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Resumo. Estamos interassados em reações químicas exotérmicas que
ocorrem no ar em uma pequena região de um meio poroso sólido
condutor. O ar é injetado no centro da esfera. O calor é gerado
perto do centro e conduzido através da parede da esfera. O objetivo é
determinar quando haverá ignição ou extinção, dependendo do equi-
líbrio entre reação e condução. Simpli�camos a descrição matemática
do sistema, imaginando que a reação ocorre somente na região pró-
xima ao centro da esfera com temperatura uniforme, enquanto que a
condução do calor ocorre no resto da esfera, uma casca esférica. O
sistema de equações de reação-difusão reduz-se à equação do calor
na casca, acoplada na fronteira interior com uma equação diferencial
ordinária para a região de reação. Esta EDO pode ser considerada
como uma condição de contorno não-linear para a equação do calor
na casca.

Esta simpli�cação permite uma análise completa para a evolução
temporal do sistema. Mostramos que, dependendo dos parâmetros
físicos, o sistema admite um ou três equilíbrios. Este último caso tem
importança física: dois dos equilíbrios representam atratores (�ex-
tinção� ou �ignição�) com bacias de atração separadas pela variedade
estável da terceira singularidade. Utilizamos teoria de operadores
para a análise da estabilidade linear e teoria de ponto �xo em uma
equação de Volterra não-linear para provar a existência e unicidade
de soluções para todos os tempos. Aplicamos uma decomposição es-
pectral para descrever a evolução por meio de um sistema in�nito de
equações diferenciais ordinárias acopladas, provando a regularidade
de soluções para dados de Cauchy gerais, assim como o comporta-
mento assintótico para tempos grandes.

Uma conclusão prática de interesse é que para esferas de dimensões
maiores as chances de extinção são maiores. Outra conclusão é que
o sistema completo é muito bem aproximado por uma única EDO, a
qual provém de um tipo de modelo �reduzido� para o reator.

Palavras Chave. Reator químico, meios porosos, perdas de calor,
combustão in-situ, condição de contorno não-linear, sistema in�nito
de EDOs.
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Abstract. We are interested in an exothermic chemical reaction
occurring in air within a small region of a conductive spherical solid
porous medium. The air is injected at the center of the sphere. Heat
is generated near the center, and conducted to the wall of the sphere.
The issue is to determine if there is ignition or extinction, depend-
ing on the predominance of reaction or conduction. We simplify the
mathematical description of the system by imagining that the reac-
tion occurs only in a region with uniform temperature located around
the center of the sphere, while conduction occurs in the rest of the
sphere, a surrounding shell. The system of reaction-di�usion equa-
tions reduces to a linear heat equation in the shell, coupled at the
internal boundary to a nonlinear ordinary di�erential equation in the
reaction region. This ODE can be regarded as a (nonlinear) boundary
condition for the heat equation in the shell.

This simpli�cation allows making a complete analysis of the time
evolution of the system. We show that, depending on physical pa-
rameters, the system admits one or three equilibria. The latter case
has physical interest: the two equilibria represent attractors (�extinc-
tion� or �ignition�) with basins of attraction separated by the stable
manifold for the third equilibrium. We utilize operator theory for the
linear stability analysis, as well as �xed point theory of a nonlinear
Volterra equation for the existence and uniqueness of solutions for all
times. We also use a spectral decomposition to describe the evolu-
tion by means of an in�nite number of coupled nonlinear ordinary
di�erential equations, providing regularity of the solutions for general
Cauchy data, as well as the nonlinear asymptotic behavior for long
times.

One interesting practical conclusion is that higher dimensionality of
the sphere increases the probability of extinction. Another interesting
conclusion is that the whole system is quite well described by a single
ODE, which is a kind of �reduced� model for the reactor.

Keywords. Chemical reactor, porous media, heat losses, in-situ
combustion, nonlinear boundary value problem, in�nite ODE system.
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Introduction

If oxygen is in intimate contact with fuel Arrhenius law says that reaction will occur,
even at low temperatures. However, in a porous medium heat losses can equalize the
small reaction heat generated, so that the system remains trapped in a very slow reaction
mode. Such a mode is indistinguishable from extinction. On the other hand, if heat losses
initially remain smaller than the heat generated by the reaction, temperature increases
and spontaneous ignition occurs. Heat losses are strongly dependent on the geometry
of the heat dissipating region. Therefore we distinguish three idealized geometries, viz.
linear, cylindrical and spherical. We analyze a basic heat di�usion equation model, which
incorporates an Arrhenius heat generation term.

Our goal is to establish under which conditions either the heat losses or the heat
reaction govern the global behavior in a chemical reactor. The reactor is idealized as a
sphere or an in�nitely long cylinder, with a surrounding heat dissipating region. It will
be useful to study �rst an idealized situation where the reactor is planar and bounded
between two in�nite planes, one thermally isolated and the other one in thermal contact
with a heat conducting medium.

The �rst attempts to solve the problem of �extinction� or �combustion� in porous
media are contained in the article [6], where earlier references can be found such as the
pioneering work of Tadema and Weijdema, see [35].

We idealize the reactor by assuming that it is in a time dependent spatially homoge-
neous state in the reaction region. For the conductive region we assume that it is in a time
dependent state with symmetry induced by the geometry considered. It is assumed that
in the reaction region we can control the amounts of fuel and oxygen so as to keep them
constant. This is the case when we inject fresh reactants at a �xed rate in the porous
reactor and expel the combustion products. Thus, we study only the dependence of the
reaction rate on the temperature.

Chemical engineers assume that this setup can only lead to extinction or ignition. We
prove that this is indeed true for most practical cases. Depending on physical parameters,
the system admits one or three equilibria. The latter case has physical interest: the
two equilibria represent attractors (�extinction� or �ignition�) with basins of attraction
separated by the stable manifold for the third equilibrium.

We �nd out that the nature of the solutions for the reactor problem with heat losses is
determined in each geometry by two parameters, namely, the temperature of the external
boundary and the Damköhler number that relates the physico-chemical magnitudes.
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x Introduction

The mathematical analysis of the system is greatly simpli�ed by the assumption that
the reaction occurs only in a region with uniform temperature located around the injection
area, while conduction occurs in the surrounding region. The system of reaction-di�usion
equations reduces to a linear heat equation in the shell with boundary condition governed
by a nonlinear ordinary di�erential equation.

Such boundary conditions are treated by Goldstein et al. in [11] and [17], and by
Vitillaro in [38]. Nonetheless, both groups are interested in regularity, existence and
uniqueness. We only consider a speci�c boundary condition; therefore, we are able to
determine the global behavior of the solution.

One interesting practical conclusion is that higher dimensionality of the domain in-
creases the probability of extinction. Another interesting conclusion is that the whole
system is quite well approximated by a single ODE provided by a reduced model for the
reactor, which possesses kind of �quasi-steady state solution�.

In classical reaction-di�usion systems the idea of quasi-steady state solutions is well
known. If it is assumed that the di�usion term acts in a slower fashion than the reaction
term then a simpli�ed system can be analyzed. However, this simpli�cation does not
always lead to nice approximations of the whole reaction-di�usion equation, see [12]. It
is inappropriate for our case.

Quite contrary, we take advantage that the reaction governs one region while the
di�usion governs in the other region. Then, the growth of the exothermic reaction is
bounded by the heat �ux at the interfase, so essentially every solution converges to one
of the two stable equilibria. This is the core of the reduced model.

Reaction-di�usion equations have been studied for a long time. Applications include
chemical reactions, physics, biology. Problems related to combustion can be attacked
naturally as reaction-di�usion systems, as it has been done by Matkowsky et al., see for
example [26] and [28]. However, the complexity of the equations restricts the results; and
a complete description of the solution is not easy to obtain. For the study of reaction-
di�usion systems, we recommend the classical book of Smoller (1994) and the celebrated
essay from Fife (1979), which has biological applications.

We explain brie�y how this work is organized. In Chapter 1 we construct the physical
model that can be used for di�erent reaction heats, reactor geometries and sizes. We
nondimensionalize the equations, giving rise to the Damköhler number γ, which includes
most of the chemical phenomena, as pointed out to us by J. Bruining.

In Chapter 2 we identify the stationary solutions of the problem. Here we give the
�rst glimpse of a very simple model, called the reduced model, which provides a simpli�ed
picture of the behavior of the full nonlinear system.

In Chapter 3 we ensure that there exist three equilibria; linear analysis shows that
two of them behave as attractors. The third one behaves as a repeller that separates the
attracting basins of the two stable equilibria, verifying the Chemical Engineering picture.
Appendix A contains the technical part for Chapter 3, namely, the explicit solutions of
the linearized model around each one of the equilibria.

In Chapter 4 we prove the existence, uniqueness and regularity for all times of solutions
of the nonlinear Cauchy problem for the reactor. As Appendix B contains technical
material for Chapter 4, we recommend to skip it initially. Nevertheless, the last section
consists of a brief self-contained summary of the whole Appendix B.
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In Chapter 5 we rewrite the complete problem as a system with an in�nite number
of ODE's. This system provides a complete and intuitive picture of the global dynamics,
which agrees with the simpli�ed picture obtained earlier; the repeller is actually analogous
to a saddle, with a stable manifold separating the attracting basins of the two attractors.
Our proofs, however, require technical restrictions on the initial data.

Finally, in Chapter 6 we present conclusions and mention applications to physical
reality.

We close this work with six appendices containing material that can be skipped in a
�rst reading. In Appendix A we obtain bases of eigenvectors for the linearized models
near the equilibria. Appendix C contains the Bessel function theory used to handle the
cylindrical case studied in Appendices A and B. Appendix D explains why the boundary
conditions chosen are the interesting ones. In Appendix E we describe the numerical
methods used for our simulations. In our problem, simulations were fundamental to gain
intuition. In Appendix F, we present the physico-chemical background, and we show how
to estimate the Damköhler number γ.
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Chapter 1

The reactor model for heat �ow

This chapter describes the class of models to be solved. First we construct the physical
model. Then, we reduce the complexity of the model equation by taking advantage
of geometrical symmetries. Finally, we nondimensionalize the equations for N spatial
dimensions.

1.1 Physical model: equation for conservation of energy

We derive a set of equations that describe the conservation of energy in a medium where
heat generation and thermal �ow occurs. Fick's law describes the transport of energy by
conduction, and Arrhenius' law describes the rate of energy generated by the exothermic
reaction between oxygen and the fuel.

Then the rate of change of the heat energy in each domain is equal to the reaction
rate, which is governed by Arrhenius' law inside the domain, plus Fick's law that governs
the heat �ow at the boundary of the domain. For a general domain Ω we have:

d

dt

∫
Ω

QdV =

∫
Ω

∆H co ccA exp

(
− E

RT

)
dV +

∫
∂Ω

κ∇T · n̂ dS, (1.1)

where Q = Q(x, t) is the thermal energy density and T = T (x, t) the temperature
distribution in Kelvin (here x means position in RN with N = 1, 2, 3, dV and dS the
respective elements of volume and area with n̂ the normal vector to the surface ∂Ω), the
constant ∆H denotes the reaction enthalpy per unit mass of oxygen consumed, co and cc
are the concentrations of the reacting oxygen and fuel, A is the pre-exponential factor, E
is the activation energy of the reaction, R is the universal constant of ideal gases and κ is
the homogeneous thermal conductivity in the porous medium. The Table 1 in Appendix
F contains notations, de�nitions and typical physical values for these and other quantities.

Given that the focus of the study is to evaluate the three geometric domains (namely
linear, cylindrical and spherical), the general case is formulated irrespectively of dimen-
sion. Radial symmetry is of primary importance; therefore, the entire domain will be
studied as the N -dimensional solid sphere BL := B[0; L], centered on the origin with ra-
dius L. The domain BL is further divided in two parts. Part 1 is the internal subdomain,
namely the N -dimensional solid sphere Ba := B[0; a] representing the subregion where
the reaction occurs. Typically Ba will be a 3d solid sphere, a cylindrical column or a top

1



2 The reactor model for heat �ow

layer. Part two is the external subregion, namely an interval, a ring or the generic N -
dimensional solid shell S := BL\Ba (open at r = a and closed at r = L), which represents
the subregion where no reaction occurs but the heat is dissipated.

The region of interest must be described prior to de�ning the boundary and initial
conditions for (1.1). The reactor is shown schematically in Fig. 1.1, and consists of a
solid porous medium, both in the reaction region Ba and the conduction region S. We
consider two scenarios for our reactor: the petroleum reservoir and the catalytic heater.

Figure 1.1: Schematic reactor. The temperature outside the ball BL is �xed.
The arrows represent the direction in which the injected gas moves.

The model discussed as part of this work was originally conceived as an oil reservoir,
however, the application of our model is illustrated better in the catalytic heater, which
we will describe later in this report.

The petroleum reservoir. Air injection into the reservoir is accomplished through a bore
hole (drill hole or well); air (oxygen) injected into the well will initially displaces in all
directions, generating an expanding sphere centered at the injection point. The injected
air will be forced upward by buoyancy forces, thereby changing its geometry into a cylinder
around the well, ultimately spreading into a horizontal layer neat the cap rock. Each of
the three transient conditions described above will have a corresponding idealized domain.

The well is shown on Fig. 1.1 by the inner region of radius b, which is assumed to be
small as compared to the radii a and L. However a is also small as compared with L, this
ratio is fundamental for the analysis. The reaction occurs as a result of the injected air in
the presence of coke contained within the porous medium. The coke results from previous
chemical processes and typically it is a solid chain of carbons trapped in the porous
medium. We assume that concentrations of coke and oxygen are kept constant because it
is expected that an ignition in the reaction occurs very fast, so these concentrations are
important as initial data. (This assumption is invalid for long times in an oil reservoir.)
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The catalytic heater. We assume that a �xed proportion mixture of air or O2 and gaseous
hydrocarbon (the �fuel�) is injected at a constant rate. We assume that the gas reacts
with oxygen only in the presence of a catalytic converter (located only within the porous
medium Ba), so that no reaction occurs either in the injection region or in the conduction
region. The arrows leaving the reactor in Fig. 1.1 show the direction in which the residual
gases are expelled. In this scenario, all radii a, b and L are comparable. However, since
b can be accounted for through small modi�cations of the equations coe�cients (and the
conclusions are similar), we use the assumption b = 0 to simplify the formulae.

Therefore, for the analysis of this work we consider the scenario of the catalytic heater.
However, we have to keep in mind that under certain restrictions our conclusions are still
valid for the petroleum reservoir.

In the next subsections we construct the physical equations for the reaction region Ba

and the conduction region S assuming radial symmetry in the entire domain BL.

1.1.1 Balance of energy in the internal region

We explain our motivation for taking a homogeneous temperature in the internal region.
Recall that we have assumed that there is radial symmetry in the whole domain.

We will also assume that in the interior region Ba the thermal conductivity is much
larger than the conductivity in the external region S. We will now explain why we assume
that the temperature is homogeneous in Ba.

Indeed, notice that if we assume that Q remains �nite when κ → ∞, then for any
domain Ω in Ba

lim
κ→∞

1

κ

{ ∫
Ω

∆H co ccA exp

(
− E

RT

)
dV − d

dt

∫
Ω

QdV

}
= 0, (1.2)

so, dividing Eq. (1.1) by κ, in a region Ω ⊂ Ba, and taking the limit as κ→∞, we obtain
that ∫

∂Ω

∇T · n̂ dS, (1.3)

must vanish. But using Gauss formula in (1.3) this is the same as∫
Ω

∆T dV = 0. (1.4)

This holds for all regions Ω inside Ba; therefore the Laplace equation ∆T = 0 holds in Ba

pointwise for smooth temperature spatial distributions.
For the 1d case we have that ∂2T/∂x2 = 0, i.e., the temperature pro�le is

T (x, t) = α(t)x+ β(t), x ∈ [0, a], t ≥ 0, (1.5)

where α(t) and β(t) vary with time. Because x is a radial variable we have the symmetry
condition Tx(0, t) = 0, which implies that α(t) ≡ 0, so that the temperature remains ho-
mogeneous in the interval. Therefore the temperature will be determined by continuity on
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the right boundary, i.e., T (x, t) = T (a, t) for all x ∈ [0, a). At any rate, the temperature
is homogeneous.

For the N dimensional cases with N ≥ 2, the interior region Ba has the (N − 1)-
sphere surface as its boundary ∂Ba. For radially symmetric temperature distributions the
argument is natural, because{

∆T = 0, x ∈ Ba, t ≥ 0
T = f(t), x ∈ ∂Ba, t ≥ 0

(1.6)

for an homogeneous temperature f(t) on the sphere surface, which implies T (x, t) =
f(t) for all x ∈ Ba. Therefore, the temperature will be determined by continuity at
the boundary, i.e., T (x, t) = T (a, t) for all x ∈ Ba and where a ∈ ∂Ba. Again, the
temperature is homogeneous in Ba.

From now on, we will assume that the temperature is homogeneous in Ba, and that
in S it depends only on the distance from the origin. We notice that the volume VN of
Ba and the area SN of ∂Ba are given by

VN = CNa
N , SN = NCNaN−1; where C1 = 1, C2 = π and C3 = 2π/3. (1.7)

Notice that we take κ→∞ in the internal region, where ∇T ≡ 0, so the last term in
(1.1) gives no information when the Ω domain is strictly inside the region Ba. In order to
understand the contribution of this term, we integrate (1.1) on B[0; a + ε] and take the
limit when ε→ 0+; in this way ∇T · n̂ is computed immediately outside of Ba. We get

VN
∂Q

∂t
= VN ∆H co ccA exp

(
− E

RT

)
+ SNκ

(
∇T · n̂

)∣∣∣∣
∂Ba+

, (1.8)

where ∂Ba+ stands for the �outside� boundary of Ba.
The thermal energy density Q is related to the temperature T by the heat capacity

per unit mass (ρc)i (the subindex i represents the internal region Ba) through

∂Q

∂t
=
dQ

dT

∂T

∂t
= (ρc)i

∂T

∂t
. (1.9)

and therefore Q is also homogeneous in Ba.
In the domains we study (linear, cylindrical and spherical), we have that at the bound-

ary ∂Ba the normal derivative ∇T · n̂ is equal to the radial derivative ∂T/∂r always; so
using this identity in (1.8), and the relationship (1.9), we get

VN (ρc)i
∂T

∂t
= VN ∆H co ccA exp

(
− E

RT

)
+ SNκ

∂T

∂r

∣∣∣∣
∂Ba+

, (1.10)

which is the �nal form of the equation of conservation of energy in Ba. We will analyze
how the thermal �ow in the external region with no reaction S a�ects the reaction in Ba,
for each geometry.
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1.1.2 Heat transport in the external region

For the external sub-domain S, using the divergence theorem in any subregion Ω of S, we
derive analogously to Eq. (1.1):

d

dt

∫
Ω

QdV =

∫
∂Ω

κ∇T · n̂ dS =

∫
Ω

div
(
κ∇T

)
dV. (1.11)

This is valid for all sub-domains of S, therefore it is valid locally. With κ constant and the
heat capacity per unit mass (ρc)e also constant (the subindex e represents the external
region S), this leads to

(ρc)e
∂T

∂t
= κ∆T. (1.12)

1.1.3 The reactor model for the complete domain

We summarize Eqs. (1.10) and (1.12) for T = T (x, t):
(ρc)e

∂T

∂t
= κ∆T x ∈ S, t ≥ 0

VN (ρc)i
∂T

∂t
= VN ∆H co ccA exp

(
− E

RT

)
+ SNκ

∂T

∂r

∣∣∣∣
∂Ba+

x ∈ Ba, t ≥ 0

(1.13)

The second equation matches the heat �ux between the exterior and the interior regions.
We will work only with external limits of derivatives on the boundary ∂Ba+ of the interior
region Ba, since the temperature T is homogeneous in Ba (spatial derivatives within Ba

vanish and convey no information, as we explained in the derivation of (1.8)).
We have formulated the equations for conservation of energy. In the following sec-

tion we introduce the radially symmetric version of Eq. (1.13) and we construct the
corresponding nondimensional equations that are the object of this work.

1.2 The complete nondimensional equations

The radial domain stretches in r from 0 to L. The reaction takes place inside Ba, centered
at the origin with a �xed radius a < L. The reactor zone stretches radially from r = 0 to
r = a.

Noticing from Eq. (1.7) that the ratio SN/VN = N /a, the radially symmetric equa-
tions (1.13) for the temperature in the N -dimensional ball in RN with radius L:

(ρc)e
∂T

∂t
= κ

1

rN−1

∂

∂r

(
rN−1∂T

∂r

)
r ∈ [a, L], t ≥ 0 (1.14)

(ρc)i
∂T

∂t

∣∣∣∣
r=a

= ∆H coccA exp

(
− E

RT

)∣∣∣∣
r=a

+
Nκ
a

∂T

∂r

∣∣∣∣
r=a+

r ∈ [0, a], t ≥ 0. (1.15)

In Eqs. (1.14)-(1.15) we took advantage of the radial symmetry to drop the angular terms
in the Laplacian.
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Remark 1.1 In Eq. (1.14) we implicitly de�ne the spatial �rst and second derivatives
at the boundaries r = a, L in the following sense, the limits limr→a+ ∂

nT/∂rn for r = a
and limr→L− ∂

nT/∂rn for r = L exist for n = 1, 2. We will look for solutions that are
�regular� at the boundaries of S in this sense.

In order to close the system, we will need boundary and initial conditions, namely,

T (r, t) = TL, r = L, t ≥ 0 (1.16)

T (r, 0) = Ti(r), r ∈ [a, L], (1.17)

where TL stands for the reactor temperature at the exterior surface, which is kept �xed,
and Ti(r) the initial temperature pro�le in the reactor. Notice that the radially symmetric
initial pro�le must be extended for the whole domain, i.e., Ti : [0, L] → R , with Ti(r) =
Ti(a) for r ∈ [0, a].

We nondimensionalize the physical magnitudes with

r := ax̃, L := aL̃, tR := (ρc)ia
2/κ, t := tRt̃,

θ := TR/E, θL := TLR/E and θi(x̃) := Ti(r)R/E,

obtaining for (1.14) and (1.15)

(ρc)ea
2

κtR

∂θ

∂t̃
=

1

x̃N−1

∂

∂x̃

(
x̃N−1 ∂θ

∂x̃

)
x̃ ∈ [1, L̃], t ≥ 0 (1.18)

(ρc)ia
2

κtR

∂θ

∂t̃

∣∣∣∣
x̃=1

=
∆H coccAa

2R

κE
exp

(
− 1

θ

)∣∣∣∣
x̃=1

+N ∂θ

∂x̃

∣∣∣∣
x̃=1+

x̃ ∈ [0, 1], t ≥ 0,(1.19)

and for (1.16) and (1.17)

θ(x̃, t) = θL, t ≥ 0, x̃ = L̃ (1.20)

θ(x̃, 0) = θi(x̃), x̃ ∈ [1, L̃]. (1.21)

Introducing the ratio E of heat capacities per unit mass and the number γ (the
Damköhler group IV, see [4])

E =
(ρc)e

(ρc)i

and γ =
∆H co ccAa

2R

κE
, (1.22)

and dropping the tildes, we rewrite the system (1.18)-(1.21) in the form:

1
2

3 .
4
5
6
7
8
9

E ∂θ
∂t

=
1

xN−1

∂

∂x

(
xN−1 ∂θ

∂x

)
x ∈ [1, L], t ≥ 0 (1.23)

∂θ

∂t

∣∣∣∣
x=1

= γ exp

(
− 1

θ

)∣∣∣∣
x=1

+N ∂θ

∂x

∣∣∣∣
x=1+

x = 1, t ≥ 0 (1.24)

θ(L, t) = θL t ≥ 0 (1.25)

θ(x, 0) = θi(x) x ∈ [1, L] (1.26)

θ(x, t) = θ(1, t) x ∈ [0, 1], t ≥ 0. (1.27)
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We assume continuity of the initial/boundary conditions, which means that θi(L) = θL

related to (1.25) at the outside boundary, as well as θi(1) = θ(1, 0) related to (1.27).
(This is called compatibility condition.)

Equation (1.19) was divided into Eqs. (1.24) and (1.27), the former is the matching
equation between the heat generated by reaction in the interior region and the heat
conducted through the exterior region, and the latter expresses that θ is independent of
x in [0, 1]. Taking this fact into account, we can perform the analysis either in [0, L] or
in [1, L]. In Chapter 2, for example, it will be useful to use the domain [0, L]. On the
other hand, for the study of the nonlinear PDE, it is helpful to use the restricted domain
[1, L] and omit Eq. (1.27). We will always look for solutions of (1.23) that are regular in
the sense of Remark 1.1.

If the internal radius b were not neglected, actually VN in Eq. (1.7) should have
been replaced by CN (aN − bN ), so the term Nκ/a in (1.15) would be multiplied by
aN/(aN − bN ) > 1. Thus, the last term in Eq. (1.19) would also be multiplied by
aN/(aN − bN ), which would be lead in Eq. (1.24) to the same modi�cation. Notice that
such a change in Eq. (1.24) gives rise to a similar qualitative behavior for the solution.
Therefore, we do not discuss it.

Notice that it is not possible to perform a nondimensionalization that reduces E to 1,
without changing properties in space x. As we will see, there are two types of solutions for
(1.23)-(1.27) as far as E is concerned. The �rst type corresponds to E = 0 and the second
one to E > 0. The �rst one corresponds to (ρc)e � (ρc)i and is used only in Chapter 2; in
the second type, the precise value of E is irrelevant, thus from Chapter 3 through the end
of this work we will set E ≡ 1 by assuming that the interior and exterior heat capacities
for unit mass are close enough.

We will see that for any dimension N = 1, 2, 3, the behavior of the solutions of
the reactor problem is governed by θL and γ, the scaled prevailing temperature and the
Damköhler number. Typical sizes of L, θL and γ are discussed in Remark 2.1.

Remark 1.2 The standard notation for the Damköhler group IV is DaIV , see [4], we
have used γ given in Eq. (1.22.b) instead of DaIV as a short notation. The physical
meaning for this number is the ratio between the �liberated heat� by the reaction and the
�conductive heat transfer�. Usually the temperature used for calculating this number is a
characteristic temperature, but here the characteristic temperature is E/R, which is known
as the activation temperature. Even though this ratio is large and appears dividing γ given
in Eq. (1.22.b), we will see that γ is also very large; the consequences are discussed in
Appendix E.1.2.



Chapter 2

Steady-state and quasi-steady solutions

for the reactor model

This is a new world, fundamentally di�erent
from that of real objects and real events

� the world of mental constructs,
internally ruled by laws formally stated,

the world of mathematics.
Intuition in Science and Mathematics,

Efrain Fischbein.

The stationary equations for the reactor model (2.1)-(2.3) are the object of Sec. 2.1. In
Sec. 2.2 the stationary solutions are studied in a general manner for any dimension N ;
thus the solution formulation can be considered as a whole for further treatment.

The steady-states solutions in a semi-in�nite domain, or for a �nite domain with
Neumann condition lead only to trivial solutions in 1d and 2d. (This is shown only for
the 1d case, in Appendix D.) We will provide a uni�ed study of solutions in a �nite
spherical domain in 1d, 2d and 3d.

In Sec. 2.3 we will study a reduced model, which will be proven along the work to be
a nice approximation for long time behavior of the whole nonlinear problem for a wide
class of initial conditions.

2.1 The stationary equations

Steady-states %(x) are time-independent solutions of system (1.23)-(1.24); they satisfy
1
2

3 .
4
5

1

xN−1

d

dx

(
xN−1 d%

dx

)
= 0 x ∈ [1, L] (2.1)

γ exp

(
− 1

%

)∣∣∣∣
x=1

+N d%

dx

∣∣∣∣
x=1+

= 0 x ≤ 1, (2.2)

where the derivatives of %(x) are �regular� in the sense discussed in Sec. 1.2.

8
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From Eq. (1.25), we impose the boundary condition at the right

%(L) = θL, (2.3)

where θL is a non-negative temperature. Then, because of (1.27), we can impose a similar
boundary condition at the left, say

%(1) = θo, (2.4)

where θo needs to be determined so that %(x) is indeed a solution of (2.1)-(2.2). (Notice
that as a matter of fact %(x) = θo for x ∈ [0, 1].)

2.2 Finding the equilibria

First we solve Eq. (2.1), leading to

%(x) = a r(x) + b, with a, b constant, (2.5)

where, up to a normalization, r(x) is the fundamental solution for Laplace equation or
Green function:

r(x) :=


L−x

d
, N = 1,

1− ln x
ln L

, N = 2,

1−(L/x)N−2

1−LN−2 , N ≥ 3.

for x ∈ [1, L], with d := L− 1, (2.6)

Notice that r(1) = 1 and r(L) = 0 for any N ≥ 1.
The constants a and b in (2.5) are determined by the Dirichlet boundary condition

(2.3)-(2.4). Substituting solution (2.5), (2.6) in (2.3)-(2.4) leads to a = θo − θL, and to
b = θL, yielding the solution

%(x) =

{
θo, x ≤ 1
(θo − θL)r(x) + θL, x ∈ (1, L].

(2.7)

Equation (2.2) will determine conditions for the existence of stationary solutions. We
de�ne sN := −[N r′(1)]−1, which satis�es N%x(1) = (θL − θo)/sN as follows

sN :=


d, N = 1

1
2
lnL, N = 2

LN−2−1
N (N−2)LN−2 , N ≥ 3.

(2.8)

From Eq. (2.2), γ exp(−1/%(1)) + N%x(1) = 0 and from the boundary condition (2.4),
%(1) = θo, we have

γsN =
θo − θL

exp(−1/θo)
, (2.9)

which expresses the fact that the heat generated in the combustion region balances the
heat dissipated in the conduction region. Therefore L, θo, θL, γ and N are intimately
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correlated for the stationary solutions. To facilitate writing the heat balance Eq. (2.9)
for each given reactor temperature θL it is useful to de�ne the function

Ξ(θ; θL) :=
θ − θL

exp(−1/θ)
, θ ≥ θL. (2.10)

We are interested in the values θo in (2.4) that satisfy Eq. (2.9), i.e., Ξ(θo; θL) = γsN ;
this is the same expression found in [6]. We will describe soon how Ξ depends upon θL.
However, after this discussion we will set θL as a �xed parameter and we will use the
simpli�ed notation

Ξ(θ) := Ξ(θ; θL), (2.11)

where Ξ(θ; θL) is de�ned in (2.10).

Figure 2.1: Some plots of Ξ(θ; θL) versus θ. Here θL = 0.17 for the solid curve,
θL = 0.15, 0.19, 0.21, 0.23 for the dotted curves (from left to right), θL = 0.25
for the dotted-dashed curve. Notice that when θL is smaller, the peak becomes
higher. All curves are asymptotic to θ − θL when θ tends to in�nity. Notice
that the intersection of each curve with the θ axis occurs for the respective
temperature θL.

Notice that γsN > 0 and θ > θL is such that Ξ(θ; θL) in Eq. (2.10) is positive too.
Thus the roots of Eq. (2.9) are always larger than θL. Looking for the extrema of the
function Ξ( · ; θL), we see that

d

dθ
Ξ(θ; θL) =

d

dθ

[
(θ − θL) exp

(
1

θ

)]
=
θ2 − θ + θL

θ2
exp

(
1

θ

)
. (2.12)

Then dΞ(θ; θL)/dθ = 0 at

θM = θM(θL) =
1

2
− 1

2

√
1− 4θL and θm = θm(θL) =

1

2
+

1

2

√
1− 4θL, (2.13)
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Figure 2.2: The solid curve is Ξ(θ) in (2.11) with θL = 0.17. At the left of
vertical axis we show the regions where we have one or three solutions, marked
with `1' or `3' on the vertical axis. On the horizontal axis, we mark also the
regions I, II, III where the corresponding θI , θII , θIII are located.

where m stands for minimum and M for maximum, see Fig. 2.2.
Inspecting Fig. 2.1, we notice that (2.9) has always at least one root, which means

that there is always a steady-state solution. (There exists one value for θo ∈ [θL, θM ]
identi�ed with I in the horizontal axis of Fig. 2.2 for γsN < Ξ(θm), and for γsN > Ξ(θM)
there exists one value for θo ∈ [θm, ∞) related to III in Fig. 2.2 that satis�es (2.9).)
For Ξ(θM) < γsN < Ξ(θm), there are three di�erent roots, which de�ne three di�erent
stationary solutions. Let us call these roots θI , θII , θIII . Notice that

θL < θI < θM < θII < θm < θIII .

Recall that θM = θM(θL) and θm = θm(θL). So we have that θI , θII and θIII depend on
θL, γ and sN .

Remark 2.1 The standard environment temperatures are of order 300K, which is equiv-
alent to θL ≈ 0.016, for the activation energy E in Table 1 (page 87), appropriate for
coke. Moreover, the system has a unique stationary solution when θL > 0.25, which is
approximately 4753K; so for physically reasonable conditions, the model has three station-
ary solutions. (These conversions are made always with the ratio E/R ≈ 2× 104, known
as the activation temperature, see Appendix F.)

We have θL = 0.016, then using (2.13) we see that θM ≈ 0.0163 and θm ≈ 0.9837.
Introducing these values in (2.10) leads to the maximum Ξ(θM ; 0.016) ≈ 1.3317 × 1023

and the to the minimum Ξ(θm; 0.016) ≈ 2.6744. In Appendix F, we provide an example
calculation, which gives γ = 7.0 × 108. For the existence of three steady-state solutions,
the condition (2.9) has to be satis�ed, so sN must be in the range [Ξ(θm)/γ, Ξ(θM)/γ],
see Eq. (2.8), i.e., sN ∈ [3.8206× 10−9, 1.9025× 1014].
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Figure 2.3: Some plots of Ξ(θ; θL) versus θ on a log-log plot. The
dashed curve corresponds to θL = 0 and, the dotted-dashed curve to
θL = 0.25. Notice the dependence of θM and θm on θL de�ned in
(2.13). The dark curve is the plot of θL →

(
θm(θL), Ξ(θm(θL); θL)

)
and

of θL →
(
θM(θL), Ξ(θM(θL); θL)

)
, both for θL ∈ [0, 0.25]. Notice that

θM(θL) ≤ 0.5 and 0.5 ≤ θm(θL).

Now we rescale this condition to actual physical length; recall that a = 0.1m for porous
media gives rise to the characteristic length. (This value is appropriate for the 2d case.)
Thus, using the values of Eq. (2.8) we see that the 1d case has three equilibria if the
dimensional radius L is larger than 0.1+3.8206×10−10 m and smaller than 1.9025×1013 m.
For the 2d case, we need L between approximately 0.1m and exp(3.805×1014)m. Finally,
notice that for the 3d case sN ∈ [0, 1/3) for nondimensional L ≥ 1, so the restriction
is always satis�ed when the dimensional L is larger that 0.1 + 10−8 m, so that there are
always three equilibria in practice.

2.3 The reduced model: quasi-steady solutions

The idea of studying a reduced model is based on two facts. First, stationary solutions
always have speci�c pro�les for x in [0, L] given by the functions %(x), Eq. (2.7), where the
function r(x) depends upon each dimension. Second, numerical simulations, in Appendix
E, show that any solution pro�le of the nonlinear model will quickly approach such pro�les
with time-dependent values at x = 1. This fact also follows from analysis presented later.
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Thus, in order to study solutions that have such pro�les both in the initial condition
and during the evolution of the solution, we make a speci�c kind of simpli�cation in the
original nonlinear model: we will keep (1.24), but we enforce fundamental solutions of the
Laplace equation by taking E = 0 in (1.22.a). This is the same as considering the limit
of the solution when (ρc)e/(ρc)i → 0.

Thus we are led to consider R(x, t), the solution of the system of equations (1.23)-
(1.24) with E = 0, for x ∈ [1, L] and t ≥ 0. It satis�es the reduced model:

1
2

3 .
4

0 =
1

xN−1

∂

∂x

(
xN−1∂R

∂x

)
x ∈ [1, L], t ≥ 0 (2.14)

Rt = γ exp
(
−1/R

)
+N ∂R

∂x
x = 1, t ≥ 0, (2.15)

with the initial/boundary conditions (1.25)-(1.26), given by{
R(L, t) = θL t ≥ 0
R(x, 0) = (θo − θL)r(x) + θL x ∈ [1, L],

(2.16)

with a �xed reactor temperature θL and where r(x) depends upon the dimension N ,
given in Eq. (2.6). Notice that R(1, 0) = θo in (2.16) is the initial temperature at x = 1.
Notice that condition (1.27) extending the solution to [0, 1] can be imposed separately.
Of course, the initial condition (2.16.b) must be related to the fundamental solution of
the Laplace equation for x ∈ [1, L], see (2.6).

Figure 2.4: Schematic plot of the RHS of (2.18.a). The arrows denote the
tendency of any condition η(t) based on the sign of its derivative.

Inspecting Eq. (2.14) shows that the solution for any time is, in fact, a fundamental
solution of Laplace equation; by analogy with Eq. (2.16.b) we see that we can write the
solution as

R(x, t) = (η(t)− θL)r(x) + θL, (2.17)

which clearly satis�es the initial and boundary conditions (2.16) provided η(0) := θo.
Substituting (2.17) into (2.15), we see that η(t) has to satisfy

η′(t) = γ exp

(
− 1

η(t)

)
− η(t)− θL

sN
, with η(0) = θo. (2.18)
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Solutions of the form (2.17) such that η(t) satis�es Eq. (2.18) are called quasi-steady. See
Fig. 2.4.

At equilibria, notice that η′ = 0. Setting η′ = 0 in (2.18), we see that stationary values
η must satisfy, for Ξ given in (2.11)

γsN = Ξ(η), (2.19)

by recalling that now θL is a �xed value.
Compare (2.19) with (2.9) and notice that both are the same expression. Therefore,

we see that the stationary solutions of system (2.14)-(2.16.b) and of system (1.23)-(1.25)
are the same. We recall the solution (2.7), and we write the stationary solutions as

%I(x) :=

{
θI , x ∈ [0, 1]

(θI − θL)r(x) + θL, x ∈ [1, L],
(2.20)

analogously for %II(x) with %II(1) = θII and %III(x) with %III(1) = θIII . In Fig. 2.5
we plot the di�erent pro�les for the 1d and 2d cases; the 3d case is very similar to the
2d case. Notice that the value of θIII for N = 2 is smaller than the value for N = 1.
Inspecting Fig. 2.1 we see that this is expected from relation (2.19) and from sN+1 < sN
(this relationship follows easily from (2.8)).

Figure 2.5: The typical plots for the stationary solutions. In the left �gure,
we have the pro�le for the 1d case, at the right for the 2d case. The solid
curves are for %I(x) (at the bottom) and %III(x) (at the top), the dashed are
for %II(x).

Because η′(t) > 0 in (2.18) only if η(t) ∈ (−∞, θI) ∪ (θII , θIII), and η′(t) < 0 only if
η(t) ∈ (θI , θII)∪(θIII , ∞), see Fig. 2.4, it follows that %I(x) is an attractor for any solution
of system (2.14)-(2.16) with initial condition such that R(1, 0) < θII , so R(x, t) → %I(x)
as t → ∞. We have an analogous result for %III(x) if R(1, 0) > θII , because R(x, t) →
%III(x) as t→∞. Clearly the steady solution %II(x) related to θII is an unstable solution
of (2.14)-(2.16), i.e., a repeller.

Inspecting the plot in Figures 2.2 or 2.3 we see that the unstable equilibrium solution
exists if, and only if,

θL < 0.25 and γsN ∈
(
Ξ(θm(θL); θL), Ξ(θM(θL); θL)

)
. (2.21)



The reduced model: quasi-steady solutions 15

In this case all three roots of Ξ( · ; θL) = γsN exist, and we have θI < θM < θII <
θm < θIII . If at least one of the conditions (2.21) fails to be satis�ed, we have a unique
equilibrium, which is an attractor.

Notice that in this reduced model, the solutions form a one dimensional set of functions.
We have two heteroclinic orbits in this space: one from %II(x) to %I(x) and another one
from %II(x) to %III(x). We will show that for the nonlinear problem (1.23)-(1.27) the
function space is in�nite dimensional. Nevertheless, two analogous heteroclinic orbits
remain, as shown in Chapter 5.

Moreover, we will be able to show that the reduced model is a very nice approximation
of the complete nonlinear problem: the reduced solution captures most of the long time
behavior of the nonlinear solution.



Chapter 3

Linear stability analysis around

equilibria

Archangel Gabriel � Study your Math...
key to the Universe!

The Prophecy, 1995.

In this Chapter, we derive the linear equations satis�ed by perturbations around any of
the three equilibria found in Chapter 2. Linear analysis around each stationary solution,
performed in Sec. 3.1, reveals the nature of the steady-states in Sec. 3.3.

In Sec. 3.2 a rigorous analysis is performed which shows that the evolutionary solution
found in Sec. 3.3 actually describes the entire linear models of Sec. 3.1.

Recall that from this Chapter through the end of this work we will work with E ≡ 1.
In the Concluding Remarks, Chapter 6, we discuss the relevance of E 6= 1. Also, from
now on the temperature θL is considered as a �xed parameter for the reactor.

3.1 Linear models around equilibria

We use %(x) to mean any of the three equilibrium temperature distributions found in
Chapter 2, namely, %I(x), %II(x) or %III(x). Notice that for θ ≈ %, using Taylor's formula,
we can write

exp
(
− 1/θ

)
≈ exp

(
− 1/%

)(
1 + (θ − %)/%2

)
. (3.1)

Now using (3.1) on the �rst term of the RHS of (1.24), adding and subtracting %x and %t,
recalling that %t = 0 and %(x = 1) satis�es Eq. (2.2), we have that (1.24) becomes

∂(θ − %)

∂t

∣∣∣∣
x=1

≈ σ(θ − %)

∣∣∣∣
x=1

+N ∂(θ − %)

∂x

∣∣∣∣
x=1+

, (3.2)

where, with %(1) = θo, we have de�ned

σ = σ(θo) := γ exp(−1/θo)/θ
2
o. (3.3)

16
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We now examine how the solution of the evolution problem behaves when we perturb
the solution around the stationary solution %. To do so, we de�ne

ϑ(x, t) :≈ θ(x, t)− %(x). (3.4)

Since we have assumed constant reactor temperature at the right boundary, we write the
linear model for the perturbation from Eq. (3.2) and from the heat equation (1.23) as

ϑt =
1

xN−1

∂

∂x

(
xN−1∂ϑ

∂x

)
x ∈ [1, L], t ≥ 0 (3.5)

ϑt

∣∣∣
x=1

= σϑ
∣∣∣
x=1

+N ∂ϑ

∂x

∣∣∣
x=1+

x ≤ 1, t ≥ 0 (3.6)


1
2

3 .
4

(where the spatial derivatives of ϑ(x, t) are �regular� in the sense discussed in Sec. 1.2,)
with homogeneous Dirichlet boundary and initial conditions

ϑ(L, t) = 0, t ≥ 0 and ϑ(x, 0) = ϑo(x), ∀x ∈ [0, L]. (3.7)

Notice that the initial data must be constant in the inner interval, i.e., ϑo(x) = ϑo(1) for
x ∈ [0, 1] needs to be satis�ed.

Equation (3.5) is a version of the heat equation, and a classical approach to �nd its
solution is separation of variables. Substituting

ϑ(x, t) := T (t)X(x) (3.8)

into (3.5) and dividing by X(x)T (t) shows that

1
xN−1

d
dx

(
xN−1 dX(x)

dx

)
X(x)

=
T ′(t)

T (t)
= λ. (3.9)

The constant λ arises because the �rst equality in (3.9) must be satis�ed for all x ∈ [1, L]
and t ≥ 0. Thus each of these fractions cannot depend explicitly on x neither on t.

Equating the second and the last term in Eq. (3.9), we obtain, for any λ:

T ′(t) = λT (t), with solution T (t) = A exp(λt), (3.10)

where the constant A must be determined.
Equating the �rst and the last term in Eq. (3.9), we obtain

1

xN−1

d

dx

(
xN−1dX(x)

dx

)
− λX(x) = 0. (3.11)

Introducing (3.8) in the boundary conditions (3.6) and (3.7.a), leads to

σX(1) +NX ′(1+) = λX(1) and X(L) = 0; (3.12)

these are the boundary conditions for (3.11). Equations (3.11) and (3.12) can be re-
garded as a nonclassical Sturm-Liouville problem. (Classical Sturm-Liouville problems
have boundary conditions that do not involve λ, which is not the case of Eq. (3.12.a).)
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In other words, the problem (3.5)-(3.7) for the ansatz ϑ(x, t) = T (t)X(x) leads to the
solution (3.10.b) and to the following eigenvalue problem:

1
2

3 .
4
5
6

1

xN−1

d

dx

(
xN−1dX(x)

dx

)
= λX(x) x ∈ [1, L] (3.13)

σX(1) +NX ′(1+) = λX(1) (3.14)

X(L) = 0 (3.15)

X(x) = X(1) x ∈ [0, 1). (3.16)

In Appendix A we solve (3.13)-(3.15) forN = 1, 2 and 3; (3.16) can be imposed separately.
We notice that the solution X(x) is not necessarily unique; as a matter of fact, we will
prove in Appendix A that typically there exists an unbounded countable discrete set of
real eigenvalues λn, with associated eigenfunctions Xn(x) that solve (3.11)-(3.12). In Sec.
3.2 we establish that in each dimension, the eigenfunctions form complete orthogonal
bases of certain Hilbert spaces, see Appendix A.

Then, we have constructed the particular solutions

ϑn(x, t) := An exp(λnt)Xn(x), (3.17)

which satisfy the boundary conditions (3.14)-(3.15) of Eq. (3.13), for the eigenvalues λn.
The same is true for any �nite linear combination of solutions of the type (3.17). We
will attempt to represent the solution ϑ(x, t) of (3.5)-(3.7) as an in�nite series on the
functions ϑn(x, t):

ϑ(x, t) =
∑

An exp(λnt)Xn(x). (3.18)

Then, the constants An must be chosen in order to satisfy the initial condition (3.7.b).
This construction is completed in Sec. 3.3.

3.2 Self-adjointness of the linear operator

We will see in Sec. 3.3 that ϑ(x, t) in Eq. (3.18) form
a one-parameter semigroup. To prove that the operator
that generates the semigroup is self-adjoint and thus its
spectrum lies in the real axis, it is actually simpler to
analyze υ(x, t) as the heat equation in the whole solid ball
BL := B[0; L] in RN instead of ϑ(x, t) in the interval for
x ∈ [0, L]. We preserve the spherical symmetry requiring

υ(x, t) = ϑ(‖x‖, t), for all x ∈ BL.

However, we will not use explicitly spherical coordinates.
Thus, we preserve the reaction domain as the unit ball B := B[0; 1], but we will

explicitly write the full Laplacian operator outside, in the solid shell S := BL\B. Notice
that the angular derivatives simplify leading to the operator appearing in Eq. (3.5). This
fact was the reason to study ϑ(x, t), because we are only interested in functions with
radial symmetry. Thus, let us de�ne the symmetric continuous functions in BL that are
constant in B as

CS[BL] :=
{
φ ∈ C[BL]

∣∣∣φ(x) = φ(y) if ‖x‖ = ‖y‖ and φ(x) = φ(x/‖x‖) for ‖x‖ ≤ 1
}
.
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Let us de�ne the characteristic function on B as

11B : BL −→ R (3.19)

11B(x) 7−→
{

0, x ∈ S
1, x ∈ B. (3.20)

Thus, the nondimensionalization and linearization of equations (1.13), for the unit N -
dimensional ball B, the interior region, and theN -dimensional shell S, the exterior region,
lead to the problem

υt = ∆υ x ∈ S, t > 0

υt =

[
συ +N ∂υ

∂r

]
∂B+

11B x ∈ B, t > 0,
(3.21)

where the spatial derivatives of υ(x, t) are �regular� in the sense of Remark 1.1 and where
we notice that υ(x, t) has a time-dependent constant value inside B, because T (x, t) is
also homogeneous in B, see (1.13). Nonetheless, recall that for B we work with external
limits of derivatives calculated in S and evaluated on the boundary ∂B+. The exterior
boundary condition is

υ(x, t) = 0, ‖x‖ = L, t ≥ 0, (3.22)

as we can infer from (3.7.a). (Of course, if the initial data is constant on B and radially
symmetric, the solution υ(x, t) is also constant on B and radially symmetric.)

Using the separation of variables υ(x, t) = exp(λt)Φ(x) in Eqs. (3.21) and (3.22) leads
to the eigenvalue problem (which is equivalent to (3.13)-(3.16))

∆Φ = λΦ x ∈ S[
σΦ +N dΦ

dr

]
∂B+

11B = λΦ x ∈ B, (3.23)

where the radial derivatives of Φ(x) are �regular� in the sense of Remark 1.1 and with
Φ(x) = Φ(y) for all x ∈ B and any y ∈ ∂B+; we also set Φ(x) = 0 for ‖x‖ = L.

Notice that closing CS[BL] with the L2[BL] norm de�nes the space L2
S[BL] of functions

L2[BL] with spherical symmetry, de�ned in the closed N -ball BL in RN such that they
are constant almost everywhere in the inner N -ball B. For two functions Φ, Ψ ∈ L2

S(BL)
we split the L2

S inner product into

〈Φ, Ψ〉 := 〈Φ, Ψ〉B + 〈Φ, Ψ〉S, (3.24)

where the subscript means the region for the unit ball B or the shell S where the standard
L2 inner product in RN is taken, i.e.,

〈Φ, Ψ〉B =

∫
B

Φ(x)Ψ(x) dx and 〈Φ, Ψ〉S =

∫
S

Φ(x)Ψ(x) dx. (3.25)
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Lemma 3.1 The operator in the eigenvalue problem (3.23) can be expressed as

S[Φ](x) :=

{
∆Φ(x) x ∈ S[
σΦ +N dΦ

dr

]
∂B+

11B(x) x ∈ B (3.26)

where Φ is �regular� in the sense of Remark 1.1, i.e., the radial derivatives of Φ(x) have
certain lateral limits at r = 1, L on the dense subset D(S) of the Hilbert space L2

S(BL) of
radially symmetric functions, namely

D(S) :=
{
φ ∈ CS[BL] ∩ C2(S)

∣∣∣φ(x) = 0 if ‖x‖ = L and φ �regular� at ∂S
}

with the L2
S[BL] inner product (3.24). On D(S) the linear operator S is a symmetric

and upper bounded operator, with bound σ. (Notice from the very de�nition that S[Φ] is
radially symmetric in BL and constant in B.)

Proof. The proof uses the notation for the case with N = 3, but the proofs for other
dimensions are analogous. Let Φ, Ψ be any two functions in D(S). The normal vectors
from S and B have opposite directions, so from Gauss Theorem and recalling that Φ(x) =
0 for ‖x‖ = L, we obtain (using ds as the area element to avoid the notation con�ict with
the shell S)

〈Φ, ∆Ψ〉S + 〈∇Φ, ∇Ψ〉S =

∫
∂S

Φ(x)
dΨ(x)

dr
ds = −

∫
∂B+

Φ(x)
dΨ(x)

dr
ds (3.27)

= −
[
Φ
dΨ

dr

]
∂B+

∫
∂B

ds = −N|B|
[
Φ
dΨ

dr

]
∂B+

= −N dΨ

dr

∣∣∣∣
∂B+

〈Φ, 11B〉B,

where |B| is the volume of the unit ball, and because in view of relation (1.7), which
implies that the surface |∂B| is equal to N|B|. Therefore, recalling the inner product
(3.24) and that Ψ is constant in B, using (3.26) and (3.27) lead to

〈Φ, S[Ψ]〉 =

[
σΨ +N dΨ

dr

]
∂B+

〈Φ, 11B〉B + 〈Φ, ∆Ψ〉S

= σ〈Φ, Ψ〉B +N dΨ

dr

∣∣∣∣
∂B+

〈
Φ, 11B

〉
B

+

∫
∂S

Φ(x)
dΨ(x)

dr
ds− 〈∇Φ, ∇Ψ〉S

= σ〈Φ, Ψ〉B − 〈∇Φ, ∇Ψ〉S. (3.28)

Now, note that Eq. (3.28) is symmetric in Φ and Ψ, so that it implies

〈Φ, S[Ψ]〉 = 〈S[Φ], Ψ〉. (3.29)

We conclude that S is a symmetric operator. As to the upper bound, note from the
relations (3.28) and (3.29) that

σ〈Φ, Φ〉 − 〈S[Φ], Φ〉 = σ‖Φ‖2 − σ‖Φ‖2
B + ‖∇Φ‖2

S = σ‖Φ‖2
S + ‖∇Φ‖2

S ≥ 0. (3.30)

So, we conclude that S satis�es the bound

〈S[Φ], Φ〉 ≤ σ〈Φ, Φ〉, (3.31)

and the operator has upper bound σ, which completes the proof. (Of course, S does not
have �nite norm.) �
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Now we use a renowned theorem of Friedrichs applied to the operator A := σI − S
to prove the main result of this section, namely, that under these conditions, S can be
extended to a self-adjoint operator, see [29].

Theorem 3.2 (Friedrichs extension theorem) Let A be a positive symmetric operator
and let q(ϕ, ψ) := 〈Aϕ, ψ〉 for ϕ, ψ ∈ D(A). Then q is a closable quadratic form and
its closure q̂ is the quadratic form of a unique self-adjoint operator Â. Â is a positive extension
of A, and the lower bound of its spectrum is the lower bound of q. Further, Â is the only
self-adjoint extension of A whose domain is contained in the form domain of q̂.

Remark 3.3 Friedrichs' theorem gives additional information: the domain of the exten-
sion of A is a subset of the form domain q̂, therefore D(q̂) ⊂ L2

S(BL), because the closure
of q was taken in D(S) ⊂ L2

S(BL) with the L2-norm. In Appendix A we work on this
space and show that the spectrum is actually discrete.

The most important result in this section shows that (3.23) describes the spectral
problem for a self-adjoint operator, therefore the spectrum of the operator lies in the real
axis. In Appendix A we see that there is only point spectrum {λn}, so the eigenfunctions
Φn(x) related to the eigenvalues λn are orthogonal to each other under the inner product
(3.24).

It is important to keep in mind that we extend Φn as constant in B by Φn(x) = Φn(y)
for every x ∈ B and any y ∈ S such that ‖y‖ = 1. So the eigenfunctions Xn in Appendix
A are related to Φn via Φn(x) = Xn(‖x‖) for every x ∈ BL.

Corollary 3.4 The �rst conclusion that we can extract from Theorem 3.2 is that the
spectrum of S is restricted to the real axis in (−∞, σ], for any σ, L and N .

Moreover, we can verify that the parameter σ de�ned in (3.3) is bounded because

dσ(θ)

dθ
= γ

1− 2θ

θ4
exp

(
− 1

θ

)
, (3.32)

which is zero only when θ = 1/2, so

σ(θ) ≤ σ(1/2) = 4γe−2 ≤ 4γ, ∀θ ∈ R+. (3.33)

Remark 3.5 Friedrichs' theorem gives additional information: the domain of the exten-
sion of A is a subset of the form domain q̂, therefore D(q̂) ⊂ L2

S(BL), because the closure
of q was taken in D(S) ⊂ L2

S(BL) with the L2-norm. In Appendix A we work in this space
and show that the spectrum is actually discrete.

3.3 Evolution of the linearized models

We have split the solution ϑ(x, t) by separation of variables in Eq. (3.8). We wish to �nd
the eigenvalues λ for the modes of the solution, because we will proceed di�erently for
eigenvalues λ ≤ 0 and λ > 0.
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In Appendix A we will show that there exists an eigenvalue λ > 0, and only one, when
the initial temperature θo in the reaction region B satis�es θo ∈ (θM , θm), with θM , θm

given by (2.13).
When it exists, let us identify the positive eigenvalue as λo, and its associated eigen-

function by Xo(x). In Appendix A we will also verify that there exists an in�nite discrete
set of negative eigenvalues, say −λn with associated eigenfunctions Xn(x), for all n ∈ N .
This set of eigenvalues satis�es −λn → −∞ as n tends to ∞.

Let us de�ne L2
N [0, L] as the regular L2[0, L] space with weight xN−1, i.e.,

L2
N [0, L] :=

{
f ∈ L2[0, L]

∣∣ 〈f, f〉N <∞
}
, for 〈f, g〉N :=

∫ L

0

xN−1f(x)g(x)dx,

(3.34)
so L2

1[0, L] ≡ L2[0, L]. The need for the weight xN−1 on the N dimensional domain
arises from the radial symmetry. Indeed, let f be a radially symmetric function de�ned
in L2(BL) (for BL ⊂ RN ), ‖f‖ the standard L2 norm, thus (with some abuse of notation)

‖f‖2 :=

∫
BL

f 2(x) dV = NCN
∫ L

0

rN−1f 2(r) dr = NCN‖f‖2
N ,

because the area of the N dimensional sphere S(r) with radius r is given by NCN rN−1,
see (1.7). Therefore, the standard L2 norm is equal to the norm ‖f‖N up to the constant√
NCN , see the expression given in (1.7).
We must solve the boundary problem (3.5)-(3.7.a) for initial condition ϑ(x, 0) = ϑo(x)

in L2
N [0, L] given in (3.7.b). We do this by superposition of the solutions Xo(x) and

Xn(x), ∀n ∈ N , i.e.,

ϑo(x) = AoXo(x) +
∑
n∈N

AnXn(x), (3.35)

where the �rst term exists when Xo(x) exists. The coe�cients Ao and An (with n ∈ N )
need to be determined from the initial condition. Let us assume that we have normalized
the Xo and Xn eigenfunctions.

Now, by de�ning the semigroup operator T : [0, ∞) → L
(
L2
N [0, L]

)
, the set of

bounded linear operators from L2
N [0, L] into itself. The semigroup operator then maps t

into T (t) de�ned as

T (t)ϑ(x) := 〈Xo, ϑ〉N exp(λot)Xo(x) +
∑
n∈N

〈Xn, ϑ〉N exp(−λnt)Xn(x) (3.36)

for all ϑ ∈ L2
N [0, L]. Notice that T is a strongly continuous one-parameter semigroup,

see for example [10], since

T (0)ϑ = ϑ and T (t)[T (s)ϑ] = T (t+ s)ϑ, (3.37)

because 〈Xn, T (s)ϑ〉N = 〈Xn, ϑ〉N exp(−λns), ∀n ∈ N and in an analogous manner
we have 〈Xo, T (s)ϑ〉N = 〈Xo, ϑ〉N exp(λos), because of the orthonormality of Xo, X1,
X2, . . . . Therefore, T (0) = I and T (t+ s) = T (t)T (s) for all t, s ≥ 0.
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Therefore, following the results of the Hille-Yosida theorem, we interpret the solution
(3.36) of the linearized model as

υ(x, t) =
[
etSυo

]
(x), (3.38)

when S is de�ned in (3.26) or, more explicitly, we rewrite Eq. (3.36) as

ϑ(x, t) = Ao exp(λot)Xo(x) +
∑
n∈N

An exp(−λnt)Xn(x), (3.39)

where the coe�cients are given by

Ao := 〈Xo, ϑo〉N and An := 〈Xn, ϑo〉N , ∀n ∈ N (3.40)

due the completeness and orthonormality of the eigenfunctions de�ned in L2
N [0, L].

In this Chapter we completed the linear stability analysis of the reactor problem near
the equilibria. This is the local analysis. The Chapters that follow are concerned with
the global analysis of the full reactor problem.



Chapter 4

Existence and uniqueness of solution

for the nonlinear model

The nonlinear evolution problem can be written as a superposition of simpler auxiliary
problems, as shown in Sec. 4.2. First we discuss these auxiliary problems. One of them
is the reduced model of Sec. 2.3. The other is the complementary model; their solution
is presented in 4.1. Once we understand the solution of these subproblems, we show how
to construct the solution of the complete nonlinear problem in Sec. 4.2 as an initial data
�xed point problem. This problem will be proven to have a unique solution for each initial
data in Sec. 4.3.

4.1 Auxiliary linear models in N dimensions

To solve the nonlinear problem (1.23)-(1.27), it is useful to solve the following linear
initial-boundary problem. Let η ∈ C1[0, ∞) and let θ(x, t) be a function with at least
two continuous derivatives in x ∈ [1, L] and one continuous derivative in t ≥ 0, satisfying

1
2

3 .
4
5
6

∂θ

∂t
=

1

xN−1

∂

∂x

(
xN−1 ∂θ

∂x

)
x ∈ [1, L], t ≥ 0 (4.1)

θ(1, t) = η(t) t ≥ 0 (4.2)

θ(L, t) = θL t ≥ 0 (4.3)

θ(x, 0) = θi(x) x ∈ [1, L]. (4.4)

Here we assume continuity of the initial/boundary condition, i.e.,

η(0) = θi(1) and θi(L) = θL. (4.5)

Notice that condition θ(1, t) = η(t) replaces the original nonlinear condition (1.24) by
means of the auxiliary function η(t), so it must be a C1[0, ∞) function. Thus η becomes
another variable in the problem. The main advantage is that the original problem (1.23)-
(1.27) is nonlinear, and since system (4.1)-(4.4) is linear we can split this problem as the
sum of simpler linear problems, see e.g. [7]. So even if η(t) is actually unknown, here we
treat the auxiliary function as known; we will return to this issue later.

24
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We can decompose the initial data θi(x) in (4.4) into two parts. The �rst one is
R(x, 0), the initial pro�le for the reduced model studied in Sec. 2.3; which is the Laplace
solution for nonhomogeneous Dirichlet conditions. The second part is θi(x) − R(x, 0),
which expresses the perturbation around the stationary-like pro�le r(x); the second part
gives rise to U(x, t) in the relationship (4.6).

We claim that any solution of (4.1)-(4.4) can be written as a sum of two solutions

θ(x, t) = U(x, t) +R(x, t). (4.6)

where U(x, t) is the solution of the complementary model, to be studied in Sec. 4.1.1 and
R(x, t) is the solution (2.17) of the reduced problem (2.14)-(2.16), already studied in Sec.
2.3. This claim is proven in Sec. 4.1.2.

4.1.1 The complementary model

The study of a complementary model is important in order to understand the behavior of
perturbations around the quasi-steady pro�le, which cannot be captured by the reduced
model. Let U(x, t) be a function with at least two continuous derivatives in x ∈ [1, L]
and one continuous derivative in t ≥ 0, satisfying the complementary model:

1
2

3 .
4
5
6

Ut =
1

xN−1

∂

∂x

(
xN−1∂U

∂x

)
− η′(t)r(x) x ∈ [1, L], t ≥ 0 (4.7)

U(1, t) = 0 t ≥ 0 (4.8)

U(L, t) = 0 t ≥ 0 (4.9)

U(x, 0) = Uo(x) := θi(x)−R(x, 0) x ∈ [1, L]. (4.10)

Here we have continuity of the initial/boundary conditions by de�ning

Uo(x) := θi(x)−R(x, 0) (4.11)

and recalling that R(1, 0) = η(0) and R(L, 0) = θL, see (2.16) and compare to (4.5).
We will use the spectral method to solve (4.7)-(4.10), see [18]. Recall the de�nition of

L2
N [1, L] given in (3.34); recall also the nomenclature L2

1[1, L] ≡ L2[1, L]. Let {Xn}n∈N be
a complete orthonormal basis of L2

N [1, L] satisfying the homogeneous Dirichlet conditions
Xn(1) = Xn(L) = 0 for all n ∈ N . The eigenvalues are

λn := nπ/d, ∀n ∈ N , for N = 1, 3, (4.12)

λn → nπ/d, as n→∞, for N = 2. (4.13)

The eigenvalues for N = 2 are given in Eq. (B.24), see Appendix B.1.2. For these
eigenvalues Xn satisfy the ODE

1

xN−1

∂

∂x

(
xN−1∂Xn(x)

∂x

)
= −λ2

nXn(x), x ∈ [1, L], n ∈ N . (4.14)

In Appendix B we construct the eigenfunction bases for N = 1, 2, 3.
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Therefore we assume that U( · , t) ∈ L2
N [1, L] for all times t ≥ 0, a fact that will be

proved soon in Claim 5.2. Thus the solution of (4.7)-(4.10) can be written as

U(x, t) :=
∑
n∈N

An(t)Xn(x), (4.15)

where Xn(x) are the eigenfunctions satisfying Eqs. (4.14) for N = 1, 2, 3. Then, the
boundary conditions in (4.8)-(4.9) are formally satis�ed; Xn(x) = 0 for x = 1, L.

Substituting (4.15) into (4.7), we get formally

∑
n∈N

A′n(t)Xn(x) =
∑
n∈N

An(t)
1

xN−1

d

dx

(
xN−1dXn(x)

dx

)
− η′(t)r(x). (4.16)

Claim 4.1 For every Xn(x) satisfying (4.14) and for r(x) given in Eq. (2.6), we have
that 〈Xn, r〉N = C/λn is satis�ed for N = 1, 3 and 〈Xn, r〉N = Cn/λn for N = 2. (The
normalizing constant is C =

√
2/d, see Eq. (B.9); Cn are given in Eq. (C.50).)

Proof. Set k as a �xed natural number and �x also N = 1, 2 or 3. Recall the de�nition
of r(x) given in (2.6) and notice that this satis�es

r′′(x) +
N − 1

x
r′(x) = 0. (4.17)

Expanding the LHS of (4.14) we notice that

X ′′
n(x) +

N − 1

x
X ′

n(x) = −λ2
nXn(x) (4.18)

is also satis�ed. Then, multiplying Eq. (4.17) by xN−1Xn(x) and Eq. (4.18) by xN−1r(x),
and subtracting the results, we obtain

xN−1
(
Xn(x)r′′(x)−X ′′

n(x)r(x)
)
+(N −1)xN−2

(
Xn(x)r′(x)−X ′

n(x)r(x)
)

= λ2
nx

N−1Xn(x),
(4.19)

or equivalently

d

dx

[
xN−1

(
Xn(x)r′(x)−X ′

n(x)r(x)
)]

= λ2
nx

N−1Xn(x). (4.20)

Thus, integrating the LHS from x = 1 to x = L leads to X ′
n(1)r(1) = Cλn for N = 1, 3

and X ′
n(1)r(1) = Cnλn for N = 2, see Eqs. (B.41). The integration of the RHS gives rise

to λ2
n times the inner product 〈Xn, r〉N , which proves the claim. �

Moreover, from Claim 4.1 and the orthonormality of {Xn}n∈N , applying the L2
N [1, L]

inner product with the eigenfunction Xk(x) on Eq. (4.16), we obtain for N = 1, 3

A′k(t) = −λ2
kAk(t)−

Cη′(t)

λk

, ∀k ∈ N . (4.21)
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Applying the L2
N [1, L] inner product of Xk(x) on both sides of the initial data (4.10),

U(x, 0) = Uo(x), we see that it is necessary that

Ak(0) = 〈Xk, Uo〉N , ∀k ∈ N . (4.22)

Sometimes we use the notation

Bn ≡ An(0), ∀n ∈ N . (4.23)

Assuming that the coe�cients An(t) are di�erentiable, Eq. (4.21) implies that they
must satisfy

[
An(t) exp(λ2

nt)
]′

=
[
A′n(t) + λ2

nAn(t)
]
exp(λ2

nt) = −Cη
′(t)

λn

exp(λ2
nt), ∀n ∈ N . (4.24)

Renaming t as s in (4.24), integrating from time 0 to time t and using the initial condition
(4.23), we see that (4.21) and (4.22) are equivalent to

An(t) = Bn exp(−λ2
nt)− C

∫ t

0

η′(s)

λn

exp
(
− λ2

n(t− s)
)
ds, ∀n ∈ N . (4.25)

Let us assume that we know η(t) for t ≥ 0. Therefore the solution of the complementary
model, Eqs. (4.7)-(4.10), is given by (4.15) with An(t) furnished in (4.25), provided the
series in (4.15) makes sense. Notice that λ−2

n exp
(
− λ2

n(t− s)
)
decays exponentially as n

tends to ∞, so we will be able to verify that the series (4.15) converges under very weak
hypotheses.

In further calculations, it will be useful to have a general expression for the derivative
of U(x, t) at the left boundary. This requires that the expression An(t) given in Eq. (4.25)
is substituted in Eq. (4.15). We di�erentiate in space and evaluate at x = 1, leading to

NUx(1, t) = U(t) +

∫ t

0

η′(s)R(t− s) ds, (4.26)

where we have de�ned, for λn given in Eq. (4.12) and Bn given in Eq. (4.23)

U(t) := NC
∑
n∈N

Bnλn exp(−λ2
nt) and R(t) := −NC2

∑
n∈N

exp(−λ2
nt). (4.27)

For N = 2, we can easily obtain formulae analogous to (4.25), (4.27), with Cn instead of
C, sometimes appearing in di�erent locations in the formulae.

Remark 4.2 Notice that for Uo(x) ∈ L2
N [1, L], the corresponding Fourier coe�cients Bn

in (4.23) belong to l2(R), i.e.,
∑

n∈N B
2
n <∞.
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4.1.2 Solution of the auxiliary linear model

The initial/boundary conditions of problem (4.1)-(4.4) are trivially satis�ed, as we can
see from the corresponding conditions for system U(x, t), namely (4.8)-(4.10), and the
expression (2.17) for R(x, t).

Now we prove that the claim given by Eq. (4.6) is in fact valid. The boundary
conditions (4.2)-(4.3) for θ(x, t) are exactly the same as those for the reduced model
(2.16.a) for R(L, t) = θL and (2.17) satisfying R(1, t) = η(t); the complementary model
has homogeneous Dirichlet boundary conditions, so indeed (4.2)-(4.3) are satis�ed by the
sum (4.6). The initial condition (4.4) is trivially satis�ed too: from Eq. (4.10) we have
that U(x, 0) + R(x, 0) = θi(x). Finally, for the PDE (4.1), using (4.6), (4.7), the time
derivative of R(x, t) given in (2.17) (and again (4.7)), we see that

θt(x, t) = Ut(x, t) +Rt(x, t) =
1

xN−1

∂

∂x

(
xN−1∂U(x, t)

∂x

)
− η′(t)r(x) + η′(t) r(x)

=
1

xN−1

∂

∂x

(
xN−1∂θ(x, t)

∂x

)
, (4.28)

because 1
xN−1

d
dx

(
xN−1 dr(x)

dx

)
= 0 by noticing that r(x) satis�es Eq. (2.1). Therefore, the

claim given in (4.6) is indeed satis�ed, the initial/boundary problem (4.1)-(4.4) is satis�ed
by the sum of the reduced and complementary models.

Therefore, the solution of auxiliary problem for x ∈ [1, L] and t ≥ 0, is given by the
sum (4.6) of the solution of complementary model given in (4.15) by means of Eqs. (4.25),
and the solution (2.17) of the reduced model:

θ(x, t) =
∑
n∈N

Bn exp(−λ2
nt)Xn(x) − C

∫ t

0

∑
n∈N

η′(s)

λn

exp(−λ2
n(t− s))Xn(x) ds

+
(
η(t)− θL

)
r(x) + θL, (4.29)

as long as the series involved make sense (as we will soon see). For N = 2, a formula
analogous to (4.29) can be easily derived.

4.2 Formulation of the nonlinear solution

We are ready to formulate the full nonlinear problem. Let us �rst de�ne the C∞(R)
function (which depends on N )

G(η) :=


η − θL

sN
− γ exp

(
− 1

η

)
, η > 0

η − θL

sN
, η ≤ 0,

(4.30)

with sN given in (2.8).
Notice that G(η) has physical meaning only for positive η; we have extended G to the

real line just for convenience of notation ahead. It is easy to prove that the derivative of
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(4.30) is bounded by the quantity

G∗ := sup
η∈R

∣∣∣∣dG(η)

dη

∣∣∣∣ ≤ 1

sN
+ 4γ, ∀N ≥ 1, (4.31)

because d
dη
γ exp(−1/η) = σ(η), which is always smaller than 4γ, see Eq. (3.33).

Notice from de�nition (4.30) that the expression (2.18) is equivalent to η′(t) = −G(η(t))
for η > 0. In Fig. 2.4 −G(η) is plotted versus η. The sign is chosen in Eq. (4.30) for
convenience of notation ahead.

Notice that if we set θ(1, t) = η(t), Eq. (4.2), it follows that θt(1, t) = η′(t). Then,
a straightforward calculation shows that di�erentiating (4.29) and substituting it in the
nonlinear boundary condition (1.24), we obtain the integro-di�erential equation for η

η′(t) =

∫ t

0

η′(s)R(t− s) ds+ U(t)− G
(
η(t)

)
, (4.32)

with the aid of de�nitions in (4.27) and (4.30). Directly from Eq. (4.32) for t = 0 we
obtain that

η′(0) = lim
t→0

∫ t

0

η′(s)R(t− s) ds+ U(0)− G
(
η(0)

)
= U(0)− G

(
θi(1)

)
(4.33)

must be satis�ed.
Notice that solving (4.32) and substituting the resulting η′(t) into (4.25) for each

An(t), and thus introducing these values in (4.29) provides the solution of the nonlinear
problem (1.23)-(1.27).

In Eq. (4.12) we stated that the eigenvalues λn were exactly nπ/d for all n ∈ N
for N = 1, 3. Therefore recalling the de�nition (4.27.b) and using that −n2 < −x2 for
x ∈ [n− 1, n) for all n ∈ N , we have∫ t

0

|R(s)| ds = NC2

∫ t

0

∑
n∈N

exp(−λ2
ns)ds < NC2

∫ t

0

∫
R+

exp

(
− x2π2s

d2

)
dxds

= NC2d

∫ t

0

ds√
4πs

= CN
√
t, (4.34)

where the constant CN := 2NC2d/
√

4π = 2N /
√
π depends only on the dimension N .

For N = 2, the assymptotic behavior of the λn given in Eq. (4.13) and also that
Cn → C as n→∞, see Claim C.2, we see that a bound similar to (4.34) is valid.

Therefore, from the bound (4.34), we claim that the time integral in Eq. (4.32) is
absolutely and uniformly convergent in closed time intervals starting at zero. Thus the
RHS of (4.32) will be well de�ned. In fact, since by assumption η′ is continuous, for every
t ≥ 0 there exists M = M(t) such that |η′(s)| ≤M for s ∈ [0, t], and using the change of
variables s 7→ t− τ , we obtain∫ t

0

∣∣η′(s)R(t− s)
∣∣ ds ≤ M

∫ t

0

∣∣R(τ)
∣∣ dτ ≤ CNM

√
t. (4.35)

so, the integral in (4.35) is absolutely and uniformly convergent for t ≥ 0, which tends to
zero when t −→ 0, as claimed.
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4.3 Existence and uniqueness of the nonlinear solution

We will show that for any two constants ηo, ζo there exists a unique η(t) ∈ C1[0, ∞) that
satis�es Eq. (4.29). First, we de�ne implicitly ζ(t) in terms of η(t) as

η(t) = ηo +

∫ t

0

ζ(s) ds, with ζ(0) := ζo, t ≥ 0; (4.36)

sometimes it is useful to extend (4.36) to negative values of t, in such a way that η(t) and
η′(t) are continuous. The extension can be de�ned as

η(t) = ηo + ζot, t ≤ 0. (4.37)

Notice that the continuity assumptions in (4.5) will be employed by the requirement
ηo = θi(1) so, we also need to set ζo := U(0)−G

(
θi(1)

)
, as we remarked after Eq. (4.33).

Thus, for our case the two initial conditions ηo, ζo are well de�ned.
The purpose of (4.36) is to ensure the equality η′(t) = ζ(t). Now we rewrite (4.32)

without derivatives, with the aid of Eq. (4.36), leading to the integral equation in ζ

ζ(t) =

∫ t

0

ζ(s)R(t− s) ds+ U(t)− G
(
ηo +

∫ t

0

ζ(s) ds

)
, with ζ(0) := ζo. (4.38)

This is known as a Volterra integral equation of convolution type with a nonlinear forcing
function, see [27]. In order to show that Eq. (4.38) always has a solution, which is unique,
we proceed as in the proof of Picard's Theorem, see [5].

Lemma 4.3 Consider a Volterra integral equation of convolution type with a nonlinear
forcing function given by Eq. (4.38), together with any real constants ηo, ζo. Assume that
there exist constants CN and G∗ such that∫ t

0

|R(s)| ds ≤ CN
√
t and sup

η∈R

∣∣∣∣dG(η)

dη

∣∣∣∣ ≤ G∗; (4.39)

then there exists a positive time T := T (CN , G∗) such that (4.38) has a unique continuous
solution ζ(t) for all 0 ≤ t ≤ T . Such solution belongs C0[0, T ].

Proof. Given the function ζ(t), the RHS of (4.38) maps it in another function of t, Sζ
(we should have written S(ζ) and [S(ζ)](t) but we will write Sζ and [Sζ](t)). In other
words

[Sζ](t) :=

∫ t

0

ζ(s)R(t− s) ds+ U(t)− G
(
ηo +

∫ t

0

ζ(s) ds

)
. (4.40)

We see that (4.38) is the same as the �xed-point equation

ζ(t) = [Sζ](t).

Our proof consists in showing that there exists a small enough T such that for 0 ≤ t ≤ T ,
the nonlinear operator Sζ is a contraction, so it possesses a unique �xed point, which turns
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out to be the solution of (4.32). De�ne the T -norm for the Banach space C0([0, T ], ‖ · ‖T )
as

‖ζ‖T := max
t∈[0, T ]

|ζ(t)|, (4.41)

where T represents a �xed value that will be de�ned soon.
Take any two continuous functions ζ, z : [0, T ] → R . Recall the de�nition of η(t), Eq.

(4.36), and de�ne similarly

y(t) := ηo +

∫ t

0

z(s) ds, with z(0) = ζo. (4.42)

For 0 ≤ t ≤ T ,

∣∣[Sζ](t)− [Sz](t)
∣∣ ≤

∣∣∣∣ ∫ t

0

(
ζ(s)− z(s)

)
R(t− s)ds

∣∣∣∣ +

∣∣∣∣G(
η(t)

)
− G

(
y(t)

)∣∣∣∣. (4.43)
We estimate the two terms on the RHS of (4.43) separately. We use (4.39.a) in the

�rst term and we see that it can be estimated by

max
0≤t≤T

|ζ(t)− z(t)|
∫ t

0

∣∣R(t− s)
∣∣ ds ≤ CN

√
T‖ζ − z‖T . (4.44)

The second term requires some manipulation. Using the mean value theorem, the
expressions (4.36) relating η(t) and ζ(t) together with (4.42), its counterpart for y(t) and
z(t), the hypothesis (4.39.b) and the T -norm (4.41), we have

∣∣G(
η(t)

)
− G

(
y(t)

)∣∣ ≤ G∗|η(t)− y(t)| = G∗
∣∣∣∣ ∫ t

0

(
ζ(s)− z(s)

)
ds

∣∣∣∣ ≤ G∗T‖ζ − z‖T , (4.45)

where G∗ was de�ned in Eq. (4.31) for all N .
Using the inequalities (4.44), (4.45) in (4.43) we get∣∣[Sζ](t)− [Sz](t)

∣∣ ≤ [CN
√
T + G∗T ]‖ζ − z‖T , (4.46)

for all t ∈ [0, T ]. We take T such as α := CN
√
T + G∗T < 1, which can be done recalling

that CN and G∗ are constants, which depend at most on N . Finally, if we calculate the
maximum of the LHS of (4.46), we have∥∥Sζ − Sz∥∥

T
≤ α‖ζ − z‖T , α < 1. (4.47)

This means that the mapping Sζ is a contraction in the space of continuous real valued
functions in [0, T ] and so it has a unique �xed point, which is a continuous function. �

Notice that the hypotheses of Lemma 4.3 are satis�ed, see (4.31) and (4.34), so are
the conclusions. Therefore, using the �xed point solution, i.e., the continuous function
ζ(t), t ∈ [0, T ], we construct the function η(t), which can be extended as a function in
C1[0, T ] by means of Eqs. (4.36)-(4.37). We easily verify η′(t) = ζ(t) for t ∈ [0, T ]. Notice
that by replacing η(t) and η′(t) into (4.29) we obtain the unique solution of the auxiliary
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linear problem (4.1)-(4.4) for all t ∈ [0, T ], which, as a matter of fact, solves the nonlinear
problem (1.23)-(1.27).

Finally, notice that the interval [0, T ] has uniform size, therefore, we can restart the
argument for a new ζ(0) de�ned as the last ζ(T ), so we prove the existence and uniqueness
of η(t) for all 0 ≤ t <∞.

Remark 4.4 From the discussion in the previous paragraphs we see that η′ ∈ C0[0, ∞).
Then introducing it in the RHS of Eq. (4.38) we see that the derivative of ζ is continuous
too for t > 0; from Eqs. (4.27) and (4.30) we see that U(t), R(t) and G(η) are C∞(0, ∞).
We can proceed inductively to show that ζ(t) ∈ C∞(0, ∞). From Eq. (4.36) we verify that
η(t) ∈ C∞(0, ∞).

From the properties of the heat equation (see e.g. [20]), we expect that θ(x, t) ∈
C∞([1, L] × (0, ∞)). Indeed, di�erentiability in time and space follows from Eq. (4.29).
However we cannot ensure that η has more than one continuous derivative at time t = 0
because R(t) given in Eq. (4.27) is discontinuous there, so the �rst derivative of the
integral in Eq. (4.32) is not continuous at time t = 0.

4.3.1 Some a priori bounds

Now we will prove that when the auxiliary function η(t) is bounded for all times, its
derivative is also bounded for all times. The term η(t)/sN in the de�nition (4.30) can be
replaced by

[
η(0) +

∫ t

0
η′(s) ds

]
/sN , so we rewrite the Volterra equation (4.32) as

η′(t) =

∫ t

0

η′(s)R(t− s)ds− 1

sN

∫ t

0

η′(s)ds+ U(t)− η(0)− θL

sN
+ γ exp

(
− 1

η(t)

)
(4.48)

for η(t) > 0; because of the de�nition of G(η) given in (4.30), the RHS of Eq. (4.48) does
not contain the term γ exp(−1/η(t)) for η(t) ≤ 0. In any case, notice that

Π := sup
t∈[0,∞)

∣∣∣∣U(t)− η(0)− θL

sN

∣∣∣∣ + γ (4.49)

is �nite because U(t) tends to zero as t tends to in�nity, as it can be inferred from de�nition
(4.27.a).

We perform the change of variables s 7→ t− τ , ds = −dτ in the two integral terms in
(4.48). Since the last three terms of the RHS of (4.48) are bounded by Π, we have

η′(t) ≤
∫ t

0

η′(t− τ)
[
R(τ)− 1/sN

]
dτ + Π. (4.50)

Multiplying Eq. (4.48) by −1 and using the previous change of variables, we also obtain

−η′(t) ≤
∫ t

0

(
− η′(t− τ)

)[
R(τ)− 1/sN

]
dτ + Π. (4.51)

These two inequalities will lead to a bound for η′(t).
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Let us inspect the convolution term β(t) := R(t) − 1/sN . Notice that because R(t)
is an increasing function, see (4.27.b), it is easy to verify the limits limt→0+R(t) = −∞,
limt→∞R(t) = 0 and the estimate R′(t) > 0 for all t > 0. Moreover, because of (4.34)
notice that

I(t) :=

∫ t

0

|β(s)|ds =

∫ t

0

|R(s)|ds+

∫ t

0

1/sNds ≤ CN
√
t+ t/sN ; (4.52)

in particular I(0) = 0. Therefore, we can choose τ > 0 such that

I(τ) = α ≤ 1/2. (4.53)

Lemma 4.5 Consider η(t) satisfying (4.32). If there exists M such that |η(t)| ≤ M for
all t ≥ 0, then there exists M such that |η′(t)| ≤ M for all t ≥ 0.

Proof. By contradiction let us suppose that M does not exist, i.e., η′(t) is not bounded.
Notice from (4.50) and (4.51) that |η′(0)| ≤ Π and recall from Remark 4.4 that η′(t) is a
continuous function, so for every number a ≥ Π there exists t > 0 such that |η′(t)| = a.
Therefore, let {tn}n≥Π be the sequence de�ned as follows. We de�ne tn as the �rst value
of t such that |η′(tn)| = n for the natural number n ≥ Π and tn > τ given in (4.53), so
|η′(t)| < n for all 0 ≤ t < tn. Notice that tn < tm for all natural numbers Π ≤ n < m.

Fix n ≥ Π (notice that tn > τ). Without loss of generality, let us assume that
η′(tn) = n, otherwise (for η′(tn) = −n) the following arguments are valid for (4.51) in lieu
of (4.50). From (4.50) we have for tn and for τ given in (4.53)

n = η′(tn) ≤
∫ τ

0

η′(tn − s)β(s)ds+

∫ tn

τ

η′(tn − s)β(s)ds+ Π. (4.54)

Let us inspect each of the integral terms of the RHS of (4.54) separately. The �rst one is
bounded by:∫ τ

0

η′(tn− s)β(s)ds ≤
∣∣∣∣ ∫ τ

0

η′(tn− s)β(s)ds

∣∣∣∣ ≤ max
s∈[0, τ ]

|η′(tn− s)|
∫ τ

0

|β(s)|ds ≤ n

2
, (4.55)

because I(τ) = α ≤ 1/2.
For the second term, notice that by integration by parts we have∫ tn

τ

η′(tn − s)β(s)ds = −η(tn − s)β(s)
∣∣∣tn
τ

+

∫ tn

τ

η(tn − s)β′(s)ds. (4.56)

Moreover, |η(t)| ≤M for all t ≥ 0 and because tn > τ and β′(t) > 0 for all t > 0, we have
β(τ) < β(tn) < −1/sN , so∣∣∣∣ ∫ tn

τ

η(tn − s)β′(s)ds

∣∣∣∣ ≤M

∫ tn

τ

β′(s)ds = M
[
β(tn)− β(τ)

]
≤M |β(τ)|; (4.57)

if tn ≤ τ would be satis�ed, the second integral term of (4.54) does not appear. Therefore
from (4.56) and (4.57) we have that the second term of the RHS of (4.54) is bounded by∣∣∣∣ ∫ tn

τ

η′(tn − s)β(s)ds

∣∣∣∣ ≤ ∣∣η(0)β(tn)− η(tn − τ)β(τ)
∣∣ +M |β(τ)| ≤ 3M |β(τ)|. (4.58)
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Using the estimates (4.55) and (4.58) into (4.54), we have

n ≤ n/2 + 3M |β(τ)|+ Π,

so subtracting n/2 in both sides and multiplying by 2, we obtain that

n ≤ 2
(
3M |β(τ)|+ Π

)
, (4.59)

which leads to a contradiction: the RHS of (4.59) is a �nite constant, while n in the LHS
can be as large as we want. Therefore, there exists M = M(M, N , Π) such that the
Lemma is satis�ed. �

This Chapter contains the basis for the analysis of the nonlinear mode as a sum of
auxiliary linear problems. In Chapter 5 we analyze the nonlinear behavior for long times.



Chapter 5

Long time behavior of the solution for

the nonlinear problem in N dimensions

Nothing fades as fast as the future,
nothing clings like the past.

Up, Peter Gabriel.

In this Chapter we analyze the long time behavior of the auxiliary function η(t), which
represents the temperature history at the gas entrance point x = 1. Once η(t) is known,
the solution of the nonlinear problem is determined by solving the auxiliary linear problem
studied in Sec. 4.1.

In Sec. 4.1.1 we introduce the spectral method for the resolution of the complementary
model. The spectral decomposition describes the evolution of the reactor by means of
an in�nite number of coupled nonlinear ordinary di�erential equations. In Sec. 5.1 we
discuss the behavior of the nonlinear solution for the complete model. Thus, in Sec. 5.2
we restrict our study to a simple example of the long time behavior, and in Sec. 5.2.1 we
show evidence for the pattern of two attractor equilibria separated by a saddle point.

The notation in this Chapter is adequate for the spatial dimensions N = 1, 3. Small
modi�cations for the spatial dimension N = 2 would need: the normalizing constant
C must be replaced by Cn and the location of Cn in the expressions is not the same.
However, because Cn → C as n→∞ as well because, for N = 2, λn → nπ/d as n→∞,
these modi�cations do not alter either the behavior of the solution or its analysis.

5.1 The system with an in�nite number of ODE's

Equations (4.21) form a system with in�nite number of ODE's that need to be satis�ed
by any solution of the original nonlinear problem (1.23)-(1.26); however, we still need to
impose the boundary condition (1.24):

θt(1, t) = N θx(1+, t) + γ exp

(
− 1

θ(1, t)

)
.

Comparing the aforementioned condition with (4.2) we see that we can identify θ(1, t)
with η(t) at the left boundary, so θt(1, t) = η′(t); therefore we need to evaluate θx(1, t).

35
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Recall that X ′
n(1) = Cλn for all n ∈ N , see Eq. (B.41), then we have from (4.15) that

Ux(1, t) = C
∑

n∈N λnAn(t). Notice that Rx(1, t) = (η(t) − θL)/sN , see Eqs. (2.8) and
(2.17). Therefore, recalling the de�nition of G(η) in (4.30) and using (4.6) in (1.24) leads
to

η′(t) = N
∑
n∈N

CλnAn(t)− G
(
η(t)

)
, (5.1)

which is the spectral formulation for the original boundary condition (1.24).
We have replaced the original problem by in�nitely many ODE's formed by Eq. (5.1)

with an arbitrary positive number η(0) as initial datum together with Eqs. (4.21) with
initial data (4.23):

η′(t) = N
∑
k∈N

CλkAk(t)− G
(
η(t)

)
, with η(0) := θi(1) (5.2)

A′n(t) = −λ2
nAn(t)− C

η′(t)

λn

, with An(0) = Bn ∀n ∈ N . (5.3)

These equations may be expected to de�ne the solution of our nonlinear problem.
Now we analyze the ordinary di�erential equations (5.2)-(5.3), using some of the stan-

dard notation in this area, see e.g. [10]. First of all, we de�ne the Banach space

F :=
{
p = (η, A1, A2, . . . ) ∈ R× R∞

∣∣∣ ‖p‖ <∞
}
, where ‖p‖ := |η|+

∑
n∈N

|An|
λn

, (5.4)

recalling that λn = nπ/d for N = 1, 3 and λn → nπ/d for N = 2, see Eqs. (4.12)-(4.13),
and the Banach space

D :=
{
p ∈ F

∣∣∣ ‖p‖D <∞
}
, where ‖p‖D := |η|+

∑
n∈N

λn|An|. (5.5)

We notice that if ‖p‖D < ∞, then ‖p‖ ≤ max{1, λ2
1}‖p‖D, so D is actually a dense

subspace of F .
We de�ne the vector �eld X : D −→ F :

X (p) =
(
Xo(p), X1(p), X2(p), . . .

)
(5.6)

with
Xo(p) := CN

∑
k∈N

λkAk − G(η) (5.7)

from (5.2). From (5.3), (5.7)

Xn(p) := − C

λn

Xo(p)− λ2
nAn (5.8)

=
C

λn

(
G(η)− CN

∑
k∈N

λkAk

)
− λ2

nAn, ∀n ∈ N . (5.9)
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From (5.7) we observe that the following inequality holds for p ∈ D:

|Xo(p)| =
∣∣∣∣CN ∑

k∈N

λkAk − G(η)

∣∣∣∣ ≤ CN‖p‖D + |G(η)| <∞. (5.10)

Therefore, using the norm given in (5.4), the de�nition (5.9) of Xn and λn given in Eqs.
(4.12)-(4.13), for every p ∈ D we have

‖X (p)‖ ≤ |Xo(p)|+
∑
n∈N

{
C

λ2
n

|Xo(p)|+ λn|An|
}

= |Xo(p)|
(
1 + C

d2

π2

∑
n∈N

1

n2

)
+

∑
n∈N

λn|An|

≤ |Xo(p)|
(
1 +

Cd2

6π

)
+ ‖p‖D <∞, (5.11)

because of the inequality (5.10) and because Σn∈Nλ
−2
n is �nite for N = 1, 2, 3. So

‖X (p)‖ <∞, ∀p ∈ D. Therefore, the vector �eld (5.7)-(5.9) is well de�ned in D.
For the vector �eld X , and a �xed p ∈ D, we denote the orbit starting at p as ϕ(t; p),

where ϕ(0; p) = p. (Sometimes we use ϕ(t) = ϕ(t; p) and ϕ(t) := (ϕ(t)o, ϕ(t)1, ϕ(t)2, . . . )
for convenience.) In other words, ϕ(t) is the solution of

ϕ′(t) = X (ϕ(t)), ∀t ≥ 0 and ϕ(0) = p. (5.12)

We observe that by the de�nitions (5.7)-(5.9), η′(t) = Xo(ϕ(t)) and A′n(t) = Xn(ϕ(t)).

Remark 5.1 In Sec. 4.3 we proved that the auxiliary function η(t) that solves the non-
linear problem is in fact a C1[0, ∞) ∩ C∞(0, ∞) function. Then through Eqs. (5.3) we
verify that the degree of di�erentiability of the functions A′n(t) is the same as that of the
functions An(t). From Eq. (4.25) we notice that An(t) ∈ C0[0, ∞) for all n ∈ N , so an
inductive argument shows that An(t) as a matter of fact belong C1[0, ∞) ∩ C∞(0, ∞) for
all n ∈ N .

Claim 5.2 Given any initial datum η(0) ∈ R for the initial condition of the reduced
model, see Eq. (2.17), and any initial condition Uo ∈ L2

N [1, L] for the complementary
model, given in Eq. (4.10), we construct the initial point as p := (η(0), A1(0), A2(0), . . . )
with An(0) given in (4.22). So, the orbit ϕ(t; p) lies in D for all t > 0.

Proof. From the Remark 4.4, we know that η′(t) ∈ C0[0, ∞), so for every time τ > 0 there
exists a constant M = M(τ) such that |η′(t)| ≤ M for all t ∈ [0, τ ]. Therefore, from Eq.
(4.25) we obtain

|An(t)| ≤ |An(0)| exp(−λ2
nt) +

CM

λn

∫ t

0

exp
(
− λ2

n(t− s)
)
ds

= |An(0)| exp(−λ2
nt) +

CM

λ3
n

[
1− exp(−λ2

nt)
]

≤ |An(0)| exp(−λ2
nt) +

CM

λ3
n

. (5.13)
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The �rst term in the RHS of (5.13) decays exponentially when t > 0. Notice that
Uo ∈ L2

N [1, L] implies that all its Fourier coe�cients |An(0)| are bounded by a constant,
so we see that ∑

n∈N

|An(0)|λn exp(−λ2
nt) <∞, for t > 0. (5.14)

On the other hand, from the second term on the RHS of (5.13) we see that∑
n∈N

λn
CM

λ3
n

= CM
∑
n∈N

λ−2
n , (5.15)

converges. Therefore, we have veri�ed that

‖ϕ(t)‖D = |η(t)|+
∑
n∈N

λn|An(t)| <∞, for t ∈ (0, τ ], (5.16)

is satis�ed because η(t) is continuous and the bounds (5.14) and (5.15) hold. Therefore
ϕ(t) ∈ D for all t ∈ (0, τ ]; however, noticing that D is a subspace of F we can repeat the
argument starting at any point in D for successive time intervals and show that the claim
is valid for all t > 0. �

Remark 5.3 We showed in Claim 5.2 that the vector �eld X is well de�ned from D to
F . From Remark 5.1 we also have the di�erentiability of each of the components of the
vector �eld X , so analogously to Claim 5.2 we can prove that the orbits (with initial data
in D) are C0[0, ∞) ∩ C∞(0, ∞). Notice that the existence and uniqueness for the orbits
of the vector �eld of the ODE's is guaranteed by the existence and uniqueness of solutions
of the Cauchy problem (4.1)-(4.4) proved in Lemma 4.3.

Remark 5.4 From the proofs of Claim 5.2 and of Remark 5.3, we notice that actually
U( · , t) belongs to L2

N [1, L] for all times t ≥ 0, because D is a dense subspace of l2(R).

We are interested in the equilibria of the system; they reveal an important part of the
global behavior. For a point p to be an equilibrium of the vector �eld X it is necessary
that Xo(p) = 0 and Xn(p) = 0 for all n ∈ N . From the �rst equation in (5.9) we see that
such a point p must satisfy An = 0 because Xo(p) = 0, and so, from Eq. (5.7) we have
that G(η) = 0 must be satis�ed.

Recalling the de�nition of G(η) in (4.30) and the condition η′(t) = 0 in Eq. (2.18) we
notice that the three points satisfying X (p) = 0 are

XI := (θI , 0, 0, . . . ), XIII := (θIII , 0, 0, . . . ) (5.17)

and
XII := (θII , 0, 0, . . . ). (5.18)

We will show that XI and XIII are stable equilibria and that XII is a saddle point.
Notice that these three equilibria correspond to the same equilibria discussed for the
reduced problem, see Sec. 2.3. Indeed, by the splitting in Eq. (4.6) and the spectral
decomposition (4.15) we see that XI corresponds to %I(x) = 0 + R(θI , 0). (Analogously
for XII and XIII .)
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5.2 Orbits from restricted initial data

A standard con�guration for a reactor at starting time has stationary temperature in the
shell. The reactor may be pre-heated to a certain stationary temperature distribution
before the reaction starts. Thus, we study solutions such that the initial data Uo(x)
vanishes, which from (4.16) is equivalent to θi(x) be a fundamental solution of the Laplace
equation for x in [1, L].

In this section we construct the domain where the orbits for such initial data are
con�ned. This domain is a small but representative part of the Banach space D.

Let us de�ne the set

B :=

{
p ∈ F

∣∣∣∣CN ∑
n∈N

λn|An| ≤
∣∣G(η)

∣∣}; (5.19)

notice that {p ∈ F |Xo(p) = 0} ∩ B is part of the boundary of B. Figure 5.1 shows the
intersection of B with the linear hyperspace

Fn :=
{
p = (η, 0, . . . , 0, An, 0, . . . )

∣∣ η ∈ R, An ∈ R
}
⊂ F , (5.20)

i.e., Fn is a 2d subspace of F for each n ∈ N .

Figure 5.1: The shaded region represents the intersection of the plane Fn with
B, see Eq. (5.20). The solid curves are CNλnAn = G(η) where Xo(p) = 0 and
CNλnAn = −G(η).

The set B is a subset of subspace D, see (5.5). Indeed, each p ∈ B satis�es∑
n∈N

λn|An| ≤
|G(η)|
CN

, (5.21)
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and therefore

‖p‖D = |η|+
∑
n∈N

λn|An| ≤ |η|+ |G(η)|
CN

<∞. (5.22)

Then p ∈ D, so B is a subset of D. Notice that B is de�ned in terms of the norm on D,
see (5.5), so it is easy to see that it is a closed set (in the norm ‖ · ‖D).

Notice that the initial condition An = 0, Eq. (5.3), leads in Eqs. (5.9) to Xn(p) ∝
−Xo(p) for all n ∈ N at the beginning of each orbit, i.e., all these vector components
have the same sign. This motivates the de�nition of the following four subregions of B:

B−I :=
{
p ∈ B

∣∣ η ≤ θI , An ≤ 0, ∀n ∈ N
}
, (5.23)

B+
I :=

{
p ∈ B

∣∣ η ∈ [θI , θII ], An ≥ 0, ∀n ∈ N
}
, (5.24)

B−III :=
{
p ∈ B

∣∣ η ∈ [θII , θIII ], An ≤ 0, ∀n ∈ N
}
, (5.25)

B+
III :=

{
p ∈ B

∣∣ η ≥ θIII , An ≥ 0, ∀n ∈ N
}
. (5.26)

Notice that the superscript ± in the name of the subregion agrees with the sign of all An

and also with the sign of G(η) in the subregion; we will show that the subscript is related
with the long time behavior via the ω-limit of orbits starting in the subregion. Sometimes
we use B±I, III to denote any of the subregions in (5.23)-(5.26); we also use the de�nitions

BI := B−I ∪B
+
I and BIII := B−III ∪B

+
III . (5.27)

Notice that in the Banach space F , the intersection between a hyperplane with �xed η
and B±I, III is a simplex of in�nite dimension. In order to visualize the subregions a graph
of G(η) is helpful. Figure 5.2 shows the intersection of B±I, III with the linear hyperspace
Fn given in (5.20). The intersection is represented by the shaded region between the solid
curve and the horizontal axis.

We can regard B−I and B+
III as �in�nite pyramids� with an edge contained in the η

axis, and XI and XIII in Eq. (5.17) as the respective apices. The subregions B+
I and

B−III have two apices each: XI or XIII respectively, in Eq. (5.17), and XII in (5.18).
Let us examine B+

III : it is a region where An ≥ 0 for every n ∈ N . Its boundary ∂B+
III

is formed by the apex XIII , Eq. (5.17.b), the boundary faces P
(
B+

III

)
n
, ∀n ∈ N and the

upper boundary U+
III , where

P
(
B+

III

)
n

:=

{
p ∈ B+

III

∣∣∣∣ η > θIII , An = 0, CN
∑
k 6=n

λkAk ≤ G(η)

}
, (5.28)

U+
III :=

{
p ∈ B+

III

∣∣∣∣ η > θIII , CN
∑
k∈N

λkAk = G(η)

}
. (5.29)

In Fig. 5.2 notice that B+
III is bounded �below� by the boundary faces and it is bounded

�above� by the upper boundary. Notice that any point in B+
III is such that An ≥ 0 for

n ∈ N . For η ≥ θIII the points p = (η, 0, 0, . . . ) are in B+
III , as a matter of fact, they are

also included in every boundary face P
(
B+

III

)
n
. We also remark that for every p in the

upper boundary U+
III there exists at least one An > 0, because G(η) > 0 in this boundary.
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Figure 5.2: The shaded region is the intersection of plane Fn with B±I, III .
On the solid curve we have Xo(p) = 0. The vector �eld X (p) is plotted
schematically, showing only directions; e.g., on the curve Xo(p) = 0 the �ux is
always vertical, although it is entering in the regions B±I, III .

Notice that the phase boundaries P
(
B+

III

)
n
and the upper boundary U+

III have inter-
sections. For example, a point p in P

(
B+

III

)
n

⋂
U+

III must satisfy An = 0 and Xo(p) = 0.
For p in P

(
B+

III

)
n

⋂
P

(
B+

III

)
m
the equality An = Am = 0 is satis�ed. Notice also that

multiple intersection of three or more boundary faces can occur.
For the upper boundary and two or more boundary faces there are also intersections.

We say that a point p in U+
III is an interior point of the upper boundary if and only if

p ∈ U+
III and p /∈ P

(
B+

III

)
n
for all n ∈ N . This mean that p = (η, A1, A2, . . . ) is such

that Xo(p) = 0 with An > 0 for all n ∈ N .

5.2.1 Primary results

In this subsection we prove some results which identify parts of the attraction basins of
the nonlinear equilibria XI , XII and XIII , Eqs. (5.17)-(5.18).

De�nition 5.5 A positively invariant set B for a vector �eld X is de�ned as a set
such that:

(ii) The vector �eld points to the interior of B at its boundary ∂B.
(ii) For all p ∈ B we have that ϕ(t; p) belongs to B for all t ≥ 0.
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Lemma 5.6 Consider an orbit such that ϕ(0) = p, with p in the boundary ∂B+
III of B+

III

(respectively ∂B−I , ∂B
+
I or ∂B−III), then ϕ(t) ∈ B+

III for any t ≥ 0 (resp. B−I , B
+
I or

B−III). In other words, the subregions B±I, III are positively invariant sets.

Proof. We present the analysis only for B+
III , because the other cases are analogous. As

a �rst case, notice that p = XIII presents no challenge, we have Xo(p) = 0 and Xn(p) = 0
for all n ∈ N , so XIII is a critical point and ϕ(t) ≡ XIII for all t ≥ 0.

Let us consider the other boundary points by cases, noticing that for p ∈ U+
III and

p ∈ P (B+
III)n, ∀n ∈ N , the inequality G(η) > 0 is satis�ed. (G(η) = 0 for p = XIII .)

Second case. Let p ∈ U+
III with An 6= 0 for all n ∈ N , so p is an interior point of the upper

boundary. From (5.29) we have Xo(p) = 0, then

Xn(p) = − C

λn

Xo(p)− λ2
nAn = −λ2

nAn < 0, ∀n ∈ N . (5.30)

So, for interior p of U+
III , we have that X (p) points to the interior of B+

III .

Third case. Let p be a any point of U+
III . So we know that there exists at least one k ∈ N

such that Ak > 0, and then Xk(p) < 0. So X (p) does not point out of B+
III .

However, we have to notice that if for one (or several values of) l ∈ N we have Al = 0,
then p is also a point of P (B+

III)l and from an equation analogous to (5.30) we have that
Xl(p) = 0, so the vector �eld is tangent to P (B+

III)l. We have to make sure that the orbit
does not enter the boundary face P (B+

III)l, rather that it enters B
+
III .

Notice that the derivative of the vector �eld component Xl(p) (given in (5.8)) along
an orbit is

dXl(ϕ(t))

dt
= −C

λl

dXo(ϕ(t))

dt
− λ2

lA
′
l(t) = −C

λl

dXo(ϕ(t))

dt
− λ2

lXl(ϕ(t)). (5.31)

Now, using (5.7) and recalling that Xo(p) = 0, we have

dXo(ϕ(t))

dt
= CN

∑
k∈N

λkA
′
k(t)− G ′(η)η′(t) = CN

∑
k∈N

λkXk(ϕ(t))− G ′(η)Xo(ϕ(t)), (5.32)

so, recalling the equivalence p = ϕ(0) and Xo(p) = 0 for p ∈ U+
III , we have

dXo(ϕ(t))

dt

∣∣∣∣
t=0

= CN
∑
k∈N

λkXk(p) (5.33)

Thus, at a point p ∈ U+
III , for the case Ak > 0 and Al = 0 (so Xl(p) = 0 too), substituting

(5.33) into (5.31) for t = 0 we have that

dXl(p)

dt
= −C

λl

dXo(p)

dt
− λ2

lXl(p) =
C2N
λl

∑
k∈N

λ3
kAk > 0. (5.34)

Therefore X (p) points to the interior of the phase boundary P
(
B+

III

)
l
but the orbit ϕ(t)

will enter into the interior of B+
III .
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Fourth case. Let p be in a boundary face P (B+
III)n minus the upper boundary U+

III : we
have An = 0, Ak ≥ 0, ∀k ∈ N \{n} and Xo(p) < 0, because G(η) > 0 for η > θIII ,
therefore from (5.9)

Xn(p) = − C

λn

Xo(p)− λ2
nAn = − C

λn

Xo(p) > 0. (5.35)

Notice that all other �eld components are unimportant; neighboring points of p with small
changes of Ak keeping An = 0 �xed are still points in the boundary face P (B+

III)n, so the
�eld X (p) will point to the interior of B+

III .
Notice that when more than one of the components An are zero, the orbit also enters

B+
III because the respective �eld coordinates satisfy Xn(p) > 0.

Thus, from the �rst to the fourth case, we have covered the entire boundary of B+
III . So,

we have shown that for p ∈ ∂B+
III\{XIII}, the vector �eld points to the interior of B+

III .
Therefore ϕ(t) ∈ B+

III for all t ≥ 0. �

Lemma 5.7 For −∞ < η− < η+ <∞ de�ne the set B[η−, η+] := {p ∈ B | η ∈ [η−, η+]}.
Then its closure K := cl (B[η−, η+]) in F is a compact set in F .

Before proving Lemma 5.7, let us recall the following

De�nition 5.8 If the set A has the property that from every open covering, one can select
a �nite subcovering, A is said to be compact. (From De�nition 5.4 of [3].)

Moreover, a classical result shows that it is enough to take the open covering of A as
the set of all open balls with a �xed radius centered at every point of the set.

Proof. Recall the de�nition of G given in (4.30), then take

M := max
η∈[η−, η+]

∣∣G(η)
∣∣, (5.36)

and the de�nition (5.19) implies that for all p ∈ B[η−, η+] and all k ∈ N

|Ak| ≤
M

CNλk

. (5.37)

De�ne

Sn :=
∞∑

k=n

λ−2
k ; (5.38)

using λk given in Eqs. (4.12)-(4.13) we notice that Sn is a decreasing sequence with S1

�nite and Sn → 0 as n→∞. So, for every ε > 0 there exists an integer n∗ depending on
ε such that

Sn <
εCN
2M

, ∀n ≥ n∗. (5.39)
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It is easy to see that F∗ := {p ∈ F |An = 0, ∀n ≥ n∗} is isomorphic to Rn∗ with the
norm

‖x‖∗ := |xo|+
n∗−1∑
k=1

|xk|
λk

, where x := (xo, x1, . . . , xn∗−1) ∈ Rn∗ . (5.40)

Because K∗ := K ∩ F∗ is closed and bounded, its natural embedding in Rn∗ shows
that K∗ is compact. Then for every ε > 0 one can de�ne the in�nite covering for K∗ given
by the balls B(p; ε/2) for every p ∈ K∗; thus there exists a �nite subcovering {Bl}m

l=1,
with m ∈ N , where

Bl = B(pl; ε/2) := {p ∈ F∗ | ‖p− pl‖∗ < ε/2}, l = 1, 2, . . . , m.

The subcovering is such that

K∗ ⊂
m⋃

l=1

Bl. (5.41)

Here we are using the De�nition 5.4 of [3] for compactness repeated in De�nition 5.8.
Thus, for K and the �xed value ε > 0 we can de�ne the in�nite covering given by the

balls B(p; ε) for every p ∈ K; now we will verify that exists a �nite subcovering, by using
the points pl above.

For any p := (η, A1, A2, . . . ) ∈ K set

p∗ := (η, A1, . . . , An∗−1, 0, . . . ) ∈ F∗ ⊂ F .

Because p∗ ∈ K∗ we notice from (5.41) that there exists l ∈ {1, . . . , m} such that

‖p∗ − pl‖ = ‖p∗ − pl‖∗ < ε/2, (5.42)

therefore using Minkowski inequality, the bound in (5.37) for all k ∈ N , the estimate in
(5.39) and the expression (5.42), we have

‖p− pl‖ ≤ ‖p− p∗‖+ ‖p∗ − pl‖ =
∞∑

k=n∗

|Ak|
λk

+ ‖p∗ − pl‖∗ (5.43)

<
M

CN

∞∑
k=n∗

λ−2
k +

ε

2
<

M

CN
εCN
2M

+
ε

2
= ε, (5.44)

Therefore {B(pl; ε)}m
l=1 is a �nite cover for K. Thus the latter is a compact set. �

A classical result shows that any compact set is sequentially compact, see [3],
which means that from every sequence in a compact set A, one can select a convergent
subsequence with limit in A. Notice that B[η−, η+] is only pre-compact in F , so the limit
of any convergent subsequence lies in K, not necessarily in B.

We de�ne, in the usual manner, the ω-limit of a point p ∈ F as the set

ω(p) :=

{
q ∈ F

∣∣∣∣ ∃{tk}k∈N such as 0 ≤ tk →∞ as k →∞ and lim
tk→∞

ϕ(tk; p) = q

}
.

(5.45)



Orbits from restricted initial data 45

Now we are able to discuss the di�erence between the dynamics of ODE systems in �nite
dimensions as compared to the dynamics of ODE systems in Banach or Hilbert spaces.
Notice that in �nite dimensions an invariant set always contains its ω-limit (if ω(p) exists).
For our case, we proved in Claim 5.2 that the orbits ϕ(t; p) belong to D for all t > 0;
however inspecting the de�nition of the ω-limit given in (5.45) we see that ω(p) is given
by a convergent sequence. So, the orbits belong to D, which is a dense subspace of F .
Thus, the ω-limit belongs to the whole space F , not necessarily to D.

The following de�nition is borrowed from ideas in [2].

De�nition 5.9 A strictly invariant set B for a vector �eld X is de�ned as a positively
invariant set, see De�nition 5.5, such that for p ∈ B all ω(p) belong to B.

Hence, from Lemmas 4.5 and 5.6 and the de�nition of B[η−, η+] in Lemma 5.7 we
have the following.

Corollary 5.10 The set E := B[η−, η+]∩B±I, III is strictly invariant for all �xed η−, η+.

Proof. Notice from Lemma 5.7 that E is pre-compact and so it is bounded, then from
Lemma 4.5 we know that exists M such that |η′(t)| ≤ M for all t ≥ 0.

Let p be any point in E. Assume that ω(p) is not empty. Let us take q ∈ ω(p). (Notice
that if ω(p) = ∅ ⊂ E is satis�ed, then the Lemma is trivially satis�ed.)

There exists a sequence {tk}k∈N satisfying (5.45), so the components of q are

qo = lim
k→∞

ϕ(tk; p)o and qn = lim
k→∞

ϕ(tk; p)n, ∀n ∈ N . (5.46)

Thus from (5.46) we obtain that

|qo| = lim
k→∞

|ϕ(tk; p)o| = lim
k→∞

|η′(tk)| ≤ M,

and, since Eq. (5.13) is valid with M = M, we also obtain

|qn| = lim
k→∞

|ϕ(tk; p)n| ≤
CM
λ3

n

, ∀n ∈ N .

Therefore, from de�nition (5.5) and recalling that S1 given by Eq. (5.38) is �nite, we
notice that

‖q‖D ≤ M+ CM
∑
n∈N

λ−2
n = (1 + S1)M < ∞

is satis�ed. Then, ω(p) belongs to D, but from Lemma 5.6, E is positively invariant, so,
ω(p) actually belongs to E and the result is proven. �

We have the following proposition, which is the in�nite dimensional extension of a
classical result in dynamical systems, see for example [33].

Proposition 5.11 If a compact set K ⊂ F is positively invariant under the vector �eld
X , i.e., X (p) points to the interior of K, then for every p0 ∈ K we have:

(iii) The ω-limit ω(p0) is a nonempty of K.
(iii) The ω-limit ω(p0) is a compact subset in F .
(iii) The ω-limit ω(p0) is positively invariant under the vector �eld X , i.e., if q ∈ ω(p0)

the integral curve of X through q belongs to ω(p0).
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Proof. i) We have from the hypotheses that the orbit ϕ(t; p0) through a point p0 ∈ K
will remain in K for all t ≥ 0.

Let tk = k for all k ∈ N and de�ne ϕk := ϕ(tk; p0) for all k ∈ N . Since the set K is
compact, there exists a subsequence of {ϕk}k∈N , we call it {ϕj}j∈N , such that

lim
j→∞

ϕj = q, with q ∈ K, (5.47)

thus, from the de�nition in (5.45), q ∈ ω(p0). Therefore, the ω-limit is a nonempty subset
of K.

ii) Since K is a compact set, we only need to prove that the subset ω(p0) is closed. Let
qn → q, with qn ∈ ω(p0), we will show that then q ∈ ω(p0). Since qn ∈ ω(p0), then for
each qn there ∃{t(n)

k }k∈N such as t(n)
k →∞ and ϕ(t

(n)
k ; p0) → qn, as k →∞.

For every ε > 0 there exists a natural number n∗ > 2/ε such that ‖qn−q‖ < ε/2 for all
n ≥ n∗. Now, we choose for each sequence {t(n)

k }k∈N , n ≥ n∗ an element τn := t
(n)
k(n) > n

such that ‖ϕ(τn; p0)− qn‖ < 1/n. Then for all n ≥ n∗

‖ϕ(τn; p0)− q‖ ≤ ‖ϕ(τn; p0)− qn‖+ ‖qn − q‖ < 1

n
+
ε

2
≤ ε. (5.48)

Therefore ϕ(τn; p0) → q, and because τn →∞ when n→∞, we have that q ∈ ω(p0), so
the ω-limit is a closed set, and therefore a compact subset of K.

iii) Since q ∈ ω(p0), there exists a sequence {tj}j∈N such as tj → ∞ and ϕj → q when
j → ∞. Let qs := ϕ(s; q), for �xed s > 0. We will show that qs ∈ ω(p0). Because ϕ
depends continuously on the initial condition, we have

qs = ϕ(s; q) = ϕ
(
s; lim

j→∞
ϕj

)
= lim

j→∞
ϕ
(
s; ϕj

)
= lim

j→∞
ϕ
(
s; ϕ(tj; p0)

)
= lim

j→∞
ϕ(s+ tj; p0),

so, the sequence {sj}j∈N for sj := s + tj is such that sj → ∞ and ϕ(sj; p0) → qs when
j →∞. Therefore qs ∈ ω(p0). �

Because of our intention to maintain the original structure of the proof by Sotomayor
of the Proposition 5.11 (in [33]), we assumed that K is a compact set, which is the only
modi�cation relative to the original proof in �nite dimensions. Moreover, notice that we
obtain same result of Proposition 5.11 for a set K that is strictly invariant instead of
compact and positively invariant, see De�nition 5.9.

5.2.2 The long time behavior from restricted initial data

In this Section we present the asymptotic behavior for orbits restricted to the initial data
described previously.

Theorem 5.12 The ω-limit for any orbit starting at a point in BI is XI . The ω-limit
for any orbit starting at a point in BIII is XIII .
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Proof. We prove the theorem only for orbits starting in B+
III , the other cases are analogous.

The geometrical idea is simple, see Fig. 5.2: if p ∈ B+
III , then Xo(p) ≤ 0; if Xo(p) = 0

then p is on the upper boundary U+
III , so we expect that the other components of the

vector �eld X (p) drive the orbit towards the interior of B+
III , where the strict inequality

Xo(p) < 0 holds, so that the �rst component of the orbit ϕ(t) always decreases. Therefore
it is expected that the �pyramidal� shape of B+

III implies the convergence to XIII .
Take p∗ = (η∗, a1, a2, . . . ) ∈ B+

III and de�ne the set

B∗ := B+
III [θIII , η∗] =

{
p ∈ B+

III

∣∣ η ∈ [θIII , η∗]
}
, (5.49)

which is pre-compact in F , because B∗ is a subset of the pre-compact set B[θIII , η∗], see
Lemma 5.7. We will prove that the ω-limit of the orbit ϕ(t) through p∗ is XIII .

First of all, we exclude the case p∗ = XIII because the proposition is true in this case.
We know from Lemma 5.6 that at any p ∈ ∂B+

III the vector �eld X (p) points into B+
III .

The only part of the boundary of B∗ that remains to be analyzed is the boundary at
η = η∗. In this case notice that p lies also in the interior of B+

III , where Xo(p) < 0, so
the vector �eld points inside B∗ for every p ∈ ∂B∗. Therefore the orbit ϕ(t; p) through a
point p ∈ B∗ will remain in B∗ for all t ≥ 0. Thus B∗ is positively invariant.

First step: For every p0 ∈ B∗ we have that the ω-limit ω(p0) is a nonempty, positively
invariant compact subset of B∗.
From Proposition 5.11 we know that the ω-limit set is a compact subset of the compact
set K := cl (B∗). From Corollary 5.10 we have that B∗ is strictly invariant, see De�nition
5.9, so ω(p0) belongs to B∗.

Second step: The ω-limit of p0 ∈ B∗ is a subset of the upper boundary U+
III .

From Proposition 5.11 and the �rst step we know that ω(p0) is a positively invariant
subset of the pre-compact set B∗. We will show that if q ∈ ω(p0) then Xo(q) = 0, which
implies q ∈ U+

III , see (5.29).
Assume that q /∈ U+

III . Then Xo(q) = −c < 0 for a positive real number c. Because
of the continuity of ϕ(t; q) and of Xo, we know that for every ε ∈ (0, c) there exists
δ > 0 such that Xo

(
ϕ(t; q)

)
< −c + ε/2 < −ε/2 for all t ∈ [0, δ]. Then, by de�ning the

projection

πo : D −→ R by πop := η, where p := (η, A1, A2, . . . ), (5.50)

we have that for qδ := ϕ(δ; q) the relation πoϕ(δ; q) < πoq − δε/2 is satis�ed, so

‖q − qδ‖ ≥ |πoq − πoϕ(s; q)| > δε

2
. (5.51)

Notice that a t > 0 such that ϕ(t; qδ) = q does not exist, because Xo(p) ≤ 0 for all p ∈ B∗.
In particular for s < t, we have πoϕ(t; q) ≤ πoϕ(s; q), so if ϕ(s; p0) is close to qδ, there is
no t > s such that ϕ(t; p0) is close to q.

Clearly, qδ lies in the orbit of q, i.e., it is part of ω(p0), so there exists an increasing
sequence {sl}l∈N such that ϕl := ϕ(sl; p0) → qδ when l→∞. Moreover, q ∈ ω(p0) means
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that there exists an increasing sequence {tj}j∈N such that ϕj := ϕ(tj; p0) → q as j →∞.
We see that there exist Jo, L ∈ N such that

‖ϕj − q‖ < δε

4
, ∀j ≥ Jo and ‖ϕl − qδ‖ < δε

4
, ∀l ≥ L, (5.52)

which means that there exist two balls of radii δε/4 centered at q and qδ that are disjoint,
and this fact will be show to lead to a contradiction.

From the second equation in (5.52) and the distance between q and qδ, we have that
for every t > sL:

‖ϕ(t; p0)− qδ‖ < δε

4
and ‖ϕ(t; p0)− q‖ > δε

4
, (5.53)

but tj → ∞ when j → ∞, then there exists J1 ∈ N such that tj > sL for all j ≥ J1.
So, for J := max{Jo, J1}, we have tj > sL, ∀j ≥ J and then (5.52.a) and (5.53.b) can
not be satis�ed simultaneously, which is clearly a contradiction. Therefore q ∈ U+

III and
ω(p0) ⊂ U+

III .

Third step: From second step we conclude that the �rst coordinate of q ∈ ω(p0) is a
certain value η̃, because Xo(q) ≡ 0. If we assume that η̃ 6= θIII we get a contradiction as
follows: from Property (iii) of Proposition 5.11 we have that ϕ(t; q) ∈ ω(p0) for all times
t, and the second step guarantees that ϕ(t; q) ⊂ U+

III , but on this upper boundary the
vector �eld points inside B+

III and the orbit ϕ(t; q) escapes from U+
III !

Otherwise, if η̃ = θIII , then Xo(q) = 0 and Xn(q) = 0 for all n ∈ N and all claims are
true, therefore ω(p0) = XIII is the unique global attractor for p0 ∈ B+

III . �

Using Lemma 5.6 and Proposition 5.12 we note that XI and XIII are (for restricted
initial data) the only two attractors of the nonlinear problem (1.23)-(1.27). Indeed, if η(0)
and Uo(x) are such that p = (η(0), A1(0), A2(0), . . . ) belongs to B±I,III we have proved
that BI and BIII lie in the attractor basins of XI and XIII . Noticing also that XI (resp.
XIII) is related with %I(x) (resp. %III(x)), we see that the long time behavior is dermined
by the relative position of the initial condition η(0) with respect to the equilibrium θII .

The previous statements can be rephrased in terms of PDE language using Eq. (4.29).
We can compare the initial Cauchy data θi(x) directly with the unstable steady-state
%II(x). In particular, if θi(x) = R(x, 0) we observe that the spectral solution U(x, t)
given in Eq. (4.15) has initial data An(0) = 0, ∀n ∈ N . Therefore using Eq. (4.21), we
note that any orbit with such initial condition enters into a region where all the signs of
the An are the same; the common sign is determined by the sign of G(η(0)). Thus, the
orbit enters into one of the B±I, III . In summary, we see that the value of η(0) determines
which equilibrium will be the limiting solution. Indeed, we recover the same conclusions
found for the reduced model in Sec. 2.3.

Remark 5.13 As a conjecture, we expect that for the dynamics on whole domain D there
exists a manifold S+ of codimension 1, the stable manifold of XII . This manifold splits
the space into two regions; each region is the basin of attraction of XI or XIII . However,
every point p ∈ S+ has XII as its ω-limit. The basin of attraction of these three points is
the whole in�nite dimensional space.



Chapter 6

Concluding remarks

If knowledge is always the product of an active mind,
one has to �nd in the mind itself the criteria

through which certain truth may be distinguished
for uncertain appearances.

Reneé Descartes.

The solution of the nonlinear problem can be written as the superposition of two parts,
one that is very persistent while the other is ephemeral. The persistent part is a time-
dependent multiple of the stationary solution in the heat conducting reactor, which solves
the reduced model; this multiplier represents the history of the injection temperature.
The other one consists of modes that decay linearly very fast.

Thus, we have shown that the evolution of the whole nonlinear system for a given
initial state is governed essentially by the persistent solution. We are able to calculate in
a very simple way the dynamics of the persistent solution by analyzing the corresponding
�reduced model�. In this model, depending on parameters there are either one or three
equilibria. In the latter case, two of them corespond to �extinction� and �combustion�,
while the other equilibrium separates the two attraction domains. This picture for the
solution was obtained initially by numerical simulations.

A linear stability analysis near the equilibria was performed rigorously for the complete
model; they behave exactly as could be expected from the reduced model. Indeed, the
reduced model is a very useful global approximation for the complete model for large
times.

We were able to prove the existence and uniqueness for all times for the initial value
problem through a nonlinear Volterra integral equation in time, whose unknown is the
history of the injection temperature. Smoothness properties of the solution were estab-
lished.

We used a spectral decomposition to rewrite the Cauchy problem as a nonlinear system
with an in�nite number of ODE's. We were able to prove rigorously that the complete
system has the same asymptotic behavior as the reduced model, at least for a set of initial
data that had to be restricted for technical reasons.
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We were able to show that the two situations that lead to combustion as a �nal state
are: initial conditions with large γ within a single steady-state equilibrium model, which
is related to combustion or, for the three steady-state model, temperatures at the reaction
region higher than the middle equilibrium. In summary, we require

γsN >


Ξ(θM), θ(1, t) ≤ θM

Ξ(η(t)), θ(1, t) ∈ [θM , θm]

Ξ(θm), θ(1, t) ≥ θm.

By examining Fig. 6.1 we notice that for initial states (Ξ, θ) in the shaded region time
evolution leads to ignition.

Figure 6.1: The Ξ(θ) function in Eq. (2.11) and its extrema de�ne the global
behavior; initial states in the shaded region are led to ignition, initial states
in the white region are led to extinction.



Appendix A

Eigenvalues and eigenvectors

for the linearized models

In this Appendix we study the eigenvalues and eigenfunction of system (3.13)-(3.16) for
each geometry. From the analysis in Chapter 3, Sec. 3.2, we know that the eigenproblem
(3.13)-(3.16) (for N = 1, 2, 3) has a self-adjoint operator associated, so the spectrum lies
in the real axis. Because we work in a �nite domain [0, L], we assume that the spectrum
reduces to (countable) isolated eigenvalues, however, we do not prove this fact. (This fact
may be proven using Sturm-Liouville theory, see e.g. [14].)

We work only in the interval x ∈ [1, L] neglecting Eq. (3.16), because the eigenfunc-
tions are constant in [0, 1]; its value in this interval originates from the value given by
continuity at x = 1+. However, the orthogonality holds in [0, L] and we write down the
solution explicitly for x in [0, L].

In the end, we will have found the eigenfunctions for N = 1, 2, 3 for linear perturba-
tions around each of the steady-state solutions %I(x), %II(x), %III(x) de�ned in Eq. (2.20).
All the eigenvalues are negative except for a positive one corresponding to the %II(x) equi-
librium. Moreover, the case of a unique stationary solution is related to %I(x) or %III(x)
because all of the eigenvalues are negative. We do not discuss this case explicitly.

A.1 Eigenvalues and eigenvectors in 1d

Let us rewrite the eigenvalue problem (3.13)-(3.16) for N = 1, in [0, L]:

1
2

3 .
4
5
6

d2X(x)

dx2
= λX(x) x ∈ [1, L] (A.1)

σX(1) +X ′(1+) = λX(1) (A.2)

X(L) = 0 (A.3)

X(x) = X(1) x ∈ [0, 1]. (A.4)
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A.1.1 The growing mode

Take λ = β2. Because β or −β give rise to the same solution, for convenience we take
β ∈ R+. Solving Eq. (A.1), we have for β > 0

X(x) = A exp(βx) +B exp(−βx), (A.5)

where A and B depend on β. Substituting Eq. (A.5) in Eq. (A.3) we get B =
−A exp(2βL). Substituting this expression in Eq. (A.2), we obtain

β2 − σ

β

exp(β)− exp(2βL− β)

exp(β) + exp(2βL− β)
= 1. (A.6)

We want to determine whether there is a β ∈ R+ that satis�es (A.6). We multiply
the numerator and denominator of (A.6) by exp(−βL); using d = L − 1, see Eq. (2.6),
we obtain

σ − β2

β

sinh(βd)

cosh(βd)
= 1. (A.7)

Let us de�ne, for β ≥ 0

F (β) :=
σ − β2

β
tanh(βd). (A.8)

So Eq. (A.7) is the same as
F (β) = 1. (A.9)

Notice that
lim
β→0

F (β) = σd (A.10)

so that F (β) is well de�ned from the right at β = 0.
Let us examine the derivative of F (β),

F ′(β) =
βd

β2 cosh2(βd)

[
(σ − β2)− (σ + β2)

sinh(βd)

βd
cosh(βd)

]
. (A.11)

Because sinh(βd)/(βd) ≥ 1, cosh(βd) ≥ 1 and σ(θo) > 0, see Eq. (3.3), the term in the
brackets satis�es

σ − β2 − (σ + β2)
sinh(βd)

βd
cosh(βd) ≤ (σ + β2)− (σ + β2)

sinh(βd)

βd
cosh(βd)(A.12)

= (σ + β2)

(
1− sinh(βd)

βd
cosh(βd)

)
< 0,

therefore, F ′(β) < 0 for β > 0. So, taking into account (A.10), F (β) is monotone
decreasing for β ∈ [0, ∞) and takes values from σd to −∞. Moreover, it is clear from
(A.8) that F (β) → −∞ as β →∞. Hence, for a root of F (β) = 1 to exist, it is necessary
and su�cient that σd > 1.

Notice that if σd = 1, then β = 0 and so λ = 0, therefore the associated eigenfunction
that satis�es Eq. (A.1) is Xo(x) = a r(x) with constant a, see Eq. (2.6). Notice that
the right boundary condition (A.2) is trivially satis�ed. However, in order to satisfy the
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left boundary condition (A.3) we must take a = 0. The reason why this �eigenfunction�
vanishes identically is because this mode was originally removed from the initial condition
for ϑ(x, t) in Eq. (3.4).

Using the de�nition of σ in (3.3) and s(1) = d from Eq. (2.8), we obtain that if

σ(θo)d > 1, then γd exp(−1/θo) > θ2
o. (A.13)

Manipulating (2.9) for s(1) = d leads to

γd exp(−1/θo) = θo − θL. (A.14)

Comparing (A.13) and (A.14), a common root β exists if and only if

0 > θ2
o − θo + θL (A.15)

is satis�ed. This requires that θo ∈ (θM , θm), given in Eqs. (2.13). In the plot of Eq.
(2.11) shown in Fig. 2.1 and Fig. 2.3, we see that when we have only one stationary
solution, θo will be either θI or θIII ; these two values lie always outside of (θM , θm), so
they do not satisfy (A.15), therefore the unstable mode does not exists. Thus, we have
proved the following claim.

Claim A.1 In the context of the eigenproblem given in Eqs. (A.1)-(A.3), the equilibria
associated to θI and θIII have no unstable mode, while the equilibrium associated to θII

has always an unstable mode.

We use the equality

exp(βx)− exp
(
β(2L− x)

)
= −2 exp(βL) sinh

(
β(L− x)

)
(A.16)

in Eq. (A.5) to compute the eigenfunction associated with the eigenvalue β satisfying
(A.9) as

Xo(x) :=

{
Co sinh

(
βd

)
, x ∈ [0, 1],

Co sinh
(
β(L− x)

)
, x ∈ [1, L],

(A.17)

where Co is a suitable positive constant to normalize this eigenfunction in the space
L2[0, L]. It is computed in Remark A.2 at the end of the section that follows.

A.1.2 Decaying modes

We now look for negative eigenvalues. Take λ = −α2 and notice that α and −α give rise
to the same solution, so for convenience we take α ∈ R−. From Eq. (A.1), we have

X ′′ + α2X = 0.

It follows that X(x) is a linear combination of sines and cosines with argument αx. From
Eq. (A.3) we have X(L) = 0, so it is better to write

X(x) = A sin(α(L− x)), (A.18)
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where A = A(α) is a constant. Using (A.18) into Eq. (A.2), we get

(σ + α2) sin(αd) = α cos(αd).

This can be rewritten as

F (α) :=
σ + α2

α
tan(αd) = 1, α < 0. (A.19)

It will be shown soon that it can be extended smoothly to F (0) = σd for α = 0.
Notice that F (α) is not de�ned for α = −nπ/d, ∀n ∈ N , because of the tangent

function asymptotes. Yet, we claim that F (α) is a monotone decreasing function in each
interval α ∈ (−(n+ 1)π/d, −nπ/d) for all n = 0, 1, 2, · · · . Indeed

F ′(α) =
αd

α2 cos2(αd)

[
(α2 + σ) + (α2 − σ)

sin(αd)

αd
cos(αd)

]
; (A.20)

because the �rst fraction on the RHS of (A.20) is negative and the expression within
brackets remains positive, so F ′(α) < 0 wherever it is de�ned; in fact, recalling that
σ > 0 from (3.3)∣∣∣∣(α2 − σ)

sin(αd)

αd
cos(αd)

∣∣∣∣ < (α2 + σ)

∣∣∣∣sin(αd)

αd

∣∣∣∣| cos(αd)| ≤ α2 + σ, (A.21)

from the classical result that | sin(x)/x| ≤ 1 and also | cos(x)| ≤ 1 for all x ∈ R . Therefore,
inspecting F ′(α) in (A.20), we notice that is negative whenever cos(αd) 6= 0.

Therefore, comparing F (α) = 1, both sides of (A.19), we see that there is exactly
one root αn in each interval (−(n + 1)π/d, −nπ/d) with n ∈ N and when the unstable
mode does not exist, there is another root in the interval (−π/d, 0). The roots form a
countable decreasing sequence of eigenvalues tending to −∞. Each of these eigenvalues
has an associated eigenfunction

Xn(x) :=

{
Cn sin

(
αnd

)
, x ∈ [0, 1],

Cn sin
(
αn(L− x)

)
, x ∈ [1, L],

(A.22)

where Cn are suitable positive constants for normalizing the eigenfunctions in the space
L2[0, L], see Remark A.2 that follows.

Remark A.2 In Chapter 3 we showed that the eigenfunctions of the eigenproblem (3.13)-
(3.16) form a complete set in L2[0, L]. However, here we found the eigenfunctions in the
domain x ∈ [1, L]. It is interesting to see that the problem �remembers� its physical
origins; for the eigenfunctions to be orthogonal it is necessary to extend the eigenfunction
as (3.16), and the extended eigenfunctions are orthogonal in the domain x ∈ [0, L].

Furthermore, we normalize the eigenfunctions in the space L2[0, L] by multiplying

Xo(x) in (A.17) by Co :=
(
sinh2(βd)+ sinh(2βd)/(2β)− d/2

)−1/2
and Xn(x) in (A.22) by

Cn :=
(
sin2(αnd)− sin(2αnd)/(2αn) + d/2

)−1/2
.
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A.1.3 The eigenvalue �nder

We have used the negative sign for α just to emphasize that the positive eigenvalue β
corresponds to the unstable mode, while the negative eigenvalues αn correspond to the
stable modes; as shown in Secs. A.1.1 and A.1.2. This arrangement is convenient because
it allows us to plot all the eigenvalues in a single graph.

We can rede�ne the function in (A.8), (A.19) as F (y) below, using positive y for β
and negative y for α, as follows:

F (y) :=


σ + y2

y
tan

(
yd

)
y < 0

σd y = 0
σ − y2

y
tanh

(
yd

)
y > 0.

(A.23)

Now the roots of F (y) = 1 de�ne all the eigenvalues; positive y correspond to the eigenval-
ues λ = y2 analyzed in Sec. A.1.1, and negative y correspond to the eigenvalues λ = −y2

analyzed in Sec. A.1.2. Notice that λ = (sign y)y2. Moreover, F (y) is a monotone de-
creasing function whenever it is de�ned, so the eigenvalues form a sequence that tends to
−∞.

The plot of F (y) is shown in Fig. A.1. From the limit (A.10) and

lim
y→0−

σ + y2

y
tan

(
yd

)
= σd,

we see that F (y) is a continuous function at y = 0, for any σ or L. If we let σ and L
change continuously so that σd becomes less than 1, then the positive eigenvalue ceases to
exist, because it becomes a negative eigenvalue. This is a very nice property, as it explains
the change in nature of the spectrum of the equilibria, i.e., the bifurcation properties of
the equilibria.

It is possible also to show even more, the function F (y) ∈ C∞(R) and is monotone
decreasing except for y = −nπ/d, n ∈ N , where is not de�ned, and at y = 0.

Taylor expansion shows that F (y) is also C1 close to y = 0.

A.2 Eigenvalues and eigenvectors in 2d

Let us rewrite the eigenvalue problem (3.13)-(3.16) for N = 2 in [0, L]:

1
2

3 .
4
5
6

1

x

d

dx

(
x
dX(x)

dx

)
= λX(x) x ∈ [1, L] (A.24)

σX(1) + 2X ′(1+) = λX(1) (A.25)

X(L) = 0 (A.26)

X(x) = X(1) x ∈ [0, 1]. (A.27)

We need the theory of Bessel functions, which is summarized in Appendix C.
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Figure A.1: Plot of the eigenvalue �nder F (y) for N = 1. The positive and
negative eigenvalues are determined by F (y) = 1. The dotted line corresponds
to the constant function equal to 1. Along the positive axis we represent the
condition for the existence of a positive eigenvalue β. Along the negative axis
we represent the conditions that de�ne the negative eigenvalues. Here we note
that there exists at most one positive eigenvalue.

A.2.1 The growing mode

We are looking for positive eigenvalues λ, so we set λ = β2 and notice that β or −β give
the same solution, so for convenience we take β ∈ R+. We solve the ordinary di�erential
equation (A.24) for this value, i.e.,

X ′′ +
1

x
X ′ − β2X = 0. (A.28)

It is known that one of the two independent solutions of (A.28) is the modi�ed Bessel
function of the third kind with parameter p = 0, I0(βx), see Eq. (C.23). The other solution
is given by the Macdonald function with parameter n = 0, K0(βx), see Eq. (C.24). Then,
the solution of equation (A.28) is given by

Xβ(x) = AI0(βx) +BK0(βx), for x ∈ [1, L]. (A.29)

Here A and B are constants to be determined from the boundary conditions. From Eq.
(A.26), we see that Xβ(L) = 0, so

BK0(βL) = −AI0(βL), (A.30)

and we can write

Xβ(x) =

{
Co

[
I0(β)K0(βL)− I0(βL)K0(β)

]
, x ∈ [0, 1],

Co

[
I0(βx)K0(βL)− I0(βL)K0(βx)

]
, x ∈ [1, L],

(A.31)
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for a suitable constant Co that normalizes the eigenfunction in the weighted space L2
2[0, L]

de�ned in (3.34).
Now we use the left boundary condition, Eq. (A.25), obtaining that the values of β

must be roots of
β2 − σ

2β

I0(β)K0(βL)− I0(βL)K0(β)

I1(β)K0(βL) + I0(βL)K1(β)
= 1, (A.32)

because I ′0(x) = I1(x) and K ′
0(x) = −K1(x), see Property (5) in Appendix C and the

identity (C.22).

A.2.2 Decaying modes

Now we take λ = −α2 and notice that α and −α give rise to the same solution, so
for convenience we take α ∈ R−. From Eq. (A.24) we obtain the ordinary di�erential
equation

X ′′ +
1

x
X ′ + α2X = 0, (A.33)

which is known as the Bessel equation with parameter p = 0 (sometimes, order p =
0). It has two independent solutions, the Bessel functions of �rst- and second-kind with
parameter p = 0, J0 and Y0, respectively, see Eqs. (C.2) and (C.3). Therefore the solution
Xα(x) is written as

Xα(x) = AJ0(αx) +BY0(αx), for x ∈ [1, L]. (A.34)

Here A and B are constants to be determined by the boundary conditions. From Eq.
(A.26), we see that Xα(L) = 0, so, as in (A.31) we obtain

Xα(x) =

{
Cα

[
J0(α)Y0(αL)− J0(αL)Y0(α)

]
, x ∈ [0, 1],

Cα

[
J0(αx)Y0(αL)− J0(αL)Y0(αx)

]
, x ∈ [1, L],

(A.35)

for suitable constants Cα which normalize the eigenfunctions in the L2
2[0, L] space.

From the left boundary condition (A.25), 2X ′
α(1) + (α2 + σ)Xα(1) = 0, so we search

for values of α that satisfy

−α
2 + σ

2α
=
J ′0(α)Y0(αL)− J0(αL)Y ′0(α)

J0(α)Y0(αL)− J0(αL)Y0(α)
. (A.36)

Since J ′0(x) = −J1(x) and Y ′0(x) = −Y1(x), see Property (1) in Appendix C, we simply
need to �nd the roots α of Eq. (A.36) rewritten as:

α2 + σ

2α

J0(α)Y0(αL)− J0(αL)Y0(α)

J1(α)Y0(αL)− J0(αL)Y1(α)
= 1. (A.37)

Given a value of α satisfying (A.37), we have found an eigenvalue; its corresponding
eigenvector is given by (A.35).



58 Eigenvalues and eigenvectors for the linearized models

A.2.3 The eigenvalue �nder

We can construct a function that helps in �nding the eigenvalues (just as we did for the
1d case in Sec. A.1.3); from the equalities (A.32) and (A.37) we write

F (y) =



y2 + σ

2y

J0(y)Y0(yL)− J0(yL)Y0(y)

J1(y)Y0(yL)− J0(yL)Y1(y)
=: F−(y), y < 0

σ lnL

2
y = 0

y2 − σ

2y

I0(y)K0(yL)− I0(yL)K0(y)

I1(y)K0(yL) + I0(yL)K1(y)
=: F+(y), y > 0.

(A.38)

The value F (y) for y = 0 is obtained by continuity of the function F (y), which will be
proved soon. Now the roots of F (y) = 1 are all the eigenvalues; positive values of y
correspond to the eigenvalues λ = y2, analyzed in Sec. A.2.1, and negative values of y
correspond to the eigenvalues λ = −y2 analyzed in Sec. A.2.2. Notice that λ = (sign y)y2.
The plot of this function is shown in Fig. A.2.

Figure A.2: Plot of the eigenvalue �nder F (y) for N = 2. The positive and
negative eigenvalues are determined by F (y) = 1. The dotted line corresponds
to the constant function equal to 1. Along the positive axis we represent the
condition for the existence of a positive eigenvalue β. Along the negative axis
we represent the conditions that de�ne the negative eigenvalues. Here we note
that there exists at most one positive eigenvalue.

We have to verify certain properties of F (y) in order to guarantee that we will �nd all
of the eigenvalues in this way. First of all, it is easy to see that the fractions without Bessel
functions, (y2± σ)/(2y), in (A.38) are antisymmetric in y. Similarly, it is not hard to see
that the quotients of Bessel functions are also antisymmetric in y, because I0, J0, K0, Y0

are even functions, but for the parameter p = 1, the Bessel functions I1, J1, K1, Y1 are odd
functions, see Property (1) in Appendix C. So, by plotting F− and F+ in the appropriate
half lines, we are capturing all relevant roots.

Lemma A.3 The eigenvalue �nder F (y) given in Eq. (A.38) is continuous at y = 0.



Eigenvalues and eigenvectors in 2d 59

Proof. First, we check that the lower limit of (A.38.a) is given by (A.38.b). The Bessel
functions involved are given by their asymptotic representations around y = 0, see the
complete calculations in Appendix C.2, obtaining

F−(y) =
y2 + σ

2y

J0(y)Y0(yL)− J0(yL)Y0(y)

J1(y)Y0(yL)− J0(yL)Y1(y)
(A.39)

=

(
y2 + σ

)(
lnL− (y/2)2(1 + L2)(lnL− 1) +O(y4)

)
2
(
1− (y/2)2(L2 − 2L lnL) +O(y4)

) , (A.40)

and therefore

lim
y→0

F−(y) =
σ lnL

2
. (A.41)

Thus, we see that (A.38.a) tends to (A.38.b) as y → 0−.
Second, we verify that the full function F (y) is continuous at y = 0. Let w be a

complex number: from de�nition (C.22), notice that I0(w) = J0(iw), K0(w) = Y0(iw),
and I1(w) = −iJ1(iw), K1(w) = iY1(iw), so by introducing these equalities into (A.38.a),
we obtain

F−(iw) =
−w2 + σ

2iw

I0(w)K0(wL)− I0(wL)K0(w)
1
−i
I1(w)K0(wL)− I0(wL)1

i
K1(w)

=
w2 − σ

2w

I0(w)K0(wL)− I0(wL)K0(w)

I1(w)K0(wL) + I0(wL)K1(w)
= F+(w), (A.42)

so the limit of the analytic functions F− and F+ is the same for any w → 0, so F (y) is a
continuous function. �

From the asymptotic behavior of the Bessel functions when y tends to −∞, we can
describe the relative size of the eigenvalues. Using Property (6) of Appendix C, when
y � −1, it follows that

F−(y) ≈ y2 + σ

2y

cos(y − π/4) sin(yL− π/4)− cos(yL− π/4) sin(y − π/4)

sin(y − π/4) sin(yL− π/4) + cos(yL− π/4) cos(y − π/4)

=
y2 + σ

2y

sin
(
y(L− 1)

)
cos

(
y(L− 1)

) =
y2 + σ

2y
cot

(
y(L− 1)

)
. (A.43)

In this way, the behavior of the large negative eigenvalues is very similar to the one we
found for the 1d case, in Sec. A.1.2. For the behavior of the small negative eigenvalues
we rely on the Bessel tools of Matlab, see Fig. A.2, and we notice that they are very
close to the eigenvalues obtained for the 1d case.

All these facts imply that the eigenvalue set is countable and it can be written as

. . . < yn < . . . < y2 < y1 < 0,

with the property that each root yn for n� 1 lies in the interval (−(n+ 1)π/d, −nπ/d).
We denote each negative eigenvalue by αn := yn, forming a decreasing sequence.
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Similarly, we can verify that for y � 1

F+(y) ≈ y2 − σ

2y
coth

(
y(L− 1)

)
, (A.44)

which is analogous to the result shown for the positive eigenvalue case in 1d. Then, with
the Matlab calculation for y ≥ 0 close to origin and the behavior for large y derived
analytically, we can conjecture that there is at most one positive eigenvalue. Taking into
account (A.41), we see that there exists a positive eigenvalue only when

σ lnL

2
> 1. (A.45)

We claim that for y 6= 0 that F ′(y) < 0 is satis�ed wherever it is de�ned. The
veri�cation is based on the following: (i) the analysis of F (y) for y � −1, see (A.43),
(ii) the analysis of F (y) for y � 1, see (A.44) and (iii) numerical evaluation done with
Matlab close to the origin.

We have found the eigenvalues that belong to the real axis. In Sec. 3.2, we used the
Friedrichs extension theorem to prove that they form a complete set (so there are no other
eigenvalues).

A.3 Eigenvalues and eigenvectors in 3d

Let us rewrite the eigenvalue problem (3.13)-(3.16) for N = 3 in [0, L]:

1
2

3 .
4
5
6

1

x2

d

dx

(
x2dX(x)

dx

)
= λX(x) x ∈ [1, L] (A.46)

σX(1) + 3X ′(1+) = λX(1) (A.47)

X(L) = 0 (A.48)

X(x) = X(1) x ∈ [0, 1]. (A.49)

Due to the similarities with two previous sections, we will be terse.

A.3.1 The growing mode

Take λ = β2, again with β ∈ R+ to recover the eigenvalue. Solving Eq. (A.46), we have

X(x) = A
exp(βx)

x
+B

exp(−βx)
x

, (A.50)

with A, B dependent on β. Substituting Eq. (A.50) in Eq. (A.48) we get B =
−A exp(2βL). Substituting this expression in Eq. (A.47), we obtain

σ − 3− β2

3β

sinh(βd)

cosh(βd)
= 1. (A.51)
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Thus, we de�ne

F (β) :=
σ − 3− β2

3β
tanh(βd), β > 0. (A.52)

So Eq. (A.51) is the same as
F (β) = 1. (A.53)

The eigenfunction associated to the eigenvalue β is

Xo(x) :=

Co sinh
(
βd

)
, x ∈ [0, 1],

Co

sinh
(
β(L− x)

)
x

, x ∈ [1, L],
(A.54)

where Co is a suitable constant to normalize the eigenfunction on the weighted space
L2

3[0, L] de�ned in (3.34).

A.3.2 Decaying modes

We now look for negative eigenvalues. Take λ = −α2 and notice that α and −α give rise
to the same solution, so for convenience we take α ∈ R−. From Eq. (A.46), we have

X(x) = A
cos(αx)

x
+B

sin(αx)

x
,

but from Eq. (A.48), we have X(L) = 0, so it is better to choose

Xα(x) = C
sin(α(L− x))

x
, (A.55)

where the constant C depends on α. Using (A.55) into Eq. (A.47), we get

σ − 3 + α2

3α
tan(αd) = 1. (A.56)

Thus we de�ne

F (α) :=
σ − 3 + α2

3α
tan(αd), α < 0. (A.57)

The eigenvalues are the roots of F (α) = 1, by comparison with Eq. (A.56).
Inspecting F (α) = 1 we see that there is a unique root αn for n ∈ N in each interval

(−(n + 1)π/d, −nπ/d). The roots form a countable decreasing sequence of eigenvalues
for our model. Each of these eigenvalues has an associated eigenfunction

Xn(x) :=

Cn sin
(
αnd

)
, x ∈ [0, 1],

Cn

sin
(
αn(L− x)

)
x

, x ∈ [1, L],
(A.58)

where Cn are suitable positive normalizing constants for the eigenfunctions in the space
L2

3[0, L].
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A.3.3 The eigenvalue �nder

We have used the negative sign for α because it allows us to plot all the conditions in a
single graph. We can rede�ne the function in (A.52), (A.57) as F (y) below, using positive
y for β and negative y for α, in this way:

F (y) :=



σ − 3 + y2

3y
tan

(
yd

)
y < 0

σ − 3

3
d y = 0

σ − 3− y2

3y
tanh

(
yd

)
y > 0.

(A.59)

Now the roots of F (y) = 1 are all the eigenvalues; positive y correspond to the eigenvalues
λ = y2, analyzed in Sec. A.3.1, and negative y correspond to the eigenvalues λ = −y2

analyzed in Sec. A.3.2. Notice that λ = (sign y)y2.
Notice that 3×F (y) in Eq. (A.59) is the same as F (y) in Eq. (A.23) for σ− 3 in lieu

of σ. Thus, it is easy to verify that F (y) in (A.52) is monotone decreasing for y ∈ (0, ∞)
taking values from (σ − 3)d/3 to −∞. Thus, a rescaled plot of this function is shown in
Fig. A.1.

Notice the similarities between Eqs. (A.59) and (A.23). All the statements in Sec.
A.1.3 are also true for the 3d case, changing the inner product. We remark that for y 6= 0,
F ′(y) < 0 wherever is de�ned, so the eigenvalue �nder has a unique root F (y) = 1 in each
interval (−(n+ 1)π/d, −nπ/d) for all n ∈ N and there is at most a single eigenvalue for
y > 0, because there is one root in the interval (−π/d, σ). (Notice that F ′(y) < 0 for
0 6= y ∈ (−π/d, σ) and that the limits limy→−π/d+ F (y) = +∞ and limy→+∞ F (y) = −∞
are satis�ed.)

Remark A.4 We mentioned that the functions F (y) in Eqs. (A.23), (A.38) and in Eq.
(A.59) are at least continuous around y = 0 and that for y 6= 0 it is monotone decreasing
in each interval where it is de�ned. Notice that the eigenvalue for the growing mode is
dependent of σ and L. However, from (3.3), we notice that

σ(θ) = γ exp(−1/θ)/θ2 ≤ 4γ (A.60)

for all values of θ ≥ 0, and moreover, if γsN ≥ Ξ(θM) the unstable mode does not exists,
see Eq. (2.9) and Fig. 2.1 or Fig. 2.2. Thus, when σd grows to in�nity the associated
eigenvalue β grows also to in�nity! However, since σ is bounded, the product σd only
grows if d does, inspecting Fig. 2.1 we see that then the unstable equilibria θII no longer
exists, which restrict the growing of the eigenvalue β.

Therefore, the value of the growing mode is always bounded by the positive root of
F (y) = 1 when σ = 4γ and γ is taken as Ξ(θM)/sN . In Sec. 3.2 we showed as a corollary
of Friedrichs' Theorem that this limit is just σ = 4γ. Thus the eigenvalue β and so the
rate of growth of the unstable mode is always bounded by 4γ.



Appendix B

Eigenvalues and eigenvector

for the spectral decomposition

The basis for the spectral decomposition is constructed by means of the classical separation
of variables method. In Sec. B.1, we solve �rst a transient model because the similarities
between the separation of variables for this model and the spectral decomposition are the
guide for the construction of the orthonormal basis. In Sec. B.2 we summarize the results.

We proceed as follows. In each subsection of Sec. B.1 we focus on the spatial dimen-
sions N = 1, 2, 3; we study the solution of the transient model providing its solution.

B.1 Solution for the transient model

In order to �nd the solution of a transient model in a bounded domain it is convenient to
apply the method of separation of variables. The solution for a general case as a forced
model with a spectral decomposition will be found as a consequence.

B.1.1 Orthonormal basis for 1d

Let us write the transient problem for the heat equation for N = 1:
1
2

3 .
4
5

ut = uxx x ∈ [1, L], t ≥ 0 (B.1)

u(1, t) = 0 t ≥ 0 (B.2)

u(L, t) = 0 t ≥ 0 (B.3)

u(x, 0) = uo(x) x ∈ [1, L]. (B.4)

Let us use separation of variables. We consider solutions of the form

u(x, t) = T (t)X(x). (B.5)

Introducing (B.5) in Eq. (B.1) and dividing by X(x)T (t) shows that

X ′′(x)

X(x)
=
T ′(t)

T (t)
= −λ2. (B.6)
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The constant −λ2 arises because the �rst equality in (B.6) must be satis�ed for all t ≥ 0
and x ∈ [1, L]. Thus each of these fractions cannot depend explicitly on x or t. The sign
of −λ2 is consistent with decay for the heat equation solution for long times, see [20].

Equating the �rst fraction and the last term in Eq. (B.6), we obtain the following
boundary eigenvalue problem with X(1) = X(L) = 0

X ′′(x) + λ2X(x) = 0, so X(x) = α cos(λx) + β sin(λx), (B.7)

where α, β are constant. Introducing (B.7) in the boundary conditions (B.2)-(B.3) leads
to the boundary conditions for (B.7):

X(1) = 0 and X(L) = 0. (B.8)

We see that the solution X(x) is not unique; the set of solutions Xn(x) and λn given by

Xn(x) := C sin
(
λn(x− 1)

)
, with λn := nπ/d, n ∈ N , (B.9)

solve (B.7), (B.8); here d = L − 1 as in (2.6). We have chosen the constant C :=
√

2/d
for convenience as we will show soon.

Equating the second fraction and the last term in Eq. (B.6), we obtain, for each λn:

T ′n(t) = −λ2
nTn(t), or Tn(t) = Bn exp(−λ2

nt) (B.10)

where Bn must be determined.
Thus, we have constructed the particular solutions

un(x, t) = Bn exp(−λ2
nt)Xn(x), (B.11)

which satisfy all the homogeneous boundary conditions in (B.8). The same is true for
any �nite linear combination of solutions of type (B.11). We attempt to represent the
solution u(x, t) of (B.1)-(B.4) as an in�nite series in the functions un(x, t):

u(x, t) =
∑
n∈N

Bn exp(−λ2
nt)Xn(x), with (B.12)

uo(x) =
∑
n∈N

BnXn(x), (B.13)

under the assumption that uo belongs to L2[1, L]. The constant C in Xn(x), Eq. (B.9),
is chosen so {Xn}n∈N satisfy the relation

〈Xn, Xk〉 = δn, k, ∀n, k ∈ N , (B.14)

in the L2[1, L] inner product. Therefore, calculating the L2[1, L] inner product with the
eigenfunction Xk(x) for both sides of (B.13), we see that the coe�cients Bk must be taken
as

Bk := 〈Xk, uo〉. (B.15)

Notice that {Xn}n∈N form a complete orthonormal set of eigenfunctions in the space
L2[1, L] for the operator −d2/dx2 with homogeneous Dirichlet boundary conditions; then



Solution for the transient model 65

there is a unique decomposition for every uo ∈ L2[1, L] given by (B.13), with Bn given in
(B.15). Therefore, we write the solution of (B.1)-(B.4) in the form (B.12) with Bn given
by (B.15) and Xn(x) by (B.9).

On the other hand, from de�nition of Xn(x) in (B.9) and a simple calculation we have
that

X ′
n(1) := Cλn cos

(
λn(x− 1)

)∣∣
x=1

= Cλn, ∀n ∈ N , (B.16)

is satis�ed.

B.1.2 Orthonormal basis for 2d

Let us write the transient problem for the heat equation for N = 2:

1
2

3 .
4
5
6

ut =
1

x

∂

∂x

(
x
∂u

∂x

)
x ∈ [1, L], t ≥ 0 (B.17)

u(1, t) = 0 t ≥ 0 (B.18)

u(L, t) = 0 t ≥ 0 (B.19)

u(x, 0) = uo(x) x ∈ [1, L]. (B.20)

We use separation of variables obtaining

u(x, t) = exp(−λ2t)X(x). (B.21)

We use only negative eigenvalues −λ2. The reason arise from the boundedness of the
Dirichlet boundary conditions at x = 1 and x = L, see Eqs. (B.18) and (B.19). Indeed, if
we imagine the shell domain in R2 and expect a positive mode λ2 we see a contradiction
by the maximum principle, see e.g. [20].

We obtain from (B.21) the boundary eigenvalue problem
1

x

d

dx

(
x
dX

dx

)
= −λ2X x ∈ (1, L)

X(1) = X(L) = 0.
(B.22)

This ODE is the Bessel equation for parameter p = 0 with Dirichlet boundary conditions,
see [25]. As explained in Appendix C, we know that for each λ the solution for the �rst
equation in (B.22) is

Xλ(x) = AJ0(λx) +BY0(λx), (B.23)

with constant A and B. From the boundary condition X(1) = 0, the solution must satisfy
A = Y0(λ) and B = −J0(λ). Using the boundary condition X(L) = 0, λ must be a root
of

Z(λ) = 0, where Z(λ) := Y0(λ)J0(λL)− J0(λ)Y0(λL). (B.24)

A plot of Z(λ) is shown in Fig. B.1, from which we can �nd the roots by inspection;
we denote such roots by λn in increasing order. Because of the parity of the Bessel
function with parameter p = 0, we know that the negative roots would yield the same



66 Eigenvalues and eigenvector for the spectral decomposition

eigenvalues and eigenvectors, so they are unnecessary. Moreover, as shown in Property
(6) of Appendix C, we have that for λ→∞

Y0(λ) ≈
√

2

πλ
sin

(
λ− π

4

)
and J0(λ) ≈

√
2

πλ
cos

(
λ− π

4

)
, (B.25)

so

Z(λ) ≈ 2

πλ
√
L

sin
(
λ(L− 1)

)
, (B.26)

this fact is a partial justi�cation for the asymptotic behavior λn ≈ nπ/d for n→∞.

Figure B.1: Plot of Z(λ) for λ ≥ 0. This is a Matlab plot using Bessel tools.

The eigenfunctions are

Xn(x) := En

(
J0(λn)Y0(λnx)− Y0(λn)J0(λnx)

)
, (B.27)

where λn are roots of Z(λ) = 0 and En are constants. Using the weighted Hilbert
space L2

2[1, L] de�ned in (3.34), we show in Appendix C.3 that the eigenfunctions are
orthonormal for suitable normalizing constants En de�ned in Eq. (C.41). Recalling the
radial symmetry, it can also be proven that these eigenfunctions de�ne a complete basis
for the space L2

2[1, L], but we will not do it here.
In Appendix C.3 we prove the orthonormality of the eigenfunctions Xn given in (B.27).

In Appendix C.4, we show in Claim C.1 that X ′
n(1) = Cnλn for all n ∈ N and in Claim

C.2 it is proved that Cn tends to
√

2/d as n tends to ∞.
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B.1.3 Orthonormal basis for 3d

Let us write the transient problem for the heat equation for N = 3:

1
2

3 .
4
5
6

ut =
1

x2

∂

∂x

(
x2∂u

∂x

)
x ∈ [1, L], t ≥ 0 (B.28)

u(1, t) = 0 t ≥ 0 (B.29)

u(L, t) = 0 t ≥ 0 (B.30)

u(x, 0) = uo(x) x ∈ [1, L]. (B.31)

As in the case for N = 1, we use separation of variables and obtain

u(x, t) = exp(−λ2t)X(x). (B.32)

We use again only negative eigenvalues −λ2. The boundary eigenvalue problem
1

x2

d

dx

(
x2dX

dx

)
= −λ2X x ∈ [1, L]

X(1) = X(L) = 0,
(B.33)

obtained from (B.32), (B.29)-(B.30), has solution

X(x) = C
sin

(
λ(x− 1)

)
x

(B.34)

satisfying the left boundary condition X(1) = 0. The (normalizing) constant C in princi-
ple depends upon the value of λ. In order to apply the right boundary condition X(L) = 0
we must have λn = nπ/d, ∀n ∈ N . Therefore, we de�ne

Xn(x) := C
sin

(
λn(x− 1)

)
x

, λn =
nπ

d
, ∀n ∈ N . (B.35)

By choosing C :=
√

2/d for all n ∈ N , the eigenfunctions {Xn}n∈N are orthonormal in
the weighted inner product of the space L2

3[1, L], see (3.34).
Moreover, from de�nition (B.35) we have

X ′
n(1) :=

[
C
λn cos

(
λn(x− 1)

)
x

− C
sin

(
λn(x− 1)

)
x2

]
x=1

= Cλn, ∀n ∈ N. (B.36)

B.2 Summary for the bases in N dimensions

In order to summarize the results of this Appendix that are important for Chapters 4
and 5, we emphasize the similarities the results among N = 1, 2, 3. From Eqs. (B.9),
(B.27) and (B.35), we see that {Xn}n∈N form a complete orthonormal basis in L2

N [1, L]
that satisfy Eqs. (4.14), where we recall that L2

1[1, L] ≡ L2[1, L].
Notice that Xn(x) are the eigenfunctions, de�ned in Eq. (B.9) for N = 1:

Xn(x) := C sin
(
λn(x− 1)

)
, λn = nπ/d, for n ∈ N , (B.37)

where C :=
√

2/d.
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For N = 2 we notice that Cn := En

(
Y0(λn)J1(λn)− J0(λn)Y1(λn)

)
for n ∈ N , see Eq.

(C.50). Thus the eigenfunctions given in Eq. (B.27) can be rewritten as:

Xn(x) := Cn
J0(λn)Y0(λnx)− Y0(λn)J0(λnx)

Y0(λn)J1(λn)− J0(λn)Y1(λn)
, for n ∈ N , (B.38)

where λn, n ∈ N are the roots of Z(λ) = 0 given in Eq. (B.24). From Eq. (C.50) and
then from Claim C.2 and the approximations in Eq. (B.25) we notice that

X ′
n(1) = Cnλn, ∀n ∈ N and Cnλn ≈ C

nπ

d
, for n� 1. (B.39)

For N = 3, we de�ned in Eq. (B.35):

Xn(x) := C
sin

(
λn(x− 1)

)
x

, λn = nπ/d, for n ∈ N . (B.40)

Moreover, from Eqs. (B.16), (B.36) and Eq. (B.39.a), we have

X ′
n(1) = Cλn, ∀n ∈ N , for N = 1, 3,

X ′
n(1) = Cnλn, ∀n ∈ N , for N = 2.

(B.41)



Appendix C

Properties of Bessel functions and bases

We compile here all the properties that are used in this work, especially in the Appendixes
A.2 and B.1.2. Some of them are classical, but is nice to list them all here. All the
information can be recovered from the books [39], [25] or from the book of Tolstov, [36].

First of all, we recall that Bessel functions arise from solving the ODE for x ∈ C

x2X ′′(x) + xX ′(x) + (x2 − p2)X(x) = 0, (C.1)

called the Bessel equation with parameter p.
Using some manipulations by change of variables and looking x ∈ C for a solution in

the form of a series, we arrive at the solutions

Jp(x) =
∞∑

k=0

(−1)k(x/2)2k+p

Γ(k + 1)Γ(k + p+ 1)
. (C.2)

Is easy to prove that Jp(x) and J−p(x) are two linearly independent solutions of Eq. (C.1)
if, and only if, p /∈ Z . Otherwise we have a di�culty, because J−n(x) = (−1)nJn(x) for all
n ∈ N . To obtain a second linearly independent solution for the situations where p ∈ Z ,
we de�ne

Yn(x) := lim
p→n

Jp(x)(−1)p − J−p(x)

sin(pπ)
, (C.3)

when n ∈ N . To compute this limit we use the L'Hôpital rule and some properties of the
Gamma function, and we conclude that

Yn(x) =
2

π
Jn(x)

(
ln
x

2
+ C

)
− 1

π

n−1∑
k=0

(n− k − 1)!

k!

(
x

2

)2k−n

(C.4)

− 1

π

∞∑
k=0

[
(−1)k(x/2)n+2k

k!(n+ k)!

( n+k∑
j=1

1

j
+

k∑
j=1

1

j

)]
, (C.5)

where C is the Euler's constant, and we have

C = lim
x→∞

[
x− Γ

(
1

x

)]
= lim

n→∞

[
Γ(1/n)Γ(n+ 1)n1+1/n

Γ(1 + n+ 1/n)
− n2

n+ 1

]
, (C.6)

or C = 0.577215664901532 · · · .
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In particular, we have the expressions

Y0(x) =
2

π
J0(x)

(
ln
x

2
+ C

)
− 2

π

∞∑
k=1

(−1)k

(k!)2

(
x

2

)2k(
1 +

1

2
+

1

3
+ · · ·+ 1

k

)
=:

2

π
J0(x)

(
ln
x

2
+ C

)
− 2

π
Σ(x), (C.7)

here Σ(x) is an auxiliary notation for the remainder series; Σ̂(x) and Σ̃(x) ahead are also
remainder series

Y1(x) =
2

π
J1(x)

(
ln
x

2
+ C

)
− 2

πx
− 2

π

∞∑
k=1

(−1)k(x/2)2k+1

2
[
(k + 1)!

]2

− 2

π

∞∑
k=1

(
(−1)k(x/2)2k+1

k!(k + 1)

)(
1 +

1

2
+ · · ·+ 1

k

)
=:

2

π
J1(x)

(
ln
x

2
+ C

)
− 2

πx
− 2

π
Σ̂(x)− 2

π
Σ̃(x). (C.8)

We compile some useful properties of Bessel functions; we write them down only for Jp

functions, but they are also valid for Yp functions. All the calculations are found in [36].

1. By direct di�erentiation, for any p, we have

d

dx

[
xpJp(x)

]
= xpJp−1(x),

d

dx

[
x−pJp(x)

]
= −x−pJp+1(x), therefore:

xJ ′p(x) + pJp(x) = xJp−1(x), (C.9)

xJ ′p(x)− pJp(x) = −xJp+1(x). (C.10)

2. Adding or subtracting (C.9) and (C.10), we obtain

2J ′p(x) = Jp−1(x)− Jp+1(x),
2p

x
Jp(x) = Jp−1(x) + Jp+1(x).

3. It is proven asymptotically in [36] (Eq. (9.17) in page 213) that for large x ∈ R+

Jp(x) =

√
2

πx
sin

(
x− π

2

(
p− 1

2

))
+
rp(x)

x
√
x
,

Yp(x) =

√
2

πx
sin

(
x− π

2

(
p+

1

2

))
+
ρp(x)

x
√
x
,

where rp(x) e ρp(x) are bounded functions when x goes to +∞.

4. From (1), or even from (3), we see that the zeros of Jp(x) and Yp(x) are alternating,
moreover, they form a countable in�nite set. Also we notice that, when x � 1 the
zeros are close to the zeros of a sine translated by π

2
(p± 1

2
).
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5. Other useful properties that arise from equality (C.10) are

J ′0(x) = −J1(x), also Y ′0(x) = −Y1(x).

6. From Property (3), we have for x ∈ R+

Jp(x) ≈
√

2

πx
cos

(
x− π

4
(1 + 2p)

)
, (C.11)

Yp(x) ≈
√

2

πx
sin

(
x− π

4
(1 + 2p)

)
, (C.12)

Ip(x) ≈ 1√
2πx

ex, (C.13)

Kp(x) ≈
√

π

2x
e−x, (C.14)

when x� 1. The last two will be clear after Appendix C.1. (The argument is also
valid for z ∈ C , when |z| � 1, see [39].)

7. In [39], p. 31, it is stated that for x ∈ R,

|J0(x)| ≤ 1 and |Jn(x)| ≤ 1/
√

2 for n = 1, 2, . . . .

To see that Y0(x) and Y1(x) are bounded for x ≥ 1, notice that they are continuous
functions for x > 0. Then, from Property (6) they tend to zero as x → ∞; the
boundedness is clear. As a matter of fact, these bounds are smaller that 1.

C.1 The Macdonald function and

the modi�ed Bessel function of the third kind

In Appendix A.2.1 we need the solution for the equation

X ′′(x) +
1

x
X ′(x)− β2X(x) = 0. (C.15)

Using the traditional power series only one solution can be found; this could imply that
the other solution is not analytic at the origin.

We had the same problem with the Bessel equation, therefore, we take instead of
(C.15) the equation

X ′′(x) +
1

x
X ′(x)−

(
p2

x2
+ β2

)
X(x) = 0, (C.16)

for any parameter p, imitating the construction of the solution for the Bessel equation.
We make the change of variables y := iβx, so that

d

dx
X(y) = iβX ′(y) and

d2

dx2
X(y) = (iβ)2X ′′(y), (C.17)
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and substitute these two relations in equation (C.16), obtaining

−β2X ′′(y) +
iβ

x
X ′(y)−

(
p2

x2
+ β2

)
X(y) = 0 (C.18)

or −β2X ′′(y)− β2

y
X ′(y)−

(
β2 − β2p2

y2

)
X(y) = 0. (C.19)

We multiply (C.19) by −y2/β2, obtaining

y2X ′′(y) + yX ′(y) +
(
y2 − p2

)
X(y) = 0, (C.20)

which is the Bessel equation with parameter p in Eq. (C.1): the solutions for this equation
were given in Eqs. (C.2) and (C.3){

Jp(y), J−p(y), with p /∈ Z ,
Jp(y), Yp(y), with p ∈ Z . (C.21)

In this case, using the inverse change of variables x = −iy/β we have that the solutions
are J0(iβx) and Y0(iβx); usually we denote I0(βx) = J0(iβx) and K0(βx) = Y0(iβx), the
solutions we used before.

It is common to de�ne the modi�ed Bessel function of the third kind and Macdonald
function in the same way, just by multiplying by a convenient constant, as

Ip(x) := i−pJp(ix) and Kp(x) := ipYp(ix), (C.22)

respectively. Notice that applying Eq. (C.22) into (C.11) and (C.12), and after some
manipulation we recover (C.13) and (C.14) respectively. Therefore, we can write

I0(x) =
∞∑

k=0

(x/2)2k

(k!)2
, (C.23)

K0(x) = lim
p→0

I−p(x)− Ip(x)

2p
, (C.24)

because the limit in Eq. (C.3) satis�es sin(pπ) ≈ p as p→ 0. Hence, it is not di�cult to
see that Ip(x), Kp(x) ≥ 0 for all x ≥ 0. The Macdonald function Ip(x) is also known as
the modi�ed Bessel function of the �rst kind; we follow the terminology in [25] and [39].

C.2 Behavior of the eigenvalue �nder function near zero

We can express the Bessel functions as a truncated power series, in order to show that the
eigen�nder F−(z) is precisely the expression written in Eq. (A.40). Directly from (C.2),
(C.7) and (C.8) we write the approximations of order O(z3) for z ∈ C , z near zero, as

J0(z) = 1−
(
z

2

)2

+O(z4), J1(z) =
z

2
− 1

2

(
z

2

)3

+O(z5), (C.25)
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Σ(z) = −
(
z

2

)2

+O(z4), Σ̃(z) = −1

2

(
z

2

)3

+O(z5), Σ̂(z) = − 1

23

(
z

2

)3

+O(z5).

(C.26)
Using expression (C.7) for Y0, we notice that

J0(z)Y0(zL) =
2

π

[
J0(z)J0(zL)

(
ln
zL

2
+ C

)
− J0(z)Σ(zL)

]
, (C.27)

J0(zL)Y0(z) =
2

π

[
J0(zL)J0(z)

(
ln
z

2
+ C

)
− J0(zL)Σ(z)

]
, (C.28)

so, using the approximations (C.25)-(C.26) for these products, we have

T (z) := J0(z)Y0(zL)− J0(zL)Y0(z) =
2

π

[
J0(z)J0(zL) lnL− J0(z)Σ(zL) + J0(zL)Σ(z)

]
=

2

π

[(
1− (1 + L2)

(
z

2

)2

+O(z4)

)
lnL+ L2

(
z

2

)2

+O(z4)−
(
z

2

)2

+O(z4)

]
=

2

π

[
lnL− (1 + L2)(lnL− 1)

(
z

2

)2

+O(z4)

]
. (C.29)

Analogously, using expressions (C.7) for Y0 and (C.8) for Y1, we have

J1(z)Y0(zL) =
2

π

[
J1(z)J0(zL)

(
ln
zL

2
+ C

)
− J1(z)Σ(zL)

]
, (C.30)

J0(zL)Y1(z) =
2

π

[
J0(zL)J1(z)

(
ln
z

2
+ C

)
− J0(zL)

z
− J0(zL)Σ̃(z)− J0(zL)Σ̂(z)

]
,

so, using the approximations (C.25)-(C.26) for these products, we have

B(z) := 2z
(
J1(z)Y0(zL)− J0(zL)Y1(z)

)
(C.31)

=
4

π

[
zJ1(z)J0(zL) lnL− zJ1(z)Σ(zL) + J0(zL) + zJ0(zL)

(
Σ̃(z) + Σ̂(z)

)]
=

4

π

[(
2L

(
z

2

)2

+O(z4)

)
lnL+O(z4) + 1−

(
z

2

)2

+O(z4) +O(z4)

]
=

2

π

[
2− 2

(
L2 − 2L lnL

)(z
2

)2

+O(z4)

]
. (C.32)

Therefore F−(y) in (A.40) satis�es

F−(z) =

(
z2 + σ

)
T (z)

B(z)
=

(
z2 + σ

)(
lnL− (z/2)2(1 + L2)(lnL− 1) +O(z4)

)
2
(
1− (z/2)2(L2 − 2L lnL) +O(z4)

) , (C.33)

and taking the limit when z → 0, we obtain simply

lim
z→0

Fα(z) =
σ lnL

2
. (C.34)
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C.3 Orthonormality for the Bessel basis

We need to verify that {Xn}n∈N given in (B.27) is an orthogonal basis in L2
2[1, L], de�ned

in (3.34). Take y(x) := Xk(x) and z(x) := Xm(x) for two natural numbers k, m, for Xn

de�ned in Eq. (B.27). From Eq. (B.22.a) they satisfy:

xy′′ + y′ = −λ2
kxy and xz′′ + z′ = −λ2

mxz.

Multiply the former equation by z(x) and the latter by y(x) and by subtraction, we obtain

x(zy′′−z′′y)+(zy′−z′y) = (λ2
m−λ2

k)xyz, or [x(zy′−z′y)]′ = (λ2
m−λ2

k)xyz. (C.35)

Integrating from 1 to L and recalling that Xk(1) = Xk(L) = 0, for k as well as for m, we
get

(λ2
m − λ2

k)

∫ L

1

xy(x)z(x) dx = [x(zy′ − z′y)]Lx=1 = 0. (C.36)

Therefore if k 6= m we have λ2
k 6= λ2

m. In the weighted space L2
2[1, L] we obtain that

{Xk}k∈N form an orthogonal basis.
Let us calculate 〈Xn, Xn〉2. We cannot use directly Eq. (C.36) because the LHS also

vanish. Following [25], instead of Xm(x) we use Xµ(x) for µ ∈ R , which satis�es (B.22.a),
so notice that

〈Xn, Xn〉2 = lim
µ→λn

λnLXµ(L)X ′
n(L)− λnXµ(1)X ′

n(1)

µ2 − λ2
n

, (C.37)

where we have used the property Xn(1) = Xn(L) = 0. Notice that in the limit both
numerator and denominator vanish, so using L'Hôpital leads to

〈Xn, Xn〉2 = lim
µ→λn

λnL
d
dµ
Xµ(L)X ′

n(L)− λn
d
dµ
Xµ(1)X ′

n(1)

2µ
. (C.38)

However, di�erentiating Xµ(L) = Eµ

(
J0(µ)Y0(µL)− Y0(µ)J0(µL)

)
, see Eq. (B.27)

dXµ(L)

dµ
= −En

(
Y1(µ)J0(µL)− J1(µ)Y0(µL) + L

[
Y0(µ)J1(µL)− J0(µ)Y1(µL)

])
6= 0,

(C.39)
and dXµ(1)/dµ = 0. Then substituting (C.39) into (C.38) and taking the limit µ → λn,
we obtain

〈Xn, Xn〉2 =
E2

nL

2

(
Y0(λn)J1(λnL)− J0(λn)Y1(λnL)

)
(C.40)

×
(
Y1(λn)J0(λnL)− J1(λn)Y0(λnL) + L

[
Y0(λn)J1(λnL)− J0(λn)Y1(λnL)

])
.

Therefore, we have 〈Xn, Xn〉1 = 1 for all n ∈ N , by de�ning En as

En :=

(
2
(
Y1(λn)J0(λnL)− J1(λn)Y0(λnL) + L

[
Y0(λn)J1(λnL)− J0(λn)Y1(λnL)

])−1

L
(
Y0(λn)J1(λnL)− J0(λn)Y1(λnL)

) ) 1
2

.

(C.41)
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C.4 Estimates for constants in the Bessel basis

For n � 1 we can �nd nice estimates. In the following proofs, we will use the auxiliary
notation

a := λn − π/4, aL := λnL− π/4, (C.42)

b := λn − 3π/4, bL := λnL− 3π/4, and bx := λnx− 3π/4, (C.43)

which depend on n, but for the sake of simplicity we will omit such dependence because
it does not lead to confusion.

Claim C.1 For n� 1 we have that En ≈ πλn/
√

2d.

Proof. Recalling the formula (C.41) for En, using the Property (6) of this Appendix and
the auxiliary de�nitions (C.42)-(C.43), we have that for n → ∞ the eigenvalues satisfy
λn ≈ nπ/d, see Eq. (B.26), so

E−2
n ≈ L

2

4

π2λ2
nL

(
sin a cos bL − cos a sin bL

)
(C.44)

×
[
sin b cos aL + L sin a cos bL − sin b cos aL − L cos a sin bL

]
(C.45)

=
2

π2λ2
n

sin(a− bL)
[
sin(b− aL) + L sin(a− bL)

]
(C.46)

≈ 2

π2λ2
n

sin(π/2− nπ)
[
sin(−π/2− nπ) + L sin(π/2− nπ)

]
(C.47)

=
2

π2λ2
n

(−1)n+1[(−1)n + (−1)n+1L] =
2d

π2λ2
n

. (C.48)

Therefore the claim is proved. �

A simple di�erentiation of the eigenfunctions Xn, given in (B.27), shows that

X ′
n(1) = λnEn(Y0(λn)J1(λn)− J0(λn)Y1(λn)), ∀n ∈ N , (C.49)

with the normalizing constant En given in (C.41). So, let us de�ne the constants Cn as

Cn := En(Y0(λn)J1(λn)− J0(λn)Y1(λn)), ∀n ∈ N . (C.50)

in order to express X ′
n(1) = λnCn.

Claim C.2 For n � 1 we have that Y0(λn)J1(λn) − J0(λn)Y1(λn) ≈ 2/(πλn). Also
Cn ≈

√
2/d.

Proof. First notice, from di�erentiating Eq. (B.27), that

X ′
n(x) = −λnEn

(
J0(λn)Y1(λnx)− Y0(λn)J1(λnx)

)
, (C.51)

and that |Jk(x)| ≤ 1 for x ∈ R and k = 0, 1, 2, . . . and |Ym(x)| ≤ 1 for values x > 1
when m = 0, 1, see Property (7) in this Appendix; therefore |X ′

n(x)| ≤ 2λnEn. However,
we can do better as follows.
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Using the expression (C.51) at x = 1, the Property (6) and the auxiliary numbers
(C.42)-(C.43), we have that for n� 1

Y0(λn)J1(λn)− J0(λn)Y1(λn) ≈ −Enλn

(
2

πλn

)(
sin b cos a− sin a cos b

)
=

2

πλn

sin
π

2
=

2

πλn

(C.52)

Thus we have proved the �rst part of the claim. The second part follows from Claim C.1
by recalling that Cn := En

(
Y0(λn)J1(λn)− J0(λn)Y1(λn)

)
, in Eq. (C.50). �



Appendix D

Boundary conditions

and stationary solutions

In this Appendix we study all possible boundary conditions that can be used for problem
(2.1)-(2.2), for N = 1:

d2%

dx2
= 0 x ∈ [1, L]

γ exp

(
− 1

%

)∣∣∣∣
x=1

+
d%

dx

∣∣∣∣
x=1+

= 0 x = 1,

(D.1)

namely, one of the boundary conditions at the right

%x(x) = −q, if x = L <∞
%(x) → θ∞, if x→ L = ∞.

(D.2)

With q > 0, −q is an outgoing �ux, and θ∞ is a non-negative temperature.
We start by analyzing the case when L = ∞. To de�ne a solution for the system

(D.1), the solution

%(x) = ax+ b, (with a, b constants) (D.3)

needs a = 0 and b = θ∞. In order to satisfy the right boundary condition (D.2.b), it is
necessary that %(1) = θ∞. Using the solution (D.3) in (D.1.b), we get

d%

dx

∣∣∣∣
x=1

= 0, then exp

(
− 1

%

)∣∣∣∣
x=1

= 0. (D.4)

This is only possible if −1/θ∞ → −∞, which means that % ≡ 0, thus for L = ∞ the only
solution is uninteresting.

Now we restrict to some �nite L. Using a �nite interval [1, L] for x allows for more
possibilities, depending on the boundary condition used at x = L. The two most common
boundary conditions are Dirichlet's and Neumann's. The �rst one, applied to this case,
�xes the temperature of the exterior of our domain, while the second one prescribes the
heat �ux at the boundary of our domain.
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The stationary system for the Neumann conditions is very simple. We start again from
system (D.1), and impose a heat �ux condition at the right boundary on x = L. This
situation does not correspond to what happens in the �eld: we never have an isolated
reservoir. However, it may be obtained in the laboratory, and it is a nice scenario to test
the model.

For the homogeneous Neumann problem, we have the stationary system (D.1) with
boundary condition (D.2)

%x(L) = 0. (D.5)

Again, the solution is given by %(x) = ax+b. Since we have %x ≡ a, from the boundary
condition (D.5), we obtain that a = 0. From the left boundary we have %(1) = b. Using
these values in the second equation of (D.1), we recover the limit in (D.4). Once again,
we only get a trivial and uninteresting solution. This fact is in agreement with intuition;
if at x = 1 we have a positive source of heat and the reservoir is isolated at x = L, then
the temperature never stabilizes.

However, if we specify a nonzero heat �ow at x = L, i.e.

%x(L) = −q, (D.6)

then from solution (D.3)

%′(x) = a or a = −q. (D.7)

Using this result in the second Eq. of (D.1), we get:

γ exp

(
− 1

−q + b

)
− q = 0 (D.8)

therefore b = q − 1

log(q/γ)
. (D.9)

In this case we have a stationary solution only if %(1) = −(log(q/γ))−1. Note that when
q → 0+ we return to the case where the �ux is zero; we recover the trivial solution.

For the case q ≥ γ, the resulting steady temperature is negative at x = 1, which does
not make physical sense, so we restrict the �ux q to the range [0, γ); we disregard �uxes
such that energy goes out too fast and �uxes that inject energy into the system, as these
cases cannot yield stationary solutions.

However, this case gives rise to only one interesting situation, because

%(1) = b+ a = − 1

log(q/γ)
, (D.10)

has to be satis�ed. The linear analysis of stability is easy, and this steady-state solution
is stable.



Appendix E

Numerical simulations

We left for this Appendix all the numerical methods and simulations, and each section
describes facts speci�c to each dimension.

E.1 Numerical method for the 1d case

In this section we discuss the �nite di�erence scheme we use for the nonlinear problem
(1.23)-(1.27) with spatial dimension one. This scheme and others can be found in [34].
We implement the Crank-Nicolson method (CN) for the heat equation (1.23), thus for

θt = θxx, x ∈ [1, L],

the CN scheme with n = 0, 1, . . . and m = 0, 1, . . . , M is:

−µ
2
vn+1

m−1 + (1 + µ)vn+1
m − µ

2
vn+1

m+1 =
µ

2
vn

m−1 + (1− µ)vn
m +

µ

2
vn

m+1, (E.1)

where vn
m = v(mh + 1, nk) is the discrete approximation solution (notice that we set

(mh+ 1, nk) because it is convenient to represent vn
0 = v(1, nk) as the �rst spatial point

for the domain starting at x = 1), µ := k/h2, h is the grid spacing and k is the time
interval. Here M := (L− 1)/h, so vn

M = v(L, nk).
The CN method is of order O(h2, k2), and it is unconditionally stable for appropriate

discrete boundary conditions. However, in our original nonlinear problem, one of the
boundary conditions is nonlinear. There is no general theory for the stability of nonlinear
schemes. Nevertheless, we expect that for small parameters h and k the scheme have a
nice behavior.

The complete nonlinear problem (1.23)-(1.27), in the domain x ∈ [1, L], for N = 1
has for t > 0 the boundary conditions:

θt(1, t) = γ exp(−1/θ(1, t)) + θx(1, t), (E.2)

θ(L, t) = θL. (E.3)

Then, the right boundary condition is governed by vn+1
M = vn

M , where we set v0
M = θL.

In order to discretize the left boundary (E.2), we recall that one way of deriving the

79



80 Numerical simulations

discretization of CN method utilizes an auxiliary grid point between two step times,
namely

(
1 + mh, (n + 1

2
)k

)
. For the sake of consistency we have to expand the time

derivatives at the boundary around the auxiliary point
(
1, (n+ 1

2
)k

)
. Notice that

θ
(
1, (n+ 1/2± 1/2)k

)
= θ

(
1, (n+ 1/2)k

)
± 1/2θt

(
1, (n+ 1/2)k

)
+ (k2/8)θtt

(
1, (n+ 1/2)k

)
+ O(k3). (E.4)

By subtracting the (−) equation from the (+) equation in (E.4) and dividing by k we �nd

θt

(
1, (n+ 1/2)k

)
=

θ
(
1, (n+ 1)k

)
− θ(1, nk)

k
+O(k2). (E.5)

We do something similar for the spatial derivative, but in this case, we use spatial
average at two neighboring grid points by adding both the (−) and the (+) versions of
an equation similar to (E.4) for θx instead of θ. Notice that θx(1, · ) = [θ(1 + h, · ) −
θ(1, · )]/h+O(h), then

θx

(
1, (n+ 1/2)k

)
=

1

2

[
θ
(
1 + h, (n+ 1)k

)
− θ

(
1, (n+ 1)k

)
h

+
θ(1 + h, nk)− θ(1, nk)

h

]
+ O(h, k2). (E.6)

Finally we can write

exp

(
−1

θ
(
1, (n+ 1/2)k

)) =
1

2

[
exp

(
−1

θ
(
1, (n+ 1)k

))+ exp

(
−1

θ(1, nk)

)]
+O(k2). (E.7)

From these approximations, we get the �nal form for the boundary condition (E.2)(
1 +

λ

2

)
vn+1

0 − λ

2
vn+1

1 − kγ

2
exp

(
−1

vn+1
0

)
=

(
1− λ

2

)
vn

0 +
λ

2
vn

1 +
kγ

2
exp

(
−1

vn
0

)
, (E.8)

here λ stands for k/h.
Although this boundary scheme is of �rst order in space in comparison to the former

base scheme of second order, using it locally does not reduce the order of accuracy of the
overall scheme. Thus, the accuracy of the scheme is second order in space and time.

E.1.1 Implementation of the numerical method

Let h = (L− 1)/M be the size of the spatial grid and M + 1 the number of spatial nodes
of the numerical domain. Let vn := (vn

0 , v
n
1 , . . . , v

n
M)T . We write the CN method as

Avn+1 − U(vn+1) = Bvn + U(vn), where U(vn) :=

(
kγ

2
exp

(
− 1

vn
0

)
, 0, . . . , 0

)T

(E.9)

and

A :=


1 + λ

2
−λ

2
0

−µ
2

1 + µ −µ
2

. . . . . . . . .
−µ

2
1 + µ −µ

2

0 0 1

, B :=


1− λ

2
λ
2

0
µ
2

1− µ µ
2

. . . . . . . . .
µ
2

1− µ µ
2

0 0 1

 .
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We want to solve each nonlinear step of the implementation of (E.9) by Newton's
method. Let us de�ne a vector ω0 := vn; we will iterate with ωl+1 := ωl + dl, where dl is
a vector that corrects the previous prediction ωl. Now we describe how vn+1 is obtained
from ωl.

We are looking for dl such that ωl+1 instead of vn+1 solves (E.9.a) approximately. Set
K := Bvn + U(vn); K will remain �xed for a given n. Assuming that dl

0 is small, we use
Taylor's formula to express

exp

(
−1

ωl+1
0

)
= exp

(
−1

ωl
0 + dl

0

)
= exp

(
−1

ωl
0

)(
1 +

dl
0

(ωl
0)

2

)
+O

(
(dl

0)
2
)
, (E.10)

so, we have the iterative equation

Adl − U(ωl)
dl

0

(ωl
0)

2
= K − Aωl + U(ωl). (E.11)

To solve this equation, let Ml := −Aωl + U(ωl) and

Λ(l) :=


αl −λ

2
0

−µ
2

1 + µ −µ
2

. . . . . . . . .
−µ

2
1 + µ −µ

2

0 0 1

 , (E.12)

where αl = 1 + λ
2
− kγ

2(ωl
0)2

exp
(
− 1

ωl
0

)
. Then, Eq. (E.11) is dl = Λ−1(K + Ml). At the

start of each iteration, we take ωl+1 = ωl + dl and update Ml. However, we need to solve
a linear system for Λ(l) in each iteration, which is somewhat expensive.

Notice that the matrices A and Λ(l) di�er only in the �rst diagonal entry, which
changes at each step l of the iterative solver. A Gaussian elimination can be implemented
from the bottom row upwards in (E.12), i.e., the opposite of the standard direction. In
this way, the U part of the decomposition is always the same and can be precomputed
once and for all. The L part is the same except for the �rst entry. This algorithm reduces
the operation count for the linear algebra by almost 50%.

E.1.2 Numerical results

In Appendix F we set a typical value of γ = 7×108. Using large values of γ in the numerical
method leads to slow convergence: the nonlinear part in Eq. (E.8) and consequently the
αl coe�cient in the solver increases and the solver requires a small step time parameter k
in order to guarantee convergence. Nevertheless, we are interested in simulating situations
with three steady-state solutions and in seeing the qualitative behavior of its solutions.
So, we use a small value γ in the simulations to control the machine time by reasonable
parameter k, then we ensure the presence of the three steady-states through d, see the
Eq. (2.9).

Even using a coarse mesh, we obtain good convergence to both stable stationary
solutions. For k = 0.2 and h = 0.01 we get an error no larger than 10−2 in comparison to
the actual θI and θIII values.
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A good example of this behavior is the following. We set γ = 1/4, the reservoir
temperature θL = 0.2 and L = 10. For these parameters, the stationary left temperatures
are θI ≈ 0.22803135, θII ≈ 0.47920158 and θIII ≈ 1.12500985. Furthermore, we set the
grid numbers h = 0.05 and k = 0.2, and the initial condition

uo(x) =
(θL − θi)x+ θiL− θL

L− 1
+0.4095 sin

(
0.6(L−x)

)
+0.5905 sin

(
0.4(L−x)

)
, (E.13)

where θi = 0.4792015876. The results of the simulation for the unstable stationary so-
lution agree with our intuition: the evolution of the numerical solution approaches the
unstable equilibria solution in a very short time, t ≈ 30. It remains close to that solution
for quite a long time: it diverges only for t > 800, and approaches a stable stationary
solution around t ≈ 1850. Notice that using a bisection method we can �nd initial con-
ditions that remain close to the unstable solution for times as long as we please. The
pro�les of this simulation are plotted at certain times on Fig. E.1 for CN. In this �gure
we also show results for the Backward Euler method with central di�erentiation (BE).
Re�ning the grid numbers shows that the convergence is to %I(x) in both cases.

Figure E.1: The initial condition, for time t = 0, given in (E.13) is plotted on
the top left. We plot with dark circles the CN method and with light crosses
the BE method, the three �linear� plots are the three stationary solutions. For
times closer to t = 30 the solution obtained by both methods approximate
the unstable solution. Both solutions remain close to it until t = 800. The
bifurcation starts leading CN to %I(x) at t = 1600 and BE to %III(x) at
t = 1850.

Several simulations show that the behavior of any solution of the nonlinear model
always has a fast convergence to an almost linear pro�le, from which the solution will be
driven to one of the stable stationary solutions. The separation between trajectories that
converge to %I(x) from those converging to %III(x) appears to occur at a value θ(1, t)
comparable to θII in our simulations.
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In order to verify this convergence to the quasi-steady solutions of the reduced model,
we made several simulations for many values of γ. We observe that for small values of γ the
convergence to quasi-steady solutions is slow, while for large values of γ the convergence
is fast.

It would be interesting to analyze the dependence on γ of the rate of convergence.

E.2 Numerical method for 2d and 3d cases

We implement the Crank-Nicolson scheme (CN), as for the 1d case, because we have seen
that is accurate and stable. The partial di�erential equation (1.23), for N = 2 or 3, to be
solved is

θt =
1

xN−1

(
xN−1θx

)
x

x ∈ [1, L]. (E.14)

Which has the CN scheme based on six points written as

−αmv
n+1
m−1 + (1 + βm)vn+1

m − γmv
n+1
m+1 = αmv

n
m−1 + (1− βm)vn

m + γmv
n
m+1, (E.15)

for x ∈ (1, L), where µ = k/h2, x = 1 + mh and 0 ≤ m ≤ M := (L − 1)/h. Here for
N = 2:

αm := (1 + (m− 1/2)h)µ/(1 +mh), γm := (1 + (m+ 1/2)h)µ/(1 +mh)

and βm = αm + γm ≡ 2µ. For N = 3:

αm := [(1 + (m− 1/2)h)/(1 +mh)]2µ, γm := [(1 + (m+ 1/2)h)/(1 +mh)]2µ

and βm := αm + γm.
Note that (m± 1/2)h appears in some terms: this is because even though the scheme

only uses grid points with n, m ∈ N , for the construction of the scheme we used auxiliary
points at points with step time coordinate corresponding to n + 1/2, as in the standard
CN for the heat equation in 1d. Yet, there also appear points with spatial coordinate
corresponding to m ± 1/2 for controlling the two concatenated spatial derivative on the
RHS of equation (E.14).

Recall the boundary condition for N = 2, 3:

θt(1, t) = γ exp(−1/θ(1, t)) +N θx(1, t), (E.16)

θ(L, t) = θL. (E.17)

For the left boundary condition given in (E.16), we obtain a formula analogous to the one
for the 1d case in Eq. (E.8). The only real di�erence is a factor of N that appears in
front of λ := k/h:(

1+
Nλ
2

)
vn+1

0 −Nλ
2
vn+1

1 − kγ
2

exp

(
− 1

vn+1
0

)
=

(
1−Nλ

2

)
vn

0 +
Nλ
2
vn

1 +
kγ

2
exp

(
− 1

vn
0

)
.

(E.18)
As to the boundary condition on the right, we simply take vn+1

M = vn
M .
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Using the vector form, vn := (vn
0 , . . . , v

n
M)T , we write the scheme as

Avn+1 − U(vn+1) = Bvn + U(vn), (E.19)

where

A =



1 + Nλ
2

−Nλ
2

−α1 1 + β1 −γ2

−α2 1 + β2 −γ3

. . . . . . . . .
−αM−1 1 + βM−1 −γM

1


. (E.20)

The other matrix is very similar

B =



1− Nλ
2

Nλ
2

α1 1− β1 γ2

α2 1− β2 γ3

. . . . . . . . .
αM−1 1− βM−1 γM−1

1


(E.21)

Finally, we take U(vn) :=
(

kγ
2

exp(−1/vn
0 ), 0, . . . , 0

)T
. Recall that the matrix Λ in (E.12)

arose from the Newton's method, here it is the same, all the entries of Λ are exactly the
entries of A in (E.20) except for the �rst entry, which is:

Λ11(l) = 1 +
Nλ
2
− kγ

2(ωl
0)

2
exp

(
− 1

ωl
0

)
. (E.22)

Therefore, we notice that the notation used in Sec. E.1.1 is analogous to the one
written down in Eq. (E.19), so we implement these schemes in a way very similar to that
for the 1d case.



Appendix F

Estimate of the dimensionless group γ

This Appendix presents the evaluation of the value of the chemical Damköhler Number
γ that we use in the reactor model treated in this work. Actually the standard notation
for such number is DaIV (see [40, Table B, Serial No. D4, page F-331], in Table B the
Serial No. D4 of page F-331), we have used γ as a short notation. This Appendix is
due to J. Bruining, the co-adviser of this work. His concern is combustion in-situ for oil
recovery. This is the reason why coke originating from pyrolysis of oil is used as fuel in
this evaluation.

We would like to obtain a realistic value for the

γ =
∆HcoccAa

2R

κE
. (F.1)

The models in this work accept any kind of fuel. So, we use cc for Coke concentration for
its applicability of chemical reactors as the beginning of combustion in porous media.

Notice that γ is actually a Damköhler number of the group IV. Indeed, by de�ning
the �liberated heat� Ql and the �conductive heat transfer� Qtr as

Ql := ∆HcoccAa
3 and Qtr := aκ

E

R
, (F.2)

we see that γ = Ql/Qtr. (We prove soon that the units of (coA) are actually [s−1].) For
the dimensional analysis following the respective units from Table 1, page 87, we have[

∆Hcc(coA)a3
]

= (J /mol)× (mol /m3)× s−1×m3 = J / s (F.3)

and [
aκ
E

R

]
= m×

(
J /(m× s×K)

)
× J /mol

J /(mol×K)
= J / s . (F.4)

Notice that Ql and Qtr can be taken as �uxes per unit area.
It is not trivial to obtain an approximate value for the reaction rate prefactor A, where

the reaction rate parameter k follows the usual Arrhenius form k = A exp(−E/RT ). This
value is found for petroleum coke from the literature ([37]) as follows. The intrinsic
reactivity ρ̃i of petroleum coke at atmospheric air pressure, thus at a oxygen pressure for
21.3 kPa, can be written as

ρ̃i = 133× 106 exp(−158× 103/RT ). (F.5)
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The intrinsic reactivity is expressed in [g-Coke/(m2×min× bar-air)]. The reactive surface
area Sm of coke depends on the particle size, i.e., is 0.9, 1.0 and 1.6 m2/g for particle
diameters of 2.9, 0.9 and 0.22 mm respectively. We assume that for the quoted equation
in Eq. (F.5) the surface area is 1 m2/g. This appears to be a reasonable average given
the fact that Eq. (F.5) is derived from plotting a large number of literature data from
various sources. Another source of inaccuracy is that the equation is found from a least
square �t of the logarithm of ρ̃i versus 1/T and thus we �nd the geometric average as
opposed to the arithmetic average, thus underestimating its value. We will disregard this
aspect in the following. Using that R = 8.31 [J/(mol × K)], we can thus write

ρ̂i = 2.22× 106 exp(−19013/T ), (F.6)

where the intrinsic reactivity ρ̂i is now expressed in terms of [g-Coke/(g-Coke × s × bar-
air)] = [mol-Coke/(mol-Coke × s × bar-air)]. The value 19013 can be considered as the
activation temperature TE.

The intrinsic reactivity should include a term involving the oxygen concentration.
Assuming a linear relationship with pressure we would obtain

ρi = 2.22× 106PO2

P o
O2

exp(−TE/T ), (F.7)

where PO2 is the pressure of oxygen and P o
O2

is the oxygen pressure in atmospheric air.
We will come back how ρi can be converted to �nd A in Eq. (F.1).

The concentration of fuel requires an estimate of the coke saturation SC in the pore
and the porosity ϕ ≈ 0.3. Following reference [1] we �nd that the value for SC by using
that the fraction of coke to initial oil ranges between 11% and 17%. Assuming that the
initial oil saturation is 80% we arrive at SC = 0.12. In the estimate that follows we will
assume that the molar weight of coke MC ≈ 0.012 [kg/mol] and that the density of coke
ρC ≈ 1000 [kg/m3]. The concentration of coke will then be cc = ϕρCSC = 36 [kg/m3]
= 3000.0 [mol/m3]. The enthalpy ∆H in Eq.. (F.1) will be expressed in terms of the
energy per mole of carbon and we take ∆H ≈ 4× 105 [J/mol−C].

We assume that the concentration of oxygen corresponds to the concentration of oxy-
gen in air of one bar. Let us now see which units we must assign to (Aco) to make it
dimensionless. We �nd that[

∆H (Aco) cca
2R

κE

]
=

(J /mol)× [U ]× (mol /m3)×m2×
(
J /(mol×K)

)(
W /(m×K)

)
× (J /mol)

=
J

W
[U],

meaning that the unit of (Aco) must have units [s−1]. Considering the situation that the
coal is subjected to atmospheric oxygen in the atmosphere and considering Eq. (F.7), we
conclude that (Aco) = 2.22× 106 exp(−TE/T ) [s−1]. Hence we obtain for γ

γ =
∆H (Aco) cca

2R

κE
=

4× 105 × 2.22× 106 × 3000× 0.01× 8.31

2× 1.58× 105
= 7.0× 108.

Other data may lead to values that are a factor of 100 smaller or larger. The main
uncertainty for estimating γ is in the value for the intrinsic reactivity.
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The temperature elevation is de�ned as the temperature that would be attained if the
coke in place is burnt and heats up the rock in which it was deposited. This temperature
is given as

∆T =
cc∆H

(ρc)m

= 600 [K].

In the combustion process the temperature becomes always higher as the upstream part
of the heated zone is transported by convection of gases, whereas the downstream part
velocity is determined by the fuel consumption rate. Adding nitrogen to the injected
oxygen increases the velocity of the upstream heat wave, but leaves the combustion rate
unchanged. If the velocity of the heat wave and the combustion wave become close the
temperature can rise to very high values.

Table 1. Typical �eld data for combustion

Physical quantity Symbol Value Unit
Atmospheric oxygen pressure P o

O2
21300 [Pa]

Oxygen pressure PO2 21300 [Pa]
Porosity ϕ 0.3 [-]
Coke saturation SC 0.12 [-]
Concentration coke cc 3000 [mol-Coke/m3]
Gas constant R 8.31 [J/(mol × K)]
Density coke ρC 1000 [kg/m3]
Molecular weight of coke MC 0.012 [kg/mol]
Pre-exponential factor (Aco) 2.22× 106 [s−1]
Heat of combustion ∆H 4× 105 [J/mol-Coke]
Radius heated zone a 0.1 [m]
Activation energy E 1.58× 105 [J/mol]
Thermal conductivity κ 2 [W/(m × K)]
Initial temperature Tini 320 [K]
Heat capacity rock (ρc)m 2× 106 [J/(m3× K]
Heat generated ∆Hcc 1.2× 109 [J/(mol × K)]
Temperature elevation ∆T 600 [K]
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