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iiiAbstra
tWe study the buoyan
y-driven �ow for a system of two nonlinear 
onservation laws thatmodels three-phase �ow in a porous medium. We solve a 
lass of Riemann problems for asimpli�ed 
ase where two of the �uids have equal density. We also perform a hyperboli
analysis for the system of 
onservation laws �nding a new type of 
oin
iden
e point on theboundary of the saturation triangle. The investigation 
ombines the theory of 
onservationlaws with 
omputational experiments.
ResumoEstudamos o es
oamento trifási
o de �uidos em meios porosos resultante ex
lusivamenteda força de gravidade. O problema é modelado por um sistema de duas leis não-linearesde 
onservação. Resolvemos uma 
lasse de problemas de Riemann para o 
aso em quedois �uidos têm densidades iguais. Também apresentamos uma análise geral de hiperbo-li
idade para o sistema de leis de 
onservação, e 
ara
terizamos um novo tipo de ponto de
oin
idên
ia, que se en
ontra na fronteira do triângulo de saturações. A pesquisa 
ombinaanálise teóri
a 
om experimentos numéri
os.
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Chapter 1Introdu
tion
We study the �ow in a porous medium of three �uids under the e�e
t of gravity for
e.We assume that the �uids do not mix when put into a 
ontainer and that they havedi�erent densities and vis
osities, in general. The �ow o

urs along a very long verti
althin 
ylinder of porous ro
k surrounded by an impermeable material. We assume thatthe ro
k 
ylinder is totally saturated by the three �uids and that initially there is animpermeable interfa
e separating a homogeneous mixture of two of the �uids on top fromthe third �uid at the bottom, see Fig. 1.1. We pretend that until time zero the gravityfor
e is ina
tive, so the �uids do not move. We study the longitudinal motion of the �uidsfrom the instant when the gravity is a
tivated and the interfa
e disappears. This studyis done near the lo
ation of the initial interfa
e as if the 
ylinder were in�nitely long. Forexample, one 
an think that the 
ylinder initially was in the horizontal position and attime zero it is qui
kly rotated to the verti
al position. Of 
ourse, we assume that thereare no phenomena su
h as �ngering that 
ause irregularities in the �ow transversely tothe 
ylinder axis. In mathemati
al language, this is equivalent to solve Riemann problemsfor 
ertain 2 × 2 systems of 
onservation laws in one-dimensional spa
e measured alongthe 
ylinder axis, for a spe
ial 
lass of initial data. This system re�e
ts the 
onservationof mass of ea
h in
ompressible �uid, as well as a generalization to immis
ible �uids ofDar
y's law of for
e relating pressure gradient to �uid �ow rate in porous media.The main appli
ations of this work are petroleum re
overy, geologi
al 
arbon dioxidestorage to mitigate global warming, and 
lean up of hydro
arbon polluted aquifers.It is well known that there exist two di�erent 
onve
tive transport phenomena thattake part in the motion of �uids within a porous medium: 
onve
tion due to pressure gradi-ents and buoyan
y due to density di�eren
es between the �uids. Until now, all mathemat-i
al work on immis
ible three-phase �ow in porous media has fo
used on 
onve
tion-driven�ow, when there are no gravitational e�e
ts. In this work we fo
us onto buoyan
y-driven�ow, and we solve a 
lass of Riemann problems for the �pure gravitational� 
ase (i.e.,negle
ting 
onve
tion e�e
ts due to longitudinal pressure gradients rather than due tobuoyan
y). 1



2 Chapter 1. Introdu
tion
Gravity

Interface

Figure 1.1: Initial 
ondition in the reservoir. Left �gure: initial distribution of the three�uids in the porous medium. Ea
h �uid is represented by a 
olor (or a shade of gray).Right �gure: s
hemati
 representation for the saturation of the �uids at the initial time.The solution of this problem depends on the physi
al properties of the three �uids.In other words, the evolution from the initial situation re�e
ts the disparity in densitiesand vis
osities of the �uids. Be
ause of this fa
t this solution should be studied for allphysi
ally meaningful values of the density and vis
osity parameters. Nevertheless, asa �rst step toward understanding the in�uen
e of gravity in three-phase �ow in porousmedia, we will 
onsider the simpli�ed 
ase in whi
h two of the �uids have equal densities.We 
all this 
ase the simpli�ed pure gravitational problem, or SPGP.We obtain interesting results, e.g., for the following initial situation: one of the �uidsabove the interfa
e has the same density as the �uid below the interfa
e, while the other�uid lo
ated above the interfa
e is the heaviest. For 
ertain initial proportions of the �uidson top, the solution 
onsists of two wave groups separated by a region with a 
onstantstate, see Fig. 1.2. The �rst wave group moves upwards. It 
ontains a sho
k embeddedinto two spreading or rarefa
tion waves; sometimes the upper rarefa
tion is pre
eded by anadditional sho
k. Within this upward wave group, the waves faster than the embeddedsho
k involve only two �uids, pre
isely the �uids that were on top initially; the �uidinitially at the bottom is only present below the embedded sho
k. The se
ond wave groupmoves downwards and involves two �uids only. This wave group 
onsists of a rarefa
tionwave adja
ent to a faster sho
k; in the downward waves the lower-density �uid that wasinitially lo
ated on top is absent, i.e., the lower-density �uid never moves downwards,as one 
ould expe
t. As we said, there is a homogeneous region, i.e., a 
onstant state,separating the two wave groups. The span of this region grows linearly with time.We observe a 
urious feature of this Riemann solution: while the proportion in themixture initially on top keeps within a 
ertain range away from a 
riti
al value, the mixtureslows down the upward motion of the bottom �uid. This blo
king property perhaps 
ould
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RUFigure 1.2: S
hemati
 representation for saturations in a non trivial Riemann solutionfor the �pure gravitational problem�, where the green and red �uids have equal densities,while the blue �uid is heavier. The white arrows indi
ate the motion of the waves. Largerarrows 
orrespond to higher speeds of the waves.be important in appli
ations.Riemann problem theory dates from 1860, when he solved the sho
k tube problememploying the method of 
hara
teristi
s, see [39℄. That problem redu
es to solving apie
ewise 
onstant initial value problem for a system of non-linear 
onservation laws thatdes
ribes gas motion, Euler's equations. Riemann obtained the s
ale-invariant solutionand explained why rarefa
tion waves and sho
k waves are generated when the membraneseparating regions with gases at di�erent pressures is broken.Non-linear 
onservation laws govern �ows in porous media. The simplest nonlinearproblem in porous media, the two-phase �ow inje
tion problem, was solved by Bu
kleyand Leverett [5℄ in 1942. Their resolution method 
an be interpreted geometri
ally bymeans of the graph of the standard S-shaped �ux fun
tion, giving rise to the fra
tional�ow method, of 
ommon usage in petroleum enginering. This method is a powerful andsimple tool to solve �ow problems involving no more than two phases, but many 
hemi
al
omponents, see [13℄, [14℄, [49℄.The Riemann problem for immis
ible three-phase �ow is more di�
ult than for two-phase �ow. The fra
tional �ow method 
annot be extended to three-phase �ow problemssu
h as those arising for the ro
k permeability models of Corey et al. [6℄ and Stone [48℄.The resolution of su
h problems requires a more general solution method, the wave 
urvemethod, developed by Liu [29℄, whi
h generalizes the Lax's theorem [28℄. This method
onstru
ts the solution by means of a sequen
e of rarefa
tion waves, sho
k waves, and
onstant states, by following a sequen
e of 
urves in state spa
e.



4 Chapter 1. Introdu
tionThe wave 
urve method developed by Liu assumes that the system of 
onservation lawsis stri
tly hyperboli
. Nevertheless, systems of 
onservation laws modelling immis
iblethree-phase �ow in porous media fail to be hyperboli
. Isaa
son, Mar
hesin, Plohr andTemple [20℄ showed that for Corey model for immis
ible three-phase �ow in porousmedia, there exist a sole isolated point interior to the saturation triangle where stri
thyperboli
ity fails (nowdays known as umbili
 point). They also solved by the wave 
urvemethod the Riemann problem, negle
ting gravitational e�e
ts. Their method is moregeneral than Liu's, be
ause it allows for loss of hyperboli
ity and for other di�
ulties thattypi
ally o

ur in three-phase �ow. In [20℄ the solution was obtained under the simplifyingassumption that the three �uids have equal vis
osities. De Souza [8℄ extended the studyto the 
ase in whi
h one of the vis
osity parameters is slightly di�erent from the othertwo.Re
ently Azevedo, De Souza, Furtado, Mar
hesin and Plohr [1℄ showed appli
ationsof the wave 
urve method to solve the inje
tion problem for immis
ible three-phase �owin whi
h a mixture of water and gas is inje
ted into a horizontal one-dimensional porousmedium 
ontaining oil. See the �Extended bibliography review� in Appendix D.On the other hand, buoyan
y e�e
ts in the �ow of two immis
ible �uids in porousmedia are quite well understood, as they are modelled by a s
alar 
onservation law, whi
his easily solved through Oleinik's 
onstru
tion [34℄. For instan
e Proskurowski in [35℄solved the Bu
kley-Leverett equation for two-phase �ow in the presen
e of gravity. Thereare other works on two-phase �ow with gravity and their appli
ations, see e.g. [37℄, [38℄,[51℄, [24℄, [12℄.The state of the art for three-phase �ow with gravity is quite di�erent. Up to now,there are few works on three-phase �ow with gravity taken in to a

ount. Medeiros [33℄performed an analysis of hyperboli
 singularities for 
ertain models in
luding gravity.Here we study in detail the simpli�ed pure gravitational problem (SPGP), i.e., ne-gle
ting 
onve
tion e�e
ts unrelated to buoyan
y and assuming that two of the �uidshave equal densities. We expe
t that Riemann solutions for the simpli�ed 
ases will helpin solving the more general problems of three di�erent-density �uids, as su
h problems
an be interpreted as �perturbations� of the simpli�ed 
ases. The Riemann solutions ob-tained in this work together with the new theoreti
al results presented 
an be 
onsidereda �rst step toward the study of the general three-phase �ow in porous media driven byboth buoyan
y and pressure gradients.We explain brie�y how this work is organized. In Chapter 2 we derive the systemof 
onservation laws that models three-phase �ow in porous media with gravity, undera few physi
al simpli�
ations. We non-dimensionalize the equations, giving rise to the�
onve
tion-to-gravity ratio� parameter α, whi
h measures the dominant e�e
t. We alsointrodu
e the Corey model with quadrati
 permeabilities for the �uids used in this work.In Chapter 3 we re
all some basi
 aspe
ts of the general theory for systems of 
on-servation laws, of the theory of bifur
ation of Riemann solution and of the wave 
urve



5method in order to provide the non-spe
ialist reader with a brief ba
kground on thesesubje
ts. Spe
ialists should skip it. We warn the non-spe
ialist that this review is neither
omplete nor perfe
tly a

urate, to keep it short. However, it is too new to be found inbooks.In Chapter 4 we 
al
ulate the 
hara
teristi
 speeds for the system of 
onservationlaws 
orresponding to the Corey model with quadrati
 permeabilities. We determine
ompletely where stri
t hyperboli
ity fails. The analysis is made for generi
 
onve
tion-to-gravity ratio. We obtain a new type of points where 
hara
teristi
 speeds 
oin
ide, whi
hwe 
all quasi-umbili
 points. They are lo
ated at the boundary of the physi
al saturationtriangle, in the 
ase when the gravitational e�e
ts are dominant. Understanding thesequasi-umbili
 points and their in�uen
e on the Riemann solution are some of the maintheoreti
al results of this work.In Chapter 5 we study two-phase �ows o

urring in the pure gravitational problem, inwhi
h the 
onve
tion-to-gravity ratio α is zero. The results of this 
hapter are ne
essaryfor the Riemann solution studied in the present work sin
e generi
ally two-phase waves
an be part of a three-phase Riemann solution. This fa
t was observed by Azevedo et al.in [1℄ too.In Chapter 6 we perform the analysis of possible sho
ks separating two states, one ofwhi
h 
onsists of a pure �uid, and the other is a mixture of the three �uids. This is doneby studying the Hugoniot lo
i for the verti
es of the saturation triangle. The analysis isdone for a generi
 α, rather than for α = 0. These Hugoniot lo
i play an important rolein the resolution of the Riemann problem where the initial bottom state represents a pure�uid.In Chapter 7 we perform the analysis of sho
ks separating two states, one of whi
h isa mixture of two �uids, and the other is a genuine mixture of the three �uids. This isdone by studying the Hugoniot lo
i for states on the edges of the saturation triangle. Thisanalysis is ne
essary for the resolution of the Riemann problem where the initial top stateis a mixture of two �uids, while the third �uid is absent. In this 
hapter we present asimple geometri
al 
onstru
tion, the �wedge 
onstru
tion�, whi
h allows the determinationof admissible sho
ks joining states on distin
t two-phase regimes appearing in three-phase�ow, su
h as the ones represented by points on the edges of the saturation triangle. Thewedge 
onstru
tion is independent of the form of the two-phase �ux fun
tions, of thepermeability fun
tions and of the presen
e of gravity; it depends only on the fa
t thatalong the edges of the saturation triangle a phase is missing, so we have two-phase �ow ofthe existing �uids; therefore this 
onstru
tion 
an be extended for very general models. Itis one of the main results of this work. The wedge 
onstru
tion has the same mathemati
alnature as the �banana 
onstru
tion� in [1℄.In Chapter 8 we prove a �reversal symmetry� theorem, whi
h holds for the simpli�edpure gravitational problem. We also prove additional theoreti
al results for bifur
ationmanifolds in SPGP. These results give support for the Riemann solution obtained partiallyvia numeri
al 
al
ulations of the waves 
urves.



6 Chapter 1. Introdu
tionIn Chapter 9 we solve the Riemann problem for the SPGP when the equal-density�uids are heavier than the third �uid. We 
onsider all the 
ombinations of edge-oppositevertex Riemann data. We 
onstru
t the solution to satisfy generalized Lax 
onditions andthen we verify that this solution is admissible a

ording to the vis
ous pro�le 
riterion.Although we do not prove rigorously that the solution for ea
h problem is unique, weperform an analysis utilizing analyti
al and numeri
al arguments that support uniquenessof the solution presented.In Chapter 10 we solve the Riemann problem for the SPGP when the equal-density�uids are lighter than the third �uid. Again we 
onsider all the 
ombinations of edge-opposite vertex Riemann data. In most 
ases we analyzed, the slow-family wave 
urveshave dis
onne
ted bran
hes that turn out to be 
ru
ial for the solution. The existen
e ofsho
ks between pairs of states that belong to a 
ertain one-dimensional manifold, the slow-family double 
onta
t manifold, is a new feature 
ru
ial for the existen
e of the Riemannsolutions. In this 
ase the Lax entropy 
riterion alone does not guarantee uniquenessof the solution, so we are led to use the full vis
ous pro�le 
riterion to sele
t the solephysi
ally 
orre
t solution.In Appendix A we perform additional 
al
ulations whi
h 
omplete the proof of The-orem 5.1. In Appendix B we present the proof of Lemma 8.2. In Appendix C we shownumeri
al and analyti
al arguments for uniqueness of the Riemann solution for one ofthe 
ases studied (RP1). In Appendix D we present an extended bibliographi
 review, inorder to summarize the main mathemati
al works relevant for three-phase �ow in porousmedia.Along this work, we performed numeri
al experiments using the 
omputer 
ode RPwritten by Mar
hesin, Isaa
son and Plohr. This 
ode allowed us to obtain the integral
urves, Hugoniot 
urves, the main bifur
ation lo
i, the phase portraits for dynami
alsystems and the wave 
urves, whi
h are fundamental for the 
onstru
tion of the solution.Numeri
al 
al
ulations in MATLAB were also performed.



Chapter 2The model
In the �rst se
tion of this 
hapter we derive the system of 
onservation laws that modelsthree-phase �ow with gravity in porous media, under some physi
al assumptions listed atthe beginning of the se
tion. In the se
ond se
tion we obtain the dimensionless equationsand the parameter groups relevant for the study of the buoyan
y e�e
ts for three-phase�ow. In the third se
tion we introdu
e the quadrati
 Corey model that we will use in theentire work in order to highlight the phenomena of interest while avoiding 
ompli
atedanalysis. In the last se
tion of the 
hapter we de�ne the triangle where the three �uidsaturations are de�ned, and some important lines and points inside the triangle that wewill use frequently along the work.
2.1 Derivation of the system of 
onservation lawsWe will study a simpli�ed model for three-phase �ow in porous media assuming that theporosity φ and the absolute permeability of the ro
k K are 
onstant. The temperatureis 
onstant and there is no mass inter
hange between phases. In this se
tion we derivethe equations for an arbitrary spatial dimension, nevertheless in this work we restri
t ourstudy to one spatial dimension assuming that the �ow o

urs uniformly in the verti
aldire
tion �lling the entire porous medium. We also negle
t 
ompressibility e�e
ts andassume that there are no sour
es or sinks.Let 
onsider the 
onservation of mass for ea
h phase

∂

∂t
φui + ∇ · vi = 0 i = 1, 2, 3, (2.1)where ui denotes saturation and vi is the seepage velo
ity of ea
h phase. We assume thatDar
y's Law is satis�ed for ea
h phase i: 7



8 Chapter 2. The modelvi = −K
ki

µi

(
∇pi − ρigez

)
i = 1, 2, 3, (2.2)where ki is the relative permeability, pi is the pressure, µi is the vis
osity and ρi is thedensity for ea
h phase i. We denoted by ez the unit ve
tor in the verti
al dire
tionpointing downwards, g is the gravitational 
onstant. We assume that the permeabilities

ki are fun
tions of the saturations. We assume also that the �uids are in
ompressible, andthat the porous medium is totally saturated, meaning that ∑3
i=1 ui = 1. The vis
osities

µi, i = 1, 2, 3 are 
onstant. In this se
tion and in most of the work, we negle
t 
apillarypressure e�e
ts, so that the phase pressures are equal. In Chapters 9 and 10, we willtake into a

ount su
h e�e
ts. They will be important in sele
ting physi
ally admissiblesho
ks.Now we de�ne
Λi = ki/µi i = 1, 2, 3; Λ =

∑

i=1,2,3

Λi, (2.3)
fi = Λi/Λ i = 1, 2, 3; v =

∑

i=1,2,3

vi; (2.4)the fun
tions Λi and fi are the mobility and the fra
tional �ow fun
tion 
orresponding toea
h phase i, Λ is the total mobility and v is the total seepage velo
ity.We �rst note that ∑i=1,2,3 fi = 1. Let us assume that pi = pj (i.e., we are negle
tingthe 
apillary pressures), so substituting Dar
y' s Law (2.2) in (2.4) and performing some
al
ulations we obtain vi = vfi + KΛi

∑

j 6=i

fjρijgez, i = 1, 2, 3, (2.5)where we are denoting by ρij the density di�eren
e ρi − ρj between the phases i and j.Finally, we substitute (2.5) into the system (2.1) to obtain the system of 
onservationlaws for the saturations u1, u2 and u3

∂

∂t
φui + ∇ · Fi = 0, i = 1, 2, 3, (2.6)where
Fi = vfi + Gi, i = 1, 2, 3, (2.7)are the 
omponents of the ve
tor �ow fun
tion (F1, F2, F3)

T 
ontaining the gravitationalterms
G1 = KΛ1

(
(1 − f1)ρ13 + f2ρ32

)
gez, (2.8)

G2 = KΛ2

(
(1 − f2)ρ21 + f3ρ13

)
gez, (2.9)

G3 = KΛ3

(
(1 − f3)ρ32 + f1ρ21

)
gez. (2.10)



Dimensionless equations 9Remark 2.1. Noti
e that G1 + G2 + G3 = 0, therefore F1 + F2 + F3 = v (the totalvelo
ity).By adding the equations in (2.5) and using the relations (2.3)-(2.4), we obtain that
∇ · v = 0; this equality re�e
ts the in
ompressibility of the �uids. Another importantfa
t to take into a

ount is that the 
onservation of mass system (2.1) has a redundantequation, i.e., any of these equations 
an be derived from the other two if we use thein
ompressibility property of the �uids and the fa
t that the medium is totally saturated.Be
ause of this redundan
e we 
an drop any equation in (2.6) obtaining a 2×2 system of
onservation law to be studied. The equation to be dropped will be 
hosen 
onvenientlyfor ea
h 
ase.2.2 Dimensionless equationsIn this se
tion we rewrite the system of 
onservation law (2.6) in non-dimensional form, inorder to identify the most important non-dimensional parameter groups for the evolutionproblem, and we redu
e to the minimal the number of parameters appearing in the systemof 
onservation law.We denote as Kref [m2] the referen
e absolute permeability, vref [m/s] the referen
evelo
ity of the problem, ρref [kg/m3] the referen
e density, L [m] the referen
e length ofthe system and µref [kg ·m−1 ·s−1] the referen
e vis
osity. Now we de�ne the dimensionlessvariables as follows

t̃ = tvref/Lφ, x̃ = x/L, ṽ = v/vref, K̃ = K/Kref,
Λ̃i = Λiµref, ρ̃i = ρi/ρref, µ̃i = µi/µref, i = 1, 2, 3.

(2.11)As a 
onsequen
e of above de�nitions we obtain other useful relations:
∇̃ = L∇, Λ̃ =

∑

i=1,2,3

Λ̃i, f̃i = Λ̃i/Λ̃, i = 1, 2, 3. (2.12)If we substitute the dimensionless variables and the relations above into the system(2.6), we obtain
∂ui

∂t̃
+ ∇̃ ·

(ṽf̃i + CgG̃i

)
= 0, i = 1, 2, 3, (2.13)where

G̃1 = K̃Λ̃1

(
(1 − f̃1)ρ̃13 + f̃2ρ̃32

)
ez, (2.14)

G̃2 = K̃Λ̃2

(
(1 − f̃2)ρ̃21 + f̃3ρ̃13

)
ez, (2.15)

G̃3 = K̃Λ̃3

(
(1 − f̃3)ρ̃32 + f̃1ρ̃21

)
ez, (2.16)



10 Chapter 2. The modeland Cg = Kref·ρref·gvref·µref is the dimensionless parameter re�e
ting the gravitational e�e
ts.We 
an 
hoose referen
e values in di�erent ways. As we are interested in 
ases in whi
hthe total velo
ity is small (possibly equal to zero) but with non-negligible gravitationale�e
ts, we set the referen
e velo
ity as vref = Kref·ρref·g
µref , so we obtain that Cg = 1 in (2.13).We denote by

α = ṽ =
vvref =

v · µref
Kref · ρref · g . (2.17)Omitting the �∼" and dropping the equation 
orresponding to phase 3 in (2.13) weobtain the following 2 × 2 system of 
onservation law

∂ui

∂t
+ ∇ ·

(
αfi(u1, u2) + Gi(u1, u2)

)
= 0, i = 1, 2, (2.18)where now G1 and G2 denote the dimensionless gravitational terms given by (2.14) and(2.15).The parameter α de�ned in (2.17) is 
alled in this work the �
onve
tion/gravity ratio�(
gr). Nevertheless, from Eq. (2.18) with gravitational terms given in (2.14)-(2.15) noti
ethat for equal-density �uids the gravitational terms vanish independently of the value of

α.2.3 The Corey modelWe will restri
t our analysis to the Corey model with quadrati
 permeabilities. With this
hoi
e we 
an highlight the phenomena of interest while avoiding 
ompli
ated analysis.(We expe
t that solutions for more realisti
 models are qualitatively similar to those ofquadrati
 models). Expli
itly, the mobility of ea
h phase depends only of the saturationof the phase and is quadrati
, i.e.,
Λi(ui) = u2

i /µi, i = 1, 2, 3; Λ =
∑

i=1,2,3

u2
i /µi, (2.19)Noti
e that for simpli
ity we are setting to zero irredu
ible saturation values, so weare negle
ting the fa
t that the �uids be
ome immobile at non-zero saturation.From now on we restri
t our study to one spatial dimension �ows, by assuming thatthe �ow o

urs uniformly in the verti
al dire
tion x, �lling the entire porous medium. Inour 
onvention, the gravitational for
e points to the positive x-dire
tion.The �ux fun
tions (in
luding gravity) for the quadrati
 Corey model with permeabil-



The saturation triangle 11ities in (2.19) are
F1(u1, u2, u3) =

u2
1

µ1

(
α +

u2
3

µ3
ρ13 +

u2
2

µ2
ρ12

)
/Λ(u1, u2, u3), (2.20)

F2(u1, u2, u3) =
u2

2

µ2

(
α +

u2
3

µ3
ρ23 +

u2
1

µ1
ρ21

)
/Λ(u1, u2, u3), (2.21)

F3(u1, u2, u3) =
u2

3

µ3

(
α +

u2
1

µ1

ρ31 +
u2

2

µ2

ρ32

)
/Λ(u1, u2, u3). (2.22)As u3 = 1−u1 −u2, we drop the equation 
orresponding to phase 3 and rewrite the 2× 2system (2.18) for this model (in one dimension denoted by x):

{
∂u1

∂t
+ ∂

∂x
F1(u1, u2) = 0

∂u2

∂t
+ ∂

∂x
F2(u1, u2) = 0,

(2.23)with �ux fun
tions F1, F2 given by (2.20)-(2.21), whi
h have α as a parameter.2.4 The saturation triangleIn order to study the Riemann solution for three-phase �ow with gravity for the Coreymodel, we need to perform all the 
al
ulations in the spa
e of saturations. We de�ne thesaturation triangle as follow
T =

{
(u1, u2) ∈ R

2 : 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1, u1 + u2 ≤ 1
}

; (2.24)a useful alternative de�nition would be
T =

{
(u1, u2, u3) ∈ R

3 : 0 ≤ ui ≤ 1, i = 1, 2, 3, and u3 = 1 − u1 − u2

}
. (2.25)We will use any one of the above expressions for the saturation triangle a

ording to thesituation.The interior of the saturation triangle in the 
ontext of (2.25) is

T̃ = {U ∈ T : ui 6= 0 i = 1, 2, 3} . (2.26)The point of maximum saturation for phase i is the vertex of the triangle denoted by
Vi = {U ∈ T : ui = 1} . (2.27)The two-phase edge opposite to Vi, whi
h does not in
lude the phase i, will be denotedby
∂i = {U ∈ T : ui = 0} . (2.28)
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h phase i, let j, k ∈ {1, 2, 3} be the indi
es of the other two phases; we de�ne
Ri =

{
U ∈ T :

uj

µj

=
uk

µk

, j 6= k

}
, (2.29)where µj, µk are the vis
osities of the phases j, k.Noti
e that Ri de�ned by (2.29) represents a segment starting from the vertex Vi andending on the edge ∂i at the point Bi. The 
oordinates of the points Bi, i = 1, 2, 3, aregiven by

B1 = (0, µ2

µ2+µ3
, µ3

µ2+µ3
), B2 = ( µ1

µ1+µ3
, 0, µ3

µ1+µ3
), B3 = ( µ1

µ1+µ2
, µ2

µ1+µ2
, 0). (2.30)Remark 2.2. For the 
ase µj = µk we have that Bi is the middle point of the edge ∂i.All segments and points de�ned above are displayed in Fig. 2.1
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BFigure 2.1: Saturation triangle for a 
ase where all vis
osities are distin
t. Segments Ri,verti
es Vi and points Bi



Chapter 3General bifur
ation theory for Riemannproblems
In this 
hapter we re
all some basi
 aspe
ts of general theory for systems of 
onservationlaws and the theory of bifur
ation of Riemann solutions, in order to provide the non-spe
ialist reader with a brief ba
kground on these subje
ts. Spe
ialists should skip it.Essentially we 
olle
t information from [21℄, [9℄, [20℄, [40℄, [45℄.3.1 Riemann solutions for a system of 
onservation laws.Lax 
onditions.Consider the system of 
onservation laws

Ut + F (U)x = 0 (3.1)governing the evolution, in one spa
e dimension, of a 2-dimensional state ve
tor U(x, t),i.e., for ea
h (x, t), U(x, t) ∈ R
2. The fun
tion F : Ω ⊂ R

2 → R
2 is 
alled the �ux.The 
hara
teristi
 speeds for Eq. (3.1), i.e., the eigenvalues λ−, λ+ of the Ja
obian matrix

dF (U), are given by the formula
λ±(U) = (1/2)

(
tr(dF (U)) ±

√
[tr(dF (U))]2 − 4 det(dF (U))

) (3.2)De�nition 3.1. The system (3.1) is hyperboli
 if λ±(U) ∈ R, ∀U ∈ Ω ⊂ R
2.In the hyperboli
 region, where the 
hara
teristi
 speeds are real, we have the naturalordering

λ−(U) ≤ λ+(U), (3.3)so we 
all λ− the slow-family 
hara
teristi
 speed and λ+ the fast-family 
hara
teristi
speed. The nonlinearity of F implies the dependen
e of the 
hara
teristi
 speeds on U ;13



14 Chapter 3. General bifur
ation theory for Riemann problemswhi
h leads, in general, to fo
using of waves and the formation of dis
ontinuous solutions,so that Eq. (3.1) must be interpreted in the sense of distributions.Remark 3.1. Sometimes we will denote by s and f (instead of − and +) the slow andfast families, respe
tively.De�nition 3.2. Riemann Problem. A Riemann problem for the 
onservation law (3.1)is a spe
ial Cau
hy problem with initial data
U(0, x) =

{
UL if x < 0
UR if x > 0,

(3.4)where UL and UR are 
onstant.The general solutions of Eq. (3.1) 
onsist of weak solutions that respe
t the invarian
eof the equation under the s
aling transformation (t, x) → (ct, cx) with c > 0. Su
h s
ale-invariant solutions satisfy the initial 
onditions of the Riemann problem as well as thePDE (3.1).Conversely, solutions of a Riemann problem are expe
ted to be s
ale-invariant, i.e.,they depend on t and x only through the 
ombination ξ = x/t. Although Riemannproblems are only spe
ial initial value problems, the solutions of the general Cau
hy initialvalue problem may be viewed as a nonlinear superposition of s
ale invariant solutions [11℄.A s
ale-invariant solution 
an be partitioned into several groups of waves; the wavesin ea
h group move together as a single entity. More pre
isely, we de�ne a wave groupto be a s
ale-invariant solution that 
ontains no intermediate 
onstant states. Thus asolution of a Riemann problem 
omprises a sequen
e of wave groups moving apart fromea
h other, as in Fig. 3.1(a). Wave groups are 
omposed of two basi
 ingredients: 
enteredrarefa
tion waves and 
entered dis
ontinuous waves, see Fig. 3.1(b).
LU

MU

RU

x

t
Wave

group

(a) lU

rU

x

t
Rarefaction

wave
Discontinuity

(b)Figure 3.1: S
ale-invariant solutions. (a) Example of solution for a Riemann problem,
omprising a sequen
e of two wave groups. (b) A 
entered rarefa
tion wave and a 
entereddis
ontinuous wave.A 
entered rarefa
tion wave asso
iated with a 
hara
teristi
 family i (�−� or �+�) is
onstru
ted using integral 
urves of the �di�erential equation�
U̇ = ri(U), (3.5)



Riemann solutions for a system of 
onservation laws. Lax 
onditions. 15where ri(U) is a right eigenve
tor of dF (U) 
orresponding to λi(U) in (3.2). We noti
e that(3.5) is an ordinary di�erential equation only lo
ally in regions where stri
t hyperboli
ityis satis�ed, the sign and amplitude of ri are arbitrary. A rarefa
tion wave 
orresponds toa segment of an integral 
urve along whi
h λi is nonde
reasing; it is de�ned by invertingthe relation λi(U) = ξ.A 
entered dis
ontinuous wave is a jump dis
ontinuity that propagates at speed σ andseparates two states Ul and Ur, where Ul, Ur and σ satisfy the system of two equations
−σ[Ur − Ul] + F (Ur) − F (Ul) = 0, (3.6)
alled the Rankine-Hugoniot jump 
ondition. By 
onvention, Ul is on the left side of thedis
ontinuity and Ur is on the right side. In general, these states are di�erent from thestates UL and UR of the Riemann problem initial data. For a �xed Ul, the set of states Usu
h that the pair Ul, U satisfy (3.6) for some σ 
omprises the Hugoniot lo
us, H(Ul). TheHugoniot lo
us H(Ul) through Ul 
an be 
onstru
ted by �nding the zero-set HUl

(U, σ) = 0of the Hugoniot fun
tion HUl
: R

2 × R → R
2 de�ned by

HUl
(U, σ) = −σ(U − Ul) + F (U) − F (Ul). (3.7)The proje
tion of this zero-set onto state spa
e gives H(Ul).A very useful tool employed in this work is the Triple Sho
k Rule [22℄. Next we statetwo distin
t version of this result.Triple Sho
k Rule (�rst version). For system (3.1), assume that the states U1, U2and U3 satisfy U1 ∈ H(U2), U2 ∈ H(U3) and U3 ∈ H(U1). Then either U1, U2, U3 are
ollinear or else σ(U2, U1) = σ(U3, U2) = σ(U1, U3).Triple Sho
k Rule (se
ond version). For system (3.1), assume that the states

U1, U2 and U3 satisfy U2 ∈ H(U1), U3 ∈ H(U2) and σ(U1, U2) = σ(U2, U3) then U3 ∈
H(U1) and σ(U1, U3) = σ(U1, U2) = σ(U2, U3).To avoid non-uniqueness of solutions of Riemann problems, the 
lass of allowable dis-
ontinuous waves must be restri
ted. For systems of n 
onservation laws that are genuinelynonlinear, Lax [28℄ introdu
ed the admissibility requirement that the 
hara
teristi
s of onefamily impinge on both sides of the dis
ontinuity, while the 
hara
teristi
s of the otherfamilies 
ross the dis
ontinuity undergoing de�e
tion. For more general 
onservation laws,
hara
teristi
s must be permitted to be
ome tangent to the dis
ontinuity, so we have thefollowing de�nitions for admissible sho
ks.De�nition 3.3. Slow-family and fast-family sho
k wave. We de�ne a 
entereddis
ontinuous wave to be a (generalized) Lax dis
ontinuity of the slow-family (slow sho
k)provided that the 
hara
teristi
 speeds are related to the propagation speed as follow:

λ−(Ur) ≤ σ ≤ λ−(Ul), and σ ≤ λ+(Ur). (3.8)



16 Chapter 3. General bifur
ation theory for Riemann problemswhere only one of the inequalities in (3.8)�(a) is allowed to be
ome an equality. Similarly,we de�ne a 
entered dis
ontinuous wave to be a (generalized) Lax dis
ontinuity of the fast-family (fast sho
k) provided that the 
hara
teristi
 speeds are related to the propagationspeed as follow:
λ+(Ur) ≤ σ ≤ λ+(Ul), and λ−(Ul) ≤ σ. (3.9)where only one of the inequalities in (3.9)�(a) is allowed to be
ome an equality.In 
ertain 
ases we allow equalities in (3.8) or (3.9) to o

ur. They will be dis
ussedlatter. Lax used the nomen
lature 1-and 2-sho
k for slow and fast sho
ks.If we adopt the admissibility 
riterion based on 
hara
teristi
s and assume that both
hara
teristi
 speeds are distin
t, then any wave, i.e., rarefa
tion wave or dis
ontinuity,has an asso
iated family. In this work we only 
onsider solutions satisfying: (1) no slowwave is pre
eded by a wave of the fast family; and (2) two waves of the same family mustbelong to the same wave group. Therefore a solution of a Riemann problem 
an 
ontainat most 2 wave groups, a slow wave group followed by a fast wave group. These fa
ts [30℄generalize the 
lassi
al pi
ture [11℄ in whi
h a solution of a Riemann problem 
onsists ofat most 2 sho
k or rarefa
tion waves, separated by 
onstant states, where ea
h wave isasso
iated with a distin
t family.In order to des
ribe the Riemann solution we will use the notation found in Furtado [9℄.Thus we will denote Ul
w
−→ Ur to express the fa
t that Ul is 
onne
ted to Ur (on the right)by an elementary wave of type w. The elementary waves types are denoted as follows.Wave nomen
lature(a) R− if the wave is a rarefa
tion of the slow family.(b) R+ if the wave is a rarefa
tion of the fast family.(
) S− if λ−(Ur) < σ < λ−(Ul) and σ < λ+(Ur)(d) S+ if λ+(Ur) < σ < λ+(Ul) and λ−(Ul) < σ(e) CS− if λ−(Ur) < σ = λ−(Ul) and σ < λ+(Ur)(f) CS+ if λ+(Ur) < σ = λ+(Ul).(g) SC− if λ−(Ur) = σ < λ−(Ul).(h) SC+ if λ+(Ur) = σ < λ+(Ul) and λ−(Ul) < σ(i) C− if λ−(Ul) = σ = λ−(Ur).(j) C+ if λ+(Ul) = σ = λ+(Ur).(k) C+

− if λ−(Ul) = σ = λ+(Ur).



Vis
osity admissibility 
riterion 17(l) C−
+ if λ+(Ul) = σ = λ−(Ur).(m) (GC)i if the wave is a genuine 
onta
t for the family i, i.e., a wave on whi
h

∇λi · ri ≡ 0.Remark 3.2. Noti
e that dis
ontinuities (c), (d) denote 
lassi
al Lax sho
k of slow andfast families respe
tively. The dis
ontinuities (e), (f) denote sho
ks that are 
hara
teristi
at the left ( i.e., with speed equal to a 
hara
teristi
 speed on the left), for both families,and dis
ontinuities (g), (h) denote sho
ks that are 
hara
teristi
 on the right. Finallythe dis
ontinuities (i), (j) denote double 
onta
t dis
ontinuities of slow and fast familyrespe
tively, while (k) and (l) denote a double-
onta
t dis
ontinuity involving the twofamilies. Finally (m) denotes a genuine 
onta
t, this is a dis
ontinuity travelling with
onstant 
hara
teristi
 speed, see [47℄, [49℄.Remark 3.3. For two-phase solutions we will use the same notation for the elementarywave without using supers
ripts.Lax original or generalized 
riteria, however, are sometimes overly restri
tive and othertimes too lax: a Riemann problem might have no solution or it might have many. We areled to impose the admissibility 
riterion to require dis
ontinuous waves to possess vis
ouspro�les, as des
ribed in the next se
tion. This is the vis
osity admissibility 
riterion. Ingeneral, it is distin
t from the 
hara
teristi
 
riterion, sin
e there exist Lax dis
ontinuitiesthat do not have vis
ous pro�les, while some dis
ontinuities with vis
ous pro�les are notof Lax type, see [25℄. The vis
osity 
riterion, too, 
an fail to guarantee existen
e anduniqueness of solutions of Riemann problems. In this work we 
onstru
t solutions tosatisfy Lax 
riterion and after we verify that su
h solutions also satisfy the vis
osityadmissibility 
riterion.3.2 Vis
osity admissibility 
riterionTypi
ally, Eq. (3.1) is an approximation to a system of the form
Ut + F (u)x = ǫ[D(U)Ux]x (3.10)in the (singular) limit as ǫ → 0+. Here D is the vis
osity matrix, whi
h models 
ertainphysi
al e�e
ts (su
h as 
apillarity e�e
ts in multiphase �ow in porous media) that arenegle
ted in the model. We usually require that the eigenvalues of D(U) have positivereal part; this guarantees that short wavelength perturbations of 
onstant solutions de
ayexponentially in time. For more details, see Majda-Pego [31℄ and Azevedo et al. [3℄.Physi
ally realizable solutions of Eq. (3.1) are expe
ted to be limits of solutions ofthe paraboli
 equation (3.10). In parti
ular, 
ertain 
entered dis
ontinuous waves arise aslimits of travelling wave solutions as follows. A travelling wave depends on t and x only



18 Chapter 3. General bifur
ation theory for Riemann problemsthrough the 
ombination ξ = (x− σt)/ǫ, and it approa
hes limits Ur and Ul as ξ → ±∞.Therefore Eq. (3.10) 
an be integrated on
e to obtain the asso
iated ODE system
−σ[U(ξ) − Ul] + F (U(ξ)) − F (Ul) = D(U(ξ))U̇(ξ), (3.11)where the dot denotes di�erentiation with respe
t to ξ. Taking the limits of Eq. (3.11)as ξ → ±∞ shows that Ur, Ul and σ must be related by the Rankine-Hugoniot 
ondition(3.6), so that Ur and Ul are 
riti
al points for the ODE system. As ǫ → 0+, the spatialregion over whi
h the solution makes the transition from Ul to Ur shrinks to a point at

x = σt. Consequently, the travelling wave solution approa
hes a 
entered dis
ontinuouswave. Thus a dis
ontinuity is said to have a vis
ous pro�le when the system of ordinarydi�erential equation (3.11) has a 
onne
ting orbit �owing from Ul to Ur. It is natural toregard a dis
ontinuity as admissible only if it has a vis
ous pro�le; this is the vis
osity
riterion for sho
k admissibility [7℄, [18℄, [10℄.The 
riti
al points of a system of ordinary di�erential equations are 
ru
ial to its study.For Eq. (3.11), a 
riti
al point is a state Uc that satis�es the Rankine-Hugoniot 
onditionfor the given state Ul and the speed σ. For ODE's, in the hyperboli
 
ase the behavior ofsolutions in the neighborhood of a 
riti
al point Uc is re�e
ted in qualitative features ofsolutions of the linearization of Eq. (3.11) about Uc:
[−σ + F

′

(Uc)](U − Uc) = D(Uc)U̇ . (3.12)Su
h solutions are determined by the eigenvalues β and 
orresponding eigenve
tors Ûβthat satisfy
[−σ + F

′

(Uc)]Ûβ = βD(Uc)Ûβ . (3.13)For example, U = Uc +
∑

β cβ exp(βξ)Ûβ when the eigenvalues are distin
t. Thus the
hara
ter of the 
riti
al point is determined by the eigenvalues β.As we are restri
ted to system of two 
onservation laws, (3.11) is a system of ODE'sin the plane. A 
riti
al point is 
lassi�ed as an anti-saddle point (i.e., a node, fo
us or
enter) or as a saddle point. Generi
ally an orbit for the system of ODE's 
onne
ts eithertwo saddle points, two anti-saddle points or a saddle and an anti-saddle. In studies ofvis
ous pro�les for sho
k waves the �rst step is to 
hoose D as the identity matrix. Forthis 
hoi
e the eigenvalues at a 
riti
al point Uc are βi = λi(Uc) − σ, i = −, +. A Laxsho
k of the slow family has σ < λ−(Ul) < λ+(Ul) and λ−(Ur) < σ < λ+(Ur), so thatthe 
riti
al points Ul and Ur of Eq. (3.11) are, respe
tively, a repelling node and a saddlepoint. Similarly, Ul and Ur are, respe
tively, a saddle point and an attra
ting node in the
ase of a Lax sho
k wave of the fast family. In summary, an admissible dis
ontinuity ofLax type 
orresponds to a saddle-node 
onne
tion.



The Bethe-Wendro� theorem 193.3 The Bethe-Wendro� theoremAway from primary and se
ondary bifur
ation points, the Hugoniot lo
us is a 
urve andit may be parameterized by a single variable. We use a superimposed dot to denote thederivative with respe
t to this variable and let σ(U) be the speed of the sho
k as U movesalong the Hugoniot lo
us. The following theorem gives an analyti
 des
ription of thequalitative behavior of σ(U).Theorem 3.1. (Bethe-Wendro�, see [52℄) Consider the Hugoniot lo
us through a state
U0. Let U be a point on the lo
us and assume that (3.14) does not hold at U . Thenthe following are equivalent: (a) σ̇ = 0, (b) λi(U) = σ(U) for some i. In this 
ase,
λi(U) − σ(U) and σ̇(U) vanish to the same order. Also, the 
hara
teristi
 ve
tor of the
i-th family is tangent with the same order to the Hugoniot lo
us.Remark 3.4. The Bethe-Wendroof theorem 
an be stated for the 
omposite lo
us too.The Bethe-Wendro� theorem relates the monotoni
ity of the propagation speed alongthe Hugoniot and 
omposite 
urves to the admissibility of the sho
k waves, at pointswhere equality in the Lax entropy relations (3.8)-(3.9) holds with respe
t to one of the
hara
teristi
 speeds for Ur. This fa
t makes Bethe-Wendro� theorem an important toolin the 
onstru
tion of waves 
urves.3.4 Bifur
ation manifoldsNow we de�ne 
ertain 1-dimensional �manifolds� whi
h play a fundamental role in thewave 
urve 
onstru
tion in our problem in two unknowns. They are not genuine mani-folds sin
e they may have self interse
tions or other singularities.The se
ondary bifur
ation manifold 
onsists of the states whi
h do not satisfy the hy-pothesis of the impli
it fun
tion theorem; generi
ally, the Hugoniot lo
us 
hanges topol-ogy at su
h lo
us. In general we know that lo
ally through ea
h state UL there existtwo Hugoniot bran
hes, ea
h bran
h transversal to the other, so ea
h UL is a primarybifur
ation.De�nition 3.4. A state U belongs to the se
ondary bifur
ation manifold for thefamily i (denoted by Bifi i = −, +) if there exist a state U ′ 6= U su
h that

U ′ ∈ H(U) with λi(U ′) = σ(U, U ′) and li(U ′)(U ′ − U) = 0 (3.14)where we have denoted by li(U ′) a left eigenve
tor of the Ja
obian matrix dF (U ′).Now we will de�ne the in�e
tion manifold; it is named by analogy with s
alar 
onser-vation laws. It is the manifold where genuine nonlinearity is lost, i.e., the eigenvalue doesnot vary monotoni
ally along a rarefa
tion 
urve near an in�e
tion point.



20 Chapter 3. General bifur
ation theory for Riemann problemsDe�nition 3.5. The state U belongs to the in�e
tion manifold for the family i (denotedby Infi i = −, +) if and only if
∇λi(U) · ri(U) = 0 (3.15)where we have denoted by ri(U) a right eigenve
tor of the Ja
obian matrix dF (U).Remark 3.5. Rarefa
tion 
urves stop at in�e
tion manifold.The following de�nition 
orresponds to the hysteresis manifold, whi
h 
ontains statesof a 
omposite segment joined to the end of a rarefa
tion segment by a nonlo
al sho
kwave.De�nition 3.6. The state U lies on the Hysteresis manifold for the family i, if thereexist a state U ′ 6= U su
h that

U ∈ H(U ′) with λi(U ′) = σ(U, U ′) and ∇λi(U ′) · ri(U ′) = 0 (3.16)where we have denoted by ri(U ′) a right eigenve
tor of the Ja
obian matrix at the point
U ′.Remark 3.6. Noti
e that su
h U ′ in the de�nition of the Hysteresis must be on thein�e
tion manifold.De�nition 3.7. The state U belongs to the (i, j)-Double Conta
t manifold if thereexist a state U ′ su
h that

U ′ ∈ H(U) with λi(U) = σ(U, U ′) = λj(U ′), (3.17)where the families i and j may be the same or di�erent.Remark 3.7. A sho
k joining su
h U and U ′ is 
alled a double-
onta
t sho
k.Remark 3.8. States on the Double Conta
t manifold 
an be jun
tions of 
omposite andrarefa
tion segments in wave 
urves. This is analogous with the s
alar 
ase, where a sho
khappen to be embedded between two rarefa
tion waves, see Oleinik [34℄.De�nition 3.8. (Extension of a point) Consider a state A in the saturation triangle. Wesay that P i
A is the extension of the point A 
orresponding to the family i, if P i

A ∈ H(A)and σ(A, P i
A) = λi(P i

A); in other words, the sho
k joining the state A with the state P i
A is
hara
teristi
 at P i

A for the family i.Remark 3.9. One 
an de�ne another extension, in whi
h the sho
k is 
hara
teristi
 at
A. Be
ause of the presen
e of the boundary of the physi
al region, another manifold playsa role in the model problem, whi
h we 
all an interior boundary 
onta
t and is de�ned asthe internal extension of the physi
al boundary.



Wave 
urves 21De�nition 3.9. The state U belongs to the boundary 
onta
t manifold for the family
i (or extension of the boundary), denoted by Ei

∂ if there exist a state U ′ su
h that
U ∈ H(U ′) with U ′ on the boundary and λi(U) = σ(U, U ′). (3.18)Remark 3.10. A boundary 
onta
t wave o

urs when a jun
tion between wave segments
oin
ides with the boundary.Remark 3.11. Noti
e that hysteresis manifold is the (suitable) extension of the in�e
tionmanifold.3.5 Wave 
urvesIn this se
tion, we des
ribe brie�y the 
on
ept of wave 
urve. A wave 
urve of the family

i, starting at the state UL is a parametrization of the states U in state spa
e that 
an be
onne
ted on the right hand side of UL by an i-wave group, in other words a wave 
urve isa parametrization of 
ertain 
oherent sequen
es of invariant waves as points in the spa
eof possible states.As we already said, in physi
al spa
e, Riemann solutions 
onsist of sequen
es of rar-efa
tion fans, dis
ontinuities and 
onstant states. In the 
ases studied in this work, theseelementary waves are grouped into waves that belong either to the slow-family or thefast-family. These solutions obey the geometri
al 
onstraint that speeds in physi
al spa
ein
rease from left to right.Wave 
urves in this type of problems (in whi
h stri
t hyperboli
 and genuine nonlin-earity fail) di�er from 
lassi
al wave 
urves in several respe
ts, see [30℄ and [34℄. First,they are represented in state spa
e by three types of elementary segments, 
onsisting notonly of sho
k 
urves and rarefa
tion 
urves as in the 
lassi
al 
ase, but also of 
omposite
urves, whi
h represent sho
k waves adja
ent to rarefa
tion waves. The �nal state U of a
omposite 
urve satis�es
U ∈ H(U ′) with λi(U ′) = σ(U, U ′),where U ′ traverses a rarefa
tion segment. Se
ond, in ea
h wave 
urve there are manysu
h elementary segments. Ea
h elementary segment must stop whenever its wave speedattains an extremum, and the type of elementary segment that follows is determined bysimple rules. Third, sin
e Hugoniot 
urves possess nonlo
al (i.e., deta
hed) bran
hes,wave 
urves also have 
ompli
ated shapes; e.g., they may have dis
onne
ted parts orbran
hing points, see [20℄.The 
ontinuation rules for wave 
urves are justi�ed by the Bethe-Wendro� theorem,as applied to determine the qualitative behavior of the wave speed along a wave 
urve.This analysis is 
onveniently performed using wave speed diagrams, whi
h generalize tosystems Oleinik's 
onvex envelope 
onstru
tion for s
alar 
onservation laws [34℄. Using
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ation theory for Riemann problemsthese te
hniques, the stability of waves 
urves with respe
t to perturbations of the leftstate 
an be established [9℄.A typi
al wave speed diagram is shown in Fig. 3.2(b). The horizontal axis 
orrespondsto a parametrization of the wave 
urve, and the verti
al axis is speed. The solid lines arethe two 
hara
teristi
 speeds, while the dashed (resp. 
rossed) 
urves are the propagationspeeds of sho
ks waves (resp. 
omposite waves). The parti
ular example shows the speedsfor the fast-family wave 
urve starting at a state UL in the interior of the saturationtriangle, for the simpli�ed pure gravitational problem (α = 0, ρ1 = ρ2 > ρ3). Nearthis state the 
urve 
onsists of rarefa
tion and sho
k waves, as usual. The rarefa
tionsegment ends when the 
hara
teristi
 speed rea
hes a maximum, where the wave 
urve
ontinues through a segment of 
omposite waves. Points on the 
omposite 
orrespondto points on the rarefa
tion at the same speed; these points whi
h work ba
k along therarefa
tion segment, are indi
ated by dots. The 
omposite segment ends when its speed
oin
ides with the faster 
hara
teristi
 speed on the right, and is followed by anotherrarefa
tion segment, whose speed eventually maximizes, leading to another 
ompositesegment. This 
omposite segment ends when the 
orresponding rarefa
tion points haverea
hed the beginning of the segment; then the wave 
urve 
ontinues with a new 
ompositesegment based on the previous rarefa
tion segment. Finally this last 
omposite wave endswhen the speed 
oin
ides with the fast-family 
hara
teristi
 speed on the left, where thewave 
urve be
omes a sho
k segment.The wave 
urve 
orresponding to the wave speed diagram is shown in Fig. 3.2(a).Again, solid, dashed, and 
rossed 
urves represent rarefa
tion, sho
k, and 
omposite seg-ments respe
tively.

1
V

2
V

3
V

LU

(a)
LU

+
l

-
l(b)Figure 3.2: Example of wave 
urve for the 
ase α = 0, ρ1 = ρ2 > ρ3. (a) Fast-family wave
urve through UL. (b) Wave speed diagram.
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 points 233.6 Hyperboli
ity, umbili
 and quasi-umbili
 points3.6.1 Loss of stri
t hyperboli
ityThe system of 
onservation law (3.1) is stri
tly hyperboli
 if the Ja
obian matrix dF (U)has real and distin
t eigenvalues for all U in state spa
e.The hyperboli
 
hara
ter of the system of 
onservation law 
an be lost in di�erentways, so we de�ne:De�nition 3.10. A point U = (u1, u2) is 
alled a 
oin
iden
e point for the �ux F ifthe eigenvalues of the Ja
obian matrix dF 
oin
ide at this point, i.e., if λ−(U) = λ+(U).De�nition 3.11. We say that a 
oin
iden
e point U∗ = (u∗
1, u

∗
2) is an umbili
 point ofthe PDE system (with �ow fun
tion given by F ), if it satis�es the following 
onditions(H1) dF (U∗) is diagonalizable.(H2) There is a neighborhood V of U∗ su
h that dF (U) has distin
t eigenvalues for all

U ∈ V − U∗.Remark 3.12. If there exist Ω region where the eigenvalues are 
omplex 
onjugate, thisregion is 
alled "ellipti
 region".De�nition 3.12. We have the following de�nitions:(i) We say that a 
oin
iden
e point U is a quasi-umbili
 point if the 
ondition (H2)holds but (H1) fails.(ii) We say that a 
oin
iden
e point U belongs to a diagonalization 
urve if thereexists a 
urve through U along whi
h 
ondition (H2) fails but 
ondition (H1) holds.If su
h 
urve is a line, we 
all it as diagonalization line.Remark 3.13. Quasi-umbili
 points and diagonalization lines seem to have been 
hara
-terized for the �rst time in this work.3.6.2 Hyperboli
ity analysis.S
hae�er and Shearer [40℄ 
lassi�ed umbili
 points for the general 2× 2 system of 
onser-vation laws, by means of a lo
al analysis of the quadrati
 form arising from the Taylorexpansion of the �ux fun
tion in a neighborhood of the umbili
 point. This analysis ispossible only if hypotheses H1 and H2 hold. They also presented in [40℄ some ideasthat will help us in performing an hyperboli
ity analysis and determine the umbili
 andquasi-umbili
 points of the system of 
onservation laws. In the following we summarizethe main ideas.



24 Chapter 3. General bifur
ation theory for Riemann problemsFor a real 2 × 2 matrix M let us de�ne
devM = M −

1

2
(trM)I (3.19)as the proje
tion of M into the spa
e of tra
e-free matri
es. In (3.19), dev is known asthe deviator operator. The deviator of a matrix M retains all information about multipleeigenvalues. We Introdu
e 
oordinates on the (three dimensional) spa
e of tra
e-freematri
es by the formula

devM =

(
X Y + Z

Y − Z −X

)
. (3.20)In other words, X, Y, Z are the 
oordinates asso
iated with the basis of 2 × 2 matri
es

(
1 0
0 −1

), ( 0 1
1 0

), ( 0 1
−1 0

).Now we have an important result for the deviator of a matrix M proven in [40℄:Proposition 3.1.(i) M has equal eigenvalues and is diagonalizable if and only if devM = 0.(ii) M has distin
t real eigenvalues, 
oin
ident real eigenvalues, or 
omplex 
onjugateeigenvalues a

ording to whether (X, Y, Z) lies outside, on the surfa
e of, or insidethe 
one X2 + Y 2 = Z2, respe
tively.Remark 3.14. This proposition follows from the fa
t that the 
hara
teristi
 polynomialfor (3.20) is λ2 − X2 − Y 2 + Z2 = 0.Appli
ation of the deviator operator to the Ja
obian matrixWe 
an 
onsider the mapping dev dF (deviator of the Ja
obian Matrix of the systemof 
onservation laws (3.1)) from the U-plane into the spa
e of tra
e-free matri
es givenby U 7→ (X, Y, Z); geometri
ally, this mapping de�nes a surfa
e in R
3. Condition (H1)implies that all the umbili
 points are mapped into the origin, the vertex of the 
one

X2 + Y 2 = Z2. Let be U∗ an umbili
 point; sin
e F is stri
tly hyperboli
 on a pun
turedneighborhood of the umbili
 point V −U∗, the image of V −U∗ must lie outside this 
one,i.e., in the open region {X2 + Y 2 > Z2}. Assuming that this surfa
e is nonsingular at
U∗, It follows that the tangent plane lies in the region X2 + Y 2 ≥ Z2.The following result was also proved by S
hae�er and Shearer [40℄.Theorem 3.2. Let U∗ be a 
oin
iden
e point, 
ondition (H2) is satis�ed if and only ifthe surfa
e that is the image of R

2 by dev dF is nonsingular at U∗ and, the pun
turedtangent plane at U∗ lies in the open region {X2 + Y 2 > Z2}.



Chapter 4Chara
teristi
 analysis
In this 
hapter we 
al
ulate the Ja
obian matrix of the 2×2 
onservation law system (2.23),with �ux fun
tions given by (2.20)-(2.21). We 
al
ulate a formula for the 
hara
teristi
speeds. We present an exhaustive analysis of the 
onservation law in order to determinewhere stri
t hyperboli
ity fails; the analysis in
ludes the 
ases in whi
h two of the phaseshave equal densities, for whi
h the solutions have spe
ial stru
tures.4.1 Chara
teristi
 speed analysisWe will denote by dF or J the Ja
obian matrix of the ve
tor �ux fun
tion (F1, F2)

T
orresponding to the 2 × 2 system given in (2.23). We write
J ≡ dF =

∂(F1, F2)

∂(u1, u2)
=

(
J11 J12

J21 J22

)
= αA + B. (4.1)We re
all the de�nition of Λi and Λ in Eq. (2.19). We will denote by Λ

′

i the derivative
dΛi/dui for i = 1, 2, 3. The matrix A in (4.1) is given by

A =

(
Λ

′

1Λ − Λ1(∂Λ/∂u1) −Λ1(∂Λ/∂u2)
−Λ2(∂Λ/∂u1) Λ

′

2Λ − Λ2(∂Λ/∂u2)

)
/Λ2; (4.2)it is the part of the Ja
obian matrix that represents the motion without gravity, and thematrix

B =

(
b11 b12

b21 b22

) (4.3)is the part of the Ja
obian matrix that represents buoyan
y e�e
ts (whi
h depend of thedensities di�eren
e between the �uids), with elements25
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b11 = Λ

′

1

[
(1 −

Λ1

Λ
)ρ13 +

Λ2

Λ
ρ32

]
− Λ1

[(Λ
′

1Λ − Λ1(∂Λ/∂u1)

Λ2

)
ρ13 +

Λ2(∂Λ/∂u1)

Λ2
ρ32

]
,

b12 = Λ1

[Λ1(∂Λ/∂u2)

Λ2
ρ13 +

Λ
′

2Λ − Λ2(∂Λ/∂u2)

Λ2
ρ32

]
,

b21 = Λ2

[Λ2(∂Λ/∂u1)

Λ2
ρ23 +

Λ
′

1Λ − Λ1(∂Λ/∂u1)

Λ2
ρ31

]
,

b22 = Λ
′

2

[
(1 −

Λ2

Λ
)ρ23 +

Λ1

Λ
ρ31

]
− Λ2

[(Λ
′

2Λ − Λ2(∂Λ/∂u2)

Λ2

)
ρ23 +

Λ1(∂Λ/∂u2)

Λ2
ρ31

]
.Thus we have for J in (4.1)

J11 = 2
(αu1u

2
2

µ1µ2

+
αu2

1u3

µ1µ3

+
αu1u

2
3

µ1µ3

+
u1u

4
2

µ1µ
2
2

ρ12 +
u1u

2
2u

2
3

µ1µ2µ3

ρ12+

+
u1u

2
2u

2
3

µ1µ2µ3
ρ13 +

u1u
4
3

µ1µ2
3

ρ13 −
u4

1u3

µ2
1µ3

ρ13 +
u2

1u
2
2u3

µ1µ2µ3
ρ32

)
/Λ2,

(4.4)
J12 = 2

(
−

αu2
1u2

µ1µ2
+

αu2
1u3

µ1µ3
+

u4
1u2

µ2
1µ2

ρ12 +
u2

1u2u
2
3

µ1µ2µ3
ρ32+

+
u2

1u
2
2u3

µ1µ2µ3

ρ32 −
u4

1u3

µ2
1µ3

ρ13

)
/Λ2,

(4.5)
J21 = 2

(
−

αu1u
2
2

µ1µ2
+

αu2
2u3

µ2µ3
+

u1u
4
2

µ1µ2
2

ρ21 +
u1u

2
2u

2
3

µ1µ2µ3
ρ31+

+
u2

1u
2
2u3

µ1µ2µ3
ρ31 −

u4
2u3

µ2
2µ3

ρ23

)
/Λ2,

(4.6)
J22 = 2

(αu2
1u2

µ1µ2
+

αu2
2u3

µ2µ3
+

αu2u
2
3

µ2µ3
+

u4
1u2

µ2
1µ2

ρ21 +
u2

1u2u
2
3

µ1µ2µ3
ρ21+

+
u2

1u2u
2
3

µ1µ2µ3

ρ23 +
u2u

4
3

µ2µ
2
3

ρ23 −
u4

2u3

µ2
2µ3

ρ23 +
u2

1u
2
2u3

µ1µ2µ3

ρ31

)
/Λ2,

(4.7)The formula for the 
hara
teristi
 speeds of equation (2.23) in terms of J in (4.1) is
λ± =

(J11 + J22) ±
√(

J11 + J22

)2
− 4
(
J11J22 − J12J21

)

2
. (4.8)4.2 Hyperboli
ity analysisFor Corey three-phase �ow model without gravity e�e
ts, Mar
hesin et al. [20℄ showedthe existen
e of four umbili
 points. Three of them are the verti
es of the saturation
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ity analysis 27triangle; there is also an additional umbili
 point inside the saturation triangle. In therest of the triangle the system is stri
tly hyperboli
.In this work (in the presen
e of gravity e�e
ts) we will split our analysis in two di�erent
ases. In the �rst one the parameter α (the 
onve
tion/gravity ratio) is equal to zero: we
all this 
ase �the pure gravitational problem�, be
ause the motion of the �ow o

urs onlyas a 
onsequen
e of gravitational buoyan
y e�e
ts due to �uid density di�eren
es.In the se
ond 
ase α is non zero. This problem presents di�erent levels of 
omplexitydepending of the value of α. For high values of α the behavior of this problem would besimilar to the 
ase without gravity studied by Mar
hesin et al. in [20℄, while for smallvalues of α (i.e, for predominant gravitational e�e
ts) the problem 
ould a
quire highlevels of 
omplexity presenting features from both the pure gravitational problem and theproblem without gravity.Applying the deviator operator (see de�nition in Eq. (3.19)) to the Ja
obian matrix
dF , we obtain from (4.4)-(4.7) a parametrization for the surfa
e dev(dF ) in the three-dimensional spa
e of tra
e-free matri
es with 
oordinates (X, Y, Z) given by (3.20). Sowe obtain

dev(dF ) =
(
X(u1, u2), Y (u1, u2), Z(u1, u2)

)
, (4.9)where X, Y, Z are given below, remembering that u3 = 1 − u1 − u2:

X =
(αu1u

2
2

µ1µ2
+

αu2
1u3

µ1µ3
−

αu2
2u3

µ2µ3
−

αu2
1u2

µ1µ2
−

αu2u
2
3

µ2µ3
+

αu1u
2
3

µ1µ3
+

+
u1u

4
2ρ12

µ1µ2
2

+
u1u

2
2u

2
3ρ12

µ1µ2µ3
+

u1u
2
2u

2
3ρ13

µ1µ2µ3
+

u1u
4
3ρ13

µ1µ2
3

−

−
u4

1u3ρ13

µ2
1µ3

+
u2

1u
2
2u3ρ12

µ1µ2µ3

+
u4

1u2ρ12

µ2
1µ2

+
u2

1u2u
2
3ρ12

µ1µ2µ3

−

−
u2

1u2u
2
3ρ23

µ1µ2µ3
−

u2u
4
3ρ23

µ2µ2
3

+
u4

2u3ρ23

µ2
2µ3

)
/Λ2,

(4.10)
Y =

(αu2
1u3

µ1µ3

−
αu1u

2
2

µ1µ2

+
αu2

2u3

µ2µ3

−
αu2

1u2

µ1µ2

+

+
u4

1u2ρ12

µ2
1µ2

−
u2

1u2u
2
3ρ23

µ1µ2µ3
−

u2
1u

2
2u3ρ23

µ1µ2µ3
−

u4
1u3ρ13

µ2
1µ3

−

−
u1u

4
2ρ12

µ1µ2
2

−
u1u

2
2u

2
3ρ13

µ1µ2µ3
−

u2
1u

2
2u3ρ13

µ1µ2µ3
−

u4
2u3ρ23

µ2
2µ3

)
/Λ2,

(4.11)
Z =

(αu2
1u3

µ1µ3
−

αu2
1u2

µ1µ2
+

αu1u
2
2

µ1µ2
−

αu2
2u3

µ2µ3
+

+
u4

1u2ρ12

µ2
1µ2

−
u2

1u2u
2
3ρ23

µ1µ2µ3
+

u2
1u

2
2u3ρ12

µ1µ2µ3
−

u4
1u3ρ13

µ2
1µ3

+

+
u1u

4
2ρ12

µ1µ
2
2

+
u1u

2
2u

2
3ρ13

µ1µ2µ3

+
u4

2u3ρ23

µ2
2µ3

)
/Λ2.

(4.12)
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teristi
 analysis4.2.1 Hyperboli
ity analysis for the �pure gravitational problem�Consider the �pure gravitational problem� (α = 0). First we analyze a simpli�ed model inwhi
h two �uids have equal densities while the third �uid has a di�erent density. We 
allthis problem the �simpli�ed pure gravitational problem�. In this se
tion we take phases
1 and 2 as having equal densities while phase 3 has a di�erent density; see Fig. 2.1 fornotation.Proposition 4.1. Consider the �pure gravitational problem� where α = 0, ρ1 = ρ2 6= ρ3,and denote ρ = ρ13 = ρ23. Then the system (2.23) is hyperboli
 on the saturation triangleand all the 
oin
iden
e points lie on its boundary. The vertex V3 is an umbili
 point. Theentire edge ∂3 is a diagonalization line; also there exist two quasi-umbili
 points Q1 ∈ ∂1,
Q2 ∈ ∂2. The system is stri
tly hyperboli
 in the rest of the 
losed saturation triangle.Proof. Substituting α = 0 and ρ = ρ13 = ρ23 in equations (4.10)-(4.12) we obtain

X = ρ
(u1u

2
2u

2
3

µ1µ2µ3

+
u1u

4
3

µ1µ
2
3

+
u4

2u3

µ3µ
2
2

−
u4

1u3

µ2
1µ3

−
u2

1u2u
2
3

µ1µ2µ3

−
u2u

4
3

µ2µ
2
3

)
/Λ2,

Y = ρ
(
−

u4
2u3

µ2
2µ3

−
u1u

2
2u

2
3

µ1µ2µ3
−

u4
1u3

µ2
1µ3

−
u2

1u2u
2
3

µ1µ2µ3
− 2

u2
1u

2
2u3

µ1µ2µ3

)
/Λ2,

Z = ρ
(u4

2u3

µ2
2µ3

+
u1u

2
2u

2
3

µ1µ2µ3
−

u4
1u3

µ2
1µ3

−
u2

1u2u
2
3

µ1µ2µ3

)
/Λ2.

(4.13)
From (4.13) we have

Y + Z = ρ
u2

1u3

µ1µ3Λ2

(
− 2

u2
1

µ1
− 2

u2
2

µ2
− 2

u2u3

µ2

)
,

Y − Z = ρ
u2

2u3

µ2µ3Λ2

(
− 2

u2
2

µ2

− 2
u2

1

µ1

− 2
u1u3

µ1

)
.

(4.14)We noti
e that (Y + Z)/ρ ≤ 0 and (Y − Z)/ρ ≤ 0, therefore
Y 2 − Z2 ≥ 0 ∀U ∈ T. (4.15)Thus X2 + Y 2 ≥ Z2 in T showing that there does not exist an �ellipti
 region�, in otherwords, that the system (2.23) is hyperboli
 in the saturation triangle.In general it is known that U0 is a 
oin
iden
e point for the 
hara
teristi
 speeds (seeSe
. 3.6.2) if and only if

X2(U0) + Y 2(U0) − Z2(U0) = 0. (4.16)From (4.15)-(4.16) we obtain the following ne
essary and su�
ient 
onditions for U0 tobe a 
oin
iden
e point:(i) X(U0) = 0, together with
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ity analysis 29(ii) Y (U0) = Z(U0) or Y (U0) = −Z(U0).Now for U0 = (u0
1, u

0
2, u

0
3), using (4.14) we see that

Y (u0
1, u

0
2, u

0
3) = Z(u0

1, u
0
2, u

0
3) ⇔ u0

2 = 0 or u0
3 = 0,

Y (u0
1, u

0
2, u

0
3) = − Z(u0

1, u
0
2, u

0
3) ⇔ u0

1 = 0 or u0
3 = 0.

(4.17)We note that the edge ∂3 is mapped by dev(dF ) into the vertex of the 
one X2 +Y 2 =
Z2, therefore the entire edge ∂3, in
luding the verti
es V1 and V2 of the saturation triangle,is a diagonalization line a

ording to Proposition 3.1 and Eqs (4.13).For U0 out of the edge ∂3 we have two 
ases. If u0

3 > 0, u0
1 = 0 we obtain two other
oin
iden
e points on the edge ∂1 by requiring that X(u0

1, u
0
2, u

0
3) = 0. One of them isthe vertex V3 = (0, 0, 1), whi
h is an umbili
 point (noti
e that X(0, 0, 1) = Y (0, 0, 1) =

Z(0, 0, 1) = 0). De�ne
a(µi, µj) =

3
√

µi/µj

1 + 3
√

µi/µj

, ∀i 6= j. (4.18)The other 
oin
iden
e point
Q1 =

(
0, a(µ2, µ3), 1 − a(µ2, µ3)

) (4.19)is mapped by dev(dF ) into the 
one surfa
e out of the vertex of the 
one, so a

ordingto Proposition 3.1, the Ja
obian matrix dF (Q1) is non diagonalizable. We know fromthe above 
al
ulations that Q1 is a boundary 
oin
iden
e point, whi
h is isolated if werestri
t our analysis to the saturation triangle. Nevertheless, in order to 
lassify Q1as a quasi-umbili
 point, we prove that Q1 is an isolated 
oin
iden
e point in a wholeneighborhood of Q1, so we extend our hyperboli
ity analysis for points with a negative�rst 
omponent, i.e., to allow in�nitesimal �negative saturations� for phase 1. From(4.14), we see that if a point Uε 6= Q1 belongs to a su�
iently small neighborhood of
Q1 (and therefore its �rst 
omponent uε

1 
ould be negative but it is 
lose to zero) wehave that (Y (Uε) + Z(Uε))/ρ < 0 and (Y (Uε) − Z(Uε))/ρ < 0. Thus we obtain that
X2(Uε)+Y 2(Uε)+Z2(Uε) > 0, 
on
luding that Q1 is an isolated 
oin
iden
e point. Thus
Q1 is a quasi-umbili
 point.For the 
ase u0

3 > 0, u0
2 = 0 and u0

1 > 0 we obtain in a similar way the point on theedge ∂2

Q2 =
(
a(µ1, µ3), 0, 1 − a(µ1, µ3)

)
, (4.20)whi
h is quasi-umbili
 point.Now we have the following Proposition for the 
ase in whi
h the three phases havedistin
t densities.
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teristi
 analysisProposition 4.2. Assume α = 0, ρ1 6= ρ2 6= ρ3 6= ρ1. Then the system (2.23) ishyperboli
 on the saturation triangle; all the 
oin
iden
e points are isolated and lie on itsboundary. The verti
es V1, V2 and V3 are umbili
 points. There exist three quasi-umbili
points Qi ∈ ∂i, i = 1, 2, 3. The system is stri
tly hyperboli
 in the rest of the 
losedsaturation triangle.Proof. Medeiros [33℄ proved that for the Corey model in
luding gravitational e�e
ts withzero total �ow speed, the system is stri
tly hyperboli
 in the interior of the saturationtriangle. Now we will analyze hyperboli
ity at the boundary of the triangle.Setting α = 0 in equations (4.10)-(4.12) we obtain the following relations
Y + Z = 2

(u4
1u2ρ12

µ2
1µ2

−
u2

1u2u
2
3ρ23

µ1µ2µ3
−

u2
1u

2
2u3ρ23

µ1µ2µ3
−

u4
1u3ρ13

µ2
1µ3

)
/Λ2, (4.21)

Y − Z = −2
(u2

1u
2
2u3ρ13

µ1µ2µ3
+

u1u
4
2ρ12

µ1µ2
2

+
u1u

2
2u

2
3ρ13

µ1µ2µ3
+

u4
2u3ρ23

µ2
2µ3

)
/Λ2, (4.22)

X − Z =
(u1u

2
2u

2
3ρ12

µ1µ2µ3

+
u1u

4
3ρ13

µ1µ
2
3

+
u2

1u2u
2
3ρ12

µ1µ2µ3

−
u2u

4
3ρ23

µ2µ
2
3

)
/Λ2. (4.23)If Û = (0, û2, 1 − û2) ∈ ∂1, from (4.21) we have Y (Û) + Z(Û) = 0. Thus Y 2(Û) = Z2(Û)and from (4.16) Û is a 
oin
iden
e point if and only if X(Û) = 0. From (4.10) we have

X(Û) = −
û2(1 − û2)ρ23

µ2µ3(Λ(Û))2

((1 − û2)
3

µ3
−

û3
2

µ2

)
; (4.24)setting X(Û) = 0 we obtain three 
oin
iden
e points on the edge ∂1, whi
h are V2, V3and Q1 given in (4.19). A

ording to Proposition 3.1, the points V2, V3 are umbili
be
ause for V2 we have X(0, 1, 0) = Y (0, 1, 0) = Z(0, 1, 0) = 0 and for V3 we have

X(0, 0, 1) = Y (0, 0, 1) = Z(0, 0, 1) = 0. The point Q1 is again quasi-umbili
 be
ause itis mapped by dev(dF ) onto the 
one surfa
e out of the vertex. The fa
t that Q1 is anisolated 
oin
iden
e point follows from (4.21)-(4.22), sin
e (Y (Uε) + Z(Uε))/(uε
1)

2ρ23 < 0and (Y (Uε) − Z(Uε))/ρ23 < 0 for all point Uε in a neighborhood of Q1 whi
h imply that
X2(Uε) + Y 2(Uε) + Z2(Uε) > 0.For Û = (û1, 0, 1 − û1) ∈ ∂2, from (4.22) we have Y (Û) − Z(Û) = 0 and therefore Ûis again a 
oin
iden
e point if and only if X(Û) = 0, where

X(Û) =
û1(1 − û1)ρ13

µ1µ3(Λ(Û))2

((1 − û1)
3

µ3
−

û3
1

µ1

)
; (4.25)as in the previous 
ase three 
oin
iden
e points are obtained: the umbili
 points V1, V3and a quasi-umbili
 point Q2 in (4.20) on the edge ∂2.If Û = (û1, 1−û1, 0) ∈ ∂3, from (4.23) we have X(Û)−Z(Û) = 0, and X2(Û) = Z2(Û).Therefore Û is a 
oin
iden
e point if and only if Y (Û) = 0. From (4.11) we have

Y (Û) = −
û1(1 − û1)ρ12

µ1µ2(Λ(Û))2

((1 − û1)
3

µ2
−

û3
1

µ1

)
; (4.26)
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ity analysis 31in this 
ase, we obtain the umbili
 points V1, V2. We obtain also a quasi-umbili
 point Q3on the edge ∂3:
Q3 = (a(µ1, µ2), 1 − a(µ1, µ2), 0), (4.27)where a(µ1, µ2) is given in (4.18).

4.2.2 Hyperboli
ity analysis for the general gravitational problemWe analyze hyperboli
ity when the 
onve
tion/gravity ratio α is non-zero; even though wewill not use these results in the rest of the work. As we said earlier, the 
omplexity of thisanalysis depends on the value of α. For values of |α| so high that the 
onve
tion e�e
ts aredominant with respe
t to the gravitational e�e
ts, the three verti
es are umbili
 pointsand there exist an additional umbili
 point U∗
α in the interior of the saturation triangle(Medeiros [33℄). For small non-zero values of |α| (i.e., for predominant gravitationale�e
ts) the problem, besides the four umbili
 points will also possess quasi-umbili
 pointsat the boundary of the triangle. The following proposition summarizes these results.Proposition 4.3. Consider the system (2.23) with α 6= 0, in the saturation triangle.Then the following assertions are true:(i) The verti
es of the saturation triangle are umbili
 points. In the interior of thetriangle the system is stri
tly hyperboli
 ex
ept at the umbili
 point U∗

α.(ii) Without loss of generality, 
onsider the two-phase edge ∂1 where phases 2 and 3
oexist. Assume also ρ2 > ρ3, then there exists a quasi-umbili
 point Q1 ∈ ∂1 if andonly if α lies in the interval (−ρ23

µ3
< α < ρ23

µ2
). The system is stri
tly hyperboli
 inthe rest of the edge ∂1.(iii) In the 
ase ρ2 = ρ3 all points on the edge ∂1 are stri
tly hyperboli
, ex
ept for theverti
es V2, V3.Remark 4.1. As phases 1, 2, 3 are arbitrary we 
an write items (ii), (iii) of Prop. 4.3using any permutation of indi
es {1, 2, 3} obtaining analogous results for the other edges

∂2 and ∂3.Remark 4.2. Noti
e that in the 
ase α 6= 0, when ρ2 = ρ3 we have stri
t hyperboli
ityon the edge ∂1 ex
ept for the verti
es V2, V3. This behavior di�ers from the simpli�ed puregravitational 
ase, where ∂1 is a diagonalization line (see Prop. 4.1 with the indi
es 1 and
3 inter
hanged).Proof. (i)- It is obvious that the verti
es V1, V2 and V3 are umbili
 points sin
e

X(Vi) = Y (Vi) = Z(Vi) = 0, i = 1, 2, 3.
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teristi
 analysisThe existen
e of the interior umbili
 point U∗
α and the stri
t hyperboli
ity of the remaininginterior points for the 
ase α 6= 0 was proved by Medeiros [33℄.

(ii)- From equations (4.4)-(4.7) we obtain that the 
hara
teristi
 values at a point
U ∈ ∂1 are

λ(U) = 0, (4.28)
λ∗(U) = 2

u2(1 − u2)

µ2µ3Λ2

(
(−

u3
2

µ2

+
(1 − u2)

3

µ3

)ρ23 + α
)
. (4.29)Here the eigenvalues λ and λ∗ are not asso
iated to spe
i�
 families sin
e λ∗ 
ould bepositive or negative. The important fa
t is that U ∈ ∂1 will be a 
oin
iden
e point if andonly if λ∗(U) = 0; this o

urs on this edge at the verti
es V2, V3 and at the intermediatepoint Qα

1

Qα
1 = (0, qα, 1 − qα), where qα solves (q3

α/µ2 − (1 − qα)3/µ3)ρ23 = α. (4.30)From (4.30) we have that Qα
1 ∈ T if and only if

−
ρ23

µ3

< α <
ρ23

µ2

. (4.31)Now we will prove under 
ondition (4.31) that Qα
1 is a quasi-umbili
 point. As in Propo-sition 4.2 using Eqs. (4.10), it is possible to show that Qα

1 ∈ ∂1 is an isolated 
oin
iden
epoint. Next we will prove that it is not an umbili
 point, by 
ontradi
tion. Assume that
Qα

1 is an umbili
 point, then ne
essarily X(Qα
1 ) = Y (Qα

1 ) = Z(Qα
1 ) = 0.From (4.11) we have that

Y (Qα
1 ) =

q2
α(1 − qα)

µ2µ3
(α −

q2
αρ23

µ2
)/Λ2, (4.32)where Λ is evaluated at Qα

1 .Equations (4.30) and (4.31) imply 0 < qα < 1, so we have from (4.32) that α =
q2
αρ23/µ2. Substituting this value into the de�nition (4.30) for qα, we obtain

q2
α

µ2

(1 − qα) = −
(1 − qα)3

µ3

. (4.33)The fa
t 0 < qα < 1 
ontradi
ts (4.33). We 
on
lude that Qα
1 is a quasi-umbili
 pointbe
ause Qα

1 is an isolated 
oin
iden
e point that is not mapped to the vertex of the 
one
X2 + Y 2 = Z2.

(iii)- For the 
ase ρ2 = ρ3 we 
an see from (4.10)-(4.12) that for U in ∂1

X(U) = −αu2u3

µ2µ3
/Λ2, Y (U) =

αu2
2u3

µ2µ3
/Λ2, Z(U) = −αu2

2u3

µ2µ3
/Λ2, where Λ = Λ(U).(4.34)
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ity analysis 33If U is not a vertex we have from (4.34) that X(U) is non-zero. We also have
Y (U) + Z(U) = 0, therefore X2(U) + (Y 2(U) − Z2(U)) > 0. We have obtained thestri
t hyperboli
ity of the system on the edge ∂1 ex
ept at the verti
es V2 and V3.The following theorem des
ribes the edges as integral 
urves that 
hange family when
rossing the quasi-umbili
 points.Theorem 4.1. Consider the system (2.23) for any value of α, in the saturation triangle.Assume that ρ2 6= ρ3 and that (4.31) holds, i.e., the quasi-umbili
 point Qα

1 ∈ ∂1 exists.We have the following fa
ts along the edge ∂1. Analogous fa
ts are true along ∂2 and ∂3.(a) The single right eigenve
tor at Qα
1 has the dire
tion of the edge ∂1.(b) Away from the verti
es V2, V3 and the quasi-umbili
 point Qα

1 on ∂1, the right eigen-ve
tor 
orresponding to one of the families is parallel to ∂1, while the eigenve
tor forthe other family is transversal to ∂1.(
) Consider a point U in the edge ∂1. Let us move the point U along the integral 
urvethat 
oin
ides with the edge. There is a 
hange of family when U 
rosses the quasi-umbili
 point Qα
1 .(d) For U out of the 
oin
iden
e points on ∂1, one of the 
hara
teristi
 speeds is equalto zero while the other one is non-zero. The family of the zero-
hara
teristi
 speed(resp. non-zero 
hara
teristi
 speed) 
hanges a

ording to the position of U withrespe
t to the quasi-umbili
 point Qα

1 .All this fa
ts are illustrated in e.g., Fig. 9.1.Proof. Without loss of generality we assume that ρ2 > ρ3. If (4.31) holds we guaranteethe existen
e of the quasi-umbili
 point Qα
1 ∈ ∂1.Consider a point U ∈ ∂1. From (4.4)-(4.7) we obtain J11(U) = 0, J12(U) = 0 and theeigenvalues of the Ja
obian matrix at this point are given by (4.28) and (4.29).

(a)-Let us denote by r∗(U) the right eigenve
tor asso
iated to the eigenvalue λ∗(U).We have
(
J(U) − λ∗(U)I

)
r∗(U) =

(
−λ∗(U) 0
J21(U) 0

)(
r∗1(U)
r∗2(U)

)
= 0.Sin
e λ∗(U) and J21(U) do not vanish simultaneously along ∂1, we obtain r∗1(U) = 0 forall U ∈ ∂1 and therefore the eigenve
tor r∗(U) has the dire
tion of the edge ∂1. For theparti
ular 
ase U = Qα

1 we 
on
lude the result of item (a).
(b)- We already proved that for U ∈ ∂1 the eigenve
tor asso
iated to the eigenvalue λ∗ isparallel to the edge ∂1. If U 6= Qα

1 we denote by r0(U) the right eigenve
tor 
orresponding
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teristi
 analysisto the zero eigenvalue. We have
J(U)r0(U) =

(
0 0

J21(U) λ∗(U)

)(
r0
1(U)

r0
2(U)

)
= 0.Out of the quasi-umbili
 point λ∗ 6= 0 so we obtain that r0

1 must be di�erent from zeroand r0
2(U) = J21(U)r0

1(U)/λ∗, 
on
luding that the eigenve
tor r0(U) is transversal to theedge ∂1.
(c)- From the 
al
ulations above we have that the right eigenve
tor r∗ asso
iated to thenon-zero eigenvalue λ∗ has the dire
tion of the edge ∂1. But noti
e that for the eigenvaluezero we have

0 = λ(U) =

{
λ+(U) if U ∈ [V2, Q

α
1 ]

λ−(U) if U ∈ [V3, Q
α
1 ]

, (4.35)while for the non-zero eigenvalue
λ∗(U) =

{
λ−(U) < 0 if U ∈ (V2, Q

α
1 )

λ+(U) > 0 if U ∈ (V3, Q
α
1 )

, (4.36)so we have
r∗(U) =

{
r−(U) if U ∈ (V2, Q

α
1 )

r+(U) if U ∈ (V3, Q
α
1 )

, (4.37)re�e
ting 
hange of family along the edge ∂1 when 
rossing Qα
1 .

(d)-The proof of this item is a 
onsequen
e of Eqs. (4.35)-(4.36).Now we give an impli
it formula for the umbili
 point U∗
α given in Prop 4.3, item (i).Requiring that X(U∗

α) = Y (U∗
α) = Z(U∗

α) = 0 at U∗
α, the following relations hold

α(Λ′
2 − Λ′

3) + [Λ1Λ
′
2ρ21 + (Λ2Λ

′
3 + Λ′

2Λ3)ρ23 + Λ1Λ
′
3ρ13] = 0, (4.38)

α(Λ′
1 − Λ′

3) + [Λ2Λ
′
1ρ12 + (Λ1Λ

′
3 + Λ′

1Λ3)ρ13 + Λ2Λ
′
3ρ23] = 0, (4.39)

α(Λ′
1 − Λ′

2) + [Λ′
1Λ3ρ13 + (Λ2Λ

′
1 + Λ′

2Λ1)ρ12 + Λ′
2Λ3ρ32] = 0. (4.40)Remark 4.3. Equations (4.38)-(4.40) represent 
urves 
rossing the umbili
 point U∗

α;only two of these equations are independent; any one of them 
an be obtained from theother two by a simple addition or subtra
tion. The umbili
 point U∗
α is the interse
tionpoint of any pair of 
urves given impli
itly by (4.38)-(4.40) inside the saturation triangle.



Chapter 5Two-phase behavior in the puregravitational problem.
In this 
hapter we study two-phase �ows o

urring in the pure gravitational problem,in whi
h α = 0. We re
all the well known features of the two-phase �ows restri
ted tothe edges ∂i. It is known that the Riemann solution for two-phase regime is obtained bythe Oleinik 
onstru
tion. A new result of interest is obtained for the pure gravitationalproblem simpli�ed so that two �uids j and k have equal densities; we show that withinthe triangle there is a straight line segment Ri through the vertex Vi (see de�nition in(2.29)), where the three-phase problem behaves like a two-phase �ow.The results presented in this 
hapter will be very useful for the analysis of Hugoniot lo
iin the 
hapters that follow and for the 
onstru
tion of Riemann solutions for three-phase�ow.5.1 Two-phase �ow on edges of the saturation triangleWithout loss of generality we will study the two-phase �ow on the edge ∂3. To �x ideas,let us assume ρ1 6= ρ2. We noti
e that on ∂3 the system (2.23) redu
es to the s
alarequation

∂u1

∂t
+

∂

∂x
F ∂3

1 (u1) = 0, where F ∂3

1 (u1) =
u2

1(1 − u1)
2

µ1µ2

(u2
1

µ1
+ (1−u1)2

µ2

)ρ12 (5.1)is a s
alar �ux fun
tion.Remark 5.1. Be
ause of Remark 2.1, sin
e α = 0 (and 
onsequently v = 0), we see that
F ∂3

2 (u2) = −F ∂3

1 (u1), so the 
hoi
e F ∂3

1 (u1) and u1 or F ∂3

2 (u2) and u2 as the two-phase �uxfun
tion and 
onserved quantity along the ∂3 edge makes no di�eren
e. In other words,we 
an use any one of the PDE's: (u1)t +
(
F ∂3

1 (u1)
)

x
= 0 or (u2)t +

(
F ∂3

2 (u2)
)

x
= 0.35
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an 
al
ulate the derivative of this �ux fun
tion,
dF ∂3

1 (u1)

du1

=
−2ρ12u1(1 − u1)P (u1)

µ1µ2

(u2
1

µ1
+ (1−u1)2

µ2

)2 , (5.2)where
P (u1) = (1 +

µ1

µ2

)u3
1 − 3

µ1

µ2

u2
1 + 3

µ1

µ2

u1 −
µ1

µ2

(5.3)is a 
ubi
 polynomial. We will show this polynomial has only one real root. Indeedwith the 
hange of variable ζ = u1 − µ1/(µ1 + µ2) we eliminate the quadrati
 term forpolynomial P , obtaining a new 
ubi
 polynomial in ζ of the form
ζ3 + pζ + q, (5.4)with

p =
3µ1

µ2

(1 + µ1

µ2
)2

, q = −2
( µ1

µ2

(1 + µ1

µ2
)

)3
+ 3
( µ1

µ2

1 + µ1

µ2

)2
−

µ1

µ2

1 + µ1

µ2

. (5.5)If we 
onsider the dis
riminant ∆ =
(
4p3 + 27q2

), it is known from elementary algebrathat if ∆ > 0, the polynomial (5.4) in ζ has only one real root. In our 
ase we see that
∆ > 0 sin
e all the quantities involved in the expression for p in (5.5) are positive. Is easyto see that û1 = 3

√
µ1

µ2
/
(
1 + 3

√
µ1

µ2

) is the unique root of the 
ubi
 polynomial P , so we 
anrewrite the derivative of the �ux fun
tion on the edge ∂3 as follows
dF ∂3

1 (u1)

du1

=
−2ρ12u1(1 − u1)(u1 − û1)P̃ (u1)

µ1µ2

(u2
1

µ1
+ (1−u1)2

µ2

)2 , (5.6)where P̃ (u1) has no real roots.Assume that ρ1 > ρ2. We noti
e that the �ux fun
tion F ∂3

1 (u1) has only three lo
alextrema in the interval (0, 1), one of them a lo
al maximum at û1 (minimum if ρ1 < ρ2)depending on the vis
osities µ1 and µ2, and two lo
al minima (maxima if ρ1 < ρ2) at theend points u1 = 0, u1 = 1, therefore the �ux fun
tion has only two in�e
tion points inthis interval. The plot of F ∂3

1 (u1) for a non-symmetri
al 
ase is shown in Fig. 5.1(a).Remark 5.2. Noti
e that the point of lo
al maximum (minimum if ρ1 < ρ2) for the two-phase �ux F ∂3

1 (u1) 
oin
ides in the saturation triangle with the quasi-umbili
 point 
alled
Q3. For the symmetri
al 
ase where µ1 = µ2 we have û1 = 1/2.Be
ause of Remark 5.1 we have that the plot of F ∂3

2 (u2) is like the Fig. 5.1(b).Remark 5.3. We must regard this two-phase problem as a parti
ular 
ase of the generalthree-phase �ow, in this sense, we 
an say that lo
al extrema for the s
alar fun
tion F ∂3

1 (u1)
orrespond to all 
oin
iden
e points on the ∂3 edge; be
ause of item (c) of Theorem (4.1)the two sides of the edge ∂3 relative to the 
oin
iden
e point Q3 are identi
al to integral
urves for di�erent families. Similarly the derivative of the two-phase �ux fun
tion F ∂3

1
oin
ides with the 
hara
teristi
 speed of the fast (slow if ρ1 < ρ2) family in the interval
(V2, Q3) and with the 
hara
teristi
 speed of the slow (fast if ρ1 < ρ2) family in the interval
(Q3, V1).
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(b)Figure 5.1: For both 
ases µ1 = 1, µ2 = 0.5, ρ12 = 0.7. (a) Two-phase s
alar �ux F ∂3

1 (u1).(b) Two-phase s
alar �ux F ∂3

2 (u2).If both left and right states of the Rieman problem lie on the ∂3 edge, the solutionof the Riemann problem is the well known Oleinik solution [34℄ for the Bu
kley-Leverettequation (5.1) with �ux fun
tion shown in Fig. 5.1(a).5.2 Two-phase �ow for the simpli�ed pure gravitationalproblem.Now, assume ρ1 = ρ2 6= ρ3. If we restri
t the system (2.23) to the ∂3 edge, with α = 0, all
omponents of the �ow fun
tion are identi
ally equal to zero, and the system redu
es to
∂ui

∂t
= 0, i = 1, 2. (5.7)The wave joining any pair of states on the edge ∂3 for this 
ase is an immobile �genuine�
onta
t dis
ontinuity (the speed σ is equal to zero). Along the other edges the solution isthe Bu
kley-Leverett solution as des
ribed in the previous se
tion.Two-phase �ow along the 
riti
al lineNow we will show that when ρ1 = ρ2 the system (2.23) restri
ted to the segment R3(see Fig.(2.1)) behaves like a two-phase �ow problem too. We 
all the segment R3 for thissimpli�ed problem the �
riti
al line�. We have the following theoremTheorem 5.1. Assume α = 0, ρ1 = ρ2 6= ρ3 and denote ρ = ρ13 = ρ23. Let UL and

UR be states on the 
riti
al line R3. The Riemann solution U(x, t) satis�es u1(x, t)/µ1 =
u2(x, t)/µ2 for all t, x (i.e., the solution remains on R3 for all times). The Riemannsolution 
onsists of waves solely from the slow family if ρ > 0, and solely from the fastfamily if ρ < 0.



38 Chapter 5. Two-phase behavior in the pure gravitational problem.Proof. Following Azevedo et al. [1℄, we 
an parameterize the line segment R3 in terms ofthe saturation of phase 3

R3 =

{
(u1, u2) : u1 =

µ1(1 − u3)

µ1 + µ2
, u2 =

µ2(1 − u3)

µ1 + µ2
, 0 ≤ u3 ≤ 1

}
. (5.8)Using this parametrization of R3 and the expressions for the �ow 
omponents (2.20)-(2.21)we obtain that along segment R3

F1

µ1

=

u2

(µ1+µ2)2
(1−u)2

µ3
ρ

(1−u)2

µ3
+ u2

µ1+µ2

=
F2

µ2

, where u = 1 − u3. (5.9)Now we de�ne the following fun
tion of the variable u along R3

F12(u) ≡ (µ1 + µ2)
F1

µ1
= (µ1 + µ2)

F2

µ2
=

u2

(µ1+µ2)
(1−u)2

µ3
ρ

(1−u)2

µ3
+ u2

µ1+µ2

. (5.10)If we substitute the parametrization (5.8) of the segment R3 into the system (2.23)we obtain that on R3 both equations of the system redu
e to the s
alar gravitationalBu
kley-Leverett equation
∂u

∂t
+

∂

∂x
F12(u) = 0, (5.11)with the �ux F12 given by (5.10). We 
on
lude that along the 
riti
al line R3 the quantity

u (remembering that u = 1 − u3 = u1 + u2) is 
onserved a

ording to (5.11). So the
riti
al line R3 is invariant under the evolution governed by system (2.23). In this sense,we 
an say that along R3 the behavior of the �uid is like two-phase �ow, with phases:(phase 1 �+� phase 2) and (phase 3). Compare the s
alar 
onservation law (5.11) and the��ux� fun
tion F12 de�ned in (5.10) with the 
onservation law and the 
orresponding �uxfun
tion F ∂3

1 in (5.1) . Noti
e that the fun
tion F12 has exa
tly the same expression as
F ∂3

1 but with vis
osities µ3 instead of µ2 and µ1 + µ2 instead of µ1.In order to prove the se
ond part of the theorem we will assume that ρ > 0 ( then the
ase ρ < 0 
an be regarded as a dire
t 
onsequen
e of Theorem 8.1).Assuming that ρ > 0 we will show that the entire segment R3 is an integral 
urve ofthe slow family. From (4.8), we have that in ea
h arbitrary point U the 
hara
teristi
speed of the slow family is given by λ−(U). We denote by r−(U) = (r−1 (U), r−2 (U))T theright eigenve
tor asso
iated to λ−(U). We have that
(
DF (U) − λ−(U)I

)
r−(U) = 0, (5.12)more spe
i�
ally

[
J11(U) − λ−(U)

]
r−1 (U) + J12(U)r−2 (U) = 0, (5.13)

J21(U)r−1 (U) +
[
J22(U) − λ−(U)

]
r−2 (U) = 0. (5.14)



Two-phase �ow for the simpli�ed pure gravitational problem. 39We will assume that U is an interior point of the saturation triangle, then from (4.5)-(4.6) we have J12(U) < 0, J21(U) < 0, so we obtain from (5.14) that
r−1 (U) =

[
λ−(U) − J22(U)

]
r−2 (U)

J21(U)
. (5.15)If we substitute (5.15) into (5.13) we see that (5.13) is satis�ed trivially.Sin
e r−(U) is an eigenve
tor, from (5.15) we have r−2 (U) 6= 0. Thus we 
an assumewithout loss of generality r−2 (U) = 1 and r−1 (U) = J22(U)−λ−(U)

−J21(U)
. Let us 
al
ulate r−1 (U),more details appear in Appendix A.We 
an write

J22(U) − λ−(U) =
J22 − J11 +

√(
J22 − J11

)2
+ 4J12J21

2
. (5.16)Assume now that U ∈ R3. From (4.4)-(4.7) we obtain after some 
al
ulation thefollowing relations

J21(U) = −2
(µ2/µ1)u

3
1u3ρ

µ2
1µ3Λ2

, (5.17)
J22(U) − J11(U) = 2

u3
1u3ρ

µ2
1µ3Λ2

(1 − µ2/µ1), (5.18)
J12(U)J21(U) = 4

(µ2/µ1)u
6
1u

2
3ρ

2

µ4
1µ

2
3Λ

4
, (5.19)then

J22(U) − λ−(U) = −
µ1

µ2
J21(U) ⇒ r−1 (U) =

µ1

µ2
. (5.20)So we have proved that the eigenve
tor r−(U) has the dire
tion of the segment R3 forany U ∈ R3.

Remark 5.4. For a more general 
ase in whi
h α 6= 0, ρ1 = ρ2 6= ρ3, we 
an apply thesame pro
edure to obtain that on R3 the �ow has again a two-phase behavior, but in su
h a
ase the Riemann solution on R3 
onsists of waves of both families. This is a 
onsequen
eof the presen
e of the umbili
 point U∗
α on R3 (see Lemma 6.4).Remark 5.5. The fa
t that the solution behaves like a two-phase �ow along segment R3was already observed in the problem without gravity (see [1℄), therefore we 
an regard thetheorem above as a generalization of that result for the gravitational 
ase in whi
h two�uids have equal densities.



40 Chapter 5. Two-phase behavior in the pure gravitational problem.Remark 5.6. Noti
e that in the 
ase without gravity the presen
e of the umbili
 point inthe interior of the triangle again implies a 
hange of family along the integral 
urve that
oin
ides with R3, so the property that the entire segment R3 is part of an integral 
urve ofa single family holds only in the simpli�ed pure gravitational problem (i.e., α = 0, ρ1 = ρ2).



Chapter 6Hugoniot lo
i for verti
es in the generi
problem
This 
hapter summarizes the analysis of the Hugoniot lo
i of the verti
es V1, V2 and V3for the general 
ase in whi
h the velo
ity parameter α has an arbitrary value. In otherwords, 
onve
tion and buoyan
y are both a
tive. The results have an important role inthe solution of the Riemann solutions with data for x > 0 
orresponding to a vertex ofthe saturation triangle. Nevertheless, as in this work we only solve Riemann problems forthe �pure gravitational� 
ase (α = 0), it is su�
ient to use the results in Prop. 6.1 andProp. 6.3, the rest of the 
hapter 
an be skipped.We want to study the Hugoniot lo
us for the three verti
es of the saturation triangle.Without loss of generality we 
an analyze the Hugoniot lo
us through the point V3. Wewill 
onsider the 2 × 2 system of 
onservation laws (2.23) that originates from droppingthe equation 
orresponding to the phase 3 in the equations for Corey model with �uxfun
tions (2.20)-(2.22). If we employ the system of 
oordinates given by saturations ofphases 1 and 2 and use the de�nition of the saturation triangle given in (2.24), we have
V3 = (0, 0). We 
onsider an arbitrary state U = (u1, u2); the Rankine-Hugoniot relationfor a sho
k joining the state V3 with U is

F1(0, 0) − F1(u1, u2) = −σ(u1 − 0) (6.1)
F2(0, 0) − F2(u1, u2) = −σ(u2 − 0), (6.2)with σ representing the sho
k speed.Using the �ux expressions (2.20)-(2.21) into (6.1)-(6.2) we obtain the following Rankine-Hugoniot expression
σu1 =

u2
1

µ1

[α + (
u2

3

µ3

ρ13 +
u2

2

µ2

ρ12)]/Λ, (6.3)
σu2 =

u2
2

µ2

[α + (
u2

3

µ3

ρ23 +
u2

1

µ1

ρ21)]/Λ, (6.4)41



42 Chapter 6. Hugoniot lo
i for verti
es in the generi
 problemwhere Λ = Λ(u1, u2, u3) is given in (2.19). To obtain (6.3)-(6.4) we took advantage of thefa
t that F1 and F2 given in (2.20)-(2.21) vanish at V3.There are essentially two types of solutions for equations (6.3)-(6.4). One type 
orre-sponds to two-phase �ow. The other type 
orresponds to three-phase �ow.For 
on
reteness, in order to analyze the two-phase �ow solutions for (6.3)-(6.4) letus 
onsider �uids 2 and 3 (the 
ase of �uids 1 and 3 is analogous), so assume u1 = 0.For this type of solution we are taking U ∈ ∂1, equation (6.3) is satis�ed trivially for allvalues of σ. The entire edge ∂1 of the saturation triangle belongs to H(V3). For a givenstate on this edge U = (0, u2), u2 > 0, the speed of the dis
ontinuity is determined from(6.4) as
σ =

u2

µ2
[α + (1−u2)2

µ3
ρ23]

u2
2

µ2
+ (1−u2)2

µ3

. (6.5)Noti
e that for this 
ase, the �rst equation of (2.23) is satis�ed trivially, so the systemredu
es to the s
alar Bu
kley-Leverett equation (se
ond equation of (2.23)). This type ofsolution for Eqs. (6.3)-(6.4) is a two-phase dis
ontinuity on the edge ∂1 (or on the edge
∂2, if u2 = 0).Let us 
onsider the 
ase of genuine three-phase �ow, i.e., assume u1 6= 0, u2 6= 0.For this type of solution, U belongs to the interior bran
h of H(V3). We eliminate σ in(6.3)-(6.4), and obtain, for u3 = 1 − u1 − u2

u2

µ2

(
α +

u2
3

µ3
ρ23 +

u2
1

µ1
ρ21

)
−

u1

µ1

(
α +

u2
3

µ3
ρ13 +

u2
2

µ2
ρ12

)
= 0. (6.6)As we already saw, both edges ∂1 and ∂2 are trivial bran
hes of H(V3). We de�ne thenon-trivial bran
h of the Hugoniot lo
us of V3 as

Ĥ(V3) = {U ∈ T, su
h that (6.6) holds} . (6.7)This represents a 
urve through the vertex V3 given in impli
it form. The speed σ 
an bere
overed from any one of the equations (6.3) or (6.4).Re
all that Λ1 and Λ2 are the mobilities of the phases 1 and 2 respe
tively (see thede�nitions in (2.19)). Multiplying (6.3) by Λ2, (6.4) by Λ1 and subtra
ting the results(noti
e that both Λ1 and Λ2 are di�erent from zero for this type of solution), we obtainafter some 
al
ulations
σ (Λ2u1 − Λ1u2) = Λ1Λ2ρ12. (6.8)The above equation is a ne
essary 
ondition that must be satis�ed by any state U ofthe non-trivial bran
h Ĥ(V3). This equation will provide interesting information. We willsplit our analysis in two 
ases. First we analyze the 
ase in whi
h phases 1 and 2 haveequal densities.



Three-phase �ow with two equal-density �uids 436.1 Three-phase �ow with two equal-density �uidsHere we analyze the simplest 
ase in whi
h the density di�eren
e ρ12 vanishes. Let us usethe notation ρ = ρ13 = ρ23.Assume σ 6= 0, so for U ∈ Ĥ(V3) we obtain from (6.8) that ne
essarily Λ2u1 = Λ1u2and therefore u1/µ1 = u2/µ2 (i.e., U ∈ R3 (see Eq. (2.29) and Fig. 6.1). From (6.3)-(6.4),we 
an see that 
ondition U ∈ R3 is also su�
ient for U to belong to Ĥ(V3).For the 
ase σ = 0, as we have u1 6= 0, u2 6= 0, and ρ1 = ρ2 we obtain from theRankine-Hugoniot 
onditions (6.3)-(6.4) that ne
essarily α + u2
3ρ/µ3 = 0; therefore if

0 ≤ −αµ3/ρ ≤ 1, there exists a segment parallel to ∂3, given by u3 =
√

−αµ3/ρ thatbelongs to H(V3) with speed σ equal to zero. We are led to de�ne
Cα

3 =

{ {
U ∈ T : u3 =

√
−αµ3/ρ

} if 0 ≤ −αµ3/ρ ≤ 1,
∅ otherwise.Noti
e that we have proved the following result:Proposition 6.1. Assume that ρ1 = ρ2, then the Hugoniot Lo
us of the vertex V3 is givenby H(V3) = ∂1 ∪ ∂2 ∪ R3 ∪ Cα

3 . See Fig. 6.1.
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Figure 6.1: Dark 
urves: Hugoniot Lo
us of vertex V3 for the 
ase ρ1 = ρ2 when α 6= 0with 0 < −αµ3/ρ ≤ 1Remark 6.1. Noti
e that C0
3 = ∂3, so for the simpli�ed pure gravitational problem (α =

0, ρ12 = 0) the edge ∂3 not only is a diagonalization line but it also belongs to H(V3) withspeed σ = 0. This fa
t was expe
ted be
ause of the Triple Sho
k rule.Remark 6.2. It is well known (see [1℄) that in the absen
e of buoyan
y (i.e., ρ1 = ρ2 =
ρ3), the straight line segment R3 is part of the Hugoniot-Lo
us of the point V3. So we seethat Proposition 6.1 is a generalization of that result for the 
ase in whi
h the phases 1and 2 have equal densities while phase 3 has a di�erent density.



44 Chapter 6. Hugoniot lo
i for verti
es in the generi
 problem6.2 Three-phase �ow with three di�erent-density �uidsNow we will analyze the general 
ase ρ21 6= 0 in whi
h the 
urve Ĥ(V3) has a more
ompli
ated shape (it is not 
omposed by straight line segments).We have the following lemmas.Lemma 6.1. For α non-zero, Ĥ(V3) interse
ts the edge ∂3 at a unique point P3. For the
ase α = 0, Ĥ(V3) interse
ts the edge ∂3 at the verti
es V1 and V2.Proof. Let us 
onsider u3 = 0 in equation (6.6). First noti
e that when ρ21 = 0 the point
B3 with 
oordinates given by (2.30) is the unique solution of Eq. (6.6). For ρ21 6= 0, aftersome 
al
ulations, we obtain

u2
2 − (1 + α(µ1 + µ2)/ρ21)u2 + αµ2/ρ21 = 0. (6.9)The solutions of equation (6.9) are

u±
2 =

1

2

(
(
1 +

α(µ1 + µ2)

ρ21

)
±

√
(
1 +

α(µ1 + µ2)

ρ21

)2
− 4

αµ2

ρ21

)
. (6.10)If (α/ρ21) < 0, the solution u−

2 is negative and has no interest, while the solution u+
2lies in (0, 1), therefore P3 has 
oordinates (1 − u+

2 , u+
2 , 0). Performing a similar analysisfor the 
ase (α/ρ21) > 0 we have u−

2 as the unique valid solution of (6.9), giving rise to
P3 = (1 − u−

2 , u−
2 , 0). For the 
ase α = 0, we obtain u−

2 = 0 and u+
2 = 1; therefore Ĥ(V3)interse
ts the boundary ∂3 at the verti
es V1 and V2.Lemma 6.2. The interse
tion of Ĥ(V3) with the edges of the saturation triangle aredes
ribed as follows.(i) (1) Consider ρ13 = 0. We have:(a) α = 0 ⇔ ∂2 ⊂ Ĥ(V3).(b) α 6= 0 ⇔ Ĥ(V3) ∩ ∂2 = {V3}.(2) If ρ13 6= 0 then (αµ3/ρ31) ∈ [0, 1) ⇔ ∃!Sα

2 ∈ Ĥ(V3) ∩ ∂2 su
h that Sα
2 6= V3.(ii) (1) Consider ρ23 = 0. We have:(a) α = 0 ⇔ ∂1 ⊂ Ĥ(V3).(b) α 6= 0 ⇔ Ĥ(V3) ∩ ∂1 = {V3}.(2) If ρ23 6= 0 then (αµ3/ρ32) ∈ [0, 1) ⇔ ∃!Sα

1 ∈ Ĥ(V3) ∩ ∂1 su
h that Sα
1 6= V3.Proof. We will prove only item (ii) sin
e the proof of item (i) is analogous. First noti
ethat the vertex V3 = (0, 0, 1) ∈ Ĥ(V3) ∩ ∂1 ∩ ∂2. In item (ii) we are interested in theinterse
tions (out of V3) of the non-trivial lo
us Ĥ(V3) with the edge ∂1 so we take the



Three-phase �ow with three di�erent-density �uids 45limit when u1 → 0 with u2 6= 0 in (6.6), we have U = (u1, u2, u3) ∈ Ĥ(V3)∩ ∂1 if and onlyif
α +

u2
3

µ3
ρ23 = 0. (6.11)From (6.11) we see that item (ii.1) is trivial. If (αµ3/ρ32) ∈ [0, 1) we obtain from (6.11)that u3 =

√
αµ3/ρ32 is an admissible saturation value and therefore the point

Sα
1 = (0, 1 −

√
αµ3/ρ32,

√
αµ3/ρ32) (6.12)satis�es Sα

1 ∈ Ĥ(V3) ∩ ∂1 with Sα
1 6= V3, 
on
luding the proof of item (ii.2).As we said before the proof for item (i) is analogous, spe
i�
ally for (i.2) we will obtainthe point

Sα
2 = (1 −

√
αµ3/ρ31, 0,

√
αµ3/ρ31), (6.13)whi
h satis�es Sα

2 ∈ Ĥ(V3) ∩ ∂2 with Sα
2 6= V3.Remark 6.3. Noti
e that when |α| → 0 we have Sα

1 → V2 and Sα
2 → V1.Corollary 6.1. Assume ρ13 6= 0, ρ23 6= 0, (αµ3/ρ32) /∈ [0, 1) and (αµ3/ρ31) /∈ [0, 1), then

Ĥ(V3) ∩ ∂1 = Ĥ(V3) ∩ ∂2 = {V3}.Proof. This result is a dire
t 
onsequen
e of items (i.2) and (ii.2) of Lemma 6.2.Lemma 6.3. Assume ρ1 6= ρ2. We have the following assertions:(i) Ĥ(V3) does not interse
t R3 at any interior point of the saturation triangle.(ii) If U ∈ Ĥ(V3) and U is not a vertex of the saturation triangle, then σ(V3, U) 6= 0.Proof. Item (i) is a dire
t 
onsequen
e of the ne
essary 
ondition (6.8) for a state U tobelong to Ĥ(V3). Item (ii) will be also a 
onsequen
e of (6.8) for states out of the edges
∂1 and ∂2. If U ∈ Ĥ(V3)∩∂i for i = 1 or i = 2, then the 
on
lusion follows from the shapeof the two-phase �ux fun
tions along the edges, see Fig. 5.1, and from the assumptionthat U is not a vertex of the saturation triangle.We 
ontinue the study of Ĥ(V3) given by (6.6) for the 
ase ρ1 6= ρ2. It is 
lear thatthis 
urve 
ontains the point V3. Depending of the parameter α a portion of this 
urvemay lie outside the saturation triangle.Assume (α + ρ13/µ3) 6= 0, then we 
an apply the impli
it fun
tion theorem for Ĥ(V3)(equation (6.6)) in a neighborhood N (V3) of V3 = (0, 0) (here we use the 
oordinates
u1, u2 in (2.24) for the saturation triangle), obtaining u1 as fun
tion of u2, with slope

T3(α) =
du1

du2
(0, 0) =

µ1

µ2

(α + ρ23

µ3
)

(α + ρ13

µ3
)
. (6.14)



46 Chapter 6. Hugoniot lo
i for verti
es in the generi
 problemThe sign of T3(α) yields 
ru
ial information about the behavior of the lo
al 
urve (6.6),i.e., in a neighborhood of V3.Corollary 6.2. If T3(α) > 0 the lo
al 
urve (6.6) 
rosses the vertex V3, possessing aportion inside the saturation triangle, so in this sense we say that Ĥ(V3) starts from V3.If T3(α) < 0 the lo
al 
urve (6.6) 
rosses the vertex V3 and lies outside the saturationtriangle. In su
h a 
ase we say that Ĥ(V3) does not start at V3.If T3(α) = 0 the lo
al 
urve (6.6) is tangent at V3 to the edge ∂1. If the inverse of
T3(α) vanishes, the lo
al 
urve (6.6) will be tangent at V3 to the edge ∂2. In both tangen
y
ases either the whole lo
al 
urve lies entirely outside the saturation triangle or one halfof the lo
al 
urve lies inside the saturation triangle.Remark 6.4. We note that for su�
iently large values of |α|, T3(α) is positive, thereforethe 
urve Ĥ(V3) starts from the vertex V3, ( i.e., it enters the saturation triangle).Remark 6.5. As expe
ted, lim

α→∞
T3(α) = µ1/µ2. This limit 
orresponds to the non-gravitational 
ase in whi
h Ĥ(V3) = R3.Remark 6.6. Noti
e that the formula for T3(α) in (6.14) is given in a re
tangular 
oordi-nates system (u1, u2). Nevertheless in most of the �gures along the work we use bari
entri

oordinates in the saturation triangle.Sin
e ρ1 6= ρ2, if (α + ρ13/µ3) = 0 we have (α + ρ23/µ3) 6= 0, so we 
an apply theImpli
it Fun
tion Theorem to obtain u2 as a fun
tion of u1 in a neighborhood of V3.De�ning T3(α) as the inverse of the fra
tion in (6.14) it is possible to rea
h 
on
lusionsanalogous to Corollary 6.2 and Remarks 6.4, 6.5.The following Proposition gives the qualitative behavior of the non-trivial Hugoniotbran
h Ĥ(V3).Proposition 6.2. Assume ρ1 > ρ2 and α 6= 0, then we have the following assertions(plotting the 
urve in (6.6) it is possible to obtain Figs. 6.2-6.6).(i) When ρ1 > ρ3 > ρ2 :(i.1) If α > (ρ32/µ3) or α < (ρ31/µ3) we have that Ĥ(V3) is a 
onne
ted 
urve thatstarts at V3 and �nishes at P3 ∈ ∂3, without tou
hing the edges ∂1 and ∂2; seeFig. 6.2.(i.2) If 0 < α < (ρ32/µ3) we have that Ĥ(V3) is a 
onne
ted 
urve that starts at apoint Sα

1 ∈ ∂1 (Sα
1 6= V3) and �nishes at P3 ∈ ∂3; see Fig. 6.3.(i.3) If (ρ31/µ3) < α < 0 we have that Ĥ(V3) is a 
onne
ted 
urve that starts at

Sα
2 ∈ ∂2 (Sα

2 6= V3) and �nishes at P3 ∈ ∂3; see Fig. 6.4.



Three-phase �ow with three di�erent-density �uids 47(ii) When ρ3 ≥ ρ1 > ρ2 :(ii.1) If α < 0 or α > (ρ32/µ3) we have that Ĥ(V3) is a 
onne
ted 
urve that startsat V3 and �nishes at P3 ∈ ∂3, without tou
hing the edges ∂1 and ∂2; see Fig. 6.2.(ii.2) If (ρ31/µ3) < α < (ρ32/µ3) we have that Ĥ(V3) is a 
onne
ted 
urve that startsat Sα
1 ∈ ∂1 (Sα

1 6= V3) and �nishes at P3 ∈ ∂3; see Fig. 6.3.(ii.3) If 0 < α < (ρ31/µ3) then Ĥ(V3) is a dis
onne
ted 
urve with two bran
hes
V3�Sα

2 and Sα
1 �P3 where Sα

2 ∈ ∂2, Sα
1 ∈ ∂1, P3 ∈ ∂3; see Fig. 6.5.(iii) When ρ1 > ρ2 ≥ ρ3 :(iii.1) If α > 0 or α < (ρ31/µ3) we have that Ĥ(V3) is a 
onne
ted 
urve that startsat V3 and �nishes at P3 ∈ ∂3, without tou
hing the edges ∂1 and ∂2; see Fig. 6.2.(iii.2) If (ρ31/µ3) < α < (ρ32/µ3) then Ĥ(V3) is a 
onne
ted 
urve that starts at

Sα
2 ∈ ∂2 (Sα

2 6= V3) and �nishes at P3 ∈ ∂3; see Fig. 6.4.(iii.3) If 0 > α > (ρ32/µ3) then Ĥ(V3) is a dis
onne
ted 
urve with two bran
hes
V3�Sα

1 and Sα
2 �P3, where Sα

1 ∈ ∂1, Sα
2 ∈ ∂2, P3 ∈ ∂3; see Fig. 6.6.
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¶Figure 6.2: Dark 
urve: Hugoniot Lo
us of vertex V3 for items (i.1), (ii.1), (iii.1) of Propo-sition 6.2Proof. We will prove only item (ii), the proofs for items (i) and (iii) are similar.Assume ρ3 ≥ ρ1 > ρ2. We have ρ23 < 0 and ρ13 ≤ 0, so for α < 0 or α > (ρ32/µ3)we have T3(α) > 0 and therefore the 
urve (6.6) 
rosses the vertex V3 with a lo
al por-tion inside the saturation triangle. Thus Ĥ(V3) starts at the vertex V3. Ĥ(V3) �nishes at

P3 ∈ ∂3 as we proved in Lemma 6.1. The fa
t that Ĥ(V3) does not tou
h the boundaries ∂1and ∂2 is a 
onsequen
e of Corollary 6.1, 
on
luding the proof of item (ii.1), see Fig. 6.2.
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Figure 6.3: Dark 
urve: Hugoniot Lo
us of vertex V3 for items (i.2) and (ii.2) of Proposi-tion 6.2. Light 
urve: points satisfying the Rankine-Hugoniot relation but lie outside thesaturation triangle
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SFigure 6.4: Dark 
urve: Hugoniot Lo
us of vertex V3 for items (i.3) and (iii.2) of Propo-sition 6.2. Light 
urve: points satisfying the Rankine-Hugoniot relation but lie outside thesaturation triangleFor (ii.2); see Fig. 6.3, we obtain T3(α) < 0, so the 
urve (6.6) 
rosses the vertex V3lying outside the saturation triangle and Ĥ(V3) does not start at the vertex V3. We alsohave

0 ≤ (αµ3/ρ32) < 1 < (αµ3/ρ31).Applying items (i.2) and (ii.2) of Lemma 6.2 we see that there exists a unique Sα
1 ∈

Ĥ(V3) ∩ ∂1 with Sα
1 6= V3 while Ĥ(V3) ∩ ∂2 = {V3}. The bran
h of the Hugoniot lo
usjoining Sα

1 with vertex V3 �lies outside� the saturation triangle and has no interest, so the
urve Ĥ(V3) lying inside the saturation triangle starts at Sα
1 and �nishes at P3 ∈ ∂3 givenby Lemma 6.1.For (ii.3); see Fig. 6.5, we have the 
ondition 0 < α < (ρ31/µ3) < (ρ32/µ3), here wehave T3(α) > 0 therefore Ĥ(V3) enters the triangle in a neighborhood of the vertex V3.
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Figure 6.5: Dark 
urve: Hugoniot Lo
us of vertex V3 for item (ii.3) of Proposition 6.2.Light 
urve: points satisfying the Rankine-Hugoniot relation but lie outside the saturationtriangle
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Figure 6.6: Dark 
urve: Hugoniot Lo
us of vertex V3 for item (iii.3) of Proposition 6.2.Light 
urve: points satisfying the Rankine-Hugoniot relation but lie outside the saturationtriangleWe 
an assume ρ3 > ρ1 (noti
e that the 
ase ρ3 = ρ1 is trivial) so we obtain
0 ≤ (αµ3/ρ32) ≤ (αµ3/ρ31) < 1.Again applying the items (i.2) and (ii.2) of Lemma 6.2 there exist two points Sα

1 ∈ Ĥ(V3)∩
∂1 with Sα

1 6= V3 and Sα
2 ∈ Ĥ(V3)∩∂2 with Sα

2 6= V3. The 
urve Ĥ(V3) has two dis
onne
tedbran
hes. The �rst bran
h starts at the vertex V3 and �nishes at Sα
2 ∈ ∂2. The se
ondbran
h starts at Sα

1 ∈ ∂1 and �nishes at a point P3 ∈ ∂3 given by Lemma 6.1.It is possible to analyze the limit 
ases α → 0, α → (ρ32/µ3) and α → (ρ31/µ3) forProp. 6.2. As we want to solve the pure gravitational problem as a �rst step to understandthe in�uen
e of the buoyan
y in the solutions of Riemann problem, in this work we willanalyze only the limit 
ase α → 0.



50 Chapter 6. Hugoniot lo
i for verti
es in the generi
 problemNoti
e that when α = 0 we have that all three verti
es belong to Ĥ(V3) (see Lemma 6.1);the following Proposition des
ribes the other points of the 
urve Ĥ(V3).Proposition 6.3. Assume ρ1 > ρ2 and α = 0. The following assertions hold:(i) For any of the 
ases (ρ1 > ρ3 > ρ2), (ρ1 = ρ3 > ρ2) or (ρ1 > ρ3 = ρ2) we have
Ĥ(V3)\{V1, V2, V3} = ∅, therefore H(V3) = ∂1 ∪ ∂2.(ii) If ρ3 > ρ1 > ρ2, Ĥ(V3)\{V1, V2, V3} is a 
onne
ted 
urve joining the verti
es V3 and
V1 (see Fig. 6.7(a)). This 
urve 
onsists only of interior points of the saturationtriangle.(iii) If ρ3 < ρ2 < ρ1, Ĥ(V3)\{V1, V2, V3} is a 
onne
ted 
urve joining the verti
es V3 and
V2 (see Fig. 6.7(b)). This 
urve 
onsists only of interior points of the saturationtriangle.
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¶(b)Figure 6.7: Dark 
urve: Hugoniot Lo
us of vertex V3 for the pure gravitational problem.(a) Case of item (ii) of Prop. 6.3. (b) Case of item (iii) of Prop. 6.3.Proof. Item (i) is a dire
t 
onsequen
e of Eq. (6.6) sin
e all the terms involved are negativequantities for all the 
ases mentioned.In order to prove item (ii), let us assume α < 0, then (α/ρ21) > 0. The interse
tionpoint of Ĥ(V3) with the edge ∂3 is P3 = (1 − u−

2 , u−
2 , 0), where u−

2 is given by (6.10).Noti
e that in su
h a 
ase we have P3 → V1 when α → 0−.Applying item (ii.1) of Proposition 6.2 for the limit 
ase α → 0−, we obtain that
Ĥ(V3) starts at V3 and �nishes at V1, without tou
hing the edges ∂1 and ∂2.In the same way we 
an apply item (ii.3) of Proposition 6.2 for the limit 
ase α → 0+;we will obtain the same result, sin
e Sα

2 → V1,Sα
1 → V2 (see Remark 6.3) and P3 → V2.
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ase noti
e that the bran
h Sα
1 − P3 yields the point V2, while the bran
h

V3 − Sα
2 yields a 
onne
ted 
urve starting at the vertex V3 and �nishing at the vertex V1;this 
urve 
onsists of interior points ex
ept for the verti
es.The proof of item (iii) is analogous.Lemma 6.4. Assume α 6= 0. The unique interior umbili
 point U∗

α lies on the 
urve
Ĥ(V3).Proof. Let U∗

α be the interior umbili
 point, then it must satisfy the equations (4.38)-(4.40). For the quadrati
 mobilities (2.19) in the Corey model, Eq. (4.40) is
α(

u1

µ1
−

u2

µ2
) +

[
u1u

2
3

µ1µ3
ρ13 + (

u1u
2
2

µ1µ2
+

u2
1u2

µ1µ2
)ρ12 −

u2u
2
3

µ2µ3
ρ23

]
= 0. (6.15)By regrouping 
onveniently the terms in Eq. (6.15) we obtain (6.6), 
on
luding that for theCorey model with quadrati
 mobilities, the umbili
 point U∗

α is 
ontained in Ĥ(V3).We 
an state the following result.Proposition 6.4. For α 6= 0, the unique interior umbili
 point U∗
α is the interse
tionpoint of the non-trivial Hugoniot bran
hes for the three verti
es V1, V2 and V3, see forinstan
e Fig. 6.8.Remark 6.7. The fa
t that the umbili
 point U∗

α is unique for the Corey model in
ludinggravity was proved by Medeiros in [33℄.

1
V2

P
3

V

2
V

3
¶

1
¶

2
¶

a

2
S

33
BP =

a

1
S

*

a
U

1
P

Figure 6.8: Hugoniot lo
i for the three verti
es in the 
ase ρ1 = ρ2 > ρ3, µ1 > µ2 and
0 < α < ρ23/µ1. The umbili
 point U∗

α is the interse
tion point of the three 
urves in thesaturation triangle.



Chapter 7Hugoniot lo
us for edge points in thepure gravitational problem
In this 
hapter we analyze the Hugoniot lo
us for states UL on the edges ∂i for the puregravitational 
ase, in whi
h α = 0. Here UL will not be a vertex of the saturation triangle,as this 
ase was analyzed in the previous 
hapter. In the �rst se
tion we present a newmethod based on a geometri
 
onstru
tion to obtain sho
ks joining states on di�erenttwo-phase regimes, provided that these regimes have a 
ommon state forming a wedge.This 
onstru
tion does not depend on the permeabilities, so it is appli
able for generalpermeability models. In the se
ond se
tion we 
onsider the 
ase where UL lies on anedge 
orresponding to equal-density phases. In third and fourth se
tions we des
ribe theHugoniot lo
us for the remaining 
ases. The results of this 
hapter will be very importantfor the 
onstru
tion of the Riemann solutions des
ribed in Chapters 9 and 10.Without loss of generality we will analyze the Hugoniot lo
us for the edge ∂2, whi
hrepresents mixtures of phases 1 and 3. We will 
onsider the 2× 2 system of 
onservationlaw (2.23) that results after dropping the equation 
orresponding to phase 3. We 
onsidera state UL on the edge ∂2, UL = (uL

1 , 0, uL
3 ), with uL

3 = 1−uL
1 . Denote by U = (u1, u2, u3)an arbitrary state in the saturation triangle. The Rankine-Hugoniot relation for a sho
kjoining the left and right states UL and U is

F1(UL) − F1(U) = σ(uL
1 − u1) (7.1)

F2(UL) − F2(U) = σ(uL
2 − u2), (7.2)with σ representing the sho
k speed. Using the �ux expressions (2.20)-(2.21) into (7.1)-(7.2) we obtain the following expressions

σ(uL
1 − u1) =

(uL
1 )2(1 − uL

1 )2

µ1µ3ΛL

ρ13 −
u2

1

µ1

(
u2

3

µ3

ρ13 +
u2

2

µ2

ρ12)/Λ(U), (7.3)
σu2 =

u2
2

µ2

(
u2

3

µ3

ρ23 +
u2

1

µ1

ρ21)/Λ(U), (7.4)52



53where, from (2.19)
ΛL = Λ(UL) = (uL

1 )2/µ1 + (1 − uL
1 )2/µ3. (7.5)In Proposition 6.3 we have already found the Hugoniot lo
us for the verti
es, so fromnow on we assume that uL

1 6= 0 and uL
1 6= 1.From (7.4) it is obvious that the edge ∂2 is a trivial bran
h of H(UL). For U /∈ ∂2 we
an divide the equation (7.4) by u2 to obtain:

σ =
u2

µ2
(
u2

3

µ3
ρ23 +

u2
1

µ1
ρ21)/Λ(U). (7.6)Equation (7.6) represents the speed σ of the dis
ontinuity joining the state UL ∈ ∂2with any state U ∈ H(UL) out of the edge ∂2.Substituting (7.6) into equation (7.3) and performing some 
al
ulations we obtain

(uL
1 )3u2u

2
3

µ1µ2µ3
ρ23 +

(uL
1 )3u2u

2
1

µ2
1µ2

ρ21 −
(uL

1 )2u1u2u
2
3

µ1µ2µ3
ρ23 −

(uL
1 )2u3

1u2

µ2
1µ2

ρ21

+
(uL

1 )u2(1 − uL
1 )2u2

3

µ2µ2
3

ρ23 +
(uL

1 )u2
1u2(1 − uL

1 )2

µ1µ2µ3
ρ21 −

u1u2u
2
3(1 − uL

1 )2

µ2µ2
3

ρ23

−
u3

1u2(1 − uL
1 )2

µ1µ2µ3
ρ21 −

(uL
1 )2u2

1(1 − uL
1 )2

µ2
1µ3

ρ13 −
(uL

1 )2u2
2(1 − uL

1 )2

µ1µ2µ3
ρ13

−
(uL

1 )2u2
3(1 − uL

1 )2

µ1µ2
3

ρ13 +
(uL

1 )2u2
1u

2
3

µ2
1µ3

ρ13 +
u2

1u
2
3(1 − uL

1 )2

µ1µ2
3

ρ13

−
(uL

1 )2u2
1u

2
2

µ2
1µ3

ρ21 −
u2

1u
2
2(1 − uL

1 )2

µ1µ2µ3
ρ21 = 0.

(7.7)
For uL

1 �xed, (7.7) represents a lo
al bran
h of the Hugoniot lo
us of UL that is di�erentfrom the edge ∂2.De�nition 7.1. We will 
all the portion of the 
urve (7.7) lying in the saturation triangleas the non-trivial bran
h of the Hugoniot lo
us of UL ∈ ∂2 and we will denote it by H̃(UL).Sometimes it is simpler to work dire
tly with Eqs. (7.3)-(7.4) rather than with Eq. (7.7).As u3 = 1 − u1 − u2, noti
e that the left hand side of Eq. (7.7) is a polynomial of fourthdegree in the variables u1 and u2. However, for some spe
ial 
ases, like ρ2 = ρ3, it is pos-sible to obtain u2 from Eq. (7.7) as an expli
it fun
tion of u1. This is a great advantageof Eq. (7.7).In order to understand the shape of H̃(UL) for UL in ∂2 the �rst step is to determine theinterse
tions of H̃(UL) with the other edges of the saturation triangle. In our parti
ularRiemann problem it is also an essential step. We present in the next se
tion a geometri
analysis that allows to 
onstru
t general edge to edge sho
ks for any �ux fun
tions, anydensity and vis
osity values; however, for the sake of 
on
reteness, we will illustrate themethod only for the 
ase ρ1 > ρ3 ≥ ρ2 and for left and right sho
k states in ∂2 and ∂3respe
tively.



54 Chapter 7. Hugoniot lo
us for edge points in the pure gravitational problem7.1 Edge to edge sho
ks: the wedge 
onstru
tion.The following geometri
 
onstru
tion determines sho
ks joining states on di�erent two-phase edges of the saturation triangle. The 
onstru
tion is general and does not dependon the �
onve
tion/gravity ratio� α or on the form of the permeability fun
tions, so it isappli
able to general permeability models. Nevertheless in this work we only use it forthe quadrati
 Corey model with gravity (2.23).Two edges of the saturation triangle have a 
ommon vertex forming a wedge. Withoutloss of generality we assume that the 
ommon vertex is V1. This means that phase 1 ispresent in both edges ∂2 and ∂3 of the wedge, phase 2 is present in the edge ∂3, whilephase 3 is present in the edge ∂2.We will illustrate the wedge 
onstru
tion for the 
ase ρ1 > ρ3 ≥ ρ2. We 
onsiderthe �ux fun
tion (F1, F2) of the system (2.23) restri
ted to the edges ∂2 and ∂3 . FromRemark 5.1 we see that the 
hoi
e F ∂2

1 (u1) or F ∂2

3 (u3) does not make any di�eren
e forthe solution, so we 
hoose the pair
F ∂2

1 (u1) =
u2

1(1 − u1)
2

µ1µ3

(u2
1

µ1
+ (1−u1)2

µ3

)ρ13 and u1 (7.8)as the two-phase �ux and the 
onserved quantity both restri
ted to the edge ∂2. As
ρ1 > ρ3 the plot of this �ux fun
tion is similar to the one shown in Fig. 5.1(a).For the restri
tion of the �ux to the two-phase edge ∂3 we will 
hoose for 
onvenien
e

F ∂3

2 (u2) =
u2

2(1 − u2)
2

µ1µ2

(u2
2

µ2
+ (1−u2)2

µ1

)ρ21, (7.9)where u2 is the 
onserved quantity. The plot of this fun
tion is shown in Fig. 5.1(b).The s
alar �ux fun
tions F ∂2

1 and F ∂3

2 govern di�erent two-phase regimes with a 
om-mon state V1. However we will 
reate a useful 
onstru
tion by de�ning an extended �uxfun
tion involving both F ∂2

1 and F ∂3

2 in the same graph in a 
onveniently way. We de�nefor −1 ≤ u ≤ 1

F ∂2∂3

ext (u) =

{
F ∂2

1 (1 + u) if − 1 ≤ u ≤ 0,

F ∂3

2 (u) if 0 ≤ u ≤ 1.
(7.10)Noti
e that F ∂2∂3

ext is a 
ontinuous fun
tion of the variable u de�ned in the interval
[−1, 1]. For negative values of u, the fun
tion F ∂2∂3

ext 
oin
ides with the �ux F ∂2

1 restri
tedto the edge ∂2 while for positive values of u this extended �ux fun
tion 
oin
ides with the�ux F ∂3

2 restri
ted to the edge ∂3. For that reason in this se
tion we will abuse the notationdenoting by V1 the origin (u = 0, F ∂2∂3

ext (0) = 0
), V2 is the point (u = 1, F ∂2∂3

ext (1) = 0
) and

V3 is the point (u = −1, F ∂2∂3

ext (−1)
)

= 0, see the Fig. 7.1.
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Figure 7.1: Example of the extended �ux fun
tion F ∂2∂3

ext for µ1 = 1, µ2 = 1.7, µ3 = 0.9and ρ2 = ρ3Remark 7.1. Noti
e that the extended �ux F ∂2∂3

ext does not represent a genuine �ux fun
-tion in a neighborhood of the state V1, the jun
tion of the edges ∂2 and ∂3 where both �uxfun
tions F ∂2

1 and F ∂3

2 are de�ned.Remark 7.2. Di�erentiability at u = 0 of the fun
tion F ∂2∂3

ext is a 
onsequen
e of Eq.(5.2).The following Lemma will be 
ru
ial for the appli
ability of our 
onstru
tion.Lemma 7.1. Consider a state UL in the edge ∂2. If there exists U ∈ ∂3 su
h that
U ∈ H(UL) then σ(UL, U) = σ(U, V1) = σ(UL, V1).Proof. See Fig. 7.2(a). Noti
e that the sho
k speed σ(UL, U) given in Eq. (7.4) 
oin
ideswith the slope of the straight line segment joining the vertex V1 to the point (u2, F

∂3

2 (u2)),so we have that σ(UL, U) = σ(U, V1). As UL, V1, U are not aligned states in the satura-tion triangle, we apply the Triple Sho
k Rule to 
on
lude that σ(UL, U) = σ(U, V1) =
σ(UL, V1).Remark 7.3. The 
onverse also holds: if U ∈ ∂3 is su
h that σ(U, V1) = σ(UL, V1),then U ∈ H(UL) and σ(UL, U) = σ(UL, V1). It follows from the se
ond version of theTriple-Sho
k Rule.The geometri
 
onstru
tion: Consider a state U on one of the edges ∂2 or ∂3.Lemma 7.1 yields a 
onstru
tive way to obtain all the interse
tion points of H(U) withthe other edge. As we did in Fig. 7.2(a), we have to 
onstru
t the se
ant joining V1 = (0, 0)(noti
e that this is the origin of the system of 
oordinates in Fig. 7.1; these 
oordinatesdo not 
orrespond to the 
oordinates in the saturation triangle) to (u, F ∂2∂3

ext (u)), anddetermine the interse
tion points with the extended �ux on the other side relative to theorigin. The abs
issae of these points determine the states on the other edge that belongto H(U). Of 
ourse, the number of interse
tion points of the se
ant with the graph onthe other side 
oin
ides with the number of states of H(U) that lie on the other edge.
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(a)

(b)Figure 7.2: (a) Extended �ux F ∂2∂3

ext for µ1 = µ2 = 1, µ3 = 0.5. The �gure illustrate theappli
ation of Triple Sho
k Rule and the result of Lemma 7.1. (b) Extended �ux F ∂2∂3

ext for
µ1 = µ2 = 1, µ3 = 1.5. In this 
ase for U in the interval (A, B), H̃(U) does not interse
tthe other edge.Remark 7.4. An interesting 
ase o

urs when the segment is tangent to the extended�ux graph on one side while it is se
ant to the graph on the other side. In this 
ase, thereexists an interval of states U (the interval (A, B) in Fig. 7.2(b)) for whi
h H(U) does notinterse
t the other edge.Remark 7.5. Noti
e that for the results in Lemma 7.1 and for the geometri
 
onstru
tion,the fa
t that the 
onstru
ted se
ant 
rosses the origin V1 is 
ru
ial in order to obtain avalid geometri
 des
ription of the sho
ks from one edge to the other.
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ks: the wedge 
onstru
tion. 57Let us denote by U∗ = (1 − u∗
2, u

∗
2, 0) the unique state on the edge ∂3 satisfying

σ(V1, U
∗) = (dF ∂3

2 /du2)(u
∗
2). The value of u∗

2 
an be shown to be the unique real root ofthe following 
ubi
 polynomial in v:
(µ1 + µ2)v

3 + (µ1 − 3µ2)v
2 + 3µ2v − µ2. (7.11)Let us denote by P ∗ the point on the graph of F ∂2∂3

ext 
orresponding to the state U∗.Let us denote by S the straight line segment that is tangent at P ∗ to the graph of F ∂2∂3

ext ;this line 
rosses the origin of the 
oordinates system (whi
h 
orresponds to the vertex
V1). Depending of the quantities µ2, µ3, ρ13, ρ21 we will have zero, one (double) or twointerse
tion points (u, F ∂2∂3

ext (u)) of the segment S with the graph of F ∂2∂3

ext for negativevalues of u. In Fig. 7.3 we illustrate this fa
t for three di�erent values of µ3, keeping theparameters µ2, ρ13, ρ21 �xed. The three �ux 
urves of Fig. 7.3 
oin
ide above the edge
∂3 be
ause we only 
hanged the parameter µ3 to obtain the three 
urves.For the 
ase in whi
h the extended �ux is like the solid 
urve in Fig. 7.3, the pair ofstates U0 in ∂2 and U∗ in ∂3 
orresponding to the tangen
y points P0 and P ∗ belongs tothe double 
onta
t manifold (see Def. 3.7). As we show in Fig. 7.3 small perturbations ofthe parameters µ2, µ3, ρ13, ρ21 give rise to bifur
ations of this �double-tangen
y� 
ase.

Figure 7.3: Extended �ux fun
tion F ∂2∂3

ext for three di�erent 
ases. Solid 
urve: µ1 = µ2 =
µ3 = 1, dashed 
urve µ1 = µ2 = 1, µ3 = 1.5, dotted 
urve µ1 = µ2 = 1, µ3 = 0.5. Theparameters ρ13 and ρ21 are the same for all the 
ases. Be
ause µ1 and µ2 are �xed the�ux is the same on ∂3.Proposition 7.1. Given the parameters µ2, µ3, ρ13, ρ21, we 
an des
ribe the interse
tionpoints with the edge ∂3 of the Hugoniot lo
us H(UL) for a state UL on ∂2 as follows:(i) When the segment S does not interse
t the graph of F ∂2∂3

ext for negative values of u(this is the 
ase for the dashed 
urve in Fig. 7.3), 
onsider an arbitrary state UL in
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Figure 7.4: Extended �ux fun
tion F ∂2∂3

ext for the dotted �ux 
urve of Fig. 7.3. Illustrationfor the proof of item (ii) in Proposition 7.1.
∂2, then H̃(UL) interse
ts the edge ∂3 at two points. When S is tangent at a point
P0 to the graph of F ∂2∂3

ext (the 
ase of the solid 
urve in Fig. 7.3), for UL ∈ ∂2 with
UL 6= U0, H̃(UL) interse
ts the edge ∂3 at two points while H̃(U0) interse
ts the edge
∂3 only at the point U∗.(ii) Assume that S interse
ts at two points P1 and P2 the graph of F ∂2∂3

ext for negativevalues of u ( dotted 
urve in Fig. 7.3). Let us denote by U1 and U2 the states on
∂2 
orresponding to P1 and P2 respe
tively. For UL ∈

(
V3, U1

) or UL ∈
(
U2, V1

) wehave that H̃(UL) interse
ts the edge ∂3 at two points di�erent from U∗. If UL = U1or UL = U2 we have that H̃(UL) interse
ts the edge ∂3 only at the point U∗. If
UL ∈

(
U1, U2

) there are no interse
tion points between H̃(UL) and the edge ∂3.Proof. We only prove item (ii) sin
e item (i) is trivial using the same argument. InFig. 7.4 we draw only the dotted �ux of Fig. 7.3. The proof is a 
onsequen
e of thegeometri
al 
onstru
tion and the Triple Sho
k Rule. The fan of light segments in Fig. 7.4represent the possible lines that 
ross the state V1 interse
ting the graph of F ∂2∂3

ext at twopoints for positive values of u. Consider a state UL = (uL
1 , 0, 1− uL

1 ) on the edge ∂2 su
hthat PL = F ∂2

1 (uL
1 ) lies inside the fan. Denote by SL the segment of the fan that 
rossesthe point PL, denote by U∗

1 and U∗
2 the states on ∂3 
orresponding to the interse
tionpoints of the straight line SL with F ∂2∂3

ext for positive values of u. From Lemma 7.1 (seethe geometri
 
onstru
tion) we have U∗
1 , U∗

2 ∈ H(UL) and σ(UL, U∗
1 ) = σ(UL, U∗

2 ) = m =
σ(UL, V1) = σ(V1, U

∗
1 ) = σ(V1, U

∗
2 ), where m is the slope of the segment SL and σ denotesthe sho
k speed. If UL = U1 or UL = U2 the points U∗

1 and U∗
2 
ollapse into U∗. If

UL ∈ (U1, U2) then PL lies out of the fan and therefore there does not exist a state in ∂3belonging to H(UL).



Edge to edge sho
ks: the wedge 
onstru
tion. 59Proposition 7.2. Consider UL su
h that H̃(UL) interse
ts the edge ∂3 at two points U∗
1and U∗

2 (see Fig. 7.5), then we have λ−(U∗
1 ) < σ(UL, U∗

1 ) = σ(UL, V1) = σ(UL, U∗
2 ) <

λ−(U∗
2 )Proof. First remember that for U = (1 − u2, u2, 0) in the interval (V1, Q3) we have

λ−(U) = (dF ∂3

2 /du2)(u2), λ+(U) = 0 while in the interval (Q3, V2) we have λ+(U) =
(dF ∂3

2 /du2)(u2), λ−(U) = 0 (here Q3 is the lo
al minimizing point of the �ux F ∂3

2 on theedge ∂3). The proof is a 
onsequen
e of Lemma 7.1 (see the wedge 
onstru
tion) and ofthe fa
t that the states U∗
1 and U∗

2 lie in opposite sides with respe
t to U∗, see Fig. 7.5.Remark 7.6. Given the states UL and U∗ ∈ H(UL) in di�erent edges of the wedge, it ispossible to 
ompare the 
hara
teristi
 speeds in both UL and U∗ with the sho
k speed anddetermine all the information about the Lax admissibility of the sho
k joining these states.This is an important advantage of the wedge 
onstru
tion.

Figure 7.5: Extended �ux fun
tion F ∂2∂3

ext for the 
ase µ1 = 1, µ2 = 1, µ3 = 0.5 and ρ2 = ρ3.The bla
k line is tangent to the extended �ux graph in P ∗. Noti
e that the states U∗
1 and

U∗
2 lie in opposite sides relative to U∗. The state U∗

2 does not 
oin
ide ne
essarily withthe lo
al minimum of the �ux F ∂2∂3

ext .Remark 7.7. An important fa
t about the wedge 
onstru
tion is that it 
an be extendedto other two-phase regimes besides the edges of the saturation triangle, for example: in thesimpli�ed problem ρ1 = ρ2 we 
an 
onstru
t the wedge using the vertex V3, the two-phaseregimes ∂1 (or ∂2) and the 
riti
al line R3.Now we will des
ribe the shape of the Hugoniot lo
i for points on the edges. We knowthat ea
h edge ∂i, i = 1, 2, 3 of the saturation triangle represents a two-phase regimewhere the phase i is absent and the other two �uids 
oexist. In this sense we say thatasso
iated to ea
h edge of the saturation triangle there are two �uids. We will split theexposition in several 
ases.
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us for edge points in the pure gravitational problem7.2 The two �uids on the edge have equal densitiesWe will analyse the 
ase in whi
h the phases 1 and 3 that are 
oexisting in the edge ∂2 ofthe saturation triangle have equal densities. So we assume that ρ1 = ρ3 6= ρ2, and let ususe the notation ρ = ρ21 = ρ23. For this 
ase, we see that all the remaining terms in (7.7)
ontain u2 as a 
ommon fa
tor, so we 
an divide by u2 6= 0 and rewrite equation (7.7) ina 
onvenient way
[
(u1 − uL

1 )(u2
1/µ1 + u2

3/µ3) + u2
1u2/µ1

]
ρΛL/µ2 = 0. (7.12)The easiest way to obtain Eq. (7.12) is dire
tly in (7.3)-(7.4). If we set u1 = 0 intoEq. (7.12) we obtain that ne
essarily u3 must be equal to zero, so the unique interse
tionpoint of H̃(UL) with the edge ∂1 is the vertex V2. In a similar way, setting u3 = 0 intoEq. (7.12) we obtain V2 as the unique interse
tion point of H̃(UL) with the edge ∂3.In order to obtain the interse
tion points of H̃(UL) with the straight line segment R2(see (2.29)), we set u1/µ1 = u3/µ3 into Eq. (7.12), obtaining

u3/µ3[(u1 − uL
1 )(1 − u2) + u1u2] = 0. (7.13)Using again the de�nition of R2 and remembering that ∑ ui = 1, we perform some
al
ulations starting with Eq. (7.13) to obtain

(1 − u2)
2[1 − uL

1 (1 + µ3/µ1)] = 0. (7.14)Equation (7.14) shows that an arbitrary state U on R2 with U 6= V2, belongs to H̃(UL)if and only if UL = B2 (see de�nition of B2 in (2.30)), so we have H̃(B2) = R2 and
H̃(UL) ∩ R2 = V2 for UL 6= B2. The fa
t H̃(B2) = R2 was expe
ted be
ause the �ow hastwo-phase behavior along R2 (see Theorem 5.1). The following proposition summarizesthe results above.Proposition 7.3. Consider the simpli�ed pure gravitational problem (α = 0 and ρ1 =
ρ3 6= ρ2). Assume UL ∈ ∂2 with UL /∈ {V1, V3, B2}. Then (see the Fig. 7.6):(i) H(V1) = ∂2 ∪ ∂3, H(V3) = ∂1 ∪ ∂2, H(B2) = ∂2 ∪ R2.(ii) H(UL) = H̃(UL) ∪ ∂2 where H̃(UL) ∩ ∂1 = H̃(UL) ∩ ∂3 = H̃(UL) ∩ R2 = V2.Remark 7.8. Noti
e that all the 
al
ulations of this se
tion would be avoided if we usethe geometri
al wedge 
onstru
tion of Se
tion 7.1. Indeed this tool makes Proposition 7.3trivial (see Fig. 7.7) sin
e the two-phase �ux fun
tion restri
ted to the edge ∂2 is identi
allyzero and the two-phase �ux fun
tions in ∂1, ∂3 and R2 are as in Fig. 5.1.
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2
R

Figure 7.6: Hugoniot lo
us for three di�erent states UL = U1
L, UL = U2

L and B2 on the edge
∂2 for the simpli�ed pure gravitational problem α = 0, ρ1 = ρ3 6= ρ2, see Prop. 7.3. Theedge ∂2 is a 
ommon bran
h for the lo
i of all states. We do not show the Lax admissibilityof the states in the lo
i be
ause it depends on the sign of ρ = ρ21 = ρ23.

(a) (b)
(
) (d)Figure 7.7: Illustration of extended �ux fun
tions for the simpli�ed pure gravitationalproblem ρ1 = ρ3 > ρ2 
onne
ting the following two-phase regimes: (a) ∂2 and ∂1, (b)

∂2 and ∂3, (
) interval (V3, B2) and R2, (d) interval (V1, B2) and R2. The fun
tion F13denotes the two-phase ��ux� fun
tion along R2 analogous to the one de�ned in Eq. (5.10).The �gures show that for an arbitrary UL in ∂2 the interse
tions of H̃(UL) with ∂1, ∂3 or
R2 is pre
isely the vertex V2. See Remark 7.8.7.3 The �uids in the edge have di�erent densities, thethird �uid is lighterWe analyze the 
ase in whi
h the phases 1 and 3 that 
oexist on the edge ∂2 of thesaturation triangle have distin
t densities; without loss of generality we assume ρ1 > ρ3.



62 Chapter 7. Hugoniot lo
us for edge points in the pure gravitational problemThere are three 
ases ρ1 > ρ3 ≥ ρ2, ρ2 ≥ ρ1 > ρ3 and ρ1 > ρ2 > ρ3. In this se
tion we
onsider the 
ase ρ1 > ρ3 ≥ ρ2; the remaining 
ases will be the subje
t of another se
tion.In order to understand the shape of the Hugoniot lo
us for an arbitrary state UL on ∂2the �rst step is to analyze the interse
tions of H̃(UL) with all the edges of the saturationtriangle.First we will show that for UL on ∂2 the 
urve H̃(UL) given by (7.7) does not interse
tthe edge ∂1 at any point. This fa
t is easily obtained by setting u1 = 0 in (7.7) and byregrouping 
onveniently to obtain
(uL

1 )u2u
2
3

µ2µ3
Λ(UL)ρ23 −

(uL
1 )2(1 − uL

1 )2

µ1µ3
Λ(U)ρ13 = 0. (7.15)As UL 6= V1, UL 6= V3 and ρ1 > ρ3 ≥ ρ2 the �rst term in Eq. (7.15) is non-positive andthe se
ond one is negative, 
on
luding that H̃(UL) does not interse
t ∂1. This 
on
lusionalso 
an be obtained using the wedge 
onstru
tion des
ribed in Se
tion 7.1.Now we analyze the interse
tions of the 
urve H̃(UL) with the edge ∂2. Setting u2 = 0into Eq. (7.7) and performing some 
al
ulations we obtain

(u1 − uL
1 )P (u1) = 0, (7.16)where

P (u1) =
[
−(uL

1 )2/µ1 + (1 − uL
1 )2/µ2

]
u3

1 + (2 − uL
1 )
[
(uL

1 )2/µ1 − (1 − uL
1 )2/µ2

]
u2

1+

+
[
(1 − 2uL

1 )(1 − uL
1 )2/µ2

]
u1 + uL

1 (1 − uL
1 )2/µ2 (7.17)is a 
ubi
 polynomial in u1 for ea
h UL �xed. Tedious 
al
ulations show that

P (uL
1 ) = 2(uL

1 )3(1 − uL
1 )/µ1,so uL

1 is not a root of the polynomial P (we are assuming that UL 6= V1 and UL 6= V3).On the other hand, we have strong numeri
al eviden
e showing that polynomial (7.17)has one real root in the interval (0,1) so there exists U ′
L ∈ H̃(UL)∩ ∂2 su
h that U ′

L 6= UL.The state U ′
L is a point of self-interse
tion of the Hugoniot lo
us of UL, whi
h meansthat ea
h UL ∈ ∂2 is a se
ondary bifur
ation point for one of the families. The fa
t thatall states on the edges belong to the bifur
ation manifold for one of the families will beproved rigorously in Theorem 8.2.Now we analyze the interse
tion points of H̃(UL) with the edge ∂3. Setting u3 = 0 intoEq. (7.7) we have that the interse
tion points of H̃(UL) with the edge ∂3 are the roots in
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ubi
 polynomial PUL
(u1) in u1:

PUL
(u1) =

[
Λ(UL)(1 − uL

1 )
]
u3

1 −
[(1 − uL

1 )

µ1µ2

Λ(UL)+

+
(
1/µ1 + 1/µ2

)(uL
1 )2(1 − uL

1 )2(ρ13/ρ21)

µ1µ3

]
u2

1+

+ 2
[(uL

1 )2(1 − uL
1 )2(ρ13/ρ21)

µ1µ2µ3

]
u1 −

(uL
1 )2(1 − uL

1 )2(ρ13/ρ21)

µ1µ2µ3
.

(7.18)
As ρ13 > 0 and ρ21 < 0, noti
e that

lim
u1→−∞

PUL
(u1) = −∞, PUL

(0) > 0, PUL
(1) > 0. (7.19)We 
on
lude that independently of the state UL there exists at least one negative rootfor the polynomial PUL

, therefore the possibilities for PUL
to have real roots at interval(0,1) are the following: two di�erent roots, one double root or no real roots. We avoidthe analysis of the dis
riminant ∆L for the 
ubi
 polynomial PUL

by using the simplergeometri
 analysis presented in the Se
tion 7.1. This 
onstru
tion provides all the infor-mation about the interse
tions of H(UL) with the edge ∂3. Noti
e that we illustrated themethod in Se
tion 7.1 exa
tly for the 
ase ρ1 > ρ3 ≥ ρ2 studied in this se
tion, so thenumber of interse
tion points (zero, one or two) of the segment SL in Fig. 7.4 with theextended �ux fun
tion for positive values of u determines the sign of the dis
riminant ∆Lof the polynomial PUL
in Eq. (7.18) (∆L < 0, ∆L = 0 or ∆L > 0 respe
tively).In order to study the shape of the Hugoniot lo
us for an arbitrary UL ∈ ∂2, besidesthe interse
tions with the boundary, whi
h we already analyzed, it is ne
essary to knowthe se
ondary bifur
ation points along ∂2, whi
h in�uen
e the interior of the saturationtriangle. We have numeri
al eviden
e showing the existen
e of two states W1 and W2 onthe edge ∂2 for whi
h the Hugoniot lo
us has a self-interse
tion point inside the saturationtriangle. These points W1 and W2 belong to the se
ondary bifur
ation manifold of thefast family.As we mentioned in the geometri
al 
onstru
tion in Se
tion 7.1, there are three dif-ferent possibilities for the relative position of the extended �ux fun
tion with respe
t tothe segment S (see Fig. 7.3). Proposition 7.1 explains some di�eren
es between the three
ases with regard to interse
tions with the edge ∂3 of the Hugoniot lo
us of UL ∈ ∂2. Nev-ertheless if the parameters µ1, µ2, µ3 and ρ13, ρ21 for the tree 
ases are not too di�erent,when we move the state UL along the edge ∂2 from V3 to V1, the Hugoniot lo
us of ULdes
ribes qualitatively a similar behavior for all the three 
ases, with the only di�eren
ethat for one of the 
ases (dotted 
urve in Fig. 7.3) a bran
h of the lo
us eventually getsout of the saturation triangle, while for the other two 
ases (dashed and solid 
urvesin Fig. 7.3) a portion or a point of the above mentioned bran
h stays in the saturationtriangle.As an illustration, we show in Fig. 7.8 the sequen
e of Hugoniot lo
i H(UL) when welet the state UL move along the edge ∂2 from the vertex V3 to the vertex V1, for the 
ase
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LU(h)Figure 7.8: Hugoniot lo
us of UL ∈ ∂2 for the 
ase ρ1 > ρ3 = ρ2, with parameters
µ2, µ3, ρ13, ρ21 su
h that F ∂2∂3

ext behaves like the dotted 
urve of Fig. 7.3 (two interse
tionpoints with the segment S). Figures (a)-(h) show the sequen
e of H(UL) when UL movesfrom V3 to V1. We used the same notation for the relevant points in this �gure and inFig. 7.5. In �gures (b) and (g) the state UL 
oin
ides with the se
ondary bifur
ationpoints W1 and W2. Figures (d) and (e) show the Hugoniot lo
us for the states U1, U2de�ned in Fig. 7.5 and for an intermediate state UL; the arrows des
ribe the motion ofthe non-lo
al bran
h when UL moves from U1 to U2. In all the �gures we show the Laxadmissibility for the Hugoniot 
urves. Only the parts denoted by S− and S+ representadmissible (slow and fast) Lax sho
ks. The other symbols represent inadmissible sho
ks.where the extended �ux fun
tion is like the dotted 
urve of Fig. 7.3. We denote by U1 and
U2 the states on ∂2 
orresponding to the points P1 and P2 respe
tively, see Fig. 7.5. Thestates W1 and W2 on ∂2 belong to the se
ondary bifur
ation manifold of the fast family;their relative positions with respe
t to the states U1 and U2 are shown in Fig. 7.5. All the�gures 
an be obtained by plotting the 
urve in (7.7). Only the parts of the lo
i denotedby S− and S+ represent admissible Lax sho
ks. The other symbols represent inadmissiblesho
ks. In Fig. 7.8 we did not illustrate all the intermediate steps of sequen
e of Hugoniotlo
i mentioned above; therefore, new segments of sho
ks sometimes appear or disappearwhen 
omparing 
onse
utive �gures.Remark 7.9. In Fig. 7.8 we took ρ2 = ρ3; this is irrelevant be
ause for ρ1 > ρ3 > ρ2we obtain qualitatively the same sequen
e of Hugoniot lo
us shapes (with a few di�eren
esin the admissibility for the lo
us bran
hes that will not a�e
t the Riemann solution).The other di�eren
e o

urs in the limit when UL → V1, see the results of Prop. 6.1 andProp. 6.3.Remark 7.10. Consider the 
ase in whi
h the extended �ux F ∂2∂3

ext is like the solid 
urveof Fig. 7.3, so that the states U1 and U2 
ollapse into the state U0 (see Fig. 7.3). In su
h a
ase the pair of points U0 and U∗ belong to the double 
onta
t manifold of the slow family(see Def. 3.7). All the Hugoniot lo
i shown in the �gures 7.8(d) and 7.8(e) 
ollapse into
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us for edge points in the pure gravitational problema single lo
us.Remark 7.11. If the extended �ux F ∂2∂3

ext is like the dashed 
urve of Fig. 7.3 we willhave qualitatively the same behavior for H(UL) ex
ept that the non-lo
al bran
hes alwayskeeping a portion inside the saturation triangle. The sequen
e of Hugoniot lo
i for this
ase would be Figs. 7.8(a), 7.8(b), 7.8(
), 7.8(f), 7.8(g) and 7.8(h) (skipping �gures 7.8(d)and 7.8(e)).7.4 Remaining 
asesCase ρ2 ≥ ρ1 > ρ3.This 
ase is 
ompletely analogous to the one of the previous se
tion where ρ1 > ρ3 ≥ ρ2.In the parti
ular 
ase in whi
h ρ2 = ρ1 > ρ3 the sequen
e of Hugoniot lo
i is the same asthat shown in Fig. 7.8 provided we inter
hange the indi
es 3 and 1 everywhere. Howeverthere will be a 
hange in the admissibility of the Hugoniot 
urves be
ause of the symmetrybetween the simpli�ed pure gravitational problems ρ2 = ρ1 > ρ3 and ρ2 = ρ3 < ρ1, (seeTheorem 8.1 for details). Be
ause of this 
hange of admissibility, the Rieman solutionswith data UL ∈ ∂2, UR = V2 for the two 
ases will be drasti
ally di�erent.As in the 
ase studied in Se
tion 7.3, where we found W1, W2 (see Figs. 7.8(b) and7.8(g)), here we have numeri
al eviden
e of the existen
e of two states on the edge ∂2(denoted by W3 and W4) that belong to the se
ondary bifur
ation manifold; now they
orrespond to the slow family. An explanation for this 
hange of family in the bifur
ationstates 
an be obtained from Theorem 8.1 for small density di�eren
es, 
onsidering ρ2 ≥
ρ1 > ρ3 as a perturbation of the simpli�ed pure gravitational problem ρ2 = ρ1 > ρ3.Case ρ1 > ρ2 > ρ3.In this 
ase when UL ∈ ∂2 the non-trivial bran
h H̃(UL) (see Def. 7.1) 
ould interse
tthe edge ∂1 or ∂3. In order to understand this phenomenon we will 
onsider a super-extended �ux fun
tion 
onne
ting the three edges ∂i, i = 1, 2, 3, see Fig. 7.9. Thissuper-extended �ux 
oin
ides with F ∂2

1 on ∂2, with F ∂3

2 on ∂3 and with F ∂1

3 on the edge
∂1. The 
onstru
tion pro
edure is analogous to the extended �ux F ∂2∂3

ext in Eq. (7.10), sowe will not give more details.There exist some relevant states on ∂2 where the number of interse
tion points of theHugoniot lo
us with the edges ∂1 and ∂3 
hanges. These relevant states are denoted by
U1, U2, U3, U4 in Fig. 7.9. These four states exist if ea
h of the segments denoted by S1 and
S2 interse
t the super-extended �ux in two points 
orresponding to the edge ∂2. In orderto simplify the exposition, we will assume that the relative position between these fourstates is preserved. For the 
ase illustrated by the dashed 
urve in Fig. 7.9 the situationwould be qualitatively di�erent sin
e the segment S1 does not interse
t the dashed graph.In Fig. 7.10, we see that for arbitrary states A ∈ (V3, U4) and E ∈ (U2, V1) the
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Figure 7.9: Dark 
urve: super-extended �ux for µ1 = µ2 = µ3 = 1, ρ13 = 1, ρ12 = 0.5,dashed 
urve: super-extended �ux for µ1 = µ2 = 1, µ3 = 3, ρ13 = 1, ρ12 = 0.5. The states
U1, U2, U3 and U4 
orrespond to the interse
tion points of the super-extended �ux withthe segments S1 and S2.
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P *Figure 7.10: Super-extended �ux for µ1 = µ2 = µ3 = 1, ρ13 = 1, ρ12 = 0.5, The states
U1, U2, U3 and U4 
orrespond to the interse
tion points of the super-extended �ux withthe segments S1 and S2.
orresponding Hugoniot lo
i interse
t ea
h edge ∂1 and ∂3 at two points. For state B in
(U4, U1) the Hugoniot lo
us interse
ts the edge ∂3 at two points but it does not interse
tthe edge ∂1. For an arbitrary state C ∈ (U1, U3) the Hugoniot lo
us does not interse
tany of the edges ∂1 or ∂3. For the state D ∈ (U3, U2) the Hugoniot lo
us interse
ts theedge ∂1 at two points but it does not interse
t ∂3. So the states U1, U2, U3, U4 subdividethe edge ∂2 into smaller intervals where the number of interse
tion points of H̃(UL) for
UL in ∂2 with the other two edges is �xed.For small density di�eren
es we 
an regard the 
ase ρ1 > ρ2 > ρ3 as a perturbation ofboth simpli�ed pure gravitational problems ρ1 = ρ2 > ρ3 and ρ1 > ρ2 = ρ3. The presen
eof features of both simpli�ed problems in the 
ase ρ1 > ρ2 > ρ3 is natural. The numeri
aleviden
e for this 
ase shows existen
e of four se
ondary bifur
ation states on ∂2. Two ofthem, denoted by W1, W2, are asso
iated to the fast family while the other two, W3, W4,are asso
iated to the slow family, see for example Fig. 7.11.
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W(j)Figure 7.11: Hugoniot lo
us of UL ∈ ∂2 for the 
ase ρ1 > ρ2 > ρ3, with parameters

µ2, µ3, ρ13, ρ21 su
h that the super-extended �ux fun
tion behaves like the solid 
urve ofFig. 7.9 (two interse
tion points with ea
h of segments S1 and S2). Figures (a)-(j) showthe sequen
e of H(UL) when UL moves from V3 to V1. We used the same notation for therelevant points as in Fig. 7.9. In �gures (b), (d), (h) and (i) the state UL 
oin
ides withse
ondary bifur
ation states. The Hugoniot lo
i for the points Ui, i = 1, 2, 3, 4 (de�nedin Fig. 7.9) are shown in �gures (d), (f) and (g). In the �gure (g) the dark 
urves is theHugoniot lo
us for UL = U2 and the dashed 
urve is the Hugoniot-lo
us for UL = U3. Inthe �gures (f) and (g) the arrows des
ribe the motion of the non-lo
al bran
h when ULmoves from U1 to U2. In all the �gures we show the Lax admissibility for the Hugoniot
urves. Only the bran
hes denoted by S− and S+ represent admissible (slow and fast)Lax sho
ks. The other symbols represent inadmissible sho
ks.



70 Chapter 7. Hugoniot lo
us for edge points in the pure gravitational problemWe illustrate the behavior of H(UL) when we let the state UL move along the edge ∂2from V3 to V1 for a 
ase where the super-extended �ux fun
tion is like the solid 
urve inFig. 7.9. The sequen
e of the Hugoniot lo
i and the admissibility of the 
urves is shownin the Fig. 7.11; we did not illustrate all the intermediate steps of sequen
e of Hugoniotlo
i mentioned above; therefore, new segments of sho
ks sometimes appear or disappearwhen 
omparing 
onse
utive �gures. All the �gures 
an be obtained by plotting the 
urvein (7.7).



Chapter 8Symmetry and bifur
ations in thesimpli�ed pure gravitational problem
In this 
hapter we prove a �reversal symmetry� theorem, whi
h holds for the simpli�ed puregravitational problem (SPGP). We also prove additional theoreti
al results for bifur
ationmanifolds in SPGP. These results will be used to provide support for the Riemann solutionobtained via numeri
al 
al
ulations that implement the wave 
urve method.8.1 Symmetry in the SPGPOur goal is to solve the Riemann problem for the �simpli�ed pure gravitational problem�(i.e., α = 0, ρ1 = ρ2 6= ρ3). Denoting by ρ = ρ13 = ρ23 we will analyze separately the
ases ρ > 0 and ρ < 0 sin
e their solutions are drasti
ally di�erent. However the two
ases have similarities: e.g., in both 
ases the vertex V3 is an umbili
 point (see Theorem(4.1)), and there exist two quasi-umbili
 points Q1 ∈ ∂1, Q2 ∈ ∂2; also the entire edge ∂3is a diagonalization line. The Hugoniot lo
us of the verti
es does not depend on the signof ρ. From Propositions 6.1 and 6.3 we have:

H(V3) = ∂1 ∪ ∂2 ∪ ∂3 ∪ R3, (8.1)
H(V1) = ∂2 ∪ ∂3, (8.2)
H(V2) = ∂1 ∪ ∂3. (8.3)Next we present a 
ru
ial result establishing a 
onne
tion for 
hara
teristi
 speeds andintegral 
urves between the 
ases ρ > 0 and ρ < 0.Theorem 8.1. (Reversal symmetry.) Assume α = 0, ρ1 = ρ2 6= ρ3 and denote ρ =

ρ13 = ρ23. If ρ > 0 we de�ne ρp = ρ and ρn = −ρp. If ρ < 0 we de�ne ρp = −ρ and
ρn = −ρp. We 
onsider 
hara
teristi
 eigenvalues and eigenve
tors for the two problems71
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orresponding to the densities ρp and ρn. Then we have the following relations
λ−

n = −λ+
p , r−n = r+

p , (8.4)
λ+

n = −λ−
p , r+

n = r−p , (8.5)where λ+
p , r+

p , λ−
p , r−p denote the 
hara
teristi
 speeds and the asso
iated right eigenve
tors
orresponding to the problem with positive parameter ρp while λ+

n , r+
n , λ−

n , r−n denote the
hara
teristi
 speeds and the asso
iated right eigenve
tors 
orresponding to the problemwith negative parameter ρn = −ρp.Proof. Let us de�ne J̃ij = Jij/ρ; we obtain from (4.8) that
λ± =

ρ(J̃11 + J̃22) ± |ρ|
√

D̃

2
, (8.6)where D̃ =

(
J̃11 + J̃22

)2
− 4
(
J̃11J̃22 − J̃12J̃21

). For ρ = ρn = −ρp we have
λ±

n =
ρn(J̃11 + J̃22) ± |ρn|

√
D̃

2
= −

ρp(J̃11 + J̃22) ∓ |ρp|
√

D̃

2
= −λ∓

p , (8.7)
on
luding the proof of (8.4)-(a) and (8.5)-(a).We will denote by Jp (respe
tively Jn) the Ja
obian matrix for ρ = ρp (respe
tively
ρ = ρn).Using the notation above and the properties (8.4)-(a), (8.5)-(a), we have that

0 = (Jn − λ±
n I)r±n = (ρnJ̃ − λ±

n I)r±n = (−ρpJ̃ + λ∓
p I)r±n

= −(ρpJ̃ − λ∓
p I)r±n = (Jp − λ∓

p I)r±n
(8.8)therefore we have proved that r±n is a right eigenve
tor asso
iated to the eigenvalue λ∓

p
on
luding the proof of (8.4)-(b) and (8.5)-(b).Remark 8.1. Con
lusions analogous to those in Theorem 8.1 
an be stated for the Hugo-niot lo
i as well, under reversal symetry in the SPGP: the sho
k speeds 
hange sign; this
hange 
an be veri�ed from the R-H 
ondition (3.6) be
ause the �ux fun
tions 
hange signunder the symmetry. Therefore as a 
onsequen
e, we have that the integral 
urves, sho
k
urves and all bifur
ation manifolds de�ned in Chapter 3 (in�e
tion, se
ondary bifur
a-tion, boundary 
onta
t, double 
onta
t, et
.) are still identi
al but have opposite familywhen we pass from the 
ase ρ > 0 to the 
ase ρ < 0.8.2 Bifur
ation manifoldsNext we present some theoreti
al results des
ribing interesting properties of some bifur-
ation manifolds.



Bifur
ation manifolds 73First we state two lemmas that will be used in this se
tion. Lemma 8.1 is a 
lassi
alresult and its proof 
an be found in Smoller [47℄. The proof of Lemma 8.2 
an be foundin Appendix B.Lemma 8.1. Let A be a 2× 2 square diagonalizable matrix. Assume that the eigenvaluesof A are distin
t (λ1 6= λ2). Let XR be a matrix formed by the 
olumns of the righteigenve
tors of A and XL be a matrix formed by the rows of the left eigenve
tors of A.Then C ≡ XLXR is a diagonal matrix.Lemma 8.2. Consider the �pure gravitational problem� (α = 0) with ρ1 = ρ2 6= ρ3 and
µ1 = µ2 and let us denote ρ ≡ ρ13 = ρ23, µ ≡ µ1 = µ2. Then the 
hara
teristi
s speedsgiven by (4.8) are symmetri
 with respe
t to the variables u1 and u2 ( i.e., λ−(u1, u2) =
λ−(u2, u1) and the same for λ+).Proposition 8.1. For the � simpli�ed pure gravitational problem� (α = 0, ρ1 = ρ2 6= ρ3)with µ1 = µ2, we have R3 ⊂ Inf+ ∩ Bif+ if ρ > 0, and R3 ⊂ Inf− ∩ Bif− if ρ < 0(R3 was de�ned in (2.29)). In other words the segment R3 belongs to the in�e
tion andbifur
ation manifolds 
orresponding to the fast or slow family for ea
h 
ase ρ > 0 or ρ < 0,respe
tively.Proof. We will present the proof for the 
ase ρ > 0. Then the 
ase ρ < 0 will be a dire
t
onsequen
e of Theorem 8.1 (see Remark 8.1). Under the hypotheses for the theorem,we have that at ea
h point of R3 the ve
tor (r−1 , r−2 )T = (1, 1)T is a right eigenve
torasso
iated to the slow family (see proof of Theorem 5.1).Consider the matri
es XR =

(
1 r+

1

1 r+
2

) and XL =

(
l−1 l−2
l+1 l+2

)
, where l− = (l−1 , l−2 ) isa left eigenve
tor asso
iated to the slow family and r+ = (r+

1 , r+
2 )T , l+ = (l+1 , l+2 ) are rightand left eigenve
tors asso
iated to the fast family, respe
tively. Applying Lemma 8.1 weobtain that

XLXR =

(
l−1 + l−2 l−1 r+

1 + l−2 r+
2

l+1 + l+2 l+1 r+
1 + l+2 r+

2

) (8.9)is a diagonal matrix and therefore
{

l+1 + l+2 = 0
l−1 r+

1 + l−2 r+
2 = 0.

(8.10)From the �rst equation of the above system we obtain that for all U in R3, l+1 (U) = −l+2 (U)so that l+(U) ∝ (1,−1). In other words, along the segment R3 the left eigenve
torasso
iated to the fast family is orthogonal to the segment dire
tion. On the other hand,for all U , U ′ in R3 we have (U ′ − U) =∝ (1, 1)T so we have
l+(U)(U ′ − U) = 0 ∀U, U ′ ∈ R3 (8.11)On the other hand, after some 
al
ulation we obtain the following expression for thefast-
hara
teristi
 speed along the 
riti
al line R3:
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λ+(U) =

(1 − u3)u
2
3

µµ3Λ(U)
∀U ∈ R3. (8.12)From (8.12) and utilizing the Rankine-Hugoniot relation for sho
ks joining two stateson the 
riti
al line R3, is possible to show that

∀U ∈ R3, ∃U ′ ∈ R3 su
h that λ+(U ′) = σ(U, U ′). (8.13)Equations (8.11) and (8.13) yield R3 ⊂ Bif+, see De�nition 3.4.In order to show that R3 ⊂ Inf+, we �rst note that J12(U) = J21(U) ∀U ∈ R3(see (4.4)-(4.7)), i.e., dF restri
ted to segment R3 is a symmetri
 matrix, therefore leftand right eigenve
tors �
oin
ide�, so we have r+(U)T = l+(U) ∝ (1,−1) ∀U ∈ R3. Onthe other hand, applying Lemma 8.2, we obtain that the 
hara
teristi
 speeds λ±(U),
U = (u1, u2) are symmetri
 fun
tions of the variables u1 and u2, so we have

∂λ±

∂u1

=
∂λ±

∂u2

⇒ ∇λ± ∝ (1, 1)T , (8.14)in parti
ular we have that
∇λ+(U) · r+(U) = 0, (8.15)
on
luding that R3 ⊂ Inf+ (see De�nition 3.5).Remark 8.2. We 
an repeat the argument above for the 
ase µ1 6= µ2 to obtain again

R3 ⊂ Bif+. However for su
h 
ase R3 6⊂ Inf+.The following theorem des
ribes points on the edges ∂1 and ∂2 as se
ondary bifur
ationpoints.Theorem 8.2. Assume that α = 0 and ρ1 = ρ2 6= ρ3. De�ne ρ = ρ13 = ρ23. All the pointson edges ∂1 and ∂2 belong to the se
ondary bifur
ation manifold for one of the families,ex
ept for the quasi-umbili
 points Q1, Q2 (in (4.19), (4.20)) and for the verti
es V1, V2of the saturation triangle. More spe
i�
ally
[
(V3, Q2) ∪ (V3, Q1)

]
⊂ Bifj , (8.16)

[
(Q2, V1) ∪ (Q1, V2)

]
⊂ Bifk, (8.17)where j is �−� if ρ < 0, j is �+� if ρ > 0 and k is the opposite family to j.Proof. We provide the proof for the 
ase ρ > 0. Then the 
ase ρ < 0 will be a dire
t
onsequen
e of Theorem 8.1 and Remark 8.1.Let U ∈ (V3, Q2), it is obvious that ∂2 ⊂ H(U). Depending on the sign of ρ thes
alar �ux fun
tion F ∂2

1 restri
ted to the edge ∂2 has the shape of one of the fun
tions



Bifur
ation manifolds 75represented in Figs. 5.1(a) or 5.1(b) so it is 
lear that there exists U ′ ∈ (Q2, V1) su
h that
U ′ ∈ H(U) with σ(U, U ′) = 0. Noti
e that (U −U ′) ∝ (1, 0)T sin
e both U and U ′ belongto the edge ∂2. On the other hand

l+(U ′)
(
DF (U ′) − λ+(U ′)I

)
= 0, (8.18)where l+ denotes a left eigenve
tor 
orresponding to the fast 
hara
teristi
 speed λ+. As

U ′ ∈ (Q2, V1), from (4.4)-(4.8) we obtain after some 
al
ulations that λ+(U ′) = 0 while
J11(U

′) < 0, J12(U
′) < 0, J21(U

′) = 0, J22(U
′) = 0. So we obtain from (8.18):

l+1 (U ′)J11(U
′) = 0, (8.19)

l+1 (U ′)J12(U
′) = 0, (8.20)therefore l+1 (U ′) = 0 and we have that l+(U ′) ∝ (0, 1). Finally we see l+(U ′)(U − U ′) =

(0, 1) · (1, 0) = 0.We have found U ′ ∈ H(U) su
h that σ(U, U ′) = λ+(U ′) = 0 and l+(U ′)(U − U ′) = 0,
on
luding that the interval (V3, Q2) is a subset of the bifur
ation manifold 
orrespondingto the fast family. The proofs for the other intervals are analogous.Remark 8.3. As a 
onsequen
e of Theorem 8.2 and supported by numeri
al eviden
e,the Hugoniot lo
us of any non-
oin
iden
e point on the edges ∂1, ∂2 has a self-interse
tionlying on the respe
tive edge, see Fig 7.8 for illustration.



Chapter 9Solution for SPGP with heavyequal-density �uids
In this 
hapter we study the Riemann solution for the 
ase in whi
h α = 0, ρ1 = ρ2 > ρ3.Denoting by ρ = ρ13 = ρ23, we are in the 
ase ρ > 0. Based on numeri
al 
al
ulationswe will present the integral 
urves, the in�e
tion manifolds and the boundary 
onta
tmanifolds 
orresponding to this simpli�ed pure gravitational problem (SPGP). The �guresshown in this se
tion are 
ru
ial for the solution of the Riemann problem. Although weshow �gures for the symmetri
al vis
osity 
ase µ1 = µ2 = µ3, they illustrate the general
ase.For the SPGP, with ρ > 0, the integral 
urves of ea
h family are shown in Figure 9.1.Noti
e that the segments (Q1, V2) ⊂ ∂1 and (Q2, V1) ⊂ ∂2 are integral 
urves of the slowfamily while the segments (Q1, V3) ⊂ ∂1 and (Q2, V3) ⊂ ∂2 are integral 
urves of the fastfamily. This 
hange of family along the edges when 
rossing the quasi-umbili
 points wasproved in Theorem 4.1.The in�e
tion manifolds of ea
h family are shown in Fig. 9.2. Here we use the super-s
ripts s and f (instead of − and +) for slow and fast family, respe
tively. The pointsdenoted by Is

1 , I
f
1 ∈ ∂1 and Is

2 , I
f
2 ∈ ∂2 represent the interse
tions between the in�e
tionmanifolds of ea
h family and the edges ∂1, ∂2. These points 
oin
ide with the in�e
tionsof the two-phase �ux fun
tion F ∂2

1 and F ∂1

2 studied in Chapter 5, so we 
an interpret thein�e
tion bran
hes Is
1�Is

2 and If
1 �If

2 as 
ontinuations of two-phase in�e
tion points thatwould appear as 
onsequen
e of introdu
ing a third phase into a given two-phase problem.An interesting fa
t we 
an observe in Fig. 9.2 is the existen
e, for slow-family, of anextra in�e
tion bran
h. This �extra� bran
h arises from the quasi-umbili
 points Q1, Q2and 
rosses the 
riti
al line R3 at an in�e
tion point of the two-phase s
alar �ux fun
tion
F12 (see de�nition in Eq. (5.10)) restri
ted to the 
riti
al line R3. On the other hand, forthe 
ase µ1 = µ2, the 
riti
al line R3 is itself an in�e
tion bran
h for the fast-family (seeProp. 8.1), a fa
t that re�e
ts the symmetry of phases 1 and 2 with respe
t to densitiesand vis
osities. For more general 
ases in whi
h µ1 6= µ2, the 
riti
al line R3 is not an76
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V(b)Figure 9.1: Integral 
urves for the simpli�ed pure gravitational problem α = 0, ρ1 = ρ2 >

ρ3, in the 
ase µ1 = µ2 = µ3. (a) Slow-family integral 
urves. The arrows indi
ate thedire
tion of in
reasing 
hara
teristi
 speed; noti
e the lo
al extremal speed at the dots,whi
h form the slow-family in�e
tion lo
us. (b) Fast-family integral 
urves. The arrowsindi
ate the dire
tion of in
reasing 
hara
teristi
 speed; noti
e the lo
al extremal speedat the dots, whi
h form the fast-family in�e
tion lo
us. The points Q1 and Q2 denote thequasi-umbili
 points on the boundary.in�e
tion bran
h any more, see Fig. 9.2(b).Remark 9.1. In the more general 
ase when the �uids have di�erent densities, the �extra�in�e
tion bran
h of the slow-family interse
ts the edges ∂1 and ∂2 at points that are notne
essarily the quasi-umbili
 points. Su
h points are pre
isely where the zero-level 
urvesfor the slow-family 
hara
teristi
 speed lose di�erentiability.In Fig. 9.3 we show the boundary 
onta
t 
urves (see Def. 3.9). We denote by
Es

∂j
, Ef

∂j
; j = 1, 2, 3 the bran
hes of the boundary 
onta
t manifold 
orresponding tothe edge ∂j for slow and fast-family respe
tively. We also 
all these 
urves the extensionof the edges of the saturation triangles asso
iated to one of the families. The extensionof relevant points are also plotted, re
all that we denoted by P s

A (or P f
A), the extensionof a point A on the boundary, asso
iated to the slow-family (fast-family) (i.e., the sho
kjoining the state A with the state P i

A is 
hara
teristi
 in P i
A for the family i). This
orresponden
e is not ne
essarily one to one.Consider the simpli�ed pure gravitational problem α = 0, ρ1 = ρ2 > ρ3. We wantto solve the generi
 Riemann problem with left data UL lying in the edge ∂i, i = 1, 2, 3of the saturation triangle, and right data UR 
orresponding to the opposite vertex Vi.For this 
ase, there exist essentially only two distin
t problems: UL ∈ ∂2, UR = V2 and

UL ∈ ∂3, UR = V3; the Riemann solutions for the two sets of data UL ∈ ∂1, UR = V1 and
UL ∈ ∂2, UR = V2 are analogous.
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(b)Figure 9.2: In�e
tion 
urves for the 
ase α = 0, ρ1 = ρ2 > ρ3. (a) Symmetri
 
ase µ1 =
µ2 = µ3. The dark 
urves are the in�e
tion lo
us 
orresponding to the fast family, withbran
hes R3 = V3�B3 and If

1 �If
2 . The light 
urves are the in�e
tion lo
us 
orrespondingto the slow family, with bran
hes Is

1�Is
2 and Q1�Q2. (b) Non-symmetri
 
ase µ1 > µ2.The points Q1 and Q2 denote the quasi-umbili
 points on the boundary. The points Icand I ′

c denote the in�e
tion points on the 
riti
al line.First we state the following result.Lemma 9.1. Assume ρ1 = ρ2 > ρ3 and 
onsider the states Ai ∈ ∂i, i = 1, 2, 3; then:(i) We have σ(U, Ai) > 0 for all U ∈ H(Ai), i = 1, 2, out of the edge ∂i.(ii) We have σ(U, A3) < 0 for all U ∈ H(A3) out of the edge ∂3 and of the vertex V3.Proof. The proof follows from the Rankine-Hugoniot 
ondition (3.6) utilized for sho
ksjoining a state Ai ∈ ∂i with an arbitrary state U .9.1 RP1: Left data in ∂2, right data V2For this 
ase H(V2) = ∂1 ∪ ∂3 (see item (i) of Prop. 6.3); we also noti
e in Fig. 9.1 thatthe integral 
urves through vertex V2 
oin
ide with the edges ∂1 and ∂3 near V2. Thus the
on
eivable ways to arrive at V2 are (see Fig. 9.1):(1) Arriving at V2 by a slow rarefa
tion 
orresponding to the two-phase solution on ∂1.(2) Arriving at V2 by a zero-speed genuine 
onta
t dis
ontinuity 
orresponding to thetwo-phase solution on ∂3 (see Se
.5.2).
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Figure 9.3: Boundary 
onta
t manifolds (or extensions) for α = 0, ρ1 = ρ2 > ρ3, µ1 =
µ2 = µ3. The light 
urves represent the slow-family boundary 
onta
t manifold, the bran
h
Es

∂i
, i = 1, 2, 3 is the slow-family extension of the edge ∂i. The dark 
urves represent thefast-family boundary 
onta
t manifold, Ef

∂1
is the fast-family extension of the edge ∂1 while

Ef
∂2

is the fast-family extension of the edge ∂2. The edge ∂3, representing a mixture oftwo equal-density �uids, has no fast-family extension. The points Q1 and Q2 denote thequasi-umbili
 points on the boundary.Impossibility of alternative (1).Consider an arbitrary state A1 on the edge ∂1. It is impossible to use a rarefa
tionto arrive at A1, sin
e both 
hara
teristi
 speeds de
rease in the outward dire
tion (seearrows in both Figs. 9.1). Thus we must use a sho
k to arrive at A1 from an arbitrarystate U out of the edge ∂1. From Lemma 9.1 we have σ(U, A1) > 0. On the other handas ρ2 > ρ3, the sequen
e of waves along the edge ∂1 joining the state A1 with the vertex
V2 
onsists of one negative-speed sho
k followed by a rarefa
tion wave ending at V2 withspeed equal to zero (see Fig. 9.4). This means that the possibility of a sho
k joining anarbitrary state U (out of ∂1) with A1, followed by the two-phase solution along ∂1, joiningthe states A1 and V2 presents speed in
ompatibility. For this reason we must ex
lude su
ha solution. In other words, for UL ∈ ∂2, UL 6= V3, UL 6= V1 we 
annot 
onstru
t a solutionarriving �rst to ∂1 and follow it by the two-phase Oleinik solution to V2 without violatingthe geometri
 speed 
ompatibility 
ondition. Thus the possibility des
ribed in item (1) isex
luded.Constru
tion of the Riemann solution.Now we will 
onstru
t the Riemann solution using the se
ond alternative, i.e., in orderto arrive to V2 we must �rst rea
h ∂3 by a slow rarefa
tion 
urve (see arrows in Fig. 9.1(a)),
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Figure 9.4: Two-phase Oleinik solution for left state A1 in ∂1 and right state V2. Thissolution begins with a negative-speed sho
k joining A1 with A∗.and follow it by a zero-speed 
onta
t dis
ontinuity on ∂3.Consider UL = (uL
1 , 0, uL

3 ) on ∂2. We will split our analysis in several 
ases:
(i) If UL = V1 the solution is a zero-speed genuine 
onta
t joining V1 with V2.
(ii) If UL = V3, we will have three di�erent representations in state spa
e of the samesolution, the �rst one is the two-phase solution on the edge ∂1 that is a zero-speed double
onta
t dis
ontinuity joining V3 and V2. The se
ond representation of the solution 
onsistsin a zero-speed double 
onta
t dis
ontinuity joining V3 with V1 followed by a zero-speedgenuine 
onta
t joining V1 with V2. The third representation of the solution is obtainedby the use of the two-phase �ow regime along the 
riti
al line R3, by means of a zero-speed double 
onta
t dis
ontinuity joining V3 with B3 followed by a zero-speed genuine
onta
t joining B3 with V2. Although these representations of the solutions are di�erentin state spa
e, all of them des
ribe the same solution in physi
al spa
e be
ause all thedis
ontinuities have zero-speed and 
ollapse into a single dis
ontinuity.
(iii) Assume UL ∈ [Q2, V1), then we have λ+(UL) = 0 and λ−(UL) < 0 (by inter
hang-ing the indi
es 1 and 2 everywhere in Eqs. (4.35)-(4.36)). In this 
ase the slow-familyeigenve
tor r−(UL) has the dire
tion of the edge ∂2 sin
e the slow integral 
urve trough

UL 
oin
ides with this boundary. Thus the solution of the Riemann problem begins withthe two-phase Bu
kley-Leverett solution along this edge. For UL to the right of the in�e
-tion point Is
2 (shown in Fig. 9.2), the slow-family wave group is a single rarefa
tion waveup to the vertex V1. For UL ∈ (Q2, I

s
2) the slow-family wave group 
onsists of a negative-speed sho
k wave joining the states UL and U∗ = (u1

∗, 0, 1 − u1
∗); where U∗ ∈ (Is

2 , V1)satisfy σ(UL, U∗) = dF ∂2

1 (u1
∗)/du1 = λ−(U∗), followed by a rarefa
tion wave joining thestates U∗ and V1. Noti
e that the rarefa
tion wave arrives at V1 with speed equal to zero.The solution 
ontinues with the �fast� wave group whi
h 
onsists of a zero-speed 
onta
tdis
ontinuity joining the states V1 and V2.The solution for the 
ase UL ∈ [Is

2 , V1) is shown in Fig. 9.5 (see de�nition of Is
2 inFig. 9.2). The solution for the 
ase UL ∈ (Q2, I

s
2) 
oin
ides with the solution shown in
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).Remark 9.2. Noti
e that the 
onvention of 
alling a wave group as belonging to the�slow-family� or �fast-family� la
ks of physi
al meaning for this problem, sin
e in general,we �nd both negative and positive 
hara
teristi
 speeds. A negative-speed wave movesupwards while a positive-speed wave moves downwards. Noti
e that a �slow� wave 
ouldhave a negative speed with larger absolute value than a �fast� wave.
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L
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g
0(b)Figure 9.5: Riemann solution for UL ∈ [Is

2 , V1), UR = V2 in the 
ase ρ1 = ρ2 > ρ3. (a)Wave groups represented in the (x, t)-spa
e: solid lines represent the 
hara
teristi
 linesin a rarefa
tion fan, dashed lines represent sho
ks, light lines 
orrespond to waves of theslow family, dark lines 
orrespond to waves of the fast family. (b) Saturation pro�les; thesolid 
urve indi
ates the saturation of phase 2, the dashed 
urve indi
ates the saturationof phase 1. Noti
e that �uids 1 and 3 o

ur only for x < 0 and �uid 2 for x > 0.
(iv) Assume that UL ∈ (V3, Q2), then we have λ+(UL) > 0 and λ−(UL) = 0. Herethe integral 
urve of the fast family trough UL 
oin
ides with the boundary ∂2, whilethe integral 
urve of the slow family trough UL is transversal to ∂2. Apparently we 
an
onstru
t two solutions of the Riemann problem satisfying the Lax 
onditions. The �rstone is analogous to the previous 
ase (iii) (i.e., a two-phase Bu
kley-Leverett solutionup to the vertex V1 followed by a zero-speed 
onta
t between the states V1 and V2), seeFigs. 9.6(b) and 9.6(
). Noti
e that this solution 
an be 
onstru
ted without using theslow wave 
urve through UL. So in prin
iple it would be possible to 
onstru
t �another�solution using the slow wave 
urve through UL in order to rea
h ∂3, an then follow it bya zero-speed 
onta
t up to the vertex V2. In Appendix C we show that for this parti
ularRiemann problem, this se
ond 
onstru
tion via slow-family wave 
urve, does not representa new solution.Summarizing the results above and utilizing the notations from Se
tion 3.1., the Rie-mann solution for initial left and right data UL ∈ ∂2 and UR = V2 has the followingstru
ture
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)Figure 9.6: Riemann solution for UL ∈ (V3, I
s
2), UR = V2 in the 
ase ρ1 = ρ2 > ρ3, (a)slow-family wave 
urve through UL ∈ (V3, Q2). The solid 
urve denotes a rarefa
tionsegment, the 
urve marked by 
rosses denotes a 
omposite segment based on states onthe rarefa
tion 
urve UL�Uinf. The dashed 
urve is a sho
k segment. (b) wave groupsrepresented in the (x, t)-spa
e: solid lines represent the 
hara
teristi
 lines in a rarefa
tionfan, dashed lines represent sho
ks, light lines 
orrespond to waves of the slow family,dark lines 
orrespond to waves of the fast family. (
) Saturation pro�les, the solid 
urveindi
ates the saturation of phase 2, the dashed 
urve indi
ates the saturation of phase 1.Noti
e that �uids 1 and 3 o

ur only for x < 0 and �uid 2 for x > 0.

(i) If UL = V1 : UL = V1
GC
−−→ V2 = UR. (9.1)(ii) If UL = V3 : UL = V3

C
−→ V2 = UR. (9.2)For this 
ase we have other two representations in state spa
e for the same physi
alsolution:(ii.2) UL = V3

C
−→ V1

GC
−−→ V2 = UR and (ii.3) UL = V3

C
−→ B3

GC
−−→ V2 = UR.
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2 , V1) : UL

R−

−−→ V1
C
−→ V2 = UR. (9.3)In Figs. 9.5(a), 9.5(b) we show the 
orresponding Riemann solution and the saturationpro�les.(iv) If UL ∈ (V3, I

s
2) : UL

SC−

−−→ U∗

R−

−−→ V1
C
−→ V2 = UR, (9.4)where U∗ ∈ ∂2, see Figs. 9.6(b) and 9.6(
).Remark 9.3. Although we do not prove rigorously that this solution is unique, the an-alyti
al and numeri
al arguments that we provide in the 
onstru
tion of the solution are
ompatible only with uniqueness of the solution.Physi
al interpretation of the solutions in RP1.Items (i) and (ii) 
orrespond to the well known two-phase �ow. In both 
ases thesolution is just as we expe
ted be
ause the �uid initially on top is not heavier than the�uid initially at the bottom, so it is natural to expe
t that the �uids do not move.Both items (iii) and (iv) 
orrespond to a genuine three-phase �ow. In RP1 we havetwo equal-density �uids and a third �uid lighter. Initially, there is a pure �uid below theinterfa
e. The mixture on top involves a �uid with the same density that the bottom �uidand a third lighter �uid. We expe
t a priori that the bottom �uid does not move upward,be
ause there is no heavier �uid. Thus we expe
t the interfa
e to remain inta
t andboth �uids initially on top to remain there all the time. We also expe
t that the densitydi�eren
e between the �uids on top leads to a two-phase �ow involving su
h �uids, weexpe
t the lightest �uid to move upwards. We verify all these fa
ts in the solutionspresented in items (iii) and (iv), depending on the initial mixture, we will have a two-phase �ow above the interfa
e with a single rarefa
tion wave or a rarefa
tion pre
eded bya sho
k.Remark 9.4. The Riemann problem RP2, with left data UL in ∂1 and right data

UR = V1, is analogous to RP1, so we omit its des
ription.9.2 RP3: Left data in ∂3, right data V3.We know from Prop. 6.1 that H(V3) = ∂1 ∪ ∂2 ∪ ∂3 ∪R3. The sho
ks from any state on ∂3to V3 have zero speed. On the other hand, the only integral 
urves 
rossing V3 are: (I) thefast-family integral 
urves 
oin
iding with the edges ∂1, ∂2 near the vertex V3 and (II) theslow-family integral 
urve that 
oin
ides with the 
riti
al line R3, see the Fig. 9.1. Thenwe have the following three possibilities to arrive at V3.
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k along one of the edges ∂1 or ∂2.(2) Arriving at V3 by a slow sho
k along the 
riti
al line R3.(3) Arriving at V3 by a zero-speed double 
onta
t dire
tly from UL ∈ ∂3.First we analyze the two-phase �ow 
ases. If UL is one of the states V2, B3 or V1 we knowfrom Chapter 5 that the behavior is like two-phase �ow, so we 
an obtain the Riemannsolution using Oleinik's 
onstru
tion.As ρ2 > ρ3, if we 
hoose F ∂1

3 as the �ux restri
ted to the edge ∂1 with 
onservedquantity u3, this �ux fun
tion is like the �ux of Fig. 5.1(b). In Fig. 9.7(a) we showOleinik solution for the Riemann problem UL = V2, UR = V3.We illustrate the solution in Fig. 9.7 for UL = V2. The other 
ases are 
ompletelyanalogous. For the 
ase UL = V1 we have the two-phase Oleinik solution along the edge
∂2. The 
ase UL = B3 is the two-phase Oleinik solution along the 
riti
al line R3; thislatter 
ase presents only waves of the slow-family group as we proved in Theorem 5.1.Now we analyze the genuine three-phase problem. We will show that when UL ∈
(V2, B3) (i.e., when initially the phase 2 is dominant with respe
t to the phase 1 abovethe interfa
e) the solution remains in the triangle V3�B3�V2, so in this 
ase the solution
onsist of a slow-family wave group whi
h rea
hes the edge ∂1, a 
onstant state, and thenit 
ontinues with a two-phase fast-family wave group. For su
h a 
ase we show that theother possibilities for a solution arriving to V3 along the edge ∂2, the 
riti
al line R3 orby a dire
t zero-speed double 
onta
t must be ex
luded.Let us 
onsider UL ∈ (V2, B3), we will 
onstru
t the Riemann solution for UR = V3.Ex
luding a zero-speed double 
onta
t joining UL with V3.As we see in Fig. 9.7(a), the two-phase solution 
onsisting in a sho
k (in this 
ase,double 
onta
t dis
ontinuity) joining the verti
es V2 and V3 does not satisfy Oleinik'sentropy 
ondition. The alternative solution 
onsisting of a zero-speed double 
onta
t dis-
ontinuity joining UL ∈ (V2, B3) with V3 
oin
ides in the physi
al spa
e with the followingsequen
e: a genuine zero-speed 
onta
t dis
ontinuity joining UL with V2 (
orresponding totwo-phase solution along ∂3), followed by a zero-speed double 
onta
t joining the verti
es
V2 and V3, but as we already saw the last wave of this sequen
e does not satisfy Oleinik's
onstru
tion, therefore it must be ex
luded.Wave 
urve 
onstru
tion.See the arrows in Fig. 9.1(a). The slow 
hara
teristi
 speed de
reases along the slow-family integral 
urves inwards the saturation triangle, so the slow-family wave 
urve aris-ing from UL begins with a sho
k segment and �nishes at a point P s

UL
that belongs to the
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)Figure 9.7: Riemann solution for UL = V2, UR = V3 in the 
ase ρ1 = ρ2 > ρ3, (a) Oleinik's
onstru
tion. (b) Wave groups represented in the (x, t)-spa
e: solid lines represent the
hara
teristi
 lines in a rarefa
tion fan, dashed lines represent sho
k paths, light lines
orrespond to waves of the slow family, dark lines 
orrespond to waves of the fast family.(
) Saturation pro�les: the solid 
urve indi
ates saturation of phase 2, the dashed 
urveindi
ates saturation of phase 3. The 
oordinates of the following points are P s
V2

= (0, 1−

ps
V2

, ps
V2

) and P f
V3

= (0, 1−pf
V3

, pf
V3

). The two saturation pro�les interse
t at the saturationvalue 
orresponding to the quasi-umbili
 point Q1 where the wave speed is zero.
slow-family extension 
urve Es

∂3
. The slow-family wave 
urve 
ontinues from P s

UL
witha rarefa
tion segment until it rea
hes the in�e
tion manifold and then 
ontinues witha 
omposite 
urve based into this rarefa
tion segment. As the wave 
urve rea
hes theextension 
urve Es

∂1
of the edge ∂1 before arriving to the in�e
tion lo
us, the 
omposite
urve rea
hes the boundary ∂1 at a point UM , see Fig 9.9(a). There exist two possibilitiesfor the stru
ture of the fast-family wave 
urve arising from UM , depending on the positionof UM relatively to the state P f

V3
, whi
h is the fast-family extension point on the edge ∂1of the vertex V3. If UM ∈ (V3, P
f
V3

) (as in the 
ase shown in Fig. 9.9(a)) the fast-familywave 
urve 
onsists only of a sho
k segment. If UM ∈ (P f
V3

, Q1) the fast-family wave 
urve
onsists of a rarefa
tion segment from UM�If
1 
ontinuing with a 
omposite 
urve (basedon this rarefa
tion segment) up to V3, see Fig. 9.10(a).
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(b)Figure 9.8: (a) Wedge 
onstru
tion for the two-phase regimes R3 and ∂1. This �gureis utilized to establish the speed 
ompatibility between wave groups in the solution. (b)Wedge 
onstru
tion for the two-phase regimesR3 and ∂2. This �gure is utilized to establishthe speed in
ompatibility between other waves that need to be ex
luded.The Riemann solution 
onsists of the following sequen
e of waves. There is a slow-family right-
hara
teristi
 sho
k wave joining UL ∈ ∂3 to P s
UL
, followed by a slow rar-efa
tion wave joining P s

UL
to a state P s

UM
on the 
urve Es

∂1
, followed by a slow-familyleft-
hara
teristi
 sho
k joining P s

UM
to state UM in ∂1. If UM ∈ [P f

V3
, V3) the last wave inthe solution is a fast sho
k joining UM to V3, see Figs. 9.9(b) and 9.9(
). If UM ∈ (Q1, P

f
V3

),the fast-family wave group 
onsists of a rarefa
tion wave joining UM to P f
V3

followed by aleft-
hara
teristi
 sho
k up to V3, see Figs. 9.10(b) and 9.10(
).Now we will show the 
ompatibility between the speeds of the slow-family wave groupjoining UL with UM and the fast-family wave group joining UM with V3.Speed 
ompatibility of the waves.We perform the wedge 
onstru
tion (des
ribed in Se
tion 7.1) for the two-phaseregimes R3 and ∂1 with a 
ommon vertex V3. Along ∂1 we 
hoose F ∂1

3 and u3 as �uxfun
tion and 
onserved quantity; the phases 
oexisting in ∂1 have vis
osities µ2 and µ3.
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riti
al line R3 the �ux fun
tion is given by Eq. (5.10) with
onserved quantity u. The vis
osities of the e�e
tive phases 
oexisting along R3 are µ3and µ1 + µ2. The relative di�eren
e between the densities of the �uids involved in thesetwo-phase regimes gives rise to a situation as in Fig. 9.8(a), where the tangent segmentto the graph at P s
V3

interse
ts the extended-�ux fun
tion at two points A1
1, A2

1 on theopposite side relative to V3. We have λ−(P s
V3

) = σ(P s
V3

, V3) = σ(V3, A
1
1) = σ(V3, A

2
1). InFig. 9.11(a) all these points are drawn in the saturation triangle, and the dotted 
urverepresents the Hugoniot lo
us through the relevant point P s

V3
∈ R3.On the other hand for UL ∈ (V2, B3) we have numeri
al eviden
e showing that UM ∈

(A1
1, Q1). Plotting the level 
urves for the slow-family 
hara
teristi
 speed we obtain

λ−(P s
UM

) < λ−(P s
V3

), see Fig. 9.11(
). Thus we have σ(P s
UM

, UM) = λ−(P s
UM

) < λ−(P s
V3

) =
σ(P s

V3
, V3) < σ(UM , V3) (see Fig. 9.8(a) for last inequality), whi
h is eviden
e for the
ompatibility of speeds between the slow-family and fast-family wave groups.From Fig. 9.11(a) we noti
e that for UL su�
iently near B3 the rarefa
tion segmentof the slow-family wave 
urve interse
ts both extension 
urves Es

∂1
and Es

∂2
. We havealready 
onstru
ted the solution using the interse
tion point P s

UM
in Es

∂1
, this solutionalways remains in the triangle V3�B3�V2. We have also veri�ed the speed 
ompatibilitybetween the slow-family and fast-family waves. Now we will show that the other possiblesolution that arises by the use of the point D on Es

∂2

onne
ting to a point D′ on the edge

∂2 must be ex
luded.Ex
luding the solution arriving at V3 along the edge ∂2 for UL ∈ (V2, B3).See Fig. 9.11(b), we denote by D′ a point on ∂2 for whi
h D is the extension, so
D′ ∈ H(D) and σ(D, D′) = λ−(D). It is possible to show that the sho
k joining D and
D′ is a Lax slow-sho
k. We will show that the possibility of utilizing that sho
k in thesolution must be ex
luded be
ause of speed in
ompatibility with the fast-family sho
kjoining D′ with V3.The in
ompatibility 
an be established by performing the wedge 
onstru
tion for thetwo-phase regimes R3 and ∂2, see Fig. 9.8(b) and by the usage of numeri
al arguments:
(1) plotting the level 
urves for the slow 
hara
teristi
 speed (see Fig. 9.11(
)) we notethat λ−(D) > λ−(P s

V3
)), (2) plotting the Hugoniot lo
us through D (see Fig. 9.11(b)) wedetermine the relative position of D′ with respe
t to A1

2. Be
ause of all these reasons we
on
lude that σ(D, D′) = λ−(D) > λ−(P s
V3

) = σ(P s
V3

, A1
2) > σ(D′, V3) (see Fig. 9.8(b) forlast inequality). Therefore the sho
k sequen
e D

CS−

−−→ D′ S+

−→ V3 has speed in
ompatibil-ity, so this solution must be ex
luded.In other words, if the left state UL of the Riemann problem belongs to the edge V2�B3of the triangle V3�B3�V2, then the solution remains inside this triangle. The dominantphase at the state UL (in this 
ase would be phase 2) remain dominant with respe
t tothe other phase present at UL, the Riemann solution rea
hes an intermediate state UMwhere the non-dominant phase at UL is missing. A similar invarian
e property was alsoobserved in the three-phase problem without gravity [1℄.



88 Chapter 9. Solution for SPGP with heavy equal-density �uidsNext we summarize the results above, we use the notations from Se
tion 3.1, theRiemann solution for initial left and right data UL ∈ ∂3 and UR = V3 has the followingstru
ture:(i) For the 
ase UL = V2 we have the two-phase solution, see Fig. 9.7:
UL

SC
−−→ P s

V2

R
−→ P f

V3

CS
−−→ V3 = UR, (9.5)(ii) For UL ∈ (V2, B3) su
h that UM ∈ (Q1, P

f
V3

) see Fig 9.10:
UL

SC−

−−→ P s
UL

R−

−−→ P s
UM

CS−

−−→ UM
R+

−−→ P f
V3

CS+

−−→ V3 = UR. (9.6)(iii) For UL ∈ (V2, B3) su
h that UM ∈ (P f
V3

, V3), see Fig 9.9:
UL

SC−

−−→ P s
UL

R−

−−→ P s
UM

CS−

−−→ UM
S+

−→ V3 = UR, (9.7)(iv) For UL ∈ (V2, B3) su
h that UM = P f
V3
:

UL
SC−

−−→ P s
UL

R−

−−→ P s
UM

CS−

−−→ P f
V3

CS+

−−→ V3 = UR. (9.8)For the 
ase where phase 1 is dominant at the state UL, i.e., for UL ∈ (B3, V1), thesolution is 
ompletely analogous to the previous one, so we do not des
ribe it.Physi
al interpretation of the solutions in RP3.Case (i) 
orresponds to the well known two-phase solution involving phases 2 and 3,whi
h have distin
t densities. The 
ases (ii), (iii) and (iv) 
orrespond to genuine three-phase solutions. For these 
ases the mixture initially on top 
ontains the equal-density�uids 1 and 2, with phase 2 dominant with respe
t to the phase 1, i.e., the saturation ofphase 2 is larger than the saturation of phase 1. The �uid initially at bottom is lighter.The solutions for these 
ases have 
ertain similarity with the two-phase solution in 
ase(i). We noti
e that phase 2 (initially dominant on top) remains dominant with respe
t tothe phase 1 in the solution. The Riemann solution rea
hes an intermediate state wherephase 1 is missing. However, noti
e that for any one of these three-phase �ow 
ases, thesequen
e of waves in the solution 
ontains an additional sho
k pre
eding a homogeneousregion, see Fig 9.10 or Fig 9.9. This stru
ture di�ers from the two-phase 
ase (i) shownin Fig. 9.7.
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urves in the saturationtriangle. As usual, for ea
h family, the dashed 
urve denotes a sho
k segment, the solid
urve denotes a rarefa
tion segment and the 
rossed 
urve denotes a 
omposite segment.We also draw the slow-family in�e
tion bran
hes Inf− and the slow-family boundary
onta
t manifolds (extensions Es
∂i
) 
orresponding to ea
h edge ∂i. Some relevant pointsare also drawn. (b) Riemann solution represented in the (x, t)-spa
e, solid lines representthe 
hara
teristi
 lines for a rarefa
tion fan, dashed lines represent sho
k paths, light lines
orrespond to waves of the slow family, dark lines 
orrespond to waves of the fast family.(
) Saturation pro�les: the solid 
urve indi
ates saturation of phase 2, the dashed 
urveindi
ates saturation of phase 3. The 
onstant states have 
oordinates UL = (1−uL

2 , uL
2 , 0),

UM = (0, uM
2 , 1 − uM

2 ) and V3 = (0, 0, 1). The two saturation pro�les interse
t at asaturation value where the 
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teristi
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ase ρ1 = ρ2 > ρ3, (a) Riemann solution represented by wave 
urves in the saturationtriangle. As usual, for ea
h family, the dashed 
urve denotes a sho
k segment, the solid
urve denotes a rarefa
tion segment and the 
rossed 
urve denotes a 
omposite segment.We also draw the slow-family in�e
tion bran
hes Inf− and the slow-family boundary
onta
t manifolds (extensions Es
∂i
) 
orresponding to ea
h edge ∂i. Some relevant pointsare also drawn. (b) Riemann solution represented in the (x, t)-spa
e, solid lines representthe 
hara
teristi
 lines for a rarefa
tion fan, dashed lines represent sho
k paths, light lines
orrespond to waves of the slow family, dark lines 
orrespond to waves of the fast family.(
) Saturation pro�les: the solid 
urve indi
ates saturation of phase 2, the dashed 
urveindi
ates saturation of phase 3. The 
onstant states have 
oordinates UL = (1−uL

2 , uL
2 , 0),

UM = (0, uM
2 , 1 − uM

2 ) and V3 = (0, 0, 1). The two saturation pro�les interse
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Chapter 10Solution for SPGP with lightequal-density �uids
In this 
hapter we study the 
ase in whi
h α = 0, ρ1 > ρ2 = ρ3. Denoting ρ = ρ31 = ρ21,we are in the 
ase ρ < 0. As a 
onsequen
e of the reversal symmetry in Theorem 8.1,the integral 
urves, the in�e
tion manifolds and the boundary 
onta
t manifolds 
orre-sponding to this �simpli�ed pure gravitational problem� are identi
al to those shown inthe previous 
hapter, but the families are inter
hanged. Besides, along the integral 
urvesof ea
h family, the in
reasing dire
tion of the 
hara
teristi
 speed is reversed with respe
tto the 
ase analyzed in the previous 
hapter. For this 
ase the integral 
urves of ea
hfamily are shown in Figure 10.1. Noti
e that segments (Q3, V1) ⊂ ∂3 and (Q2, V1) ⊂ ∂2are integral 
urves of the slow family while segments (Q3, V2) ⊂ ∂3 and (Q2, V3) ⊂ ∂2 areintegral 
urves of the fast family. This 
hange of family along the edges when 
rossingthe quasi-umbili
 points was proved in Theorem 4.1.The in�e
tion manifolds of ea
h family for the symmetri
al 
ase µ1 = µ2 = µ3 is shownin Fig. 10.2.In Fig. 10.3 we show the boundary 
onta
t 
urves (see Def. 3.9). As in the previousse
tion, we denote by Es

∂j
, Ef

∂j
; j = 1, 2, 3 the boundary 
onta
t 
urves of the slow and fastfamily respe
tively, 
orresponding to the edge ∂j . We also 
all these 
urves the extensionsof the edges of the saturation triangle. Again we re
all that P s

A (or P f
A), is the extensionof a point A on the boundary, asso
iated to the the slow (or fast) family (i.e., the sho
kjoining the state A to the state P i

A is 
hara
teristi
 at P i
A for the family i).Consider the simpli�ed pure gravitational problem α = 0, ρ1 > ρ2 = ρ3. We wantto solve the generi
 Riemann problem with left data UL lying on the edge ∂i, i = 1, 2, 3of the saturation triangle, and right data UR 
oin
iding with the opposite vertex Vi. Forthis 
ase, there exist essentially only two distin
t problems: UL ∈ ∂1, UR = V1 and

UL ∈ ∂2, UR = V2 (noti
e that the Riemann problems with data UL ∈ ∂2, UR = V2 and
UL ∈ ∂3, UR = V3 are analogous). 92
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onta
t manifolds for α = 0, ρ1 > ρ2 = ρ3, µ1 = µ2 = µ3. Thelight 
urves are the slow-family boundary 
onta
t 
urves, the bran
h Es
∂2

is the slow-familyextension of the edge ∂2 and the bran
h Es
∂3

is the slow-family extension of the edge ∂3,the edge ∂1 where the equal-density �uids 
oexist has no slow-family extension. The dark
urves are the fast-family boundary 
onta
t 
urves, Ef
∂i

for i = 1, 2, 3 are the fast-familyextension of the edges ∂i.First we state the following result.Lemma 10.1. Assume ρ1 > ρ2 = ρ3 and 
onsider the states Ai ∈ ∂i, i = 1, 2, 3, then:(i) we have σ(U, Ai) < 0 for all U ∈ H(Ai), i = 2, 3 out of the edge ∂i.(ii) we have σ(U, A1) > 0 for all U ∈ H(A1) out of the edge ∂1 and out of the vertex V1.Proof. The proof follows from Lemma 9.1 and the symmetry result for the Hugoniot lo
iin Remark 8.1. The sho
k speed 
hanges sign with respe
t to the SPGP studied in theprevious 
hapter.10.1 RP4: Left data in ∂2, right data V2For this 
ase H(V2) = ∂1 ∪ ∂3 (see item (i) of Prop. 6.3), we also see in Fig. 10.1 that theintegral 
urves through vertex V2 
oin
ide with the edges ∂1 and ∂3 near V2. Thus thepossible ways to arrive at V2 are (see Fig. 10.1):(1) Arriving by a zero-speed genuine 
onta
t dis
ontinuity 
orresponding to the two-phase solution on ∂1 (see Se
.5.2).



Fluids 1 and 3 on top, �uid 2 at the bottom 95(2) Arriving by a fast sho
k 
orresponding to the two-phase solution on ∂3.Ex
luding alternative (1).Inspe
ting the arrows in Fig. 10.1(b), we see that the only way to arrive at a point
A1 ∈ ∂1 is by a fast sho
k with positive speed (see item (ii) of Lemma 10.1). This sho
k
annot pre
ede the two-phase zero-speed genuine 
onta
t along ∂1 up to V2. Therefore allsolutions arriving at V2 by the edge ∂1 must be ex
luded.Constru
tion of the Riemann solution.Now we will 
onstru
t the solution using the se
ond alternative, i.e., in order to arriveto V2 we must �rst rea
h the edge ∂3 by means of a slow-family wave group followedby a fast-family two-phase wave group up to V2. Noti
e that as ρ1 > ρ2, 
hoosing F ∂3

2as the �ux restri
ted to the edge ∂3 with 
onserved quantity u2, F ∂3

2 is similar to the�ux in Fig. 5.1(b). We see that there exist two ways to arrive to the edge ∂3 through aslow-family wave 
urve.(2.1) Arriving to the interval (V2, Q3) by a slow rarefa
tion 
urve (see arrows in Fig. 10.1(a)).(2.2) Arriving to the interval (Q3, V1) by a slow sho
k using a non-lo
al bran
h of theHugoniot lo
us through UL (see for example Fig. 7.8(a)- 7.8(
)).However the option (2.2) of rea
hing the edge ∂3 at states out of the interval (V2, Q3)must be ex
luded be
ause of Proposition 7.2; this type of sho
k leads to speed in
ompati-bility between the waves in the solution. In other words, the Riemann solution must beginwith a slow-family wave group, whi
h rea
hes the interval (V2, Q3) at a point UM , thenthe solution 
ontinues by means of the fast-family wave group, i.e., a two-phase Oleiniksolution joining UM to V2.Consider UL = (uL
1 , 0, uL

3 ) on ∂2. We will split our analysis in several 
ases.10.1.1 Two-phase solutions.
(i) If UL = V3 the solution is a zero-speed genuine 
onta
t joining V3 with V2.
(ii) If UL = V1, the solution is the same two-phase Oleinik solution des
ribed in Fig. 9.7.10.1.2 Doubly 
hara
teristi
 sho
ks in three-phase solutions.See Fig. 7.8, by analyzing qualitatively the motion of the non-lo
al Hugoniot bran
h of
H(UL) when UL moves along ∂2 from V3 to V1, we noti
e that it reverses dire
tion twi
e.



96 Chapter 10. Solution for SPGP with light equal-density �uidsFirst the non-lo
al bran
h leaves the saturation triangle when UL = U1 and goes awayuntil UL rea
hes a 
ertain state D1, where the motion of the bran
h reverses and startsto approa
h again the triangle (see the arrows in Figs. 7.8(d)- 7.8(e)). From UL = U2 thenon-lo
al bran
h enters the saturation triangle until UL rea
hes 
ertain state D2 wherethe motion of the non-lo
al bran
h reverse again to approa
h the edge ∂3 (whi
h 
oin
ideswith the non-lo
al bran
h in the limit 
ase UL = V1).We state the following 
onje
ture, whi
h is supported by strong numeri
al eviden
eand some analyti
al 
al
ulations.Conje
ture 10.1. Consider the simpli�ed pure gravitational problem (SPGP) in whi
hthe equal-density �uids are lighter than the other �uid ( i.e., α = 0 and ρ1 > ρ2 = ρ3.The states D1 and D2 on ∂2 where the motion of the non-lo
al Hugoniot bran
h reverses,belong to the slow-family double 
onta
t manifold. In other words, there exist D′
1 and D′

2su
h that D′
i ∈ H(Di) and λ−(Di) = σ(Di, D

′
i) = λ−(D′

i) for i = 1, 2. The state D′
2always lies in the interior of the saturation triangle. The state D′

1 may lie: (a) outsidethe saturation triangle, (b) on the edge ∂3 of the saturation triangle, or (
) in the interiorof the saturation triangle, depending on the shape of the extended-�ux fun
tion F ∂2∂3

ext asfollows: 
ase (a) o

urs if the graph of F ∂2∂3

ext is like the dotted 
urve in Fig. 7.3, 
ase (b)o

urs if the graph of F ∂2∂3

ext is like the solid 
urve in Fig. 7.3, and 
ase (
) o

urs if thegraph of F ∂2∂3

ext is like the dashed 
urve in Fig. 7.3.Remark 10.1. Noti
e that when the graph of F ∂2∂3

ext is like the solid 
urve in Fig. 7.3, thedouble 
onta
t pair D1, D
′
1 
oin
ides with the double 
onta
t pair U0, U

∗ in Fig. 7.3, thisis the �double tangen
y� 
ase where U0 ∈ ∂2, U∗ ∈ ∂3 . As we 
an regard the other 
asesas bifur
ations of this �double tangen
y� 
ase, we see that the se
ond part of the 
onje
ture(about the relative position of D′
1) be
omes natural.Now we state another 
onje
ture, whi
h is also supported by numeri
al 
al
ulations.Conje
ture 10.2. The slow 
hara
teristi
 speed λ−(U) de
rease monotoni
ally when Umoves from ∂1 to ∂3 along the extension 
urve Es

∂2
in Fig. 10.3.Proposition 10.1. Assume that the Conje
tures 10.1 and 10.2 are valid. Consider D∗

2on ∂2 su
h that σ(D∗
2, D2) = λ−(D2). Then we have D∗

2 ∈ (V3, U1), where U1 is de�ned initem (ii) of Prop. 7.1 and is shown in the Figs. 7.3 and 10.4.Proof. From Conje
ture 10.2, we have that λ−(D2) = λ−(D′
2) > λ−(U∗). On the otherhand we know that σ(U1, V1) = λ−(U∗) and we noti
e that λ−(D2) = σ(D∗

2, D2) <
σ(D∗

2, V1) (see Fig 10.4). Thus we obtain σ(U1, V1) = λ−(U∗) < σ(D∗
2, V1), whi
h implies

D∗
2 ∈ (V3, U1).
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Figure 10.4: Extended �ux fun
tion. Noti
e that D∗
2 ∈ (V3, U1). In the interval (D∗

2, U1)we have multiple solutions satisfying the generalized Lax 
riterion. It is ne
essary to usethe vis
ous pro�les 
riterion to 
hoose the 
orre
t physi
al solution.Dis
onne
ted wave 
urvesConsider UL ∈ (V3, V1) and UR = V2, we �nd that the slow-family wave 
urve through
UL has dis
onne
ted bran
hes. For most of the values of UL on the edge ∂2, we must usea non-lo
al bran
h of the slow-family wave 
urve in order to rea
h the interval (V2, Q3)on ∂3.In Fig. 7.8 we illustrated the Hugoniot lo
i for distin
t values of UL ∈ ∂2, for the sameSPGP we are studying in the 
urrent 
hapter, therefore that �gure 
an be taken as thereferen
e for the shape of the Hugoniot lo
i. Re
all that U1 and U2 were de�ned in item
(ii) of Prop. 7.1, these states 
an be 
al
ulated easily from the wedge 
onstru
tion (seeFig. 7.4).
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(f)Figure 10.5: Slow-family wave 
urves for some states UL on ∂2 for the problem α = 0,
ρ1 > ρ2 = ρ3, in the 
ase µ1 = µ2 = µ3. The solid light 
urves Es

∂2
and Ef

∂2
are the (slowand fast) extensions 
orresponding to the edge ∂2. The dark 
urves represent the slow-family wave 
urve. As usual the solid part of the 
urves represent rarefa
tion 
urves withan arrow indi
ating the in
reasing dire
tion of the slow 
hara
teristi
 speed, the dashedportions represent sho
k 
urves. (a) Wave 
urve for UL ∈ (V3, W1). (b) Wave 
urve for

UL = W1. (
) Wave 
urve for UL = D∗
2 where D∗

2 ∈ ∂2 and σ(D2, D
∗
2) = λ−(D2). (d)Wave 
urve for UL ∈ (D∗

2, U1). (e) Wave 
urve for UL ∈ (U1, D2). (f) Wave 
urve for ULjust to the right of the double 
onta
t state D2. In all the �gures we denoted by bla
kdots the relevant states for the 
onstru
tion of the Riemann solutions, the states denotedby white squares does not belong to the solutions.



Fluids 1 and 3 on top, �uid 2 at the bottom 99In Fig. 10.5 we show the slow-family wave 
urves for several values of UL ∈ ∂2. Wenote that for all values of UL there exists at least a wave 
urve bran
h that rea
hes theedge ∂3 at a point in the interval (V2, Q3), so the Riemann solution always exists. In this
ase, the speed 
ompatibility between the fast-family waves and the slow-family waves istrivial sin
e the last wave of the slow-family group is a rarefa
tion ending with zero-speedat the intermediate state UM , while the fast-family wave group, whi
h de�nes the two-phase solution joining UM to V2, always has positive speed. Noti
e that for UL ∈ (D∗
2, U1)(see Fig. 10.5(d)) there exist two bran
hes of the slow-family wave 
urve arriving to theinterval (V2, Q3). The �rst bran
h arises from the use of the slow-family extension P s

ULof the point UL. However, this 
onstru
tion provides a sequen
e of waves whi
h satis�esthe generalized Lax 
riterion but it does not satisfy the vis
ous pro�le 
riterion, seeFig. 10.6(
). The other bran
h arises from the use of the slow-family double 
onta
t pair
D2, D

′
2, this type of solution satis�es both the generalized Lax 
riterion and the vis
ouspro�le 
riterion, therefore this is the physi
ally 
orre
t solution. For UL ∈ (U1, D2) onlythe non lo
al bran
h arising from the use of the slow-family double 
onta
t pair D2, D

′
2lies in the sauration triangle.

LU

s

UL
P

*

2
D

S

R(a) *

2
DUL =

2
'D

2
D(b) LU

s

UL
P

*

2
D R

S(
)Figure 10.6: (a) Case UL just to the left of D∗
2, there exist an orbit joining the states ULand P s

UL
. As expe
ted this type of solution satis�es the vis
ous pro�le 
riterion. (b) Case

UL = D∗
2 for this 
ase we obtain the phase portrait as a 
onsequen
e of the 
ollapse oftwo 
riti
al points: a repelling node and a saddle. (
) Case UL just to the right of D∗

2,there does not exist an orbit joining UL and P s
UL
, there exist a saddle point whi
h doesnot permit any orbit to 
ross to the other side. The Riemann solution for this 
ases mustto be 
onstru
ted by using the double 
onta
t pair D2, D

′
2.In fa
t, for any value of UL in (D∗

2, D2) (see Figs. 10.5(d)- 10.5(e)) we must use theslow-family double 
onta
t pair D2, D
′
2 to 
onstru
t the Riemann solution, while for the
ases UL ∈ (V3, D

∗
2) and UL ∈ (D2, V1) we use the extension P s

UL
of the point UL, seeFigs. 10.5(a), 10.5(b), 10.5(f).See Fig. 10.5(
). For the 
ase UL = D∗

2, we have P s
D∗

2
= D′

2 (be
ause of the Triplesho
k rule applied to D∗
2, D2, D

′
2), and we have two representations in state spa
e of thesame physi
al solution. The �rst representation 
onsists of a slow sho
k joining UL = D∗

2with their extension point P s
D∗

2
= D′

2, 
ontinued by a slow-family rarefa
tion wave to
UM . The fast wave group is the two-phase Oleinik solution from UM to V2. The se
ondrepresentation 
onsists of a slow sho
k joining UL = D∗

2 with the state D2, whi
h is
hara
teristi
 at D2; it is followed by a double 
onta
t dis
ontinuity joining D2 with D′
2;



100 Chapter 10. Solution for SPGP with light equal-density �uidsfrom this point up to the �nal state V2 we use the same sequen
e of waves employed inthe �rst representation. The key fa
t for these di�erent representations in state spa
eto 
oin
ide in the physi
al spa
e is that the dis
ontinuities involved have the same speed(noti
e that σ(D∗
2, D2) = λ−(D2) = λ−(D′

2) = σ(D∗
2, D

′
2)).In Fig. 10.5 we denoted by bla
k dots the states that are relevant for the 
onstru
tionof the Riemann solutions, the states denoted by white squares do not take part in thesolutions.Remark 10.2. Noti
e a 
urious feature of the solution: if the mixture proportion of thestate UL lies inside the interval (D∗

2, D2) then the faster wave in the upward dire
tion(negative speeds) does not involve �uid 2 ( i.e., the solution does not enter the saturationtriangle). In other words, until the mixture proportion of the top �uids attains the 
riti
alvalue given by D2, the bottom �uid (phase 2) does not move upwards.Now we summarize the results above, using the notations from Se
tion 3.1.The Riemann solution for the genuine three-phase �ow of the SPGP where α = 0,
ρ3 = ρ2 < ρ1, has the following stru
ture(iii) For UL ∈ (V3, D

∗
2) su
h that UM ∈ (V2, P

f
V2

):
UL

SC−

−−→ P s
UL

R−

−−→ UM
S+

−→ V2 = UR. (10.1)(iv) For UL ∈ (V3, D
∗
2) su
h that UM = P f

V2
:

UL
SC−

−−→ P s
UL

R−

−−→ UM
CS+

−−→ V2 = UR. (10.2)(v) For UL ∈ (V3, D
∗
2) su
h that UM ∈ (P f

V2
, Q3) or UL ∈ (D2, V1):

UL
SC−

−−→ P s
UL

R−

−−→ UM
R+

−−→ P f
V2

CS+

−−→ V2 = UR. (10.3)(vi) For UL ∈ (D∗
2, I

s
2), see Figs. 10.7(
) and 10.7(d), with UL

∗ ∈ ∂2:
UL

SC−

−−→ UL
∗

R−

−−→ D2
C−

−−→ D′
2

R−

−−→ UM
R+

−−→ P f
V2

CS+

−−→ V2 = UR, (10.4)(vii) For UL ∈ [Is
2 , D2), see Figs. 10.7(a) and 10.7(b):

UL
R−

−−→ D2
C−

−−→ D′
2

R−

−−→ UM
R+

−−→ P f
V2

CS+

−−→ V2 = UR, (10.5)(viii) For UL = D∗
2:

UL = D∗
2

SC−

−−→ P s
D∗

2
= D′

2
R−

−−→ UM
R+

−−→ P f
V2

CS+

−−→ V2 = UR. (10.6)



Fluids 2 and 3 on top, �uid 1 at the bottom 101For this 
ase we have another di�erent representation in state spa
e for the same physi
alsolution(viii.1) UL = D∗
2

SC−

−−→ D2
C−

−−→= D′
2

R−

−−→ UM
R+

−−→ P f
V2

CS+

−−→ V2 = UR. (10.7)(ix) For UL = D2:
UL = D2

C−

−−→ D′
2

R−

−−→ UM
R+

−−→ P f
V2

CS+

−−→ V2 = UR. (10.8)Physi
al interpretation of the solutions.We will only dis
uss the 
ases (vi) and (vii), whi
h are more interesting, see Fig. 10.7.For this Riemann problem, one of the top �uids has the same density as the bottom �uid,while the third �uid (initially on top) is the heaviest. The solution is totally unpredi
tablewithout mathemati
al analysis. The solution 
onsists of two wave groups separated by a
onstant state. The �rst wave group moves upwards. It 
ontains a double 
onta
t sho
kembedded into two rarefa
tion waves; sometimes the upper rarefa
tion is pre
eded byan additional sho
k (this is the sole di�eren
e between the two 
ases). Within the topwave group, the waves faster than the embedded sho
k involve only two �uids, pre
iselythe �uids that were on top initially; the �uid initially at the bottom is only present inthe solution below the embedded sho
k. The se
ond wave group moves downwards andinvolves two �uids only. This wave group 
onsists of a rarefa
tion wave adja
ent to afaster sho
k; in all these waves the lower-density �uid that was initially lo
ated on top isabsent, i.e., the lower-density �uid never moves downwards, as one 
ould expe
t. Thereis a homogeneous region, i.e., a 
onstant state, separating the two wave groups. The spanof this region grows linearly with time.We observe a 
urious feature of this Riemann solution (see Remark 10.2): while theproportion in the mixture initially on top keeps within 
ertain range away from a 
riti
alvalue, the mixture slows down the upward motion of the bottom �uid. This blo
kingproperty perhaps 
ould be important in appli
ations.10.2 RP5: Left data in ∂1, right data V1See Fig. 10.1, the edge ∂1 
oin
ides with the slow-family integral 
urves through UL ∈ ∂1.In this 
ase the Riemann solution is trivial, the solution 
onsists of a zero-speed genuine
onta
t from UL to the point V2, followed by a zero-speed double 
onta
t dis
ontinuityjoining V2 with V1. There exist three representation of this solution in state spa
e whi
h
oin
ide in the physi
al spa
e:(i) UL
GC
−−→ V2

C
−→ V1 = UR.(ii) UL

GC
−−→ V3

C
−→ V1 = UR.
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(d)Figure 10.7: (a)-(b) Riemann solution for UL ∈ [Is
2 , D2), UR = V2 (Is

2 was de�ned inFig. 10.2) for the 
ase ρ1 > ρ2 = ρ3. (
)-(d) Riemann solution for UL ∈ (D∗
2, I

s
2), UR = V2.In (a) and (
): Riemann solution in (x, t)-spa
e: solid lines represent the 
hara
teristi
lines in a rarefa
tion fan, dashed lines represent sho
k paths, light lines 
orrespond towaves of the slow family, dark lines 
orrespond to waves of the fast family. In (b) and(d): saturation pro�les; the solid 
urve indi
ates the saturation of phase 1, the dashed
urve indi
ates the saturation of phase 2. The 
onstant states are UL = (uL
1 , 0, 1 − uL

1 ),
UM = (uM

1 , 0, 1 − uM
1 ) and V2 = (0, 1, 0). Other relevant states are the pair D2 =

(d, 0, 1 − d), D′
2 = (d′

1, d
′
2, 1 − d′

1 − d′
2) that belong to the double 
onta
t manifold, andstates D∗

2 = (d∗, 0, 1 − d∗), UL
∗ = (uL

∗ , 0, 1 − uL
∗ ) whi
h satisfy σ(D∗

2, D2) = λ−(D2),
σ(UL, UL

∗ ) = λ−(UL
∗ )(iii) UL

GC
−−→ B1

C
−→ V1 = UR.Physi
al interpretation of the solutions.The physi
al interpretation is trivial, sin
e for this 
ase the bottom �uid is the heaviestwhile in top we have equal-density �uids, one 
ould expe
t that neither of the �uids wouldmove.Remark 10.3. The Riemann problem RP6: with left data UL in ∂3 and right data



Fluids 2 and 3 on top, �uid 1 at the bottom 103
UR = V3, is analogous to the 
ase RP4, so we omit its des
ription.



Appendix AAdditional 
al
ulation for Theorem 5.1
The following 
al
ulations 
orrespond to the proof of Theorem 5.1. Assume ρ3 < ρ1 = ρ2.Let us denote ρ = ρ13 = ρ23. From (4.4)-(4.7) we have

J22 − J11 = 2ρ
( u2

1u2u
2
3

µ1µ2µ3Λ2
−

u4
2u3

µ2
2µ3Λ2

−
u1u

2
2u

2
3

µ1µ2µ3Λ2
+

u4
1u3

µ2
1µ3Λ2

)
, (A.1)

J12 = 2ρ
(
−

u2
1u2u

2
3

µ1µ2µ3Λ2
−

u2
1u

2
2u3

µ1µ2µ3Λ2
−

u4
1u3

µ2
1µ3Λ2

)
, (A.2)

J21 = 2ρ
(
−

u1u
2
2u

2
3

µ1µ2µ3Λ2
−

u2
1u

2
2u3

µ1µ2µ3Λ2
−

u4
2u3

µ2
2µ3Λ2

)
. (A.3)As we are supposing that (u1, u2) ∈ R3, we 
an substitute u1

µ1
= u2

µ2
into above ex-pression in a 
onvenient way in order to obtain the same denominator in all terms, so weobtain

J22 − J11 = 2ρ
( u3

1u
2
3

µ2
1µ3Λ2

−
u2

1u
2
2u3

µ2
1µ3Λ2

−
u2

1u2u
2
3

µ2
1µ3Λ2

+
u4

1u3

µ2
1µ3Λ2

)

= 2ρ
u2

1u3

µ2
1µ3Λ2

(
u1(1 − u1 − u2) − u2

2 − u2(1 − u1 − u2) + u2
1

)

= 2ρ
u2

1u3

µ2
1µ3Λ2

(
u1 − u2

)
= 2ρ

u3
1u3

µ2
1µ3Λ2

(
1 − µ2/µ1

)
,

(A.4)
J12 = 2ρ

(
−

u3
1u

2
3

µ2
1µ3Λ2

−
u3

1u2u3

µ2
1µ3Λ2

−
u4

1u3

µ2
1µ3Λ2

)

= −2ρ
u2

1u3

µ2
1µ3Λ2

(
u1(1 − u1 − u2) + u1u2 + u2

1

)
= −2ρ

u3
1u3

µ2
1µ3Λ2

,

(A.5)104



105
J21 = 2ρ

(
−

u2
1u2u

2
3

µ2
1µ3Λ2

−
u3

1u2u3

µ2
1µ3Λ2

−
u2

1u
2
2u3

µ2
1µ3Λ2

)

= −2ρ
u2

1u3

µ2
1µ3Λ2

(
u2(1 − u1 − u2) + u1u2 + u2

2

)

= −2ρ
u2

1u2u3

µ2
1µ3Λ2

= −2ρ(µ2/µ1)
u3

1u3

µ2
1µ3Λ2

.

(A.6)
Let be ∆ = (J22 − J11)

2 + 4J12J21, from (A.4)-(A.6) we have
∆ = 4

u6
1u

2
3ρ

2

µ4
1µ

2
3Λ

4

(
(1 − µ2/µ1)

2 + 4µ2/µ1

)
= 4

u6
1u

2
3ρ

2

µ4
1µ

2
3Λ

4

(
1 + µ2/µ1

)2
. (A.7)Substituting (A.4) and (A.7) into (5.16) and using (A.6) we obtain

J22 − λ− = 2ρ
u3

1u3

µ2
1µ3Λ2

= −
µ1

µ2
J21. (A.8)



Appendix BProof of Lemma 8.2
First we see that the fun
tions J11 and J22 are symmetri
 fun
tions with respe
t to thevariables u1 and u2, so the fun
tion f0 = J11 + J22 is also symmetri
.Let denote Θ = J11J22 − J12J21 Taking in to a

ount the relations (4.4)-(4.7), we obtainafter some 
al
ulations

Θ = f1 + f2 + f3 + f4 + f5 + f6 + f7, (B.1)where
f1(u1, u2) = −8ρ2

(u3
1u

4
2(1 − u1 − u2)

3

µ4µ2
3Λ

4
+

u4
1u

3
2(1 − u1 − u2)

3

µ4µ2
3Λ

4

)
, (B.2)

f2(u1, u2) = −4ρ2
(u1u

6
2(1 − u1 − u2)

3

µ4µ2
3Λ

4
+

u6
1u2(1 − u1 − u2)

3

µ4µ2
3Λ

4

)
, (B.3)

f3(u1, u2) = 4ρ2
(u1u

3
2(1 − u1 − u2)

6

µ3µ3
3Λ

4
+

u3
1u2(1 − u1 − u2)

6

µ3µ3
3Λ

4

)
, (B.4)

f4(u1, u2) = 4ρ2
(u1u2(1 − u1 − u2)

8

µ2µ4
3Λ

4

)
, (B.5)

f5(u1, u2) = −4ρ2
(u1u

4
2(1 − u1 − u2)

5

µ3µ3
3Λ

4
+

u4
1u2(1 − u1 − u2)

5

µ3µ3
3Λ

4

)
, (B.6)

f6(u1, u2) = −4ρ2
(u3

1u
2
2(1 − u1 − u2)

5

µ3µ3
3Λ

4
+

u2
1u

3
2(1 − u1 − u2)

5

µ3µ3
3Λ

4

)
, (B.7)

f7(u1, u2) = 4ρ2
(u2

1u
5
2(1 − u1 − u2)

3

µ4µ2
3Λ

4
+

u5
1u

2
2(1 − u1 − u2)

3

µ4µ2
3Λ

4

)
. (B.8)All the fun
tions ((B.2)-(B.8)) are symmetri
 in the variables u1 and u2 (Noti
e that

Λ =
u2
1
+u2

2

µ
+ (1−u1−u2)2

µ3
is symmetri
), so the fun
tion Θ(u1, u2) is also symmetri
 withrespe
t to the variables u1 and u2. Then we have that 
hara
teristi
 speeds λ± = 1

2
(f0 ±√

f 2
0 − 4Θ) are symmetri
 fun
tions. 106



Appendix CUniqueness of solution for RP1
The following analysis mixes analyti
al and numeri
al arguments.Consider the simpli�ed pure gravitational problem α = 0, ρ1 = ρ2 > ρ3. For theRiemann problem of type RP1, 
onsider a left data UL ∈ (V3, Q2) and the right data
UR = V2.We want to show that the solution obtained by using the slow-family wave 
urve
oin
ides with the solution des
ribed in 
hapter 9.Let us analyze the slow-family wave 
urve through UL. The �rst portion of the slow-family wave 
urve arising from UL 
onsists of a rarefa
tion segment UL�Uinf where Uinfbelongs to the in�e
tion manifold; the wave 
urve 
ontinues with a 
omposite 
urve pa-rameterizing states on the right of sho
ks that are 
hara
teristi
 at the left states on therarefa
tion segment UL�Uinf.There exist several possibilities for a slow-family 
omposite 
urve to �nish:

• The slow-family 
omposite 
urve rea
hes the boundary of the saturation triangle.
• The slow-family 
omposite 
urve rea
hes a state where the sho
k speed is equal toone of the 
hara
teristi
 speeds; in su
h a 
ase the wave 
urve either 
ontinues witha new slow-family rarefa
tion segment or with a fast-family rarefa
tion segment.The state where the 
omposite 
urve �nishes together with the 
orresponding statein the base rarefa
tion segment is a pair of states in the double 
onta
t manifold(maybe involving both families).
• The slow-family 
omposite 
urve �nishes after utilizing all the states of the baserarefa
tion segment; in this 
ase the slow-family wave 
urve 
ontinues with a sho
ksegment.We perform the analysis for the slow-family 
omposite based in the rarefa
tion 
urve

UL�Uinf. First noti
e that the slow-family 
omposite 
urve 
annot arrive or end at a107



108 Chapter C. Uniqueness of solution for RP1point A3 on the edge ∂3 sin
e λ−(U) ≥ 0 for all U in the rarefa
tion 
urve UL�Uinf (seeFig. 9.11(
)) while σ(U, A3) < 0 (see item (ii) of Lemma 9.1).We use a numeri
ally obtained �gure to show that the slow-family 
omposite 
urve
annot rea
h a point A2 on the edge ∂2, before 
onsuming the whole rarefa
tion 
urve,see Fig. C.1. The slow-family boundary 
onta
t manifold Es
∂2

that extends the edge ∂2interse
ts the in�e
tion manifold at a point P out of the triangle V3�V1�B3; however theintegral 
urve through UL remains always inside this triangle (be
ause the segment R3itself is a slow-family integral 
urve as we have shown in Theorem 5.1), so none of thestates in the rarefa
tion bran
h UL�Uinf 
an be right extensions of A2 ∈ ∂2. Thus the
omposite 
urve 
annot rea
h ∂2 before 
onsuming all the states in the rarefa
tion 
urve.

3
V 1

V

2
V

1
Q

2
Q

3
B

s
E

2¶

P

LU

inf
U

3
R

Figure C.1: Es
∂2

is the portion of the slow boundary 
onta
t manifold whi
h extends theedge ∂2; this 
urve interse
ts the slow in�e
tion 
urve at P . The rarefa
tion bran
hstarting at UL rea
hes the in�e
tion 
urve without interse
ting the 
urve Es
∂2
.As we already eliminated the solutions arriving to V2 along the edge ∂1 we do not worryabout the possibility of the slow-family 
omposite 
urve rea
hing ∂1 or rea
hing a pointin the interior of the triangle where the sho
k speed 
oin
ides with the fast 
hara
teristi
speed (as the fast-family wave 
urves lead to the edge ∂1 too).On the other hand, we have numeri
al eviden
e showing that there does not existany state on the rarefa
tion 
urve UL�Uinf that belongs to the slow-family double 
onta
tmanifold, therefore the only remaining possibility is that the 
omposite based on thisrarefa
tion 
urve will 
ontinue until it 
onsumes all the states of the rarefa
tion 
urve.However this 
annot o

ur out of the edge ∂2 be
ause of item (i) of Lemma 9.1 and ofthe equality λ−(UL) = 0. So the 
omposite 
urve will end at a point U

′

L = (u
′

L, 0, 1− u
′

L)in ∂2 su
h that σ(UL, U
′

L) = 0 = λ−(UL), the slow-family wave 
urve 
ontinues along theedge ∂2 with the sho
k segment U
′

L�U∗ followed by a �nal rarefa
tion segment U∗�V1, seeFig. 9.6(a). Here U
′

L is the same point des
ribed in Theorem 8.2 
orresponding to UL.The state U∗ ∈ ∂2 satisfy σ(UL, U∗) = d
du1

F ∂2

1 (u1
∗). As u

′

L < u1
∗, this 
onstru
tion leads tothe same Riemann solution in Figs. 9.6(b) and 9.6(
).



Appendix DExtended bibliographi
 review
Riemann problem theory dates from 1860 when the sho
k tube problem was solved em-ploying the method of 
hara
teristi
s, see [39℄. That problem redu
es to solving a pie
e-wise 
onstant initial value problem for a system of non-linear 
onservation laws thatdes
ribes gas motion, Euler's equations. Riemann obtained the s
ale-invariant solutionand explained why rarefa
tion waves and sho
k waves are generated when the membraneseparating regions with gases at di�erent pressures is broken.Non-linear 
onservation laws govern �ows in porous media. The simplest nonlinearproblem in porous media, the two-phase �ow inje
tion problem, was solved by Bu
kleyand Leverett [5℄ in 1942. Their resolution method 
an be interpreted geometri
ally bymeans of the graph of the standard S-shaped �ux fun
tion, giving rise to the fra
tional�ow method, of 
ommon usage in petroleum enginering. This method is a powerful andsimple tool to solve �ow problems involving no more than two phases, but many 
hemi
al
omponents, see [13℄, [14℄, [49℄.The Riemann problem for immis
ible three-phase �ow is more di�
ult than for two-phase �ow. The fra
tional �ow method 
annot be extended to three-phase �ow problemssu
h as those arising for the ro
k permeability models of Corey et al. [6℄ and Stone [48℄.The resolution of su
h problems requires a more general solution method, the wave 
urvemethod, developed by Liu [29℄, whi
h generalizes the Lax's theorem [28℄. This method
onstru
ts the solution by means of a sequen
e of rarefa
tion waves, sho
k waves, and
onstant states, by following a sequen
e of 
urves in state spa
e.The wave 
urve method developed by Liu assumes that the system of 
onservation lawsis stri
tly hyperboli
. Nevertheless, systems of 
onservation laws modelling immis
iblethree-phase �ow in porous media fail to be hyperboli
.Mar
hesin, Paes Leme (unpublished, 1980) and Shearer [43℄ established that violationof stri
t hyperboli
ity o

urs inside the saturation triangle for immis
ible three-phase�ow without gravity. Bell, Trangenstein and Shubin [4℄ showed by means of numeri
alexperiments that Stone's model for permeabilities possesses an ellipti
 region in the satu-109
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 reviewration triangle whi
h in some sense is a repeller for waves. Other important works aboutellipti
-hyperboli
 mixed problems modelling immis
ible three-phase �ow in porous mediaare Key�tz [26℄, Key�tz [27℄, Holden [15℄, Holden [17℄, Holden H. and Holden L. [16℄.Isaa
son, Mar
hesin, Plohr and Temple [20℄ showed that for Corey model of perme-abilities, there exist a sole isolated point where stri
t hyperboli
ity fails, whi
h was 
alledumbili
 point.Isaa
son and Temple [23℄ introdu
ed the idea of studying the solutions in a neigh-borhood of umbili
 points by using homogeneous quadrati
 polynomial �ux fun
tions.S
hae�er and Shearer [40℄ 
lassi�ed the umbili
 points for quadrati
 homogeneous sys-tems in four types, two of them, types I and II, are relevant for three-phase �ow models.Some works were dedi
ated to the study of Riemann solutions for systems of two 
onser-vation laws with homogeneous quadrati
 �ux fun
tions, dealling with the di�erent fourumbili
 point types. For instan
e see Shearer, S
hae�er, Mar
hesin and Paes-Leme [42℄,Isaa
son, Mar
hesin, Plohr and Temple [22℄, S
hae�er and Shearer [41℄.Holden [15℄, Holden H. and Holden L. [16℄ studied examples of quadrati
 systemspresenting umbili
 points of type I and II of the S
hae�er-S
hearer 
lassi�
ation [40℄and proved nonuniqueness of Riemann solutions using Lax [28℄ and Oleinik [34℄ entropy
riteria, as extended by Liu [29℄ rather than using the traveling wave 
riterion.Azevedo and Mar
hesin [2℄ studied the Holden's model in [15℄, by using the 
onditionthat sho
k waves should be zero-di�usion limits of traveling waves for the paraboli
 sys-tem. They found that a moderate number of multiple solution o

ur for this prototype ofStone's model. Azevedo, Mar
hesin, Plohr and Zumbrun [3℄ showed that, in the presen
eof nontrivial di�usion terms, su
h as those for 
apillary pressure, it is not the ellipti
region (resp. umbili
 point) that plays the role of an instability region; rather, it is theregion de�ned by Majda-Pego [31℄, whi
h depends on the di�usion terms too and 
ontainsthe ellipti
 region (resp. umbili
 point)Isaa
son, Mar
hesin, Plohr and Temple [20℄, solved by the wave 
urve method theRiemann problem for Corey's model for immis
ible three-phase �ow in porous medianegle
ting gravitational e�e
ts. Their method is more general than Liu's, be
ause itallows for loss of hyperboli
ity and for other di�
ulties that typi
ally o

ur in three-phase �ow. In [20℄ the solution was obtained under the simplifying assumption that thethree �uids have equal vis
osities. De Souza [8℄ extended the study to the 
ase in whi
hone of the vis
osity parameters is slightly di�erent from the other two. Some mathemati
aldi�
ulties arising in this study were resolved by Mar
hesin, Plohr and S
he
ter [32℄.In their do
toral theses Xu [53℄ and Rezende [36℄ studied topologi
al aspe
ts of theelementary waves in the Corey's Model analyzed in [20℄.Hurley and Plohr [19℄ studied how 
hanging the di�usion terms a�e
t the solutions ofRiemann problems.S
he
ter, Mar
hesin and Plohr [45℄, [46℄ initiated a systemati
 program to 
lassify all



111Riemann solutions for (non-stri
tly) hyperboli
 systems of two 
onservation laws withthe identity vis
ous pro�le 
riterion. In parti
ular wave 
urves were studied. This workextended the do
toral work of Furtado [9℄ whi
h used the Lax [28℄ and Oleinik [34℄ entropy
riteria.Re
ently Azevedo, De Souza, Furtado, Mar
hesin and Plohr [1℄ showed appli
ationsof the wave 
urve method to solve the inje
tion problem for immis
ible three-phase �owin whi
h a mixture of water and gas is inje
ted into a horizontal one-dimensional porousmedium 
ontaining oil.On the other hand, buoyan
y e�e
ts in the �ow of two immis
ible �uids in porousmedia are quite well understood, as they are modelled by a s
alar 
onservation law, whileis easily solved through Oleinik's 
onstru
tion [34℄. For instan
e Proskurowski in [35℄solved the Bu
kley-Leverett equation for two-phase �ow in the presen
e of gravity. Thereare others works on two-phase �ow with gravity and their appli
ations, see e.g. [37℄, [38℄,[51℄, [24℄, [12℄.The state of the art for three-phase �ow with gravity is quite di�erent. Up to now,there are a few works on three-phase �ow with gravity taken in to a

ount. Medeiros [33℄performed an analysis of hyperboli
 singularities for 
ertain models in
luding gravity.Trangenstein [50℄ showed that Stone model with gravity present ellipti
 regions. Medeirosand Trangenstein's results indi
ate that the only three-phase permeability models thathave umbili
 points, rather than ellipti
 regions, in the presen
e of gravity are Coreymodels, in whi
h ea
h permeability depends solely on its own �uid saturation.
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