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Abstract An iteration of the stabilized sequential quadratic programming

method consists in solving a certain quadratic program in the primal-dual

space, regularized in the dual variables. The advantage with respect to the

classical sequential quadratic programming is that no constraint qualifications

are required for fast local convergence (i.e., the problem can be degenerate).

In particular, for equality-constrained problems the superlinear rate of conver-

gence is guaranteed under the only assumption that the primal-dual starting

point is close enough to a stationary point and a noncritical Lagrange mul-
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tiplier (the latter being weaker than the second-order sufficient optimality

condition). However, unlike for the usual sequential quadratic programming

method, designing natural globally convergent algorithms based on the sta-

bilized version proved quite a challenge and, currently, there are very few

proposals in this direction. For equality-constrained problems, we suggest to

use for the task linesearch for the smooth two-parameter exact penalty func-

tion, which is the sum of the Lagrangian with squared penalizations of the

violation of the constraints and of the violation of the Lagrangian stationarity

with respect to primal variables. Reasonable global convergence properties are

established. Moreover, we show that the globalized algorithm preserves the

superlinear rate of the stabilized sequential quadratic programming method

under the weak conditions mentioned above. We also present some numerical

experiments on a set of degenerate test problems.

Keywords Stabilized sequential quadratic programming · Superlinear

convergence · Global convergence · Exact penalty function · Second-order

sufficiency · Noncritical Lagrange multiplier

Mathematics Subject Classification (2000) 65K05 · 65K15 · 90C30

1 Introduction

The stabilized sequential quadratic programming method (sSQP) was first

introduced in [1] for inequality-constrained optimization problems (see also

[2–4] and [5, Chapter 7]), with the motivation of achieving superlinear rate

of convergence in the degenerate cases (in particular, when Lagrange mul-

tipliers associated to a given primal solution may not be unique). By con-

trast, the classical sequential quadratic programming method (SQP) requires

uniqueness of the multipliers for proving local convergence, also known as the

strict Mangasarian–Fromovitz constraint qualification (which in the equality-

constrained case reduces to the usual linear independence of constraints’ gradi-

ents); see [5, Chapter 4]. The sSQP method was extended in [6] to general vari-

ational problems with equality and inequality constraints, with no constraint



Globalizing Stabilized SQP 3

qualifications of any kind. The method converges superlinearly when initialized

close enough to a stationary point-multiplier pair satisfying the second-order

sufficient optimality condition [6]. In the case of equality-constrained prob-

lems, even the weaker assumption that the multiplier in question is noncritical

does the job [7]. Those assertions are stated formally in Theorem 5.1 below;

see [5, Chapter 7] for details. In view of these very appealing local convergence

properties, it is natural to think about possible approaches to globalization of

sSQP. This issue proved quite a challenge, and is currently a matter of interest

for several research groups (the relevant work is cited below). The essential dif-

ficulty is that merit functions commonly used for globalization of constrained

optimization algorithms, such as the l1-penalty function for example, do not

seem to be suitable – solutions of sSQP subproblems do not provide a descent

direction for such functions.

In this article, we propose a globalization of sSQP using linesearch to force

descent for a certain smooth two-parameter primal-dual penalty function, orig-

inally introduced in [8] (for its properties, see also [9, Section 4.3] and [10]).

We now survey the few other approaches proposed to globalize sSQP so far.

One possibility is to combine sSQP with the augmented Lagrangian method.

This makes sense, as the two iterative schemes are related, and the augmented

Lagrangian method has strong global convergence properties on degenerate

problems [11,12], which are the primary target of sSQP. In fact, sSQP can

be regarded in some sense as a “linearization” of the augmented Lagrangian

method. Thus, one can try to use sSQP directions for solving the augmented

Lagrangian subproblems, at least when the linearization approximates well

the primal-dual iteration system of the augmented Lagrangian method. The

proposal to combine stabilized Newton-type steps for optimality systems with

augmented Lagrangian methods dates back at least to [13] (see also [9, p. 240]).

This idea is also used in the very recent works [14–17], where the so-called

primal-dual augmented Lagrangian is employed. Alternatively, [18] employs

the usual augmented Lagrangian for similar purposes. In both approaches,

roughly speaking, sSQP steps are used as inner iterations to approximately
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minimize the augmented Lagrangian, with the multipliers fixed, until it is

decided that the multipliers estimate can be updated. Then the process is

repeated. In particular, no merit/penalty function is being minimized, and

global convergence is guided by the augmented Lagrangian algorithm.

Combining sSQP with augmented Lagrangian methods is not the only

possibility, of course. For example, the so-called hybrid strategies can employ

the standard globalized SQP as an outer-phase algorithm, trying to switch

to the full-step sSQP locally, when convergence to a degenerate solution is

detected [19]. Another attempt to globalize sSQP is described in [20], where

sSQP is combined with the inexact restoration strategy [21].

The approach we propose here is quite different from any of the mentioned

above: we try to use sSQP directions for minimizing a merit function – specifi-

cally, the primal-dual exact penalty function of [8]. For the resulting algorithm,

we obtain satisfactory global convergence properties, and also prove that the

method reduces indeed to pure sSQP locally, thus inheriting its superlinear

rate of convergence under the same weak assumptions. We also report numer-

ical experiments on a collection of degenerate problems.

The rest of the paper is organized as follows. In Section 2, we state the

problem, the basic sSQP scheme, and introduce the necessary notation. In

Section 3, we establish the descent properties of sSQP directions with respect

to the penalty function in question. With those properties at hand, we propose

the globalized sSQP algorithm. In Section 4, we establish its global conver-

gence properties. Local rate of convergence analysis is given in Section 5. We

note that the latter requires some novel results concerning acceptance of the

unit stepsize in linesearch descent methods, related to the classical Dennis-

Moré theorem but different. In particular, unlike the Dennis-Moré theorem,

our results on this subject are applicable not only to Newtonian methods and

allow for non-isolated solutions. The latter feature is particularly important

in the context of sSQP, motivated by degenerate problems. Numerical results

on the DEGEN test collection [22] are reported in Section 6.
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2 Problem Setting and Preliminaries

In this work, we consider the equality-constrained optimization problem

minimize f(x) subject to h(x) = 0, (1)

where f : IRn → IR and h : IRn → IRl are at least twice differentiable. Let

L : IRn × IRl → IR be the usual Lagrangian of the problem (1), i.e.,

L(x, λ) := f(x) + 〈λ, h(x)〉.

Given the current primal-dual iterate (x, λ) ∈ IRn× IRl and the value σ > 0 of

the stabilization parameter, the sSQP method [5, Chapter 7] for the problem

(1) solves the following QP in the primal-dual space, to generate the direction

of change (ξ, η) ∈ IRn × IRl:

minimize(ξ, η)

[

〈f ′(x), ξ〉+
1

2

〈

∂2L

∂x2
(x, λ)ξ, ξ

〉

+
σ

2
‖λ+ η‖

2

]

subject to h(x) + h′(x)ξ − ση = 0.

(2)

The pure local sSQP scheme then sets (x+ ξ, λ+ η) as the next iterate. (Note

that an iteration of the usual SQP can be formally regarded as solving (2) for

σ := 0.)

In what follows, we shall develop a globally convergent algorithm using line-

search in sSQP directions for the following two-parameter primal-dual merit

function [8]. Define ϕc1, c2 : IRn × IRl → IR,

ϕc1, c2(x, λ) := L(x, λ) +
c1
2
‖h(x)‖2 +

c2
2

∥

∥

∥

∥

∂L

∂x
(x, λ)

∥

∥

∥

∥

2

, (3)

where c1 > 0 and c2 > 0 are penalty parameters. Recall that stationary points

and associated Lagrange multipliers of the problem (1) are characterized by

the Lagrange optimality system

∂L

∂x
(x, λ) = 0, h(x) = 0, (4)

with respect to x ∈ IRn and λ ∈ IRl. Thus, the function in (3) is the sum of

the Lagrangian for problem (1) with weighted penalizations of violations of the
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optimality conditions in (4). According to the theory in [9, Section 4.3] and

[10], the penalty function defined in (3) is exact in the following sense. If c2 > 0

is small enough and c1 > 0 is large enough, every stationary point of ϕc1, c2(·)

satisfies the Lagrange optimality system (4); if a primal-dual solution of (4)

satisfies the linear independence constraint qualification and the second-order

sufficient optimality condition, then it is a strict local minimizer of ϕc1, c2(·).

Let M(x̄) be the set of Lagrange multipliers associated with a stationary

point x̄ of the problem (1), i.e., the set of λ ∈ IRl satisfying (4) for x = x̄. The

following second-order conditions on the stationary point – Lagrangemultiplier

pairs are the key to local convergence analysis of the sSQPmethod. A Lagrange

multiplier λ̄ ∈ M(x̄) satisfies the second-order sufficient optimality condition

(SOSC) if
〈

∂2L

∂x2
(x̄, λ̄)ξ, ξ

〉

> 0 ∀ ξ ∈ kerh′(x̄) \ {0}. (5)

A Lagrange multiplier λ̄ ∈ M(x̄) is called critical if

∃ ξ ∈ kerh′(x̄) \ {0} such that
∂2L

∂x2
(x̄, λ̄)ξ ∈ im(h′(x̄))T,

and noncritical otherwise. As is easy to see, the multiplier is always noncritical

if it satisfies the SOSC (5). We refer to [7,23] for details on critical and noncrit-

ical multipliers and the roles of these notions for convergence of Newton-type

algorithms (see also [5, Chapter 7] and the recent survey in [24]).

We finish this section with a few words about our notation (which is mostly

standard). Throughout the paper 〈·, ·〉 is the Euclidean inner product, and ‖·‖

is the associated norm (the space is always clear from the context). By IR+ we

denote the set of nonnegative reals. The distance from a point u ∈ IRν to a set

U ⊂ IRν is defined by dist(u, U) := infv∈U ‖u − v‖. The closed ball centered

at u ∈ IRν of radius ε > 0 is denoted by B(u, ε). For a linear operator A, the

notation imA stands for its range space, and kerA for its null space. When

talking about superlinear convergence, we mean the Q-rate (without saying so

explicitly).
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3 Globalized Stabilized SQP Algorithm

According to the theory in [9, Section 4.3] and [10], under natural assumptions

mentioned in Section 2 the penalty function (3) can be considered to be exact,

at least for c2 > 0 small enough and c1 > 0 large enough. Accordingly, when

using it as a merit function for globalization of convergence of some algorithm,

the intention is to keep c2 small, increasing it only when it is really necessary.

With this in mind, we first show that under certain assumptions, the sSQP

direction is a descent direction for this merit function at a point violating the

Lagrange optimality system (4), provided c1 and c2 are chosen appropriately.

Note that writing the optimality conditions for the sSQP subproblem (2),

we can consider the sSQP direction (ξ, η) ∈ IRn × IRl as computed by solving

the linear system

∂2L

∂x2
(x, λ)ξ + (h′(x))Tη = −

∂L

∂x
(x, λ), h′(x)ξ − ση = −h(x). (6)

For each x ∈ IRn, λ ∈ IRl and σ > 0, define the matrix

Hσ(x, λ) =
∂2L

∂x2
(x, λ) +

1

σ
(h′(x))Th′(x). (7)

It is worth mentioning that for values of σ > 0 small enough this matrix is

nonsingular for all (x, λ) that violate the Lagrange optimality system (4), but

are close enough to one of its solutions with a noncritical multiplier; see [7].

The first two items in the following result lead to a way of choosing

the penalty parameters to ensure that sSQP directions are of descent for

the penalty function in consideration. Observe that as, by (6), it holds that

〈h(x), h′(x)ξ〉 = −‖h(x)‖2+σ〈h(x), η〉, the first item concerns violation of the

constraints, while the second refers to violation of the Lagrangian stationarity.

Lemma 3.1 Let f : IRn → IR and h : IRn → IRl be twice differentiable at a

given x ∈ IRn, and let (ξ, η) be a solution of (6) for this x and some given

λ ∈ IRl and σ > 0.

Then the following assertions are valid:



8 A. F. Izmailov et al.

(a) If 〈h(x), h′(x)ξ〉 < 0, then

〈ϕ′
c1, c2

(x, λ), (ξ, η)〉 ≤ −ω (8)

holds for any ω > 0, any c1 ≥ c̄1(ω; x, λ; ξ, η) and any c2, where

c̄1(ω; x, λ; ξ, η) := −

〈

∂L

∂x
(x, λ), ξ

〉

+ 〈h(x), η〉+ ω

〈h(x), h′(x)ξ〉
. (9)

(b) If
∂L

∂x
(x, λ) 6= 0, then the relation (8) holds for any ω > 0, any c1 and any

c2 ≥ c̄2(ω; x, λ; ξ, η; c1), where

c̄2(ω; x, λ; ξ, η; c1) :=

〈

∂L

∂x
(x, λ), ξ

〉

+ 〈h(x), η〉+ c1〈h(x), h
′(x)ξ〉 + ω

∥

∥

∥

∥

∂L

∂x
(x, λ)

∥

∥

∥

∥

2 .

(10)

(c) If the matrix defined in (7) is nonsingular, then (ξ, η) is uniquely defined

by

ξ = −(Hσ(x, λ))
−1

(

∂L

∂x
(x, λ) +

1

σ
(h′(x))Th(x)

)

, (11)

η =
1

σ

(

h(x) − h′(x)(Hσ(x, λ))
−1

(

∂L

∂x
(x, λ) +

1

σ
(h′(x))Th(x)

))

. (12)

Proof By direct differentiation of (3), for any c1 and c2 it holds that

ϕ′
c1, c2

(x, λ) =





I + c2
∂2L

∂x2
(x, λ) c1(h

′(x))T

c2h
′(x) I









∂L

∂x
(x, λ)

h(x)



 . (13)

Hence,

〈ϕ′
c1, c2

(x, λ), (ξ, η)〉 =

〈

∂L

∂x
(x, λ), ξ

〉

+ 〈h(x), η〉+ c1〈h(x), h
′(x)ξ〉

+c2

〈

∂L

∂x
(x, λ),

∂2L

∂x2
(x, λ)ξ + (h′(x))Tη

〉

=

〈

∂L

∂x
(x, λ), ξ

〉

+ 〈h(x), η〉+ c1〈h(x), h
′(x)ξ〉

−c2

∥

∥

∥

∥

∂L

∂x
(x, λ)

∥

∥

∥

∥

2

,

(14)
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where the last equality is by the first equation in (6). Assertions (a) and (b)

are now evident.

Note that the second equality in (6) can be written in the form

η =
1

σ
(h(x) + h′(x)ξ). (15)

Substituting this into the first equality in (6) and using (7), yields

Hσ(x, λ)ξ = −
∂L

∂x
(x, λ)−

1

σ
(h′(x))Th(x).

If Hσ(x, λ) is nonsingular, the latter equation uniquely defines ξ and then

(15) uniquely defines η. The corresponding expressions give (11) and (12),

respectively. This proves (c). ⊓⊔

The properties (a) and (b) of Lemma 3.1 readily lead to fully implementable

rules for choosing c1 and c2 in order to ensure that the computed sSQP direc-

tion is of descent for the penalty function with the corresponding parameters.

We next state the resulting algorithm.

Define Φ : IRn × IRl → IRn × IRl, the mapping of the Lagrange optimality

system (4):

Φ(x, λ) :=

(

∂L

∂x
(x, λ), h(x)

)

. (16)

Algorithm 3.1 Choose the parameters σ̄ > 0, c1 > 0, c2 > 0, C1 > 0,

C2 > 0, δ > 0, ρ > 0, q > 1, ε, θ ∈ (0, 1). Fix some continuous functions

ψ1, ψ2, ψ3 : IR+ → IR+ which are positive everywhere except at 0. Choose

(x0, λ0) ∈ IRn × IRl and set k := 0.

1. If Φ(xk, λk) = 0 where Φ(·) is defined in (16), stop.

2. Set σk := min{σ̄, ‖Φ(xk, λk)‖} and compute dk := (ξk, ηk) as a solution

of the system (6) for σ := σk and (x, λ) := (xk, λk). If the system (6) is

not solvable, go to step 4.

3. If

〈ϕ′
c1, c2

(xk, λk), dk〉 ≤ −ρ‖dk‖q, (17)

go to step 5.
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If

‖h(xk)‖ ≥ ψ1(σk) (18)

and

〈h(xk), h′(xk)ξk〉 ≤ −ψ2(‖h(x
k)‖), (19)

set c1 := c̄1, k + δ, where

c̄1, k := c̄1(ρ‖d
k‖q; xk, λk; ξk, ηk).

If c1 ≤ C1, go to step 5; otherwise, set c1 := C1 and go to step 4.

If
∥

∥

∥

∥

∂L

∂x
(xk, λk)

∥

∥

∥

∥

≥ ψ3(σk), (20)

set c2 := c̄2, k + δ, where

c̄2, k := c̄2(ρ‖d
k‖q; xk, λk; ξk, ηk; c1).

If c2 ≤ C2, go to step 5; otherwise, set c2 := C2.

4. Choose a symmetric positive definite (n+ l)× (n+ l) matrix Qk, and set

dk := −Qkϕ
′
c1, c2

(xk, λk).

5. Compute αk := θj , where j is the smallest nonnegative integer satisfying

the Armijo inequality

ϕc1, c2((x
k, λk) + θjdk) ≤ ϕc1, c2(x

k, λk) + εθj
〈

ϕ′
c1, c2

(xk, λk), dk
〉

. (21)

6. Set (xk+1, λk+1) := (xk, λk) + αkd
k, increase k by 1, and go to step 1.

The bounds C1 and C2 on the penalty parameters in Algorithm 3.1 play

mostly the role of a precaution. In practice, they should be taken large, so that

not to interfere with the rules of setting c1 and c2, except possibly in some

extreme situations (as a matter of computation, one would want to avoid very

large values of parameters anyway).

We emphasize that the algorithm employs the safeguarding direction on

step 4 in two cases only: either when the sSQP iteration system (6) is not solv-

able, or when the sSQP direction does not pass the tests on step 3. According
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to the computational results in Section 6, this is actually quite rare, i.e., the

sSQP direction exists, passes the tests, and is thus used “almost always”, when

we look at all iterations for all the problems.

On step 4 of Algorithm 3.1, various choices of matrices Qk are possible. For

instance, [9] suggests to use some fixed scaling matrix Qk := Q in methods

considered there and also based on minimizing the same penalty function.

In our numerical experiments in Section 6, we use the BFGS updates (if such

iterates are consecutive), and with the Armijo linesearch rule on step 5 replaced

by the Wolfe rule when the direction is computed at step 4. The Wolfe rule

is used in order to ensure that Qk obtained by the BFGS scheme is positive

definite. We note that while our global convergence results in Section 4 for

generic matrices Qk refer to the Armijo rule, it is clear that they also hold if

the Wolfe rule is used instead.

It is easily seen that the algorithm is well-defined: it either terminates at

step 1 with a point satisfying the Lagrange optimality system (4), or a descent

direction for the penalty function is obtained (possibly after updating its pa-

rameters), and then the linesearch condition (21) accepts a positive stepsize

after a finite number of trial steps.

4 Global Convergence Properties

We now show that Algorithm 3.1 has reasonable global convergence properties.

Observe that if the matrix in the right-hand side of (13) is nonsingular for

(x, λ) = (x̄, λ̄), then (x̄, λ̄) satisfying the stationarity condition (22) below

necessarily satisfies the Lagrange optimality system (4). It can be further seen

that the matrix in question is nonsingular for generic values of c1 and c2 (i.e.,

“almost always”).

Theorem 4.1 Let f : IRn → IR and h : IRn → IRl be twice continuously

differentiable on IRn. Let {(xk, λk)} be an iterative sequence generated by Al-

gorithm 3.1. Assume that matrices Qk chosen on step 4 of the algorithm are

uniformly positive definite and bounded.
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Then every accumulation point (x̄, λ̄) of the sequence {(xk, λk)} satisfies

ϕ′
c1, c2

(x̄, λ̄) = 0. (22)

Proof At each iteration of the algorithm, the values of c1 and c2 either

remain unchanged, or one (and only one) of these parameters increases.

Observe that any of the penalty parameters can only be changed if the

descent direction condition (17) is not satisfied with the previous values. By

assertion (a) of Lemma 3.1, in the case of (19) this means that before the

update we had c1 < c̄1(ρ‖d
k‖q; xk, λk; ξk, ηk), as otherwise (17) would have

been satisfied. This shows that the update of c1 in step 3 either increases

its value by some quantity bigger than δ > 0, or yields c1 = C1. In the lat-

ter case, no more changes of c1 are allowed. Similarly, (17) not being sat-

isfied in the case of (20) means that for the previous value it holds that

c2 < c̄2(ρ‖d
k‖q; xk, λk; ξk, ηk; c1), by assertion (b) of Lemma 3.1. This shows

that the update of c2 in step 3 also either increases its value by some quantity

bigger than δ > 0, or yields c2 = C2. Again, in the latter case, no more changes

of c2 are allowed.

Note also that, as long as at least one of the new values of c1 or c2 remains

smaller than C1 and C2, respectively, the descent direction condition (17) is

satisfied for these new values. In particular, the number of times c1 is increased

cannot be greater than C1/δ. Similarly, the number of times c2 is increased

cannot be greater than C2/δ. Therefore, the values of c1 and c2 do not change

for all sufficiently large k.

Since the values of c1 and c2 do not change for all sufficiently large k,

the “tail” of the sequence {(xk, λk)} is generated by a descent method with

Armijo linesearch for a fixed smooth function ϕc1, c2 .

We next show that the sequence {dk} of search directions is uniformly

gradient-related in the terminology of [9, p. 24], which means that if for some

infinite setK of iteration indices the subsequence {(xk, λk) : k ∈ K} converges

to some point (x̄, λ̄) such that ϕ′
c1, c2

(x̄, λ̄) 6= 0, then {dk : k ∈ K} is bounded

and lim supK∋k→∞〈ϕ′
c1, c2

(xk, λk), dk〉 < 0.
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Let K1 ⊂ K be a sequence of all indices k ∈ K such that dk is gener-

ated as a solution of the system (6). Then (17) holds for all k ∈ K1. Hence,

‖ϕ′
c1, c2

(xk, λk)‖‖dk‖ ≥ ρ‖dk‖q. Employing the assumption that q > 1 and

the continuity of ϕ′
c1, c2

at (x̄, λ̄), this evidently implies that {dk : k ∈ K1} is

bounded. Furthermore, since ϕ′
c1, c2

(x̄, λ̄) 6= 0, from (13) we conclude that

Φ(x̄, λ̄) 6= 0. It then follows from (6) that {dk : k ∈ K1} cannot have

zero as an accumulation point. Therefore, (17) implies that the subsequence

{〈ϕ′
c1, c2

(xk, λk), dk〉 : k ∈ K1} is separated from zero by some negative con-

stant. It remains to note that for k ∈ K \K1 the search direction dk is obtained

on step 4 of Algorithm 3.1. That such directions are uniformly gradient-related,

is well known; e.g., [9, p. 24].

Therefore, we conclude that {dk} is a uniformly gradient-related sequence

of search directions. Hence, by [9, Theorem 1.8], every accumulation point

(x̄, λ̄) of the sequence {(xk, λk)} satisfies (22). ⊓⊔

5 Convergence Rate Analysis

We now turn our attention to convergence rate analysis of Algorithm 3.1. The

objective is to show that close to a solution with certain properties (in partic-

ular, those that guarantee the superlinear rate for pure sSQP), the algorithm

accepts the sSQP direction and then the unit stepsize in this direction.

We start with recalling sSQP local convergence results in Section 5.1, which

we would like our global algorithm to inherit. In Section 5.2, we present an in-

teresting analysis concerning acceptance of the unit stepsize in generic descent

methods, in the spirit of the Dennis-Moré theorem for Newtonian methods,

but different – the method need not be Newtonian, and in fact, second deriva-

tives need not even exist; moreover, solutions need not be isolated (the latter

is an important feature in the context of sSQP). Then, Section 5.3 presents

the rate of convergence results for Algorithm 3.1.
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5.1 Local Convergence of Pure Stabilized SQP

Let Φ be the mapping of the Lagrange optimality system (4), defined in (16).

The following is [7, Theorem 1] with some quantitative refinements which can

be derived from the proof of [3, Theorem 1] or [25, Theorem 4.1]; see also [5,

Chapter 7].

Theorem 5.1 Let f : IRn → IR and h : IRn → IRl be twice differentiable in

a neighbourhood of x̄ ∈ IRn, with their second derivatives being continuous at

x̄. Let x̄ be a stationary point of problem (1) with an associated noncritical

Lagrange multiplier λ̄ ∈ IRl.

Then the following assertions are valid:

(a) For some neighbourhood V of the point (x̄, λ̄) there exists the unique map-

ping d(·) := (ξ(·), η(·)) : V → IRn × IRl with the following properties:

(ξ(x, λ), η(x, λ)) satisfies (6) with σ := ‖Φ(x, λ)‖ for every (x, λ) ∈ V,

and d(x̄, λ) = 0 if λ ∈ M(x̄).

(b) The neighbourhood V can be chosen small enough, so that there exist ℓ > 0

and a function χ : IR+ → IR+ continuous at zero and such that χ(t) = o(t)

as t→ 0, and

‖d(x, λ)‖ ≤ ℓ‖Φ(x, λ)‖, (23)

‖x+ ξ(x, λ)− x̄‖+dist(λ+ η(x, λ), M(x̄)) ≤ χ(‖x− x̄‖+dist(λ, M(x̄)))

(24)

for all (x, λ) ∈ V.

(c) For any ε > 0 there exists ε0 > 0 such that for any (x0, λ0) ∈ B((x̄, λ̄), ε0)

the method’s iterative sequence {(xk, λk)} is uniquely defined by the equal-

ity (xk+1, λk+1) = (xk, λk) + d(xk, λk) for all k, this sequence satisfies

{(xk, λk)} ⊂ B((x̄, λ̄), ε); and it converges superlinearly to (x̄, λ∗) for

some λ∗ := λ∗(x0, λ0) ∈ M(x̄).
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5.2 On the Acceptance of the Unit Stepsize in Generic Descent Methods

Consider the unconstrained optimization problem

minimize ϕ(u), u ∈ IRν , (25)

where the objective function ϕ : IRν → IR is smooth. Consider a generic

descent method for the problem (25). Specifically, take any u0 ∈ IRν , and for

k = 0, 1, . . ., set

uk+1 := uk + αkd
k,

where dk ∈ IRν is some direction of descent for ϕ at uk, and the stepsize αk

is computed by the Armijo linesearch rule: for some fixed parameters ε and

θ such that 0 < ε < 1 and 0 < θ < 1, set αk := θj , where j is the smallest

nonnegative integer satisfying the inequality

ϕ(uk + θjdk) ≤ ϕ(uk) + εθj〈ϕ′(uk), dk〉.

We start with a simple proposition, which can be considered as a first-order

version of the part of the Dennis–Moré theorem (see, e.g, [9, Proposition 1.15])

concerned with acceptance of the unit stepsize by linesearch methods of the

kind stated above. As the Dennis–Moré theorem would be invoked for com-

parisons several times, we state a part of it for the readers’ convenience.

Proposition 5.1 Let ϕ : IRν → IR be twice differentiable in a neighbourhood

of ū ∈ IRν , with its second derivative being continuous at ū. Let ū be a station-

ary point of problem (25), i.e., ϕ′(ū) = 0, and let the second-order sufficient

optimality condition hold at ū, i.e., ϕ′′(ū) is positive definite. Let {uk} be an

iterative sequence of the descent method specified above, where 0 < ε < 1/2.

Assume that {uk} converges to ū, and

‖dk + (ϕ′′(ū))−1ϕ′(uk)‖ = o(‖ϕ′(uk)‖) (26)

as k → ∞.

Then αk = 1 for all k large enough.
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Proposition 5.2 Let ϕ : IRν → IR be differentiable in a neighbourhood of

ū ∈ IRν . Let {uk} ⊂ IRν be any sequence convergent to ū, and let {dk} ⊂ IRν

be any sequence convergent to zero. Suppose that there exists β > 0 such that

ϕ(uk + dk)− ϕ(uk) ≤ β〈ϕ′(uk), dk〉+ o(‖dk‖2) (27)

as k → ∞, and there exists γ > 0 such that

〈ϕ′(uk), dk〉 ≤ −γ‖dk‖2 (28)

for all k large enough.

Then for any ε satisfying 0 < ε < β, it holds that

ϕ(uk + dk) ≤ ϕ(uk) + ε〈ϕ′(uk), dk〉 (29)

for all k large enough.

Proof By simply combining (27) with (28), we obtain

ϕ(uk + dk)− ϕ(uk)− ε〈ϕ′(uk), dk〉 ≤ (β − ε)〈ϕ′(uk), dk〉+ o(‖dk‖2)

≤ −γ(β − ε)‖dk‖2 + o(‖dk‖2)

≤ 0

for all k large enough, giving the needed conclusion. ⊓⊔

Assumptions (27) and (28) may look somewhat unexpected (especially

(27)), but they are justified (at least) by Corollary 5.1 below, which extends

the Dennis–Moré conditions to the case of possibly non-isolated solutions. The

key features of the simple fact stated in Proposition 5.2, as compared to other

somewhat related results, are the following. First, the direction dk is not con-

nected to the gradient ϕ′(uk) in any way other than (27) and (28). Second,

twice differentiability of ϕ is not assumed, and therefore, neither the Dennis–

Moré condition (26) nor the positive definiteness of ϕ′′(ū) can be invoked in

this setting. Moreover, the method in question may have nothing to do with

the Newton or quasi-Newton methods, and thus the full steps need not result

in the superlinear convergence rate, in principle. In fact, the second derivative
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of ϕ may not even exist near ū, and the (usual) Newton method may simply

be not defined.

The following fact follows from Proposition 5.2. It is already somewhat

closer to the setting of the Dennis–Moré theorem, but still covers a much

wider territory.

Corollary 5.1 Let ϕ : IRν → IR be twice differentiable in a neighbourhood

of a point ū ∈ Ū := {u ∈ IRν : ϕ′(u) = 0}, with its second derivative being

continuous at ū. Let {uk} ⊂ IRν be any sequence convergent to ū, and let

{dk} ⊂ IRν be any sequence convergent to zero. Assume that

dist(uk + dk, Ū) = o(dist(uk, Ū)) (30)

as k → ∞, and there exists γ > 0 such that

〈ϕ′′(ū)dk, dk〉 ≥ γ‖dk‖2 (31)

for all k large enough.

Then for any ε such that 0 < ε < 1/2, the inequality (29) holds for all k

large enough.

Proof We shall show that the assumptions of this corollary imply the

assumptions of Proposition 5.2 for β := 1/2.

For each k, let ûk be any projection of uk + dk onto Ū (note that Ū need

not be convex, so the projection need not be unique; any one can be taken

as ûk). Observe that since {uk} → ū and {dk} → 0, it holds that {ûk} → ū.

From (30) we then have that

‖uk + dk − ûk‖ = o(dist(uk, Ū)) = o(‖uk − ûk‖), (32)

evidently implying that

uk − ûk = −dk + o(‖dk‖) (33)

as k → ∞.
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By the mean-value theorem and by the continuity of ϕ′′ at ū, it holds that

ϕ′(uk+dk) = ϕ′(uk+dk)−ϕ′(ûk) = O(‖uk+dk−ûk‖) = o(‖uk−ûk‖) = o(‖dk‖)

as k → ∞, where the last two estimates are by (32) and (33), respectively. On

the other hand,

ϕ′(uk + dk) = ϕ′(uk) + ϕ′′(uk)dk + o(‖dk‖),

and combining this with the previous estimate we get

ϕ′(uk) + ϕ′′(uk)dk = o(‖dk‖) (34)

as k → ∞. Furthermore,

ϕ(uk + dk)− ϕ(uk) = 〈ϕ′(uk), dk〉+
1

2
〈ϕ′′(uk)dk, dk〉+ o(‖dk‖2)

=
1

2
〈ϕ′(uk), dk〉+ o(‖dk‖2) (35)

as k → ∞, where the last equality is by (34). This gives (27) with β := 1/2.

Finally, again employing (34), we obtain that

〈ϕ′(uk), dk〉 = −〈ϕ′′(ū)dk, dk〉+ o(‖dk‖2)

as k → ∞, and therefore, (31) implies (28) with some γ > 0. ⊓⊔

The key differences between Corollary 5.1 and Proposition 5.1 (part of the

Dennis–Moré theorem) are the following. Instead of the positive definiteness

of ϕ′′(ū), here it is directly assumed that the full-step method provides su-

perlinear decrease of the distance to the solution set, and that the quadratic

form given by the Hessian of the objective function is uniformly positive in

the directions employed by the method. What is important is that this may

be applicable when ϕ′′(ū) is not positive definite, and when the stationary

point in question is non-isolated. The latter is the key feature that would be

needed for our developments below (recall that our objective is to establish su-

perlinear convergence of a globalized sSQP algorithm, sSQP being specifically

motivated by degenerate problems with non-isolated solutions).
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We note that it can be verified that if ϕ is twice differentiable in a neigh-

bourhood of ū, with its second derivative being continuous at ū, and if (31)

holds (in particular, if ϕ′′(ū) is positive definite), then the assumptions of

Proposition 5.2 cannot hold with β > 1.

It is almost obvious that the assumptions of Proposition 5.1 imply the

assumptions of Corollary 5.1, and hence, also of Proposition 5.2. At the same

time, Proposition 5.2 can be applicable when Corollary 5.1 is not (and even

less so is Proposition 5.1), even in the case when ϕ is twice differentiable in

a neighbourhood of ū, with its second derivative being continuous at ū, and

with positive definite ϕ′′(ū). Indeed, under these assumptions, consider, for

example, the scaled Newton directions dk := −τ(ϕ′′(uk))−1ϕ′(uk) with the

scaling factor τ satisfying 0 < τ < 2. Then

〈ϕ′(uk), dk〉 = −
1

τ
〈ϕ′′(uk)dk, dk〉 = −

1

τ
〈ϕ′′(ū)dk, dk〉+ o(‖dk‖2)

as k → ∞, implying that (28) holds with some γ > 0. Furthermore, again

employing the first equality in (35), we derive that

ϕ(uk + dk)− ϕ(uk) =
(

1−
τ

2

)

〈ϕ′(uk), dk〉+ o(‖dk‖2)

as k → ∞, implying that (27) holds with any β satisfying 0 < β < 1 − τ/2.

Therefore, according to Proposition 5.2, the method employing such scaled

Newton directions will ultimately accept the unit stepsize. On the other hand,

this scaled full-step method does not possess superlinear convergence rate un-

less τ = 1. Indeed, if τ 6= 1, then (34) does not hold, implying that (30) does

not hold as well, and hence, Corollary 5.1 is not applicable.

5.3 Rate of Convergence of Globalized Stabilized SQP

Appropriate starting values of c1 and c2 in Algorithm 3.1 can be obtained

using the techniques described in [10]. Allowing to increase these values (es-

pecially c2, which is undesirable) is, of course, not needed for proving global

convergence. However, the goal is also to ensure that the full sSQP steps are
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accepted near a qualified solution, i.e., near (x̄, λ̄) satisfying the Lagrange sys-

tem (4), and such that λ̄ is a noncritical Lagrange multiplier associated to x̄.

Accomplishing this without increasing c2 is often possible, but may lead to a

prohibitively rapid growth of c1. The following example concerning the choices

of penalty parameters is instructive.

Example 5.1 This is problem 20101 from the DEGEN test collection [22]. Let

n := l := 1, f(x) := h(x) := x2. Then x̄ := 0 is the unique solution of problem

(1), the associated Lagrange multiplier set is the entire IR, and λ := −1 is the

unique critical multiplier.

If 1+λ+2x2/σ 6= 0, the sSQP iteration system (6) has the unique solution

ξ = −S(σ; x, λ)x, η =
1

σ
(1− 2S(σ; x, λ))x2, (36)

where

S(σ; x, λ) :=
1 + λ+ x2/σ

1 + λ+ 2x2/σ
.

Assuming that x 6= 0 is close to 0, and λ is close to any multiplier λ̄ 6= −1,

we have that σ := ‖Φ(x, λ)‖ is of order |x|, and h(x) = O(σ2). Therefore,

the test (18) might be passed at (xk, λk) := (x, λ) if we take ψ1(t) = O(t2).

Furthermore, S(σ; x, λ) = 1 +O(|x|), and hence,

h(x)h′(x)ξ = −2S(σ; x, λ)x4 = −2x4 +O(x5).

Therefore, the test (19) might also be passed if we take ψ2(t) = O(t2) (quite a

natural choice), since in this case, ψ2(‖h(x)‖) = O(x4). At the same time (by

direct computation or employing (14)),

〈ϕ′
c1, c2

(x, λ), (ξ, η)〉 = −2S(σ; x, λ)x2(1 + λ) +
1

σ
(1− 2S(σ; x, λ))x4

−2c1S(σ; x, λ)x
4 − 4c2x

2(1 + λ)2

= −2(1 +O(|x|))x2(1 + λ) −
1

σ
(1 +O(|x|))x4

−2c1(1 +O(|x|))x4 − 4c2x
2(1 + λ)2

= −2x2(1 + λ) +O(|x|3)− 2c1(x
4 +O(|x|5))

−4c2x
2(1 + λ)2.
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If λ̄ < −1, which means that this multiplier violates SOSC (5), then in order

to make the expression in the right-hand side negative by only selecting c1

(i.e., when c2 ≥ 0 is some fixed small number), one has to take c1 of order

1/x2, which also guarantees (17) provided q ≥ 2 (if q < 2, then c1 would have

to grow even faster since ‖(ξ, η)‖ is of order |x|). At the same time, in this

case the needed descent property can be achieved by taking sufficiently large

but bounded c2. In order for this scenario to take place, we need to make the

decrease of ψ1(t) slower than t2 as t → 0+, and ψ3(t) = O(t): with these

choices, the test (18) will eventually fail, while the test (20) might be passed.

We start our local analysis with the following result concerning the accep-

tance of sSQP directions.

Lemma 5.1 Let f : IRn → IR and h : IRn → IRl be twice differentiable in

a neighbourhood of x̄ ∈ IRn, with their second derivatives being continuous at

x̄. Let x̄ be a stationary point of problem (1) with an associated noncritical

Lagrange multiplier λ̄ ∈ IRl. Let the functions ψ1, ψ2, ψ3 in Algorithm 3.1 be

taken as follows: ψ1(t) := ρ1t, ψ2(t) := ρ2t
2, ψ3(t) := ρ3t, where ρ1, ρ3 > 0,

ρ21 + ρ23 < 1, 0 < ρ2 < 1.

Then for any (xk, λk) ∈ IRn × IRl violating the Lagrange system (4) and

close enough to (x̄, λ̄), the system (6) with σ := σk and (x, λ) := (xk, λk) has

the unique solution dk := (ξk, ηk), and (18) and (19) are satisfied, or (20) is

satisfied.

Moreover, if q ≥ 2, then the quantity

c̄1(ρ‖d
k‖q; xk, λk; ξk, ηk)

is uniformly bounded for all (xk, λk) close enough to (x̄, λ̄) and satisfying (18)

and (19), and the quantity

c̄2(ρ‖d
k‖q; xk, λk; ξk, ηk; c1)

is uniformly bounded for all (xk, λk) close enough to (x̄, λ̄) and satisfying

(20), and for bounded values of c1. In particular, if C1 and C2 are chosen large
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enough, then for any (xk, λk) close enough to (x̄, λ̄), Algorithm 3.1 accepts the

sSQP direction dk and sets c1 and c2 such that (17) holds for this direction.

Proof The existence and uniqueness of dk solving (6) is ensured by Theo-

rem 5.1 (a).

With the specified choices of ψ1 and ψ3, if both tests (18) and (20) are

violated for (xk, λk) close enough to (x̄, λ̄), then

σ2
k = ‖Φ(xk, λk)‖2 ≤ (ρ21 + ρ23)σ

2
k < σ2

k

(recall that ρ21 + ρ23 < 1), giving a contradiction. Therefore, at least one of

these tests must be satisfied.

Suppose that (18) holds. According to the estimate (23) in Theorem 5.1

(b), there exists ℓ > 0 such that the bound

‖(ξk, ηk)‖ ≤ ℓ‖Φ(xk, λk)‖ (37)

holds for (xk, λk) close enough to (x̄, λ̄). Then, taking into account the second

equation in (6), we obtain that

〈h(xk), h′(xk)ξk〉 = 〈h(xk), −h(xk) + σkη
k〉

≤ −‖h(xk)‖2 + σk‖h(x
k)‖‖ηk‖

≤ −‖h(xk)‖2 + ℓσ2
k‖h(x

k)‖

≤ −‖h(xk)‖2 +
ℓ

ρ21
‖h(xk)‖3

= −

(

1−
ℓ

ρ21
‖h(xk)‖

)

‖h(xk)‖2,

implying that (19) with the specified ψ2 is satisfied for xk close enough to x̄.

Furthermore, by the bound (37),

〈

∂L

∂x
(xk, λk), ξk

〉

+ 〈h(xk), ηk〉 = O(‖Φ(xk , λk)‖2)

as (xk, λk) → (x̄, λ̄), and the assertion concerning boundedness of c̄1(·) and

c̄2(·) readily follows from (9), (10), and (37). The last assertion of the lemma

is now evident. ⊓⊔
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It remains to show that the full stepsize αk = 1 will be ultimately ac-

cepted by the Armijo rule, when the method converges to (x̄, λ̄) satisfying the

Lagrange system (4) with a noncritical multiplier λ̄.

Lemma 5.2 Let f : IRn → IR and h : IRn → IRl be twice differentiable in

a neighbourhood of x̄ ∈ IRn, with their second derivatives being continuous

at x̄. Let x̄ be a stationary point of problem (1) with an associated Lagrange

multiplier λ̄ ∈ IRl. Let σ : IRn× IRl → IR+ be any function such that σ(u) → 0

as u → ū := (x̄, λ̄) and σ(ū) = 0, and assume that for each u := (x, λ) close

enough to ū there exists d(u) := (ξ, η) satisfying (6) with σ := σ(u), and such

that d(u) → 0 as u→ ū and d(ū) = 0.

Then for any values of c1 > 0 and c2 > 0 there exists a neighbourhood V

of ū and a function χ : IRn × IRl → IR+, continuous at zero, and such that

χ(u) = o(‖d(u)‖2) as u→ ū, and

ϕc1, c2(u+ d(u))− ϕc1, c2(u) ≤
1

2

〈

ϕ′
c1, c2

(u), d(u)
〉

+ χ(u) (38)

for all u ∈ V.

Proof Considering (6), we obtain the existence of a neighbourhood V1 of ū

and a function χ1 : IRn× IRl → IR+ such that d(u) := (ξ, η) with the required

properties exists for each u ∈ V1, χ1(u) = o(‖ξ‖) as u→ ū, and
∥

∥

∥

∥

∂L

∂x
(x + ξ, λ+ η)

∥

∥

∥

∥

≤

∥

∥

∥

∥

∂L

∂x
(x, λ) +

∂2L

∂x2
(x, λ)ξ + (h′(x))Tη

∥

∥

∥

∥

+ χ1(u)

= χ1(u), (39)

‖h(x+ ξ)‖ ≤ ‖h(x) + h′(x)ξ‖ + χ1(u) = σ(u)‖η‖+ χ1(u) (40)

for all u ∈ V1.

Furthermore, from (40) we obtain that

L(x+ξ, λ+η) = L(x+ξ, λ)+〈η, h(x+ξ)〉 ≤ L(x+ξ, λ)+σ(u)‖η‖2+χ1(u)‖η‖

for all u ∈ V1, and hence, there exists a neighbourhood V ⊂ V1 of ū and a

function χ2 : IRn × IRl → IR+ such that χ2(u) = o(‖d(u)‖2) as u→ ū, and

L(x+ξ, λ+η)−L(x, λ) ≤

〈

∂L

∂x
(x, λ), ξ

〉

+
1

2

〈

∂2L

∂x2
(x, λ)ξ, ξ

〉

+χ2(u) (41)
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for all u ∈ V . On the other hand, again employing (6), we have that

〈

∂L

∂x
(x, λ) +

∂2L

∂x2
(x, λ)ξ, ξ

〉

= −〈(h′(x))Tη, ξ〉

= 〈η, h(x) − σ(u)η〉

≤ 〈η, h(x)〉 + σ(u)‖η‖2,

which further implies that

〈L′(x, λ), d(u)〉 =

〈

∂L

∂x
(x, λ), ξ

〉

+ 〈h(x), η〉

≥ 2

〈

∂L

∂x
(x, λ), ξ

〉

+

〈

∂2L

∂x2
(x, λ)ξ, ξ

〉

− σ(u)‖η‖2

for all u ∈ V1. Combining the latter with (41), we obtain the estimate

L(x+ ξ, λ+ η)− L(x, λ) ≤
1

2
〈L′(x, λ), d(u)〉+

1

2
σ(u)‖η‖2 + χ2(u) (42)

for all u ∈ V .

From (3), (39), (40), and (42), it follows that

ϕc1, c2(u+ d(u))− ϕc1, c2(u) ≤
1

2
〈L′(x, λ), d(u)〉+

1

2
σ(u)‖η‖2 + χ2(u)

+
c1
2
(σ(u)‖η‖+ χ1(u))

2 +
c2
2
(χ1(u))

2

−
c1
2
‖h(x)‖2 −

c2
2

∥

∥

∥

∥

∂L

∂x
(x, λ)

∥

∥

∥

∥

2

for all u ∈ V .

Observe that for the function χ̃ : IRn × IRl → IR+ defined by

χ̃(u) :=
c1
2
(σ(u)‖η‖+ χ1(u))

2 +
c2
2
(χ1(u))

2 +
1

2
σ(u)‖η‖2 + χ2(u),

it holds that χ̃(u) = o(‖d(u)‖2) as u → ū. Furthermore, recall that according

to (14),

〈ϕ′
c1, c2

(x, λ), d(u)〉 = 〈L′(x, λ), d(u)〉+ c1〈h(x), h
′(x)ξ〉 − c2

∥

∥

∥

∥

∂L

∂x
(x, λ)

∥

∥

∥

∥

2

,
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and hence, again employing (6),

ϕc1, c2(u + d(u))− ϕc1, c2(u)−
1

2
〈ϕ′

c1, c2
(u), d(u)〉

≤ −
c1
2
(‖h(x)‖2 + 〈h(x), h′(x)ξ〉) + χ̃(u)

= −
c1
2
〈h(x), h(x) + h′(x)ξ〉 + χ̃(u)

= −
c1
2
〈h(x), σ(u)η〉 + χ̃(u)

= σ(u)
c1
2
〈h′(x)ξ − σ(u)η, η〉+ χ̃(u)

≤
c1
2
σ(u)(‖h′(x)ξ‖ + σ(u)‖η‖)‖η‖+ χ̃(u)

for all u ∈ V . This gives (38), once we define χ : IRn × IRl → IR+ as

χ(u) :=
c1
2
σ(u)(‖h′(x)ξ‖ + σ(u)‖η‖)‖η‖+ χ̃(u),

observing also that χ(u) = o(‖d(u)‖2) as u→ ū. ⊓⊔

Assuming now that q := 2 instead of q ≥ 2, and combining Lemmas 5.1

and 5.2 with Proposition 5.2, we obtain the following.

Theorem 5.2 In addition to the assumptions of Lemma 5.1, suppose that in

Algorithm 3.1 we take q := 2 and 0 < ε < 1/2, and that C1 and C2 are taken

large enough.

Then for any sequence {(xk, λk)} generated by Algorithm 3.1 and conver-

gent to (x̄, λ̄), it holds that αk = 1 for all k large enough, and the rate of

convergence is superlinear.

Proof Let a sequence {(xk, λk)} be generated by Algorithm 3.1 and con-

verge to (x̄, λ̄). Recalling the fact established in the proof of Theorem 4.1

and Lemma 5.1, for all k large enough penalty parameters c1 and c2 re-

main unchanged, the algorithm accepts the sSQP direction dk := d(uk) where

uk := (xk, λk), and (17) holds with q := 2.

Moreover, according to (37) (following from Theorem 5.1 (b)), d(uk) → 0 as

uk → ū. Therefore, employing Proposition 5.2 (with ϕ := ϕc1, c2 and β := 1/2)

and Lemma 5.2, we conclude that αk = 1 for all k large enough. Superlinear

convergence rate now follows from Theorem 5.1 (c). ⊓⊔
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In the rest of this section we present a somewhat different line of analy-

sis demonstrating the ultimate acceptance of the full stepsize αk = 1. This

analysis does not use any additional restrictions on the power q. Moreover, it

actually applies to a more general framework than specifically Algorithm 3.1.

In particular, our results hold for any descent method employing the sSQP

search directions and the Armijo rule for ϕc1, c2 , with any fixed c1 > 0 and

c2 > 0 such that c1 is large enough. The price paid for this generality is that

we have to assume SOSC (5) rather than the weaker noncriticality of the lim-

iting multiplier λ̄, and the existence of third derivatives of f and h near x̄.

We note that the results cannot be obtained by applying the Dennis–Moré

theorem, because the Hessian ϕ′′
c1, c2

(x̄, λ̄) (which exists when f and h are

three times differentiable) is always singular when rankh′(x̄) < l (see Proposi-

tion 5.3 below). Our analysis employs Corollary 5.1 instead, which allows such

singularity.

The following is a version of [9, Theorem 4.16 (a)], removing the regularity

assumption on the constraints.

Proposition 5.3 Let f : IRn → IR and h : IRn → IRl be three times differen-

tiable at x̄ ∈ IRn. Let x̄ be a stationary point of problem (1) with an associated

Lagrange multiplier λ̄ ∈ IRl satisfying SOSC (5).

Then for any value of c̄2 > 0 there exists c̄1 ≥ 0 such that for all c1 ≥ c̄1

and c2 ≥ c̄2, the Hessian ϕ′′
c1, c2

(x̄, λ̄) is positive semidefinite, and moreover,

〈ϕ′′
c1, c2

(x̄, λ̄)(ξ, η), (ξ, η)〉 = 0 if and only if ξ = 0 and η ∈ ker(h′(x̄))T.

Proof Differentiating (13) and using the assumption that (x̄, λ̄) satisfies

the Lagrange system (4), for any c1 and c2 we obtain that

ϕ′′
c1, c2

(x̄, λ̄) =





∂2L

∂x2
(x̄, λ̄) + c1(h

′(x̄))Th′(x̄) (h′(x̄))T

h′(x̄) 0





+c2









(

∂2L

∂x2
(x̄, λ̄)

)2
∂2L

∂x2
(x̄, λ̄)(h′(x̄))T

h′(x̄)
∂2L

∂x2
(x̄, λ̄) h′(x̄)(h′(x̄))T









.
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Setting x(η) := (h′(x̄))Tη, we have that

〈ϕ′′
c1, c2

(x̄, λ̄)(ξ, η), (ξ, η)〉 = Qc2(ξ, x(η)) + c1R(ξ, x(η)), (43)

where the quadratic form Qc2 : IRn× im(h′(x̄))T → IR and the quadratic form

R : IRn × im(h′(x̄))T → IR are defined by

Qc2(ξ, x) :=

〈

∂2L

∂x2
(x̄, λ̄)ξ, ξ

〉

+ 2〈ξ, x〉 + c2

∥

∥

∥

∥

∂2L

∂x2
(x̄, λ̄)ξ + x

∥

∥

∥

∥

2

,

R(ξ, x) := ‖h′(x̄)ξ‖2.

If R(ξ, x) = 0 for some (ξ, x) ∈ (IRn × im(h′(x̄))T) \ {(0, 0)}, then it holds

that ξ ∈ kerh′(x̄) = (im(h′(x̄))T)⊥. And hence, 〈ξ, x〉 = 0. Therefore,

Qc2(ξ, x) =

〈

∂2L

∂x2
(x̄, λ̄)ξ, ξ

〉

+ c2

∥

∥

∥

∥

∂2L

∂x2
(x̄, λ̄)ξ + x

∥

∥

∥

∥

2

.

If ξ 6= 0, then Qc2(ξ, x) > 0, by SOSC (5). And if ξ = 0 but x 6= 0, then

Qc2(ξ, x) = c2‖x‖
2 > 0 for any c2 > 0. Taking into account that R is evidently

positive semidefinite, by the Finsler–Debreu lemma (e.g., [9, Lemma 1.25]) we

conclude that for any c2 > 0 there exists c1 ≥ 0 such that the quadratic form

Qc2 + c1R is positive definite.

Therefore, according to (43), 〈ϕ′′
c1, c2

(x̄, λ̄)(ξ, η), (ξ, η)〉 is always positive

except for the case when ξ = 0 and x(η) = 0. Moreover, increasing c1 and c2

can only make this value larger. This completes the proof. ⊓⊔

Theorem 5.3 Let f : IRn → IR and h : IRn → IRl be three times differentiable

in a neighbourhood of x̄ ∈ IRn, with their third derivatives being continuous

at x̄. Let x̄ be a stationary point of problem (1) with an associated Lagrange

multiplier λ̄ ∈ IRl satisfying SOSC (5). Let 0 < ε < 1/2, 0 < θ < 1. Consider

the iterative scheme (xk+1, λk+1) := (xk, λk) + αkd
k, where for each suffi-

ciently large k the search direction dk := (ξk, ηk) is a solution of the system

(6) for σ := ‖Φ(xk, λk)‖ and (x, λ) := (xk, λk), while αk := θj, where j is the

smallest nonnegative integer satisfying the Armijo inequality (21) with some

fixed c1 ≥ 0 and c2 ≥ 0.
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Then for any c̄2 > 0 there exists c̄1 ≥ 0 such that for every c1 ≥ c̄1 and

c2 ≥ c̄2, and for any sequence {(xk, λk)} ⊂ (IRn×IRl)\({x̄}×M(x̄)) generated

by the iterative scheme specified above and convergent to (x̄, λ̄), it holds that

αk = 1 for all k large enough, and the convergence rate is superlinear.

Proof Fix any c̄2 ≥ 0 and consider any c̄1 ≥ 0 such that the assertion of

Proposition 5.3 holds. Fix any c1 ≥ c̄1 and c2 ≥ c̄2 and consider an arbitrary

sequence {(xk, λk)} ⊂ (IRn × IRl) \ ({x̄} ×M(x̄)) specified in the statement

of the theorem.

According to Theorem 5.1 (b), close to the primal-dual solution satisfying

SOSC, the full step of sSQP satisfies the estimate (24), and hence, (30) holds

with uk := (xk, λk) and ū := (x̄, λ̄).

We next prove that under the stated assumptions there exists γ > 0 such

that for all sufficiently large k it holds that

〈ϕ′′
c1, c2

(x̄, λ̄)dk, dk〉 ≥ γ‖dk‖2. (44)

According to Proposition 5.3, we need to show that the normalized sequence

{(ξk, ηk)/‖(ξk, ηk)‖} does not have accumulation points of the form (0, η)

with η ∈ ker(h′(x̄))T. Suppose that, on the contrary, such an accumulation

point exists (in which case ‖η‖ = 1) and assume, without loss of generality,

that the entire sequence converges.

Let P be the orthogonal projector onto (im h′(x̄))⊥. Then Ph′(x̄) = 0, and

employing (15) and the smoothness hypothesis, we obtain that

σkPη
k = P (h(xk) + h′(xk)ξk)

= P (h′(x̄)(xk − x̄) + h′(x̄)ξk + (h′(xk)− h′(x̄))ξk)) +O(‖xk − x̄‖2)

= O(‖ξk‖‖xk − x̄‖) +O(‖xk − x̄‖2) (45)

as k → ∞.

We next show that

xk − x̄ = o(‖ηk‖) (46)
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as k → ∞. Suppose that this is not the case. Then, passing onto a subsequence

if necessary, ηk = O(‖xk − x̄‖), and since ξk = o(‖ηk‖), we conclude that

ξk = o(‖xk − x̄‖). Therefore, there exists µ > 0 such that

‖xk + ξk − x̄‖ ≥ µ‖xk − x̄‖

for all k large enough. Therefore, from (30) we obtain the estimate

‖xk − x̄‖+ dist(λk + ηk, M(x̄)) = o(‖xk − x̄‖+ dist(λk, M(x̄))),

evidently implying that

‖xk − x̄‖+ dist(λk + ηk, M(x̄)) = o(dist(λk, M(x̄))) (47)

as k → ∞. Since

dist(λk, M(x̄)) ≤ dist(λk + ηk, M(x̄)) + ‖ηk‖,

the estimate (47) implies that dist(λk, M(x̄)) = O(‖ηk‖), and hence, (46)

holds, giving a contradiction.

Combining (45) with (46), we conclude that

σkPη
k = o(‖ηk‖2) = o(σk‖η

k‖)

as k → ∞, where the the last equality is by (37). This implies that Pη = 0 or,

equivalently, η ∈ kerP = imh′(x̄).

At the same time, η ∈ ker(h′(x̄))T = (imh′(x̄))⊥, which is only possible

when η = 0. This gives the needed contradiction, thus establishing (44).

The result now follows by applying Corollary 5.1. ⊓⊔

Recall that the proof of Corollary 5.1 includes the demonstration of the

fact that (28) holds with some γ > 0 for all k large enough. This implies that

sSQP directions can indeed be employed by a descent method in Theorem 5.3,

for k large enough.
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6 Numerical Results

In this section, we present computational experiments with the proposed glob-

alized sSQP algorithm on degenerate problems, and compare it with some

alternatives. These include linesearch quasi-Newton SQP, the augmented La-

grangian algorithm, and a combination of sSQP with the augmented La-

grangian. As shown in [26], the effect of attraction to critical Lagrange multipli-

ers (which slows down local convergence) is much less persistent for sSQP than

for SQP, though this undesirable behavior is not avoided by sSQP completely.

One expects that the superlinear rate of sSQP in the cases of convergence to

noncritical multipliers should make its performance on degenerate problems

superior to that of the usual SQP, the latter typically converging (slowly) to

critical multipliers. But it is also important not to lose too much to SQP in

those cases when sSQP still converges to critical multipliers (and thus also does

not achieve the superlinear rate), even if this scenario is much less frequent

for sSQP.

In our numerical experiments, performed in Matlab environment, we com-

pare Algorithm 3.1 with some well-established implementations of SQP and

augmented Lagrangian algorithms, namely, with SNOPT [27] and ALGEN-

CAN [28], respectively. We used ALGENCAN 2.3.7 with AMPL interface,

and SNOPT 7.2-8 coming with AMPL, both with their default values of the

parameters. The third algorithm used for comparisons is the combination of

sSQP with the augmented Lagrangian algorithm, developed in [18], with all

the parameters values as stated in that reference, with the option of sequen-

tial updating of the Hessian, and with the upper bound for the stabilization

parameter (see [18, Section 4]). In what follows, the latter algorithm will be

referred to as sSQP-AugL.

In Algorithm 3.1, parameters are as follows: δ := 10, ε := 0.1, θ := 0.5. Ini-

tial values of the penalty parameters were taken as suggested in [10]: c1 := 100,

c2 := 0.01, with upper bounds C1 := C2 := 1020 (as commented earlier, these

are just safeguards, and in fact they were never activated in our computational



Globalizing Stabilized SQP 31

experience reported below). For the tests (17)–(20) in Algorithm 3.1 we used

the parameters ρ := 0.1, q := 2, and the functions ψ1(t) := ψ3(t) := 0.5t,

and ψ2(t) := 0.5t2. The choices of σ̄ are discussed further below. We define

the matrices Qk in Algorithm 3.1 (when they are requested) using BFGS up-

dates, if the iterations of this type are consecutive. On the very first iteration

where Qk is needed after an iteration that used the sSQP direction, Qk := I

is taken. Furthermore, when the BFGS direction is used, we employ the Wolfe

linesearch rule instead of the Armijo one, i.e., the stepsize αk must satisfy

ϕc1, c2((x
k, λk) + αkd

k) ≤ ϕc1, c2(x
k, λk) + ε1αk

〈

ϕ′
c1, c2

(xk, λk), dk
〉

and
〈

ϕ′
c1, c2

((xk, λk) + αkd
k), dk

〉

≥ ε2
〈

ϕ′
c1, c2

(xk, λk), dk
〉

.

This rule guarantees that the matrices obtained by BFGS updates remain

positive definite; see, e.g., [29, Theorem 4.5]. We use the parameters ε1 := 0.1,

ε2 := 0.9.

Our first test set includes all the 34 equality-constrained problems from the

DEGEN collection [22]. We comment that these are small but in some ways

difficult (at least for achieving fast convergence) problems, ranging from 1 to

10 variables, and from 1 to 7 constraints, with various kinds of degeneracy

(to be discussed later; in particular, we shall consider specifically the subset

of problems where degeneracy is induced by the non-uniqueness of Lagrange

multipliers associated to the primal solution). For each of these problems we

performed 20 runs from random starting points satisfying ‖(x0, λ0)‖∞ ≤ 100.

The run is considered successful if the stopping criterion ‖Φ(xk, λk)‖ ≤ 10−8

was satisfied before the iteration count k passed 500.

In the first series of the experiments, a large value for the upper bound of

the stabilization σ̄ is taken. Specifically, σ̄ := 104. As a measure of efficiency

of the algorithms we use the number of evaluations of the objective function

(which is always the same as the number of evaluations of the constraints).

The results are presented in Figure 1 in the form of a performance profile,

which is a version of the original proposal in [30], adapted for the case of
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Fig. 1 Results for all equality-constrained problems from DEGEN.

multiple runs from different starting points for each test problem. For each

algorithm the plotted function π : [1, ∞) → [0, 1] is defined as follows. Let kp

stand for the average iteration count of a given algorithm per one successful

run for problem p. Let sp denote the portion of successful runs on this problem.

Let rp be equal to the best (minimal) value of kp over all algorithms. Then

π(τ) :=
1

P

∑

p∈R(τ)

sp,

where P is the number of problems in the test set (34 in our case) and R(τ) is

the set of problems for which kp is no more than τ times worse (larger) than

the best result rp:

R(τ) := {p = 1, . . . , P : kp ≤ τrp}, τ ∈ [1, ∞).

In particular, the value π(1) corresponds to the portion of runs for which the

given algorithm demonstrated the best result. The values of π(τ) for large τ

characterize robustness, that is, the portion of successful runs.

One can see from Figure 1 that Algorithm 3.1 is more efficient on most

problems. On the other hand, it has more failures, and is still worse than the

alternatives on some problems. We next comment on the observed behavior in
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more detail, which also leads us to consider the subset of problems with de-

generacy corresponding specifically to non-uniqueness of Lagrange multipliers

(which is, arguably, the most common type of degenerate problems).

We first note that the safeguarding BFGS steps in Algorithm 3.1 were

activated rather rarely, and thus, the algorithm usually works indeed as (glob-

alized) sSQP. BFGS steps showed up somehow systematically only for the

problems 20303, 20308, 20310, 2DD01. Sometimes they save the run, but all

successful runs where a BFGS step was encountered, actually ended up with

sSQP steps (BFGS steps helped the algorithm to recover and get back to suc-

cessful sSQP steps). However, most cases where BFGS steps were needed at

all, eventually ended up with a failure. This seems to suggest that the degen-

erate problems for which this happened are somehow difficult for the given

penalty function, regardless of which directions one uses to minimize it.

A closer look at the numerical results reveals some special features of prob-

lem instances for which Algorithm 3.1 did not perform well. First, 9 problems

in DEGEN have non-isolated primal solutions. Somewhat surprisingly, quasi-

Newton SQP behaves well on such problems, often converging superlinearly to

some solution, while globalized sSQP converges rather slowly on some of these

problems. In 4 other problems there exist no Lagrange multipliers associated to

the primal solution. These two types of degenerate problems (non-isolated pri-

mal solutions and empty Lagrange multiplier sets) are, in fact, rather special.

Moreover, sSQP was certainly not intended for tackling these kinds of de-

generacy, and therefore, there are no reasons to expect its good performance

on this type of problems, in general (that said, Algorithm 3.1 still behaves

quite well on some of these problems). We recall that the purpose of sSQP

is dual stabilization, in the degenerate cases when Lagrange multipliers exist

but are not unique. It is thus natural to consider this class of problems, which

gives 21 instances in DEGEN. For these problems, we observe the behavior

demonstrated in Figure 2, and now Algorithm 3.1 definitely outperforms the

alternatives by efficiency, and has almost the same robustness. With due cau-

tion, we may conclude that the presented globalized sSQP method does work
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quite well on degenerate problems with degeneracy induced by nonunique La-

grange multipliers. However, taking yet a further look at those problems where

relatively slow convergence was observed, we notice that this usually happens

in the non-fully degenerate cases, i.e., when the method converges to a degen-

erate solution x̄ such that h′(x̄) 6= 0. Such cases deserve further investigation.

We discuss this next.

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

t

 

 

Algorithm 3.1
sSQP−AugL
SNOPT
ALGENCAN

Fig. 2 Results for equality-constrained problems from DEGEN with non-unique multipliers

associated to isolated primal solutions.

We observed that when convergence is slow, it does not seem to be caused

by any deficiencies in the proposed globalization technique – often the method

in fact takes full sSQP steps (i.e., αk = 1 is accepted). At issue seem to be some

intrinsic properties of sSQP directions themselves, when far from a solution.

To understand this better, consider the following non-degenerate example.

Example 6.1 Let n := l := 1, f(x) := x2/2, h(x) := x. Then x̄ := 0 is the

unique solution of the problem (1). This solution is non-degenerate, and the

unique associated Lagrange multiplier is λ̄ := 0.
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The sSQP iteration system (6) takes the form





1 1

1 −σ









ξ

η



 = −





x+ λ

x



 ,

and the method generates





ξk

ηk



 =
1

σk + 1





−σk −1

−1 1









xk + λk

xk



 =
1

σk + 1





−(σk + 1)xk − σkλ
k

−λk



 .

Therefore, xk+1 = −Skλ
k, λk+1 = Skλ

k, where Sk = σk/(σk + 1). If σk is

large (e.g., σk = ‖Φ(xk, λk)‖ for (xk, λk) far from solutions), then Sk is close

to 1, and thus the iterates move slowly. On the other hand, if σk is small, then

Sk is close to 0, and thus convergence is fast.
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Fig. 3 Primal-dual sequences for Example 6.1; (x0, λ0) := (−25, 30).

The sequence generated by pure (i.e., without globalization) sSQP iterates

for this example is shown in the left graph of Figure 3. The stopping criterion

is satisfied after 38 iterations only, even though the asymptotic convergence

rate is superlinear.

The behavior similar to that in Example 6.1 appears common if the prob-

lem is not fully degenerate: sSQP often generates long sequences of short

steps far from solutions, before reaching the region where the superlinear con-

vergence shows up. In fact, this has also been observed on some examples in

[31] (which contains some experiments for sSQP without any globalization).



36 A. F. Izmailov et al.

Somewhat informally, the situation can be described as follows. There are two

areas around any qualified solution: the “small” one, where the superlinear

convergence is guaranteed, and the “large” one, outside of which nothing rea-

sonable can be expected from sSQP directions. Short steps happen inside the

“large” area outside of the “small” area. In DEGEN problems with fully de-

generate solutions, the “small” area often actually appears to be quite large,

while for problems with non-fully degenerate solutions this is not the case.

From a different viewpoint, nonzero singular values of the constraints’ Jaco-

bian appear to give rise to repulsion of sSQP iterates from solutions, which

drastically slows down convergence as the current iterate is moved away from

the solutions and the stabilization parameter grows accordingly. On the other

hand, in the region where the repulsion and the attraction compensate for

each other, the algorithm gets essentially stuck. This not only degrades its

efficiency, but often results in failures.

One potential strategy to help avoid the negative effect described above,

is to decrease the value of σ̄ in Algorithm 3.1. The smaller is this value, the

closer is the sSQP iteration system to the one of the usual SQP. In particular,

limiting σk in Example 6.1 to some small value results in small Sk giving

fast convergence. The sequence generated by pure sSQP iterations (without

globalization) with σk bounded by 1 is shown in the right graph of Figure 3. It

takes only 11 iterations for this version of the method to achieve the required

stopping tolerance (cf. the left graph of Figure 3, where there are 38 iterations).

On the other hand, making sSQP “closer” to SQP facilitates attraction

to critical multipliers, and therefore, decreasing σ̄ may also degrade the con-

vergence rate. To illustrate this effect, we consider again the problem from

Example 5.1. It can be easily seen that (36) implies

xk+1 = skx
k, λk+1 = λk − sk(λ

k + 1),

where

sk := 1− S(σk; x
k, λk) =

(

2 +
σk(1 + λk)

(xk)2

)−1

.
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Therefore, for small values of σk we have

xk+1 ≈
1

2
xk, λk+1 + 1 ≈

1

2
(λk + 1).

In particular, {(xk, λk)} converges linearly to (x̄, λ), where λ := −1 is the

unique critical multiplier.

In our experience, the overall behavior of Algorithm 3.1 with σ̄ ≤ 1 is rather

poor, but it can be significantly improved by using some semi-heuristic mod-

ifications, such as second-order corrections (see, e.g., [29, Section 17.3]) and

nonmonotone linesearch [32]. The idea of the latter is to replace ϕc1, c2(x
k, λk)

in the right-hand side of (21) by

max
j=0, ..., R−1

ϕc1, c2(x
k−j , λk−j).

The value R := 8 appears optimal in our experiments.

Finally, our impression is that in cases of convergence to critical multipliers,

the control of c2 becomes crucially important. In particular, the following

heuristic rule added to step 5 of Algorithm 3.1 considerably improves the

performance: if αk ≤ 0.1, replace c2 by min{10c2, 10
10}.

Nonmonotone linesearch increases the efficiency if σ̄ is taken large as well.

The other heuristics mentioned above have almost no impact on the overall

performance for large σ̄.

Performance profile in Figure 4 compares the behavior of Algorithm 3.1

with all the mentioned heuristics implemented, and with different values of

σ̄. Decreasing σ̄ improves robustness, but significantly degrades efficiency. In

particular, this version of Algorithm 3.1 with small values σ̄ is still outper-

formed by the other algorithms on many problems. One of the reasons is that

Algorithm 3.1 with small σ̄ is “close” to SQP globalized by the smooth penalty

function, while it is known that globalization using nonsmooth penalty is bet-

ter.

Perhaps not surprisingly, being only the first step in this direction, our

numerical experience is rather mixed. We detected that far from solutions

sSQP directions are often not very efficient, even when the unit stepsize is
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Fig. 4 Algorithm 3.1 with different values of σ̄.

accepted. This should probably affect any other globalization, not just the one

considered here. However, we believe this mixed news is nevertheless one of

the useful results of the paper, as it makes it clear that some modifications

to pure sSQP directions would probably be needed in the global phase. This

would be the subject of future research. And/or, perhaps, some innovative

ways of managing the dual stabilization parameter σ in (2) might be the key.

7 Conclusions

We presented a globalization of the stabilized SQP method, based on linesearch

for a two-parameter smooth primal-dual penalty function. Global convergence

properties of the algorithm were established. Moreover, we extended the clas-

sical Dennis-Moré analysis on acceptance of the unit stepsize to problems with

non-isolated solutions. Based on these results, it was shown that the proposed

globalized sSQP method retains local superlinear convergence under the same

weak assumptions as those of the pure sSQP. Computational performance on

a set of degenerate test problems was analyzed as well.
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