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Abstract

We present a mixed Newton-type Hybrid Proximal Extragradient, primal-dual interior point
method for solving smooth monotone complementarity problems. Dual variables for the non-
negativity constraints are introduced. The ergodic complexity of the method is O(1/k3/2). The
methods performs two types of iterations: under relaxes Hybrid Proximal-Extragradient iterations
and short-steps primal-dual interior point iterations.
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Introduction

The complexity of an algorithm is a theoretical estimation of its computational cost for obtaining a
solution, exact or approximated, of the problem it is designed to solve. Although the ultimate test of
an algorithm is practical performance, complexity analysis may point to improvements and even new
methods. The practical performance may be estimated also by numerical tests. However, performance
of an algorithms on numerical tests depends on the test suite, the actual implementation (coding),
stopping criterion and parameter tuning; while mathematical estimation of theoretical complexity are
verifiable (or proven false) by anyone able to follow the proofs and to find flaws (if any) in them.

Leonid G. Hačijan revolutionary work [8], the first polynomial algorithm for Linear Programming,
changed radically this field and opened new roads in Linear Programming and beyond. A second
revolutionary work it the one of Karmarkar [9], which introduced interior point methods in linear
programing, and presented the first efficient polynomial algorithm for linear programming.

In non-linear programming, instead of exact solutions, algorithms produce approximate solutions,
and a raw complexity measure is the number of iterations required for finding such approximate
solutions. The ergodic complexity of an iterative algorithm estimates the quality (as approximated
solution) of mean values of the iterates, computed with suitable weights; the point-wise complexity
estimate the quality of the iterates,
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In this work we study the complexity of a new method for solving smooth monotone non-linear
complementarity problems. These problems are monotone variational inequalities where the feasible
set is the positive orthant and the operator is smooth. In its turn, monotone variational inequality
problems are particular instances of the problem of finding a zero of the sum of two monotone
operators, where one of them is a normal cone, and the other is point-to point.

Any method for finding a zero of the sum of monotone operators, and in particular any method for
solving monotone variational inequalities may be used for solving monotone non-linear complementarity
problems. Korpelevič’s method [10] solves monotone variational inequality problems for Lipschitz
continuous operators, and requires in each iteration two projections onto the feasible set. Tseng’s
modified forward-backward method [26] finds the zero of a sum of two operators, one of which is
Lipschitz, and the other one shall have an easily computable resolvent, which is computed once in
each iteration. Douglas-Rachford method [5, 11] finds a zero of a sum of two monotone operator; it
requires the computation of the resolvents of each of the operators; and, in practice, it appears as the
classical alternating direction method of multipliers [7, 6].

The ergodic and the point-wise complexities of Korpelevič’s method are, respectively, O(1/k) [17]
and O(1/k1/2) [13]; likewise, the ergodic and point-wise complexities of Tseng’s modified forward-
backward method are, respectively, O(1/k) and O(1/k1/2) [13, 14]; while the ergodic complexity of
Douglas-Rachford method is O(1/k) [16]. All these results can be obtained within the same theoretical
framework [13, 14, 16], as fixed step-size implementations of the Hybrid Proximal Extragradiente
Methods. Korpelevič’s and Tseng’s methods are “zero order” methods for solving monotone variational
inequality problems for Lipschitz continuous monotone operators, in the sense that derivatives are
neither used nor required by these methods.

Complexity estimations of first order methods (which use first derivatives) for smooth monotone
variational inequalities were presented in [15]. In that work, in each iteration a “Newton-Josephy
block-box” was used to solve, within a relative error tolerance, a prox-regularized variational problem
in which the smooth operator was substitute by its linearization at the current iterate. However, the
problem of how to implement such “Newton-Josephy black box” was not addressed. Moreover, in
that work a binary search was used to compute the step-size, resulting in a multiplicative log log term
in the complexity estimation.

The present work is a sequel of [15] in two senses. First, the binary line search is replaced by
an homotopy method, so eliminating the multiplicative log log term in the complexity estimation.
Second, for the smooth monotone complementarity problem, using a primal-dual interior-point like
technique/method, we eliminate the “Newton-Josephy black-box”, and require only a linear solver.
The resulting algorithm, for the monotone linear complementarity problem, is a mixture of a relaxed
version of a Newton-type HPE method [20, 24, 23] and a primal-dual interior point method.

This work is organized as follows. In section 1 we review some basic properties of maximal
monotone and their enlargements. In Section 3 we derive the abstract iteration complexity of an
under relaxed version of the Hybrid Proximal Extragradient Method, an further specialize these
estimations to an under relaxed, large-step version of the Hybrid Proximal Extragradient method. In
Section 4 In Section 7.

1 Maximal Monotone Operators and Their Enlargements

Maximal monotone operators and their enlargements will be used in the design an analysis of the
new algorithm proposed in this paper. Here he review some basic properties of these objects
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From now on X is a real Hilbert space with inner product 〈·, ·〉 and associated norm ‖ · ‖. A
point-to-set operator T : X ⇒ X (or an operator in X) is a relation T ⊂ X ×X and

T (x) = {v | (x, v) ∈ T}, T−1(v) = {x | (x, v) ∈ T}, x, v ∈ X.

The domain and range of T are

D(T ) = {x | T (x) 6= ∅}, R(T ) = {v | T−1(v) 6= ∅},

respectively. An operator T : X ⇒ X is point-to-point if T (x) is a singleton or an empty set for any
x ∈ X. We identify a point-to-point operator T : X ⇒ X with the unique function F : D(T )→ X
such that T (x) = {F (x)} for any x ∈ D(T ).

A point-to-set operator T : X ⇒ X is monotone if

〈x− y, v − u〉 ≥ 0 ∀(x, v), (y, u) ∈ T

and it is maximal monotone if it is monotone and maximal in the family of monotone operators
in X. In f : X → R is a proper, lower semicontinuous, convex function then the subdifferencial of
∂f : X ⇒ X.

∂f(x) = {v ∈ X | f(y) ≥ f(x) + 〈y − x, v〉},

is a maximal montotone operator [18]. If Ω ⊂ X is a non-empty closed convex set then δΩ, the
indicator function of Ω ⊂ X, and NΩ, the normal cone operator of Ω, are, respectivelly,

δΩ : X → R δΩ(x) =

{
0, x ∈ Ω

∞ otherwise,
NΩ : X ⇒ X NΩ = ∂δΩ.

Since we are assuming Ω to be a non-empty closed convex set, δΩ is a proper, lower semicontinuous,
convex function and NΩ is maximal monotone.

Recall that the ε-subdifferential [2], of a proper, lower semicontinuous, convex function f : X → R
is the point-to-set operator ∂εf : X ⇒ X,

∂εf(x) = {v ∈ X | f(y) ≥ f(x) + 〈y − x, v〉} ε ≥ 0, x ∈ X.

Altough the ε-subdifferential was origianly defined in abstract Banach spaces, it proven to be a
very useful construct in optimization and convex analysis. It is natural to inquire wheter a similar
construct exists for arbitrary maximal monotone operators. The anser to this question is our next
topic.

The ε-enlargement [3, 4] of a maximal monotone T : X ⇒ X is the point-to-set operator
T [ε] : X ⇒ X

T [ε](x) = {v ∈ X | 〈x− y, v − u〉 ≥ −ε ∀y ∈ X, u ∈ T (y)}, x ∈ X, ε ≥ 0. (1)

Observe that T [ε] is defined only for ε ≥ 0. Direct use of this definition yields the following basic
results (see [4, 25]).

Proposition 1.1. Let T : X ⇒ X, T ′ : X ⇒ X be maximal monotone.

1. T = T [ε=0];
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2. if 0 ≤ ε ≤ η then T [ε](x) ⊂ T [η](x) for any x ∈ X;

3. if ε, η ≥ 0 then T [ε](x) + (T ′)[η](x) ⊆ (T + T ′)[ε+η](x) for any x ∈ X;

4. if T = ∂f , where f is a proper closed convex function, then ∂εf(x) ⊆ T [ε](x) for any ε ≥ 0 and
x ∈ X.

The next propertie of the ε-enlargements of maximal montone operators is used for evaluating
the ergodic complexity of the Hybrid Proximal Extragradient Method.

Theorem 1.2 (weak transportation formula [?]). Let T : X ⇒ X∗ be maximal monotone. Suppose
that

vi ∈ T [εi](xi), i = 1, . . . ,m

and that α1, . . . , αm ≥ 0,
∑m

i=1 αi = 1. Define

x̄ =
m∑
i=1

αixi, v̄ =

m∑
i=1

αivi, ε̄ =

m∑
i=1

αi(εi + 〈xi − x̄, vi − v̄〉).

Then ε̄ ≥ 0 and v̄ ∈ T [ε̄](x̄).

2 Minty’s path and its σ-neighborhoods

According to Minty’s Theorem [12], if T : X ⇒ X is maximal monotone, then for any λ > 0, the
operator λT + I is onto and (λT + I)−1, the resolvent of T , is a point-to-point operator with domain
X. Observe that

x = (λT + I)−1(z) ⇐⇒
{
∃v ∈ T (x)
λv + x− z = 0 .

It is convenient to regard such pair (x, v) as a function on λ.

Definition 2.1. Let z ∈ X and T : X ⇒ X be maximal monotone.

1. Minty’s system for parameter λ > 0, base-point z and operator T is the inclusion/equation
system

x, v ∈ X, v ∈ T (x), λv + x− z = 0; (2)

2. Minty’s path with base-point z for operator T is the curve which associate to each λ > 0 the
pair (xλ, vλ) unique solution of (2); equivalently, it is the curve

(0,∞)→ X ×X, λ 7→ (xλ, vλ) xλ = (λT + I)−1(z), vλ = λ−1(z − xλ). (3)

Next we state some useful properties of Minty’s path, which follows trivially from basic properties
of the resolvent map [12, 1].

Proposition 2.2. For any z ∈ X and T : X ⇒ X maximal monotone, Minty’s curve λ 7→ (xλ, vλ),
with base-point z for operator T , is continuous, ‖xλ − z‖ is increasing, ‖vλ‖ is decreasing, and for
any x∗ ∈ T−1(0),

‖x∗ − xλ‖2 + ‖xλ − z‖2 ≤ ‖x∗ − z‖2.
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Moreover, if Ω = T−1(0) 6= ∅, then

‖vλ‖ ≤
d(z,Ω)

λ
, ‖xλ − z‖ ≤ d(z,Ω)

limλ→∞ vλ = 0 and limλ→∞ xλ = PΩ(z) where PΩ stands for the orthogonal projection onto Ω and
these are strong limits.

Observe that v as specified in (2) (which is vλ in (3)) is redundant. However, in inexact solutions
of (2), where the equality does not hold, v ceases to be redundant and it is useful to bound its norm
and its distance to vλ. Indeed, Computation of xλ and vλ is, in general, quite expensive and we will
consider inexact solutions of Minty’s system (2) in which the inclusion and the equality are relaxed.
We will relax inclusion in (2) by means of the the ε-enlargement.

From now on in this section T : X ⇒ X is a maximal monotone operator. We will use, in the
analysis of inexact solutions of (2), the error measure

Ψλ,z,T : X ×X × R→ R+ ∪ {∞},

Ψλ,z,T (x, v, ε) =

{√
‖λv + x− z‖2 + 2λε if ε ≥ 0 and v ∈ T [ε](x),

∞ otherwise.

(4)

This error measure quantifies the distance to Minty’s path, and also quantifies how much an ε-
extragradient step is closer to the solution set T−1(0). These results where essentially proved in
[20, 21, 22].

Proposition 2.3. Let λ > 0 and z ∈ X. For any x, v ∈ X and ε ∈ R,√
‖λ(v − vλ)‖2 + ‖x− xλ‖2 ≤ Ψλ,z,T (x, v, ε)

where (xλ, vλ) is as in Definition 2.1; and

‖x∗ − (z − λv)‖2 ≤ ‖x∗ − z‖2 + Ψλ,z,T (x, v, ε)2 − ‖x− z‖2 ∀x∗ ∈ T−1(0).

Proof. To first inequality follows from definition (4) and [22, eqs. (11), (12), and Corollary 1]. The
second inequality follows from definition (4) and [22, eqs. (11), (12), and Lemma 3].

The next corollary, provides a bound for the norms of v and x− z in an inexact solution (x, v, ε)
of (2), as functions of λ.

Corollary 2.4. If T−1(0) is non-empty, d is the distance of z ∈ X to this set, λ > 0, and
Ψλ,z,T (x, v, ε) ≤ ρ <∞, then

‖x− z‖ ≤ d+ ρ, ‖v‖ ≤ d+ ρ

λ
,

and for any x∗ ∈ T−1(0) and t ∈ [0, 1]

‖x∗ − z‖2 ≥ ‖x∗ − (z − tλv)‖2 + t(‖x− z‖2 − ρ2).
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Proof. Let x̂ be the projection of z in T−1(0) (which is a non-empty closed convex set). In view of
Proposition 2.2,

‖xλ − z‖ ≤ ‖x̂− z‖ ≤ d, ‖vλ‖ =
‖xλ − z‖

λ
≤ d

λ
.

The two first inequalities of the corollary follows from the above inequalities and the first inequality
in Proposition 2.3.

To prove the last inequality of the corollary, first observe that it holds trivially for t = 0. Use the
last part of Proposition 2.3 to conclude that this inequality also holds for t = 1. To end the proof,
observe that the its right-hand side is convex in t.

We define a σ-neighborhood of the proximal path (3) for T at point z and parameter λ > 0 as
the set

Hσ(λ; z, T ) :=

{
(x, v, ε) ∈ X ×X × [0,∞)

∣∣∣∣ v ∈ T [ε](x),
‖λv + x− z‖2 + 2λε ≤ σ2‖x− z‖2

}
, (5)

that is, Hσ(λ; z, T ) =
{

(x, v, ε) | Ψλ,z,T (x, v, ε) ≤ σ2‖x− z‖2
}

.

Lemma 2.5. If (x, v, ε) ∈ Hσ(λ; z, T ) with λ > 0 and 0 ≤ σ < 1, then

(1− σ)‖x− z‖ ≤ λ‖v‖ ≤ (1 + σ)‖x− z‖, 2λε ≤ σ2‖x− z‖2, (6)

‖x− xλ‖ ≤ σ‖x− z‖, (7)

‖xλ − z‖
1 + σ

≤ ‖x− z‖ ≤ ‖xλ − z‖
1− σ

, (8)

and for any x∗ ∈ T−1(0)

‖x− z‖ ≤ ‖x
∗ − z‖

1− σ
, ‖x∗ − x‖ ≤ ‖x

∗ − z‖
1− σ

. (9)

Proof. The inequalities in (6) follow trivially from definition (5). Inequality (7) follows from definition
(5) and Proposition 2.3. Direct use of triangle inequality yields

‖x− z‖ − ‖x− xλ‖ ≤ ‖xλ − z‖ ≤ ‖x− z‖+ ‖x− xλ‖,

which, combined with (7) and the assumption 0 ≤ σ < 1, proves (8).
To end the proof, take x∗ ∈ T−1(0). The first inequality in (9) follows from the second inequality in

(8) and the inequality in Proposition 2.2. Direct use of triangle inequality, inequality in Proposition 2.2,
and (7) yields

‖x∗ − x‖ ≤ ‖x∗ − xλ‖+ ‖xλ − x‖ ≤ ‖x∗ − z‖+ σ‖x− z‖,
which, combined with the first inequality in (9), proves the second one.

The next proposition, proved in [20, 21, 24], shows how points in σ-neighborhoods Hσ(λ; z, T ) of
the proximal path can be used to generate points closer to the solution set than the base point z.
This result has also been used in [13, 15].

Lemma 2.6. Suppose that (x, v, ε) ∈ Hσ(λ; z, T ), λ > 0, 0 ≤ σ < 1 and define

zt = z − tλv.

Then, for any x∗ ∈ T−1(0) and t ∈ [0, 1],

‖x∗ − z‖2 ≥ ‖x∗ − zt‖2 + t(1− σ2)‖x− z‖2.

Proof. The result follows from Corollary 2.4 and definition (5).
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3 Under Relaxed Hybrid Proximal Extragradient

In this section we will present a complexity analysis of an under relaxed version of the hybrid proximal
extragradient method. The hybrid proximal extragradient method was introduced in [20, 21], and
under/over relaxed version of it where analyzed in a more general framework in [24]. The complexity
analysis of the HPE was presented in [13]; here we adapt complexity results of [15] to the under
relaxed version of the HPE.

Consider a sequence generated by the (under) relaxed hybrid proximal extragradient (RHPE)
method for finding a zero of a maximal monotone operator T : X ⇒ X. Start with z0 ∈ X and for
k = 1, 2, . . .

vk ∈ T [εk](xk), ‖λkvk + xk − zk−1‖2 + 2λkεk ≤ σ2
k‖xk − zk−1‖2, 0 ≤ σk < 1, λk > 0,

zk = zk−1 − tkλkvk 0 < tk ≤ 1.
(10)

In each iteration k, λk is the step-size, σk is a relative error tolerance, and tk is a relaxation factor.
Of course we could have also considered over-relaxed versions of the HPE. However, for our aims, the
under relaxed version will do.

From now on in this section T : X ⇒ X is an arbitrary maximal monotone operator and (σk),
(λk), (tk), (zk), (xk), (vk), (εk) are sequence generated by the RHPE method. The next proposition
summarizes the basic convergence properties of the this method, and it is the key for deriving its
“abstract” point-wise complexity.

Proposition 3.1. For any x∗ ∈ T−1(0),

‖x∗ − zk−1‖2 ≥ ‖x∗ − zk‖2 + tk(1− σ2
k)‖xk − zk−1‖2,

‖x∗ − z0‖2 ≥ ‖x∗ − zk‖2 +
k∑
i=1

ti(1− σ2
i )‖xi − zi−1‖2,

‖x∗ − z0‖ ≥ ‖x∗ − zk‖ ,

k = 1, 2, . . . . (11)

Additionally, if T−1(0) is non empty and d is the distance of z0 to this set, then

k∑
i=1

ti(1− σ2
i )‖xi − zi−1‖2 ≤ d2, k = 1, 2, . . . . (12)

Proof. The first inequality in (11) follows from (10), definition (5), and Lemma 2.6 with z = zk−1,
λ = λk, σ = σk, x = xk, v = vk, ε = εk, and t = tk. The second inequality in (11) follows trivially
from the first one while the third one follows from the second and the assumptions tk ≥ 0, 0 ≤ σk < 1.
The second inequality in (11), the assumption that T−1(0) is nonempty, and the definition of d
trivially imply (12).

Proposition 3.2. For any k,

‖vk‖ ≤
1 + σk
λk

‖xk − zk−1‖, εk ≤
σ2

2λk
‖xk − zk−1‖2. (13)

Moreover, if T−1(0) is nonempty and d is the distance of z0 to this set, then

‖zk − z0‖ ≤ 2d, ‖xk − zk−1‖ ≤
d

1− σk
, ‖xk − z0‖ ≤

(
1

1− σk
+ 1

)
d (14)

for any k.
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Proof. Take k ∈ N. Using (10) and Lemma 2.5 with z = zk−1, λ = λk, x = xk, v = vk, ε = εk, and
σ = σk we conclude that the two inequalities in (13) hold, and that for any x∗ ∈ T−1(0)

‖xk − zk−1‖ ≤
‖x∗ − zk−1‖

1− σk
, ‖xk − z0‖ ≤ ‖x∗ − xk‖+ ‖x∗ − z0‖ ≤

‖x∗ − zk−1‖
1− σk

+ ‖x∗ − z0‖,

where the second inequality follows from triangle inequality. Since we are assuming that T−1(0) is
nonempty, we can take x∗ as the projection of z0 in this set. From Proposition 3.1 it follows that
‖x∗ − zk−1‖ ≤ ‖x∗ − z0‖. This inequality trivially implies the first inequality in (14) and, combined
with the above inequalities, also implies the second and the third ones.

Next we analyze the ergodic means associated with the RHPE method. Define, for each k,

Λk =
k∑
i=1

tiλi, v̄k =
k∑
i=1

tiλi
Λk

vi, x̄k =
k∑
i=1

tiλi
Λk

xi, ε̄k =
k∑
i=1

tiλi
Λk

[εi + 〈xi − x̄k, vi〉]. (15)

Proposition 3.3. For any k

v̄k ∈ T [ε̄k](x̄k), v̄k =
1

Λk
(z0 − zk), ε̄k ≤

‖x̄k − z0‖2

2Λk
. (16)

Proof. The first relation in (16) follows from definitions (15), the inclusions in (10) and Theorem 1.2.
The second relation in (16) follows from the definitions of Λk and v̄k in (15) and the update rule for
zk in (10).

To estimate ε̄k, define

Γk : X → R, Γk(z) =
k∑
i=1

tiλi[〈z − xi, vi〉 − εi], βk = min Γk(z) +
1

2
‖z − z0‖2 k = 1, 2, . . .

with Γ0 ≡ 0 and β0 = 0. Direct use of (10) shows that

∇Γk = z0 − zk, zk = arg min Γk(z) +
1

2
‖z − z0‖2, βk ≥ βk−1 + tk(1− σ2

k)‖xk − zk−1‖2.

In particular, βk ≥ 0 for all k. Since Γk is affine and Γk(x̄k) = −Λkε̄k,

βk =
1

2
‖zk − z0‖2 + 〈zk − x̄k,∇Γk〉 − Λkε̄k

=
1

2
‖zk − z0‖2 + 〈zk − x̄k, z0 − zk〉 − Λkε̄k =

1

2
‖x̄k − z0‖2 −

1

2
‖zk − x̄k‖2 − Λkε̄k .

Therefore,

Λkε̄k ≤
1

2
‖x̄k − z0‖2 − βk ≤

1

2
‖x̄k − z0‖2

which concludes the proof.

Next we derive the abstract complexity estimation of a “large step” relaxed HPE method, similar
to the one defined and analyzed in [15]. Hee “large step” means that λk‖xk − zk−1‖ is bounded away
from 0.
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Proposition 3.4. If T−1(0) is non-empty, d is the distance of z0 to this set, and

tk ≥ t > 0, σk ≤ σ < 1, λk‖xk − zk−1‖ ≥ c > 0 k = 1, 2, . . .

then, for all k
k∑
i=1

‖xi − zi−1‖2 ≤
d2

t(1− σ2)
(17)

and

1. there exists i0 ≤ k such that

‖vi0‖ ≤
1

ct

d2

(1− σ)k
, εi0 ≤

1

ct
√
t

σ2d3

2
√

1− σ23

1

k3/2
,

2. v̄k ∈ T [ε̄k],

‖v̄k‖ ≤
1

ct
√
t

2d2

√
1− σ2

1

k3/2
, ε̄k ≤

1

ct
√
t

2d3

(1− σ)2
√

1− σ2

1

k3/2
.

Proof. Let k ≥ 1. Inequality (17) follows the assumptions of the proposition and the last part of
Proposition 3.1

To prove item 1, observe that direct use of (17) shows that there exists i0 ≤ k such that

‖xi0 − zi0−1‖2 ≤
d2

t(1− σ2)k
.

Using the first part of Proposition 3.2 with k = i0 and the assumptions of the proposition we conclude
that

‖vi0‖ ≤ (1 + σ)
‖xi0 − zi0−1‖

λi0
= (1 + σ)

‖xi0 − zi0−1‖2

λi0‖xi0 − zi0 − 1‖
≤ (1 + σ)

‖xi0 − zi0−1‖2

c

and

εi0 ≤ σ2 ‖xi0 − zi0−1‖2

2λi0
= σ2 ‖xi0 − zi0−1‖3

2λi0‖xi0 − zi0−1‖
≤ σ2 ‖xi0 − zi0−1‖3

2c
.

The bounds on ‖vi0‖ and εi0 follows trivially form the above inequalities.
To prove item 2, first use the definition of Λk and the assumptions of the proposition to conclude

that

Λk =

k∑
i=1

tiλi =

k∑
i=1

ti
λi‖xi − zi−1‖
‖xi − zi−1‖

≥ ct
k∑
i=1

1

‖xi − zi−1‖
.

From the above inequality, (17) and Lemma A.1 it follows that

Λk ≥ ct
√
t(1− σ2)k3

d2
.

To end the proof, use Proposition 3.3 and the second part of Proposition 3.2 to conclude that
v̄k ∈ T [ε̄k](x̄k),

‖v̄k‖ ≤
2d

Λk
, ε̄k ≤

‖x̄k − x0‖2

2Λk
.

9



From the assumptions of the proposition and the last inequality in Proposition 3.2 it follows that
‖xi − z0‖ ≤ 2d/(1− σ). Since x̄k is an ergodic mean and the norm square is convex,

‖x̄k − z0‖ ≤
2d

1− σ
.

The bounds on ‖v̄k‖ and ε̄k follows from directly from the above inequalities.

Proposition 3.5. If T−1(0) is non-empty, d is the distance of z0 to this set, and

tkλk‖xk − zk−1‖ ≥ a > 0, σk ≤ σ < 1, λk‖xk − zk−1‖ ≥ c > 0 k = 1, 2, . . .

then, for all k
k∑
i=1

‖xi − zi−1‖
λi

≤ d2

a(1− σ2)
(18)

and there exists i0 ≤ k such that

‖vi0‖ ≤
1

a(1− σ)

d2

k
, εi0 ≤

σ2

2a(1− σ2)(1− σ)

d3

k
.

Proof. Let k ≥ 1. It follows from the assumptions of the Proposition that

ti‖xi − zi−1‖2 = (tiλi‖xi − zi−1‖)
‖xi − zi−1‖

λi
≥ a‖xi − zi−1‖

λi
i = 1, 2, . . . ,

which, combined with the last part of Proposition 3.1 and the assumptions on σi’s yields (18).
To prove the last part of the proposition, observe that direct use of (18) shows that there exists

i0 ≤ k such that
‖xi0 − zi0−1‖

λi0
≤ d2

a(1− σ2)k
.

Using Proposition 3.2 with k = i0 and the assumptions on σi’s of the proposition we conclude that

‖vi0‖ ≤ (1 + σ)
‖xi0 − zi0−1‖

λi0
, εi0 ≤ σ2 ‖xi0 − zi0−1‖2

2λi0
, ‖xi0 − zi0−1‖ ≤

d

1− σ
.

The bounds on ‖vi0‖ and εi0 follows trivially form the above inequalities.

4 The smooth monotone complementarity problem and the associ-
ated proximal primal-dual system

In this section, first we formally define the smooth monotone complementarity problem; second we
define a proximal primal-dual system associated with this problem; third we analyze Newton method
for this system; and fourth we define a region where Newton method is quadratically convergent.
From now on, R+ and R++ stands for the set of non-negative and strictly positive real numbers,
respectively.

In this work we consider the smooth, monotone, (mixed) complementarity problem, which is to
find (x, y) such that

(x, y) ∈ RN × RM+ , 〈(x′, y′)− (x, y), F (x, y)〉 ≥ 0 ∀(x′, y′) ∈ RN × RM+ . (19)
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where
F : RN × RM → RN × RM , F (x, y) = (F1(x, y), F2(x, y)) (20)

satisfies the following assumptions

a.1) F is monotone in RN × RM+ ;
a.2) F is differentiable and, in RN × RM+ , DF is L-Lipschitz continuous.

Observe that if N = 0, we retrieve the usual complementarity problem. The case N > 0 in-
cludes, in particular, a classical reformulation of the problem of minimizing a smooth convex function
under linear equality and inequality constraints.

In view of assumptions a.1) and a.2), the point-to-set operator F+NRN×RM
+

: RN×RM ⇒ RN×RM

is maximal monotone. Problem (19) is equivalent to

0 ∈ T (x, y), T = F + NRN×RM
+

(21)

which is equivalent to the problem of finding (x, y) ∈ RN × RM , s ∈ RM such that

y, s ≥ 0, F1(x, y) = 0, F2(x, y)− s = 0, 〈y, s〉 = 0,

where z is an auxiliary variable. We will consider a proximal primal-dual system, which combines a
proximal regularization of (21) with a primal dual system for the above system:

(x, y, s) ∈ RN × RM++ × RM++, µ

(
F (x, y)−

[
0
s

])
+ ν

([
x
y

]
−
[
zx

zy

])
= 0,

µY s− e = 0,

(22)

where µ, ν > 0 and (zx, zy) ∈ RN × RM are parameters and e = {1}M . Existence and uniqueness
of solutions of the above system, as well as the behavior of the solution as µ, ν →∞ were studied
in [19]. The next result will be used in the analysis of exact and approximate solutions of this system.

Lemma 4.1. If (x, y, s) ∈ RN × RM+ × RM+ and ε ≥ 〈y, s〉 then

−s ∈ N
[ε]

RM
+

(y), −(0, s) ∈ N
[ε]

RN×RM
+

(x, y)

and F (x, y)− (0, s) ∈ (F + N
[ε]

RN×RM
+

)(x, y) ⊂ T [ε](x, y).

Proof. To prove the first inclusion, use definition (1) and observe that for any y′ ∈ RM+ and s′ ∈
NRM

+
(y′),

〈y′ − y, s′ − s〉 = 〈y′ − y, s′〉+ 〈y′, s〉 − 〈y, s〉 ≥ 〈y′, s〉 − 〈y, s〉 ≥ −〈y, s〉

where the first inequality follows from the inclusions s′ ∈ NRM
+

(y′), y ∈ RM+ , and the second inequality

from the inclusions y′, s ∈ RM+ . The second inclusion is proved using the same reasoning, while the
last inclusion follows from the second one and Proposition 1.1, item 3.

11



Theorem 4.2. For any µ, ν > 0 and z = (zx, zy) ∈ RN × RM system (22) has a unique solution

(x, y, s) = (x(z, µ, ν), y(z, µ, ν), s(z, µ, ν)).

Moreover, if the solution set of (21) is non-empty, (zk)k∈N is bounded,

µk →∞, νk →∞, µk/νk →∞ as k →∞

and
xk = x(zk, µk, νk), yk = y(zk, µk, νk), sk = s(zk, µk, νk)

then (xk, yk) is bounded and all accumulation point of the sequence ((xk, zk))k∈N are solutions of (21).

Proof. Define

gz,ν(x, y) =

{
−
∑

log yi +
ν

2
‖(x, y)− z‖2, y > 0

∞ otherwise.

This function is proper, closed, strongly convex and differentiable in its effective domain RN × RM++.
Therefore, µF + ∂gz,ν is maximal monotone and as a unique zero. Since

(x, y, s) solves (22) ⇐⇒ 0 ∈ µF (x, y) + ∂gz,ν(x, y), s = µ−1y−1,

system (22) has a unique solution.
To prove the second part of the theorem, let (xk, yk, sk) be as in (22) for z = zk, µ = µk and

ν = νk; let dk be the distance of zk to the solution set. Define

λk = µk/νk, ṽk = F (xk, yk)− (0, sk), ε̃k = n/µk,

and let T : RN ×RM ⇒ RN ×RM be as in (21). Then ṽk ∈ T [ε̃k](xk, yk) and λkṽk + (xk, yk)− zk = 0.
Therefore, defining

pk = (λkT + I)−1(zk), vk = λ−1
k (z − pk)

and using Proposition 2.3 we conclude that

‖(xk, yk)− pk‖ ≤
√

2n/νk, ‖ṽk − vk‖ ≤
νk
µk

√
2n/νk

To end the proof, use the assumptions on (µk) and (νk), the above inequality and Proposition 2.2.

To apply Newton’s method to (22), define for µ, ν > 0, (zx, zy) ∈ RN × RM ,

H (zx,zy),µ,ν : RN × RM × RM → RN × RM × RM ,

H (zx,zy),µ,ν (x, y, s) =

 µF1(x, y) +ν(x− zx)
µ(F2(x, y)− s) +ν(y − zy)
µY s− e

 . (23)

Observe that (22) is equivalent to y, s > 0 and Hz,µ,ν(x, y, s) = 0 with z = (zx, zy). Next we analyze
a generic (under) relaxed Newton step for solving, in the variables (x, y, s), this non-linear system.
Direct use of the above definition yields

DHz,µ,ν(x, y, s) =

µDF (x, y) + νI
0
−µI

0 µS µY


12



Newton step for (22) at (x, y, s) is d = (dx, dy, ds) solution of DHz,µ,ν(x, y, s)d = −Hz,µ,ν(x, y, s),
that is, µDF (x, y) + νI

0
−µI

0 µS µY

dxdy
ds

 = −

 µF1(x, y) +ν(x− zx)
µ(F2(x, y)− s) +ν(y − zy)
µY s− e

 (24)

First we prove that Newton step is well defined at strictly feasible points and analyze the outcome of
a Newton iteration.

Lemma 4.3. Take µ, ν > 0, z ∈ RN × RM , (x, y, s) ∈ RN × RM++ × RM++.

1. There exists a unique d = (dx, dy, ds) as in (24).

2. If (x+, y+, s+) and (rx+, r
y
+, r

s
+) are the Newton iterate at point (x, y, s) and the corresponding

residuals, respectively,

(x+, y+, s+) = (x, y, s) + (dx, dy, ds), (rx+, r
y
+, r

s
+) = Hz,µ,ν(x+, y+, s+),

then

‖(rx+, r
y
+)‖ ≤ µL

2
‖(dx, dy)‖2, ‖rs+‖ = µ‖Dyds‖.

3. If, additionally, ‖µY s− e‖ ≤ θ < 1, and

‖µ(F (x, y)− (0, s)) + ν((x, y)− z)‖2

2ν
+
‖µY s− e‖2

2(1− θ)
< 1

then y+, s+ ∈ RM++,

ν‖(dx, dy)‖2

2
+ µ‖Dyds‖ ≤ ‖µ(F (x, y)− (0, s)) + ν((x, y)− z)‖2

2ν
+
‖µY s− e‖2

2(1− θ)
.

and

‖(rx+, r
y
+)‖

√
2ν

+
‖rs+‖√
2(1− θ)

≤ γ
(
‖µ(F (x, y)− (0, s)) + ν((x, y)− z)‖2

2ν
+
‖µY s− e‖2

2(1− θ)

)
,

where γ = max
{
µL/
√

2ν3, 1/
√

2(1− θ)
}

.

Proof. Since F is monotone in RN × RM+ , DF (x, y) is positive semidefinite. Let (rx, ry, rs) =
Hz,µ,ν(x, y, s), that is,

rx = µF1(x, y)− ν(x− zx), ry = µ(F2(x, y)− s) + ν(y − zy), rs = µY s− e.

Using Lemma B.1 with
A = µDF (x, y), (bx, by, bs) = −(rx, ry, rs)

we conclude that there exists a unique d = (dx, dy, ds) solution of (24), which proves item 1. Item 2
follows from the definition of d, as Newton step for (22) at (x, y, s), and assumption a.2).
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To prove item 3, suppose that its assumptions hold. Then

‖(rx, ry)‖2

4ν
+

‖rs‖2

2(1− ‖µY s− e‖)
≤ ‖(r

x, ry)‖2

2ν
+
‖rs‖2

2(1− θ)
< 1.

Using Lemma B.1 (item 3 and 2) with A and (bx, by, bs) as above we conclude that y+, s+ ∈ RM and
the penultimate inequality in item 3 holds. Using item 2 and the definition of c we have

‖(rx+, r
y
+)‖

√
2ν

+
‖rs+‖√
2(1− θ)

≤ µL

2
√

2ν
‖(dx, dy)‖2 +

µ‖Dyds‖√
2(1− θ)

=

(
µL√
2ν3

)
ν‖(dx, dy)‖2

2
+

(
1√

2(1− θ)

)
µ‖Dyds‖

The last inequality on item 3 follows from the penultimate one, the above inequality and the definition
of γ.

In view of Lemma 4.3(item 3), it is convenient to consider the error measure Φθ of the proximal
primal-dual system (22) and the associated neighborhoos Nθ of the solution of (22),

Φθ(x, y, s; z, µ, ν) :=
‖µ(F (x, y)− (0, s)) + ν((x, y)− z)‖√

2ν
+
‖µY s− e‖√

2(1− θ)
, (25)

Nθ(t; z, µ, ν) :=
{

(x, y, s) ∈ RN × RM++ × RM++ | Φθ(x, y, s; z, µ, ν) ≤ t
}
. (26)

Now we are ready to characterize a region where where Newton method for (22) converges.

Theorem 4.4. Take z ∈ RN × RM , µ, ν > 0, θ, β ∈ (0, 1) and define

γ = max

{
µL√
2ν3

,
1√

2(1− θ)

}
, κ = min

{
β

γ
,

θ√
2(1− θ)

}
.

If
(x, y, s) ∈ Nθ(κ; z, µ, ν)

then d = (dx, dy, ds) Newton step for (22) at (x, y, s) is well defined, γΦθ(x, y, s)
2 ≤ κβ and

(x+ dx, y + dy, s+ ds) ∈ Nθ(γΦθ(x, y, s)
2; z, µ, ν) ⊂ Nθ(κβ; z, µ, ν).

Proof. Since γ ≥ 1/
√

2(1− θ),

κ ≤ min

{
β
√

2(1− θ), θ√
2(1− θ)

}
< 1

Let (rx, ry, rs) = Hz,µ,ν(x, y, s). Then, in view of (25) and (26), y, s > 0,

Φθ(x, y, s; z, µ, ν) =
‖(rx, ry)‖√

2ν
+

‖rs‖√
2(1− θ)

≤ κ, ‖(rx, ry)‖2

2ν
+
‖rs‖2

2(1− θ)
≤ κ2 < 1

and ‖µY s− e‖ ≤
√

2(1− θ)κ ≤ θ < 1. Using these inequalities and Lemma 4.3(items 1 and 3) we
conclude that (dx, dy, ds) is well defined, y + dy > 0, s+ ds > 0 and

Φθ(x+ dx, y + dy, s+ ds; z, µ, ν) ≤ γΦθ(x, y, s; z, µ, ν)2 ≤ γκΦθ(x, y, s; z, µ, ν).

To end the proof, note that γκ ≤ β.
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Observe that we just proved that Newton’s method for (22) is quadratically convergent (to the
unique solution of this system) in the region Nθ(κ; z, µ, ν), with κ as in Theorem 4.4. Moreover, a
single Newton iteration at a point in this region generates a point in the region Nθ(κβ; z, µ, ν). These
regions will play the role of “outer” and “inner” neighborhoods of the solution of (22), for updating
the parameters z, µ, ν.

5 Updating the parameters z, µ and ν

In this section we discuss to possible updates for the parameters z, µ, ν at a point in Nθ(κβ; z, µ, ν)
so that this point remains in the updated region Nθ(κ; z+, µ+, ν+) and the ratio µν−3/2 remains
constant. We show that either the scalars µ, ν can be increased, or decreased while performing a
relaxed hybrid proximal-extragradient step in z.

We will further restrict the parameters θ, β used in Theorem 4.4. From now on in this section

z ∈ RN × RM , µ, ν > 0, θ, β ∈ (0, 1/2];

γ = max

{
µL√
2ν3

,
1√

2(1− θ)

}
; κ = min

{
β

γ
,

θ√
2(1− θ)

}
,

h =
κ(1− β)

6(
√
n+ 1/2)

.

(27)

Since β, θ ≤ 1/2,

κ <
1

2
, h <

1

12
,

h

1 + h
≥ κ(1− β)

7(
√
n+ 1/2)

. (28)

First we determine under which conditions the parameters µ, ν can be increased

Lemma 5.1. Suppose that z, µ, ν, θ, β and κ are as in (27),

(x, y, s) ∈ Nθ(κβ ; z, µ, ν) ν‖(x, y)− z‖2 ≤ 8(
√
n+ 1/2)2

and define
µ+ = (1 + h)3µ, ν+ = (1 + h)2ν .

Then

‖F (x, y)− (0, s)‖ ≤ 2
√

2ν

µ
(
√
n+ 1), 〈y, s〉 ≤

√
n(
√
n+ 1/2)

µ
.

and (x, y, s) ∈ Nθ(κ; z, µ+, ν+).

Proof. To simplify the proof, let

r1 = µ(F (x, y)− (0, s)) + ν((x, y)− z), r2 = µY s− e.

Observe that Φθ(x, y, s; z, µ, ν) = ‖r1‖/
√

2ν + ‖r2‖/
√

2(1− θ) ≤ κβ,

F (x, y)− s = µ−1(r1 − ν((x, y)− z)), 〈y, s〉 = µ−1(〈r2, e〉+ n).
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Therefore, ‖r1‖ ≤ κβ
√

2ν, ‖r2‖ ≤ κβ
√

2(1− θ),

‖F (x, y)− (0, s)‖ ≤ ‖r1‖+ ‖ν((x, y)− z)‖
µ

≤ κβ
√

2ν +
√
ν
√

8(
√
n+ 1/2)

µ
=

√
2ν

µ
(κβ + 1 + 2

√
n),

〈y, s〉 ≤ ‖r2‖
√
n+ n

µ
≤
κβ
√

2(1− θ)
√
n+ n

µ
.

The two inequalities of the lemma follows from the above inequalities and (27).
Let

r1+ = µ+(F (x, y)− (0, s)) + ν+((x, y)− z), r2+ = µ+Y s− e, τ = (1 + h).

Since µ+ = τ3µ and ν+ = τ2ν,

r1+ = τ3r1 + (τ2 − τ3)(ν((x, y)− z), r2+ = τ3r2 + (τ3 − 1)e

Therefore

‖r1+‖√
2ν+

≤ τ2‖r1‖+ |τ − τ2|ν‖(x, y)− z‖√
2ν

≤ τ3‖r1‖√
2ν

+ (τ2 − τ)2(
√
n+ 1/2),

‖r2+‖√
2(1− θ)

≤ τ3‖r2‖+ (τ3 − 1)
√
n√

2(1− θ)
.

Adding these inequalities and using definition (25) we conclude that

Φθ(x, y, s; z, µ+, ν+) =
‖r1+‖√

2ν+
+

‖r2+‖√
2(1− θ)

≤ τ3

(
‖r1‖√

2ν
+

‖r2‖√
2(1− θ)

)
+ 2(τ2 − τ)(

√
n+ 1/2) + (τ3 − 1)

√
n

≤ τ3κβ + 2(τ2 − τ)(
√
n+ 1/2) + (τ3 − 1)

√
n

Whence

Φθ(x, y, s; z, µ+, ν+) ≤ κβ + 2(τ2 − τ)(
√
n+ 1/2) + (τ3 − 1)(

√
n+ κβ)

≤ κβ + (2(τ2 − τ) + τ3 − 1)(
√
n+ 1/2)

= κβ + (h2 + 5h+ 5)h(
√
n+ 1/2)

= κβ + (h2 + 5h+ 5)
κ(1− β)

6
.

To end the proof of the last inclusion, observe that h < 1/12, use definition (26), and observe that
y, s > 0.

Lemma 5.2. Suppose that z, µ, ν, θ, β and κ are as in (27), with θ, β ∈ (0, 1/2],

(x, y, s) ∈ Nθ(κβ ; z, µ, ν), ν‖(x, y)− z‖2 ≥ 8(
√
n+ 1/2)2
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and define

λ = µ/ν, v = F (x, y)− (0, s), ε = 〈y, s〉,

z+ = z − h

1 + h
λv, µ+ =

µ

(1 + h)3
, ν+ =

ν

(1 + h)2
.

then

v ∈ (F + N
[ε]

RN×RM
++

)(x, y) ⊂ (F + NRN×RM
++

)[ε](x, y),

‖λv + (x, y)− z‖2 + 2λε ≤ (1/4)‖(x, y)− z‖2.

and (x, y, s) ∈ Nθ(κ; z+, µ+, ν+).

Proof. Observe that y, s > 0. The first two inclusions follows from Lemma 4.1. Define, again,

r1 = µ(F (x, y)− (0, s)) + ν((x, y)− z), r2 = µY s− e.

Observe that Φθ(x, y, s; z, µ, ν) = ‖r1‖/
√

2ν + ‖r2‖/
√

2(1− θ) ≤ κβ,

λv + (x, y)− z = ν−1r1, 〈y, s〉 = µ−1(〈r2, e〉+ n).

Therefore,

‖λv + (x, y)− z‖2 + 2λε =
‖r1‖2

ν2
+

2

ν
(〈r2, e〉+ n) ≤ 2

ν

[
‖r1‖2

2ν
+ ‖r2‖

√
n+ n

]
≤ 2

ν
[(κβ)2 + κβ

√
2(1− θ)

√
n+ n] ≤ 2

ν
(
√
n+ 1/2)2

where the last inequality follows from (27). The first inequality of the lemma follows trivially from its
assumptions and the above inequality.

Let

r1+ = µ+(F (x, y)− (0, s)) + ν+((x, y)− z+), r2+ = µ+Y s− e, τ = (1 + h).

Direct use of the definitions of z+, µ+, ν+ yields

r1+ = τ−2r1, r2+ = τ−3r2 + (τ−3 − 1)e.

Therefore

‖r1+‖√
2ν+

=
‖r1‖
τ
√

2ν
≤ ‖r1‖√

2ν
,

‖r2+‖√
2(1− θ)

≤
τ−3‖r2‖+

∣∣τ−3 − 1
∣∣√n√

2(1− θ)
≤ ‖r2‖+ (1− τ−3)

√
n√

2(1− θ)

Since t 7→ 1/t3 is convex for t ≥ 0, 1− τ−3 ≤ 3h. Using this inequality, the two above inequalities,
definition (25), and (27) we conclude that

Φθ(x, y, s; z+, µ+, ν+) =
‖r1+‖√

2ν+
+

‖r2+‖√
2(1− θ)

≤

(
‖r1‖√

2ν
+

‖r2‖√
2(1− θ)

)
+

3h
√
n√

2(1− θ)
≤ κβ +

3κ(1− β)

7
√

2(1− θ)
≤ κ.

To end the proof, recall that y, s > 0.
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6 An Hybrid Proximal Extragradient Primal-Dual interior point
method

We will present an algorithm which combines: first, Newton steps in variables x, y and s aimed at
solving (22); second, short step interior-point iterations for increasing µ and ν in (22); and third
relaxed hybrid extragradient proximal steps in variable z = (zx, zy) for the inclusion problem (21).

Algorithm 1

Initialization Choose θ, β ∈ (0, 1/2], and compute x0 ∈ RN , y0, s0 ∈ RM++, z0 ∈ RN×RM , µ0, ν0 > 0,
such that

Φθ(x0, y0, s0; z0, µ0, ν0) ≤ κ

where

γ = max

{
µ0L√

2ν3
0

,
1√

2(1− θ)

}
, κ = min

{
β

γ
,

θ√
2(1− θ)

}
, h =

κ(1− β)

6(
√
n+ 1/2)

,

iterations For k = 1, 2, . . .

0) Set
x = xk−1, y = yk−1, s = sk−1, z = zk−1, µ = µk−1, ν = νk−1

1) Compute (dxk, d
y
k, d

s
k) solution ofµDF (x, y) + νI

0
−µI

0 µS µY

dxkdyk
dsk

 = −Hz,µ,ν(x, y, s) (29)

and set xk = x+ dxk, yk = y + dyk, sk = s+ dsk.

2.a) if ν‖(xk, yk)− z‖2 ≤ 8(
√
n+ 1/2)2 then

µk = (1 + h)3µ, νk = (1 + h)2ν, zk = z,

2.b) else (ν‖(xk, yk)− z‖2 > 8(
√
n+ 1/2)2)

µk =
µ

(1 + h)3
, νk =

ν

(1 + h)2
, zk = z − h

(1 + h)

µ

ν
(F (xk, yk)− (0, sk)).

Some remarks about the above algorithm are in order.

i) The unique purpose of step 0) is to simplify the notation in the ensuing steps.

ii) Well definiteness of iteration k depends on the existence and unicity of a solution of the linear
system in step 1).

iv) At it iteration k, the input is xk−1, yk−1, sk−1, zk−1, µk−1, νk−1; the output is xk, yk, sk, zk, µk,
νk and either step 2.a) or step 2.b) is executed.
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v) The computational burden of the algorithm is at step 1), where a Jacobian shall be computed
and a linear system shall be solved.

vi) In view of the update rule for µk and νk in step 2)(
νk
ν0

)3

=

(
µk
µ0

)2

k = 0, 1, . . . (30)

vi) the computational cost of step 2) is negligible;

vii) Since the initialization of this algorithm impacts in its computational complexity, we leave the
discussion of this phase (initialization) to the end of this section and Section 7.

Form now on (xk), (yk), (sk), (zk), (µk) and (νk) are the sequences generated by Algorithm I. In
principle these sequences may be well defined only up to some k. An abnormal termination would
happen if, for some k: the linear system in (29) were singular; or, if tk as specified in step 2.a) did
not exist.

Proposition 6.1. Algorithm 3 is well defined and for any k

(xk, yk, sk) ∈ Nθ(κ; zk, µk, νk), (xk+1, yk+1, sk+1) ∈ Nθ(κβ; zk, µk, νk). (31)

In particular, yk, sk > 0 for all k.

Proof. We will use induction on k. Suppose that
i) all iterations k < m are well defined and
ii) the first inclusion in (31) holds for k = m− 1.
It follows from Theorem 4.4 and the definition of step 1) that, in iteration m, this step is well defined
and that

(xm, ym, sm) ∈ Nθ(κβ; zm−1, µm−1, νm−1)

Hence iteration m is well defined and the second inclusion in (31) holds for k = m− 1.
Next we analyze step 2) at iteration m. First suppose that

νm−1‖(xm, ym)− zm−1‖2 ≤ 8(
√
n+ 1/2).

In this case, step 2.a) is to be performed and it follows from the above inclusion and Lemma 5.1 that
the first inclusion in (31) holds for k = m.

If the above inequality does not hold, step 2.b) is performed. In this case, it follows from the
above inclusion and from Lemma 5.2 that the first inclusion in (31) holds for k = m. This concludes
the induction proof and proves the first part of the proposition. The last part of the proposition
follows from the firs one and definition (26).

We need to count the number of steps 2.a) and 2.b) executed up to iteration k. Define

Ak = {i ≤ k | at iteration i, step 2.a) is executed},
Bk = {i ≤ k | at iteration i, step 2.b) is executed}. (32)

The notations #Ak and #Bk stand for the number of elements of Ak and Bk, respectively.
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Lemma 6.2. If, in iteration k, step 2.a) is executed and #Ak −#Bk = m+ 1, then

‖F (xk, yk)− (0, sk)‖ ≤
2
√

2ν0

µ0(1 + h)2m
(
√
n+ 1), 〈yk, sk〉 ≤

1

µ0(1 + h)3m

√
n
(√
n+ 1/2

)
.

Proof. First use the defintion of step 2.a) and Lemma 5.1 to conclude that

‖F (xk, yk)− (0, sk)‖ ≤
2
√

2νk−1

µk−1
(
√
n+ 1), 〈yk, sk〉 ≤

√
n(
√
n+ 1/2)

µk−1
.

In view of the definition of step 2),

νj = ν0(1 + h)2(#Aj−#Bj), µj = µ0(1 + h)3(#Aj−#Bj).

Since we are assuming that at iteration k, step 2.a) is executed,

#Ak−1 −#Bk−1 = m.

wich, combined with the previous equalities evaluated at j = k − 1 and the above inequalities proves
the lemma.

In the next proposition we will show that iterations in which step 2.b) is executed can be regarded
as “large stpe” RHPE method iterations in the sequence (zk) with relaxation parameter h/(1 + h).
Define

Proposition 6.3. Suppose that at iteration k step 2.b) is executed and define

vk = F (xk, yk)− (0, sk), εk = 〈yk, sk〉, λk = µk−1/νk−1. (33)

Then

vk ∈ (F + NRN×Rm
+

[εk])(xk, yk) ⊆ (F + NRN×RM
+

)[εk](xk, yk),

‖λkvk + (xk, yk)− zk−1‖2 + 2λkεk ≤ (1/2)2‖(xk, yk)− zk−1‖2,
zk = zk−1 − (h/(1 + h))λkvk,

λk‖(xk, yk)− zk−1‖ ≥
µ0√
ν3

0

2
√

2(
√
n+ 1/2).

Proof. The inclusions and the first inequality follow from Lemma 5.2. The expression for zk follows
trivially from the definition of step 2.a) and the one of λk.

Since we assumed that at iteration k step 2.b) is executed,

‖(xk, yk)− zk‖2 ≥
8

νk−1
(
√
n+ 1/2)2.

To prove the last inequality, multiply the above inequality by λ2
k and use (30).

To use Proposition 6.3, define

c =
µ0√
ν3

0

2
√

2(
√
n+ 1/2), t =

h

1 + h
, λk =

µk−1

νk−1
k = 0, 1, . . . (34)
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and, for those k such that Bk 6= ∅, let

Λk =
∑
i∈Bk

tλi, x̄k =
∑
i∈Bk

tλi
Λk

xi, ȳk =
∑
i∈Bk

tλi
Λk

yi, v̄k =
∑
i∈Bk

tλi
Λk

(F (xi, yi)− (0, si)), (35)

ε̄k =
∑
i∈Bk

tλi
Λk

[〈yi, si〉+ 〈(xi, yi)− (x̄k, ȳk), F (xi, yi)− (0, si)− v̄k〉]. (36)

Lemma 6.4. Suppose that the solution set of (19) is nonempty, and let d be the distance of z0 to
this set. If #Bk = m ≥ 1 then

1. there is an i ≤ k such that

‖F (xi, yi)− (0, si)‖ ≤
7√
2

√
ν3

0

µ0κ(1− β)

d2

m
, 〈yi, si〉 ≤

7
√

7

6
√

6

√
ν3

0

√√
n+ 1/2

µ0

√
κ3(1− β)3

d3

m3/2
;

2. v̄k ∈ (F + NRN×RM
+

)[ε̄k](x̄k, ȳk),

‖v̄k‖ ≤
7
√

2 ∗ 7√
3

√
ν3

0

√√
n+ 1/2

µ0

√
κ3(1− β)3

d2

m3/2
, ε̄k ≤

4 ∗ 7
√

2 ∗ 7√
3

√
ν3

0

√√
n+ 1/2

µ0

√
κ3(1− β)3

d3

m3/2
.

Proof. Let c, t be as in (34) and define. Direct use of the last inequality in (28) yields

ct ≥ 2
√

2

7

µ0κ(1− β)

ν
3/2
0

, ct
√
t ≥ 2

√
2

7

µ0[κ(1− β)]3/2

ν
3/2
0

√√
n+ 1/2

(37)

Let k1 < k2 < · · · < km be the m elements of Bk and define

z0 = z0,

zi = zki , xi = (xki , yki) vi = F (xki , yki)− (0, ski), εi = 〈yki , ski〉, λi = λki , i = 1, . . . ,m

Define also

Λm =
m∑
i=1

λi, x̄m =
m∑
i=1

tλi
Λm

xi, v̄m =
m∑
i=1

tλi
Λm

vi, ε̄m =
m∑
i=1

tλi
Λm

[εi + 〈xi − x̄m,vi − v̄i〉].

If step 2.a) executed at iteration j, then zj = zj−1. Therefore zi−1 = zki−1 for i = 1, . . . ,m. Using
this result, Proposition 6.3 for k = ki, (34), and the above defintions we conclude that

vi ∈ (F + NRN×RM
+

)[εi](zi), ‖λivi + xi − zi−1‖2 + 2λiεi ≤ (1/2)2‖xi − zi−1‖2,

zi = zi−1 − tλivi, λi‖xi − zi−1‖ ≥ c > 0,

for i = 1, 2, . . . ,m. Therefore, the sequences (σi = 1/2), (λi), (ti = t), (zi), (xi), (vi), (εi) can be
regarded as sequences generater by the RHPE, as discussed in Section 3, for operator F + NRN×RM

+
.

To end the proof, use the above relations, Proposition 3.4 with T = F + NRN×RM
+

,

tk = t, σk = 1/2, xk = xk, zk = zk, vk = vk, εk = εk

c and t as in (34); take in to account (37); and observe that

Λm = Λk, x̄m = (x̄k, ȳk), v̄m = v̄k, ε̄m = ε̄k.
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We will consider a particular case of Lemma 6.4, with a particular choice of the parameters µ0,
ν0, β, and θ. Since κ ≤ β/γ and γ ≥ µ0L/

√
2ν3

0√
ν3

0

µ0κ
≥ L

β
√

2
,

√
ν3

0

µ0

√
κ3
≥ L

β
,

where the second inequality follows from the first one and the first inequality in (28). Therefore, the
best one can expect is to have the two inequalities close to equalities. With this aim, we design an
initialization and a phase one method to reach such a goal.

7 A Phase I procedure for Algorithm 1

From now on we will use

θ = β =
1

2
, z0 = (x̃, 0), (38)

where x̃ ∈ RN is an user-supplied initial point. To initialize Algorithm I with these parameter we will
use the following procedure, which aim is to compute x ∈ RN , y, s ∈ RM , z ∈ RN × RM , µ, ν > 0
such that

µL√
2ν3

= 1, y > 0, s > 0, Φ1/2(x, y, s; z, µ, ν) ≤ 1

2
. (39)

Phase I method: input x̃ ∈ RN

1.) if 2‖F (x̃, e)‖ ≤ L then

µ =

√
2

L
, ν = 1, x = x̃, y = e, s = µ−1e, z = (x̃, 0),

2.) else

k ← 1

θ =
1

2
, β =

1

2
, κ =

1

2
, τ =

1

4
√
n
,

µ′0 =
1√

2 ‖F (x̃, e)‖
, ν ′0 = 1, x′0 = x̃, y′0 = e, s′0 = (µ′0)−1e, z′ = (x̃, 0),

while µ′k−1L/
√

2ν ′k−1
3 < 1

uk = max

{
1− τ,

(µ′k−1L)2

2ν ′k−1
3

}
, µ′k = ukµ

′
k−1, ν ′k = ukν

′
k−1

set x = x′k−1, y = y′k−1, s = s′k−1 and compute (dxk, d
y
k, d

s
k) solution ofµ′kDF (x, y) + ν ′kI

0
−µ′kI

0 µ′kS µ′kY

dxkdyk
dsk

 = −Hz′,µ′k,ν
′
k
(x, y, s) (40)

x′k = x+ dxk, y′k = y + dyk, s
′
k = s+ dsk

k ← k + 1
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end while

x = x′k−1, y = y′k−1, s = s′k−1, z = z′, µ = µ′k−1, ν = ν ′k−1

endif

The computational burden of the above procedure is in the while loop, in which one Jacobian
shall be computed and a linear system shall be solved.

Proposition 7.1. After at most ⌈
8
√
n log

(
2‖F (x̃, e)‖

L

)⌉
+

loops of the while, Phase I method outputs x ∈ RN , y, s ∈ RM++, µ, ν > 0 satisfying (39) for z = (x̃, 0)
and

µ =

√
2

L
min

{
1,

L

2‖F (x̃, e)‖

}3

, ν = min

{
1,

L

2‖F (x̃, e)‖

}2

.

Proof. It is trivial to verify that if 4‖F (x̃, e)‖ ≤ L then the while loop is not reached and µ, ν, x, y,
s, z as prescribed in the method satisfy (39). Suppose that

2‖F (x̃, e)‖ > L. (41)

We claim that all steps in the while loop are well defined and that after k loops

µ′kL√
2ν ′3k

≤ 1, y′k > 0, s′k > 0, Φ1/2(x′k, y
′
k, s
′
k; z
′, µ′k, ν

′
k) ≤ 1/4. (42)

In view of (41) and the definitions of µ′0, ν ′0, x′0, y′0, s′0 and z′, the above inequalities hold for k = 0,
and the first one holds as a strict inequality. Assume that the while loop is well define up to k − 1
iterations and that these relations holds for k − 1. If the first above inequality holds as an equality,
then there will be no more loop iterations and the output of Phase I method satisfies (39). If the first
inequality in (42) holds as an (strict) inequality, then 1− τ ≤ uk < 1,

µ′k−1L√
2ν ′3k−1

<
1
√
uk

µ′k−1L√
2ν ′3k−1

=
µ′kL√
2ν ′3k

≤ 1.

and

Φ1/2(x′k−1, y
′
k−1, s

′
k−1; z′, µ′k, ν

′
k) =

√
uk
‖µ′k−1(F (x′k−1, y

′
k−1)− (0, s′k−1)) + ν ′k((x

′
k−1, y

′
k−1)− z′)‖√

2ν ′k−1

+ ‖ukµ′k−1Y
′
k−1s

′
k−1 − e‖

≤
‖µ′k−1(F (x′k−1, y

′
k−1)− (0, s′k−1)) + ν ′k((x

′
k−1, y

′
k−1)− z′)‖√

2ν ′k−1

+ uk‖µ′k−1Y
′
k−1s

′
k−1 − e‖+ (1− uk)

√
n

≤ 1/4 + τ
√
n = 1/2.
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It follows from two above equations and Theorem 4.4 that the linear system (40) has a unique solution
and that (42) holds for i = k.

Once we know that the loop is well defined and that (42) holds in all while loop iteration, the
bound on the number of loops and the last statement of the proposition follows by standard arguments
and the definition of uk.

From now on in this section we make the following assumptions.

a.3) The solution set of problem (19) is non-empty and d is the distance of (x̃, 0) to this set.
a.4) Phase I method is executed, and its output x, y, s, z, µ, ν is used in the initialization of Algorithm
I with θ = β = 1/2

x0 = x, y0 = y, s0 = s, z0 = z = (x̃, 0), µ = µ0, ν0 = ν.

Let (xk), (yk), (sk), (zk), (µk) and (νk) be the sequences generated by Algorithm I with the initialization
as above described. In view of Proposition 7.1

µ0L√
2ν3

0

= 1, x0 > 0, y0 > 0, Φ1/2(x0, y0, s0; z0, µ0, ν0) ≤ 1

2
, (43)

µ0 =

√
2

L
min

{
1,

L

2‖F (x̃, e)‖

}3

, ν0 = min

{
1,

L

2‖F (x̃, e)‖

}2

. (44)

This initialization, together with the use of β = θ = 1, allows a considerable simplification of
Lemmas 6.4 and 6.2. Let #Ak, #Bk be as in (32), and let x̄k, v̄k and ε̄k be as in (35), (36).

Corollary 7.2. If, after k iterations of Algorithm 1, step 2.b) (of Alg. 1) is executed m ≥ 1 or more
times, then

1. there is an i ≤ k such that

‖F (xi, yi)− (0, si)‖ ≤ 14L
d2

m
, 〈yi, si〉 ≤

14
√

7

3
√

3
L

√√
n+ 1/2

d3

m3/2
;

2. v̄k ∈ (F + NRN×RM
++

)[ε̄k](x̄k, ȳk),

‖v̄k‖ ≤
237
√

7√
3

L

√√
n+ 1/2

d2

m3/2
, ε̄k ≤

257
√

7

3
√

3
L

√√
n+ 1/2

d3

m3/2
.

Proof. Use Lemma 6.4 and (43).

Corollary 7.3. If in iteration k of Algorithm I step 2.a) is executed and

#Ak −#Bk = m+ 1,

then

‖F (xk, yk)− (0, sk)‖ ≤
2L(
√
n+ 1)

(1 + h)2m
max

{
1,

2‖F (x̃, e)‖
L

}2

, 〈yk, sk〉 ≤
L
√
n(
√
n+ 1/2)√

2(1 + h)3m
max

{
1,

2‖F (x̃, e)‖
L

}3

.
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Proof. Use Lemma 6.2, (43) and (44).

First we analyze the point-wise complexity of the tandem combination of the Phase I method
with Algorithm I.

Theorem 7.4. Let j be the total number of iterations of the composition of Phase I method with
Algorithm 1, that is, j is the sum of the number of while loops iterations of Phase I with the number
of iterations of Algorithm 1.

For any δ, ε > 0 an approximate solution

xi ∈ RN , yi > 0, si > 0, ‖F (xi, yi)− (0, si)‖ ≤ δ, 〈yi, si〉 ≤ ε

is reached after at most a total of

j = 1 + m̃+ 2ñ+

⌈
8
√
n log

(
4‖F (e)‖

L

)⌉
+

iterations, where

ñ =

⌈
14 d2 max

{
L

δ
,
L2/3(

√
n+ 1/2)1/3

3 ∗ 21/3 ε2/3

}⌉
,

m̃ =

⌈
4 ∗ 7(

√
n+ 1/2)

[
max

{
1

2
log

(
2L(
√
n+ 1)

δ

)
,
1

3
log

(
L(
√
n+ 1/2)2

ε
√

2

)}
+

+

(
log

2‖F (e)‖
L

)
+

]⌉
and d is the distance of z0 = (x̃, 0) to the solution set of (19).

Proof. The number of while loops in Phase 1 is bounded by⌈
8
√
n log

(
4‖F (e)‖

L

)⌉
+

.

Let
k̃ = 1 + 2m̃+ ñ.

If #Bk̃ ≥ ñ, then the conclusion follows from Corollary 7.2, item 1. Suppose that

#Bk̃ < ñ.

In this case #Ak̃ = k̃ −#Bk̃ > ñ+ m̃. Therefore

#Ak̃ −#B k̃ ≥ m̃+ 1.

Let k ≤ k̃ be the smallest integer such that

#Ak −#Bk = m̃+ 1.

Then, k ∈ Ak̃ and the conclusion follows from Corollary 7.3.

Next we provide a complexity estimation which takes in to account the ergodic means defined in
(35), (36). Its proof, being quite similar to the one of Theorem 7.4, will be omitted.
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Theorem 7.5. Let j be the total number of iterations of the composition of Phase I method with
Algorithm 1, that is, j is the sum of the number of while loops iterations of Phase I with the number
of iterations of Algorithm 1.

Let δ, ε > 0 and define

ñ =

⌈
4 ∗ 7L2/3(

√
n+ 1/2)1/3 max

{
d4/3

31/3δ2/3
,
22/3d2

3ε2/3

}⌉
,

m̃ =

⌈
4 ∗ 7(

√
n+ 1/2)

[
max

{
1

2
log

(
2L(
√
n+ 1)

δ

)
,
1

3
log

(
L(
√
n+ 1/2)2

ε
√

2

)}
+

+

(
log

2‖F (e)‖
L

)
+

]⌉
.

Them after at most j̃ = 1 + m̃+ ñ (total) iterations, either

1. an ergodic mean x̄k, v̄k, ε̄k is found, satisfying

x̄k ∈ RN , ȳk ≥ 0, v̄k ∈ (F + NRN×RM
+

)[ε̄k](x̄k, ȳk), ‖v̄k‖ ≤ δ, ε̄k ≤ ε;

2. an iterate xk, yk, sk is found, satisfying

xi ∈ RN , yi, si > 0, ‖F (xi, yi)− (0, si)‖ ≤ δ, 〈yi, xi〉 ≤ ε.

Proof. The proof is similar to that of Theorem 7.4, using Corollary 7.2, item 2 (instead of item 1)
and Corollary 7.3.

A A Basic Inequality

In this section we prove a basic inequality used for estimating the ergodic-mean complexity of the
large-step relaxed HPE method in Section 3.

Lemma A.1. If α1, . . . , αk > 0 and
∑k

i=1 α
2
i ≤ a then

k∑
i=1

1

αi
≥
√
k3

a
.

Proof. Define f : Rk++ → R and α∗ ∈ Rk++

f(α) =
k∑
i=1

1

αi
+

1

2

(
k

a

)3/2
[

k∑
i=1

α2
i − a

]
, α∗1 = α∗2 = · · · = α∗k =

√
a/k.

Observe that f is strictly convex in Rk++, ∇f(α∗) = 0, and
∑k

i=1(α∗i )
2 = a; therefore, if

α1, . . . , αk > 0,

k∑
i=1

α2
i ≤ a

then

k∑
i=1

1

αi
≥ f(α1, . . . , αk) ≥ f(α∗) =

k∑
i=1

1

α∗i
=
√
k3/a.

which concludes the proof.
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B Newton step for the NLMCP

To prove Lemma 4.3 we will use the next elementary linear algebra result

Lemma B.1. If y, s ∈ RM++, µ, ν > 0, (bx, by, bs) ∈ RN × RM × RM and A ∈ R(N+M)×(N+M) is
positive semi-definite, then the linear system A+ νI

0
−µI

0 µS µY

dxdy
ds

 =

bxby
bs

 (45)

has a unique solution (dx, dy, ds).

1. If additionally ‖µY s− e‖ < 1 then

µ‖Dyds‖ ≤ ‖(b
x, by)‖2

4ν
+

‖bs‖2

2(1− ‖µY s− e‖)

ν‖(dx, dy)‖2

2
+ µ‖Dyds‖ ≤ ‖(b

x, by)‖2

2ν
+

‖bs‖2

2(1− ‖µY s− e‖)
.

2. If additionally ‖µY s− e‖ < 1, bs = −(µY s− e) and

‖(bx, by)‖2

4ν
+

‖bs‖2

2(1− ‖Y s− e‖)
< 1

then y + dy > 0 and s+ ds > 0.

Proof. Pre-multiplying the last M lines of the coefficient matrix on (45) by S−1 we obtain a positive
definite matrix, because y, s > 0 µ, ν > 0 and A is positive definite. Therefore, this coefficient matrix
is non-singular and (45) has a unique solution.

To prove item 1, (left) multiply both sides of (45) by (dx, dy, 0)T and use the assumption of A
being positive semi-definite to conclude that

ν‖(dx, dy)‖2 − µ〈dy, ds〉 ≤ 〈(dx, dy), (bx, by)〉.

Since the 2-norm is bounded by the 1-norm and 2ab ≤ a2 + b2 for any a, b ∈ R,

µ‖Dyds‖ ≤ µ
∑
|d2
i d

3
i | ≤

µ

2

∑ si
yi

(d2
i )

2 +
yi
si

(d3
i )

2

=
µ

2

∥∥∥S1/2Y −1/2d2 + S−1/2Y 1/2d3
∥∥∥2
− µ〈d2, d3〉

=
(µY S)−1

2

∥∥µSd2 + µY d3
∥∥2 − µ〈d2, d3〉

≤ ‖b2‖2

2(1− ‖µY S − e‖)
− µ〈ds, d3〉,

where the last inequality follows from the assumption ‖µY s− e‖ < 1. Adding the above inequalities
we conclude that

ν‖(dx, dy)‖2 + µ‖Dyds‖ ≤ 〈(dx, dy), (bx, by)〉+
‖bs‖2

2(1− ‖µY s− e‖)
.
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To end the proof of item 1, observe that

〈(dx, dy), (bx, by)〉 − ν‖(dx, dy)‖2 ≤ ‖(b
x, by)‖2

4ν
, 〈(dx, dy), (bx, by)〉 ≤ ν‖(dx, dy)‖2

2
+
‖(bx, by)‖2

2ν

and combine the above inequalities
To prove item 2, first observe that under its assumptions it follows from item 2 that µ‖Dyds‖ < 1.

Define (yα, sα) = (y, s) + α(dy, ds) for α ≥ 0 and observe that since µSdy + µY ds = bs = −(µY s− e),

µYαsα − e = µY s+ αµ(Y ds + Sdy) + α2µDyds − e
= µY s+ αbs + α2µDyds − e
= (1− α)(µY s− e) + α2µDyds

Therefore, for any α ∈ [0, 1]

‖µYαsα − e‖ = (1− α)‖µY s− e‖+ α2µ‖Dyds‖ ≤ max {‖µY s− e‖, µ‖Dyds‖} < 1

As a consequence, for any α ∈ [0, 1], all components of µYαsα are strictly positive. Since the
components of yα, sα are continuous in α and are strictly positive for α = 0, they do not vanish
for any α ∈ [0, 1] and must be strictly positive for any such an α. In particular, for α = 1,
yα=1 = y + dy > 0 and sα=1 = s+ ds > 0.
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