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Abstract

This article is devoted to the convergence analysis of a special family of iterative regular-
ization methods for solving systems of ill–posed operator equations in Hilbert spaces, namely
Kaczmarz type methods. The analysis is focused on the Landweber–Kaczmarz (LK) explicit
iteration an the iterated Tikhonov–Kaczmarz (iTK) implicit iteration. The corresponding
symmetric versions of these iterative methods are also investigated (sLK and siTK). We prove
convergence rates for the four methods above, extending and complementing the convergence
analysis established originally in [24, 13, 12, 7].
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1 Introduction

Inverse problems under consideration

We consider ill-posed problems with a forward operator that has a block structure: Let

Ai : X → Yi

be linear, where X, Yi are real Hilbert spaces. Whenever necessary, we shall denote by XC the
complexified version of a Hilbert space, i.e., the set of all x1 + ix2 with x1, x2 ∈ X.

Our goal is to solve the system of p equations

Aix = yi , i = 0, . . . , p− 1 , (1)

where yi are given (possibly noisy) data and the system is assumed to be ill-posed or ill-
conditioned. In order to use a common framework, we define the operator A and the data
vector y by

A =

 A0
...

Ap−1

 , y =

 y0
...

yp−1

 .

1Corresponding author.
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The operator A maps from X to the Hilbert space Y = (Y0, . . . , Yp−1). Thus, the equation to
solve is now

Ax = y . (2)

In what follows, bold variables are used to denote block-structured ones.
We also represent the noisy data by yδ, which satisfy the bound

∥yδi − yi∥ ≤ δi , i = 0, . . . , p− 1 , (3)

with noise level in Y satisfying

δ2 =

p−1∑
i=0

δ2i . (4)

In what follows we only require the overall noise level δ, instead of information on the particular
δi.

Kaczmarz type methods

For ill-posed and ill-conditioned problems with a block structure, the class of Kaczmarz-type
iteration is a useful iterative regularization method. The original Kaczmarz iteration [19] consists
of a sequence of successive orthogonal projections (performed in a cyclic way), aiming to solve a
system of linear equations in Hilbert spaces. This method was successfully applied to the inverse
problem of computerized tomography [31] and was named Algebraic Reconstruction Technique
(ART). We refer the reader to [32] for the application of the Kaczmarz method to other relevant
inverse problems with bilinear structure. It is worth mentioning that the Kaczmarz iteration
is closely related to the method of adjoint fields cited in the engineering literature [4]. For
convergence analysis of the Kaczmarz method we refer the reader to [26, 27] (infinite dimensional
spaces) and [28] (finite dimension). Acceleration of the Kaczmarz iteration for inconsistent
linear systems is obtained in [18] by applying under-relaxation. Continuous and semicontinuous
versions of Kaczmarz’ method for the numerical resolution of linear algebraic equations arise
from tomography and other areas of reconstruction from projections [30].

It is immediate to observe that Kaczmarz’ strategy can be used in conjunction with any iter-
ative method for solving ill-posed problems, e.g., gradient type methods (Landweber, Steepest
descent [11]) or Newton type methods (Levenberg-Marquardt [20], IRGN [2], REGINN [36]).
Essentially, one applies one iterative step of the chosen method to each of the equations of the
system cyclically.
The investigation of Landweber–Kaczmarz methods for nonlinear ill-posed problems was initi-
ated about ten years ago [24], where convergence of the iteration (without rates) was proven in
case of exact data (the convergence proof for inexact data was incomplete). A complete conver-
gence proof in the noisy data case (again without rates) was given in [14], where the authors
introduced the loping Landweber–Kaczmarz iteration and changed the stop criteria in order to
carry out the convergence proofs.

In what follows we give a brief overview on convergence analysis results for Kaczmarz-type
methods (for both linear and nonlinear problems):
[2006] Iteratively-Regularized-Gauss-Newton–Kaczmarz [5]; convergence with rates;
[2007] Landweber–Kaczmarz [14, 13]; convergence without rates;
[2008] Steepest–Descent–Kaczmarz [8]; convergence without rates;
[2009] Expectation–Maximization–Kaczmarz [15]; convergence without rates;
[2009] Block–Landweber–Kaczmarz [12]; convergence without rates for linear systems;
[2010] Levenberg–Marquardt–Kaczmarz [3]; convergence without rates;
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[2011] Iterated Tikhonov–Kaczmarz [7]; convergence without rates;
[2011] Parallel–Regularized–Newton–Kaczmarz [1]; convergence results with rates;

Notice that in [5] rates of convergence are obtained. In this article however, the assumptions
on the nonlinearity of the operator equation (modeling the inverse problem) are by far the
strongest. Convergence rate results can also be found in [1]. However, the method described
there is not a cyclic (sequential) iteration, but it consists of solving in parallel all equations of
the system and then computing a convex combination of a (regularized) Newton step for each
subproblem.

While convergence results in the remaining articles are obtained using essentially the tan-
gential cone condition [37, 17], the convergence proof in [5] require more delicate (stronger)
assumptions as the adjoint range invariance condition [11] and a uniform bound on the conver-
gence of the regularization operators [5, Sec. 3.1, assumption (3.5)].
Moreover, in order to derive rates of convergence, source conditions (smoothness assumptions
on the solution) are also required.

Aim and scope

Differently from other iterative regularization methods such as Landweber iteration, CG, or it-
erated Tikhonov, a satisfactory convergence rate analysis for Kaczmarz-type iterations is not yet
available, even in the simplest case of linear problems in Hilbert spaces. A possible explanation
is the fact that Kaczmarz-type methods can be seen as nonsymmetric preconditioned versions of
usual Richardson/Landweber type iterations (therefore, standard spectral theoretical approach
cannot be used to derive rates).

The goal of this paper to close this gap and to establish a convergence rates analysis of the
symmetric and nonsymmetric, implicit and explicit Landweber–Kaczmarz type iteration.

Our approach is based on the well-known formulation of these iterations as Gauss-Seidel
preconditioned Landweber iteration [31, 10]. Moreover, we use the holomorphic functional cal-
culus and functional calculus on the numerical range to obtain estimates for the approximation
error and the propagated data error. In combination this leads to error estimates and conver-
gence rates (using appropriate parameter choice rules), similar to the standard case for linear
iterative regularization schemes. The methods of estimating the convergence rates in this paper
can be found in the work of Plato [34] for sectorial operators (see also Nevanlinna [33]). These
results, however, are for rather general operator equations, not necessarily ones coming from
Kaczmarz-type iterations. The main difficulty concerning the use of these results is the problem
of estimating the spectrum of the involved operators. In this work we use the numerical range,
which is a spectral set, to derive some relevant inequalities. This allows to give computable
conditions (see, e.g., (49), (50) or (55), (56)) for the convergence rates. It turns out that, for
sufficiently small stepsizes, one always gets the standard Hölder convergence rates.

The paper is organized as follows. In Section 2 we define four Landweber–Kaczmarz type
iterations. The first two are the classical method (here also referred to as the nonsymmetric LK
method) and the iterated Tikhonov–Kaczmarz (iTK) method (its implicit version). Moreover,
for each one of them we define their symmetric counterparts: sLK and siTK. We also compare
them with the classical Landweber method and iterated Tikhonov method when applied to the
full block system (i.e., when the Kaczmarz strategy is not applied). Furthermore in Section 2
we clarify the idea that the above mentioned Kaczmarz iterations can be seen as precondi-
tioned version of the classical Landweber method or iterated Tikhonov method. In Section 3 we
prove convergence rates for the nonsymmetric case including the classical Landweber–Kaczmarz
method and the iterated Tikhonov–Kaczmarz (iTK) method. In Section 4 we discuss the ob-
tained results. In Appendix A, for the sake of completeness of the presentation, we prove
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convergence rates for the symmetric iterations (sLK) and (siTK). This is done following the
ideas in [11] to analyze iterative regularization methods in Hilbert spaces.

2 Kaczmarz and Block iteration methods

In this section we define the implicit and explicit Landweber–Kaczmarz iteration (symmetric
and nonsymmetric versions of each method) applied to (2) and contrast them with the usual
implicit or explicit Landweber iteration for block structured systems.

For generality we include p corresponding preconditioning operators Mi. In all of the follow-
ing we assume the following condition:

Mi : Yi → Yi symmetric bounded positive definite operators, i = 0, . . . , p− 1 . (5)

We collect the preconditioners into a block diagonal matrix M

M = diag(Mi) i = 0, . . . , p− 1, (6)

which is obviously symmetric bounded positive definite.

2.1 Nonsymmetric Kaczmarz-type iteration and block iterations

Let us first define the classical (nonsymmetric) Landweber–Kaczmarz (LK) method with precon-
ditioning. The LK method defines a sequence of approximate solutions x0, x1, . . ., xk, . . . to
(2), which is based on the iteration

x̄n+1 = x̄n −A∗
[n]M[n](A[n]x̄n − yδ[n]) [n] := mod(n, p)

xk := x̄kp k = 0, 1, . . .
(7)

starting at some initial element x̄0 and with Mi given as in (5). The approximate solutions to
(1) are the iterates xk. Hence, in order to compute xk+1 from xk, one has to cycle through the
equations (1) from top to bottom (i.e., i = 0 to i = p − 1) performing Landweber-type steps.
Commonly, the LK iteration is used with the trivial preconditioning Mn = I or M[n] = τ[n]I
with τ[n] > 0 being stepsize parameters.

This iteration can be compared with the one obtained by applying a standard Landweber
iteration to the block system (1). This is called here (block) Landweber method, i.e., the sequence
of approximate solutions to (2), x0, x1, . . ., xk, . . . is defined by (compare with (7))

x̄n+1 = x̄n −A∗
[n]M[n](A[n]xk−1 − yδ[n]) ,

xk := x̄kp k = 0, 1, . . .
(8)

starting at some initial element x̄0. Equivalently, (8) can be written in the more common block
form

xk = xk−1 −A∗M(Axk−1 − yδ) , (9)

with the block matrix M given as in (6). Once again, a common preconditioner for the block
Landweber iteration is the choice M = τI with a positive stepsize parameter τ .

The block Landweber iteration can be seen as a sequence of explicit Euler steps for the
gradient flow of the least squares functional for (2). For ill-posed operator equations, the implicit
version of the Landweber iteration is usually called the iterated Tikhonov (iT) method. The
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implicit version of the block Landweber iteration (9) or (8) is here refered to as (block) iterated
Tikhonov regularization, with iterations xk given by:

x̄n+1 = x̄n −A∗
[n]M[n](A[n]xn+1 − yδ[n]) ,

xk := x̄kp k = 0, 1, . . .
(10)

or, more commonly, written as block iteration in the form

xk = xk−1 −A∗MA(xk − yδ) , (11)

with the operator M defined as in (6). This iteration is well-defined if I +A∗MA, is invertible.
Note that for computations, the expression (11) is used with

xk = (I +A∗MA)−1
(
xk−1 +A∗Myδ

)
.

Both the block Landweber iteration and LK iteration have implicit counterparts. The im-
plicit variant of the LK iteration (7) is the iterated Tikhonov–Kaczmarz (iTK) method, and is
defined by (compare with (7))

x̄n+1 = x̄n −A∗
[n]M[n](A[n]x̄n+1 − yδ[n]) ,

xk := x̄kp k = 0, 1, . . .
(12)

starting from an arbitrary initial guess x̄0. This iteration is well-defined if all the operators
I +A∗

[n]M[n]A[n] are invertible (in each step of a cycle we have to solve a linear system involving

this operator). Notice that, with the common choice M[n] = 1
αI, a problem of Tikhonov-

regularization type has to be solved in each step.

2.2 Symmetric Kaczmarz-type iterations

A further variant of the Kaczmarz type iterations are their symmetric versions [10]. Note that in
contrast to the block-iterations, the iterations LK, iTK, are not invariant if the ordering of the
equations are reversed. For this reasons (and since they are induced by a nonsymmetric block
preconditioning) we call them the nonsymmetric Kaczmarz-type iterations. In what follows we
define symmetric variants of LK and iTK.

At first a usual Kaczmarz cycle is performed, followed by another cycle, in which the order
of the equations is reversed. I.e., in the second cycle the first iteration starts with Ap−1, yp−1,
followed by one with Ap−2, yp−2. This yields the symmetric Landweber–Kaczmarz (sLK) method

x̄n+1 =


x̄n −A∗

[n]M[n](A[n]x̄n − yδ[n])

if 0 ≤ mod(n, 2p) ≤ p− 1

x̄n −A∗
p−1−[n]Mp−1−[n](Ap−1−[n]x̄n − yδp−1−[n])

if p ≤ mod(n, 2p) ≤ 2p− 1

xk := x̄k2p [n] := mod(n, p) .

(13)

For completeness of the presentation, we also define the symmetric variant of the iTKmethod,
namely the symmetric iterated Tikhonov Kaczmarz (siTK) method, which is given by

x̄n+1 =


x̄n −A∗

[n]M[n](A[n]x̄n+1 − yδ[n])

if 0 ≤ mod(n, 2p) ≤ p− 1

x̄n −A∗
p−1−[n]Mp−1−[n](Ap−1−[n]x̄n+1 − yδp−1−[n])

if p ≤ mod(n, 2p) ≤ 2p− 1

xk := x̄k2p [n] := mod(n, p) .

(14)
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It is easy to see that the symmetric versions double the computational amount per overall
iterations. Moreover, comparing the LK method with the block Landweber iteration it is clear
that the computational complexity is about the same, but the former is simpler since it does
not requires one to store the old iterates xk.

2.3 Kaczmarz iterations and Gauss-Seidel-preconditioning

The approach for a convergence analysis of Kaczmarz iterations is based on the fact that these
methods can be expressed as ordinary Landweber (respectively iterated Tikhonov) iterations
preconditioned with a suitable preconditioner. This has already been observed by Natterer [31],
who showed that the classical Kaczmarz method with preconditioner Mi = ω(AiA

∗
i )

−1 equals
an SOR-method. For general preconditioning matrices Mi, the equivalence of the Landweber–
Kaczmarz method to a Gauss-Seidel preconditioned Landweber iteration was shown by Elfving
and Nikazad [10]. In this section we extend their results to the iterated Tikhonov method. We
mostly stick here to the notation in [10].

Let us define the lower triangular operator L : Y → Y and the block diagonal operator D
as follows

L :=


0 0

A1A
∗
0

. . .
...

. . .
. . .

Ap−1A
∗
0 . . . Ap−1A

∗
p−2 0

 , D := diag(M−1
i ), i = 0, . . . , p− 1 . (15)

Then the following result holds true [10]:

Theorem 1. Let xk be the iterates of the Landweber–Kaczmarz method (7) and let all Mi be
invertible. Then the iteration (7) can be expressed as (nonsymmetric) preconditioned Landweber
method of the form

xk+1 = xk −A∗MB(Axk − y) , (16)

with
MB = (D+ L)−1 (17)

and L,D as in (15).

Notice that, if all Mi are invertible, so is MB since this is a lower triangular operator.
However, except for nontrivial cases, the operator MB is not symmetric. Thus, (16) cannot be
seen as a symmetric preconditioned version of the classical block Landweber iteration (9).

A brief inspection of the proofs of this theorem shows that (D+ L)−1 is not necessarily the
only possible choice for MB. Actually, any operator MB satisfying

A∗MB(D+ L) = A∗

can be used as well in the iteration (16). A similar theorem, again due to Elfving and Nikazad
[10], holds for the sLK method:

Theorem 2. Let xk be the iterates of the symmetric Landweber–Kaczmarz method (13) and
let all Mi be invertible. Then the iteration (13) can expressed as a preconditioned Landweber
iteration

xk+1 = xk −A∗MSB(Axk − y) , (18)

with
MSB = M∗

B(2D− diag(AiA
∗
i ))MB , (19)

and L, D as in (15), and MB as in (17).
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In contrast to Theorem 1, we have here a symmetric preconditioning operator MSB, which
also justifies the notion of symmetric/nonsymmetric iterations. The results in Theorem 2 carry
over to the iterated Tikhonov case.

Theorem 3. Let all Mi, i = 0, . . . , p − 1 be invertible. The sequence {xk} generated by the
iterated Tikhonov–Kaczmarz method (12) can be expressed as a (nonsymmetric) preconditioned
block iterated Tikhonov iteration

xk+1 = xk −A∗NB(Axk+1 − y) , (20)

with
NB = ((D− L)−1)∗. (21)

Similarly, the iterates xk of the symmetric iterated Tikhonov–Kaczmarz method (14) can be
expressed as preconditioned iterated Tikhonov method

xk+1 = xk −A∗NSB(Axk+1 − y) , (22)

with
NSB = NB (2D+ diag(AiA

∗
i ))N

∗
B.

Proof. The iTK iterates satisfy

x̄n = x̄n+1 +A∗
[n]M[n](A[n]x̄n+1 − yδ[n]).

Define the permutation operator P that reverses the order of equations, i.e.,

P


z0
z1
. . .
zp−2

zp−1

 =


zp−1

zp−2

. . .
z1
z0

 .

Moreover, define the vector ω = (ω0, ω1, . . . , ωp) := (x̄p, x̄p−1, . . . , x̄1, x̄0). Thus, ωp can be
expressed as the result of one cycle of a Landweber–Kaczmarz iteration (7) with initial element
ω0 and with Ā = PA, ȳ = Py, M̄[n] = − (Pdiag(Mi))i respectively replacing A, y, M in
(7) (i.e., with the ordering of the equations reversed). Thus, according to Theorem 1, we can
express

ωp = ω0 − Ā∗M̄B[Āω0 − ȳ] .

Going back to the original variables, this means that

x̄0 = x̄p −A∗P∗M̄BP(Ax̄p − y) .

Rearranging terms, and using the fact P∗M̄BP = NB, we obtain the desired result in the first
case. From this we conclude that, in the symmetric case,

(I + Ā∗N̄BĀ)x2p = xp + Ā∗N̄Bȳ ,

where N̄B is defined as in (21), but with the order of the operators reversed. It can be verified
that PL̄P = L∗, and hence PN̄P = N∗. Therefore, with respect to the original variables, we
obtain

(I +A∗N̄∗
BA)x2p = xp +A∗N̄∗

By.

Now, multiplication with (I +A∗N̄BA) from the right, together with the identity

(I +A∗N̄BA)(I +A∗N̄∗
BA) = I +A∗(NSB)A

yield the desired result in the symmetric case.
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Theorems 1–3 allows us to use the convergence theory of ordinary Landweber method and
iterated Tikhonov method in Hilbert spaces to establish convergence rates. The symmetric case
is considered in Appendix A, and is a rather straightforward application of the according theory
[11]. The nonsymmetric case, however, is more demanding and will be treated in details in the
following section.

3 Analysis of the nonsymmetric methods

In this section we present the convergence analysis and establish convergence rates for the Land-
weber–Kaczmarz method (7) and for the iterated Tikhonov–Kaczmarz method. According to
Theorem 1 this iteration can be written as a Richardson-type iteration of the form (16). The
main difficulty compared to the symmetric LK method is that the operator A∗MBA is not
symmetric, except in trivial cases, e.g., when all operators Ai commute. Hence, the classical
analysis based on self-adjoint operators cannot be applied.

For notational simplicity we define G := A∗MBA. The equivalence between (7) and (16)
can be written in the form (see [10])

I −G = (I −A∗
p−1Mp−1Ap−1)(I −A∗

p−2Mp−2Ap−2) . . . (I −A∗
0M0A0) , (23)

which immediately yields the following result:

Lemma 3.1. If maxi ∥A∗
iM

1
2
i ∥ <

√
2, then G is an accreative operator, i.e., it satisfies

Re(Gx, x) ≥ 0 , ∀x ∈ XC .

Proof. By definition, for all 0 ≤ i ≤ p−1, the operator A∗
iMiAi is symmetric positive semidefinite

with norm bounded by 1. Thus, (I −A∗
iMiAi) is non-expansive, and so is I −G. Consequently,

Re(Gx, x) = (x, x)− Re((I −G)x, x) ≥ ∥x∥2 − ∥(I −G)∥ ∥x∥2 ≥ 0

concluding the proof.

It follows from Lemma 3.1 that the spectrum of G is contained in the positive half space
σ(G) ⊂ {λ ∈ C |Re(λ) ≥ 0}, and that the well-known resolvent estimate

∥(G+ tI)−1∥ ≤ C
1

t
∀t > 0,

hold true [23, Chpt. 3, Th 3.2], i.e., G is a weakly sectorial operator [35, 34]. For such operators
the fractional powers Gα, α > 0, are well-defined by means of a Dunford-Schwartz-type integral.

For the remaining of this section, we adopt the (standard) notation: xδk denotes the iteration

(16) with noisy data y = (yδi )
p−1
i=0 , xk denotes the iteration (16) with exact y = (Aix

†)p−1
i=0 . First

we estimate the propagated data error:

Lemma 3.2. Let xδk be the iteration (16) with noisy data and xk the iteration (16) with exact
data. Then we have the following estimate with a constant C = C(A,MB)

∥xδk − xk∥ ≤ Ckδ . (24)

If additionally
sup
k∈N

∥(I −MBAA∗)k∥ ≤ C1 , (25)

holds with a constant C1, then
∥xδk − xk∥ ≤ C

√
kδ , (26)

where the constant C is independent of k.
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Proof. As for classical Landweber iteration we may write

xδk − xk =

k∑
j=0

(I −A∗MBA)jA∗MB(y − yδ) .

Thus, since I −G is nonexpansive, (24) follows immediately with C = ∥A∗MB∥. Now assume
that (25) holds true. Denoting by gL(x) the polynomial gL(x) =

∑k
j=0(1− x)j , we can write

∥xδk − xk∥2

=
(
gL(A

∗MBA)A∗MB(y − yδ), gL(A
∗MBA)A∗MB(y − yδ)

)
=

AA∗
k∑
j=0

(I −MBAA∗)jMB(y − yδ), gL(MBAA∗)MB(y − yδ)


=
(
M−1

B MBAA∗gL(MBAA∗)MB(y − yδ), gL(MBAA∗)MB(y − yδ)
)

≤ ∥M−1
B (I − (I −MBAA∗)k+1)MB(y − yδ)∥∥gL(MBAA∗)MB(y − yδ)∥

≤ ∥M−1
B ∥∥(I − (I −MBAA∗)k+1∥∥MB(y − yδ)∥

∥gL(MBAA∗)MB(y − yδ)∥

≤ ∥M−1
B ∥(1 + C1)

 k∑
j=0

∥(I −MBAA∗)∥j
 ∥MB(y

δ − y)∥∥yδ − y∥.

This estimate, together with (25), yields an estimate of the order kδ2, completing the proof.

We now have to estimate the propagated error term xk − x†. For this purpose we need an
auxiliary lemma. Roughly speaking, it states that I −G is a contraction for elements which are
not in the null-space of G. The precise formulation follows:

Lemma 3.3. Let maxi ∥A∗
iM

1
2
i ∥ <

√
2. Moreover, let η > 0 and x ∈ XC with ∥x∥ = 1 be given.

If
Re (Gx, x) ≥ η , (27)

then there exists a positive γ < 1 depending on η, p and (∥A∗
iM

1
2
i ∥)

p−1
i=0 such that

∥(I −G)x∥2 ≤ 1− γ . (28)

Proof. Denote by Eλ,i the spectral family associated to A∗
iMiAi, i = 0, . . . , p− 1. Moreover, for

each ξ > 0 define the orthogonal projectors

Pξ,i =

∫
λ≤ξ

dEλ,i Qξ,i = I − Pξ,i =

∫
λ>ξ

dEλ,i .

Note that these orthogonal projectors have norm one and satisfy ∥Pξ,ix∥2 + ∥Qξ,ix∥2 = ∥x∥2.
Let 0 < ξ < 1 be such that (1 − ξ)2 ≥ (1 − ∥A∗

iMiAi∥)2, for all i = 0, . . . , p − 1. From our

assumption maxi ∥A∗
iM

1
2
i ∥ <

√
2, such a ξ can be chosen out of an interval (0, ξ0).
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Next we define θ := 1 − (1 − ξ)2 = 2ξ − ξ2 > ξ > 0. Using spectral calculus, we obtain for
our ξ

∥(I −A∗
iMiAi)x∥2 =

∫
λ≤ξ

(1− λ)2d∥Eλ,ix∥2 +
∫
λ>ξ

(1− λ)2d∥Eλ,ix∥2

≤ ∥Pξ,ix∥2 +max{(1− ξ)2, (1− ∥A∗
iMiAi∥)2}∥Qξ,ix∥2

= ∥Pξ,ix∥2 + (1− ξ)2(∥x∥2 − ∥Pξ,ix∥2) = (1− (1− ξ)2)∥Pξ,ix∥2 + (1− ξ)2∥x∥2

= θ∥Pξ,ix∥2 + (1− θ)∥x∥2,

(29)

and

∥A∗
iMiAix∥2 =

∫
λ≤ξ

λ2d∥Eλ,ix∥2 +
∫
λ>ξ

λ2d∥Eλ,ix∥2 ≤ ξ2∥Pξ,ix∥2 + ∥M
1
2
i Ai∥

4∥Qξ,ix∥2

≤ ξ2∥Pξ,ix∥2 + 4
(
∥x∥2 − ∥Pξ,ix∥2

)
. (30)

Now define for each k ≤ p− 1 the operators

Hk = Πki=0(I −A∗
iMiAi) ⇔ Hk = Hk−1 −A∗

kMkAkHk−1, H0 = (I −A∗
0M0A0) .

We know that ∥Hk∥ ≤ 1. Moreover, from the recursion formula

Hk − I = Hk−1 − I −A∗
kMkAk(Hk−1 − I)−A∗

kMkAk = (I −A∗
kMkAk)(Hn−1 − I)−A∗

kMkAk

we conclude (using induction) that, for any given x,

∥(Hk − I)x∥ ≤ ∥(Hk−1 − I)x∥+ ∥A∗
kMkAkx∥ ≤

k∑
i=0

∥A∗
iMiAix∥ .

Since G = G− I + I = I −Hp−1, we have

∥Gx∥ ≤
p−1∑
i=0

∥A∗
iMiAix∥ . (31)

Thus, applying (29), we obtain the estimate

∥Hkx∥2 = ∥(I −A∗
kMkAk)Hk−1x∥ ≤ θ∥Pξ,kHk−1x∥2 + (1− θ)∥Hk−1x∥2

≤ (1− θ)∥Hk−1x∥2 + θ (∥Pξ,kx∥+ ∥Pξ,k(I −Hk−1)x∥)2

≤ (1− θ)∥Hk−1x∥2 + θ

(
∥Pξ,kx∥+

k−1∑
i=0

∥A∗
iMiAix∥

)2

≤ (1− θ)∥x∥2 + θ

(
∥Pξ,kx∥+

k−1∑
i=0

∥A∗
iMiAix∥

)2

.

(32)

Define now the sequence of numbers

D0 = 5 , Dk = (9 + 8

k−1∑
i=0

√
Di) , k = 1, . . . p− 1 .

We prove Lemma 3.3 by contradiction. Let us assume that the assertion does not hold true.
Then we would be able to find some η > 0 such that, for any ϵ > 0, there would exist an x with

|((I −G)x, x)|2 ≥ (1− ϵ), Re(Gx, x) ≥ η ∥x∥ = 1 . (33)
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We now take 0 < ϵ < 1 small enough such that

ϵ ≤

(
1

1 +
∑p−1

i=0

√
Di

)2p

(34)

(1−
√
ϵ)2 ≥ max

i=0,...,p−1
(1− ∥A∗

iMiAi∥)2 (35)

ϵ <

(
η∑p−1

i=0

√
Di

)2p+1

. (36)

Since |((I −G)x, x)| ≤ ∥(I −G)x∥ and

∥(I −G)x∥ = ∥Hp−1x∥ ≤ ∥Hp−2x∥ ≤ · · · ≤ ∥H0x∥ ,

it follows that for such ϵ we find an x as in (33) with

∥Hkx∥2 ≥ 1− ϵ ∀k = 0, . . . p− 1 .

By (35), the choice ξ =
√
ϵ can be used in (29) and (32). Therefore, we obtain with θ = 2

√
ϵ−ϵ >√

ϵ the inequality

1− ϵ ≤ (1− θ) + θ

(
∥P√

ϵ,kx∥+
k−1∑
i=0

∥A∗
iMiAix∥

)2

, ∀k = 0, . . . p− 1 ,

yielding the estimate

∥P√
ϵ,kx∥+

k−1∑
i=0

∥A∗
iAix∥ ≥

√
1− ϵ

θ
≥ 1− ϵ

θ
≥ 1−

√
ϵ , ∀k = 0, . . . p− 1 . (37)

Using (30), we get

∥A∗
kMkAkx∥2 ≤ ϵ∥P√

ϵ,kx∥2 + 4(1− ∥P√
ϵ,kx∥2) ≤ ϵ+ 4(1− ∥P√

ϵ,kx∥2) . (38)

For k = 0 we obtain from (37) and (38)

∥P√
ϵ,0x∥2 ≥ 1−

√
ϵ , ∥A∗

0M0A0x∥2 ≤ ϵ+ 4
√
ϵ ≤ D0

√
ϵ .

We proceed by induction to show that

∥A∗
kMkAkx∥2 ≤ Dkϵ

1

2k+1 ∀k = 0, . . . , p− 1 . (39)

Using (37) and the induction hypothesis for k − 1, k ≥ 1, we find

∥P√
ϵ,kx∥ ≥ 1−

√
ϵ−

k−1∑
i=0

ϵ
1

2i+2
√
Di ≥ 1− ϵ

1

2k+1

(
1 +

k−1∑
i=0

√
Di

)
.

Notice that, by (34), the right hand side in this inequality is positive. Hence, by (38) we obtain

∥A∗
kMkAkx∥2 ≤ ϵ+ 4

1−(1− ϵ
1

2k+1

(
1 +

k−1∑
i=0

√
Di

))2


≤ ϵ
1

2k+1 + 4

2ϵ 1

2k+1

(
1 +

k−1∑
i=0

√
Di

)
−

(
ϵ

1

2k+1

(
1 +

k−1∑
i=0

√
Di

))2


≤ ϵ
1

2k+1

(
9 + 8

k−1∑
i=0

√
Di

)
= ϵ

1

2k+1Dk ,
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which verifies (39) for all k = 0, . . . p−1. Now we derive a contradiction to (33). Using (31) and
(36) we obtain

η ≤ Re(Gx, x) ≤ ∥Gx∥ ≤
p−1∑
i=0

∥A∗
iMiAix∥ ≤

p−1∑
i=0

ϵ
1

2i+2
√
Di ≤ ϵ

1
2p+1

p−1∑
i=0

√
Di < η .

Hence, (33) cannot be true for such an ϵ and the proof is complete.

Remark 3.4. It follows from the above proof that γ in (28) can be taken as the largest number
ϵ for which (34)–(36) fails to hold. In particular, for η sufficiently small (such that (36) implies
(34) and (35)), Lemma 3.3 holds true with the following choice of γ:

γ =

(
η∑p−1

i=0

√
Di

)2p+1

.

Lemma 3.5. Let maxi ∥A∗
iM

1
2
i ∥ <

√
2 and assume the existence of a constant h > 0 such that

|([G−GT ]x, y)| ≤ h
(
(Gx, x) + (Gy, y)

)
,

∀ x, y ∈ X, ∥x∥2 + ∥y∥2 = 1 .
(40)

Then, there exists a constant C depending on α, h, p and
(
∥A∗

iM
1
2
i ∥
)p−1

i=0
such that the inequality

∥(I −G)kGα∥ ≤ C

(k + 1)α

holds true for all α > 0.

Proof. It follows from (40) that the numerical range W (G) := {(Gx, x) | x ∈ XC, ∥x∥ = 1}
of the operator G is contained in the sector Σ := {λ ∈ C | |arg(λ)| ≤ ψ < π

2 }, h = tan(ψ).
Moreover, it follows from Lemma 3.3 and |((I −G)x, x)| ≤ ∥x∥∥(I −G)x∥ that, for any η > 0,
there exists a constant 0 < γ < 1 with

W (G) ⊂ (Σ ∩ {λ ∈ C |Reλ < η}) ∪ {λ ∈ C | Reλ ≥ η , |1− λ| <
√

(1− γ)} .

We now fix η = cos(ψ)2 and take γ as the corresponding constant in (28). Using the functional
calculus of Crouzeix [6] we conclude that

∥(I −G)kGα∥XC ≤ CC sup
λ∈Σ

|(1− λ)kλα| ,

for some constant CC ≤ 11.08. For the first part of the numerical range, where Reλ < η, we
have

|λ| ≤ Re(λ)
√

1 + h2 ≤ η

cosψ
≤ cos(ψ) .

Hence,
|(1− λ)|2 = 1 + |λ|2 − 2|λ| cos(arg(λ)) ≤ 1− |λ| cos(ψ) ,

which leads to the estimate

|(1− λ)kλα| ≤
∣∣1− |λ| cos(ψ)

∣∣ k2 |λ|α ≤ 1

cos(ψ)α
∣∣1− |λ| cos(ψ)

∣∣ k2 |λ cos(ψ)|α
≤ αα

cos(ψ)α
(
k

2
)−α ≤ (4α)α

cos(ψ)α
1

(k + 1)α
.

12



For the other part of the numerical range we have

|(1− λ)kλα| ≤ 2α(1− γ)
k
2 , ∀Reλ ≥ η .

Since the inequality (1 − γ)
k
2 ≤ C ′(k + 1)−α, for all k ≥ 0, holds true with some constant C ′,

the lemma follows with C = max{ (4α)α

cos(ψ)α , 2
αC ′}.

Before we proceed, the introduction of some notation is necessary. We define

L̂ := D− 1
2LD− 1

2 , (41)

i.e., L̂ is a lower triangular matrix with zero diagonal similar to L, but with M
1
2
i AiA

∗
jM

1
2
j

replacing AiA
∗
j . Moreover, we also define the matrix |L| ∈ Rp×p as the lower triangular matrix

with zero diagonal

|L|i,j =

{
0 j ≥ i

∥L̂i,j∥ else
, i, j = 0, . . . p− 1 . (42)

It is worth noticing that the matrix entries in |L| start from 0. Notice also that, in what follows,
|L| can be replaced by any other lower triangular matrix with zero diagonal and satisfying

∥L̂i,j∥ ≤ |L|i,j , i < j , i, j = 0, . . . p− 1 . (43)

Consequently, only an upper bound on the norm of ∥L̂i,j∥ is needed.

Remark 3.6. We should analyze (40) in more detail. In terms of A and MB this condition
reads

|(A∗MBA−A∗MT
BA)x, y)| ≤h ((A∗MBAx, x) + (A∗MBAy, y))

∀x, y,∈ X, ∥x∥2 + ∥y∥2 = 1 .
(44)

Substituting z = MBAx and v = MBAy, this condition is satisfied if, for all z, v ∈ Y , the
inequality

|(M−T
B −M−1

B z, v)| ≤ h
(
(M−1

B z, z) + (M−1
B v, v)

)
holds true. Let L̂ be as in (41). Then, the above inequality holds if, for all z, v ∈ Y ,

|(L̂T − L̂)z, v)| ≤ h
(
(z, z) + (v, v) + (L̂z, z) + (L̂v, v)

)
. (45)

This remark leads to the following lemma:

Lemma 3.7. If q is such that
∥L̂∥ ≤ q < 1 , (46)

then (40) holds with h = q/(1− q).

Proof. We start by proving (45). Notice that

|(L̂T − L̂)z, v)| ≤ |(z, L̂v)|+ |(L̂z, v)| ≤ ∥z∥∥L̂v∥+ ∥L̂z∥∥v∥ ,

(L̂z, z) + (L̂v, v) ≥ −∥L̂z∥∥z∥ − ∥L̂v∥∥v∥ .

Thus, it suffices to prove

∥z∥∥L̂v∥+ ∥L̂z∥∥v∥+ h
(
∥L̂z∥∥z∥+ ∥L̂v∥∥v∥

)
≤ h∥z∥2 + ∥v∥2 .
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However, that this last inequality is a consequence of

∥z∥∥L̂v∥+ ∥L̂z∥∥v∥+ h
(
∥L̂z∥∥z∥+ ∥L̂v∥∥v∥

)
≤ q

(
2∥z∥∥v∥+ h∥z∥2 + h∥v∥2

)
≤ q(1 + h)

(
∥z∥2 + ∥v∥2

)
.

Indeed, the choice h = q/(1− q) allow us to estimate the right hand side of the above expression
by h(∥z∥2 + ∥v∥2).

It remains to investigate condition (25). For this purpose we rely on the following theorem
[29, 25] (see also [21]):

Theorem 4. Let T be a bounded operator on a complex Banach space. If there is a constant C
such that

∥(T − λI)−1∥ ≤ C
1

|λ− 1|
, ∀ |λ| > 1, λ ∈ C, (47)

then sup
n

∥Tn∥ <∞.

For the setting T = I −MBAA∗, we thus obtain (25) if we can prove

∥(MBAA∗ − λI)−1∥ ≤ C
1

|λ|
|λ− 1| > 1, λ ∈ C . (48)

We have the following result

Lemma 3.8. Let all Mi be symmetric and positive definite. Define Â := D− 1
2A, and take L̂

as in (41). If

∥L̂∥+ 1

2
∥ÂÂ∗∥ < 1 , (49)

then (48) is satisfied. Consequently, (25) is also satisfied.

Proof. We prove (48). Let Â = D− 1
2A, L̂ be given as in (41). Moreover, define Ŝ(λ) :=

(ÂÂ∗ − λI). From the definition of MB, we obtain for each λ in (48)

∥(MBAA∗ − λI)−1∥ ≤ ∥M−1
B ∥∥(AA∗ − λ(D+ L))−1∥

= ∥M−1
B ∥∥(ÂÂ∗ − λ(I + L̂))−1∥∥D− 1

2 ∥2

≤ ∥M−1
B ∥∥D− 1

2 ∥2∥
(
I − Ŝ(λ)−1λL̂

)−1
Ŝ(λ)−1∥

≤ C∥Ŝ(λ)−1∥ 1

1− |λ|∥S−1∥∥L̂∥
,

as long as |λ| ∥S−1∥ ∥L̂∥ < 1, where we used the estimate (for self-adjoint operators)

∥S−1(λ)∥ ≤ sup
t∈[0,∥ÂÂ∗∥]

1

|λ− t|
.

It is worth noticing that the sup in the following expression is attained for λ→ 2

sup
λ,|λ−1|>1

sup
t∈[0,∥ÂÂ∗∥]

λ

|λ− t|
=

2

2− ∥ÂÂ∗∥
.

From the hypothesis we conclude that 2
2−∥ÂÂ∗∥

∥L̂∥ < 1. Thus, inequality (48) holds true.

Equation (25) follows now from Theorem 4.
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In the sequel we present the main result of this section, where convergence rates for the LK
method are derived.

Theorem 5. Let the lower triangular matrix |L| in (42) satisfy

σmax(|L|) +
1

2

p∑
i=0

∥A∗
iM

1
2
i ∥

2 < 1 (50)

(alternatively, let L̂ satisfy (49)). Moreover, assume that the source condition

x0 − x† = (A∗MBA)νw , for some 0 < ν <∞

is satisfied. Then, the iterates of the Landweber–Kaczmarz method (7) satisfy the error estimate

∥xk − x†∥ ≤ C1
1

kν
+ C2

√
kδ ,

with some positive constants C1, C2. In particular the a-priori choice rule k ∼ δ
−2

2µ+1 yields the
convergence rate

∥xk − x†∥ ∼ δ
2µ

2µ+1 .

If for some τ > 1 sufficiently large, the stopping index k is chosen according to the discrepancy
principle (i.e., as the first index such that ∥A∗MB(Axk−y)∥ ≤ τδ, this yields a parameter choice
rule with the same rate.

Proof. We already know that (50) implies (49), as well as (46) and maxi ∥A∗
iM

1
2
i ∥ <

√
2. The

assertion is then a collection of the previous results. The convergence rates for the discrepancy
principle is a consequence of the results of Plato and Hämarik [35].

It is worth noticing that, by choosing Mi sufficiently small, we can always achieve that the
hypothesis in this theorem (except for the source condition) is satisfied.

3.1 Analysis of the nonsymmetric iterated Tikhonov–Kaczmarz method

In what follows we derive convergence rates for the iTK method (12) (in the block form (20)) in
the nonsymmetric case. First of all, from the equivalence between (12) and (20), it follows that

(I +A∗NBA) = Πp−1
i=0 (I +A∗

iMiAi) .

In particular (I + A∗NBA)−1 is well defined and, as long as all Mi are symmetric positive
semidefinite, we have

∥(I +A∗NBA)−1∥ ≤ 1 .

We first investigate the propagated data error,

Lemma 3.9. Let xδk denote the iteration (20) with noisy data, and xk the iteration (20) with
exact data. Then we have the estimate with a constant C

∥xδk − xk∥ ≤ Ckδ. (51)

If, additionally,
sup
k∈N

∥(I +NBAA∗)−k∥ ≤ C1 (52)

holds with a constant C1, then
∥xδk − xk∥ ≤ C

√
kδ , (53)

where the constant C = C(NB,A) does not depend on k.
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Proof. We may express iteration (20) as

xδk − xk =
k−1∑
j=0

(I +A∗NA)−jA∗N(y − yδ) ,

from which (51) follows immediately. Now, defining gk(λ) :=
∑k−1

j=0(1 + λ)−j we obtain the
estimate (compare with the Landweber iteration)

∥xδk − xk∥2 =
(
gk(A

∗NBA)A∗NB(y − yδ), gk(A
∗NBA)A∗NB(y − yδ)

)
(
N−1
B NBAA∗gk(NBAA∗)NB(y − yδ), gk(NBAA∗)NB(y − yδ)

)
≤ ∥N−1

B ∥ ∥I +NBAA∗ − (I +NBAA∗)−k+1∥
k−1∑
j=0

∥(I +NBAA∗)−k∥δ2

Using (52) in the last inequality we obtain (53).

Next we investigate the approximation error. Notice that

xk − x† = (I +A∗NBA)−k(x0 − x†) ,

Hence, if a source condition with the operator (A∗NBA) holds, we have to estimate the operator
(I +A∗NBA)−k(A∗NBA)α.

Lemma 3.10. If there exists a h > 0 such that∣∣∣([A∗NBA−A∗NT
BA]x, y

)∣∣∣ ≤ h
[
(A∗NBAx, x) + (A∗NBAy, y)

]
,

∀ x, y ∈ X, ∥x∥2 + ∥y∥2 = 1 ,
(54)

then (A∗NBA)α is well defined for all α ≥ 0 and there exists a constant C depending on α, h
such that for all k

∥(I +A∗NBA)−k(A∗NBA)α∥ ≤ C
1

kα
.

Proof. Due to (54), the numerical range of A∗NBA is contained in a sector analog to the one
in the proof of Lemma 3.5. Using [6], we obtain once again

∥(I +A∗NBA)−k(A∗NBA)α∥ ≤ Cc sup
|arg(λ)|<ψ=arctan(h)<π

2

|λ|α

|1 + λ|k
.

Furthermore, |1 + λ| ≥ (1 + |λ| cos(ψ)). Thus, there exists a constant C ′ such that

|λ|α

|1 + λ|k
≤ 1

cos(ψ)α
|λ cos(ψ)|α

|1 + λ cos(ψ)|k
≤ C ′ 1

cos(ψ)α
1

kα
, ∀k ≥ 1

(the last inequality follows from the convergence rate analysis of the standard iterated Tikhonov
regularization), concluding the proof.

The next lemma discuss a sufficient condition for the conditions (52) and (54) in Lemma 3.9
and Lemma 3.10 respectively.
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Lemma 3.11. If
∥L̂∥ < 1 (55)

then (52) and (54) hold true.

Proof. The proof of (54) follows the lines of the proof of Lemma 3.7. To prove (52), we use
Theorem 4 with T = (I +NBAA∗)−1. Thus, for λ ∈ C with |λ| > 1, we estimate

∥(T − λI)−1∥ ≤ ∥(I +NBAA∗)∥ ∥((1− λ)I − λNBAA∗)−1∥

≤ ∥(I +NBAA∗)∥ ∥NB∥ |λ|−1∥((1− 1

λ
)N−1

B +AA∗)−1∥

≤ ∥(I +NBAA∗)∥ ∥NB∥ ∥D− 1
2 ∥2|λ|−1∥(ÂÂ∗ + (1− 1

λ
)(I − L̂∗)∥ .

Thus, setting s := (1− 1
λ), it is enough to prove that

∥(ÂÂ∗ + sI − sL̂∗)−1∥ ≤ C
1

|s|
, ∀ |s− 1| < 1 .

Notice that

∥(ÂÂ∗ + sI − sL̂∗)−1∥ ≤ ∥(ÂÂ∗ + sI)−1∥ ∥(I − (ÂÂ∗ + sI)−1sL̂∗)−1∥

≤ 1

|s|
1

1− ∥(ÂÂ∗ + sI)−1sL̂∗∥
,

provided that ∥(ÂÂ∗ + sI)−1sL̂∗∥ < 1. However, due to the straightforward inequality

∥(ÂÂ∗ + sI)−1s∥ ≤ 1 , ∀ |s− 1| < 1 ,

it follows that
1

1− ∥(ÂÂ∗ + sI)−1sL̂∗∥
≤ 1

1− ∥L̂∗∥
=

1

1− ∥L̂∥
,

establishing the desired bound. Consequently, inequality (52) follows from Theorem 4.

Our next step is to derive rates of convergence for the iterated Tikhonov–Kaczmarz method.

Theorem 6. Let the lower triangular matrix |L| in (42) be such that

σmax(|L|) < 1 (56)

(alternatively, let L̂ satisfy (55)). Moreover, assume the source condition

x0 − x† = (A∗NBA)νw , for some 0 < ν <∞ .

Then, the sequence generated by the iterated Tikhonov–Kaczmarz method (10) satisfies the esti-
mate

∥xk − x†∥ ≤ C1
1

kν
+ C2

√
kδ ,

with some constants C1, C2. In particular, the a-priori choice rule

k ∼ δ
−2

2µ+1

yields the convergence rate

∥xk − x†∥ ∼ δ
2µ

2µ+1 .

If, for some (sufficiently large) τ > 1, k is chosen according to the discrepancy principle (i.e.,
the first index such that ∥A∗MB(Axk − y)∥ ≤ τδ), this yields an a-posteriori parameter choice
rule with the same rate.
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Proof. Since (56) implies (55), the results follow from Lemma 3.11, Lemma 3.10 and Lemma 3.9
respectively. The assertion concerning the discrepancy principle follows once again from [35].

Remark 3.12. In Theorems 5 and 6 convergence rates are established under the source condi-
tions x0 − x† ∈ R(A∗MBA)ν and x0 − x† ∈ R(A∗NBA)ν respectively. It would be interesting
to replace these by the usual source conditions with ranges R(A∗A)ν . It is not clear to us if this
can be done under the same assumptions as in the above mentioned theorems. An equivalence
between the source conditions can be shown if a norm equivalence

d1∥A∗Ax∥ ≤ ∥A∗MBAx∥ ≤ d2∥A∗Ax∥ ,

holds with some uniform constants d1, d2 (analogously for A∗NBA). For this purpose, a gen-
eralization of the Kato-Heinz inequality to accreative operators [22] might be used.

4 Conclusion

We have established convergence rates for the Landweber–Kaczmarz method and the iterated
Tikhonov–Kaczmarz method, for the symmetric and nonsymmetric versions of each method.
Since the only conditions for the convergence theorems are bounds on A∗

iMi, it follows that for
sufficiently small stepsizes (or appropriately scaled operators), standard convergence rates can
always be established. In particular, we aimed to use bounds in our theorems (see, e.g., (50) or
(56)), which are computable and can be used in numerical implementations.

As one would expect, if more information on the operators Ai is available, the weaker con-
ditions (54), (52) (see also (48), (40)) can be proven directly.

Although, asymptotically, the Kaczmarz variants perform similar to their block iterations,
they have some advantages, e.g., a simpler implementation and possibly a larger stepsize. How-
ever, even if they have similar convergence rates (as δ → 0), these two types of iterations can be
quite different in practice. Depending on the distribution of the eigenvalues, on the structure of
the exact solution, and on the noise level, it may happens that the Kaczmarz iterations perform
better (specially at the first iterates).

If information on the distribution of the eigenvalue structure on the exact solution is avail-
able, the results in Section 3 can be used in order to estimate the decay rates of the error in
appropriate subspaces. In particular, convergence of the nonsymmetric methods depends on
how the eigenvalues are located in a sector of the positive complex half plane. The components
that are close to zero and/or away from the real axis will contribute to a slow convergence.

The symmetric iterations have the advantage that they can be used even in cases where the
conditions for the nonsymmetric iterations are not satisfied. However, as a drawback, one must
pay the price of doubling the numerical computations.

We conclude by mentioning that the convergence result analysis in Section 3 can be extended
to general nonsymmetric preconditioned Landweber (and iterated Tikhonov) iterations, which
is highly relevant in practical large scale applications.

Appendix: Analysis of the symmetric case

For the convenience of the reader we present in this appendix the convergence analysis for
the symmetric Landweber–Kaczmarz (sLK) method and the symmetric iterated Tikhonov–
Kaczmarz (siTK) method. As before, we consider the case of linear operator equations (1),
under the assumption (3) on the data.
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A.1 Convergence rates for the sLK method

By Theorem 2 the symmetric Landweber–Kaczmarz method is, roughly speaking, a block
Landweber iteration with preconditioning MSB. This allows us to analyze the convergence and
convergence rates using classical results for the (preconditioned) Landweber iteration (compare
[9]).

If maxi ∥A∗
iM

1
2
i ∥ ≤

√
2 we define the operator

B := (2D− diag(AiA
∗
i ))

1
2MB .

Therefore, we have
MSB = B∗B, (57)

and consequently Theorem 2 can be rephrased as follows:

Corollary 1. If maxi ∥A∗
iM

1
2
i ∥ ≤

√
2 holds true, then the iterates of the sLK method are equiv-

alent to the Landweber iteration applied to the system

BA = By, (58)

i.e., xk+1 = xk − (BA)∗(BAxk −Byδ).

We denote by x† a minimum norm solution of (58). Furthermore we impose a source condi-
tion of the form

x† − x0 =
[
(BA)∗(BA)

]µ
w̃ w̃ ∈ X. (59)

The corresponding noise level is given by δS = ∥B(yδ − y)∥. From (61) below, we see that this
modified noise level is always of the same magnitude as the one in (4).

Theorem 7. Let ∥BA∥ < 2. If the data are exact, then the sLK iteration xk converges to an
x0-minimum norm solution of (58) as k → ∞.

For noisy data, let the iteration be stopped either by the a-priori rule k ∼ δ
2µ

2µ+1

S , or by the (a-
posteriori) discrepancy principle, i.e., at the first index k = k(δS ,y

δ) satisfying ∥B(Axk−yδ)∥ ≤
τδS, for some fixed τ > 1. Moreover, assume that a source condition is satisfied for some µ > 0.

Then we have (optimal order) convergence rates ∥xk−x†∥ ≤ Cδ
2µ

2µ+1

S . In both cases the stopping

index satisfies k = O(δ
− 2

2µ+1

S ).

Proof. See [9, 11].

The convergence results in the above theorem can be stated in a more common form, i.e.,
using only bounds on A, the noise level in (4), and a standard source condition.

At first we investigate the condition ∥BA∥ < 2. We have the following lemma.

Lemma A.1. It maxi ∥A∗
iM

1
2
i ∥ <

√
2 hold true, then

∥BA∥ ≤ 1 .

Proof. From Theorem 1 it follows that (compare with [10])

I −A∗MSBA = Q∗
BQB,

where
QB = (I −A∗

p−1Mp−1Ap−1)(I −A∗
p−2Mp−2Ap−2) . . . (I −A∗

0M0A0) .

Notice that ∥QB∥ ≤ 1 due to our assumptions. Consequently, ∥I −A∗MSBA∥ ≤ 1. Since the
operator A∗MSBA = (BA)∗(BA) is symmetric and positive semidefinite, it’s spectrum satisfies
σ(A∗MSBA) ⊂ (0, 1), and lemma follows.
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Next we relate the source condition (59) and the corresponding noise level to the more
standard source condition

x† − x0 = (A∗A)µw , w ∈ X , (60)

and the corresponding noise level δ. This can be done if MB is an isomorphism.

Lemma A.2. If maxi ∥A∗
iM

1
2
i ∥ <

√
2, then there exist positive constants m1, m2 such that

m1∥y∥Y ≤ ∥By∥ ≤ m2∥y∥Y , ∀y ∈ Y . (61)

These constants can be bounded by

m2 ≤
√
2maxi ∥M

1
2
i ∥

σmin(I − |L|)
, m1 ≥

√
(2−maxi ∥AM

1
2
i ∥2)

maxi ∥M
− 1

2
i ∥σmax(I + |L|)

,

where σmax, σmin denote the largest and smallest singular values of the matrix |L| ∈ Rp×p in
(42) (see also (43)).

Proof. Under the given assumptions it is clear that B is invertible. Moreover, from (57) it
follows that

MSB = D− 1
2 (I + L̂)∗

(
2I − diag(M

1
2
i AiA

∗
iM

1
2
i )

)
(I + L̂)D− 1

2 ,

where L̂ is the operator defined in (41). Setting z := (I + L̂)−1D− 1
2y, equation (61) becomes

equivalent to

m1∥D
1
2 (I + L̂)z∥Y ≤ ∥

(
2I − diag(M

1
2
i AiA

∗
iM

1
2
i )

) 1
2

z∥ ≤ m2∥D
1
2 (I + L̂)z∥ .

However, from the assumption we have

∥
(
2I − diag(M

1
2
i AiA

∗
iM

1
2
i )

) 1
2

z∥ ≤
√
2∥z∥ ,

and also (
(2I − diag(M

1
2
i AiA

∗
iM

1
2
i ))z, z

)
≥
(
2−max

i
(∥A∗

iM
− 1

2
i ∥2

)
∥z∥2 .

On the other hand, we obtain for the operator (I + L̂) the estimate

∥(I + L̂)z∥2 =
p−1∑
i=0

∥
p−1∑
j=0

(I + L̂)i,jzj∥2 ≤
p−1∑
i=0

(

p−1∑
j=0

∥(I + L̂)i,j∥∥zj∥)2

≤ ∥I + |L|∥22∥z∥2 = σmax(I + |L|)2∥z∥2 .

Let x = (I + L̂)−1z, i.e., (I + L̂)x = z. Due to the triangular structure of L̂ it follows that

∥xi∥ ≤ ∥zi∥+
i−1∑
j=0

∥L̂i,j∥∥xj∥ , ∀i ∈ 0, . . . p− 1 .

Next, denoting by |x| = (∥xi∥)p−1
i=0 , we obtain

(I − |L|)|x| ≤ |z| ,
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where ≤ means componentwise inequality. Notice now that, if w is a componentwise positive
vector then (I − |L|)−1w is also componentwise positive. Indeed, this is shown by induction,
since v = (I − |L|)−1w satisfies the recursion formula

v1 = w1, vi = wi +
i−1∑
j=0

|L|i,jvj .

Applying this results to w = |z| − (I − |L|)|x|, we get

|x| ≤ (I − |L|)−1|z| .

Consequently,

∥x∥ ≤ ∥(I − |L|)−1|z|∥Rp ≤ ∥(I − |L|)−1∥2∥z∥2 =
1

σmin(I − |L|)
∥z∥

or σmin(I − |L|)∥x∥ ≤ ∥(I + L̂)x∥.

An immediate consequence of the above lemma is the equivalence of the source conditions
in (59) and (60).

Corollary 2. Let maxi ∥A∗
iM

1
2
i ∥ <

√
2, then for ν ≤ 1

2 we have

mν
1∥(A∗A)νx∥ ≤ ∥ ((BA)∗(BA))ν x∥ ≤ mν

2∥(A∗A)νx∥, (62)

with m1,m2 being the constants in Lemma A.2. In particular, if (60) holds, then (59) also holds
with ∥w̃∥ ≤ 1

mν
1
∥w∥.

Proof. The first inequality is a consequence of Heinz’ inequality (see [11]). The last inequality
follows now from (62) when we set w̃ = ((BA)∗(BA))−ν (A∗A)νw.

We are finally in position to state the main convergence rate result for the symmetric
Landweber–Kaczmarz (sLK) method. The next theorem is actually a collection of the previous
results, together with the standard estimates for the Landweber iteration. The last assertion on
the discrepancy principle requires just a slight modification of the proofs in [11] (notice that we
have δS ≤ m2δ).

Theorem 8. Let maxi ∥A∗
iM

1
2
i ∥ <

√
2, and let x† − x0 satisfy (60) with ν ≤ 1

2 . Moreover, let
x† be a least squares solution of (58). Then, for the iterations of the symmetric Landweber–
Kaczmarz, the following estimate holds true:

∥xk − x†∥ ≤
√
km2δ +

1

(k + 1)ν
1

mν
1

∥w∥ .

In particular, the a-priori parameter choices k ∼ δ
− 2ν

(2ν+1) or k ∼ δ
− 2ν

(2ν+1)

S yield the order optimal
rate. The same estimate holds if k is chosen as the according to the discrepancy principle in
Theorem 7.
If k is chosen as the first index satisfying ∥Axk − yδ∥ ≤ τm2δ with τ > 1, the symmetric
Landweber–Kaczmarz iteration converges with the order optimal rate.
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Comparing the sLK iteration with the usual block Landweber iteration we notice one differ-
ence: If we set the simple preconditionersMi = τI, then for the symmetric Landweber–Kaczmarz
iteration τ = τsLK can be chosen as τsLK < 2

(
maxi ∥Ai∥2

)−1
. This should be contrasted with

the corresponding choice for the block-Landweber iteration, where τ has to be chosen such that
τ∥A∥2 ≤ 2, i.e.,

τ < 2
( p∑
i=0

∥Ai∥2
)−1

< 2
(
max
i

∥Ai∥2
)−1

.

Thus, besides the fact that the sLK iteration is easier to implement, we may also choose a large
stepsize. This has the effect that the sLK iteration will damp errors corresponding to the larger
singular values of A in a more efficient way. Asymptotically this difference is not relevant, since
both iterations yield to the same order of convergence.

Note that the stepsize in the sLK iteration can be selected rather independently of the
number of blocks p. However, the constants m1 and m2 will in general depend on p via the
singular values of I ± |L|. The following (conservative) upper bound can be derived from (43)

∥Li,j∥ ≤ max
i,j

∥Ai∥∥Aj∥ =: η =: |L|i,j , ∀ 1 ≤ j < i . (63)

In this case, we can select |L| as the lower triangular matrix with constant entries η. A direct
estimate shows that σmax(I + |L|) grows linearly with p, while 1

σmin(I−|L|) grows exponentially.

A.2 Convergence rates for the siTK method

The convergence theory for the symmetric iterated Tikhonov–Kaczmarz method can be estab-
lished using spectral theory for the operator A∗NSBA and the well-known filter function

gk(λ) =

k∑
i=1

1

(1 + λ)i
.

In contrast to Landweber-type iterations, the spectrum of the forward operator does not have
to be in the interval [0, 2). Moreover, similarly as in Lemma A.2, it can be shown the existence
of constants n1, n2 such that

n1∥z∥ ≤ ∥(D+ diag(AiA
∗
i ))

1
2N∗

Bz∥ ≤ n2∥z∥ , ∀z ∈ Y .

Consequently, the source conditions x† − x0 ∈ R(A∗A)ν) and x† − x0 ∈ R(A∗NSBA)ν) are
equivalent.

We collect the main results in the next theorem, which follow from standard results on the
iterated Tikhonov regularization [16, 11].

Theorem 9. Let maxi ∥A∗
iM

1
2
i ∥ <

√
2, and let x† − x0 satisfy the source condition (60) with

ν ≤ 1
2 . Moreover, let x† be a least squares solution of (58). The iterations of the symmetric

iterated Tikhonov method satisfy the estimate

∥xk − x†∥ ≤ C1

√
kδ +

1

(k + 1)ν
C2∥w∥ ,

where C1, C2 depends only on p and n1, n2. In particular, the a-priori parameter choice rules

k ∼ δ
− 2ν

(2ν+1) or k ∼ δ
− 2ν

(2ν+1)

S yields order optimal rate. The same holds if k is chosen
according to the discrepancy principle in Theorem 7. If k is chosen as the first index satisfying
∥Axk−yδ∥ ≤ τn2δ, the symmetric iterated Tikhonov method converges with order optimal rate.
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