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Abstract

We introduce and study the family of sets in a finite dimensional Eu-
clidean space which can be written as the Minkowski sum of a compact
and convex set and a convex cone (not necessarily closed). We establish
several properties of the class of such sets, called Motzkin predecompos-

able, some of which hold also for the class of Motzkin decomposable sets
(i.e., those for which the convex cone in the decomposition is requested
to be closed), while others are specific of the new family.
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1 Introduction

It has been known at least since the mid XIX century that the set of solutions
of a system of linear equations admits an explicit representation, as the sum of
a particular solution plus an arbitrary linear combination of the vectors forming
a basis of the linear subspace consisting of the solutions of the associated ho-
mogeneous system. The corresponding result for systems of linear inequalities
is much more recent. In his doctoral thesis [10], written in 1936, T. Motzkin
proved that the set F of solutions of such a system consists of the sums of convex
combinations of a finite set of vectors (the vertices of F ) and nonnegative com-
binations of another finite set (the extreme rays of F ). In modern terminology,
every (possibly unbounded) polyhedron in Rn is the Minkowski sum of a convex
and compact polyhedron and a closed and convex cone. This characterization
turned out to be quite useful for establishing finite convergence of pivotal algo-
rithms for Linear Programming (e.g. the Simplex Method, see [3]), and more
specifically, for Quadratic Programming, like Lemke’s method, see [1].

Motzkin’s representation result suggested the consideration of a class of con-
vex sets more general than polyhedra, resulting from removing the “linear” na-
ture of these, while keeping the decomposition aspect. More precisely, those sets
in Rn which can be written as the Minkowski sum of a compact and convex set
and a closed and convex cone. Such sets were introduced in [4], where they were
called Motzkin decomposable, or M-decomposable, in short, and further studied
in [6] and [5], together with the M-decomposable functions, namely those whose
epigraphs are M-decomposable. The class of M-decomposable sets lies hence in
between the classes of closed polyhedra and of closed and convex sets.

We comment now on some features of M-decomposable sets. It is easy to
check that the cone D appearing in the decomposition of an M-decomposable
set F = C + D (where C is the compact set), is uniquely determined; it is
precisely the recession cone 0+F of F , namely the set of directions d ∈ Rn such
that {a + td : t ∈ R+} ⊂ F for some a ∈ F . On the other hand, whenever
D 6= {0}, the compact and convex set C is not uniquely determined; the given
set C might be replaced, for instance, by F ∩ B, where B is any ball in Rn

containing C.
M-decomposable sets for which the cone D is pointed (i.e., it contains no

lines), have a clear geometric characterization: they are precisely those closed
and convex sets with a bounded set of extreme points [6, Theorem 11.(i)].

A sizable number of additional properties of such sets and functions were es-
tablished in the above mentioned references, and we single out two of them
for future reference: first, faces of M-decomposable sets are themselves M-
decomposable [5, Corollary 3], and second, M-decomposable sets whose recession
cones are pointed, admit a minimal decomposition, which we define next. We
say that a representation F = C + D of an M-decomposable set F is minimal
when C ⊂ C′ for any convex and compact set C′ ⊂ Rn such that F = C′ + D.
When F is M-decomposable and D is pointed, there exists such a minimal de-
composition, and the corresponding compact and convex set C is itself uniquely
determined: it is the closed and convex hull of the extreme points of F [6,
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Theorem 11.(ii)].
In connection with this property, we mention, parenthetically, that it does

not hold when D is not pointed: if F is a line, then any singleton in F can be
taken as C, but there exist minimal decompositions F = D+C in a weaker sense,
meaning that there exists no closed and convex set C′ such that F = C′ + D
and C′ is strictly contained in C. In fact, when D is not pointed, we can
”separate” the linear part of D in the following way. Let L be the linearity of
D, i.e. the set of directions of lines contained in D. L is a linear subspace,
and we can write F = C + D as F = C + [L + (D ∩ L⊥)] = L + (C + D′),
where L⊥ is the orthogonal complement of L and D′⊥. Now D′ is pointed
and the M-decomposable set C + D′ has a minimal decomposition of the form
C̄ + D′ in the strong sense, and it follows easily that C̄ + (L + D′) = C̄ + D is a
minimal decomposition of F in the weak sense. The fact that C̄ is not unique
is made clear if we observe that we can replace L⊥ by a + L⊥ in the above
described separation procedure, with an arbitrary a ∈ L, in which case we end
up with a + C̄ instead of C̄. If we adopt the convention that the separation
procedure must be performed with a linear subspace (i.e., not with an affine
manifold away from 0), then we recover the minimal decomposition property in
the strong sense: the minimal compact component of F is taken as the minimal
component of F ∩ L⊥. It follows from this discussion that no generality is lost
if we restrict out attention to M-decomposable sets whose recession cones are
pointed.

As we have commented, the class of M-decomposable sets shares many prop-
erties of the class of convex sets, but several important ones are not inherited
by the smaller class. We focus on three of them. It is well known that both the
Minkowski sum and the intersection of two convex sets are convex, as well as
the image of a convex set through an affine map. These three properties fail for
M-decomposable sets, as we describe next.

For the intersection, the ancient Greek geometers already knew that the
intersection of a ”classical” cone with a plane parallel to its axis is a hyperbola.
In modern notation, let F1 be the ”ice cream” cone in R3, i.e. F1 = {(r, s, t) :
t ≥ 0, t2 ≥ r2 + s2}, and F2 the plane normal to e1 = (1, 0, 0) passing through
e1, i.e., F2 = {(1, s, t) : s, t ∈ R}. Both F1 and F2 are M-decomposable (F1 is a
closed and convex cone, and F2 is a polyhedron), but

F := F1 ∩ F2 = {(1, s, t) : t ≥ 0, t2 ≥ 1 + s2}

is a hyperbola H contained in the plane F2. Since all points in H are extreme
points of F , and H is unbounded, the above mentioned characterization in
terms of boundedness of the set of extreme points entails that F is not M-
decomposable.

For the other two properties, let Rn
++ denote the interior of the nonnegative

orthant of Rn, and consider the cone C ⊂ R3 spanned by the closed and convex
set U := {(1, s, t, ) : s > 0, st ≥ 1}, i.e.,

C = {(r, rs, rt, ) : r ≥ 0, s > 0, st ≥ 1}.

3



Let C′ be the closed halfline through (0, 0, 1). It is easy to check that C +
C′ = R3

++ ∪ {0}. Both C and C′ are closed and convex cones, hence M-
decomposable, while C + C′ is a convex cone, but is not closed, and hence
is not M-decomposable. Take now the orthogonal projection P : R3 → R2 given
by P (r, s, t) = (r, s). It is easy to check that P (C) = R2

++ ∪ {0}. C is M-
decomposable, P is linear, but P (C) is a nonclosed convex cone, and therefore
it is not M-decomposable.

It seems that there is not much to be done in connection with the intersection
property, in particular if one tries to identify a reasonable subclass of the family
of M-decomposable sets which is closed through intersections (besides, of course,
the trivial one, namely when both decomposable sets are themselves polyhedra,
in which case the intersection is also a polyhedron). If we look at two M-
decomposable sets Fi = Ci + Di (1 ≤ i ≤ 2) and search for properties on the
Ci’s, Di’s which ensure that F1 ∩F2 is M-decomposable, we observe that in the
counterexample above both Ci’s can be taken as singletons (hence polyhedra),
one of the cones is also a polyhedron (the one corresponding to F2) and only F1

is non-polyhedral (and it has only one extreme point). There are also examples
in which D1 and D2 are polyhedral cones and C1 is a singleton, but nevertheless
F1 ∩ F2 is not M-decomposable.

On the other hand, if we consider Minkowski sums and images through affine
mappings, we immediately see that the problem is not related to the decom-
posability or the convexity, but just to the closedness. In fact, such properties
are enjoyed by the class of convex sets, but not by the class of closed and con-
vex sets. It is thus natural to attempt to improve the regularity properties of
the class of M-decomposable sets by enlarging, rather than decreasing it; more
specifically, by removing the closedness requirement. We emphasize that closed-
ness appears twice in the definiton of an M-decomposable set: both C and D are
required to be closed. However, the closedness of C seems harmless enough: the
Minkowski sum of two compact sets in compact, hence closed, and compactness,
being a topological invariant, is preserved not only by affine mappings but by
arbitrary continuous ones. Indeed, the candidate for removal is the closedness
requirement on the convex cones.

We consider thus subsets of Rn which are sums of a compact and convex
set and a convex cone, not necessarily closed. Such sets will be called in the
sequel Motzkin predecomposable, or M-predecomposable, for short. We will show
that the class of M-predecomposable sets is indeed invariant by afine mappings
and Minkoswki sums (see Proposition 13 in Section 2). At the same time, it
is important to assess the possible ill consequences of such an enlargement; it
would not be worthwhile to consider the new class if by removing the closedness
assumption on the cone we lose the already established good properties of the
class of M-decomposable sets. Fortunately, this is not the case, and the purpose
of this paper is to establish this fact. In particular, we will prove that the faces of
M-predecomposable sets are M-predecomposable (Proposition 14 in Section 2),
as well as the existence of minimal decompositions of M-predecomposable sets
whose asssociated cones are pointed (Theorem 29 in Section 2). Additionally
we will provide two characterizations of M-predecomposable sets, both related
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to some properties of their faces (Theorems 15 and 25 in Section 2).
We observe that the elimination of the closedness assumption on the cones

causes produces many technical complications, and thus the results on M-
predecomposable sets require proofs quite different from their counterparts for
M-decomposable ones. We also remark that this paper contains a very prelim-
inary study of M-predecomposable sets. In a certain sense, our goal has been
just to exhibit some evidence showing that this new class deserves indeed con-
sideration. A more complete study of M-predecomposable sets, recovering as
many as possible of the results known to hold for M-decomposable sets, is left
for future research.

2 Motzkin predecomposable sets

We start this section with the formal definition of M-predecomposable sets.

Definition 1. A nonempty set F ⊂ Rn is Motzkin predecomposable (M-prede-
composable in short) if there exists a compact convex set C and a convex cone
D such that F = C +D. The pair (C, D) will be called a Motzkin decomposition
of F , and the set C will be called a compact component of F .

Next, we present several elementary properties of M-predecomposable sets,
as well as the precise relation between the notions of M-decomposability and
M-predecomposability.

Remark 2. It is clear that every cone D ⊂ R is either {0} or a closed halfline.
In both cases D is ”a fortiori” closed, so that every M-predecomposable set
F ⊂ R is M-decomposable. In fact, it is easy to see that a nonempty set F ⊂ R

is M-predecomposable if and only if it is convex and closed.

Every M-predecomposable set is convex, because it is the sum of two convex
sets.

Proposition 3. A nonempty set F ⊂ Rn is M-predecomposable if and only if it
is convex and there exist a compact set C and a cone D such that F = C + D.
In this case, (convC, convD) is a Motzkin decomposition of F .

Proof. We only need to prove the ”if” statement. It follows from the equalities
F = convF = conv (C + D) = convC + convD and the fact that the convex
hull of a compact set (of a cone) is compact (a cone, respectively).

We will make an extensive use of the following lexicographical separation
theorem:

Theorem 4 (Lexicographical Separation Theorem). ([7, p. 258], [9, Theorem
1.1]) Let C be a convex subset of Rn and x0 ∈ Rn \ C. Then there exists an
n × n matrix M such that Mx <L Mx0 for all x ∈ C.

The following result is well known under the extra assumption that the set
B is closed (see [11, p. 493]).
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Proposition 5 (Order Cancellation Law). Let A, B, C ⊂ Rn. If A and B are
convex, C is nonempty and compact and A + C ⊂ B + C, then A ⊂ B.

Proof. Take x0 ∈ A. If x0 /∈ B then, by Theorem 4, there exists an n×n matrix
M such that Mx <L Mx0 for all x ∈ B. Take a lexicographical global maximum
z over C of the linear mapping x 7−→ Mx, that is, z ∈ C and My ≤L Mz for all
y ∈ C. The existence of such a lexicographical maximum follows by successively
applying Weierstrass Theorem n times. We thus have M (x + y) <L M (x0 + z)
for all x ∈ B and y ∈ C. Hence x0 + z /∈ B + C, which contradicts the fact that
x0 + z ∈ A + C ⊂ B + C. Thus x0 ∈ B.

Proposition 6. If (C, D) is a Motzkin decomposition of a nonempty set F ⊂
Rn, then D = 0+F .

Proof. Clearly, D ⊂ 0+F . On the other hand, C+0+F ⊂ F+0+F = F = C+D;
hence, by Proposition 5, 0+F ⊂ D. We thus have D = 0+F .

For a ∈ Rn and G ⊂ Rn, the set of minimizers of the linear function x 7−→ a′x
over G will be denoted by G∗(a).

Remark 7. Clearly, every M-decomposable set is M-predecomposable, too. In
view of Proposition 6, for M-decomposable sets the M-decompositions in the
sense of such sets coincide with the M-decompositions in the sense of Definition
1. In particular, the compact components also coincide.

Proposition 8. If F ⊂ Rn is M-predecomposable, then clF is M-decomposable
and 0+clF = cl0+F .

Proof. It follows from the equalities clF = cl (C + 0+F ) = C + cl0+F, using
Proposition 6.

Corollary 9. A closed set F ⊂ Rn is M-predecomposable if and only if it is
M-decomposable.

We will denote by econvF the evenly convex hull of a set F ⊂ Rn. Let us
recall that a set is evenly convex when it is the intersection of open halfspaces
(or equivalently, of open convex sets, see e.g. [2]). Since every closed convex
set is evenly convex and every evenly convex set is convex, one has convF ⊂
econvF ⊂ clconvF .

Proposition 10. If F ⊂ Rn is M-predecomposable, then econvF = clF.

Proof. Let x ∈ Rn \ econvF and C be a compact component of F . Then there
exists a ∈ Rn such that

a′ (c + d) < a′x for every c ∈ C and d ∈ 0+F. (1)

Take c ∈ C such that a′c ≤ a′c for every c ∈ C. Setting c = c and d = 0 in
(1), we get a′c < a′x. Hence, by (1) with c = c, we have a′d < a′x − a′c for
every d ∈ 0+F . Since 0+F is a cone, it follows that a′d ≤ 0 for every d ∈ 0+F.
Therefore, for every c ∈ C and d ∈ 0+F we have a′ (c + d) ≤ a′c < a′x, which,
since F = C + 0+F , shows that x /∈ clF .
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Corollary 11. If F ⊂ Rn is M-predecomposable and evenly convex, then it is
closed.

Proof. We have F = econvF = clF .

Corollary 12. If F ⊂ Rn is M-predecomposable and open, then F = Rn.

Proof. Since every open convex set is evenly convex, from Corollary 11 it follows
that F is closed. It only remains to recall that F 6= ∅ and Rn is connected.

We continue with the two properties of the class of M-predecomposable sets
which are not valid for the class of M-decomposable sets, discussed in Section
1.

Proposition 13. (i) If F1 and F2 are M-predecomposable then F = F1 + F2

is M-predecomposable.

(ii) If F is M-predecomposable and E : Rn → Rm is affine, then E(F ) ⊂ Rm

is M-predecomposable.

Proof. (i) Let (C1, D1), (C2, D2) be decompositions of F1, F2 respectively.
Then F = C + D with C = C1 + C2, D = D1 + D2, and it suffices to
invoke the well known facts that the sum of two convex sets (two com-
pact sets, two cones, respectively) is a convex set (a compact set, a cone,
respectively).

(ii) Since E is affine, there exist A ∈ Rm×n, b ∈ Rm such that E(x) = Ax + b.
It is easy to check that if (C, D) is a decomposition of F then E(F ) =
[b + A(C)] + A(D). By linearity of the mapping x 7→ Ax, we get that
A(D) is a cone and that A(C) is convex and compact, so that the same
holds for b + A(C). Thus (b + A(C), A(D)) is a decomposition of E(F ),
which is therefore M-predecomposable.

Next, we prove one of the properties commented upon in Section 1, namely
that faces of M-predecomposable sets are themselves M-predecomposable.

Proposition 14. Every nonempty face of an M-predecomposable face is M-
predecomposable, too. More specifically, if C is a compact component of F and
G is a nonempty face of F , then C ∩G = C ∩ affG is a compact component of
G.

Proof. Let G be a nonempty face of an M-predecomposable set F and C be
a compact component of F . We will prove that G = C ∩ G + 0+G. Since
C ∩ G ⊂ C ∩ affG ⊂ F ∩ affG = G, the inclusion ⊃ is obvious; moreover, by
taking the intersection with G it follows that C ∩ G = C ∩ affG, which shows
that C ∩G is compact. For proving the inclusion G ⊂ C ∩G + 0+G, let x ∈ G.
Since G ⊂ F = C + D = C + 0+F, there exist c ∈ C and d ∈ 0+F such that
x = c + d. For every λ > 1 we have x =

(
1 − 1

λ

)
c + 1

λ
(c + λd) ; hence, given

that c, c + λd ∈ F , we conclude that c ∈ G and c + λd ∈ G, from which we
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deduce that d ∈ 0+G. Since c ∈ C ∩ G, it follows that x ∈ C ∩ G + 0+G. We
have thus proved that C ∩ G is a compact component of G.

The next result characterizes the M-predecomposability of a convex set in
terms of certain properties of its faces.

Theorem 15. Let F ⊂ Rn be a nonempty convex set. Then the following
statements are equivalent:
(a) F is M-predecomposable.
(b) The following conditions hold:

1) cl0+F = 0+clF .

2) For every nonempty face G of F , one has

0+G ⊂ 0+F. (2)

3) There exists a compact convex set C ⊂ F such that

(i) F ∗(a)∩C 6= ∅ for each a ∈ Rn such that the linear function x 7−→ a′x
is bounded from below on F .

(ii) for every exposed face G of F , the set C ∩G is a compact component
of G.

(c) The same as b), with 2) stated only for every exposed face G of F and (ii)
replaced by the following condition:

(ii’) for every supporting hyperplane H of F such that (cl0+F \ 0+F )∩0+H 6=
∅, the set C ∩ H is a compact component of F ∩ H.

In such a case, a compact convex set C ⊂ Rn is a compact component of F
if and only if it satisfies the properties stated in (i) and (ii) or, equivalently, in
(i) and (ii’).

Proof. (a) =⇒ (b). By Proposition 8, property 1) holds. Let C be a compact
component of F . For proving 2), let c ∈ C∩affG and d ∈ 0+G. By Proposition
14, we have c + d ∈ C ∩ affG + 0+G = G ⊂ F = C + 0+F ; hence there exist
c′ ∈ C and d′ ∈ 0+F such that c+d = c′+d′. Since c′+2d′ ∈ F and G is a face of
F , from the equality c′ +d′ = 1

2
(c′ + (c′ + 2d′)) we deduce that c′ ∈ G ⊂ affG;

therefore c′ ∈ C∩affG. We have shown that C∩affG+0+G ⊂ C∩affG+0+F,
which, using Proposition 5, yields (2). For proving 3), notice that property (i)
clearly holds and, by Proposition 14, property (ii) holds too.

Implication (b) =⇒ (c) is obvious, since F ∩ H is an exposed face of F .
(c) =⇒ (a). Let a ∈ Rn be such that the linear function x 7−→ a′x is bounded

from below on clF. Then this linear function is bounded from below on F as
well and hence, by (i), we have F ∗(a) ∩ C 6= ∅. Since F ∗(a) ⊆ (clF )

∗
(a), it

follows that (clF )
∗
(a)∩C 6= ∅. Therefore, in view of the proof of [4, Proposition

16], the set clF is M-decomposable and C is a compact component of F . Thus,
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using 1) we get C +0+F ⊂ F ⊂ clF = C +0+clF = C + cl0+F = cl (C + 0+F ).
Suppose that C + 0+F 6= F , and take a point x ∈ F� (C + 0+F ). Then
x ∈ F�int (C + 0+F ) = F�int cl (C + 0+F ) = F�int clF = F�int F ⊂
bdF . We can thus take a supporting hyperplane H of F at x. Since x ∈
clF = C + cl0+F , there exist c ∈ C and d ∈ cl0+F such that x = c + d. As
x /∈ C +0+F , we have d /∈ 0+F , so that d ∈ (cl0+F \ 0+F ). On the other hand,
H is a supporting hyperplane of clF at x too, and therefore (clF ) ∩ H is an
exposed face of clF . Hence, given that x ∈ (clF ) ∩ H and c, c + 2d ∈ clF , from
the equalities x = c + d = 1

2
(c + (c + 2d)) we deduce that c, c + 2d ∈ (clF )∩H ,

which implies that d ∈ 0+H. We thus have d ∈ (cl0+F \ 0+F ) ∩ 0+H and
therefore, by (ii’), the set C ∩ H is a compact component of F ∩ H . Hence,
by (2), we have x ∈ F ∩ H = C ∩ H + 0+ (F ∩ H) ⊂ C + 0+F . This is a
contradiction, so we must have C + 0+F = F . Thus, F is M-predecomposable.

In view of the proof of the implication (c) =⇒ (a), if a compact convex set
C ⊂ Rn satisfies properties (ii) and (ii’), then F = C + 0+F , that is, C is a
compact component of F . Conversely, if C is a compact component of F then,
by Proposition 14, property (ii) holds too.

The theorem is proved.

We continue with four examples, showing that none among conditions 1),
2), 3)(i) and 3)(ii) in the statement of Theorem 15 is superfluous.

Example 16. The convex set F := (]0, 1[ × [0, +∞[) ∪ ({0, 1} × [0, 1]) satisfies
conditions 2) and 3) of Theorem 15, with C := [0, 1] × [0, 1] , but not condi-
tion 1), because 0+clF = {0} × [0, +∞[ and 0+F = {0}. Thus F is not M-
predecomposable. This shows that condition 1) is not superfluous in the state-
ment of Theorem 15.

Example 17. The convex set

F := ([0, +∞[ × [0, +∞[× [0, 1]) \ (]0, +∞[ × {0} × {0})

satisfies conditions 1) and 3) of Theorem 15, with C := {0} × [0, 1] × [0, 1] ,
but not condition 2), because for the face G := ]0, +∞[ × {0} × {1} one has
0+G = [0, +∞[ × {0} × {0} , whereas

0+F = ([0, +∞[ × [0, +∞[× {0}) \ (]0, +∞[× {0} × {0}) .

Thus F is not M-predecomposable. This shows that condition 2) is not super-
fluous in the statement of Theorem 15.

Example 18. The convex set

F :=
{
(x, y) ∈ R2 : x > 0, y > 0, xy > 1

}
∪ {(1, 1)}

satisfies conditions 1) and 2) and 3)(ii) of Theorem 15, with C := {(1, 1)}
(which is actually the only proper face of F ), but there is no compact convex
set C satisfying condition 3)(i) (indeed, consider, for instance, the vector a :=
(1, 0)). Thus F is not M-predecomposable. This shows that condition 3)(i) is
not superfluous in the statement of Theorem 15.
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Example 19. The convex set

F := ([0, 1]× [0, +∞[ × [0, +∞[) \ ({0, 1} × {0} × [0, +∞[)

satisfies conditions 1) and 2) and 3)(i) of Theorem 15, with C := [0, 1]× {0} ×
{0} , but since the exposed face

G := ([0, 1]× {0} × [0, +∞[) \ ({0, 1} × {0} × ]0, +∞[)

is not M-predecomposable (hence, by Proposition 14, F is not M-predecomposable
either), no compact set C satisfies condition 3)(ii). Thus F is not M-predecomp-
osable. This shows that condition 3)(ii) is not superfluous in the statement of
Theorem 15.

We recover now a property of M-decomposable sets, established in [4].

Corollary 20. [4, Proposition 16] A closed convex set F ⊂ Rn is M-decomp-
osable if and only if there exists a compact set C ⊂ F such that F ∗(a) ∩ C 6= ∅
for each a ∈ Rn such that the linear function x 7−→ a′x is bounded from below
on F .

Proof. Combine Corollary 9 with equivalence (a) ⇐⇒ (c) in Theorem 15, taking
into account that for a closed convex set F properties 1), 2) and (ii’) hold (the
latter, vacuously).

The following characterization of faces of convex sets will be useful to obtain
another characterization of M-predecomposable sets:

Theorem 21. [8, Thm. 2] Let F ⊂ Rn be a convex set and ∅ 6= G ⊂ F .
Then G is a face of F if and only if there exists a k × n matrix A, for some
k ∈ {1, ..., n}, such that

G =
{
y ∈ F : Ay = min

L

{Ax : x ∈ F}
}

.

Lemma 22. Let F ⊂ Rn be a nonempty convex set such that 0+clF = cl0+F
and C be a compact subset of F satisfying F ∗(a) ∩ C 6= ∅ for each a ∈ Rn

such that the linear function x 7−→ a′x is bounded from below on F . If a ∈ Rn

satisfies a′d ≥ 0 for every d ∈ 0+F, then F ∗(a) ∩ C 6= ∅.

Proof. Since a belongs to the positive polar cone of cl0+F = 0+clF , that polar
cone coincides with the closure of the barrier set B (clF ), defined as

{b ∈ Rn : the linear function x 7−→ b′x is bounded from below on clG} .

We thus have a = lim bk for some sequence bk in B (clF ). By assumption, for
each k one has F ∗(bk)∩C 6= ∅. Take ck ∈ F ∗(bk)∩C. For every x ∈ F , we have
b′
k
x ≥ b′

k
ck. In view of the compactness of C, we can assume, without loss of

generality, that the sequence ck converges to some c ∈ C. Taking limits in the
inequality b′

k
x ≥ b′

k
ck, we get a′x ≥ a′c, which shows that F ∗(a) ∩ C 6= ∅.
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We present now another auxiliary result, dealing with existence of lexico-
graphical minimizers of affine functions on convex sets.

Lemma 23. Let F ⊂ Rn be a nonempty convex set satisfying the following two
properties:

(i) There exists a compact set C ⊂ F such that, for every nonempty face G
of F , it holds that G∗(a) ∩ C 6= ∅ for each a ∈ Rn such that the linear function
x 7−→ a′x is bounded from below on G.

(ii) For every nonempty face G of F, it holds that 0+clG = cl0+G.
If A is a k × n matrix such that Ad ≥L 0 for every d ∈ 0+F, then the linear

mapping x 7−→ Ax attains a lexicographical minimum over F at some point
c ∈ C.

Proof. We will proceed by induction on k. For k = 1, the statement is an
immediate consequence of Lemma 22. Take k > 1 and denote by Ak−1 the
matrix obtained by deleting the last row ak of A. Clearly, Ak−1d ≥L 0 for every
d ∈ 0+F ; hence, by the induction hypothesis, the linear mapping x 7−→ Ak−1x
attains a lexicographical minimum over F at some point c ∈ C. By Theorem
21, the set G := {x ∈ F : Ak−1x = Ak−1c} is a (nonempty) face of F . Take
d ∈ 0+G. Clearly, d ∈ 0+F ; hence, Ad ≥L 0. Since we also have Ak−1d = 0,
it follows that a′

k
d ≥ 0. Therefore, by Lemma 22, we have G∗(ak) ∩ C 6= ∅.

Take c ∈ G∗(ak) ∩ C. For every x ∈ F we have Ak−1x ≥L Ak−1c = Ak−1c and,
if Ak−1x = Ak−1c, then Ak−1x = Ak−1c, that is, x ∈ G, which implies that
a′

k
x ≥ a′

k
c. We have shown that Ax ≥L Ac for every x ∈ F .

The next result simplifies the task of checking the assumptions of Lemma
23.

Lemma 24. For a compact set C ⊂ F to be as in (i) of Lemma 23 it is
sufficient that it satisfy this condition for every nonempty face G of F which is
either nonclosed or a maximal closed face.

Proof. We only need to prove that (i) holds for an arbitrary nonempty closed
face G. Using [12, Corollary 18.1.3], it is easy to prove that G is contained in

some maximal closed face G̃. By assumption, the linear mapping x 7−→ Ax
attains a lexicographical minimum over G̃ at some point c ∈ C. On the other
hand, by Proposition 14 and Corollary 9, the face G̃ is M-decomposable and,
in view of the proof of [4, Proposition 16], the set convC ∩ affG̃ is a compact

component of G̃. Since G is a face of G̃ (see [12, p. 163]), by Proposition 14

the set convC ∩ affG =
(
convC ∩ affG̃

)
∩ affG is a compact component of

G. Hence, by [4, Proposition 13.(v)], if a ∈ Rn is such that the linear function
x 7−→ a′x is bounded from below on G then G∗(a) ∩ convC ∩ affG 6= ∅.
Therefore, G∗(a) ∩ convC 6= ∅. Since G∗(a) is a face of G, and hence of F (see
[12, p. 163]), it follows that G∗(a) ∩ C 6= ∅.

We use now the two previous lemmas in order to provide another charac-
terization of M-predecomposable sets, also related to some properties of their
faces.
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Theorem 25. Let F ⊂ Rn be a nonempty convex set. Then the following
statements are equivalent:

(a) F is M-predecomposable.
(b) Conditions (i) and (ii) of Lemma 23 hold.
(c) Conditions (i) and (ii) of Lemma 23 hold for every nonempty face G of

F which is either nonclosed or a maximal closed face.
In such a case, a compact set C ⊂ Rn is such that convC is a compact

component of F if and only if it satisfies the property stated in (i).

Proof. Implication (a) =⇒ (b) follows from implication (a) =⇒ (b) of Theorem
15 and Proposition 14.

(b) =⇒ (a). We will prove that F = C + 0+F . The inclusion ⊃ is obvious,
since C ⊂ F . For proving the opposite inclusion, take x ∈ F and assume that
x /∈ C + 0+F . Then, by Theorem 4, there exists an n × n matrix M such
that Mx <L Mc + Md for all c ∈ C and d ∈ 0+F . For i = 1, ..., n, denote
by Mi the i × n submatrix of M obtained by deleting its last n − i rows, and
set m := min {i ∈ {1, ..., n} : Mix <L Mic + Mid for all c ∈ C and d ∈ 0+F}.
We have that

Mmx <L Mmc + Mmd for all c ∈ C and d ∈ 0+F (3)

and Mm−1x = Mm−1c + Mm−1d for some c ∈ C and d ∈ 0+F, with the conven-
tion that M0 is the row vector 0. Since Mm−1x ≤L Mm−1c+Mm−1d for all c ∈ C
and d ∈ 0+F, we have that Mm−1d = Mm−1x − Mm−1c ≤L 0 and Mm−1d =
Mm−1c + 2Mm−1d−

(
Mm−1c + Mm−1d

)
= Mm−1c + 2Mm−1d−Mm−1x ≥L 0;

hence Mm−1d = 0 and, consequently, Mm−1x = Mm−1c. Therefore, by (3), for
every d ∈ 0+F it holds that Mm−1d ≥L Mmx − Mmc = 0. Hence, by Lemma
23, the linear mapping y 7−→ Mm−1y attains a lexicographical minimum over
F at some point ĉ ∈ C. In particular, since c ∈ F , we have Mm−1c ≥L Mm−1ĉ,
but, on the other hand, by (3) we also have Mm−1ĉ ≥L Mm−1x = Mm−1c,
so that Mm−1ĉ = Mm−1c. We have shown that y 7−→ Mm−1y attains a lexi-
cographical minimum over F precisely at c. By Theorem 21, the set G :=
{y ∈ F : Mm−1y = Mm−1c} is a (nonempty) face of F . For every d ∈ 0+G
we have Mm−1d = 0; hence, denoting by rm the m-th row of M , for every
λ > 0 we have Mm−1x = Mm−1c + λMm−1d. Therefore, by (3), we obtain
rmx < rmc + λrmd, which implies that rmd ≥ 0. Notice that the faces ex-
cluded from statemnent (c) are closed, therefore their recession cones are closed.
It thus follows that condition (ii) holds for every nonempty face. Hence, by
Lemma 22, G∗(r′

m
) ∩ C 6= ∅. Take g ∈ G∗(r′

m
) ∩ C. Since g ∈ G, we have

Mm−1g = Mm−1c = Mm−1x; moreover, taking into account that x ∈ G and
g ∈ G∗(r′m), we also have rmx ≥ rmg. It thus follows that Mmx ≥L Mmg, in
contradiction with (3). So we conclude that x ∈ C + 0+F , which proves the
required inclusion F ⊂ C + 0+F and hence the equality of these two sets.

Equivalence (b) ⇐⇒ (c) is an immediate consequence of Lemma 24, tak-
ing into account that faces of closed sets are closed [12, Corollary 18.1.1] and,
therefore, their recession cones are closed [12, Theorem 8.2] too.
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In view of the proof of (b) =⇒ (a), if a compact set C ⊂ Rn satisfies the
property stated in (i) then F = C + 0+F ; hence, by Proposition 3, convC is a
compact component of F . Conversely, if convC is a compact component of F
then, by the proof of (a) =⇒ (b), for every a as in (i), we have G∗(a)∩convC 6= ∅
and therefore, since G∗(a) is a face of F , we also have G∗(a) ∩ C 6= ∅.

The following example shows that neither condition (i) nor condition (ii) in
Theorem 25 is superfluous.

Example 26. The non M-decomposable set F of Example 16 satisfies condition
(i) of Theorem 25, with C := [0, 1]× [0, 1] , but not condition (ii) This shows that
condition (ii) is not superfluous in the statement of Theorem 25. On the other
hand, every closed convex set F satisfies (ii) even if it is not M-decomposable;
hence condition (i) is not superfluous either.

Remark 27. ¿From Theorem 25 we obtain again Corollary 20. Indeed, combine
Corollary 9 with equivalence (a) ⇐⇒ (c) in Theorem 25, taking into account
that F is a face of itself [12, p. 162] and all of its faces are closed.

The following proposition will be useful for proving another property of M-
predecomposable sets mentioned in Section 1, namely that the result on the
existence of a minimal decomposition of an M-decomposable set [4, Theorem
19] holds also for M-predecomposable sets.

Proposition 28. If C is a compact component of the M-predecomposable set
F , then extF ⊂ C.

Proof. If z ∈ extF \C, then z = c+td with c ∈ C, 0 6= d ∈ 0+F and t > 0. Note
that z is the midpoint of the segment with extremes in c and c + 2d, both of
which belong to F , in which case z /∈ extF , so that we get a contradiction.

We prove now the announced result on the existence of minimal decomposi-
tions of M-predecomposable sets.

Theorem 29. If F ⊂ Rn is M-predecomposable and cl0+F is pointed, then
there exists a smallest compact component of F , i.e., there exists a compact
convex set C′ such that F = C′ +0+F and for every compact convex set C such
that F = C + 0+F , it holds that C′ ⊂ C. Moreover C′ = cl conv extF .

Proof. Let C be a compact component of F . Let C′ := cl conv extF , and
Ĉ := cl conv ext clF . We claim that Ĉ ⊂ C′. Take z ∈ ext clF . By Proposition
28, we have z ∈ C ⊂ F . Since every extreme point of a convex set is also an
extreme point of every convex subset it belongs to [12, p. 163], we conclude
that z ∈ extF . We have proved that ext clF ⊂ extF , so that

Ĉ ⊂ C′, (4)

establishing the claim.
Note that Ĉ 6= ∅ as a consequence of [4, Proposition 19]. It follows from

(4) that C′ 6= ∅. In view of Proposition 28, we have C′ ⊂ C̃ for every compact
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convex set C̃ such that F = C̃ + 0+F , so that in order to establish the result,
it suffices to prove that

F = C′ + 0+F. (5)

We get from Proposition 8 and [4, Proposition 19] that clF = Ĉ + cl0+F .

Consider now the convex set F̂ := Ĉ + 0+F . Note that clF = C + cl0+F , and
clF̂ = Ĉ + cl0+F = clF . So F and F̂ have the same closure. It follows that
both convex sets have also the same relative interior [12, Theorem 6.3].

Now we proceed to prove that (5) holds. Notice first that, since C′ ⊂ C and
C +0+F = F , we have C′ +0+F ⊂ F . In order to prove the opposite inclusion,
in view of [12, Theorem 18.2] we only need to prove that the relative interior of
every face Q of F is contained in C′ + O+F . This inclusion certainly holds for
Q := F , since in this case riF = riF̂ = ri(Ĉ + 0+F ) ⊂ Ĉ + 0+F ⊂ C′ + 0+F .
For an arbitrary face Q, by applying this observation to the M-predecomposable
set Q (see Proposition 14), we conclude that riQ ⊂ cl conv extQ + O+Q ⊂
C′ + O+F , the latter inclusion following from extQ ⊂ extF (see [12, p. 163])
and O+Q ⊂ O+F (see Theorem 15). Thus, (5) holds, completing the proof.

We mention that the discussion of minimal decompositions of M-decompos-
able sets whose recession cones are not pointed, presented in Section 1, holds
“verbatim” for M-predecomposable sets. Given an M-predecomposable set F =
C + D, we can write it as F = L + (C + D′), where L is the linearity of F
and D′⊥. D′ is pointed, and hence, in view of Theorem 29, C + D′ admits
a minimal decomposition (C̄, D′). If we look now at the decomposition F =
C̄ + (L + D′) = C̄ + D, it is indeed minimal in the weak sense, i.e. there exists
no compact and convex set C′ strictly contained in C̄ such that F = C′+D, but
C̄ is not unique, and it could be replaced in the decomposition of F by a + C̄
for any a ∈ L. The uniqueness is recovered if we adopt the convention that the
compact component C in the decomposition of an M-predecomposable set F
must be contained in L⊥, where L is the linearity of F , which can be seen also
as the largest linear subspace contained in the recession cone of F . Note that
such convention is vacuous when the recession cone of F is pointed, because in
such case L = {0} and hence L⊥ = Rn.
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