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Abstract

We introduce a general scheme for finding zeroes of the sum of two maximal monotone
operators in a reflexive Banach space X . It generates a sequence in the product space X ×X∗,
where X∗ is the dual of X . It is essentially a projection method, in the sense that in each
iteration a hyperplane is constructed, separating the current iterate from a generalized solution
set, whose projection onto X in indeed the solution set of the problem, and then the next
iterate is taken as the projection of the current one onto this separating hyperplane. In order
to construct such hyperplane, two proximal-like steps are taken from the current iterate, each
one using only one of the two maximal monotone operators. Thus, the resulting procedure is a
splitting method, which solves subproblems involving only one of the two operators. Similarly to
other methods designed for Banach spaces, auxiliary functions, giving rise to Breman distances
and Bregman projections, are used in both the proximal-like step and in the projection step of
the scheme. A full convergence analysis is presented.
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1 Introduction

Let X be a Banach space and X∗ the associated dual space. Consider set-valued maximal monotone
operators A,B : X → P(X∗). The problem of interest, to be denoted as problem P , consists of
finding z∗ ∈ X such that

0 ∈ A(z∗) + B(z∗). (1)

It is frequently the case that the problems of finding zeroes of A and B separately are relatively
easy, or at least considerably easier than solving P .

A prototypical instance of this situation is the Variational Inequality Problem VIP(T ,C), as-
sociated to a maximal monotone T : X → P(X∗) and a closed and convex subset C of X. It
consists of finding z∗ ∈ C such that there exists u∗ ∈ T (x∗) satisfying 〈z∗− z, u∗〉 ≥ 0 for all z ∈ C.
The solutions of VIP(T ,C) are precisely the zeroes of T + NC , where NC is the normal operator
associated to C, known to be maximal monotone.

For problems of the above mentioned type, it is natural to consider iterative algorithms which
at each step solve subproblems involving either A or B, but not both. Such algorithms are called
splitting methods, or decomposition methods. Methods of this kind were originally developed in
a linear algebra context, i.e., for the case in which X is finite dimensional and A,B are single-
valued affine operators (not necessarily monotone), so that (1) reduces to solving a system of linear
equations. In fact, the most classical iterative methods for solving systems of linear equations,
namely Jacobi’s and Gauss-Seidel’s, as well as their more advanced versions SOR and JOR, can be
cast in the framework of splitting methods (see [11]).

Moving now to the realm of nonlinear operators, special attention has been given to the case in
which both A and B are maximal monotone, which allows for much stronger results, both in terms
of existence of the iterates and convergence of the generated sequence. In the sequel, we will deal
exclusively with a pair (A,B) of maximal monotone operators.

Next we comment on splitting methods for solving problem P in the particular case in which
X is a Hilbert space. Three basic families of splitting methods for this problem were identified in
[14]:

i) The Douglas/Peaceman-Rachford family, whose iteration is given by:

yk = [2(I + ξB)−1 − I]xk,

zk = [2(I + ξA)−1 − I]yk,

xk+1 = (1 − ρk)x
k + ρkz

k, (2)

where ξ > 0 is a fixed scalar, and {ρk} ⊂ (0, 1] is a sequence of relaxation parameters.

ii) The double backward splitting method, with iteration given by:

yk = (I + λkB)−1xk,
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xk+1 = (I + λkA)−1yk,

where {λk} ⊂ R++ is a sequence of regularization parameters.

iii) The forward-backward splitting method, with iteration given by:

yk ∈ (I − λkA)xk,

xk+1 = (I + λkB)−1yk,

with λk as in (ii).

Note first that all these are splitting methods, in the sense that each sub-step requires solving
an inclusion involving only A or B. The maximal monotonicity of A and B ensures that yk and zk

in case (i) are uniquely determined, and so the same happens with xk+1; this is also the case for
yk, xk+1 in case (ii), but for the forward-backward method (iii) yk fails to be uniquely determined.
In connection with (i), we mention that the well known Peaceman-Rachford method corresponds
to taking ρk = 1 for all k in (2); taking ρk = 1/2 for all k in (2) produces the classical Douglas-
Rachford method. Convergence results for these two special cases were established in [20], under
some additional hypotheses on A,B for the case of Peaceman-Rachford. Convergence results for
the general scheme (i), in the case in which {ρk} is contained in a compact subset of (0, 1), can be
found in [12]. See also [13] and [18] for additional insights on the scheme presented in (i).

The convergence analysis of the double backward scheme given by (ii), which can be found in
[19] and [21], establishes much weaker convergence properties (without additional assumptions on
A,B, besides maximal monotonicity): the sequence {λk} must converge to 0 in a particular way,
and the sequence which is proved to converge to a zero of A+B is not {xk}, but rather an “ergodic”
average of {xk}.

The forward-backward scheme (iii) is computationally less demanding, since it requires the
solution of only one inclusion per iteration (it can be seen indeed as a generalization of the projected
gradient method for convex optimization). On the other hand, the standard convergence analysis
for this method (see [23]), requires that A be single-valued and furthermore co-coercive, and the
parameters λk must have an upper bound related to A.

A substantial progress in this area was achieved in [14], which presents a new scheme, generating
a sequence in the product space X ×X, for which quite solid convergence results were established.
Several of the previously known splitting method turned out to be special cases of the scheme
developed in [14], while others, e.g. Douglas-Rachford, were identified as “excluding limiting” cases
of this scheme, corresponding to values of the parameters lying in the boundary of the region for
which convergence was established. Later on, a convergence analysis of Douglas-Rachford method
along the lines of [14] was presented in [22]. In general, the convergence results in [14] and [22]
proved to be stronger than those in the previous literature.

The scheme in [14], which is the departure point for the method in this paper, is essentially a
projection method in the space X ×X. Consider the set Se(A,B) ⊂ X ×X defined as Se(A,B) =
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{(z,w) : −w ∈ A(z), w ∈ B(z)}. Clearly, given (z,w) ∈ Se(A,B), one has that 0 = −w + w ∈
A(z) + B(z), i.e., the first component of a pair in Se(A,B) solves P . The basic ingredient of the
scheme in [14] consists of, given a pair (z,w) /∈ Se(A,B), constructing a hyperplane in X × X
which separates (z,w) from Se(A,B). The parameters of such hyperplane are obtained by solving
two inclusions, one involving only A and the other one only B, thus ensuring the splitting nature
of the algorithm. Then, the iterative scheme works by taking the orthogonal projection of the
current iterate (zk, wk) onto the hyperplane which separates it from Se(A,B) as the next iterate
(zk+1, wk+1).

Formally, the algorithm, to be refered as Algorithm ES in the sequel, proceeds as follows:

i) Start the method with p0 = (z0, w0) ∈ X×X, and choose an exogenous sequence of relaxation
parameters {ρk} contained in a compact subset of (0, 2), and two exogenous sequences of
regularization parameters {λk}, {µk} contained in a compact subset of (0,∞).

ii) Given pk = (zk, wk) ∈ X × X, find (xk, bk), (yk, ak) ∈ X × X satisfying:

xk + λkb
k = zk + λkw

k, bk ∈ B(xk),

yk + µka
k = zk − µkw

k, ak ∈ A(yk).

iii) Define ϕk : X × X → R as ϕk(z,w) = 〈z − xk, bk − w〉 + 〈z − yk, ak + w〉.

iv) Define the halfspace Hk ⊂ X × X as Hk = {(z,w) : ϕk(z,w) ≤ 0}.

v) Compute p̄k, the orthogonal projection of pk onto Hk.

vi) Define the next iterate as pk+1 = pk + ρk(p̄
k − pk).

The basic algorithm in [14] uses also a second exogenous sequence {αk} of relaxation parameters,
which we omit here, because it is absent from the algorithm to be developed in this paper; the
scheme just presented corresponds to the case of αk = 1 for all k.

The main convergence result for the method above, established in Proposition 3 of [14], is the
following: if A, B and A + B are maximal monotone, and A + B has zeroes, then the sequences
{zk}, {xk} and {yk} converge weakly to some zero z∗ of A + B, the sequences {wk} and {bk}
converge weakly to a point w∗ such that w∗ ∈ B(z∗),−w∗ ∈ A(z∗), and finally the sequence {ak}
converges weakly to −w∗.

Later on, it was shown that the hypothesis of maximal monotonicity of A+B (which in general
does not follow from maximal monotonicity of A and B), can be removed; see [1].

The main purpose of this paper is to develop an algorithm based upon ES with good convergence
properties for solving problem P in Banach spaces. To our knowledge, this is the first splitting
algorithm for solving monotone inclusions in Banach spaces.

The main obstacle in pursuing this goal is the following: a basic property of the orthogonal
projection onto a closed and convex set C in a Hilbert space is that, when moving from a point z
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to its orthogonal projection onto C, the norm-induced distance to any point in C decreases. This
property is lost in Banach spaces, if we replace the orthogonal projection onto C by the metric
projection ΠC : X → C, defined as ΠC(x) = arg miny∈C ‖x − y‖2. This failure is due to the fact
that the derivative of the square of the norm in a nonhilbertian Banach space is not linear, while
in a Hilbert space it is just twice the identity operator I.

In a Banach space, in order to recover the decreasing distance property of the orthogonal
projection, one should minimize not the norm-induced distance, but rather the so called Bregman
distance, introduced in [2], which can be defined as follows: Let f(x) = 1

2 ‖x‖
2. Assume that X is

such that f is Gâteaux differentiable, and define Df : X × X → R as

Df (x, y) = f(x) − f(y) − 〈x − y, f ′(y)〉, (3)

where 〈·, ·〉 : X × X∗ → R denotes the duality coupling (i.e., 〈z,w〉 = w(z)), and f ′ : X → X∗ is
the Gâteaux derivative of f . If we define now the Bregman projection PC

f onto a closed and convex

set C ⊂ X as PC
f (x) = arg miny∈C Df (y, x), it happens to be the case that PC

f enjoys several of
the desirable properties of the orthogonal projections in Hilbert spaces, as we will explain in the
following section (Bregman distances and projections have been defined also for the case in which
f is not differentiable, see e.g. [8], but we will not be concerned with this issue in the sequel).

Another feature of nonhilbertian Banach spaces is that the square of the norm loses its privileged
standing: when working, for instance, in Lp or ℓp spaces, calculations become simpler if we take
f(x) = 1

p
‖x‖p in (3), instead of f(x) = 1

2 ‖x‖
2. Thus, it has become customary to consider a rather

general auxiliary function f : X → R in (3), in order to define the Bregman distance and projection
(see e.g. [4], [7], [15], [16]). The specific properties of f needed for convergence of the method, as
well as examples of functions satisfying these properties, will be exhibited in Section 2.

Once the Bregman distance related to f is introduced in the projection step of Algorithm ES
(item (v) above), one needs to match this step to the “proximal step”, i.e., item (ii). It can be seen
that the computation of xk, yk, ak, bk is akin to the performance of an iteration of the proximal
point method starting from zk using either the operator A or B. In a Hilbert space, the proximal
resolvent (I + τA)−1 of a maximal monotone operator A, with a positive regularization parameter
τ , can also be seen as a sort of projection, in the sense that (I + τA)−1(z) is closer than z to any
zero of A. Once again, this approximation property is lost in Banach spaces. In order to recover
it, one must use instead the generalized resolvent (f ′ + τA)−1, where f : X → R enjoys the same
properties that give a good behavior to the Bregman distance Df and the Bregman projection PC

f .
Note that in a “Banach version” of the projection step (item(v)) of Algorithm ES we need an

auxiliary function defined on X × X∗, while for the proximal step (item(ii)), we need a function
defined just on X.

We will present in Section 3 a method based on Algorithm ES, appropriate for a rather general
class of Banach spaces. Its convergence behavior will be established in Section 4. We will prove
a convergence theorem rather close to the above described Proposition 3 in [14], thus recovering
most of the strength of the convergence properties which hold for Algorithm ES in Hilbert spaces.
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We remark that the proofline of our convergence analysis is quite diffferent from (and in fact much
simpler than) that in [14], despite the additional complications resulting from working in Banach
spaces, as compared to Hilbert ones.

2 Preliminaries

We begin with some material related to the Bregman distances and projections to be used in our
algorithm. Most of the results presented in this section were established in [6], [8], [17] and [22].

In this section, f : X → R is strictly convex, lower semicontinuous and Gâteaux differentiable,
and f ′ : X → X∗ is its Gâteaux derivative. We will denote the family of such functions as F(X).

The Bregman distance Df : X × X∗ → R is defined as

Df (x, y) = f(x) − f(y) − 〈x − y, f ′(y)〉. (4)

We start with two elementary properties of Bregman distances.

Proposition 1.

i) Df (x, y) ≥ 0 for all x, y ∈ X, and Df (x, y) = 0 if and only if x = y.

ii) Df (x, y) + Df (y, x) = 〈x − y, f ′(x) − f ′(y)〉 for all x, y ∈ X.

Proof. Item (i) follows from the strict convexity of f , and item(ii) is an immediate consequence of
(4).

The next result is known as the Four-point Lemma for Bregman distances.

Lemma 1. Take f ∈ F(X). Then

Df (w, z) − Df (w, x) − Df (y, z) + Df (y, x) = 〈w − y, f ′(x) − f ′(z)〉 (5)

for all w, x, y, z ∈ X.

Proof. Follows easily from (4).

We will use in the sequel the modulus of total convexity νf : X × R+ → R defined as

νf (x, t) = infy∈{y∈X:‖y−x‖=t}Df (y, x),

with Df as in (4). If f ∈ F(X) is such that νf (x, t) > 0 for all x ∈ X and all t > 0, then f is said
to be totally convex. In finite dimensional spaces total convexity is equivalent to strict convexity,
but in infinite dimensional spaces total convexity is more demanding that strict convexity, though
less demanding than uniform convexity (see [8]).

The methods we analyze in this paper use, as an auxiliary device, functions f ∈ F(X), F(X∗)
or F(X × X∗) which satisfy some or all of the following assumptions:
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H0: f is coercive, i.e. lim‖x‖→∞
f(x)
‖x‖ = ∞.

H1: The level sets of Df (x, ·) are bounded for all x ∈ X.

H2: infx∈Cνf (x, t) > 0, for all bounded set C ⊂ X and all t ∈ R++.

H3: f ′ is uniformly continuous on bounded subsets of X.

H4: f ′ is onto.

H5: f ′ is weak-to-weak∗ continuous.

It is important to exhibit functions which satisfy these properties in as large a class of Banach
spaces as possible, and we focuse our attention on Banach spaces which are reflexive, uniformly
convex and uniformly smooth, and on functions of the form fr(x) = 1

r
‖x‖r with r > 1.

Our results on the validity of H0–H5 for fr(x) = 1
r
‖x‖r are summarized in the following

proposition.

Proposition 2.

i) If X is a reflexive, uniformly smooth and uniformly convex Banach space, then fr(x) = 1
r
‖x‖r

satisfies H0, H1, H2, H3 and H4 for all r > 1.

ii) If X is a Hilbert space, then f2(x) = 1
2 ‖x‖

2 satisfies H5. If X = ℓp (1 < p < ∞) then
fp(x) = 1

p
‖x‖p

p satisfies H5.

Proof. i) For H1-H4, see Proposition 2 in [17], in whose proof several results from [9] are invoked.
The result is immediate for H0, since r > 1.

ii) In the case of a Hilbert space, f ′
2 is the identity, which is certainly weak-to-weak continuous.

The result for fp in ℓp has been proved in Proposition 8.2 of [3].

We refer to [10] for the definitions of uniformly smooth and uniformly convex Banach spaces.
We mention that the spaces ℓp, L

p[α, β] and the Sobolev spaces W p,m (in all cases with 1 < p < ∞),
are uniformly smooth and uniformly convex.

Unfortunately, it has been proved in [8] that for X = ℓp or X = Lp[α, β] with 1 < p < ∞, the
function fr(x) = 1

r
‖x‖r

p does not satisfy H5, excepting in the two cases considered in Proposition
2(ii). We remark that, as it will be seen, properties H0–H4 are required for establishing existence
and uniqueness of the iterates of the algorithm under consideration, boundedness of the generated
sequences and optimality of their weak cluster points, while H5 is required only for uniqueness of
the weak cluster points of such sequences. We mention also that the factor 1

r
in the definition of

fr is inessential for Proposition 2, whose results trivially hold for all positive multiples of ‖·‖r.
We discuss next some properties of functions satisfying some of the assumptions above. Given

Banach spaces X, Y with norms ‖·‖X , ‖·‖Y , we consider the Banach space X×Y with the product
norm ‖(x, y)‖ = ‖x‖X + ‖y‖Y .
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Proposition 3. Let X, Y be real Banach spaces. Take f ∈ F(X) and g ∈ F(Y ). Define h :
X × Y → R as h(x, y) = f(x) + g(y). Then for i = 1, ..., 5, if both f and g satisfy Hi then h also
satisfies Hi.

Proof. See Proposition 3 in [17].

Proposition 4. Take f : X → R Gâteaux differentiable. If f satisfies H3, then both f and f ′ are
bounded on bounded subsets of X.

Proof. See Proposition 4 in [17].

Proposition 5. If f ∈ F(X) satisfies H2 then, for all {xk}, {yk} ⊂ X such that {xk} (or {yk})
is bounded and limk→∞ Df (yk, xk) = 0, it holds that xk − yk s

k→∞→ 0.

Proof. See Proposition 5 in [17].

Proposition 6. Let T : X → P(X) be maximal monotone. Take f ∈ F(X) satisfying H4. Then,
for all z ∈ X∗ there exists a unique x ∈ X such that z ∈ f ′(x) + T (x).

Proof. See [6], Corollary 3.1.

Proposition 6 can be rephrased as saying that under its assumptions the operator (f ′ + T )−1 is
single-valued and its domain is the whole space X∗. Since (f ′ +T )−1 is clearly maximal monotone,
it follows from its single-valuedness that it is continuous on X∗ (se, e.g., Theorem 4.6.4 in [5]).
This operator is the proximal resolvent associated to T and f . In a Hilbert space, if we take
f(x) = 1

2 ‖x‖
2, so that f ′ is the identity operator, this proximal resolvent is called the Moreau-

Yoshida transform.
The next result deals with the existence of Bregman projections.

Proposition 7. If f : X → R is totally convex and C ⊂ X is closed and convex, then for all u ∈ X
there exists a unique v̄ ∈ C which solves the problem min Df (v, u) subject to v ∈ C.

Proof. See 2.1.5. in [8].

Given f and C as in Proposition 7, we define the Bregman projection onto C, PC
f : X → C, in

the following way: PC
f (u) is the only solution v̄ of the problem min Df (v, u) subject to v ∈ C. Our

next result deals with the basic property of the Bregman projections onto hyperplanes.

Lemma 2. Take a totally convex f ∈ F(X). Then for all v ∈ X∗ \ {0}, ỹ ∈ X, x ∈ H+, x̄ ∈ H−,
it holds that Df (x̄, x) ≥ Df (x̄, z) + Df (z, x), where z = PH

f (x) and H,H+ and H− are defined as

H = {y ∈ X : 〈y − ỹ, v〉 = 0}, H+ = {y ∈ X : 〈y − ỹ, v〉 ≥ 0} and H− = {y ∈ X : 〈y − ỹ, v〉 ≤ 0}.

Proof. See Lemma 1 in [17].
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We end this section with a result on the graph of the sum of two maximal monotone operators,
taken from [22].

Lemma 3. If S, T : X → P(X∗) are maximal monotone operators, {xk}k∈K , {yk}k∈K are bounded
nets in X, and {uk}k∈K , {vk}k∈K are bounded nets in X∗ such that:

i) uk ∈ S(xk), vk ∈ T (yk) for all k ∈ K,

ii) The net {xk − yk}k∈K is strongly convergent to 0,

iii) The net {uk + vk}k∈K is strongly convergent to a point s̄ ∈ X∗,

iv) The nets {xk}k∈K and {yk}k∈K both converge weakly to some x̄ ∈ X,

v) The nets {uk}k∈K and {vk}k∈K converge weakly to points ū, v̄ ∈ X∗ respectively,

then ū ∈ S(x̄), v̄ ∈ T (x̄).

Proof. See Lemma 5 in [22].

We mention that Lemma 5 in [22] deals with m, rather than 2, maximal monotone operators.
The statement of our Lemma 3 corresponds to the one in [22] for the case of m = 2.

3 A splitting algorithm in Banach spaces

We assume from now on that X is a reflexive Banach space. We consider set-valued maximal
monotone operators A,B : X → P(X∗) and problem P , as defined in (1).

We present now Algorithm BS (Banach Splitting) for finding zeroes of A + B.

i) Initialization: Start with any initial iterate (z0, w0) ∈ X × X∗. Choose:

a) constants ρ̄ ∈ (0, 1] and θ, θ̄ ∈ R such that 0 < θ ≤ θ̄,

b) sequences of regularization parameters {λk}, {µk} ⊂ [θ, θ̄],

c) auxiliary functions f ∈ F(X), g ∈ F(X∗).

ii) Proximal step: Given (zk, wk) ⊂ X × X∗, find xk, yk ∈ X, ak, bk ∈ X∗ such that:

ak ∈ A(yk), bk ∈ B(xk), (6)

f ′(xk) + λkb
k = f ′(zk) + λkw

k, (7)

f ′(yk) + µka
k = f ′(zk) − µkw

k, (8)
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iii) Projection step: Define
γk = 〈xk, bk〉 + 〈yk, ak〉, (9)

δk = 〈zk, ak + bk〉 + 〈xk − yk, wk〉. (10)

If γk = δk then stop. Otherwise, choose as the next iterate (zk+1, wk+1) any pair (z,w) ∈
X × X∗ satisfying:

f ′(z) = f ′(zk) + η(ak + bk), (11)

g′(w) = g′(wk) + η(xk − yk), (12)

γk ≤ 〈z, ak + bk〉 + 〈xk − yk, w〉 ≤ (1 − ρ̄)γk + ρ̄δk (13)

for some η ∈ R.

We have presented Algorithm BS without any assumption on f, g besides the fact that they
belong to F(X),F(X∗) respectively. Along the course of Section 4, we will add the additional
assumptions on f, g required for each convergence result. Now, we will comment on several features
of the algorithm, and compare it to Algorithm ES.

Remark 1. Note that (6)–(8) reduce to finding xk ∈ (f ′ + λkB)−1(f ′(zk) + λkw
k) and yk ∈

(f ′ + µkA)−1(f ′(zk) − µkwk). When f satisfies H4, existence and uniqueness of xk, uk are easy
consequences of Proposition 6 (see Proposition 8 in Section 4). We mention that for a maximal
monotone operator T : X → P(X∗), the iteration vk+1 = (f ′ + λkT )−1(vk), with λk as in our
case, defines the proximal point method for finding zeroes of T . Though our method is slightly
different, because of the presence of the second terms in the right hand sides of (7) and (8), it
seems reasonable to call this step “Proximal”.

Remark 2. In connection with the reformulation of the Proximal step as that of finding xk ∈
(f ′ + λkB)−1(f ′(zk) + λkw

k) and yk ∈ (f ′ + µkA)−1(fzk) − µkwk), note that both inclusions are
independent of each other, and that the first one involves only the operator A, while the second
one uses only B. Since the Projection step requires neither A nor B, Algorithm BS is indeed a
“bona fide” splitting method.

Remark 3. We show now that in a large class of Banach spaces, under a sensible choice of f, g,
the Projection step (11)–(13) reduces to finding a real number satisfying two nonlinear inequali-
ties, and hence this step is computationally much less demanding than the Proximal step, which
requires solution of two nonlinear inclusions in X. If f, g satisfy H4, then f ′ and g′ are invertible,
and their inverses are related to their Fenchel conjugates f∗, g∗ through the well known iden-
tities (f ′)−1 = (f∗)′, (g′)−1 = (g∗)′, which follow easily from the definitions of f∗, g∗, namely,
f∗(u) = supz∈X{〈z, u〉 − f(z)}, g∗(v) = supw∈X∗{〈v,w〉 − g(w)}. So, we can rewrite (11) and (12)
as:

z = (f∗)′[f ′(zk) + η(ak + bk)], (14)
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w = (g∗)′[g′(wk) + η(xk − yk)], (15)

and thus z,w are given by closed formulae on the already available data zk, wk, xk, yk, ak and bk

and the real unknowkn η. Replacing now z and w in (13) by the right hand sides of (14) and (15),
the Projection step reduces to finding η ∈ R satisfying the double inequality in the new version
of (13), and then replacing the obtained value of η in (14), (15), in order to get the next iterates
zk+1, wk+1 as the right hand sides of (14) and (15) respectively.

A further simplification is possible if we take the Fenchel conjugate f∗ as the regularizing
function g for the dual space X∗. Recalling that in our reflexive setting (f∗)∗ = f , under this
choice of g (15) becomes

w = f ′[(f∗)′(wk) + η(xk − yk)]. (16)

In order to make this choice of g, one needs to ascertain that f∗ inherits the “good” properties of
f . This is the case in our main setting. If X is uniformly smooth and uniformly convex, then the
same holds for X∗ (in fact, uniform smoothness of X implies uniform convexity of X∗, and uniform
convexity of X implies uniform smoothness of X∗, see [10]). If we take now f(z) = 1

r
‖z‖r, with

r > 1, then a simple computation shows that f∗(w) = 1
s
‖w‖s

∗, where s = r/(r − 1) > 1 and ‖·‖∗
denotes the dual norm in X∗. We already mentioned that in this family of Banach spaces such an
f satisfies H0-H4, and also H5 in the case of X = ℓp and r = p. Since (ℓp)

∗ = ℓq with q = p/(p−1),
it follows that the choice g = f∗ does ensure the good properties of g in all these cases.

Remark 4. Now we compare the Projection step of our method with steps (iii)-(vi) of Algorithm
ES in Section 1. The details of the following argument will be presented in Lemma 4.

Define h : X × X∗ → R as h(z,w) = f(z) + g(w). In view of Proposition 3, if f, g enjoy
some of the good properties H0-H5, so does h. Take a hyperplane H ⊂ X × X∗ of the form
H = {(z,w) : 〈z, c〉 + 〈d,w〉 = σ}, with c ∈ X∗, d ∈ X and σ ∈ R. In view of the convexity of Dh

in its first argument, the Bregman projection of (zk, wk) onto H with respect to h is determined
by the first order optimality conditions for the problem

minDh((z,w), (zk , wk)) s.t. 〈z, c〉 + 〈d,w〉 = σ,

which are:
f ′(z) = f ′(zk) + ηc, (17)

g′(w) = g′(wk) + ηd, (18)

〈z, c〉 + 〈d,w〉 = σ, (19)

where η ∈ R is the Lagrange multiplier of the affine constraint. If we look now at (11), (12), taking
c = ak + bk, d = xk − yk, and compare with (17)–(19), we realize that the pair (zk+1, wk+1) is the
Bregman projection of (zk, wk) onto the hyperplane Ĥk ⊂ X × X∗ defined as

Ĥk = {(z,w) : 〈(z,w), (ak + bk, xk − yk)〉 = σk},
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with
σk = 〈zk+1, ak + bk〉 + 〈xk − yk, wk+1〉. (20)

Now, consider again ϕk : X ×X → R defined as ϕk(z,w) = 〈z−xk, bk −w〉+ 〈z− yk, ak + w〉, note
that ϕ is affine, because terms involving 〈z,w〉 cancel, and define the hyperplane H̄k ⊂ X × X as
H̄k = {(z,w) : ϕk(z,w) = 0}, so that H̄k is the limiting hyperplane of the halfspace Hk defined in
step (iv) of Algorithm ES.

If we call now ρk = (σk − γk)/(δk − γk), it can be checked that ρk ∈ [ρ̄, 1], and that Ĥk is a
relaxed hyperplane parallel to H̄k lying between (zk, wk) and H̄k. For ρk = 1 we get Ĥk = H̄k, and
for ρk = 0 we would have (zk, wk) ∈ Ĥk, but this case cannot occur because ρ̄ > 0, by virtue of
which Ĥk strictly separates (zk, wk) from the extended solution set Se(A,B), which is essential for
convergence of the method.

Summarizing this discussion, the pair (zk+1, wk+1) generated by Algorithm BS can be seen
as the Bregman projection of the pair (zk, wk) onto a hyperplane lying between (zk, wk) and the
limiting hyperplane of the halfspace Hk used in step (v) of Algorithm ES, corresponding to a
relaxation parameter ρk ∈ [ρ̄, 1]. In this sense, Algorithm BS is similar to Algorithm ES, but there
are three differences worth mentioning:

a) In Algorithm ES, first the orthogonal projection p̄k of (zk, wk) onto Hk is computed (step (v)),
and the relaxation is performed afterward (step(vi)), while in Algorithm BS the hyperplane
is (implicitly) relaxed and the Bregman projection is computed after the relaxation. Since
orthogonal projections onto hyperplanes in Hilbert spaces are affine, the order of the oper-
ations relaxation-projection is irrelevant (in both cases the same point is finally obtained).
The nonlinear nature of Bregman projections in nonhilbertian Banach spaces makes the order
relevant indeed, and the one selected in Algorithm BS is esssential for the good behavior of
the method.

b) In Algorithm ES the relaxation parameters ρk are contained in a compact subset of (0, 2)
while in Algorithm BS they are (implicitly) restricted to a compact subset of (0, 1]. Again
this is a consequence of the nonlinear nature of Bregman projections in nonhilbertian spaces;
over-relaxed projections (i.e. with ρk > 1), do not enjoy the decreasing distance property,
and thus must be excluded.

c) In Algorithm ES the relaxation parameter ρk is exogenously given, while in Algorithm BS no
relaxation parameter is explicitly employed, but instead we can take any pair (zk+1, wk+1)
satisfying the double inequality in (13). This is a significant advance: if we specify a relax-
ation parameter ρk beforehand, (13) becomes an equality, i.e. a nonlinear equation in the
real variable η to be exactly solved; our formulation, with the two inequalities in (13), is akin
to admitting inexact solutions of the nonlinear equation. On the other hand, this advantage
would not be significant in Algorithm ES, because in the hilbertian environment there is no
equation to solve: the orthogonal projection is given by an affine operator with well deter-
mined parameters, and hence it is not worthwhile to admit inexactness in its computation.

12



Remark 5. We have seen in the previous remark that the next iterate in Algorithm BS can be seen
as the Bregman Projection with respect to the auxiliary function h of the current iterate onto a
certain hyperplane. The fact that we have taken the auxiliary function h in X ×X∗ as a separable
one, of the form h(z,w) = f(z) + g(w), is inessential for the analysis. The same convergence
results can be established with any auxiliary function defined on X ×X∗ and enjoying the required
properties among H0-H5, possibly unrelated to the auxilary function f used in the Proximal step.
The advantage of the separable auxiliary function becomes clear when we look at the first order
optimality conditions related to the computation of the Bregman projection: in the separable case,
we get (11)–(13), which can be further simplified to (14)–(15), and even to (16) by choosing g = f∗;
the use of a nonseparable auxiliary function would lead to a system considerably more involved than
(11)–(13). For this reason, we prefered to present Algorithm BS only with a separable auxiliary
function in the product space.

4 Convergence analysis

We proceed to the convergence analysis of Algorithm BS. We start by establishing that the generated
sequence is well defined. From now on, we define h : X ×X∗ → R as h(z,w) = f(z) + g(w), where
f, g are the auxiliary functions chosen in item (c) of the Initialization of Algorithm BS.

Proposition 8. If f satisfies H2 and H4, and g satisfies H2, then the sequence {(zk, wk)} generated
by Algorithm BS is well defined, in the sense that, given the k-th iterate (zk, wk), there exists always
a pair (zk+1, wk+1) ∈ X × X∗ satisfying the algorithm prescriptions. Also, γk ≤ δk for all k, with
γk, δk as defined by (9) and (10).

Proof. We consider first the Proximal step. An elementary algebraic manipulation shows that (6)–
(8) is equivalento to finding xk ∈ (f ′+λkB)−1(f ′(zk)+λkwk) and yk ∈ (f ′+µkA)−1(fzk)−µkwk).
Since A,B are maximal monotone and λk, µk are positive, we get that λkB and µkA are also
maximal monotone. Proposition 6 and the fact that f satisfies H4 imply that xk, yk, ak and bk are
uniquely determined by (6)–(8).

We move on now to the Projection step. It suffices to show that

γk ≤ (1 − ρ̄)γk + ρ̄δk, (21)

and that there exist z,w such that the leftmost inequality in (13) holds with equality. Note that,
since ρ̄ ∈ (0, 1], the inequality in (21) is equivalent to stating that γk ≤ δk. Using (9) and (10), and
some elementary algebra, this inequality turns out to be equivalent to

〈zk − xk, bk − wk〉 + 〈zk − yk, ak + wk〉 ≥ 0. (22)

If we use (7) and (8) for writing bk − wk and ak + wk in terms of zk, xk and yk, and replace the
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result in the left hand side of (22), we get

〈zk−xk, bk−wk〉+〈zk−yk, ak +wk〉 =
1

λk

〈zk−xk, f ′(zk)−f ′(xk)〉+
1

µk

〈zk−yk, f ′(zk)−f ′(yk)〉 ≥ 0,

(23)
using the convexity of f and the positivity of λk, µk in the inequality of (23). We have proved that
(22) holds, and therefore γk ≤ δk, establishing the final statement of the proposition.

Now, we show that there exists a pair (z,w) ∈ X ×X∗ satisfying the system consisting of (11),
(12) and (13) with equality in its leftmost inequality, i.e.

〈z, ak + bk〉 + 〈xk − yk, w〉 = 〈xk, bk〉 + 〈yk, ak〉 (24)

Using (4), it is easy to check that these three equations are just the first order optimality conditions
for the problem of minimizing Dh((z,w), (zk , wk)) subject to (24). These first order conditions are
not only necessary but also sufficient, in view of the convexity of both Dh(·, (zk, wk)) and the
hyperplane in X×X∗ defined by (24), which we will call H̄k. Thus, the issue boils down to proving
that there exists the Bregman projection of (zk, wk) onto H̄k with respect to the auxiliary function
h. By Proposition 3, h satisfies H2, which implies total convexity. Since H̄k is clearly closed and
convex, the existence of the required pair (z,w) follows from Proposition 7.

It can be seen that the hyperplane H̄k defined by (24) coincides with the hyperplane defined in
Remark 4 of Section 3, though this fact is not needed in our proofs.

Next we look at the stopping criterion in the Projection step of Algorithm BS. We recall that
Se(A,B) ⊂ X × X∗ is defined as Se(A,B) = {(z,w) : −w ∈ A(z), w ∈ B(z)}.

Proposition 9. If Algorithm BS stops at step k, then (zk, wk) belongs to Se(A,B), i.e., zk solves
problem P .

Proof. If BS stops at iteration k, then γk = δk, in which case, looking at the proof of Proposition
8, we have equality in (22) and (23), i.e.

1

λk

〈zk − xk, f ′(zk) − f ′(xk)〉 +
1

µk

〈zk − yk, f ′(zk) − f ′(yk)〉 = 0.

In view of the positivity of λk, µk and the strict convexity of f , we conclude that zk = xk = yk.
Replacing xk and yk by zk in (7) and (8) we get that wk = bk, −wk = ak. Looking now at (6), we
conclude that

0 = −wk + wk = ak + bk ∈ A(yk) + B(xk) = A(zk) + b(zk),

i.e., zk is a zero of A + B, thus solving problem P .

Next we prove the distance reducing property of Algorithm BS, i.e., that the Bregman distance
related to h from the iterates to any point in Se(A,B) decreases with the iteration count. This is
a consequence of the properties of the Bregman projections, and is the driving mechanism leading
to the optimality of the weak cluster points of the sequence generated by the algorithm.
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Lemma 4. Assume that problem P has solutions and that f satisfies H2. Take any pair (z̄, w̄) ∈
Se(A,B). Let {(zk, wk)} be the sequence generated by Algorithm BS. Define p̄ := (z̄, w̄), pk :=
(zk, wk). Then

Dh(p̄, pk) ≥ Dh(p̄, pk+1) + Dh(pk+1, pk). (25)

Proof. Observe that the existence of solutions of problem P is equivalent to nonemptiness of
Se(A,B). As announced in Remark 4, we will show now that the pk+1 is the Bregman projec-
tion of pk with respect to h onto a hyperplane which separates pk from Se(A,B). The result will
then be a consequence of Lemma 2.

Let us define, as in (20), σk = 〈zk+1, ak + bk〉 + 〈xk − yk, wk+1〉, and consider the hyperplane
Ĥk ⊂ X × X∗ given by

Ĥk = {(z,w) : 〈z, ak + bk〉 + 〈xk − yk, w〉 = σk}. (26)

Note that σk has been defined precisely so that pk+1 belongs to Ĥk. Note also that (11), (12)
and (26) are the first order optimality conditions for the problem min

p∈ bHk

Dh(p, pk). Since these

conditions are sufficient, by virtue of the convexity of Ĥk and of Dh(·, pk), we have proved that
pk+1 is the Bregman projection of pk onto Ĥk with respect to the auxilary function h. Now we
must check that Se(A,B) and pk lie on opposite sides of the hyperplane Ĥk. These two inclusions
are a consequence of the selection of xk, yk, ak and bk in the Proximal step of Algorithm BS.

Define the halfspaces H+
k ,H−

k as

H+
k = {(z,w) : 〈z, ak + bk〉 + 〈xk − yk, w〉 ≥ σk}, (27)

H−
k = {(z,w) : 〈z, ak + bk〉 + 〈xk − yk, w〉 ≤ σk}. (28)

Take any pair (z̄, w̄) ∈ Se(A,B). In order to establish that Se(A,B) ⊂ H−
k , it suffices to

verify that (28) holds with (z,w) = (z̄, w̄). Look now at the leftmost inequality in (13) with
(z,w) = (zk+1, wk+1), which holds indeed because (13) defines the next iterate (zk+1, wk+1). Taking
into account (20), such inequality can be rewritten as

γk ≤ σk. (29)

We claim that
〈z̄, ak + bk〉 + 〈xk − yk, w̄〉} ≤ γk. (30)

In view of (9), (30) is equivalent to

〈z̄, ak + bk〉 + 〈xk − yk, w̄〉} ≤ 〈xk, bk〉 + 〈yk, ak〉. (31)

Adding and substracting 〈z̄, w̄〉 in the right hand side of (31), an elementary algebraic manipulation
shows that (31) is equivalent to

〈z̄ − yk,−w̄ − ak〉 + 〈z̄ − xk, w̄ − bk〉 ≥ 0. (32)
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Since −w̄ ∈ A(z̄), w̄ ∈ B(z̄) by definition of Se(A,B), and ak ∈ A(yk), bk ∈ B(xk) by (6), the
monotonicity of A,B implies that (32) holds, establishing the claim, i.e. the validity of (30).
Combining (30) with (29), we conclude that (28) holds with (z,w) = (z̄, w̄), i.e. that Se(A,B) ⊂
H−

k .
Now we prove that pk belongs to H+

k . We must verify that (27) holds with (z,w) = (zk, wk). By
the Projection step of Algorithm BS, (13) holds with (z,w) = (zk+1, wk+1). Taking into account
(20), the rightmost inequality in (13) with (z,w) = (zk+1, wk+1) is equivalent to

σk ≤ (1 − ρ̄)γk + ρ̄δk. (33)

Since ρ̄ ≤ 1 by item (a) in the Initialization of Algorithm BS, and γk ≤ δk by Proposition 8, we get
from (33) that

σk ≤ δk. (34)

In view of (27) and (34), in order to check that (zk, wk) belongs to H+
k it suffices to check that

〈zk, ak + bk〉 + 〈xk − yk, wk〉} ≥ δk,

which holds (indeed, with equality) by virtue of (10). We have established that pk ∈ H+
k ,

Se(A,B) ⊂ H−
k and pk+1 = P

bHk

h (pk). Since h is totally convex because it satisfies H2, we are
precisely within the hypotheses of Lemma 3, and hence (25) holds true.

We remark that only (6) is needed for proving that Se(A,B) ⊂ H−
k , while the fact that pk

belongs to H+
k is a consequence of (7) and (8), used in Proposition 8 for proving that γk ≤ δk.

We also mention that the fact that Ĥk can be written as a relaxed hyperplane with relaxation
parameter ρk, as explained in Remark 4 in Section 3, is not needed in the convergence analysis.

Now all the pieces are in order for our convergence theorem. Note that up to now only properties
H2 and H4 of the auxiliary functions have been invoked. The remaining properties, namely H0,
H1, H3 and H5, will be used in the proof of the theorem.

Theorem 6. i) Assume that Problem P has solutions and that f and g satisfy H0-H4. Then
the sequences {zk} and {wk} are bounded, the corresponding differences between consecutive
iterates, {zk − zk+1} and {wk − wk+1}, converge strongly to 0, and all weak cluster points of
{(zk, wk)} belong to Se(A,B), so that all weak cluster points of {zk} are zeroes of A + B.

ii) If additionally f and g satisfy H5, then the sequences {zk}, {xk} and {yk} converge weakly to
some zero z∗ of A + B, the sequences {wk} and {bk} converge weakly to a point w∗ such that
w∗ ∈ B(z∗),−w∗ ∈ A(z∗), and the sequence {ak} converges weakly to −w∗.

Proof. Assume first that f, g satisfy H0-H4. Define h : X × X∗ → R as h(z,w) = f(z) + g(w). By
Proposition 2, h satisfies H1-H4.

Take any pair (z̄, w̄) ∈ Se(A,B), which is nonempty because P has solutions. Again we take
p̄ = (z̄, w̄), pk = (zk, wk). In view of Lemma 4, (25) holds. Since Dh is nonnegative by Proposition

16



1(i), it follows that {Dh(p̄, pk)} ⊂ R is nonincreasing and nonnegative, hence convergent. Define
ζ = Dh(p̄, p0). It follows that Dh((p̄, pk) ≤ ζ for all k. Since h satisfies H1, {pk} is bounded, and
hence {zk} and {wk} are bounded.

Also, since (25) implies that

Dh(pk+1, pk) ≤ Dh(p̄, pk) − Dh(p̄, pk+1), (35)

we have that {Dh(pk+1, pk)} converges to 0, because the right hand side of (35) is the difference
between consecutive terms of a convergent sequence. By Proposition 5, pk − pk+1 s

k→∞→ 0, and
therefore,

zk − zk+1 s
k→∞→ 0, wk − wk+1 s

k→∞→ 0. (36)

Next we will use H0 to get boundedness of {xk}, {bk}, {yk} and {ak}. Let qk = f ′(zk) + λkw
k, so

that (7) becomes
f ′(xk) + λkb

k = qk. (37)

Since {zk} is bounded and f satisfies H3, {f ′(zk)} is bounded by Proposition 4. Since λk ≤ θ̄,
boundeness of {wk} implies boundedness of {qk}. Substracting f ′(x0) + λkb

k from both sides of
(37) and computing the duality product with xk − x0, we get

〈xk − x0, qk〉 = 〈xk − x0, f ′(xk) − f ′(x0)〉 + λk〈x
k − x0, bk − b0〉 ≥

〈xk − x0, f ′(xk) − f ′(x0)〉 = Df (xk, x0) + Df (x0, xk) ≥ Df (xk, x0), (38)

using nonnegativity of λk, monotonicity of B and (6) in the first inequality, Proposition 1(ii) in the
second equality and Proposition 1(i) in the second inequality. From (38) and (4) we get

f(xk) ≤ 〈xk − x0, qk〉 + f(x0) + 〈f ′(x0), xk − x0〉 ≤ f(x0) +
∥∥∥xk − x0

∥∥∥
[∥∥∥qk

∥∥∥ +
∥∥f ′(x0)

∥∥
]
, (39)

using the Cauchy-Schwartz inequality in the second inequality of (39). Therefore

f(xk)

‖xk‖

∥∥xk
∥∥

‖xk − x0‖
=

f(xk)

‖xk − x0‖
≤

f(x0)

‖xk‖
+

[∥∥∥qk
∥∥∥ +

∥∥f ′(x0)
∥∥
]
. (40)

We claim that (40) implies boundedness of {xk}. Suppose, for the sake of contradiction, that
{xk} has an unbounded subsequence. Then, the left hand side of (40) tends to ∞ along such
subsequence, because f satisfies H0 and limk→∞

∥∥xk
∥∥ /

∥∥xk − x0
∥∥ = 1, while in the right hand side,

the first term converges to 0, and the second one remains bounded, by boundedness of {qk}. The
resulting contradiction implies that the claim holds. From (37) we get

bk =
1

λk

[qk − f ′(xk)].
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Since λk ≥ θ > 0, we obtain, from Proposition 4 and the boundedness of {qk} and {xk}, that {bk}
is bounded. A similar argument, starting from (8), establishes boundedness of {yk} and {ak}.

Now, we combine (13), (9) and (10) to get

〈zk+1, ak + bk〉+ 〈xk − yk, wk+1〉 ≤ (1− ρ̄)[〈xk, bk〉+ 〈yk, ak〉]+ ρ̄[〈zk, ak + bk〉+ 〈xk − yk, wk〉] (41)

Multiplying (41) by −1 and adding 〈zk, ak + bk〉 + 〈xk − yk, wk〉 to both sides, we obtain

〈zk−zk+1, ak+bk〉+〈xk−yk, wk−wk+1〉 ≥ (1−ρ̄)[(〈zk, ak+bk〉+〈xk−yk, wk〉)−(〈xk, bk〉+〈yk, ak〉)] =

(1 − ρ̄)[〈zk − yk, ak + wk〉 + 〈zk − xk, bk − wk〉] =

(1 − ρ̄)

[
1

µk

〈zk − yk, f ′(zk) − f ′(yk)〉 +
1

λk

〈zk − xk, f ′(zk) − f ′(xk)〉

]
=

(1 − ρ̄)

[
1

µk

(
Df (zk, yk) + Df (yk, zk)

)
+

1

λk

(
Df (zk, xk) + Df (xk, zk)

)]
≥

1 − ρ̄

θ̄

[
(Df (zk, yk) + Df (yk, zk) + Df (zk, xk) + Df (xk, zk)

]
, (42)

using some elementary algebra in the first equality, (7) and (8) in the second equality, Proposition
1(ii) in the third equality, and the upper bound for {λk}, {µk} given in item (b) in the initialization
of Algorithm BS in the second inequality.

In view of (36) and the boundedness of {xk}, {yk}, {ak} and {bk}, the leftmost expression
on (42) converges to 0 as k → ∞. Using now Proposition 1(i), we get limk→∞ Df (xk, zk) =
limk→∞ Df (yk, zk) = 0, and then, using Proposition 5, we conclude that

zk − xk s
k→∞→ 0, zk − yk s

k→∞→ 0, (43)

which implies
xk − yk s

k→∞→ 0, (44)

From (43), boundedness of {xk}, {yk} and {zk}, together with the fact that f satisfies H3, we
get f ′(zk) − f ′(xk) s

k→∞→ 0, f ′(zk) − f ′(yk) s
k→∞→ 0, so that, taking into account (7) and (8), we

obtain that λk(b
k − wk) s

k→∞→ 0, µk(a
k + wk) s

k→∞→ 0, implying, since λk, µk ≤ θ̄, that

bk − wk s
k→∞→ 0, ak + wk s

k→∞→ 0, (45)

and therefore
ak + bk s

k→∞→ 0. (46)

By reflexivity of X, the sequences {zk}, {wk}, {xk}, {yk}, {ak} and {bk} have weak cluster points.
Let z∗ be a cluster point of {zk}, and {zjk} a subsequence of {xk} weakly convergent to z∗. In
view of (43), we have

xjk w
k→∞⇀z∗, yjk w

k→∞⇀z∗. (47)
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Without loss of generality, i.e. refining the subsequence if needed, we can assume that there exist
a∗, b∗, w∗ ∈ X∗ such that

ajk w
k→∞⇀a∗, bjk w

k→∞⇀b∗, wjk w
k→∞⇀w∗. (48)

Now we check the assumptions of Lemma 3 with S = B,T = A, xk = xjk , yk = yjk , uk = bjk and
vk = ajk . Assumption (i) holds by (6), (ii) follows from (44), (iii) from (46), (iv) from (47) and
(v) from (48). We conclude from Lemma 3 that a∗ ∈ A(z∗), b∗ ∈ B(z∗). On the other hand, (46)
implies that a∗ = −b∗, so that 0 = a∗+ b∗ ∈ A(z∗)+B(z∗), i.e. z∗ is a solution of problem P . Now,
from (45) and (48) we get w∗ = b∗ = −a∗, so that −w∗ ∈ A(z∗), w ∈ B(z∗), i.e., (z∗, w∗) belongs
to Se(A,B), completing the proof of item (i).

Now we proceed to prove item (ii), assuming that f and g satisfy H5, and hence h satisfies H5
by Proposition 3. We have already shown that {pk} = {(zk, wk)} is bounded. We will establish
next that {pk} has a unique weak cluster point. Assume that both p̃ and p̂ are cluster points of
{pk}, and let {pik}, {pjk} be subsequences of {pk} which converge weakly to p̃, p̂ respectively. We
have proved in item (i) that both p̂ and p̃ belong to Se(A,B). In view of Lemma 4, we get from
(25) that both {Dh(p̂, pk)} and {Dh(p̃, pk)} are nonnegative and nonincreasing, hence convergent,
i.e. there exist β̂, β̃ ∈ R such that

lim
k→∞

Dh(p̂, pk) = β̂, lim
k→∞

Dh(p̃, pk) = β̃. (49)

Now, using (5) in Lemma 1, we get

∣∣〈h′(pik) − h′(pjk), p̂ − p̃〉
∣∣ =

∣∣[Dh(p̂, pik) − Dh(p̂, pjk)
]
−

[
Dh(p̃, pik) − Dh(p̃, pjk)

]∣∣ ≤
∣∣Dh(p̂, pik) − Dh(p̂, pjk)

∣∣ +
∣∣Dh(p̃, pik) − Dh(p̃, pjk)

∣∣ . (50)

In view of (49), both terms in the rightmost expression of (50) converge to 0 as k → ∞, so that

0 = lim
k→∞

∣∣〈h′(pik) − h′(pjk), p̂ − p̃〉
∣∣ =

∣∣〈h′(p̃) − h′(p̂), p̂ − p̃〉
∣∣ =

〈h′(p̃) − h′(p̂), p̃ − p̂〉 = Dh(p̂, p̃) + Dh(p̃, p̂) ≥ Dh(p̃, p̂) ≥ 0, (51)

using property H5 of h in the second equality, convexity of h in the second one, and Proposition 1(ii)
in the third one. It follows from (51) that Dh(p̃, p̂) = 0, so that p̂ = p̃ by Proposition 1(i). We have
proved that {pk} has a unique cluster point, and so both {zk} and {wk} are weakly convergent, say
to z∗ and w∗ respectively. By item (i), (z∗, w∗) belongs to Se(A,B), and hence z∗ solves problem
P . The weak convergence of {xk}, {yk}, {ak} and {bk}, as well as the value of their weak limits,
follow then from (43) and (45).
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