
(see lemma 7.4.2). Before to do that, we need to chhose some constants, some
neighborhood of the initial map f and some definitions. We list these selestions:
1. Let us take § > 0 and let g5 be a periodic point with g—weak contraction
along the center direction. We consider an arbitrarily small open neighborhood
U =U(S) C Dif ft{(M?) of f such that for any g € U follows that the periodi
points p, and p, has analytic continuation and g5 remains %—weak contractive
and homoclinically related to p,.

2. Let 1y be a positive number arbitrarily small such that if |g — f|x < 7o then
geu.

3. Let us take the point x and related to it we take a pair of neighborhood
B, (), By (f(z)) of size ng around z and f~'(z) respectively.

4. Given a point z we take a rectangle inside W£%(z) of size 7y defined as

Ry (2) = Ugyewe (21} Wio ()

and observe that W2*(2) N B,,(2) C Ry, (2).

Now, let us take the rectangles R,,(z) and R,,(f~'(z)) of size ng around z and
f~(z) respectively inside the local center-unstable manifold that contains z and
f~(z) respectively. The same is done for n < 19. Now, let us take the point y

o7



such that y € W2*(z) and let us take a rectangle R, (y) of size 7y around y inside
the local center-unstable manifold that contains y.

5. Let us consider the projection II°** induces by of the strong stable manifold
from R, (z) to R,,(y). Recall the following folklore lemma (see [HPS])

Lemma 7.4.1 The strong stable foliation W*(x) = ¢ (x)I. is C"—Holder (r <
1) respect to = for some r > 0. Moreover, if g is C¥—close enough to f and U
is an small neighborhood of H, follows that ¢3°(x) is C"— Holder respect to x in

Ag - m{n>0}gn(U')
Now, for each g € U we take

e Wet(a) = Wer(y)

Using that the strong stable foliation is C"—Holder, taking v = 1/r follows
that for every g € U holds

Rno(k+1)7 (y) C H;s(Rn0k+1 (37))

where R, +1)(y) is a rectangle of size no* 17 around y.
6. Let us also consider the rectangle

R,,’02(k+1)'y (y)
of size 1o2**T1)7 around y (see figure 10) and we take
ly = :2(k+1)7 (y) = Weu(y) N Rnoz(k+1)’7 (y)
7.

Remark 7.1 From the fact that H, is topologically hyperbolic, follows that there
exists L > 0 such that for any z, 2’ € H,

Wi(z) nWE(Z) # 0
where with W3(z) we denote f~L(W2(2)).

Now, let us take Ny = N(79) such that

fNO(W,%w(kH) (y)) " Wi(py) # 0, and

fk(W,;%v(kH) 1) N Wilpy) =0 0< k< No

(From the previous remark, observe that
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e(fNO (Wnu2(k+1)v (y) <e
7. Let us consider the discs bl, vy Dpn given by
D; = [N (Wi (py)) N Ryo(f ()
For each D; let z; be a point in D;. Let us take a disc
D; = We(z).

8. We also consider the rectangle R, x+:1(f~'(z)) of size no*™ around f!(z),
and we take

L=We(f (@) N Ry (f ()

In the next lemma it is introduced a one parameter family of diffeomorphisms
F = {9y }nel=nome) of C¥ perturbation of f. This family is used to prove the
proposition 7.4.

Lemma 7.4.2 There exists a one parameter family F = {gy}ne[—nomo] Such that
for g = g, € F the following properties hold (see figure 10):

1. |g — flx <n where |.|y is the C*—norm,

2o 9iBag(r 1@ = J

3. g(1) C R,,(z) and g(I) moves continuously with g,
4. for any g € F follows that g(D;) C f(D;),

5. the arc gn(l) and g_n (1) are on opposite side of the rectangle R, e+ (x) \
W(z); moreover, dist(gy,(1),1) > 0 and dist(g_n,(1),1) > 0.

Proof:
We take a rectangle R in R® given by

R = {(j7ga2) : |j"| < 7707|g| < 7707|5| < nﬂa}

We take a map
C:Ry,(x) >R

such that
1. C(W(z) N Ryy(z)) = {z =0,y = 0}

2. for any discs D; holds that H(D; N R,,(z)) is a plane parallel to z = 0.
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Now we take a map
AO :R—>R

and 75 smaller than 7y such that
L [Aolk <mg
2. Bojpyst b = o

3. Doj-nomle =0
For each n with —ny < n < ny we take the map

Tﬂ(zvgv 2) = (‘i’vg + nAO(j:)a 2)

Now we take n* smaller than 7y such that for each n follows that

[C™ 0T,y 0 Cli <m0

Now we take
gp=H 'oT,0oHof

It is not difficult to verify that the family F = {g,},e[_nomo) Verifies the thesis of
the lemma.

]
Remark 7.2 From the construction of the family F follows that
I (9o (1)) and IIg% (g, (1))

are in the opposite sides of R, w+~(y) \ W2(y). Moreover, there is a positive
constant sq such that

d’iSt(H;f,o (gm0 (1)), W,;‘Oz<k+1>7 (¥)) > s0>0

dist(TL? (9o (1)) Wit aesyy (¥)) > s0 > 0
See figure 10.
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Figure 10

Related to the parameter family F, we prove the following lemma that implies
proposition 7.4.

Lemma 7.4.3 For any positive s smaller than sy, there is a periodic point g5 of
f, such that for any g € F follows that:

1. there exists the analytic continuation q, of gy,

2. dist(ly,q4) < s where l, = W:zw(kﬂ) (y),
0
3. qq 15 homoclinically related to p,,

Before to give the proof we show how the previous lemma implies the propo-
sition 7.4.

Lemma 7.4.3 implies proposition 7.4.

First observe that for any g € F follows that p, and p, remains periodic,
l, C W*(p,) and g(I) C W*(p,). The last two facts follows because f~"(z) ¢
Ry (f~'(z)) and f~(y) ¢ R, (f'(z)) for any n > 1. In particular, f~"(l) ¢
Ry (f~'(z)) and f(l,) ¢ R, (f '(z))for any n > 0. Then, for any g € F
follows that g coincides with f along the backward orbit of [ and [,,.

Then, take s < 792*t1)7 and s smaller by the constant sq given by remark 7.2.
By lemma 7.4.3 follows that there is a periodic point g; such that for any g € F
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the analytic continuation g, verifies that dist(l,,q,) < s and if s is sufficientely
small also holds that

dist(l,, W?*(g;) N W (y)) < so.

Now, for each g € F consider l;, = II3°(ly) where I, = g(I). Observe that

g — l; and g — g, move continuously and recall that igng and ig—no are in the
extremal opposite components of R, w+1)y(y) \ W(y). So, by continuity follows
that there is ¢ € F such that W*(p,) N W2*(q,) # 0. From the election of ng
follows that gs remains periodic for any g € F and homoclinically connected with
Dy; S0, it is homoclinically connected with g,. And this conclude the proof of the
proposition 7.4.
[ |
Now we proceed to prove the previous lemma.

Proof of lemma 7.4.3.

The proof is done performing a geometrical construction: it is taken a small
cylinder T' containing the point y such that there is a positive integer M and for
any g € F follows that

1. ¢M(T) intersects T and g™ (T) \ T has two connected components;
2. ¢(T) remains close to f{(T) for 0 < i < M;

3. T is expanded along the direction E3 and it is contracted along the direction
E, @ Es.

This implies that for any g € F there is a unique periodic point g, with period
M which is the analytic continuation of the unique periodic point of f of period
M contained in fM(T)NT.

To perform the pevious sketched construction we start with an easy claim.

Claim 2 It follows that either x ¢ W*(p,) ory ¢ W*(p).

If not, since y € W2*(z) and W2*(x) C W(x) follows that W*(p,) intersect
W*(p,); which is absurd because p, and p, are different points.

As a consequences of the previous claim, we get that taking 7, small enough
then

Wr(py) N By, (fil(x)) =0,

Moreover, there is a connected arc I(p,) contained in W*(p,) and containing p,
and y, such that

Upy) N Byo(f () = 0
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So there is a neighborhoods V*(p,) of W} (p,), V*(py) of {(p,) such that
V*(py) N By (f () = 0, and V*(py) N By, (f () =0

Let us take the integer Ng = N(79) chosen before such that it is the first
positive integer verifying that f™° (W %), (y)) N W (p,) and let

20 € Wiy, (y) such that ™ (20) € Wi(py)

Let us take g € F and let us consider the orbit of zy by f and g up to the iterate
Ny. We need to compute the distance between f¥(zq) and g*(z) for k < Np.
Observe that it could happen that Ny — oo as 79 — 0 and so the number of
iterates 0 < i < Np such that f*(29) € R,,(f~'()) could also growth as 7o — 0
and so it could happen that g™¥o(z) is far away from f~°(z). In the next lemma
we show that this is not the case.

Lemma 7.4.4 There is 79 smaller than € such that for ny small, and for any
g € F follows that

dist(g'(20), f*(20)) < 0<1i < No
,From this lemma follows the next obvious corollary

Corollary 7.2 There exists a connected arc ly contained in W;}g(kﬂh (y) such that
20 € ly and for any g € F holds that dist(g*(lo), f*(lo)) < Yo for 0 <i < Ny

Before to give the proof of the previous lemma, let us continue proving lemma
7.4.3.

Let us take the connected arc [y given by the previous corollary and let d > 0
be a positive number smaller than s where s is the positive constant in the
hypothesis of the lemma 7.4.3. Let us take Ty a cylinder of size d containing [,
ie.

Ty = Ugzerpy Ba(2)

The cylinder mentioned in the beginning of the present proof it is a cylinder
contained in Tjy.
Observe that

L fN(Ta) N Wi(py) # 0
2. fNo(Ty) \ Wi(p,) splits fNo(T,) in two connected components.
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As a consequences of lemma 7.4.3 and if d is small enough, follows that for
any z € Ty and for any g € F holds that

dist(f*°(2), 9™ (2)) <
Therefore for any g € F follows that

L. g (Ta) N Wi(py) # 0

2. g™ (Ty) \ W;(p,) has two connected components.
Now observe that there exists kg such that for any k > kg follows that

1. Wi(f *(y)) is contained in V*(p,) and
2. for any g € F follows that ¢?(W3(f*(y))) € V*(p,) UV¥(p,) for 0 < j < k.

Claim 3 There ezists Ny such that for any N > N, there exists a cylinder T* =
TY(N) such that for any g € F

1. gNo(Ty) \ T splits g™°(Ty) in two connected components,

2. for k > ko, gV (T") NWE(f*(y)) # 0 and g"(T") \ Wi(f*(y)) has two
connected components,

3. ¢4 (T") C V*(p,) UV¥(py) for any 0 <i < N,
4. gN(TY) \ Ty has two connected components.

In fact, taking INV; large enough follows that if N > N; then W2(f N (y)) N
gNo(Ty) # 0 for any g € F. Then, taking an small rectangle 7" containing a discs
contained W§(f~"(y)) follows that f¥(T") intersects W5(y) with € smaller than
4. Moreover, it follows that f~(T") is C"—close to a fixed arc contained in the
local unstable manifold of p, and containing y.

Now, let us take

Tu(g) = g~ (T"),

related to it, we get the following claim:

Claim 4 As a consequences of the election of Ty observe that for any g € F
follows that

1. Td(g) C Td,

2. Ty(g) splits gNotN(Ty(g)) in two connected components,
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3. for any z € gNotN(Ty(g)) follows that dist(z,1(p,)) < d/2. See figure 11.

Figure 11

To conclude the proof of lemma 7.4.3 it is enough to show that we can choose
N such that for any g € F there is a unique periodic point g, such that

1' qg € Td(g)a
2. the period of g, is Ny + N,

3. g4 is contractive along the direction E3 and it is homoclinically related with
Dz-

To get the periodic points g4, the goal is to show that we keep the expansion
along the unstable direction and contraction along the stable manifolds inside
Td(g). Therefore, from the properties stated in claim 4 about T} and gNo+V (Td),
we conclude the existence of a periodic point g, for g nearby y which is the
analytic continuation of ¢q. To precise, we formulate the following claim:

Claim 5 There is Ay < 1 such that for any g € F follows that for any z € Td(g)
1. dist(f*(ar), 9°(g)) <70 for 0 <i < No+ N,

No+N No+N
2. |Dghp el ol < AT,
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No+N —(No+N
3. |Dgl N > Ay,

In fact, if the previous assertion holds and from claim 4 follows that there is
a unique periodic point contained in g™+ (Ty)(g) of period Ny + N.

To prove claim 4 observe that the first item is immediate by the construction.
The contraction stated in the second item is obtained, because for any z € Ty
follows that any expansion along the center direction that could appear along
the piece of orbit {¢*(z)}o<i<n,} is compensated with contraction in the piece
of orbit {g*(2)}{no<i<No+n}- The expansion stated in the third item follows with
similar argument.

This finish the proof of proposition 7.4 and now we proceed to prove lemma
7.4.4.

Proof of lemma 7.4.4.

First, observe that f is expansive in the neighborhood U that contains H,; i.e.:
there exists r > 0 such that if dist(f™(z), f*(y)) < r for any integer n then z = y.
This follows immediately from the fact that H, is topologically hyperbolic. It was
proved in [Fa] that for expansive homeomorphisms, it is possible to obtain an
hyperbolic adapted metric, not necessarily coherent with a riemannian structure.

Lemma 7.4.5 ([Fa])

Given a expansive homeomorphisms f in a metric compact invariant set, there
ezxists an adapted metric dist compatible with the topology, and there exist con-
stants r > 0 and 0 < X\ < 1 such that if

dist(f"(x), f"(y)) <r then dist(f"(x), f"(y)) < A"dist(z,y).

In the case that we are dealing, a topologically hyperbolic attracting homo-
clinic class, follows from lemma 7.4.5 the next corolary

Corollary 7.3 Let us consider dist, A and r, the distance and constant given by
lemma 7.4.5. Then, for any xz € H, follows that if y € W& (x) then

dist(f™(z), f"(y)) < \'dist(x,y).

Let us consider the distance given by lemma 7.4.5 and let us take ry smaller
than r and sufficiently small such that if

dist(z, f(z)) < ro then dist(f(2), f~*(z)) > 2ro

In particular, if dist(z, f~!(z)) < r and dist(f"(2), f~}(z)) < r then n > 2.
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Let us 19 and 7 smaller than r, and A be the constant given by lemma 7.4.5.
Let us take 79 small such that

Ao + ’flgH) <%

Let us take now the sequences of positive integer k; such that

Wis (f*(20)) N Ryo (f ' (2)) # 0
Observe that if f7(W5(2)) N Ry, (f'(z)) = @ for any 0 < j < n then for any
g € F and 2’ € W2(2) holds that

dist(g’ (2'), f(2)) = dist(f*(2), 7 (2)) < Ny
To conclude the lemma, first we prove that
dist(f*(z0), g% (20)) < 70 and g*(20) € Wig(fk’(zo))

We prove it by induction: first observe that it is true for ky; in fact, g7 (29) = f?(20)
for 7 < ky. Now, let us assume that it is true for k;. ;From the fact that

W (f*(20)) € D,
for some j; and from the construction of the family F follows that
dist(f**"(20), 9" (20)) <0 +mp " and g"F (20) € Wi, (f*(20))
Since W52 (f**'(20)) N Ry (f ' (2)) = O follows that
Iiws, (1 (0)) = Siwigs, (7441 (z0))
Then,

dist(f(f*(20)), 9(g" " (20))) = dist(f(f*(20)), F(9" " (20))) <
< Adist(f*(20)), 4 (20)) < A0 +16") < 70
Therefore
9" (20) € W(£*7(20))
Since ki1 —k; > 2 and WS (f* (20)) N Ry, (f ' (2)) = 0 for 0 < j < mipq —ny,
follows that
dist(f*+ (2), g%+ (20)) < Y0
Now, we can show that for any j follows that

dist(f’(20), 9’ (20)) < 270
From the fact that dist(f*i(29),¢"(20)) < 7 and arguing as before, follows
that for j < kiq — ki then dist(f*7(z), %% (2)) < My + n6t) < 2
[
So, we have concluded the proof of Proposition 4.4 and we are finished with
the case B.2.2. when the strong foliations are not jointly integrable.
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7.5 Proof of proposition 7.5 (joint integrable case):

Let us take the points z,y € H, such that y € W2*(z). If z and y are stable
boundary point (recall the definition given in last section) follows that = and y
belongs to the unstable manifold of some periodic points and in this case the
proposition is again proved (see subsection 7.5.2).

In this case we perform a suitable perturbation taking in account the geometry
that follows from the joint integrability.

Observe that it could happen that the homoclinic class H, could be destroyed
by the perturbation. Moreover, it could occur that the set Ay(U) = Ngp>039™(U)
is not topologically hyperbolic. In fact, it is not clear that the center direction
remains a stable direction and that the unstable foliation remains unstable for
the perturbed map.

Observe also that it could happen that the orbits of the points z and y do
not remain in the neighborhood U. Even if it is the case, it could happen that
the backward orbit of z and the backward orbit of y could intersect the domain
of perturbation (this is not the situation for the perturbation introduced when it
was considered the non-integrable case). So their local unstable manifolds do not
necessary remains the same after the perturbation.

To overcome this difficulty, first it is proved that the points x and y has a well
defined “continuation” (their existences is proved in lemma 7.6). If for some g
close to f holds that the “continuation” of the points  and y do not belong to
the same strong stable leaf, then considering an isotopy between the initial map
and the perturbation, follows that for some map of the isotopy holds that there
are two periodic points as in the thesis of proposition 7.2. If it occurs that for
any g close to f holds that the “continuation” of the points x and y have the
property that they belong to the same strong stable leaf, then it is performed a
perturbation such that the local unstable manifold of the “continuation” of the
points x and y are not jointly integrable, and this allows to find two periodic
points as in the hypothesis of proposition 7.2.

In the next sub-subsection 7.5.1 it is shown that the set A; obtained from the
theorem 7.1 has some well controlled continuation for any perturbation. In the
last sub-subsection, it is concluded the proof of the proposition 7.5.

7.5.1 Continuation of the set A;.

To understand how the dynamic changes for the perturbed map, first we shows
that the points z and y has a well defined continuation. Before to do that, we
state a well known lemma about the continuation of a dominated splitting for
perturbation of an initial map.
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Lemma 7.5.1 Let f € Dif fr(M) (r < 1) and A be a compact invariant set of f
erhibiting a dominated splitting TaM = E®F. There exists an open neighborhood
U of f in Dif fr(M) and an open neighborhood U of A such that for each g € U
there exist two continuous function, Ty : Ag — Ty, M and ¢ : Ay x Dif f(M) —
Emb' (D, M) such that for any g € Uand x € A, 1t is defined the

dominated splitting E(g) ® F(g) and the center manifold WP (z,g) = ¢4(z) D,
and verifying

1' TwWﬁE(g)(xvg) = E(gax);
2. if gqWED(z,9)) € Be(g(x)) then g(WE (z,g)) € WP (g(2), g),
3. if g { (W9 () € Bd(g™\(z)) then g (WD (2, g)) € WD (g7 (z), 9).

4. the maps g €U — Ty and g € U — Emb' (D, M) are continuous.

Remark 7.3 If one of the previous direction is hyperbolic, then it remains hy-
perbolic
after a C"—perturbation of the system.

Let us take the set Ay given by theorem 7.1. We take two small compact
neighborhood Vi C V3 of Ay and we consider the set

As(V;) = Closure(Nipezy [ (Vi) 1 = 1,2

The neighborhood Vi, V5, are taken sufficiently small such that the direction
E3 remains hyperbolic over Ay(V;), i = 1,2. Observe that this set is a compact
invariant topologically hyperbolic set such that the closure of the periodic points
in Ay(V7) contains Ay; i.e.:

Ay C Closure{Per(fix,on))}

Moreover, the periodic points have a homoclinic intersections with orbits inside
V4. Using this, we can also prove that the closure of the periodic points with
good rate of contraction along the center direction and orbit in V5 contains Ay.
This is the statement of the next lemma.

Lemma 7.5.2 There exists an small neighborhood V of Ay and a positive con-

stant A < 1 such that the closure of the periodic points of f with orbit in V and
center eigenvalue smaller than . contains Af
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Proof: Let V; C V be two small neighborhood of Ay. Since Ay is topologically
hyperbolic transitive set, follows that the periodic points contained in Af(V;) are
dense in Ay. Since we are assuming that f is Kupka-Smale, then the periodic
points in Af(V;) are hyperbolic. Let us take a hyperbolic periodic point p, and
let A\l < 1 the center eigenvalue. Moreover, again from the fact that A is
topologically hyperbolic and transitive, follows that for any z € Ay there is 2’ €
W#(po) N W*(pg) arbitrarily close to z with the property that the orbit of 2’
is contained in V. Then we can take A, such that 0 < Al < A, < 1 such that
associated to the transversal intersection z’ of the stable and unstable manifold
of py it is possible to get a periodic point with center eigenvalue smaller than
Ac and orbit in V. To do that, it is only necessary to get a periodic point that
expends large part of the orbit close enough to the orbit of py. For more details
see the proof of lemma 4.2.1.
[ |
We take the set of periodic point

Pery (f/V) ={q € Per(f) : O(q) CV, [Ac(q)| < A}

i.e.: Pery (f/V) is formed by the periodic points in V' with center eigenvalue
smaller than \.. By the previous lemma we get that Ay C Closure(Pery. (f/V)).
For g C*— close to f we take the sets

Ay (Vi) = Closure(Ninezyg™ (V;)) 1 =1,2
(From lemma 7.5.1 follows that for any g there is a dominated splitting
E1(9) ® E2(g) ® Es(9)

such that Fy(g) and Es3(g) are contractive and expansive respectively in A4(V;),
i=1,2.

Proposition 7.6 There ezists a neighborhood U of f and a pair of neighborhood
V C V;y of A such that for any g € U follows that there is a continuous map

hg : Closure(Pery, (f/V)) = Ay(V2)

that conjugate g with f ; i.e.: hgo f = go hy,. Moreover the map g — hy is
continuous.

To prove the proposition, we prove that: orbits in Ay can be shadows by orbits
in A,

Observe that the set A, is not necessary expansive; in fact it could happen
that its center manifold is not necessary stable. However, it is possible to show
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the existence of the map. The proof, use strongly the fact that the direction Fj is
hyperbolic in the set Af. The map hy it is defined first on Pery (f/V) ,i.e.: it is
defined over the hyperbolic periodic points in a neighborhood of A that exhibits
a good rate of contraction along the center direction and latter extended to the
closure. The proof of the previous proposition follows from the lemma 7.5.3 that
allows to define the maps hy over periodic points. In what follows we denote

A (V1) with Ay

Lemma 7.5.3 Let Ay be the set previously defined. Then, for any A\, < 1 and
do > 0 there exists a neighborhood U = U(A., ) of f such that for every peri-
odic point q in Pery (f/V) and any g € U follows that there exists the analytic
continuation q, of q and dist(g'(gy), f'(q)) < do.

Now we proceed to state a proposition that states the existences of a semi-
conjugacy over H), for any g close to f.

Proposition 7.7 There exists a neighborhood U of f such that for any g € F
follows that there is a continuous map

A~

hg : Nin>0y9" (U) — Hy

that conjugate g with f ; i.e.: fzg og = fogy Moreover the map g — 719 is
continuous.

Proof:

Recall that f is expansive and by lemma 7.4.5 there exists an adapted metric
such that it is a hyperbolic metric for f. Using this, and the fact that we are
dealing with a homoclinic class which is topologically hyperbolic, the proof of the
shadowing lemma for hyperbolic sets with local product structure can be pushed
in the present case.

In other words, there exist & > 0 and § > 0 such that if {z;} is a f—pseudo
orbit (meaning that for all ¢ holds that |z;,1 — f(x;)| < B) then there is a unique
x such that |f"(z) — z,| < a. Then, observe that for g close to f and Uj a
small neighborhood of H,, follows that {g"(z)} is a f—pseudo orbit, then there
is unique z such that the orbit of z by f shadows the orbit of z by g. We can
define a map hy(z) from Nin>019"(U) (where U is an small neighborhood of H,,)
to H, as the unique point in H,, that shadows the orbit of z by g.

|

Observe that the map ﬁg is not necessary injective. In fact, it could happen
for instance that after the perturbation, a periodic point ¢ of f bifurcates either
along the center manifold or along the unstable one, in two periodic points with
orbits that remains close. In this case, the orbit of this two periodic points are
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shadowed by the orbit of ¢q. In the proposition 7.6 we state that restricted to the
set Ay, it is possible to define a continuous inverse to the map hy.

Now we are in condition to prove how lemma 7.5.3 and proposition 7.7 implies
the proposition 7.6.

Proof of proposition 7.6. Lemma 7.5.3 and proposition 7.7 implies
proposition 7.6:

Using the lemma 7.5.3 we define h, over the set Pery (f/Vi1) in the way that
giving ¢ € Pery (f/V4) it is taken hy(q) as the unique analytic continuation of g.
Using lemma 7.5.2, the map is extended to the closure. To check that the map
is continuous observe that

hy = ﬁ;1/|C’losure(P67’>\c(f/Vl))

Since h, is continuous and Closure(Pery,(f/Vi)) is compact, follows that h, is
continuous.
]

To prove lemma 7.5.3 we start with the following lemma which is a weak
version of a shadowing lemma. As we said above, it is possible to shadows pseudo-
orbits for f in a neighborhood of H,, with real orbits of f in H,. It could occur
that after

f is perturbed to get a new map g, the homoclinic class H, does not remain
expansive. However, if we restrict g to A, follows that g is partially hyperbolic in
A4 and some stable properties remains along the center direction. We show that
this properties allows to obtain the following shadowing lemma:

Lemma 7.5.4 For any 7o > 0 there exists a neighborhood U = U(~, f) of f,
there exist positive constants ag, By and ro such that for any g € U and a < ay,
there exists B < By such that if {z;} is a B—pseudo orbit and dist(z;, Ay) < 7o
then there is x € B, (A\,) such that

dist(g"(z), z,) < o+ Yo

Observe that if A, is hyperbolic, then 7y is zero. In the situation that we are
dealing, vy could be considered as the “error” performed by the shadow orbit due
to the fact that the direction Fs is not hyperbolic.

In the proof of the previous lemma, it becomes clear the assumption that E3
restricted to A is uniformly expansive. Before to give the proof we state another
lemma and a easy claims that allows to conclude the lemma 7.5.3. The next
lemma states that for g close to f, the set A, does not collapse.

Lemma 7.5.5 Let Ay be the set previously defined. Let us assume that fia ;)
is Kupka-Smale. Then, for every ro there exists a neighborhood U = U(f) of f,
such that for any g € U and x € Ay there exists ' € Ay such that dist(z,z') < 9.
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Proof:

Let us assume that lemma is false. Then there is a sequence of diffeomorphisms
gn, converging to f and points z,, € Ay such that dist(z,,A,,) > 0. Taking an
accumulation point z of x, follows that dist(z,Ay,) > % for n large. Recall that
the closure of periodic points in Af(V) contains Ay. Then, we take a periodic
point g close to x. Since we are assuming that they are hyperbolic, for g close
enough to f follows that ¢ has a continuation for g close to f and this continuation
is close to g and therefore close to z. Which is a contradiction if g is one of the
diffeomorphisms of the sequence

In-
|

Claim 6 Given 8o > 0 there exists 7o = 7(do) and U such that if g € U and
dist(z,y) < 7o then
1D fiBsa.1)]

<149
|D9|E2(y,g)

The claim follows from the fact that the subbundles moves continuously with g.
Now we are in condition to show the proof of lemma 7.5.3.

Proof of lemma 7.5.3. Lemmas 7.5.4, 7.5.5 and claim 6 imply lemma
7.5.3:

Let A. given by the lemma 7.5.2. Let us take dy and A; < 1 such that
Ae(14+3dp) < A1 < 1. Now we take the neighborhood U, and the constant 7y given
by claim 6. Now we take 7; < 7y and let us take the neighborhood /; and the
constants «yg, By, 7o given by lemma 7.5.4. Let us choose a < o such v; +a < 7q.
Then, let us take 8 = B(«) given by lemma 7.5.4. Now, taking [ as before, let
us consider the neighborhood U, given lemma 7.5.5.

Now we take U = Uy N UL N U,

Let ¢ € U and let ¢ be a periodic point of f in a neighborhood of A; with
central eigenvalue small than A.. Using the Pliss’s lemma, we can assume that
|Df|’jE2(q,,g)| < M* for all k£ > 0.

By lemma 7.5.4 follows that there exists ¢’ in a neighborhood of A, such that
dist(f*(q), ¢°(¢')) < m +a < 7 and so0 |Dgfy, | < AT for all k > 0.

We claim that

g'(q) e We(d, 9)
In fact, if "¢ (q') ¢ W (q', g) then We(¢', g)N[W*(9™(¢'),9)\{9™(¢') }] # 0. Let
z2=WZ(q,9)NWE(g™(q")). Since A, is partially hyperbolic follows that there is
a positive integer m such that dist(¢™(z),9™(9™(q'))) > €. Since dist(q',q) < 7o,
dist(g"(q'),q) < o and |Dg|kE2(q,’g)| < A\¥ follows that dist(g™(q'), g™(2)) < 27o-
So,
dist(g™(9"(¢)), f™(a)) > dist(g™ (9™ (d')), 9™ (2))—
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—dist(g™(2), g™ (d)) — dist(g™(¢'), f™(d') > € — 310

Taking ~ sufficiently small, we get a contradiction because also holds that
dist(g™ (9" (¢)), f™(q)) = dist(g™"(q")), " (q)) < Yo

Using that |Dgfy, o < At for all & > 0 and that g"«(¢') € We*(¢', g) follows
that g"«(We(q')) C We(q') and £(g™(We2(q'))) — 0. Therefore, there is a peri-
odic point of period smaller or equal to n, contained in We*(q’). Observe that this
periodic point also shadows the point g so without loosing of generality we can
assume that the periodic point is equal to ¢’. To check that the period is equal to
n, we argue by contradiction. If the period is n with n < n, let us take the point
f™(¢g) and observe that f"(q) is close to g (recall that ¢’ shadows ¢). Since the
period of g is n, with n, > n follows that W (g, f)N[WX(f™(q, ))\{f™(¢)}] # 0.
Arguing as before, replacing ¢’ by ¢ and ¢g"¢(¢') by f"(¢q) we get a contradiction.

]

Now we proceed to prove lemma 7.5.4
Proof of lemmas 7.5.4:

First, we have to study how the dynamic of a perturbed map behave related
to the distance introduce in lemma 7.4.5. Observe that the adapted metric not
necessary is coming from a riemannian metric so even the distance along the center
manifold are contracted exponentially this does not imply the the derivative is
contractive. In particular, we cannot expect that a perturbation of the initial map
contracts distances along the center manifold. However, some contraction is kept
when the points are not close enough one to each other. This is the statement of

the next lemma and we give the proof before continuing with the proof of lemma
7.5.4.

Lemma 7.5.6 Let dist, v and X the distances and the constants introduced in
lemma 7.4.5. Then, for any v < r there exist a neighborhood U of f and A\ with
A < A\ < 1 such that for any g €U if y € WE(x, g) follows that:

1. if dist(z,y) > v then dist(g(z), g(y)) < Midist(z,y);
2. ify € We(z,9) and dist(z,y) <~y then dist(g(z), g(y)) < 7.
Moreover, the distance dist remains hyperbolic along E1(g) and E3(g).

Proof:

The proof of this lemma follows from the fact that the tangent manifolds
associated to diffeomorphisms close to f are closed in the distance obtained in
lemma 7.4.5. In fact, for g C'—close to f follows that if y € W(z, g) then

dist(g(z),9(y)) < Mdist(z,y) + '
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where ' = 7'(|g — f|1) > 0 and is arbitrarily small if g is sufficiently close to f.
So, there exists v = «(r') with « small if 7’ is small such that if dist(z,y) > ~
follows that

Mist(z,y) +r' < Mdist(z,y)

for some \; verifying A+ 7' < A\; <1
]
Continuing with the proof of lemma 7.5.4, given v, small, we take v < ~q.
Then, given v we take U and A\; < 1 given by lemma 7.5.6. Let us note A; with
A
Now, given a smaller than € (e is the size of the Local stable manifolds), we
take 8 small such that:

L Xy+8)+6<v+0,

2. B+ BEZ N, < a where )\, is the rate of expansion along the unstable
direction over A, for any g close to f.

Given g € U and a (—pseudo orbit {z,}, first we construct by induction a
sequences {y,} such that

L. Yns1 € WE(9(Yn), 9) " WE (Tny1,9),

2. dist(yn+1, l'n+1) <7+

For n = 0 we take yo = 2 and we take y; € W*(g(xo),g9) N WE(z1,g). Since
dist(g(zg),x1) < [ follows that dist(g(xo),z1) < B < v + 0.
Assuming that we have chosen y,,, we take

Ynt1 € WE(g(Yn), 9) N WE(Tnt1,9)

We need to prove that dist(y,+1, Tni1) < Yo+05. Observe that if dist(y,,z,) >
~ then

dist(g(zn),9(yn)) < Adist(xn, yn) < A0 + 6)
Recalling that dist(g(z,), zni1) < B, and from the election of g follows that

dist(Yn+1, Tnt1) < Mo+ B) + 8 < v + 6.
In case that dist(yy,,z,) < 7 then

dist(g(zn), 9(¥n)) <7 <0

so, again follows that
dist(Yn11, Tni1) < Y0 + 5.
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Now we define
Zn =9 "(Yn)
and observe that z, € W¥(xo,g). In fact, y, € W§(g(yn-1),9) so

dist(g7" (Yn), Yn—1) < A, ' B

Arguing by induction, follows that the dist(g "(y.),%) < BEL)\," < a.
Taking x as an accumulation point of z,, it is concluded that

dist(g™(z), ) < Yo+ B+ BEXA," <70 +

7.5.2 End of the proof of proposition 7.5.

Given § > 0 we take a point gs such that gs has g—weak contraction along
the center direction. We consider an arbitrarily small open neighborhood U =
U(S) C Dif f*(M?3) of f such that for any g € U follows that g5 remains $—weak
contractive and homoclinically related to p. Moreover, we take I/ in such a way
that for any g € U is well defined the map h,. Related to the map h, and the

periodic points in Pery_(f/V7) follows the next lemma.

Lemma 7.5.7 For any g € U and any q € Per, (f/V1) follows that the hy(q) is
homoclinically related with gqs.

Proof:

Let us suppose that the lemma is false. Then, there exists a sequences of
periodic points {g,} of f in Per, (f/V1), such that for each ¢, there is a dif-
feomorphisms g,, such that hg,(g,) is not homoclinically related with gs. Let us
assume first that for any Ay, (¢,), the unstable manifold of g5 does not intersect the
stable manifold of Ay, (¢,). Taking an iterate of each point g, if it is necessary, we
can assume that [Dffy | < Al for every i > 0. From the fact that the orbit of

hg, (¢) remains close to the orbit of g, follows that |Dgfl| Ba(hy, (@) < Xi for every

i > 0 with A, < A\, < 1. This implies that there is €, such that WE (hg, (qn), gn) is
contained in the stable manifold of A, (¢,). Let us take take zg an accumulation
point of the points ¢,. There is a connected compact arc v contained in the

unstable manifold of g5 such that intersect W& (zp). If U is small, on one hand
2

follows that for any g € U, there is an arc y(g) close to 7y contained in the unsta-
ble manifold of gs; on the other hand, follows that kg, (g,) is close to g, and the
local center stable manifold of hg,(g,) is close to the local center manifold of g,
which is close to the one of 2. So, the center stable manifold of hy,(g,) intersect
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the arc y(g,). Since the local center stable manifold of hy,(g,) is contained in
the stable manifold of h, (¢,) we get a contradiction since we are assuming that
the unstable manifold of g5 does not intersect the stable of ¢,,.

To show that the stable manifold of gs intersect the unstable one of g, we
argue in the same way, using that for any g, the local unstable manifold has a
uniform size (recall that in the set that we are considering the direction Ej is
expansive).

|

Let us take the points z and y in A; such that y € W?*(z). Given g € U let

us take the points

zy = hyg(x) and y, = hy(y)

Recall that ¢ — =, and y — y, are continuous with g.
To finish the proof of proposition 7.3, we consider the following options:

1. either there exists g € U such that the points x4 and y, verifies that
Weu(yg) N W:S (xg) = @
2. or for all g € U follows that

We(yg) NWE (z) # 0

In the former, we show that for some other g € U the thesis of the proposition
holds. In the later, we perform a suitable perturbation such that the unstable
manifold of z, and the unstable manifold of y, for some g are not jointly integrable
and from there again we conclude the thesis of the proposition. Before to start,
we show that the point z and y can be taken in such a way that either z or y is
not a boundary point. More precisely, using that the strong foliations are jointly
integrable, we can prove the following lemma.

Lemma 7.5.8 Let H, be a topologically hyperbolic homoclinic class. Let also
assume that the strong foliations are jointly integrable. Then, for anyy € H, one
of the next options holds:

1. for any positive integer ng and a positive constant r, there exist positive
integers ny,ny, ng such that
(a) n; > ng fori=1,2,3,

(b) dist(f~(y), f"(y)) <r fori,j=1,2,3,
(c) the local unstable manifold of f~"1(y) and f~™3(y) intersects different
connected components of W(f~(y)) \ W2*(f~(y));
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2. y € W*(q) for some periodic point q;

3. there exits a a pair of periodic points q1 and qo such that the local strong
stable manifold of each point intersect the unstable manifold of the other
point.

Proof:

The proof is similar to some part of the proof of proposition 7.3. If the first
item does not hold, then follows that there exist n; and ng arbitrarily large such
that either f™"2(y) € W (™" (y)) or W2 (S (W) \{/ ™™ W) HNW (™™ (v)) #
(). In the first case, follows that y belong to the unstable manifold of some periodic
point. In the second case, from the joint integrability follows that W*(f~"2(y)) C
Wsu(f~™(y)) arguing as item 3.7 of point 2.1 of proposition 7.3, the

third situation follows.

|

Observe that if both points x and y verify either the second or third item of
the previous lemma, then we proceed using the proposition 7.3.

So, we can assume that at least one of the points z,y such that y € W (z),
verifies the first item of the previous lemma. Moreover, we assume that the points
z,y are contained in the set A given by theorem 7.1. Let us denote with Ay the
set A.

(From the fact that at least the point y € A; verifies the first item of lemma
7.5.8 we can show that the point y is accumulated by periodic points in a neighbor-
hood of Af converging on y from both connected components of W?(y) \ W2*(y).
This is the statement of the next lemma:

Lemma 7.5.9 Lety € As such that verifies the first item of lemma 7.5.8. Then,
for any small open neighborhood V' of Ay follows that there are periodic points in
Nnezf™(V') such that the local unstable manifold of these periodic points intersects
different connected components of W2 (y) \ W2*(y).

Proof:

Let us take a periodic point g; with orbit in V' and close to f~"'(y) such
that the local unstable manifold of ¢o; intersect the same connected components
of WE(f2(y)) \ W(f~™2(y)) where the local unstable manifold of f~"(y) in-
tersects W2 (f~"2(y)) \ W2(f~™2(y)). Let us take a periodic point g3 with orbit
in V and close to f~"3(y) such that the local unstable manifold of g3 intersect
the same connected components of W(f"2(y)) \ W*(f "2 (y)) where the local
unstable manifold of f~"3(y) intersects W2 (f~"*(y)) \ W2*(f~™*(y)). So, observe
that there are arcs 7,7 and 32 of the local unstable manifold of ¢2; and ¢33 such
that f(721) C V, fi(ys2) C V for 0 < i < ny, and intersecting different con-
nected components of W2(y) \ W2*(y). Using a dense orbit in A; (recall that Af
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is transitive), follows that there are discs Dy and D3y of the local stable manifold
of g1 and g3 such that f=¢(Dy) C V for 0 < i < ko and ky large, f~%(D33) C V
for 0 < 4 < k3 and k3 large, such that f *2(D,;) and f *¥(Ds,) intersect the
local unstable manifold of y. Moreover, we can suppose that f"(s;) intersects
f " (Dg1) and f"2(sp) intersects f *3(Dsy). Then, there homoclinic points zg;
and z3y of go; and g¢3o respectively, with orbits in V' and such that their local
unstable manifolds intersects the local stable manifold of y in different connected
components of W2(y) \ W2*(y). Then, we can get a pair of periodic point, each
one arbitrarily closed to each homoclinic point. This conclude the proof.
]

As a consequences of previous lemma and using lemma 7.5.2 follows that
we can assume that there are periodic points in Per, (f/V1) accumulating on y
such that the local unstable manifold of these periodic points intersects different
connected components of W2 (y) \ W2*(y). Recall, that for any g € U the map h,
is also well defined over the periodic points in Per,_(f/V4).

Now we start analyzing the first case.

1. There exists g € U such that Wk(y,) N W2*(z,) = 0.

Lemma 7.5.10 Let us assume that there exists g € U such that W¥(y,) N
Wes(zy) = 0 and 4, ¢ We(y,). Then there exists § € U such that the the-
sis of proposition 7.5 holds for g.

Proof:

Let us consider a homotopy F = {g,}o<y<1 such that g, € U for any 7,
go = f and gy is the diffeomorphism in the hypothesis of the present lemma. For
each g € F let us consider z, and let us take W (z,). For each g follows that
We(zy) \ W (x,) has two connected components that we note it as L™ (z,) and
L~ (z,). Using that W (z,) and W¥(z,) are continuous with g, for each g we can
choose the connected components L*(z,) in a way that they move continuously
with g. We can suppose that

nyf (Yg:) € L* (Zg1)

By lemma 7.5.9 there exist a pair of periodic points g, and g, of f such that
q. is close to z, g, is close to y and such that

4z € Pery (f/V1) gy € Pery (f/V1)

Therefore, for each g € F we have the points

he(qz) and hy(qy)

Moreover, we claim that these points can be choosen such that they verify:
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1. II**(qy) € L™ () ;

2. for any g € F follows that:

dist(I1*(qz), ) < dist(T1%(g,), T1**(y))

diSt(xm ) H;f (yg1))
2

dist(zg, 115 (hg(gz))) <

diSt(.’L'gl ) Hf]i (ygl ))

dist(H;s(yg), st(hg(Qy))) < 9

To check this election, recall that there are periodic points in Per, (f/V}) ac-
cumulating on y such their local unstable manifolds intersects different connected
components of W¢?(y) \ W2*(y). Then, we can take points ¢, and g, verifying the
first item and the first inequality of the second item. To check the last one, recall
that for each g € U the map hy is continuous, the map g — hy and g — II3® are
continuous so the family F is uniformly continuous.

Now, for each g we take

W () \ T (W (hg(4a)))

and we note the both connected components with LT (hy(g,)) and L~ (hy(gz)))-
Again we can choose the connected components L*(hy(g,)) in a way that they
move continuously with g

From the second item follows that

IL5; (hg: (q) € L™ (hg, (42))

. From the first item and from the first inequality of second one, follows that

I5 (hgo(ay)) € L™ (Pgo(2))

Using that the maps g — I1;°(h,(g.)) and g — TI3°(hy(gy)) move continuously
with g follows that there is g € F such that

I13°(gy) € 115* (W (hg(g2)))

W (hg(gy))) N W (hg(g2)) # 0

and so the lemma follows.
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2. For every g € U follows that Wk (y,) N W2 (x,) # 0.

Given the pair z,y, we can suppose that there is a periodic point py close to
them such that W¥(z) N W2(po) # 0 and W¥(y) N W2(pg) # 0. We can assume
that the point p, is fixed. We can take a disc D contained in W¢(py) such that
Wx(z) N D # 0 and W¥(y) N D # (. We take the points

z- e WHz)N D, and y~ € W*(y)ND

Observe that it could occur that z= = = and y~ = y. We can also suppose that
for any g close to f, the point py remains fixed and the disc D remains contained
in Wes (pO)

Now, for each g € U we considerer the points

z, = W!(zg,9) N D and y, = W(ys,9)N D

If it holds that there is ¢ € U such that
Yg EW2(zy)

then we prove proposition 7.8 that allows to prove proposition 7.5.
If it holds that for every g € U holds that

y, € W (x,)

then there is performed a C'—suitable perturbation (see proposition 7.10) to show
that the strong foliation associated to these points are not jointly integrable and
then we show that this implies the proposition 7.5.

2.1. There is g € U such thaty, ¢ W (z,).

Proposition 7.8 Let us assume that there exists g € U such that y; ¢ W2*(z;).
Then, there exists g € U such that the proposition 7.5 holds for g.

Proof:

Let us consider a homotopy F = {g, }o<y<1 such that g, € U for any 1, go = f
and ¢ is the diffeomorphism in the hypothesis of the present proposition. As in
lemma 7.5.10 for each g € F let us take W (z,) and the connected components
of W& (z4) \ W¥(z,) that we note as LT (z,) and L™ (zy).

By hypothesis, we are assuming that y;; ¢ W2*(z,) and we can suppose that

Yg, € L;Ll (mgl)

that implies that dist(II3: (y,),z,,) >0

1
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Recalling that there are periodic points in Per,, (f/V;) accumulating on y
such that their local unstable manifolds intersect different connected components
of W¢(y) \ W2 (y) follows that we can choose a periodic point g, such that

11**(gy) € L™ ()

Now, we choose another periodic point g, contained in Per, (f/V1) close to
For each g € F we take the point

hg(gz)” = We(hg(gz), 9) N D and hy(qy)” = Wi(he(gy),9) N D

Moreover, we can chose the periodic points g, and g, such that
1. for any g € F holds that

dist(Hf]f (yg_l), xg_l)
2

dist(T1;° (he(gy) ), TI5°(y, ) <

2. for any g € F holds that

dist(T12(hg(gy) ™), T2 (y;))

dist(IL (hy(0:) ), 7;) < :

1g

For each g € F, we consider the point h,(g,) and the connected components
L (I1g*(hy(gs))) and L~ (I15*(hy(gs))) of W (xzg) \ 15 (hg(a))
The election of the point implies that

1156 (hgo(gy) ™) € L™ (g (Ryo(42)))
but

1152 (g, ) € L7 (T3 (g, (42)))
(From the continuity of g — II3* follows that there is another g such that
I3 (hy(qy) ) € Wi(hy(gz))
Using the definition of hy(g,)™ and hy(g,)~ follows that
ha(gy)™ € W (hs(gz)™)
In other words, we get that there exists ¢ such that the local unstable manifold
of the periodic points hy(g,) and hy(g,) s-intersect each other.

To show that we can get a periodic point such that the local strong stable
manifold intersect the local unstable of another periodic point, observe that there
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is a hyperbolic set H},(q,) that contains hy(q,), hs(gz)™ = D NWE(hy(gz), 9), Po,
and W2(hy(qz),9) N W(p). Moreover, it can also be assumed that Hj,q,) N
W(hg(gy),g) = 0. So, it follows that there is a periodic point g; arbitrarily close
to hy(g,)~ and with orbit uniform disjointed from W (hy(gy), g). So, it is possible
to unfold the intersection between W*(hy(g,),g9) and W2*(hy(q,) ", g) in a such a
way that for the perturbation follows that

We(hs(gy), 9) "WE(q1)

Therefore, the proof of the proposition 7.5 is finished in this case.

2.2. For every g € U holds that y; € W2*(z).

€
To deal with the case that for every g € U follows that y, € W2*(z,) we
introduce some perturbations that allows to show that the strong manifolds as-
sociated to z; and y, are not jointly integrable. In other words, in this case we

prove that there is g C'—close to f such that
IL;* (W (g(yy))) does not coincide with W (g(z,))

After that, arguing in a similar way as in proposition 7.8 we consclude the propo-
sition 7.5.

Proposition 7.9 Let us assume that for every g € U holds that y, € Wfs(a:;)
and there exists a diffeomorphisms g C'—close to f and r > 0 such that for any
z € W(9(yy),9) \{9(y;)} follows that W:*(z,g) "W (g(zy),g) = 0. Then, the
proposition 7.5 follows.

Proof:

Observe that the previous proposition implies that the local unstable manifold
of y, and z, are not jointly integrable. To precise, the proposition 7.9 implies the
next assertion:

Claim 7 There is a compact disk D* contained in the stable manifold of py such
that there exist T and y, verifying:

1. x5 € W(g(zy),9) N D*, yi € We(g(y,),9) N D*
2. yy & We(xy, 9)-

In fact, recall that W*(py) intersect transversally the stable manifold of py and
so there are stable discs {D,,} contained in the stable manifolds of pg such that
the discs D,, converge to W(po). Taking D* close enough to W2(p) follows that
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for any g € U follows that the disk D*(g) intersects the unstable manifold of size
r of the points z; and y .

To conclude the proof of the proposition, we repeat the proof of lemma 7.8
changing the points z,y, by zj,y, and the disc D by D*

]

Now, we have to show that there exists a diffeomorphisms g C'—close to f
Verifying the hypothesis of proposition 7.9. For that, first we introduce some
coordinates nearby the point py.

Remark 7.4 Local coordinates. Let us take the point py such that x=,y~ €
D C We(py). We can assume that there is a C*— map from a neighborhood B
of po to a neighborhood By of (0,0,0) in R? such that

1. H(W¢(po)) = {z = 0},

2. HW¢(po)) = {z = 0,y = 0}

3. given v € H(WZ(py)) follows that W (v) = {w : z(w) = z(v), z2(w) = 0},
4. H(D) C {z=0};

5. given the point f(z) then HW(f(z))) = {z € By : Z(2) = (), y(z) =

y(x)}
6. given the point f(y) then HW(y)) = {z € By : Z(2) = Z(y), (=) = y(v) }-
We denote with (Z(2),7(2),2(2)) the (Z,7, Z)-coordinates of a point z € By.

(From now on, we fix constants ng > 0, 75° > 0 and for each 75 > 0 we
consider two rectangles R(ny) and R(ng) such that

H(f(z'))e RCcRc Band H(f(y )) ¢ R

We can assume that in the local coordinates

A

ROB) = 1@,5,2) |2~ 2(H (7@ )] < Bilg — g(H(f )] < B512 < By

R(ny) ={(z,9,2) : [z — 2(H(f (=) <n5; [y —y(H(f (=) < m5% |2] <7}
To avoid notation, we also note the rectangles H~'(R(n)) and H ~1(R(np)) with
R(no) and R(no).

Perturbation of the map f.

Now, given 7, it is constructed a C'—perturbation g of f with the property
that |f — g|l1 < 7o and the local unstable manifold of z, and y, are not jointly
integrable.
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Lemma 7.5.11 Given 1y > 0, follows that for any ng > 0 there exists a
C'—diffeomorphism g = g(no,n&) such that the following properties hold:

1. |g — f|l1 = no where |.|1 is the C'—norm,

2. grmpy = [
3. for every z € R(nY) follows that D,g(0,0,1) is collinear to the vector
(037]0a1)
Proof:

Let us consider the map 5
H: By — By

given by the previous remark. First, we consider a perturbation of the identity
map in By. We take the map

T(x,y,z) = (xvy + Tl(y)TQ(Z)az)

for some appropriate maps 77 and 75 chosen latter.
Observe that

1 0 0
DT = | 0 1+Ti(y)Ta(2) Ti(y)T3(2)
0 0 1

We assume that

—_

. Th(y) = 0 for |y| > 7§

[\)

. Ti(y) =1 for |y| < %
T < 2

4. |T3(z)| < no for any =z

w

5. Ty(z) =0, Ta(z) = 0 for |z| > ng

Observe that [Ty(2)| < ngno for any z. In fact Th(z) = [ T3(s)ds and the
support of Ty is contained in the interval [—n¥, ny].

So, taking n¢ small enough, follows that |7 — I|; < 7.

To get the the map g it is enough to compose T' with f; i.e.: it is taken the

map
g=H'oToHof
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Remark 7.5 Let g = g(no,ny) as in the previous lemma and let z € R. Then
dist(g(z), £ (2)) < nomy

Proposition 7.10 Given 1y > 0 there ezists ny a diffeomorphisms g = g(no, ny)
as in lemma 7.5.11 and r > 0 such that for every z € W(g(y,),9) \ {9(y; )}
follows that W2*(z,g) N Wf(g(:ﬂg—),g) = 0.

Observe that the proposition 7.10 implies the proposition 7.9.

To finish, we have to prove proposition 7.10. In this direction, first we need to
compute how the strong stable manifold and unstable manifold changes for the
perturbed maps g = g(no,n¢) as the one in lemma 7.5.11. This is the goal of the
next proposition. It states that the angle between the local unstable manifold
of f(z7) and g(x,) is much larger than the angle between the local unstable
manifold of f(y~) and g(y, ). Moreover, it states, that the strong stable manifold
remains close to the initial one.

Recall that using the map H introduced in remark 7.4 we can assume that we
are in R®. More precisely, we can do any computation for the map H o g, where
9 = g(no,m¢) as in lemma 7.5.11.

Proposition 7.11 Given ng small, there exists ny and g = g(no,ny) as in lemma
7.5.11 such that there exists 61,05 and rq > 0 such that

1. 91+02<7]2—0,

2. for any z € W (g(y, ), g) follows that

Slope((0,0,1), DH[E3(z, g)]) < 61
3. for any z' € W2*(z,g) with z €€ W (9(y, ), g) follows that

SlOpG(DH[El (zlv f)]a (17 07 0)) < 02
4. for any z € W (g(z;),g) follows that

Slope((0,0,1), DH[Es(z, g)]) > %

Proposition 7.11 implies proposition 7.10:
We consider

Iy B(f(z 7)) = W (f(a 7))

where B(f(z7)) is a neighborhood of f(z~) that contains f(y~) and f[;s =Ho
I, Given a point z € R? a vector v € R® and a positive constante § we define
the cone in z, direction v and amplitude @ in the following way:
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C(z,v,0) ={w e R®: |w— (2 +v)| < 6}
Using that H[W(f(y"), /)] = {z € B : 2(2) = z(f(y ")), y(z) = y(f(z7))}

and from the second item of proposition 7.11 follows that

HW(9(y,),9)] € Clg(yy ), (0,0,1),61)

From the third item of proposition 7.11 and that for any v € W2(po) holds
that
W2 (v) = {w : Z(w) = Z(v), 2(w) = 0}, follows that for any z € H[W*(g(y; ), )]
holds that
H[Wess(zv g)] - C(Za (17 07 0)7 02)
From the last item of proposition 7.11 and the definition of the map g =
(Mo, ny) as in lemma 7.5.11 follows that

u — - 0 \e
H[W(g(z,),9)] € Cly g,(0,0,1), 50)
Then, follows that

**(H[W;*(9(y, ), 9)]) € C(y~9,(0,0,1),0; + 02) N HW(f(x7))]

I (H[W; (g(x, ), 9)]) € Cly 9,(0,0,1), %)c NWe(f(z))

and therefore, since 6; +60; < " follows that the cones C(y~g, (0,0,1), 60, +65)
and C(y~g,(0,0,1),60; + 62)¢ are disjoints and so the manifold cannot be jointly
integrable.

n

To finish, we have to give the proof of proposition 7.11.

Proof of Proposition 7.11:

To prove it, we need a series of lemmas. The first one, it is a folklore results
and it states that the strong stable foliation are Holder (see [HPS]). The second
one estimates the distance between a point z and hy(2) for z € Ay and g as in
lemma 7.5.11.

Lemma 7.5.12 There exists o > 0 and a neighborhood U of f such that for any
geU, ze€ Ap(V) and 2" € Ay(V) follows that

Slope(Es(z, f), Es(#', 9)) < dist(z,2)* + |g — fIf

SlOpe(El(Z, f)7 El(z,ag)) < dZSt(Za Zl)a + |g - f|61¥
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Lemma 7.5.13 Given ny follows that for any o > 0 there exists ny and g =
9(no,my) as in lemma 7.5.11 such that if z € Ay then

dist(hg(2),2) < Yo

In few words, the previous lemma states that if the vertical size of the support
of the perturbation is made extremely small (i.e.: 7§ small), then the map hy is
extremely close to the identity, despite the fact the perturbation twist the vertical
vector in a fix quantity (i.e.: 7).

Proof of lemma 7.5.13:

We start with a claim that follows from the fact that f is expansive and

topologically hyperbolic.

Claim 8 For any 7y, > 0 there exists N = N(y1) such that for any z € H, and
2 elU

1. if dist(f*(2), f*(#')) < € for all0 < n < N then dist(z',WE(z)) < 711,
2. if dist(f™(z), f*(7")) < € for all =N < n <0 then dist(z',W*(z)) < 7.

The next claim follows from the fact that the local unstable and local stable
manifold are transversal:

Claim 9 There is a constant ¢ such that if dist(2',W(z)) < r and
dist(2',W*(z)) < r with r small, then dist(z,2') < c.r. In what follows, we
assume that c =1

The next lemma follows from the fact that if g is small, then the points in
R(ny) are close to the stable manifold of py.

Claim 10 For any positive integer M there exists ng such that for g = g(no,ny)
as in lemma 7.5.11 follows that if z € Ay, hy(2) € R(ng) and g"(hye(2)) € R(n5)
then n > M.

Now we continue with the proof of the lemma 7.5.13.
We take y; > 0 smaller than vy. Let N(7;) be the positive integer given by

the first claim. Now we choose 7§ such that

1. v1 +nomg < 7o and
2. if hy(2) € R(ny) and ¢"(hy(2)) € R(ny) then n > N(y).

88



Let z € Ay, then if n and n; are such that g"j(hg(z)) € R(n§) and
g7 "= (hyg(2)) € R(ny) follows that either nj > N(y1) or n; > N(v;). Let us
suppose that n} > N(v;). Observe that g(hy(z)) ¢ R(ny) for 0 < i < nJ so

g'(hy(2)) = f'(he(2)) and dist(f*(he(2)), f*(2)) < €. Then,
dist(hy(2), WE(2)) <1 <10

Now, let us consider the points f~"= (z) and g™ (hy(z)). Observe that from

the fact g7™ (hy(2)) € R(ny) follows that the number of backward iterates to
visit again R(ng) is larger than N(v;) and therefore

dist(g™" (hy(2)), W' (f 7™ (2))) <m
By remark 7.5 follows that
dist(g(g™" (hg(2))), We (£ (7™ (2))) < m + momy

So,
dist(hg(z), W' (2)) < v +momy < Yo

Therefore, we conclude that the distance dist(hy(z), W(z)) < 7o and
dist(hg(2), W¥(z)) < 70, so by claim 9 follows that

dist(hg(2),2) <o
]

Lemma 7.5.14 Given 1y follows that for any v1 > 0 there ezxists n§ and g =
9(no,m&) such that if z ¢ f(Boy) N By then

Slope(Es(z, f), Es(hg(2),9)) <m
Proof:

First observe that the splitting in H, can be extended continuously to the
neighborhood U of H,. Using this, observe that

Sl(E3(hg(Z),g), E3(Za f)) < Sl(E3(hg(Z),g), E3(hg(z)7f)) +
+SZ(E3(hg(Z),f),E3(Z,f))

and by lemma 7.5.12 follows that

SZ(ES(hg(Z)’ f)’ E3(Z, f)) < diSt(hg(Z)’ Z)a
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From lemma 7.5.13 follows dist(hy(z), 2) can be taken arbitrarily small if g is
sufficiently small; therefore, to conclude the proof we only need to bound

Sl(EB(hg(z)a f)a E3(Za f))

Let Ny be the minimum positive integer such that g=™°(2) € R(n%). Observe
that if 3 is small, by the fact that z ¢ f(By) N By follows that Ny is large.

Let us take F3(g "°(2), g) and E3(g °(z), f). Observe that if z ¢ R(n¥) fol-
lows that Dg = D f. Then, by the domination property and previous observation
follows that

Sl(Es(z,9)), Es(z,
SI(Dg™ (Es(g ™ (2),9)), Df(Es(g™(2)
A SI(Es(g7™(2), 9), Bs(g™™

o“
Ohula
\‘\/
S~
S—r
S—r

where ) is the constant of domination.
By lemma 7.5.12 follows that SI(E3(g~™(2), g), E3(g~™°(2), f)) < |g — f|1-Then,

SUEs(hy(2),9)Ba(z, 1)) < dist(hy(2), 2)* + g — FL N

So, taking 7{ such that N, is sufficiently large and dist(h4(2), 2) is sufficiently
small, it is concluded the proof.
n
In the sequel, we note with W, _ (z, f) the connected arc of W (z) that

contains z and z~ (W[’;g’mg_](xg, f) is the connected arc of W*(z,) that contains

zg and x,.)

Corollary 7.4 Given 1y follows that for any v1 > 0 there exists ny and g =
9(no, n5) such that if z € W[“ _}(xg,g) then
.’Eg,l?g

SZ(DH[E3(Z,g)], (17 0, 0)) <M

The same result follows replacing x4 by y,.

Proof:
The proof is similar to the previous corollary using that if z € W[“ ,](xg, 9)
CL‘g,Eg
then if Ny is the minimum positive integer such that
g N (2) € R(n¥) follows that Ny is large.
n
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Lemma 7.5.15 There exists a > 0 such that given ng then for any v > 0 follows
that there exists n§ and g = g(no,ny) as in lemma 7.5.11 such that for any
z€ H,NR(ny) and 2" € Nins0y9™(U) N R(ng) follows that

Slope(El(za f)a El(zlag)) < diSt(Z, Zl)a +7

Proof:
Let z and 2’ € R(ny). First observe that

SU(Er(z, ), Er(Z', 9)) < [(Df — Dg)(Er(z, )| + SUEL(f(2), f), Ex(9(2'), 9))

It follows that given 6 > 0 there exists 7§ small such that

((Df — Dg)(Eq(z, f))| < 0

In fact, if ny is small then E(z, f) is close to the vector (1,0,0) and so |(Df —
Dg)(E1(z, f))] is small.

Now, observe that f(2),g(2') ¢ R(ny) and as in the proof of lemma 7.5.14 we
get that

SZ(El(g(zl)ag)v E3(f(z)a f)) < Sl(El(g(zl)ag)aEl(g(Zl)a f)) +
+SU(Es(g(2), f), E3(f(2), f))

f)) < dist(f(2),9(2"))* with dist(f(z),9(2)) <
) < nony + Codist(z, 2').

and SI(Es(g(7), f), Es(f(z),
dist(f(z),9(2)) + dist(g(z), 9(2)
Threfore, follows that

SI(Er(z, f), Ex(#',9)) < 0+ momg + Codist(z, 2') + SI(Er(9(2), 9), Ex(9(2), f))

To finish, we have to compute SI(E1(g(2'), g), E1(9(2'), f))-

Given a positive integer M, there exists ny and N = N(ng) > M such that if
g(2') € f(R(ny)) follows that ¢*(z') ¢ R(nd) and ¢'(2') = fi(z') for 1 < i < N.
This fact follows from the fact that if n§ is small then 2’ is close to the stable
manifold of py.

Then using that Df = Dg along the orbit ¢°(2') = fi(z') for 1 < i < N
follows that

Sl(El (g(zl)v g)a El (g(zl)v f))
= SI(Dg Y (Ei(¢"(2"),9)), Dg N (Er(gVF(2), f))) <
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< ANSUE(gV (), 9), B (gVTH(Z"), f))

So, if ny is large enough follows that NV is large and then the lemma holds.
]
End of proof of proposition 7.11:

Now, we are in condition to finish the proof of proposition 7.11.

Given 19, we take 7 such that 2y; +~§ < 2.
By corollary 7.4 we can choose ¢ and g = g(no,n¢) such that

Sl(DH[E3(mgag)]7 (07 07 1)) <M

and so, by the construction of g follows that

SUDH[Es(g(x;),9)),(0,0,1)) > mo — 31 > &

Again by corollary 7.4 follows that
SI(DHIE;s(yy,9)],(0,0,1)) <m

and therefore
SI(DH[Dg(E5(9(y, ), 9))],(0,0,1)) <m

By lemma 7.5.15 follows that for every 2’ € W2*(z, f) with 2 € W2 (g(y, ), f)
follows that
Slope((1,0,0), DH[E1(2,9)]) <5 +m

Taking 61 = vy, and 02 = 1 + 7§ the proposition follows.
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8 Proof of theorem 7.1

The proof of the theorem is based on the proof of the Theorem B in the paper
[PS1] and also enunciated here in section 6.

We give the steps of the proof, we make the references to the lemmas of the
cited paper and we give the proof of the lemma and definition which are different
to the one given in [PS1].

To prove that there is a transitive invariant compact subset A such that D f|,
restricted to A is uniformly expansive and T, # (), we take a compact invariant
subset A C H, which is the minimal set, in the Zorn’s lemma sense, such that
A is not uniform hyperbolic. To prove the existence of this set, it is enough to
show that given a sequences of nonhyperbolic compacts invariant sets {Aq}aca
ordered by inclusion follows that N,c4A, is a nonhyperbolic compact invariant
set.

Related to this set, we prove the following:

Proposition 8.1 Let H, be a mazimal invariant topologically hyperbolic homo-
clinic class exhibiting a splitting Ey ® Es @ E3, such that it is not hyperbolic,
T # (0 and the interior of T is empty. Then, the minimal nonhyperbolic set A is
a compact invariant set, such that verifies:

1. it is transitive,
2. there is a pair of points x,y € A such that y € W25(x),

3. D fig, 1s expansive restricted to A.

Observe that a similar result holds when we have a dominated splitting £°® F
where E* is uniformly contractive and F' has dimension one (all the time assuming
that f is C?, the periodic points are hyperbolic and the splitting holds in a
homoclinic class). In the present case, we only can assume that there is an
splitting £/ & F' such that F' has dimension one and the center manifolds tangent
to the E direction are stable manifolds. We do not know if these hypothesis are
enough to guarantee that F' is uniformly expansive in H,. However, in the case
that the interior of T is empty, at least it is possible to find a subset A such that
Tx is not empty and where the direction Fj3 is uniformly expansive.

The first two items are easy to prove. From the fact that any proper compact
subset of A is uniformly hyperbolic, it follows that A is transitive. In fact, if
it is not the case, follows that for any z € A then a(z) and w(x) are properly
contained in A; so it follows that both sets are hyperbolic. This implies that for
any z € A follows that |Df> [ = 0 asn — +oo and |[Df[p gp,y| — 0 as
n — 400 and therefore, A is hyperbolic, a contradiction.
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To prove the second item of proposition 8.1, observe that from theorem 6.1 and
theorem 6.2 follows that there is a pair of points z,y € A such that y € W**(z)
follows . In fact, if it is not the case, follows that the set A is hyperbolic.

So, it only remains to prove the last item of previous proposition 8.1. To do
that, we find a set R such that for any z € RN A follows that [Df,; [ — 0 as
n — 400, which would imply that Fj3 is uniformly expansive in A. In fact, ifz € A
and o(z) (the a—limit of z) is a proper subset of A, follows that [Df [ — 0.

If a(z) coincides with A, there is k > 0 such that f *(z) € R and so again
|D f gy ()| — 0. Then, for any z € A follows that [Df " | — 0

It remains the question if assuming that the interior of 7 is empty is possible
to prove that FEs is hyperbolic.

First we explicit a general strategy extracted from [PS1] about the properties
of the mentioned set R. Latter we show that it is possible to follow this general
strategy in the hypothesis of the theorem 7.1. The set R is some kind of rectangle
in terms of the splitting £y ® Ey ® E3. So, we start defining a notion of rectangle.

Definition 17 We say that a set R is a rectangle if
R = int(h([~1,1]"))

where h : [-1,1]* — M 1is an homeomorphism such that there exists points
T 1,%1,Y-1,Y1,2-1, 21 n H, verifying that

h({=1} x [-1,1]) € W' (z-1), ({1} x [-1,1]%) € W' (z1),
R([=1,1 x {=1}) C W (y-1), h([-1,1)* x {1}) € W (2),

h([-1,1] x {—1} x [-1,1]) C W(2-1), h([=1,1] x {-1} x [-1,1]) C W*(z)
See figure 12.

Given an open set R and point z € R we denote with Wg(z) (Wi (z)) be
the connected component of W (x) contained in R (the connected component of
W?2*(z) contained in R). Moreover, given an unstable segment J we define Jg as
the connected component of J contained in R.

Definition 18 Given a rectangle R, we define

1. the stable boundary as 0°°R = Ugzepnu,}O(WE (2));
2. the strong stable boundary as 0°°R = Ugpepnm,}0(WE ());

3. the central boundary as 0°R = Ugpepnm,}O(WE(z)).
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Figure 12

Definition 19 Adapted rectangle Given a rectangle R we say that it is an
adapted rectangle if for any z € AN R then

1. The unstable boundary is given

2. Wg(z) is a connected component of W¥(z) that intersects the two compo-
nents of the unstable boundary of R;

3. for any positive integer n one of the following holds:
(a) " (Wg(z)) C R;
(b) f"(Wg(z)) N R=0.
Related to the notion of rectangle we define the notion of return maps.

Definition 20 Returns.
Let R be an adapted rectangle. A map 1) : S — R (where S C R) is called a

return of R associated to A if:
e SNA#D
e there exist k > 0 such that 1) = f/_sk
o (S) = f*(S) is a connected component of f~*(R) N R
e f (S NR=0for1<i<k

We denote the set of returns of R associated to A by R(R,A). Moreover,
we define with Ry the image of ¥ and we say that a return ¢ € R(R,A) have

[P <€ <1if
|D! —kipyy| < € for all y € Wi(2), z € dom(1) N A,

where P = f/_d’;mw).
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To show that if z € R then |D fleZ(w)| — 0, we prove the following proposition.

Proposition 8.2 Let R be an adapted rectangle and assume that for every return
¥ € R(R, A) we have |{'| < £ < 1 for some &. Then for ally € RNA the following
holds:

DU TI) < oo

n>0
| DY~y y| —nse0 O.

Following this strategy, to conclude the theorem 7.1, it is enough to prove the
following proposition.

Proposition 8.3 Let A be the minimal non-hyperbolic set associated to H,.
Then, there exists an adapted rectangle R such that for every return ¢ € R(R,A)
we have || < & for some £ < 1.

So, after showing the proposition 8.2, the goal is to build an adapted rectangle
that verifies the hypothesis of 8.2. For that, it is built another kind of special
rectangle called well adapted rectangle.

8.1 Proofs of proposition 8.2.

First, we start establishing the relation between sumability of the length of the
unstable arcs and the hyperbolicity along the direction E3. In other words, we
show that if the sum of the length of the negative iterates of the unstable leaves
is uniformly bounded then the derivative of f along the direction F3 goes to zero
for backward iterates. It is a general argument that follows from smoothness. In
our case, since the map is C? and 2—domination holds, follows that the unstable
discs are C?. In fact:

Lemma 8.1.1 There exists A\ < 1 such that %7?'}’;2' < X. Then follows that
3

the unstable discs W*(x) are C? for any .

The proof of the previous lemma is similar to the proof of lemma 6.0.2 ; From the
fact that the unstable arc are C? we can get the following lemma:

Lemma 8.1.2 There ezists a constant Ky such that if y € W*(x) follows that

D moo
< exp(K i(a) — [
Dror < (K X 17w = 1)
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Moreover

D) < Wexp(KZé(f—lu)))

where J C WX (z).

Proof of proposition 8.2:

The proof is similar to the proof of lemma 3.7.2 given in [PS1] (page 10012)
and the key argument is that in each return we have contraction along the
E3—direction, combined with the fact that the sum up to a return of the length
of iterates of the unstable arc is uniformly bounded.

More precisely, it is necessary the following lemma which is useful also in the
rest of the proof of proposition 8.3. The lemma state the uniform bound of the
sum up to a return of the length of the unstable arcs. Moreover, state that the
direction Ej, is contractive for sufficently large positive iterates.

Lemma 8.1.3 Let R be an adapted rectangle. There exists Ky = Ki(R) such
that if x € R, J = W2(z) N R and f *(J) is the first return of J to R then
follows that

> ) < Ko

Moreover, there exist a positive integer Ny, a positive constant Cy and Ay < 1
such that if kg > Ny then

|Df|iE2(f—k0(z))| < Co\y Yze Ji> Ny

The proof of this lemma is similar to the proof of lemma 3.7.1 given in [PS]]
(page 1010) and the key argument is the fact that the maximal invariant subset
of A outside R, i.e.,

Av=()f"(A-R)
nez

is a proper set of A and so it verifies that it is a hyperbolic set. More precisely,
if the previous set is empty, follows that for any point in R the return time are
uniformly bounded, an so the lemma holds immediately. If the set it is no empty,
it is possible to get a neighborhood of A; such that while the iterates remain in
this neighborhood follows that the direction Fy and Ej3 are hyperbolic; moreover,
the number of iterates that an orbit remains in the complement of the mentioned
neighborhood of A; and R is uniformly bounded. ;From these facts together
follows the conclusion of the lemma.
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After that, as we mentioned, to conclude proposition 8.2 we can repeat the
arguments done in lemma 3.7.2 given in [PS1] (page 1012).
[ |

8.2 Proof of proposition 8.3.

This is done in different steps. First, we need more geometrical properties. More
precisely it is introduced some kind of special type of adapted rectangle. This is
shown in sub subsection 8.2.1 where also is proved the existences of this kind of
rectangle in lemma 8.4. Latter, in subsection 8.2.2 are introduced some techniques
called distortion, and which are useful to compare the volume of this rectangle to
the length of the local unstable manifold and in subsection 8.2.3 it is study how
the distortion changes under iterations. In subsection 8.2.4 it is ended the proof
of proposition 8.3.

8.2.1 Well adapted rectangles.

Recall that we want to show the existence of a rectangle that verifies the hypoth-
esis of proposition 8.2. To do that, we need some definitions (see figure 13).

Definition 21 Horizontal rectangle. Given a rectangle R as the one defined

in definition 17, we say that R* C R is an horizontal rectangle if there exist
[a,b] C [—1,1] such that R* = h([—1,1]% X [a, b])

Definition 22 Vertical rectangle. Given a rectangle R as the one defined in
definition 17, we say that R® C R is a vertical rectangle if there exist [a,b] C
[—1,1] and [c,d] C [—1,1] such that R" = h([a,b] x [c,d] x [-1,1]).

Remark 8.1 Given an adapted rectangle R and a return v observe that its do-
main s a vertical rectangle and its image is contained in an horizontal rectangle.
Moreover, if the domain is properly contained in R follows that the image is an
horizontal rectangle.

To check the remark, observe that if x € S, where S is the domain of a return
associated to a rectangle R, by the definition of adapted box follows that that
Wh(z) C S.

Lemma 8.2.1 Let R be an adapted rectangle. Then for every ¢ € R(R,A)
follows that Ry = Image() is an adapted rectangle.

Proof:
Observe that by definition of Ry, the bottom and the top of it is given by
the center stable manifold of some points in H,. More precissely, the top and
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bottom of Ry are contained in a connected componet of f=*(W¢e(y;)) N R and
in a connected componet of f=%(W<(y;)) N R, where f=% = 4 and y;,y | are
the points such that their center stable manifolds contains the top and bottom
of R. To finish, we have to check that if z € Ry follows that f"(Wg (z)) C Ry
or f~"(Wg, (z)) N Ry = 0. If it is not the case, i.e.: if there is z, and a positive
integer n such that f~"(Wg (2)) N Ry # 0 and f~"(Wg (z)) is not contained in
Ry, follows that f~"(W} (2))N0“Ry # 0, and this implies, that f*"(Wg (z))N
O“R # () and since fk(Wﬁ¢(w)) = WE(f*(z)) follows that f=(Wx(f*(x))) N
0“R # () which is absurd since R is an adapted rectangle.

|
vertical RrRY
R / rectangle
7
S S
return
Y Ry
horizontal -
rectangle =
=
Figure 13

Definition 23 Well adapted rectangle. Given a rectangle R = h([—1,1]3),

we say that R is a well adapted rectangle if there is a positive integer Ny such
that f~N(W(p)) N R = h([=1,1]* x {1}) UA([-1,1]* x {—1}) and there ezists a
rectangle R contained in R such that

1. R=h([-1,1] x [a,b] x [-1,1]) for -1 <a<b< 1;
2. [R\ RN H, = 0.

Moreover, there exist two vertical rectangles Ry, Ry such that for each R}
follows that 9°(RY) C 0°(R) for i = 1,2 and one of the following options holds:

1. either [WE(RY)URYNH,=10
2. or there is a horizontal rectangles R and a returns 1;, 1 such that

(a) RY and R! are the domain and image of 1 ;
(b) Wi (By) \ R{]N Hy = 0 fori=1,2.
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Observe that on one hand, if R is a well adapted rectangle then the strong
stable boundary of R does not intersect A. On the other hand R is a well adapted
rectangle if either the set A does not intersect the central boundaries of R or if it
is not the case, the central boundary is contained in the domain of some return.
See figure 14.

x>
J

Figure 14

Lemma 8.2.2 If R is a well adapted rectangle then it is an adapted rectangle.

Proof: First, we have to check that if x € RN H, then W§(z) is a connected
component of W*(z) that intersects the top and the bottom of R. If z € R} U R3,
follows from the definition. If x ¢ R} U R}, then W*(z) N RY U Ry = (). In
other case, it would imply that x € R} U RY. So, if W§(z) is not a connected
component of W*(z) that intersects the top and the bottom of R follows that
W(z) intersect [WF(RY) \ RY] (for ¢« = 1 or 4 = 2) which is an absurd because
W¥(z) C Hp and W (RY) \ RY| N H, = 0.

To check the second items in the definition of adapted box, observe that for
any z € R and any positive integer k follows that f=*(Wx(z)) N 8*(R) = 0. If
it is not the case, then follows that f*(f~™o(W2(p))) Ninterior(R) # 0. Which
is an absurd because f*(f~"(W2(p))) C f N (W2(p)) and f~M(W:(p)) N R =
h([=1,1] x {1}) U A([-1,1]* x {-1}).

u

Lemma 8.2.3 Given a well adapted rectangle R and a return 1, follows that R,
(the image of ¥) is a well adapted rectangle.

The proof is immediately and it is similar to the proof of lemma 8.2.1.

Proposition 8.4 Let H, be a topologically hyperbolic attracting homoclinic class
such that the interior of T is empty. Then, there exist a well adapted rectangle
associated to A.
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To prove the proposition 8.4 first we use the following lemma. In this lemma
it is used explicitly that the interior of T is empty

Lemma 8.2.4 Let H, be a topologically hyperbolic attracting homoclinic class
such that the interior of T is empty. Then for every € there is I} C st’+(x)
such that If N H, = 0 and there is I; C W3> (z) such that I; N H, = 0, where
W5t (z) and W57 (z) are the both connected components of W3*(z) \ {z}.

Proof:

Let us assume that the thesis of the lemma is false; i.e: there is x € H,, such
that for instance W2>*(z) C H, for some small ¢,.

We consider two cases:

1. For some z such that W2**(z) C H, (some small ¢,), there is y € W2**(z)
such that II**(W*(y)) does not coincide with W*(x) or

2. For any z such that W**(z) C H, (some small ¢,) holds that for any
y € W25t (x) follows that II**(W¥(y)) = W¥(z); i.e.: Wi(y) C W (z) =
U{zGW:s,—}—(x)}Weu(Z)

In other words, we are considering if for any z such that W2**(z) C H,, (some
small €,) given the point x then the strong foliation associated to z are either
jointly integrable or it is not the case.

Let us take

Weus(x) = U{ZGW:S’+("L‘)}W:(2)

From the fact that we are assuming that W **(x) is contained in H, and from
the fact that H, is an attractor, follows that W*s(z) C H,.
Let us take a point zg in W**(z). Let us consider the set

We(20) NWE(2)

and observe that there is 2z such that W?2*(2,) intersect transversally W2(z) N
W5(z) in the sense, that W2 (2o) "\W**(x) intersects both components of W2 (2q)\
W2 (2p). To check this assertion, it is enough to take zy such that that W2 (2z9) N
W#(x) intersects only one components of W?2(zp) \ W2*(2) and W?(z) N W**(z)
it is not contained in W2*(zp). This point z, exists because otherwise it follows
that the strong foliations are jointly integrable. Then, it holds immediately that
we can choose another point z, € W(z9) N W**(z) such that W2*(z)) N W**(z)
intersect both components of W2 (z() \ W55 (2{).

Now, let z be any point close to zy contained in H, N W2(%), so it follows
that W?*%(z) intersect transversally W*(z) N W*¢(z) (this follows from the fact
that W2*(z) is C'—close to W2*(z)). Now we have two options: If for some z
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close to zp holds that z ¢ W**(z) or for any z close to 2o holds that z € W**(z).
In the former, taking an small neighborhood of z follows that for any 2’ in this
small neighborhood of z holds that [W25(2') \ {#}] N H, # 0, and this implies
that the interior of 7 is not empty, which is absurd. In the latter, from the
fact that any point 2z close to 2y, follows that we can take a periodic point ¢
such that ¢ € W**(z). We take W?(q) and W2(q) N W**(x) and we can assume
that W2*(q) intersect transversally the set W2(q) N W**(z) (otherwise, using
that the periodic points are dense it can be argued as before). Then we take
fra*(We(q) N We*(z)) where n, is the period of g and k is large positive integer.
Observe that fm*(W2(q) N W*5(x)) C W2(q). Since W2(q) N W¥*(z) intersect
transversally W**(q) follows that W?*(q) N W**(z) is not invariant by f™*  then
there is z € fm"*(W2(q) NW2(x)) \ [W?(q) NW=¥(z)] close to ¢q. Taking an small
neighborhood of z follows that for any z’ in this small neighborhood holds that
(Wes(2')\ {#}] N H, # 0, and this implies that the interior of 7 is not empty,
which is absurd. See figure 20.

We(2) £

ss € 7 ss
We (zg) 7 We (zg)

W S(2) W &(2)

Figure 15

In the second situation we have that W**(z) N H, = W *(z). Let us consider

W (x) = Closure(Ugns0y Ugyewss )y f"(WE(f"(y))))

Observe that for any y € W**(z) follows that there is €, such that W*(y) =
Wet(y) C W*(z). Let us take also

Ao = Closure(Ugyewus(z)10(y))

Observe that Ag is a topologically hyperbolic compact invariant set such that
for any z € Ag follows that W*(z) C Ag. To prove that, observe that there is
¢ > 0 such that for any y € W () if n is large enough, then W4*(f~"(y)) C

[ (we(z)).
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From the fact that W*(z) C Ag for any z € Ay, follows that Ay has local
product structure. So Ag = N, f"(V) for some V. Since it holds that whole
unstable manifold of each points is contained in Ay and the unstable manifolds
are dense, follows that H, = A,.

On the other hand, observe that if z € Ag, then W**(z) C Ag and W**(2) =
Wt (z). It follows from the fact that W2*(f~"(y)) C f"(W"*(z)) and from
the fact that for any z € W*(z) there is €, such that W**(z) C W**(z) and
Wis(z) = We*(x). Therefore, T = H,, and so the interior is not empty, which is
an absurd.

u

Now, we proceed to give the proof of proposition 8.4.

Proof of proposition 8.4:

Let us start taking a point x € H,. By the previous lemma, for any €' there
exist [ and [ contained in opposite connected components of W5*(z) \ {z}
and such that [ N H, = 0 and [; N H, = (. So, there exists 7, > 0 such that
Ws (I)NH, = 0 and W5, (I;)NH, = 0, where W5 (177) = U0 W5 (2). Let 2
and z; (they depends on the point z) in opposite connected components of W¢(z)
such that W2* (2 )W (1) # 0, W2 (5 )NWs, (I7) # 0 and We* (2 )nW (1) #
0, Weo (2 ) n W (1) # 0. Let us consider the region B, in W?(z) bounded by
Wee (), We (155, We' () and W (1),

We take B and B, the two connected components of B, \ W2*(x).

We consider two cases:

1. there exist z such that, there exist 4y, y" in opposite connected components
of We(z)\{z} such that W2*(y~)NB,NH, =0 and W**(y")NBNH, = 0;

2. for every z holds that either for every y € By follows that W2*(y) N H, N
B # 0 or for every y € B follows that W2*(y) N H,N B, # 0

First case.

In the first case, we claim that the we can built a rectangle as in the option
one of lemma 8.4. To avoid notation in this part we do not write the dependence
of the points on z.

In fact, let us take arcs [,- and [,+ in opposite connected components of
We(z) \ {z} such that W2*(l,-) N B°* N Hy, =0 and W2*(l,+) N B*N H, = 0.

Then, there are arcs [,- and [,+ in opposite connected components of W£(z)\
{z} such that W2*(I,-) N B*N H, = () and

we(l,+)NB*NH, = 0.

Now we take z7, x5, the boundary points of I; 7 ,z, , the boundary points
of I7; yi,y4, the boundary points of I+ and y; ,y, , the boundary points of [,-.
We order then by distances to the point z. We take the rectangle R* bounded by

Wes(y7), We(yy), We(z7) and We(cf). We take the rectangle R* bounded by
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Wes(yy), Wes(ys), We(zy) and We(c). Observe that R® C Re. Now, we take
2zt and 2z~ in opposite components of W¥(z) \ {z}. For each z € R* we define

4 .- (2) as the connected component of W (2) \ {W¢(2) UW2(27)} bounded
by W(z") and W2(z~). Now we define

z

R — U{zeﬁs}Wu'*',z* (Z) R — U{ZGRS}WZ’U‘J",27 (Z)

Observe that these rectangles verified the items 1 and 2 of the proposition.
To get that the bottom and the top are contained in the stable manifold of p and
that R is adapted, we use the following claim:

Claim 11 Let p be a periodic point. For every § > 0, there exist Ng = No(0) such
that for every z follows that f=™o(W2(p)) intersects both connected components

of Wi'(z) \ {x}.

Then, using the previous claim, we can cut the rectangle by the stable manifold
of a periodic point.
Second case.

We start with the following lema:

Lemma 8.2.5 Assuming that we are in the second case follows that given two
pair of points x1 and zo in H, such that x; € W2*(z2) follows that W*(z1) and
W(zq) cannot s-intersect transversally.

Proof:

Let us assume that the lemma is false. Let 2} € W*(z1) and zf, € W*(x5) such
that x, € W2*(z}) and for any r small follows that W*(z}) manifold s-intersect
transversally W (z}).

Let us take B, small enough such that =} ¢ W¥(B,;) = Ug.c Bz,z}Weu(z). Let

us assume that for any y € B:,z follows that W2s(y) N B:,z NH, #0.
Let us take Wt () = U {zeW:,+(z,2)}W;‘(z) where W5 (z4) is the connected
component of We(z4) \ {z}} that intersects B;Z. Le t us take

I1*° : By — We(x)
If r is small, observe that
Wi (z) C T (W (Byy) N Hy)

Moreover, form the fact that we are assuming that the local unstable manifold of
x4 and x) s-intersect transversally each other, follows that for some ' holds that

(W™ () C interior(W " (z5))
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where W (z}) is one of the connected components of W4(z}) \ {z}}.

Then, taking any point zq close to a point z € int(W**(z})) such that I15(z2)
is in the interior of W™t (z}) follows that [W2*(29) \ {20}]N H, # @ which implies
that the interior of T is not empty, which is an absurd.

u

Coming back to the proof of the proposition, we take a point z such that for
every y € B, follows that W2*(y) N H, N B # (0. Let us define

R, = U{ZEBI}W:(Z)

We can find two periodic points ¢; and ¢ with large period in each side of
R, \ W#¥(z) such that for each g; holds that dist(q;, ) < dist(f?(g;), ) for any j.
Take the connected component of R, \ W?*(q;)UW**(g2) that contains z. Now, we
can use the claim 11 and we cut this connected component by the stable manifold
of the p. We claim that the remaining rectangle is a well adapted rectangle. To
check that, first observe that it is an adapted rectangle and the proof is similar
to the previous case. To check that it is well adapted, it is necessary to show
that associated to each ¢; it can be constructed a vertical rectangle with its
associated return map. Firts, for each g;, it is taken the connected component
of R, = f(W?s*(¢g;) N R) N R that contains ¢; and where n; is the period of g;.
Later, we take the connected component of f~"(W£(R;)NR)NR that contains g;.
This connected component is the horizontal rectangle R?; the vertical rectangle
is f(RY) and the return v¢; = f@?". This finish the proof of the proposition.
]

8.2.2 Rectangle: volume and length. Distortions.

Now we adapt to dimension three, a series of definition given in [PS1].

Definition 24 We say that a rectangle R has distortion (or s-distortion) C if
for any two intervals Jy, Jo in R transversal to the Ey @ Fs-direction and whose
endpoints are in O R the following holds:

1

(J1)
C S un

)

<C.

Remark 8.2 If a box has distortion C, then, for anyy,z € R

L oWaR)
c =) = ¢

and
L(Wg(z))Area(Wg (z)) < CVolume(R)
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Notice that, in order to guarantee distortion C' on a rectangle R, it is sufficient
to find a C! foliation F* by two dimensional embeddings with tangent planes close
to the E; & Es-direction (T, F* lies in a b-cone for b small along the center-stable
), such that, for any two intervals J;, Jo (taken as in the definition 24),

1
— < <C
& <)<

holds, where II = TI(J, J5) is the projection along the foliation between these
intervals.

Given a point z € RNAq , for any positive integer n we can take the rectangle
R, around f~"(z) defined as the connected component of

R, = f_n(R) N Be(f_n(x))

that contains f~"(z). Observe that inside R, we can define the foliation F3
taking the negative iterations of the foliation F*; i.e.: given z € R,, we take the
the connected component of

Falz) = f(F(f"(2)) N Ry

that contains z.
The following lemma will be useful in the sequel. The proof of this lemma is
similar to the proof of lemma 3.4.1 in [PS1].

Lemma 8.2.6 Let R, F° and C be as above. If for any z € R,, follows that

k k
|Dszf*”(F;n(z))| < CoXg

for any No < k < ko. Then R, has distortion C; = C1(C, Cy, Ao, No).

Applying previous lemma to lemma 8.1.3 we can conclude the following corol-
lary:

Corollary 8.1 Let R be an adapted box with distortion C. Then, for any ¢ €
R(R, A) follows that Ry has distortion Cy = C1(C, Cy, Ao, No).
8.2.3 Control of distortion.

The next lemma is similar to the lemma 3.7.3 of [PS1] (page 1014). However,
in the present context the proof is simpler than the one done in [PS1]| and use
explicitly the properties of the adapted rectangle.
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Lemma 8.2.7 Let R be a well adapted rectangle. There exists K = K(R) with
the following property: for every ¢ € R(R,A) and z € By, = Image(y) (denoting
Jy(z) = J(z) N By) follows that

S U <K

whenever f9(z) ¢ Ry,1 < j <n.

Proof: Let R be a well adapted rectangle and let ¢ € R(R,A). Let z € Ry, =
I'mage(1)) and a positive integer n such that f77(z) ¢ Ry,1 < j < n. Let also
C; be as in corollary 8.1.3 and consider C; from corollary 8.1 (corresponding to
Cy = C1). This means, that R, has distortion Cb.

Let 0 <ny <ny <..<n, <nbetheset {0 <j<n:fz2) e R} For
every n; we have associated a return 1; € R(R, A) such that f~"(2) € Ry,, i.e.,
f™i(2) = ¥i(f™-1(2)) where ¢ = f~%i for some k;.

We consider (if exists) the sequence 0 = mg < m; < my < ... < my < n such
that _ _

D fl g amrmiiy| <M 0 <G <my, Vi=1,..,1

We claim the following:

Claim 12 There ezists Cy = C4(R) such that

l

D U™ (Ty(2))) < Ca

=0
where Jy(z) = WX(2) N Ry.
Proof of the claim: To show that, we construct a rectangle associated to each

m;. First we select a series of constants:
Recall that the rectangle R contains a sub rectangle R such that [R\ R]NH, =

0. Let us take R = R U W*(R?) U W?*(R3). Let 71,72,73,7a be the following
positive constants

1 2
n<j min dist(0°(WS*(z) N R),0°(W:*(2) N R))

2€R

Y2 <L(fTW5(2)) NWE(fT(2))) V 2 € Hy

v < min {6(Wgn(2)), €W (2))}

zERiLURg
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Yo < L(f (W5, (2)) NWE(f ™(2))) V 2 € Hp
Now, let
Yo = min{~yi, 2,73, 7a}

For each m;, we take n;; of the sequences {ny,...,n,}, such that f *(z) ¢ R
for n;; <k < m;. Given z € Ry, we consider

19 = mln{z] >0: f_nij (Z) ¢ RIf U Rg}

and
Jo = min{j : m; > m;,}

We assert first that in this case
Sl (Jy(2))) < Ky

To show that, we consider the rectangle R(n;;) = ij and we take the rec-
tangle R(j) as the connected component of

FT) (R(ng,)) 0 Boy (F ™ (T(2)))

that contains f~"(z).
On one hand, we show that for j; # j» and larger than j; follows that

R(j1) N R(j2) =0

On the other hand, from corollary 8.1 follows that R; has distortion Cy and
so the area is compare to the length in the following way:

L(f7 (Jy(2))) Area(Wriy) (F7™(2)) < C2Vol(R(j))

and
Area(Wii;(F7™i(2)) > %o
So,
™ (J(2))) < Ca-Vol(R(7)
Therefore
! 1% 1
D (™ (Iy(2))) < Cz—o Y " Vol(R(j)) < %CQK
Jj=Jjo j=0
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where K is such that

jo—1

Z Vol(R(j)) < K

The constant K exists because the rectangle R(j) are disjoint. So, the claim is
proved.

So, to conclude that X%_, I(f~™(Jy(2))) < K1, we have to show that the
rectangles R(j) are disjoint. To show that, first observe that if f~™i(z) € R,
then f™(W3(f " (2)) C Ry. Let us suppose that R(j1) N R(j2) # 0. It follows
that W3 (f~™1(2)) N f~™2(Jy(2)) # 0 so (assuming that j; < jp) it follows that
W2 (™o (2))Nf*o™52 (Jy(2)) # O where kg = mj, —n4,. By the election of v and
from the fact that f~™0(z) € R\ R} U R} follows that f¥ =™z (Jy(2)) C R. Then,
frommiz (Jy(2))NWE(f ™0 (2)) # O which implies that f™io (f¥~miz(Jy(2))) C Ry,
i.e: f~(min—mi)(J,(2)) C Ry which is an absurd because the first return is f~"(2)
and mj, —m;, <n.

Now, to finish the proof of the claim, we have to control the sum

SRl (Ty(2)))

In this case we have that f~™(z) € R} U R} for any i < ig. Observe that in
particular f~"i+1(z) € Ry U R} for any i < i

Define B(n;) as the connected component of f~"(Ry,) N R} which contains
f~™(z), and [ is equal to 1 or 2 depending if f™(z) € R} or f™(z) € Ry. Observe
that, for B(n;) follows that

(*) f_k(B(nz)) NR=0VO<k< Niy1 — Ny

In this case, for each m; such that n;, < n;, we consider the rectangle R(j) as
the connected component of

FT)(B(ny;)) 0 Bog (f 7™ (Jy(2)))

Again, we have that for this rectangle we can uniformly compare the length with

the volume. So, we have to show that the rectangles R(j) in this case are also dis-
joint. To show that, observe that if R(j;) N R(j.) # 0 then f ™ 7""11)(B(nih)) N
f_(mjz_nijz)( B(ni,,)) # 0. Assuming that m;, —n;;, < mj, —n;, follows that
B(nih) N f_k(B(nijz)) # 0 with 0 < k < mj, — ni;, < mi; 41— Ny, . Which is a
contradiction with (x). Then, we have concluded that

Eé’:ol(ffmj(tjlﬁ(z)) < Ky
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To finish the proof of the lemma, we must control the sum between consecutive
mis. Let N = N()1, A2) from Pliss’s lemma and consider K, = sup{||Df’||: 1 <
j < N}. There are two possibilities: m;y3 — m; < N or m;;; —m; > N. If
mip1 —m; < N, then

mit1—1

D UF(Ip(2) < NEL(f™(Jy(2)))-

J=m;
On the other hand, if m;; —m; > N, then
|Df;.E1®E2(fmi*j(z))| 2 )\% for N S .7 S mip1 — M.
Thus, by the dominated splitting,
Then, by Pliss’s lemma, there exists n;,7; — m; < N such that
and so, for any y € f%(J(z)) we have, setting Ey(y) = T, f™%(J(2)), that

IDf? )|§Ag for 0 < j < myy1 — 7.

/Es(y
Hence
S A € Y TREN Y )
< NI
Y RN
< (Ve Koy ) (D)
Therefore
YU E) = YD ()

< (Wt Koy ) SO uta)

< | NK;,+ K
< ( 2 + 21_)\3

)Kl :Kg.
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Finally, if the sequence m)s does not exist, the same argument shows that

S U < (Nt Ky ) €0

320

1
< NKs; + K, L=K,
1— )3

where L = sup{{(Jy(2)) : = € RN A}. Taking K = max{Ks3, K4} we conclude
the proof.
n

8.2.4 Finishing the proof of proposition 8.3.

We shall finish the proof of the proposition 8.3 in two cases: one, when A is not
a topological minimal set, and the other when it is. Remember that a compact
invariant set is topological minimal if it has no properly compact invariant subset,
or equivalently, if any orbit is dense.

Case: A is not a minimal set

Lemma 8.2.8 Let R be an adapted rectangle such that #R(R,A) = oo. Then
there exists a return g € R(R,A) such that the adapted rectangle

Ry, = Image(vo) satisfies the conditions of lemma 8.2, i.e., for every ¢ €
R(Ryy, A), [¥'| < 1 holds.

The proof of the this lemma is similar to the proof of lemma 3.7.4 given in
[PS1] (page 1016). The central idea is that if there are infinitely many returns,

we can get one, namely v such that ¢°((Z) is small, so [¢{| is small and then it

)
is showed that for any 1 such that ¢ € R(Ry,, A), follows that [¢'| < 3

Case: A is a minimal set.

The proof of the this lemma is similar to the proof for the minimal case
proved in [PS1] (page 10018). However, we give some overview details. We
begin remarking that we cannot expect to do the same argument here as in the
preceding case, due to the fact that if A is a minimal set, then the set of returns
to R is always finite. Nevertheless we shall exploit the fact that in the case A is
a minimal set, then there are unstable ”boundary points”. First, we introduce
some notations. Given an unstable arc J, we order J in some way and we denote
Jt={yeJ:y>z}, J- ={yeJ: y<uz} Also,giving zr € R we shall denote
by R* (say the upper part of the box) the connected component of R — (@)
which contains J*, and by R~ (the bottom one) the one containing J~.
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Lemma 8.2.9 Assume A is minimal set. Then, reducing R in the unstable di-
rection such that R*NA=0 or R-NA=0.

The idea to show that is that if the lemma does not follows, we would get
that there is a periodic point in A which is a contradiction since A is minimal.
See the proof of lemma 3.7.5 in [PS1] (page 1018).

|

Related to this rectangle we will get the following lemma that will imply the
Main Lemma when A is minimal:

Lemma 8.2.10 Let R be an adapted rectangle such that Rt NA = (). Then there
exist K such that for everyy € RNA,

DU W) < K.

In particular there exist Ji(y),J (y) C Ji(y) C J(y) such that the length of
Ji(y) — It (y) is bounded away from zero (independently of y) and such that

[e o]

D U (N(y))) < oo

n=0

The proof of this lemma, use the following one:

Lemma 8.2.11 Assume that A is a minimal set and let R be an adapted rectangle
such that R N A = 0. Then R" verifies that for ally € RN A,

I W)NRT=0or f7"(J"(y)) C RY
where J*(y) = J(y) N RT. Moreover, there exist Ky such that if y € RN A and
f(J ) NRTY=0,1<j<n then

D(f*f(my))) < K.

Again, the proof are similar to the equivalent lemmas proved in [PS1] See the
lemma 3.7.7 for the first and lemma 3.7.6 for the second one in [PS1] (page 1019).

Now we can prove the proposition 8.3 when A is a minimal set. Take

ROZ U Jl(y)

yEBNA
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Notice that Ry is an open set of A, and for every y € Ry N A (i.e. y € Ji(y)), we

have
o0

DU () < oo

n=0
and so
|Df/_ET;(y)| —n—o0 U.

Let z be any point in A. Since A is a minimal set there exist mgq = mq(2)
such that f~™°(z) € Ry and so

implying that
|D.f/_];;(z)| —noo 0.

This completes the proof of the proposition 8.3.

113



9 Further results.

The next two theorems give a better description of the kind o homoclinic bifur-
cation that could follows in the case that the homoclinic class is not hyperbolic.
This description it is related to the different kind of splitting that the attractor
could exhibit. We state different theorems for the case that the point p has stable
index either one or two.

Theorem B: Let f € Dif f2(M?) be a Kupka-Smale system.
Let H, = Np>of™(U) be an attracting homoclinic class associated to a periodic
point of stable index one. Then, the following options holds:

1. If H, does not ezhibit any dominated splitting, then there exists a g C'—
close to f such that g has a homoclinic tangency and a heterodimensional
cycle in U.

2. If H, does not exhibit any dominated splitting E & F with dim(F) = 2
then there exists a g C1— close to f having a heterodimensional cycle and
a homoclinic tangency in U.

3. If H, has a dominated splitting E @ F with dim(F) = 2 and F' cannot be
decomposed in two directions then follows that either

e H, is hyperbolic or

e there exists a g C'— close to f exhibiting a homoclinic tangency asso-
ciated to a point of stable index one and exhibiting a heterodimensional
cycle in U.

4. If Hy, has a dominated splitting By ® Ey © E3 then follows that either

e H, is hyperbolic or

e there exists a g C'— close to f ezhibiting a heterodimensional cycle in

U.

Remark 9.1 Observe that in the previous theorem, any time that it can be cre-
ated a tangency by a C'—perturbation it also can be created a heterodimensional
cycle.

Let us assume now that p has stable index two. In this case it is not possible
to get a strong version as in theorem B.

Theorem C: Let f € Dif f>(M?) be a Kupka-Smale system.
Let H, = Np>of™(U) be an attracting homoclinic class associated to a periodic
point of stable index two. Then, the following options holds:
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1. If H, does not ezhibit any dominated splitting, then there exists a g C'—
close to f such that g exhibits a homoclinic tangency and a heterodimen-
stonal cycle in U.

2. If H, has a dominated splitting E @ F with dim(E) = 2 and E cannot be
decomposed in two directions then follows that either

e H, is hyperbolic or

e there exists a g C'— close to f ezhibiting a homoclinic tangency asso-
ciated to a point of stable index one and exhibiting a heterodimensional
cycle in U.

3. If H, has a dominated splitting E ® F with dim(E) = 1 such that F' cannot
be decomposed in two directions. Then follows that either:

(a) there is a g C*— close to f exhibiting a homoclinic tangency and a
heterodimensional cycle in U;

(b) all the periodic points in H, has stable index two, E is uniformly con-
tractive and one of the following options holds:

e there exists a g C'— close to f exhibiting a sectional dissipative
homoclinic tangency in U and the set H, is contained in a nor-
mally hyperbolic submanifold;

e the set T is not empty, (i.e.: there exists x such that [W2*(z) \
{z}] N H, # 0) and there exists a g C*'— close to f exhibiting a
homoclinic tangency in U,

4. If Hy, has a dominated splitting Ey ® Ey ® E3 then follows that either

e H, is hyperbolic or

e there exists a g C'— close to f exhibiting a heterodimensional cycle in
U.

Remark 9.2 To get a better description it remains the question that if in the
case 3.b when T is not empty it also follows that a heterodimensional cycle can
be created.

Observe that from the maim theorem follows the last case of theorem B and
C. In fact, if H, has a dominated splitting E; @ E2 ® E3 then follows that it can
not be created a tangency in U and so follows that either H, is hyperbolic or
there exists a ¢ C'— close to f exhibiting a heterodimensional cycle.
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9.1 Proof of Theorem B:
9.1.1 There is not a dominated splitting.

Following the techniques in [BDP] it can be proved that if H, has not a dominated
splitting then there is a diffeomorphisms g close to f and a periodic point ¢ with
orbit arbitrarily close to H, such that Dgg? has three eigenspaces with arbitrarily
small angle, having only real eigenvalues and at most one eigenvalue with modulus
smaller than one.

From the fact that the angle between all the eigenspaces is small, follows that
by a C'—perturbation, a tangency can be created between the strong directions.
From there, follows that we get a periodic point having a strong homoclinic con-
nection. Moreover, and again from the fact the the angle between the eigenspaces
is small, by another C'—perturbation follows that the center eigenvalue has a
weak expansion. Then, by perturbation follows the existences of a heterodimen-
sional cycle.

9.1.2 There is not a dominated splitting 7y, M = E®F with dim(F) = 2.

First we state a lemma that shows that if H, is an attractor and p has stable
index one, then it can be created a heterodimensional cycle.

Lemma 9.1.1 Let us assume that H, is an attractor. If p has stable indez one,
then there exist g arbitrarily C'—close to f and a periodic point q of f such that
the analytic continuation q4 s homoclinically connected with p, and it exhibits a
strong homoclinic intersection.

Proof:

Let us assume first that p has real eigenvalues. In this case, we can show that
the point p as the one that verifies the thesis of the lemma. In fact, from the fact
that Hp, is an attractor follows that the strong unstable manifold of p is contained
in the homoclinic class. On the other hand, there are orbits in the homoclinic
class accumulating in the stable manifold of p, which is one dimensional, so its
coincide with the strong stable manifold. Then, using the C!—connecting lemma
we can perturb the systems in a way to connect the strong stable and unstable
manifold of p.

If p has complex expanding eigenvalue we use the following lemma which is a
consequences of lemma 2.1.7:

Lemma 9.1.2 Let p be a periodic point with complex eigenvalue and stable in-
dex one. Let us assume that there is a transversal intersection of the stable and
unstable manifold of p. Then, there exists a periodic point q of f and a diffeomor-
phisms g C'—close to f such that q has real eigenvalues and the strong unstable
manifold of q intersect the stable manifold of p.
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To conclude, if p has an expanding complex eigenvalue, first it is created a
transversal homoclinic intersection and later it is applied the previous lemma.
Now, observe that by theorem 2.1, if there is not a splitting Ty, M = E® F with
dim(F) = 2 then it implies that there exist g C'—close to f and a periodic point
g’ of f such that the analytic continuation q; has a tangency between the stable
and unstable manifold and ¢;. Using that we are dealing with homoclinic classes,
it can be proved that g, is homoclinically connected with py. In particular, it is
connected with the point g, obtained in the previous lemma.

Unfolding the tangency, we can get another tangency and another periodic
point g, homoclinically connected with q; and g4, and exhibiting a weak expansion
along the center direction. Then, we have a periodic point with real eigenvalues
having a weak expansion along the center direction and homoclinically connected
with a periodic point having a strong homoclinic connection. Then, we can create
a heterodimensional cycle applying the proposition 7.2 and keeping at the same
time the tangency.

]

9.1.3 There is a dominated splitting Ty, M = E @ F with dim(F) = 2.

(From theorem 2.1 follows that if F' cannot be decomposed in two direction then
either F' is expansive or it can be created a tangency. Moreover, by lemma 2.1.2
applied to f!, follows that there is a periodic point of stable index one with
real eigenvalues and having a weak expansion along the center direction. On the
other hand, by lemma 9.1.2, we get a periodic point with real eigenvalues and
exhibiting a strong homoclinic connection. Using proposition 7.2 it is conclude
the existence of a heterodimensional cycle for a perturbation of the initial map.

To deal with the situation that the splitting is decomposed in three direction
we proceed as in the proof of the main theorem.

9.2 Proof of theorem C.

In the case that there are not a dominated splitting we proceed as in the previous
theorem.

9.2.1 There is a dominated F @ F with dim(E) = 2, and E cannot be
decomposed in two directions.

In this case, by theorem 2.1 follows that either E is contractive or there exists a
g C'— close to f exhibiting a homoclinic tangency. To finish the proof, remains
to shaw that it can also be created a heterodimensional cycle. Since we are
assuming that E cannot be decomposed in two invariant directions and FE is not

117



contractive, by lemma 2.1.2 follows that for any v > 0 and § > 0 there exists a
periodic point ¢ for a diffeomorphisms g C'—close to f such that

1. q has two real contractive eigenvalues;

3. a(Ei(q), E5(q) <~

4. q has a transversal homoclinic point

Then, using that the angle between FE$(q) and E3(q) it can be shown that
after a second perturbation it is possible to get a strong homoclinic connection.
Since one of the stable eigenvalues is close to one, then it can be performed a
perturbation to get a heterodimensional cycle.

9.2.2 Ty M = E @ F with dim(E) = 1.

Let us assume that there is a periodic point ¢ in H, with stable index one.
using that F is onedimensional and therefore the local manifold tangent to E is
dynamically defined, we can argue as in lemma 4.1.2 and it is proved that by a
C'—perturbation it is created a heterodimensional cycle. ;From the fact that F
cannot be decomposed in two direction, follows also the existences of a tangency.

Now we deal with the case that all the periodic points in H), has stable index
one. Firts it is proved that in this case, the direction FE is uniformly contractive.

Lemma 9.2.1 Let us assume that all the periodic points in H, has stable index
two. Then follows that for any § > 0 there exists ng = ng(d) such that for any
x € H, and n > ng follows that

26| D fr(siy| < (1+0)"

Proof:

The proof is similar to the proof of the lemma 5.0.1. In fact, if the thesis does
not hold, using the Pliss’s lemma there it is possible to find a point z such that
there is a sequences of integers ny — 400 such that

IG26|D frr-i(s—mr @yl < (1+6)7"

for some 9, any n > ng for some ng and any ny. Observe that this implies that
there exists ey = €(6, f,no) > 0 for any f "¢ (z) follows that

W, (f 7 (2)) € W (f ()

118



whereW['(y) is the manifold tangent to the direction F. Taking two integers
ng, and ng, such that f~" (x) and f~™:(z) are close, using that the manifold
tangent to the direction E is dynamically defined (because the direction E is one
dimensional), that we can find a periodic point g of stable index one close to
(@),

]

As a consequences of the previous lemma and using the domination property,
follows that E is contractive.

Then, we have two options: either E' is involved in the dynamics or it is not
the case. In the second case, we can apply the theorem 6.1 and follows that there
exists a C! two dimensional normally hyperbolic submanifold S such that the
homoclinic class is contained in S. Since H, is an attractor, follows that D fs
cannot be volume expanding. Moreover, follows that there is a periodic point ¢
which is dissipative restricted to S. Since the direction E is contractive, follows
that ¢ is dissipative. From the fact that F' cannot be decomposed in two direction
having a dominated splitting, follows that there is ¢ C'—close to f exhibiting a
tangency. Using that we are dealing with a homoclinic class, it is possible to show
that the tangency is associated to a periodic point ¢’ that remains homoclinically
connected with q. Therefore, we can get a tangency associated to g, which is a
sectional dissipative periodic point.
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