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iiiAbstratWe study the buoyany-driven �ow for a system of two nonlinear onservation laws thatmodels three-phase �ow in a porous medium. We solve a lass of Riemann problems for asimpli�ed ase where two of the �uids have equal density. We also perform a hyperbolianalysis for the system of onservation laws �nding a new type of oinidene point on theboundary of the saturation triangle. The investigation ombines the theory of onservationlaws with omputational experiments.
ResumoEstudamos o esoamento trifásio de �uidos em meios porosos resultante exlusivamenteda força de gravidade. O problema é modelado por um sistema de duas leis não-linearesde onservação. Resolvemos uma lasse de problemas de Riemann para o aso em quedois �uidos têm densidades iguais. Também apresentamos uma análise geral de hiperbo-liidade para o sistema de leis de onservação, e araterizamos um novo tipo de ponto deoinidênia, que se enontra na fronteira do triângulo de saturações. A pesquisa ombinaanálise teória om experimentos numérios.
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Chapter 1Introdution
We study the �ow in a porous medium of three �uids under the e�et of gravity fore.We assume that the �uids do not mix when put into a ontainer and that they havedi�erent densities and visosities, in general. The �ow ours along a very long vertialthin ylinder of porous rok surrounded by an impermeable material. We assume thatthe rok ylinder is totally saturated by the three �uids and that initially there is animpermeable interfae separating a homogeneous mixture of two of the �uids on top fromthe third �uid at the bottom, see Fig. 1.1. We pretend that until time zero the gravityfore is inative, so the �uids do not move. We study the longitudinal motion of the �uidsfrom the instant when the gravity is ativated and the interfae disappears. This studyis done near the loation of the initial interfae as if the ylinder were in�nitely long. Forexample, one an think that the ylinder initially was in the horizontal position and attime zero it is quikly rotated to the vertial position. Of ourse, we assume that thereare no phenomena suh as �ngering that ause irregularities in the �ow transversely tothe ylinder axis. In mathematial language, this is equivalent to solve Riemann problemsfor ertain 2 × 2 systems of onservation laws in one-dimensional spae measured alongthe ylinder axis, for a speial lass of initial data. This system re�ets the onservationof mass of eah inompressible �uid, as well as a generalization to immisible �uids ofDary's law of fore relating pressure gradient to �uid �ow rate in porous media.The main appliations of this work are petroleum reovery, geologial arbon dioxidestorage to mitigate global warming, and lean up of hydroarbon polluted aquifers.It is well known that there exist two di�erent onvetive transport phenomena thattake part in the motion of �uids within a porous medium: onvetion due to pressure gradi-ents and buoyany due to density di�erenes between the �uids. Until now, all mathemat-ial work on immisible three-phase �ow in porous media has foused on onvetion-driven�ow, when there are no gravitational e�ets. In this work we fous onto buoyany-driven�ow, and we solve a lass of Riemann problems for the �pure gravitational� ase (i.e.,negleting onvetion e�ets due to longitudinal pressure gradients rather than due tobuoyany). 1
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Gravity

Interface

Figure 1.1: Initial ondition in the reservoir. Left �gure: initial distribution of the three�uids in the porous medium. Eah �uid is represented by a olor (or a shade of gray).Right �gure: shemati representation for the saturation of the �uids at the initial time.The solution of this problem depends on the physial properties of the three �uids.In other words, the evolution from the initial situation re�ets the disparity in densitiesand visosities of the �uids. Beause of this fat this solution should be studied for allphysially meaningful values of the density and visosity parameters. Nevertheless, asa �rst step toward understanding the in�uene of gravity in three-phase �ow in porousmedia, we will onsider the simpli�ed ase in whih two of the �uids have equal densities.We all this ase the simpli�ed pure gravitational problem, or SPGP.We obtain interesting results, e.g., for the following initial situation: one of the �uidsabove the interfae has the same density as the �uid below the interfae, while the other�uid loated above the interfae is the heaviest. For ertain initial proportions of the �uidson top, the solution onsists of two wave groups separated by a region with a onstantstate, see Fig. 1.2. The �rst wave group moves upwards. It ontains a shok embeddedinto two spreading or rarefation waves; sometimes the upper rarefation is preeded by anadditional shok. Within this upward wave group, the waves faster than the embeddedshok involve only two �uids, preisely the �uids that were on top initially; the �uidinitially at the bottom is only present below the embedded shok. The seond wave groupmoves downwards and involves two �uids only. This wave group onsists of a rarefationwave adjaent to a faster shok; in the downward waves the lower-density �uid that wasinitially loated on top is absent, i.e., the lower-density �uid never moves downwards,as one ould expet. As we said, there is a homogeneous region, i.e., a onstant state,separating the two wave groups. The span of this region grows linearly with time.We observe a urious feature of this Riemann solution: while the proportion in themixture initially on top keeps within a ertain range away from a ritial value, the mixtureslows down the upward motion of the bottom �uid. This bloking property perhaps ould
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RUFigure 1.2: Shemati representation for saturations in a non trivial Riemann solutionfor the �pure gravitational problem�, where the green and red �uids have equal densities,while the blue �uid is heavier. The white arrows indiate the motion of the waves. Largerarrows orrespond to higher speeds of the waves.be important in appliations.Riemann problem theory dates from 1860, when he solved the shok tube problememploying the method of harateristis, see [39℄. That problem redues to solving apieewise onstant initial value problem for a system of non-linear onservation laws thatdesribes gas motion, Euler's equations. Riemann obtained the sale-invariant solutionand explained why rarefation waves and shok waves are generated when the membraneseparating regions with gases at di�erent pressures is broken.Non-linear onservation laws govern �ows in porous media. The simplest nonlinearproblem in porous media, the two-phase �ow injetion problem, was solved by Bukleyand Leverett [5℄ in 1942. Their resolution method an be interpreted geometrially bymeans of the graph of the standard S-shaped �ux funtion, giving rise to the frational�ow method, of ommon usage in petroleum enginering. This method is a powerful andsimple tool to solve �ow problems involving no more than two phases, but many hemialomponents, see [13℄, [14℄, [49℄.The Riemann problem for immisible three-phase �ow is more di�ult than for two-phase �ow. The frational �ow method annot be extended to three-phase �ow problemssuh as those arising for the rok permeability models of Corey et al. [6℄ and Stone [48℄.The resolution of suh problems requires a more general solution method, the wave urvemethod, developed by Liu [29℄, whih generalizes the Lax's theorem [28℄. This methodonstruts the solution by means of a sequene of rarefation waves, shok waves, andonstant states, by following a sequene of urves in state spae.



4 Chapter 1. IntrodutionThe wave urve method developed by Liu assumes that the system of onservation lawsis stritly hyperboli. Nevertheless, systems of onservation laws modelling immisiblethree-phase �ow in porous media fail to be hyperboli. Isaason, Marhesin, Plohr andTemple [20℄ showed that for Corey model for immisible three-phase �ow in porousmedia, there exist a sole isolated point interior to the saturation triangle where strithyperboliity fails (nowdays known as umbili point). They also solved by the wave urvemethod the Riemann problem, negleting gravitational e�ets. Their method is moregeneral than Liu's, beause it allows for loss of hyperboliity and for other di�ulties thattypially our in three-phase �ow. In [20℄ the solution was obtained under the simplifyingassumption that the three �uids have equal visosities. De Souza [8℄ extended the studyto the ase in whih one of the visosity parameters is slightly di�erent from the othertwo.Reently Azevedo, De Souza, Furtado, Marhesin and Plohr [1℄ showed appliationsof the wave urve method to solve the injetion problem for immisible three-phase �owin whih a mixture of water and gas is injeted into a horizontal one-dimensional porousmedium ontaining oil. See the �Extended bibliography review� in Appendix D.On the other hand, buoyany e�ets in the �ow of two immisible �uids in porousmedia are quite well understood, as they are modelled by a salar onservation law, whihis easily solved through Oleinik's onstrution [34℄. For instane Proskurowski in [35℄solved the Bukley-Leverett equation for two-phase �ow in the presene of gravity. Thereare other works on two-phase �ow with gravity and their appliations, see e.g. [37℄, [38℄,[51℄, [24℄, [12℄.The state of the art for three-phase �ow with gravity is quite di�erent. Up to now,there are few works on three-phase �ow with gravity taken in to aount. Medeiros [33℄performed an analysis of hyperboli singularities for ertain models inluding gravity.Here we study in detail the simpli�ed pure gravitational problem (SPGP), i.e., ne-gleting onvetion e�ets unrelated to buoyany and assuming that two of the �uidshave equal densities. We expet that Riemann solutions for the simpli�ed ases will helpin solving the more general problems of three di�erent-density �uids, as suh problemsan be interpreted as �perturbations� of the simpli�ed ases. The Riemann solutions ob-tained in this work together with the new theoretial results presented an be onsidereda �rst step toward the study of the general three-phase �ow in porous media driven byboth buoyany and pressure gradients.We explain brie�y how this work is organized. In Chapter 2 we derive the systemof onservation laws that models three-phase �ow in porous media with gravity, undera few physial simpli�ations. We non-dimensionalize the equations, giving rise to the�onvetion-to-gravity ratio� parameter α, whih measures the dominant e�et. We alsointrodue the Corey model with quadrati permeabilities for the �uids used in this work.In Chapter 3 we reall some basi aspets of the general theory for systems of on-servation laws, of the theory of bifuration of Riemann solution and of the wave urve



5method in order to provide the non-speialist reader with a brief bakground on thesesubjets. Speialists should skip it. We warn the non-speialist that this review is neitheromplete nor perfetly aurate, to keep it short. However, it is too new to be found inbooks.In Chapter 4 we alulate the harateristi speeds for the system of onservationlaws orresponding to the Corey model with quadrati permeabilities. We determineompletely where strit hyperboliity fails. The analysis is made for generi onvetion-to-gravity ratio. We obtain a new type of points where harateristi speeds oinide, whihwe all quasi-umbili points. They are loated at the boundary of the physial saturationtriangle, in the ase when the gravitational e�ets are dominant. Understanding thesequasi-umbili points and their in�uene on the Riemann solution are some of the maintheoretial results of this work.In Chapter 5 we study two-phase �ows ourring in the pure gravitational problem, inwhih the onvetion-to-gravity ratio α is zero. The results of this hapter are neessaryfor the Riemann solution studied in the present work sine generially two-phase wavesan be part of a three-phase Riemann solution. This fat was observed by Azevedo et al.in [1℄ too.In Chapter 6 we perform the analysis of possible shoks separating two states, one ofwhih onsists of a pure �uid, and the other is a mixture of the three �uids. This is doneby studying the Hugoniot loi for the verties of the saturation triangle. The analysis isdone for a generi α, rather than for α = 0. These Hugoniot loi play an important rolein the resolution of the Riemann problem where the initial bottom state represents a pure�uid.In Chapter 7 we perform the analysis of shoks separating two states, one of whih isa mixture of two �uids, and the other is a genuine mixture of the three �uids. This isdone by studying the Hugoniot loi for states on the edges of the saturation triangle. Thisanalysis is neessary for the resolution of the Riemann problem where the initial top stateis a mixture of two �uids, while the third �uid is absent. In this hapter we present asimple geometrial onstrution, the �wedge onstrution�, whih allows the determinationof admissible shoks joining states on distint two-phase regimes appearing in three-phase�ow, suh as the ones represented by points on the edges of the saturation triangle. Thewedge onstrution is independent of the form of the two-phase �ux funtions, of thepermeability funtions and of the presene of gravity; it depends only on the fat thatalong the edges of the saturation triangle a phase is missing, so we have two-phase �ow ofthe existing �uids; therefore this onstrution an be extended for very general models. Itis one of the main results of this work. The wedge onstrution has the same mathematialnature as the �banana onstrution� in [1℄.In Chapter 8 we prove a �reversal symmetry� theorem, whih holds for the simpli�edpure gravitational problem. We also prove additional theoretial results for bifurationmanifolds in SPGP. These results give support for the Riemann solution obtained partiallyvia numerial alulations of the waves urves.



6 Chapter 1. IntrodutionIn Chapter 9 we solve the Riemann problem for the SPGP when the equal-density�uids are heavier than the third �uid. We onsider all the ombinations of edge-oppositevertex Riemann data. We onstrut the solution to satisfy generalized Lax onditions andthen we verify that this solution is admissible aording to the visous pro�le riterion.Although we do not prove rigorously that the solution for eah problem is unique, weperform an analysis utilizing analytial and numerial arguments that support uniquenessof the solution presented.In Chapter 10 we solve the Riemann problem for the SPGP when the equal-density�uids are lighter than the third �uid. Again we onsider all the ombinations of edge-opposite vertex Riemann data. In most ases we analyzed, the slow-family wave urveshave disonneted branhes that turn out to be ruial for the solution. The existene ofshoks between pairs of states that belong to a ertain one-dimensional manifold, the slow-family double ontat manifold, is a new feature ruial for the existene of the Riemannsolutions. In this ase the Lax entropy riterion alone does not guarantee uniquenessof the solution, so we are led to use the full visous pro�le riterion to selet the solephysially orret solution.In Appendix A we perform additional alulations whih omplete the proof of The-orem 5.1. In Appendix B we present the proof of Lemma 8.2. In Appendix C we shownumerial and analytial arguments for uniqueness of the Riemann solution for one ofthe ases studied (RP1). In Appendix D we present an extended bibliographi review, inorder to summarize the main mathematial works relevant for three-phase �ow in porousmedia.Along this work, we performed numerial experiments using the omputer ode RPwritten by Marhesin, Isaason and Plohr. This ode allowed us to obtain the integralurves, Hugoniot urves, the main bifuration loi, the phase portraits for dynamialsystems and the wave urves, whih are fundamental for the onstrution of the solution.Numerial alulations in MATLAB were also performed.



Chapter 2The model
In the �rst setion of this hapter we derive the system of onservation laws that modelsthree-phase �ow with gravity in porous media, under some physial assumptions listed atthe beginning of the setion. In the seond setion we obtain the dimensionless equationsand the parameter groups relevant for the study of the buoyany e�ets for three-phase�ow. In the third setion we introdue the quadrati Corey model that we will use in theentire work in order to highlight the phenomena of interest while avoiding ompliatedanalysis. In the last setion of the hapter we de�ne the triangle where the three �uidsaturations are de�ned, and some important lines and points inside the triangle that wewill use frequently along the work.
2.1 Derivation of the system of onservation lawsWe will study a simpli�ed model for three-phase �ow in porous media assuming that theporosity φ and the absolute permeability of the rok K are onstant. The temperatureis onstant and there is no mass interhange between phases. In this setion we derivethe equations for an arbitrary spatial dimension, nevertheless in this work we restrit ourstudy to one spatial dimension assuming that the �ow ours uniformly in the vertialdiretion �lling the entire porous medium. We also neglet ompressibility e�ets andassume that there are no soures or sinks.Let onsider the onservation of mass for eah phase

∂

∂t
φui + ∇ · vi = 0 i = 1, 2, 3, (2.1)where ui denotes saturation and vi is the seepage veloity of eah phase. We assume thatDary's Law is satis�ed for eah phase i: 7



8 Chapter 2. The modelvi = −K
ki

µi

(
∇pi − ρigez

)
i = 1, 2, 3, (2.2)where ki is the relative permeability, pi is the pressure, µi is the visosity and ρi is thedensity for eah phase i. We denoted by ez the unit vetor in the vertial diretionpointing downwards, g is the gravitational onstant. We assume that the permeabilities

ki are funtions of the saturations. We assume also that the �uids are inompressible, andthat the porous medium is totally saturated, meaning that ∑3
i=1 ui = 1. The visosities

µi, i = 1, 2, 3 are onstant. In this setion and in most of the work, we neglet apillarypressure e�ets, so that the phase pressures are equal. In Chapters 9 and 10, we willtake into aount suh e�ets. They will be important in seleting physially admissibleshoks.Now we de�ne
Λi = ki/µi i = 1, 2, 3; Λ =

∑

i=1,2,3

Λi, (2.3)
fi = Λi/Λ i = 1, 2, 3; v =

∑

i=1,2,3

vi; (2.4)the funtions Λi and fi are the mobility and the frational �ow funtion orresponding toeah phase i, Λ is the total mobility and v is the total seepage veloity.We �rst note that ∑i=1,2,3 fi = 1. Let us assume that pi = pj (i.e., we are negletingthe apillary pressures), so substituting Dary' s Law (2.2) in (2.4) and performing somealulations we obtain vi = vfi + KΛi

∑

j 6=i

fjρijgez, i = 1, 2, 3, (2.5)where we are denoting by ρij the density di�erene ρi − ρj between the phases i and j.Finally, we substitute (2.5) into the system (2.1) to obtain the system of onservationlaws for the saturations u1, u2 and u3

∂

∂t
φui + ∇ · Fi = 0, i = 1, 2, 3, (2.6)where
Fi = vfi + Gi, i = 1, 2, 3, (2.7)are the omponents of the vetor �ow funtion (F1, F2, F3)

T ontaining the gravitationalterms
G1 = KΛ1

(
(1 − f1)ρ13 + f2ρ32

)
gez, (2.8)

G2 = KΛ2

(
(1 − f2)ρ21 + f3ρ13

)
gez, (2.9)

G3 = KΛ3

(
(1 − f3)ρ32 + f1ρ21

)
gez. (2.10)



Dimensionless equations 9Remark 2.1. Notie that G1 + G2 + G3 = 0, therefore F1 + F2 + F3 = v (the totalveloity).By adding the equations in (2.5) and using the relations (2.3)-(2.4), we obtain that
∇ · v = 0; this equality re�ets the inompressibility of the �uids. Another importantfat to take into aount is that the onservation of mass system (2.1) has a redundantequation, i.e., any of these equations an be derived from the other two if we use theinompressibility property of the �uids and the fat that the medium is totally saturated.Beause of this redundane we an drop any equation in (2.6) obtaining a 2×2 system ofonservation law to be studied. The equation to be dropped will be hosen onvenientlyfor eah ase.2.2 Dimensionless equationsIn this setion we rewrite the system of onservation law (2.6) in non-dimensional form, inorder to identify the most important non-dimensional parameter groups for the evolutionproblem, and we redue to the minimal the number of parameters appearing in the systemof onservation law.We denote as Kref [m2] the referene absolute permeability, vref [m/s] the refereneveloity of the problem, ρref [kg/m3] the referene density, L [m] the referene length ofthe system and µref [kg ·m−1 ·s−1] the referene visosity. Now we de�ne the dimensionlessvariables as follows

t̃ = tvref/Lφ, x̃ = x/L, ṽ = v/vref, K̃ = K/Kref,
Λ̃i = Λiµref, ρ̃i = ρi/ρref, µ̃i = µi/µref, i = 1, 2, 3.

(2.11)As a onsequene of above de�nitions we obtain other useful relations:
∇̃ = L∇, Λ̃ =

∑

i=1,2,3

Λ̃i, f̃i = Λ̃i/Λ̃, i = 1, 2, 3. (2.12)If we substitute the dimensionless variables and the relations above into the system(2.6), we obtain
∂ui

∂t̃
+ ∇̃ ·

(ṽf̃i + CgG̃i

)
= 0, i = 1, 2, 3, (2.13)where

G̃1 = K̃Λ̃1

(
(1 − f̃1)ρ̃13 + f̃2ρ̃32

)
ez, (2.14)

G̃2 = K̃Λ̃2

(
(1 − f̃2)ρ̃21 + f̃3ρ̃13

)
ez, (2.15)

G̃3 = K̃Λ̃3

(
(1 − f̃3)ρ̃32 + f̃1ρ̃21

)
ez, (2.16)



10 Chapter 2. The modeland Cg = Kref·ρref·gvref·µref is the dimensionless parameter re�eting the gravitational e�ets.We an hoose referene values in di�erent ways. As we are interested in ases in whihthe total veloity is small (possibly equal to zero) but with non-negligible gravitationale�ets, we set the referene veloity as vref = Kref·ρref·g
µref , so we obtain that Cg = 1 in (2.13).We denote by

α = ṽ =
vvref =

v · µref
Kref · ρref · g . (2.17)Omitting the �∼" and dropping the equation orresponding to phase 3 in (2.13) weobtain the following 2 × 2 system of onservation law

∂ui

∂t
+ ∇ ·

(
αfi(u1, u2) + Gi(u1, u2)

)
= 0, i = 1, 2, (2.18)where now G1 and G2 denote the dimensionless gravitational terms given by (2.14) and(2.15).The parameter α de�ned in (2.17) is alled in this work the �onvetion/gravity ratio�(gr). Nevertheless, from Eq. (2.18) with gravitational terms given in (2.14)-(2.15) notiethat for equal-density �uids the gravitational terms vanish independently of the value of

α.2.3 The Corey modelWe will restrit our analysis to the Corey model with quadrati permeabilities. With thishoie we an highlight the phenomena of interest while avoiding ompliated analysis.(We expet that solutions for more realisti models are qualitatively similar to those ofquadrati models). Expliitly, the mobility of eah phase depends only of the saturationof the phase and is quadrati, i.e.,
Λi(ui) = u2

i /µi, i = 1, 2, 3; Λ =
∑

i=1,2,3

u2
i /µi, (2.19)Notie that for simpliity we are setting to zero irreduible saturation values, so weare negleting the fat that the �uids beome immobile at non-zero saturation.From now on we restrit our study to one spatial dimension �ows, by assuming thatthe �ow ours uniformly in the vertial diretion x, �lling the entire porous medium. Inour onvention, the gravitational fore points to the positive x-diretion.The �ux funtions (inluding gravity) for the quadrati Corey model with permeabil-



The saturation triangle 11ities in (2.19) are
F1(u1, u2, u3) =

u2
1

µ1

(
α +

u2
3

µ3
ρ13 +

u2
2

µ2
ρ12

)
/Λ(u1, u2, u3), (2.20)

F2(u1, u2, u3) =
u2

2

µ2

(
α +

u2
3

µ3
ρ23 +

u2
1

µ1
ρ21

)
/Λ(u1, u2, u3), (2.21)

F3(u1, u2, u3) =
u2

3

µ3

(
α +

u2
1

µ1

ρ31 +
u2

2

µ2

ρ32

)
/Λ(u1, u2, u3). (2.22)As u3 = 1−u1 −u2, we drop the equation orresponding to phase 3 and rewrite the 2× 2system (2.18) for this model (in one dimension denoted by x):

{
∂u1

∂t
+ ∂

∂x
F1(u1, u2) = 0

∂u2

∂t
+ ∂

∂x
F2(u1, u2) = 0,

(2.23)with �ux funtions F1, F2 given by (2.20)-(2.21), whih have α as a parameter.2.4 The saturation triangleIn order to study the Riemann solution for three-phase �ow with gravity for the Coreymodel, we need to perform all the alulations in the spae of saturations. We de�ne thesaturation triangle as follow
T =

{
(u1, u2) ∈ R

2 : 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1, u1 + u2 ≤ 1
}

; (2.24)a useful alternative de�nition would be
T =

{
(u1, u2, u3) ∈ R

3 : 0 ≤ ui ≤ 1, i = 1, 2, 3, and u3 = 1 − u1 − u2

}
. (2.25)We will use any one of the above expressions for the saturation triangle aording to thesituation.The interior of the saturation triangle in the ontext of (2.25) is

T̃ = {U ∈ T : ui 6= 0 i = 1, 2, 3} . (2.26)The point of maximum saturation for phase i is the vertex of the triangle denoted by
Vi = {U ∈ T : ui = 1} . (2.27)The two-phase edge opposite to Vi, whih does not inlude the phase i, will be denotedby
∂i = {U ∈ T : ui = 0} . (2.28)



12 Chapter 2. The modelFor eah phase i, let j, k ∈ {1, 2, 3} be the indies of the other two phases; we de�ne
Ri =

{
U ∈ T :

uj

µj

=
uk

µk

, j 6= k

}
, (2.29)where µj, µk are the visosities of the phases j, k.Notie that Ri de�ned by (2.29) represents a segment starting from the vertex Vi andending on the edge ∂i at the point Bi. The oordinates of the points Bi, i = 1, 2, 3, aregiven by

B1 = (0, µ2

µ2+µ3
, µ3

µ2+µ3
), B2 = ( µ1

µ1+µ3
, 0, µ3

µ1+µ3
), B3 = ( µ1

µ1+µ2
, µ2

µ1+µ2
, 0). (2.30)Remark 2.2. For the ase µj = µk we have that Bi is the middle point of the edge ∂i.All segments and points de�ned above are displayed in Fig. 2.1
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Chapter 3General bifuration theory for Riemannproblems
In this hapter we reall some basi aspets of general theory for systems of onservationlaws and the theory of bifuration of Riemann solutions, in order to provide the non-speialist reader with a brief bakground on these subjets. Speialists should skip it.Essentially we ollet information from [21℄, [9℄, [20℄, [40℄, [45℄.3.1 Riemann solutions for a system of onservation laws.Lax onditions.Consider the system of onservation laws

Ut + F (U)x = 0 (3.1)governing the evolution, in one spae dimension, of a 2-dimensional state vetor U(x, t),i.e., for eah (x, t), U(x, t) ∈ R
2. The funtion F : Ω ⊂ R

2 → R
2 is alled the �ux.The harateristi speeds for Eq. (3.1), i.e., the eigenvalues λ−, λ+ of the Jaobian matrix

dF (U), are given by the formula
λ±(U) = (1/2)

(
tr(dF (U)) ±

√
[tr(dF (U))]2 − 4 det(dF (U))

) (3.2)De�nition 3.1. The system (3.1) is hyperboli if λ±(U) ∈ R, ∀U ∈ Ω ⊂ R
2.In the hyperboli region, where the harateristi speeds are real, we have the naturalordering

λ−(U) ≤ λ+(U), (3.3)so we all λ− the slow-family harateristi speed and λ+ the fast-family harateristispeed. The nonlinearity of F implies the dependene of the harateristi speeds on U ;13



14 Chapter 3. General bifuration theory for Riemann problemswhih leads, in general, to fousing of waves and the formation of disontinuous solutions,so that Eq. (3.1) must be interpreted in the sense of distributions.Remark 3.1. Sometimes we will denote by s and f (instead of − and +) the slow andfast families, respetively.De�nition 3.2. Riemann Problem. A Riemann problem for the onservation law (3.1)is a speial Cauhy problem with initial data
U(0, x) =

{
UL if x < 0
UR if x > 0,

(3.4)where UL and UR are onstant.The general solutions of Eq. (3.1) onsist of weak solutions that respet the invarianeof the equation under the saling transformation (t, x) → (ct, cx) with c > 0. Suh sale-invariant solutions satisfy the initial onditions of the Riemann problem as well as thePDE (3.1).Conversely, solutions of a Riemann problem are expeted to be sale-invariant, i.e.,they depend on t and x only through the ombination ξ = x/t. Although Riemannproblems are only speial initial value problems, the solutions of the general Cauhy initialvalue problem may be viewed as a nonlinear superposition of sale invariant solutions [11℄.A sale-invariant solution an be partitioned into several groups of waves; the wavesin eah group move together as a single entity. More preisely, we de�ne a wave groupto be a sale-invariant solution that ontains no intermediate onstant states. Thus asolution of a Riemann problem omprises a sequene of wave groups moving apart fromeah other, as in Fig. 3.1(a). Wave groups are omposed of two basi ingredients: enteredrarefation waves and entered disontinuous waves, see Fig. 3.1(b).
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(b)Figure 3.1: Sale-invariant solutions. (a) Example of solution for a Riemann problem,omprising a sequene of two wave groups. (b) A entered rarefation wave and a entereddisontinuous wave.A entered rarefation wave assoiated with a harateristi family i (�−� or �+�) isonstruted using integral urves of the �di�erential equation�
U̇ = ri(U), (3.5)



Riemann solutions for a system of onservation laws. Lax onditions. 15where ri(U) is a right eigenvetor of dF (U) orresponding to λi(U) in (3.2). We notie that(3.5) is an ordinary di�erential equation only loally in regions where strit hyperboliityis satis�ed, the sign and amplitude of ri are arbitrary. A rarefation wave orresponds toa segment of an integral urve along whih λi is nondereasing; it is de�ned by invertingthe relation λi(U) = ξ.A entered disontinuous wave is a jump disontinuity that propagates at speed σ andseparates two states Ul and Ur, where Ul, Ur and σ satisfy the system of two equations
−σ[Ur − Ul] + F (Ur) − F (Ul) = 0, (3.6)alled the Rankine-Hugoniot jump ondition. By onvention, Ul is on the left side of thedisontinuity and Ur is on the right side. In general, these states are di�erent from thestates UL and UR of the Riemann problem initial data. For a �xed Ul, the set of states Usuh that the pair Ul, U satisfy (3.6) for some σ omprises the Hugoniot lous, H(Ul). TheHugoniot lous H(Ul) through Ul an be onstruted by �nding the zero-set HUl

(U, σ) = 0of the Hugoniot funtion HUl
: R

2 × R → R
2 de�ned by

HUl
(U, σ) = −σ(U − Ul) + F (U) − F (Ul). (3.7)The projetion of this zero-set onto state spae gives H(Ul).A very useful tool employed in this work is the Triple Shok Rule [22℄. Next we statetwo distint version of this result.Triple Shok Rule (�rst version). For system (3.1), assume that the states U1, U2and U3 satisfy U1 ∈ H(U2), U2 ∈ H(U3) and U3 ∈ H(U1). Then either U1, U2, U3 areollinear or else σ(U2, U1) = σ(U3, U2) = σ(U1, U3).Triple Shok Rule (seond version). For system (3.1), assume that the states

U1, U2 and U3 satisfy U2 ∈ H(U1), U3 ∈ H(U2) and σ(U1, U2) = σ(U2, U3) then U3 ∈
H(U1) and σ(U1, U3) = σ(U1, U2) = σ(U2, U3).To avoid non-uniqueness of solutions of Riemann problems, the lass of allowable dis-ontinuous waves must be restrited. For systems of n onservation laws that are genuinelynonlinear, Lax [28℄ introdued the admissibility requirement that the harateristis of onefamily impinge on both sides of the disontinuity, while the harateristis of the otherfamilies ross the disontinuity undergoing de�etion. For more general onservation laws,harateristis must be permitted to beome tangent to the disontinuity, so we have thefollowing de�nitions for admissible shoks.De�nition 3.3. Slow-family and fast-family shok wave. We de�ne a entereddisontinuous wave to be a (generalized) Lax disontinuity of the slow-family (slow shok)provided that the harateristi speeds are related to the propagation speed as follow:

λ−(Ur) ≤ σ ≤ λ−(Ul), and σ ≤ λ+(Ur). (3.8)



16 Chapter 3. General bifuration theory for Riemann problemswhere only one of the inequalities in (3.8)�(a) is allowed to beome an equality. Similarly,we de�ne a entered disontinuous wave to be a (generalized) Lax disontinuity of the fast-family (fast shok) provided that the harateristi speeds are related to the propagationspeed as follow:
λ+(Ur) ≤ σ ≤ λ+(Ul), and λ−(Ul) ≤ σ. (3.9)where only one of the inequalities in (3.9)�(a) is allowed to beome an equality.In ertain ases we allow equalities in (3.8) or (3.9) to our. They will be disussedlatter. Lax used the nomenlature 1-and 2-shok for slow and fast shoks.If we adopt the admissibility riterion based on harateristis and assume that bothharateristi speeds are distint, then any wave, i.e., rarefation wave or disontinuity,has an assoiated family. In this work we only onsider solutions satisfying: (1) no slowwave is preeded by a wave of the fast family; and (2) two waves of the same family mustbelong to the same wave group. Therefore a solution of a Riemann problem an ontainat most 2 wave groups, a slow wave group followed by a fast wave group. These fats [30℄generalize the lassial piture [11℄ in whih a solution of a Riemann problem onsists ofat most 2 shok or rarefation waves, separated by onstant states, where eah wave isassoiated with a distint family.In order to desribe the Riemann solution we will use the notation found in Furtado [9℄.Thus we will denote Ul
w
−→ Ur to express the fat that Ul is onneted to Ur (on the right)by an elementary wave of type w. The elementary waves types are denoted as follows.Wave nomenlature(a) R− if the wave is a rarefation of the slow family.(b) R+ if the wave is a rarefation of the fast family.() S− if λ−(Ur) < σ < λ−(Ul) and σ < λ+(Ur)(d) S+ if λ+(Ur) < σ < λ+(Ul) and λ−(Ul) < σ(e) CS− if λ−(Ur) < σ = λ−(Ul) and σ < λ+(Ur)(f) CS+ if λ+(Ur) < σ = λ+(Ul).(g) SC− if λ−(Ur) = σ < λ−(Ul).(h) SC+ if λ+(Ur) = σ < λ+(Ul) and λ−(Ul) < σ(i) C− if λ−(Ul) = σ = λ−(Ur).(j) C+ if λ+(Ul) = σ = λ+(Ur).(k) C+

− if λ−(Ul) = σ = λ+(Ur).



Visosity admissibility riterion 17(l) C−
+ if λ+(Ul) = σ = λ−(Ur).(m) (GC)i if the wave is a genuine ontat for the family i, i.e., a wave on whih

∇λi · ri ≡ 0.Remark 3.2. Notie that disontinuities (c), (d) denote lassial Lax shok of slow andfast families respetively. The disontinuities (e), (f) denote shoks that are harateristiat the left ( i.e., with speed equal to a harateristi speed on the left), for both families,and disontinuities (g), (h) denote shoks that are harateristi on the right. Finallythe disontinuities (i), (j) denote double ontat disontinuities of slow and fast familyrespetively, while (k) and (l) denote a double-ontat disontinuity involving the twofamilies. Finally (m) denotes a genuine ontat, this is a disontinuity travelling withonstant harateristi speed, see [47℄, [49℄.Remark 3.3. For two-phase solutions we will use the same notation for the elementarywave without using supersripts.Lax original or generalized riteria, however, are sometimes overly restritive and othertimes too lax: a Riemann problem might have no solution or it might have many. We areled to impose the admissibility riterion to require disontinuous waves to possess visouspro�les, as desribed in the next setion. This is the visosity admissibility riterion. Ingeneral, it is distint from the harateristi riterion, sine there exist Lax disontinuitiesthat do not have visous pro�les, while some disontinuities with visous pro�les are notof Lax type, see [25℄. The visosity riterion, too, an fail to guarantee existene anduniqueness of solutions of Riemann problems. In this work we onstrut solutions tosatisfy Lax riterion and after we verify that suh solutions also satisfy the visosityadmissibility riterion.3.2 Visosity admissibility riterionTypially, Eq. (3.1) is an approximation to a system of the form
Ut + F (u)x = ǫ[D(U)Ux]x (3.10)in the (singular) limit as ǫ → 0+. Here D is the visosity matrix, whih models ertainphysial e�ets (suh as apillarity e�ets in multiphase �ow in porous media) that arenegleted in the model. We usually require that the eigenvalues of D(U) have positivereal part; this guarantees that short wavelength perturbations of onstant solutions deayexponentially in time. For more details, see Majda-Pego [31℄ and Azevedo et al. [3℄.Physially realizable solutions of Eq. (3.1) are expeted to be limits of solutions ofthe paraboli equation (3.10). In partiular, ertain entered disontinuous waves arise aslimits of travelling wave solutions as follows. A travelling wave depends on t and x only



18 Chapter 3. General bifuration theory for Riemann problemsthrough the ombination ξ = (x− σt)/ǫ, and it approahes limits Ur and Ul as ξ → ±∞.Therefore Eq. (3.10) an be integrated one to obtain the assoiated ODE system
−σ[U(ξ) − Ul] + F (U(ξ)) − F (Ul) = D(U(ξ))U̇(ξ), (3.11)where the dot denotes di�erentiation with respet to ξ. Taking the limits of Eq. (3.11)as ξ → ±∞ shows that Ur, Ul and σ must be related by the Rankine-Hugoniot ondition(3.6), so that Ur and Ul are ritial points for the ODE system. As ǫ → 0+, the spatialregion over whih the solution makes the transition from Ul to Ur shrinks to a point at

x = σt. Consequently, the travelling wave solution approahes a entered disontinuouswave. Thus a disontinuity is said to have a visous pro�le when the system of ordinarydi�erential equation (3.11) has a onneting orbit �owing from Ul to Ur. It is natural toregard a disontinuity as admissible only if it has a visous pro�le; this is the visosityriterion for shok admissibility [7℄, [18℄, [10℄.The ritial points of a system of ordinary di�erential equations are ruial to its study.For Eq. (3.11), a ritial point is a state Uc that satis�es the Rankine-Hugoniot onditionfor the given state Ul and the speed σ. For ODE's, in the hyperboli ase the behavior ofsolutions in the neighborhood of a ritial point Uc is re�eted in qualitative features ofsolutions of the linearization of Eq. (3.11) about Uc:
[−σ + F

′

(Uc)](U − Uc) = D(Uc)U̇ . (3.12)Suh solutions are determined by the eigenvalues β and orresponding eigenvetors Ûβthat satisfy
[−σ + F

′

(Uc)]Ûβ = βD(Uc)Ûβ . (3.13)For example, U = Uc +
∑

β cβ exp(βξ)Ûβ when the eigenvalues are distint. Thus theharater of the ritial point is determined by the eigenvalues β.As we are restrited to system of two onservation laws, (3.11) is a system of ODE'sin the plane. A ritial point is lassi�ed as an anti-saddle point (i.e., a node, fous orenter) or as a saddle point. Generially an orbit for the system of ODE's onnets eithertwo saddle points, two anti-saddle points or a saddle and an anti-saddle. In studies ofvisous pro�les for shok waves the �rst step is to hoose D as the identity matrix. Forthis hoie the eigenvalues at a ritial point Uc are βi = λi(Uc) − σ, i = −, +. A Laxshok of the slow family has σ < λ−(Ul) < λ+(Ul) and λ−(Ur) < σ < λ+(Ur), so thatthe ritial points Ul and Ur of Eq. (3.11) are, respetively, a repelling node and a saddlepoint. Similarly, Ul and Ur are, respetively, a saddle point and an attrating node in thease of a Lax shok wave of the fast family. In summary, an admissible disontinuity ofLax type orresponds to a saddle-node onnetion.



The Bethe-Wendro� theorem 193.3 The Bethe-Wendro� theoremAway from primary and seondary bifuration points, the Hugoniot lous is a urve andit may be parameterized by a single variable. We use a superimposed dot to denote thederivative with respet to this variable and let σ(U) be the speed of the shok as U movesalong the Hugoniot lous. The following theorem gives an analyti desription of thequalitative behavior of σ(U).Theorem 3.1. (Bethe-Wendro�, see [52℄) Consider the Hugoniot lous through a state
U0. Let U be a point on the lous and assume that (3.14) does not hold at U . Thenthe following are equivalent: (a) σ̇ = 0, (b) λi(U) = σ(U) for some i. In this ase,
λi(U) − σ(U) and σ̇(U) vanish to the same order. Also, the harateristi vetor of the
i-th family is tangent with the same order to the Hugoniot lous.Remark 3.4. The Bethe-Wendroof theorem an be stated for the omposite lous too.The Bethe-Wendro� theorem relates the monotoniity of the propagation speed alongthe Hugoniot and omposite urves to the admissibility of the shok waves, at pointswhere equality in the Lax entropy relations (3.8)-(3.9) holds with respet to one of theharateristi speeds for Ur. This fat makes Bethe-Wendro� theorem an important toolin the onstrution of waves urves.3.4 Bifuration manifoldsNow we de�ne ertain 1-dimensional �manifolds� whih play a fundamental role in thewave urve onstrution in our problem in two unknowns. They are not genuine mani-folds sine they may have self intersetions or other singularities.The seondary bifuration manifold onsists of the states whih do not satisfy the hy-pothesis of the impliit funtion theorem; generially, the Hugoniot lous hanges topol-ogy at suh lous. In general we know that loally through eah state UL there existtwo Hugoniot branhes, eah branh transversal to the other, so eah UL is a primarybifuration.De�nition 3.4. A state U belongs to the seondary bifuration manifold for thefamily i (denoted by Bifi i = −, +) if there exist a state U ′ 6= U suh that

U ′ ∈ H(U) with λi(U ′) = σ(U, U ′) and li(U ′)(U ′ − U) = 0 (3.14)where we have denoted by li(U ′) a left eigenvetor of the Jaobian matrix dF (U ′).Now we will de�ne the in�etion manifold; it is named by analogy with salar onser-vation laws. It is the manifold where genuine nonlinearity is lost, i.e., the eigenvalue doesnot vary monotonially along a rarefation urve near an in�etion point.



20 Chapter 3. General bifuration theory for Riemann problemsDe�nition 3.5. The state U belongs to the in�etion manifold for the family i (denotedby Infi i = −, +) if and only if
∇λi(U) · ri(U) = 0 (3.15)where we have denoted by ri(U) a right eigenvetor of the Jaobian matrix dF (U).Remark 3.5. Rarefation urves stop at in�etion manifold.The following de�nition orresponds to the hysteresis manifold, whih ontains statesof a omposite segment joined to the end of a rarefation segment by a nonloal shokwave.De�nition 3.6. The state U lies on the Hysteresis manifold for the family i, if thereexist a state U ′ 6= U suh that

U ∈ H(U ′) with λi(U ′) = σ(U, U ′) and ∇λi(U ′) · ri(U ′) = 0 (3.16)where we have denoted by ri(U ′) a right eigenvetor of the Jaobian matrix at the point
U ′.Remark 3.6. Notie that suh U ′ in the de�nition of the Hysteresis must be on thein�etion manifold.De�nition 3.7. The state U belongs to the (i, j)-Double Contat manifold if thereexist a state U ′ suh that

U ′ ∈ H(U) with λi(U) = σ(U, U ′) = λj(U ′), (3.17)where the families i and j may be the same or di�erent.Remark 3.7. A shok joining suh U and U ′ is alled a double-ontat shok.Remark 3.8. States on the Double Contat manifold an be juntions of omposite andrarefation segments in wave urves. This is analogous with the salar ase, where a shokhappen to be embedded between two rarefation waves, see Oleinik [34℄.De�nition 3.8. (Extension of a point) Consider a state A in the saturation triangle. Wesay that P i
A is the extension of the point A orresponding to the family i, if P i

A ∈ H(A)and σ(A, P i
A) = λi(P i

A); in other words, the shok joining the state A with the state P i
A isharateristi at P i

A for the family i.Remark 3.9. One an de�ne another extension, in whih the shok is harateristi at
A. Beause of the presene of the boundary of the physial region, another manifold playsa role in the model problem, whih we all an interior boundary ontat and is de�ned asthe internal extension of the physial boundary.



Wave urves 21De�nition 3.9. The state U belongs to the boundary ontat manifold for the family
i (or extension of the boundary), denoted by Ei

∂ if there exist a state U ′ suh that
U ∈ H(U ′) with U ′ on the boundary and λi(U) = σ(U, U ′). (3.18)Remark 3.10. A boundary ontat wave ours when a juntion between wave segmentsoinides with the boundary.Remark 3.11. Notie that hysteresis manifold is the (suitable) extension of the in�etionmanifold.3.5 Wave urvesIn this setion, we desribe brie�y the onept of wave urve. A wave urve of the family

i, starting at the state UL is a parametrization of the states U in state spae that an beonneted on the right hand side of UL by an i-wave group, in other words a wave urve isa parametrization of ertain oherent sequenes of invariant waves as points in the spaeof possible states.As we already said, in physial spae, Riemann solutions onsist of sequenes of rar-efation fans, disontinuities and onstant states. In the ases studied in this work, theseelementary waves are grouped into waves that belong either to the slow-family or thefast-family. These solutions obey the geometrial onstraint that speeds in physial spaeinrease from left to right.Wave urves in this type of problems (in whih strit hyperboli and genuine nonlin-earity fail) di�er from lassial wave urves in several respets, see [30℄ and [34℄. First,they are represented in state spae by three types of elementary segments, onsisting notonly of shok urves and rarefation urves as in the lassial ase, but also of ompositeurves, whih represent shok waves adjaent to rarefation waves. The �nal state U of aomposite urve satis�es
U ∈ H(U ′) with λi(U ′) = σ(U, U ′),where U ′ traverses a rarefation segment. Seond, in eah wave urve there are manysuh elementary segments. Eah elementary segment must stop whenever its wave speedattains an extremum, and the type of elementary segment that follows is determined bysimple rules. Third, sine Hugoniot urves possess nonloal (i.e., detahed) branhes,wave urves also have ompliated shapes; e.g., they may have disonneted parts orbranhing points, see [20℄.The ontinuation rules for wave urves are justi�ed by the Bethe-Wendro� theorem,as applied to determine the qualitative behavior of the wave speed along a wave urve.This analysis is onveniently performed using wave speed diagrams, whih generalize tosystems Oleinik's onvex envelope onstrution for salar onservation laws [34℄. Using



22 Chapter 3. General bifuration theory for Riemann problemsthese tehniques, the stability of waves urves with respet to perturbations of the leftstate an be established [9℄.A typial wave speed diagram is shown in Fig. 3.2(b). The horizontal axis orrespondsto a parametrization of the wave urve, and the vertial axis is speed. The solid lines arethe two harateristi speeds, while the dashed (resp. rossed) urves are the propagationspeeds of shoks waves (resp. omposite waves). The partiular example shows the speedsfor the fast-family wave urve starting at a state UL in the interior of the saturationtriangle, for the simpli�ed pure gravitational problem (α = 0, ρ1 = ρ2 > ρ3). Nearthis state the urve onsists of rarefation and shok waves, as usual. The rarefationsegment ends when the harateristi speed reahes a maximum, where the wave urveontinues through a segment of omposite waves. Points on the omposite orrespondto points on the rarefation at the same speed; these points whih work bak along therarefation segment, are indiated by dots. The omposite segment ends when its speedoinides with the faster harateristi speed on the right, and is followed by anotherrarefation segment, whose speed eventually maximizes, leading to another ompositesegment. This omposite segment ends when the orresponding rarefation points havereahed the beginning of the segment; then the wave urve ontinues with a new ompositesegment based on the previous rarefation segment. Finally this last omposite wave endswhen the speed oinides with the fast-family harateristi speed on the left, where thewave urve beomes a shok segment.The wave urve orresponding to the wave speed diagram is shown in Fig. 3.2(a).Again, solid, dashed, and rossed urves represent rarefation, shok, and omposite seg-ments respetively.

1
V

2
V

3
V

LU

(a)
LU

+
l

-
l(b)Figure 3.2: Example of wave urve for the ase α = 0, ρ1 = ρ2 > ρ3. (a) Fast-family waveurve through UL. (b) Wave speed diagram.



Hyperboliity, umbili and quasi-umbili points 233.6 Hyperboliity, umbili and quasi-umbili points3.6.1 Loss of strit hyperboliityThe system of onservation law (3.1) is stritly hyperboli if the Jaobian matrix dF (U)has real and distint eigenvalues for all U in state spae.The hyperboli harater of the system of onservation law an be lost in di�erentways, so we de�ne:De�nition 3.10. A point U = (u1, u2) is alled a oinidene point for the �ux F ifthe eigenvalues of the Jaobian matrix dF oinide at this point, i.e., if λ−(U) = λ+(U).De�nition 3.11. We say that a oinidene point U∗ = (u∗
1, u

∗
2) is an umbili point ofthe PDE system (with �ow funtion given by F ), if it satis�es the following onditions(H1) dF (U∗) is diagonalizable.(H2) There is a neighborhood V of U∗ suh that dF (U) has distint eigenvalues for all

U ∈ V − U∗.Remark 3.12. If there exist Ω region where the eigenvalues are omplex onjugate, thisregion is alled "ellipti region".De�nition 3.12. We have the following de�nitions:(i) We say that a oinidene point U is a quasi-umbili point if the ondition (H2)holds but (H1) fails.(ii) We say that a oinidene point U belongs to a diagonalization urve if thereexists a urve through U along whih ondition (H2) fails but ondition (H1) holds.If suh urve is a line, we all it as diagonalization line.Remark 3.13. Quasi-umbili points and diagonalization lines seem to have been hara-terized for the �rst time in this work.3.6.2 Hyperboliity analysis.Shae�er and Shearer [40℄ lassi�ed umbili points for the general 2× 2 system of onser-vation laws, by means of a loal analysis of the quadrati form arising from the Taylorexpansion of the �ux funtion in a neighborhood of the umbili point. This analysis ispossible only if hypotheses H1 and H2 hold. They also presented in [40℄ some ideasthat will help us in performing an hyperboliity analysis and determine the umbili andquasi-umbili points of the system of onservation laws. In the following we summarizethe main ideas.



24 Chapter 3. General bifuration theory for Riemann problemsFor a real 2 × 2 matrix M let us de�ne
devM = M −

1

2
(trM)I (3.19)as the projetion of M into the spae of trae-free matries. In (3.19), dev is known asthe deviator operator. The deviator of a matrix M retains all information about multipleeigenvalues. We Introdue oordinates on the (three dimensional) spae of trae-freematries by the formula

devM =

(
X Y + Z

Y − Z −X

)
. (3.20)In other words, X, Y, Z are the oordinates assoiated with the basis of 2 × 2 matries

(
1 0
0 −1

), ( 0 1
1 0

), ( 0 1
−1 0

).Now we have an important result for the deviator of a matrix M proven in [40℄:Proposition 3.1.(i) M has equal eigenvalues and is diagonalizable if and only if devM = 0.(ii) M has distint real eigenvalues, oinident real eigenvalues, or omplex onjugateeigenvalues aording to whether (X, Y, Z) lies outside, on the surfae of, or insidethe one X2 + Y 2 = Z2, respetively.Remark 3.14. This proposition follows from the fat that the harateristi polynomialfor (3.20) is λ2 − X2 − Y 2 + Z2 = 0.Appliation of the deviator operator to the Jaobian matrixWe an onsider the mapping dev dF (deviator of the Jaobian Matrix of the systemof onservation laws (3.1)) from the U-plane into the spae of trae-free matries givenby U 7→ (X, Y, Z); geometrially, this mapping de�nes a surfae in R
3. Condition (H1)implies that all the umbili points are mapped into the origin, the vertex of the one

X2 + Y 2 = Z2. Let be U∗ an umbili point; sine F is stritly hyperboli on a punturedneighborhood of the umbili point V −U∗, the image of V −U∗ must lie outside this one,i.e., in the open region {X2 + Y 2 > Z2}. Assuming that this surfae is nonsingular at
U∗, It follows that the tangent plane lies in the region X2 + Y 2 ≥ Z2.The following result was also proved by Shae�er and Shearer [40℄.Theorem 3.2. Let U∗ be a oinidene point, ondition (H2) is satis�ed if and only ifthe surfae that is the image of R

2 by dev dF is nonsingular at U∗ and, the punturedtangent plane at U∗ lies in the open region {X2 + Y 2 > Z2}.



Chapter 4Charateristi analysis
In this hapter we alulate the Jaobian matrix of the 2×2 onservation law system (2.23),with �ux funtions given by (2.20)-(2.21). We alulate a formula for the harateristispeeds. We present an exhaustive analysis of the onservation law in order to determinewhere strit hyperboliity fails; the analysis inludes the ases in whih two of the phaseshave equal densities, for whih the solutions have speial strutures.4.1 Charateristi speed analysisWe will denote by dF or J the Jaobian matrix of the vetor �ux funtion (F1, F2)

Torresponding to the 2 × 2 system given in (2.23). We write
J ≡ dF =

∂(F1, F2)

∂(u1, u2)
=

(
J11 J12

J21 J22

)
= αA + B. (4.1)We reall the de�nition of Λi and Λ in Eq. (2.19). We will denote by Λ

′

i the derivative
dΛi/dui for i = 1, 2, 3. The matrix A in (4.1) is given by

A =

(
Λ

′

1Λ − Λ1(∂Λ/∂u1) −Λ1(∂Λ/∂u2)
−Λ2(∂Λ/∂u1) Λ

′

2Λ − Λ2(∂Λ/∂u2)

)
/Λ2; (4.2)it is the part of the Jaobian matrix that represents the motion without gravity, and thematrix

B =

(
b11 b12

b21 b22

) (4.3)is the part of the Jaobian matrix that represents buoyany e�ets (whih depend of thedensities di�erene between the �uids), with elements25



26 Chapter 4. Charateristi analysis
b11 = Λ

′

1

[
(1 −

Λ1

Λ
)ρ13 +

Λ2

Λ
ρ32

]
− Λ1

[(Λ
′

1Λ − Λ1(∂Λ/∂u1)

Λ2

)
ρ13 +

Λ2(∂Λ/∂u1)

Λ2
ρ32

]
,

b12 = Λ1

[Λ1(∂Λ/∂u2)

Λ2
ρ13 +

Λ
′

2Λ − Λ2(∂Λ/∂u2)

Λ2
ρ32

]
,

b21 = Λ2

[Λ2(∂Λ/∂u1)

Λ2
ρ23 +

Λ
′

1Λ − Λ1(∂Λ/∂u1)

Λ2
ρ31

]
,

b22 = Λ
′

2

[
(1 −

Λ2

Λ
)ρ23 +

Λ1

Λ
ρ31

]
− Λ2

[(Λ
′

2Λ − Λ2(∂Λ/∂u2)

Λ2

)
ρ23 +

Λ1(∂Λ/∂u2)

Λ2
ρ31

]
.Thus we have for J in (4.1)

J11 = 2
(αu1u

2
2

µ1µ2

+
αu2

1u3

µ1µ3

+
αu1u

2
3

µ1µ3

+
u1u

4
2

µ1µ
2
2

ρ12 +
u1u

2
2u

2
3

µ1µ2µ3

ρ12+

+
u1u

2
2u

2
3

µ1µ2µ3
ρ13 +

u1u
4
3

µ1µ2
3

ρ13 −
u4

1u3

µ2
1µ3

ρ13 +
u2

1u
2
2u3

µ1µ2µ3
ρ32

)
/Λ2,

(4.4)
J12 = 2

(
−

αu2
1u2

µ1µ2
+

αu2
1u3

µ1µ3
+

u4
1u2

µ2
1µ2

ρ12 +
u2

1u2u
2
3

µ1µ2µ3
ρ32+

+
u2

1u
2
2u3

µ1µ2µ3

ρ32 −
u4

1u3

µ2
1µ3

ρ13

)
/Λ2,

(4.5)
J21 = 2

(
−

αu1u
2
2

µ1µ2
+

αu2
2u3

µ2µ3
+

u1u
4
2

µ1µ2
2

ρ21 +
u1u

2
2u

2
3

µ1µ2µ3
ρ31+

+
u2

1u
2
2u3

µ1µ2µ3
ρ31 −

u4
2u3

µ2
2µ3

ρ23

)
/Λ2,

(4.6)
J22 = 2

(αu2
1u2

µ1µ2
+

αu2
2u3

µ2µ3
+

αu2u
2
3

µ2µ3
+

u4
1u2

µ2
1µ2

ρ21 +
u2

1u2u
2
3

µ1µ2µ3
ρ21+

+
u2

1u2u
2
3

µ1µ2µ3

ρ23 +
u2u

4
3

µ2µ
2
3

ρ23 −
u4

2u3

µ2
2µ3

ρ23 +
u2

1u
2
2u3

µ1µ2µ3

ρ31

)
/Λ2,

(4.7)The formula for the harateristi speeds of equation (2.23) in terms of J in (4.1) is
λ± =

(J11 + J22) ±
√(

J11 + J22

)2
− 4
(
J11J22 − J12J21

)

2
. (4.8)4.2 Hyperboliity analysisFor Corey three-phase �ow model without gravity e�ets, Marhesin et al. [20℄ showedthe existene of four umbili points. Three of them are the verties of the saturation



Hyperboliity analysis 27triangle; there is also an additional umbili point inside the saturation triangle. In therest of the triangle the system is stritly hyperboli.In this work (in the presene of gravity e�ets) we will split our analysis in two di�erentases. In the �rst one the parameter α (the onvetion/gravity ratio) is equal to zero: weall this ase �the pure gravitational problem�, beause the motion of the �ow ours onlyas a onsequene of gravitational buoyany e�ets due to �uid density di�erenes.In the seond ase α is non zero. This problem presents di�erent levels of omplexitydepending of the value of α. For high values of α the behavior of this problem would besimilar to the ase without gravity studied by Marhesin et al. in [20℄, while for smallvalues of α (i.e, for predominant gravitational e�ets) the problem ould aquire highlevels of omplexity presenting features from both the pure gravitational problem and theproblem without gravity.Applying the deviator operator (see de�nition in Eq. (3.19)) to the Jaobian matrix
dF , we obtain from (4.4)-(4.7) a parametrization for the surfae dev(dF ) in the three-dimensional spae of trae-free matries with oordinates (X, Y, Z) given by (3.20). Sowe obtain

dev(dF ) =
(
X(u1, u2), Y (u1, u2), Z(u1, u2)

)
, (4.9)where X, Y, Z are given below, remembering that u3 = 1 − u1 − u2:

X =
(αu1u

2
2

µ1µ2
+

αu2
1u3

µ1µ3
−

αu2
2u3

µ2µ3
−

αu2
1u2

µ1µ2
−

αu2u
2
3

µ2µ3
+

αu1u
2
3

µ1µ3
+

+
u1u

4
2ρ12

µ1µ2
2

+
u1u

2
2u

2
3ρ12

µ1µ2µ3
+

u1u
2
2u

2
3ρ13

µ1µ2µ3
+

u1u
4
3ρ13

µ1µ2
3

−

−
u4

1u3ρ13

µ2
1µ3

+
u2

1u
2
2u3ρ12

µ1µ2µ3

+
u4

1u2ρ12

µ2
1µ2

+
u2

1u2u
2
3ρ12

µ1µ2µ3

−

−
u2

1u2u
2
3ρ23

µ1µ2µ3
−

u2u
4
3ρ23

µ2µ2
3

+
u4

2u3ρ23

µ2
2µ3

)
/Λ2,

(4.10)
Y =

(αu2
1u3

µ1µ3

−
αu1u

2
2

µ1µ2

+
αu2

2u3

µ2µ3

−
αu2

1u2

µ1µ2

+

+
u4

1u2ρ12

µ2
1µ2

−
u2

1u2u
2
3ρ23

µ1µ2µ3
−

u2
1u

2
2u3ρ23

µ1µ2µ3
−

u4
1u3ρ13

µ2
1µ3

−

−
u1u

4
2ρ12

µ1µ2
2

−
u1u

2
2u

2
3ρ13

µ1µ2µ3
−

u2
1u

2
2u3ρ13

µ1µ2µ3
−

u4
2u3ρ23

µ2
2µ3

)
/Λ2,

(4.11)
Z =

(αu2
1u3

µ1µ3
−

αu2
1u2

µ1µ2
+

αu1u
2
2

µ1µ2
−

αu2
2u3

µ2µ3
+

+
u4

1u2ρ12

µ2
1µ2

−
u2

1u2u
2
3ρ23

µ1µ2µ3
+

u2
1u

2
2u3ρ12

µ1µ2µ3
−

u4
1u3ρ13

µ2
1µ3

+

+
u1u

4
2ρ12

µ1µ
2
2

+
u1u

2
2u

2
3ρ13

µ1µ2µ3

+
u4

2u3ρ23

µ2
2µ3

)
/Λ2.

(4.12)



28 Chapter 4. Charateristi analysis4.2.1 Hyperboliity analysis for the �pure gravitational problem�Consider the �pure gravitational problem� (α = 0). First we analyze a simpli�ed model inwhih two �uids have equal densities while the third �uid has a di�erent density. We allthis problem the �simpli�ed pure gravitational problem�. In this setion we take phases
1 and 2 as having equal densities while phase 3 has a di�erent density; see Fig. 2.1 fornotation.Proposition 4.1. Consider the �pure gravitational problem� where α = 0, ρ1 = ρ2 6= ρ3,and denote ρ = ρ13 = ρ23. Then the system (2.23) is hyperboli on the saturation triangleand all the oinidene points lie on its boundary. The vertex V3 is an umbili point. Theentire edge ∂3 is a diagonalization line; also there exist two quasi-umbili points Q1 ∈ ∂1,
Q2 ∈ ∂2. The system is stritly hyperboli in the rest of the losed saturation triangle.Proof. Substituting α = 0 and ρ = ρ13 = ρ23 in equations (4.10)-(4.12) we obtain

X = ρ
(u1u

2
2u

2
3

µ1µ2µ3

+
u1u

4
3

µ1µ
2
3

+
u4

2u3

µ3µ
2
2

−
u4

1u3

µ2
1µ3

−
u2

1u2u
2
3

µ1µ2µ3

−
u2u

4
3

µ2µ
2
3

)
/Λ2,

Y = ρ
(
−

u4
2u3

µ2
2µ3

−
u1u

2
2u

2
3

µ1µ2µ3
−

u4
1u3

µ2
1µ3

−
u2

1u2u
2
3

µ1µ2µ3
− 2

u2
1u

2
2u3

µ1µ2µ3

)
/Λ2,

Z = ρ
(u4

2u3

µ2
2µ3

+
u1u

2
2u

2
3

µ1µ2µ3
−

u4
1u3

µ2
1µ3

−
u2

1u2u
2
3

µ1µ2µ3

)
/Λ2.

(4.13)
From (4.13) we have

Y + Z = ρ
u2

1u3

µ1µ3Λ2

(
− 2

u2
1

µ1
− 2

u2
2

µ2
− 2

u2u3

µ2

)
,

Y − Z = ρ
u2

2u3

µ2µ3Λ2

(
− 2

u2
2

µ2

− 2
u2

1

µ1

− 2
u1u3

µ1

)
.

(4.14)We notie that (Y + Z)/ρ ≤ 0 and (Y − Z)/ρ ≤ 0, therefore
Y 2 − Z2 ≥ 0 ∀U ∈ T. (4.15)Thus X2 + Y 2 ≥ Z2 in T showing that there does not exist an �ellipti region�, in otherwords, that the system (2.23) is hyperboli in the saturation triangle.In general it is known that U0 is a oinidene point for the harateristi speeds (seeSe. 3.6.2) if and only if

X2(U0) + Y 2(U0) − Z2(U0) = 0. (4.16)From (4.15)-(4.16) we obtain the following neessary and su�ient onditions for U0 tobe a oinidene point:(i) X(U0) = 0, together with



Hyperboliity analysis 29(ii) Y (U0) = Z(U0) or Y (U0) = −Z(U0).Now for U0 = (u0
1, u

0
2, u

0
3), using (4.14) we see that

Y (u0
1, u

0
2, u

0
3) = Z(u0

1, u
0
2, u

0
3) ⇔ u0

2 = 0 or u0
3 = 0,

Y (u0
1, u

0
2, u

0
3) = − Z(u0

1, u
0
2, u

0
3) ⇔ u0

1 = 0 or u0
3 = 0.

(4.17)We note that the edge ∂3 is mapped by dev(dF ) into the vertex of the one X2 +Y 2 =
Z2, therefore the entire edge ∂3, inluding the verties V1 and V2 of the saturation triangle,is a diagonalization line aording to Proposition 3.1 and Eqs (4.13).For U0 out of the edge ∂3 we have two ases. If u0

3 > 0, u0
1 = 0 we obtain two otheroinidene points on the edge ∂1 by requiring that X(u0

1, u
0
2, u

0
3) = 0. One of them isthe vertex V3 = (0, 0, 1), whih is an umbili point (notie that X(0, 0, 1) = Y (0, 0, 1) =

Z(0, 0, 1) = 0). De�ne
a(µi, µj) =

3
√

µi/µj

1 + 3
√

µi/µj

, ∀i 6= j. (4.18)The other oinidene point
Q1 =

(
0, a(µ2, µ3), 1 − a(µ2, µ3)

) (4.19)is mapped by dev(dF ) into the one surfae out of the vertex of the one, so aordingto Proposition 3.1, the Jaobian matrix dF (Q1) is non diagonalizable. We know fromthe above alulations that Q1 is a boundary oinidene point, whih is isolated if werestrit our analysis to the saturation triangle. Nevertheless, in order to lassify Q1as a quasi-umbili point, we prove that Q1 is an isolated oinidene point in a wholeneighborhood of Q1, so we extend our hyperboliity analysis for points with a negative�rst omponent, i.e., to allow in�nitesimal �negative saturations� for phase 1. From(4.14), we see that if a point Uε 6= Q1 belongs to a su�iently small neighborhood of
Q1 (and therefore its �rst omponent uε

1 ould be negative but it is lose to zero) wehave that (Y (Uε) + Z(Uε))/ρ < 0 and (Y (Uε) − Z(Uε))/ρ < 0. Thus we obtain that
X2(Uε)+Y 2(Uε)+Z2(Uε) > 0, onluding that Q1 is an isolated oinidene point. Thus
Q1 is a quasi-umbili point.For the ase u0

3 > 0, u0
2 = 0 and u0

1 > 0 we obtain in a similar way the point on theedge ∂2

Q2 =
(
a(µ1, µ3), 0, 1 − a(µ1, µ3)

)
, (4.20)whih is quasi-umbili point.Now we have the following Proposition for the ase in whih the three phases havedistint densities.



30 Chapter 4. Charateristi analysisProposition 4.2. Assume α = 0, ρ1 6= ρ2 6= ρ3 6= ρ1. Then the system (2.23) ishyperboli on the saturation triangle; all the oinidene points are isolated and lie on itsboundary. The verties V1, V2 and V3 are umbili points. There exist three quasi-umbilipoints Qi ∈ ∂i, i = 1, 2, 3. The system is stritly hyperboli in the rest of the losedsaturation triangle.Proof. Medeiros [33℄ proved that for the Corey model inluding gravitational e�ets withzero total �ow speed, the system is stritly hyperboli in the interior of the saturationtriangle. Now we will analyze hyperboliity at the boundary of the triangle.Setting α = 0 in equations (4.10)-(4.12) we obtain the following relations
Y + Z = 2

(u4
1u2ρ12

µ2
1µ2

−
u2

1u2u
2
3ρ23

µ1µ2µ3
−

u2
1u

2
2u3ρ23

µ1µ2µ3
−

u4
1u3ρ13

µ2
1µ3

)
/Λ2, (4.21)

Y − Z = −2
(u2

1u
2
2u3ρ13

µ1µ2µ3
+

u1u
4
2ρ12

µ1µ2
2

+
u1u

2
2u

2
3ρ13

µ1µ2µ3
+

u4
2u3ρ23

µ2
2µ3

)
/Λ2, (4.22)

X − Z =
(u1u

2
2u

2
3ρ12

µ1µ2µ3

+
u1u

4
3ρ13

µ1µ
2
3

+
u2

1u2u
2
3ρ12

µ1µ2µ3

−
u2u

4
3ρ23

µ2µ
2
3

)
/Λ2. (4.23)If Û = (0, û2, 1 − û2) ∈ ∂1, from (4.21) we have Y (Û) + Z(Û) = 0. Thus Y 2(Û) = Z2(Û)and from (4.16) Û is a oinidene point if and only if X(Û) = 0. From (4.10) we have

X(Û) = −
û2(1 − û2)ρ23

µ2µ3(Λ(Û))2

((1 − û2)
3

µ3
−

û3
2

µ2

)
; (4.24)setting X(Û) = 0 we obtain three oinidene points on the edge ∂1, whih are V2, V3and Q1 given in (4.19). Aording to Proposition 3.1, the points V2, V3 are umbilibeause for V2 we have X(0, 1, 0) = Y (0, 1, 0) = Z(0, 1, 0) = 0 and for V3 we have

X(0, 0, 1) = Y (0, 0, 1) = Z(0, 0, 1) = 0. The point Q1 is again quasi-umbili beause itis mapped by dev(dF ) onto the one surfae out of the vertex. The fat that Q1 is anisolated oinidene point follows from (4.21)-(4.22), sine (Y (Uε) + Z(Uε))/(uε
1)

2ρ23 < 0and (Y (Uε) − Z(Uε))/ρ23 < 0 for all point Uε in a neighborhood of Q1 whih imply that
X2(Uε) + Y 2(Uε) + Z2(Uε) > 0.For Û = (û1, 0, 1 − û1) ∈ ∂2, from (4.22) we have Y (Û) − Z(Û) = 0 and therefore Ûis again a oinidene point if and only if X(Û) = 0, where

X(Û) =
û1(1 − û1)ρ13

µ1µ3(Λ(Û))2

((1 − û1)
3

µ3
−

û3
1

µ1

)
; (4.25)as in the previous ase three oinidene points are obtained: the umbili points V1, V3and a quasi-umbili point Q2 in (4.20) on the edge ∂2.If Û = (û1, 1−û1, 0) ∈ ∂3, from (4.23) we have X(Û)−Z(Û) = 0, and X2(Û) = Z2(Û).Therefore Û is a oinidene point if and only if Y (Û) = 0. From (4.11) we have

Y (Û) = −
û1(1 − û1)ρ12

µ1µ2(Λ(Û))2

((1 − û1)
3

µ2
−

û3
1

µ1

)
; (4.26)



Hyperboliity analysis 31in this ase, we obtain the umbili points V1, V2. We obtain also a quasi-umbili point Q3on the edge ∂3:
Q3 = (a(µ1, µ2), 1 − a(µ1, µ2), 0), (4.27)where a(µ1, µ2) is given in (4.18).

4.2.2 Hyperboliity analysis for the general gravitational problemWe analyze hyperboliity when the onvetion/gravity ratio α is non-zero; even though wewill not use these results in the rest of the work. As we said earlier, the omplexity of thisanalysis depends on the value of α. For values of |α| so high that the onvetion e�ets aredominant with respet to the gravitational e�ets, the three verties are umbili pointsand there exist an additional umbili point U∗
α in the interior of the saturation triangle(Medeiros [33℄). For small non-zero values of |α| (i.e., for predominant gravitationale�ets) the problem, besides the four umbili points will also possess quasi-umbili pointsat the boundary of the triangle. The following proposition summarizes these results.Proposition 4.3. Consider the system (2.23) with α 6= 0, in the saturation triangle.Then the following assertions are true:(i) The verties of the saturation triangle are umbili points. In the interior of thetriangle the system is stritly hyperboli exept at the umbili point U∗

α.(ii) Without loss of generality, onsider the two-phase edge ∂1 where phases 2 and 3oexist. Assume also ρ2 > ρ3, then there exists a quasi-umbili point Q1 ∈ ∂1 if andonly if α lies in the interval (−ρ23

µ3
< α < ρ23

µ2
). The system is stritly hyperboli inthe rest of the edge ∂1.(iii) In the ase ρ2 = ρ3 all points on the edge ∂1 are stritly hyperboli, exept for theverties V2, V3.Remark 4.1. As phases 1, 2, 3 are arbitrary we an write items (ii), (iii) of Prop. 4.3using any permutation of indies {1, 2, 3} obtaining analogous results for the other edges

∂2 and ∂3.Remark 4.2. Notie that in the ase α 6= 0, when ρ2 = ρ3 we have strit hyperboliityon the edge ∂1 exept for the verties V2, V3. This behavior di�ers from the simpli�ed puregravitational ase, where ∂1 is a diagonalization line (see Prop. 4.1 with the indies 1 and
3 interhanged).Proof. (i)- It is obvious that the verties V1, V2 and V3 are umbili points sine

X(Vi) = Y (Vi) = Z(Vi) = 0, i = 1, 2, 3.



32 Chapter 4. Charateristi analysisThe existene of the interior umbili point U∗
α and the strit hyperboliity of the remaininginterior points for the ase α 6= 0 was proved by Medeiros [33℄.

(ii)- From equations (4.4)-(4.7) we obtain that the harateristi values at a point
U ∈ ∂1 are

λ(U) = 0, (4.28)
λ∗(U) = 2

u2(1 − u2)

µ2µ3Λ2

(
(−

u3
2

µ2

+
(1 − u2)

3

µ3

)ρ23 + α
)
. (4.29)Here the eigenvalues λ and λ∗ are not assoiated to spei� families sine λ∗ ould bepositive or negative. The important fat is that U ∈ ∂1 will be a oinidene point if andonly if λ∗(U) = 0; this ours on this edge at the verties V2, V3 and at the intermediatepoint Qα

1

Qα
1 = (0, qα, 1 − qα), where qα solves (q3

α/µ2 − (1 − qα)3/µ3)ρ23 = α. (4.30)From (4.30) we have that Qα
1 ∈ T if and only if

−
ρ23

µ3

< α <
ρ23

µ2

. (4.31)Now we will prove under ondition (4.31) that Qα
1 is a quasi-umbili point. As in Propo-sition 4.2 using Eqs. (4.10), it is possible to show that Qα

1 ∈ ∂1 is an isolated oinidenepoint. Next we will prove that it is not an umbili point, by ontradition. Assume that
Qα

1 is an umbili point, then neessarily X(Qα
1 ) = Y (Qα

1 ) = Z(Qα
1 ) = 0.From (4.11) we have that

Y (Qα
1 ) =

q2
α(1 − qα)

µ2µ3
(α −

q2
αρ23

µ2
)/Λ2, (4.32)where Λ is evaluated at Qα

1 .Equations (4.30) and (4.31) imply 0 < qα < 1, so we have from (4.32) that α =
q2
αρ23/µ2. Substituting this value into the de�nition (4.30) for qα, we obtain

q2
α

µ2

(1 − qα) = −
(1 − qα)3

µ3

. (4.33)The fat 0 < qα < 1 ontradits (4.33). We onlude that Qα
1 is a quasi-umbili pointbeause Qα

1 is an isolated oinidene point that is not mapped to the vertex of the one
X2 + Y 2 = Z2.

(iii)- For the ase ρ2 = ρ3 we an see from (4.10)-(4.12) that for U in ∂1

X(U) = −αu2u3

µ2µ3
/Λ2, Y (U) =

αu2
2u3

µ2µ3
/Λ2, Z(U) = −αu2

2u3

µ2µ3
/Λ2, where Λ = Λ(U).(4.34)



Hyperboliity analysis 33If U is not a vertex we have from (4.34) that X(U) is non-zero. We also have
Y (U) + Z(U) = 0, therefore X2(U) + (Y 2(U) − Z2(U)) > 0. We have obtained thestrit hyperboliity of the system on the edge ∂1 exept at the verties V2 and V3.The following theorem desribes the edges as integral urves that hange family whenrossing the quasi-umbili points.Theorem 4.1. Consider the system (2.23) for any value of α, in the saturation triangle.Assume that ρ2 6= ρ3 and that (4.31) holds, i.e., the quasi-umbili point Qα

1 ∈ ∂1 exists.We have the following fats along the edge ∂1. Analogous fats are true along ∂2 and ∂3.(a) The single right eigenvetor at Qα
1 has the diretion of the edge ∂1.(b) Away from the verties V2, V3 and the quasi-umbili point Qα

1 on ∂1, the right eigen-vetor orresponding to one of the families is parallel to ∂1, while the eigenvetor forthe other family is transversal to ∂1.() Consider a point U in the edge ∂1. Let us move the point U along the integral urvethat oinides with the edge. There is a hange of family when U rosses the quasi-umbili point Qα
1 .(d) For U out of the oinidene points on ∂1, one of the harateristi speeds is equalto zero while the other one is non-zero. The family of the zero-harateristi speed(resp. non-zero harateristi speed) hanges aording to the position of U withrespet to the quasi-umbili point Qα

1 .All this fats are illustrated in e.g., Fig. 9.1.Proof. Without loss of generality we assume that ρ2 > ρ3. If (4.31) holds we guaranteethe existene of the quasi-umbili point Qα
1 ∈ ∂1.Consider a point U ∈ ∂1. From (4.4)-(4.7) we obtain J11(U) = 0, J12(U) = 0 and theeigenvalues of the Jaobian matrix at this point are given by (4.28) and (4.29).

(a)-Let us denote by r∗(U) the right eigenvetor assoiated to the eigenvalue λ∗(U).We have
(
J(U) − λ∗(U)I

)
r∗(U) =

(
−λ∗(U) 0
J21(U) 0

)(
r∗1(U)
r∗2(U)

)
= 0.Sine λ∗(U) and J21(U) do not vanish simultaneously along ∂1, we obtain r∗1(U) = 0 forall U ∈ ∂1 and therefore the eigenvetor r∗(U) has the diretion of the edge ∂1. For thepartiular ase U = Qα

1 we onlude the result of item (a).
(b)- We already proved that for U ∈ ∂1 the eigenvetor assoiated to the eigenvalue λ∗ isparallel to the edge ∂1. If U 6= Qα

1 we denote by r0(U) the right eigenvetor orresponding



34 Chapter 4. Charateristi analysisto the zero eigenvalue. We have
J(U)r0(U) =

(
0 0

J21(U) λ∗(U)

)(
r0
1(U)

r0
2(U)

)
= 0.Out of the quasi-umbili point λ∗ 6= 0 so we obtain that r0

1 must be di�erent from zeroand r0
2(U) = J21(U)r0

1(U)/λ∗, onluding that the eigenvetor r0(U) is transversal to theedge ∂1.
(c)- From the alulations above we have that the right eigenvetor r∗ assoiated to thenon-zero eigenvalue λ∗ has the diretion of the edge ∂1. But notie that for the eigenvaluezero we have

0 = λ(U) =

{
λ+(U) if U ∈ [V2, Q

α
1 ]

λ−(U) if U ∈ [V3, Q
α
1 ]

, (4.35)while for the non-zero eigenvalue
λ∗(U) =

{
λ−(U) < 0 if U ∈ (V2, Q

α
1 )

λ+(U) > 0 if U ∈ (V3, Q
α
1 )

, (4.36)so we have
r∗(U) =

{
r−(U) if U ∈ (V2, Q

α
1 )

r+(U) if U ∈ (V3, Q
α
1 )

, (4.37)re�eting hange of family along the edge ∂1 when rossing Qα
1 .

(d)-The proof of this item is a onsequene of Eqs. (4.35)-(4.36).Now we give an impliit formula for the umbili point U∗
α given in Prop 4.3, item (i).Requiring that X(U∗

α) = Y (U∗
α) = Z(U∗

α) = 0 at U∗
α, the following relations hold

α(Λ′
2 − Λ′

3) + [Λ1Λ
′
2ρ21 + (Λ2Λ

′
3 + Λ′

2Λ3)ρ23 + Λ1Λ
′
3ρ13] = 0, (4.38)

α(Λ′
1 − Λ′

3) + [Λ2Λ
′
1ρ12 + (Λ1Λ

′
3 + Λ′

1Λ3)ρ13 + Λ2Λ
′
3ρ23] = 0, (4.39)

α(Λ′
1 − Λ′

2) + [Λ′
1Λ3ρ13 + (Λ2Λ

′
1 + Λ′

2Λ1)ρ12 + Λ′
2Λ3ρ32] = 0. (4.40)Remark 4.3. Equations (4.38)-(4.40) represent urves rossing the umbili point U∗

α;only two of these equations are independent; any one of them an be obtained from theother two by a simple addition or subtration. The umbili point U∗
α is the intersetionpoint of any pair of urves given impliitly by (4.38)-(4.40) inside the saturation triangle.



Chapter 5Two-phase behavior in the puregravitational problem.
In this hapter we study two-phase �ows ourring in the pure gravitational problem,in whih α = 0. We reall the well known features of the two-phase �ows restrited tothe edges ∂i. It is known that the Riemann solution for two-phase regime is obtained bythe Oleinik onstrution. A new result of interest is obtained for the pure gravitationalproblem simpli�ed so that two �uids j and k have equal densities; we show that withinthe triangle there is a straight line segment Ri through the vertex Vi (see de�nition in(2.29)), where the three-phase problem behaves like a two-phase �ow.The results presented in this hapter will be very useful for the analysis of Hugoniot loiin the hapters that follow and for the onstrution of Riemann solutions for three-phase�ow.5.1 Two-phase �ow on edges of the saturation triangleWithout loss of generality we will study the two-phase �ow on the edge ∂3. To �x ideas,let us assume ρ1 6= ρ2. We notie that on ∂3 the system (2.23) redues to the salarequation

∂u1

∂t
+

∂

∂x
F ∂3

1 (u1) = 0, where F ∂3

1 (u1) =
u2

1(1 − u1)
2

µ1µ2

(u2
1

µ1
+ (1−u1)2

µ2

)ρ12 (5.1)is a salar �ux funtion.Remark 5.1. Beause of Remark 2.1, sine α = 0 (and onsequently v = 0), we see that
F ∂3

2 (u2) = −F ∂3

1 (u1), so the hoie F ∂3

1 (u1) and u1 or F ∂3

2 (u2) and u2 as the two-phase �uxfuntion and onserved quantity along the ∂3 edge makes no di�erene. In other words,we an use any one of the PDE's: (u1)t +
(
F ∂3

1 (u1)
)

x
= 0 or (u2)t +

(
F ∂3

2 (u2)
)

x
= 0.35



36 Chapter 5. Two-phase behavior in the pure gravitational problem.We an alulate the derivative of this �ux funtion,
dF ∂3

1 (u1)

du1

=
−2ρ12u1(1 − u1)P (u1)

µ1µ2

(u2
1

µ1
+ (1−u1)2

µ2

)2 , (5.2)where
P (u1) = (1 +

µ1

µ2

)u3
1 − 3

µ1

µ2

u2
1 + 3

µ1

µ2

u1 −
µ1

µ2

(5.3)is a ubi polynomial. We will show this polynomial has only one real root. Indeedwith the hange of variable ζ = u1 − µ1/(µ1 + µ2) we eliminate the quadrati term forpolynomial P , obtaining a new ubi polynomial in ζ of the form
ζ3 + pζ + q, (5.4)with

p =
3µ1

µ2

(1 + µ1

µ2
)2

, q = −2
( µ1

µ2

(1 + µ1

µ2
)

)3
+ 3
( µ1

µ2

1 + µ1

µ2

)2
−

µ1

µ2

1 + µ1

µ2

. (5.5)If we onsider the disriminant ∆ =
(
4p3 + 27q2

), it is known from elementary algebrathat if ∆ > 0, the polynomial (5.4) in ζ has only one real root. In our ase we see that
∆ > 0 sine all the quantities involved in the expression for p in (5.5) are positive. Is easyto see that û1 = 3

√
µ1

µ2
/
(
1 + 3

√
µ1

µ2

) is the unique root of the ubi polynomial P , so we anrewrite the derivative of the �ux funtion on the edge ∂3 as follows
dF ∂3

1 (u1)

du1

=
−2ρ12u1(1 − u1)(u1 − û1)P̃ (u1)

µ1µ2

(u2
1

µ1
+ (1−u1)2

µ2

)2 , (5.6)where P̃ (u1) has no real roots.Assume that ρ1 > ρ2. We notie that the �ux funtion F ∂3

1 (u1) has only three loalextrema in the interval (0, 1), one of them a loal maximum at û1 (minimum if ρ1 < ρ2)depending on the visosities µ1 and µ2, and two loal minima (maxima if ρ1 < ρ2) at theend points u1 = 0, u1 = 1, therefore the �ux funtion has only two in�etion points inthis interval. The plot of F ∂3

1 (u1) for a non-symmetrial ase is shown in Fig. 5.1(a).Remark 5.2. Notie that the point of loal maximum (minimum if ρ1 < ρ2) for the two-phase �ux F ∂3

1 (u1) oinides in the saturation triangle with the quasi-umbili point alled
Q3. For the symmetrial ase where µ1 = µ2 we have û1 = 1/2.Beause of Remark 5.1 we have that the plot of F ∂3

2 (u2) is like the Fig. 5.1(b).Remark 5.3. We must regard this two-phase problem as a partiular ase of the generalthree-phase �ow, in this sense, we an say that loal extrema for the salar funtion F ∂3

1 (u1)orrespond to all oinidene points on the ∂3 edge; beause of item (c) of Theorem (4.1)the two sides of the edge ∂3 relative to the oinidene point Q3 are idential to integralurves for di�erent families. Similarly the derivative of the two-phase �ux funtion F ∂3

1oinides with the harateristi speed of the fast (slow if ρ1 < ρ2) family in the interval
(V2, Q3) and with the harateristi speed of the slow (fast if ρ1 < ρ2) family in the interval
(Q3, V1).
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(b)Figure 5.1: For both ases µ1 = 1, µ2 = 0.5, ρ12 = 0.7. (a) Two-phase salar �ux F ∂3

1 (u1).(b) Two-phase salar �ux F ∂3

2 (u2).If both left and right states of the Rieman problem lie on the ∂3 edge, the solutionof the Riemann problem is the well known Oleinik solution [34℄ for the Bukley-Leverettequation (5.1) with �ux funtion shown in Fig. 5.1(a).5.2 Two-phase �ow for the simpli�ed pure gravitationalproblem.Now, assume ρ1 = ρ2 6= ρ3. If we restrit the system (2.23) to the ∂3 edge, with α = 0, allomponents of the �ow funtion are identially equal to zero, and the system redues to
∂ui

∂t
= 0, i = 1, 2. (5.7)The wave joining any pair of states on the edge ∂3 for this ase is an immobile �genuine�ontat disontinuity (the speed σ is equal to zero). Along the other edges the solution isthe Bukley-Leverett solution as desribed in the previous setion.Two-phase �ow along the ritial lineNow we will show that when ρ1 = ρ2 the system (2.23) restrited to the segment R3(see Fig.(2.1)) behaves like a two-phase �ow problem too. We all the segment R3 for thissimpli�ed problem the �ritial line�. We have the following theoremTheorem 5.1. Assume α = 0, ρ1 = ρ2 6= ρ3 and denote ρ = ρ13 = ρ23. Let UL and

UR be states on the ritial line R3. The Riemann solution U(x, t) satis�es u1(x, t)/µ1 =
u2(x, t)/µ2 for all t, x (i.e., the solution remains on R3 for all times). The Riemannsolution onsists of waves solely from the slow family if ρ > 0, and solely from the fastfamily if ρ < 0.



38 Chapter 5. Two-phase behavior in the pure gravitational problem.Proof. Following Azevedo et al. [1℄, we an parameterize the line segment R3 in terms ofthe saturation of phase 3

R3 =

{
(u1, u2) : u1 =

µ1(1 − u3)

µ1 + µ2
, u2 =

µ2(1 − u3)

µ1 + µ2
, 0 ≤ u3 ≤ 1

}
. (5.8)Using this parametrization of R3 and the expressions for the �ow omponents (2.20)-(2.21)we obtain that along segment R3

F1

µ1

=

u2

(µ1+µ2)2
(1−u)2

µ3
ρ

(1−u)2

µ3
+ u2

µ1+µ2

=
F2

µ2

, where u = 1 − u3. (5.9)Now we de�ne the following funtion of the variable u along R3

F12(u) ≡ (µ1 + µ2)
F1

µ1
= (µ1 + µ2)

F2

µ2
=

u2

(µ1+µ2)
(1−u)2

µ3
ρ

(1−u)2

µ3
+ u2

µ1+µ2

. (5.10)If we substitute the parametrization (5.8) of the segment R3 into the system (2.23)we obtain that on R3 both equations of the system redue to the salar gravitationalBukley-Leverett equation
∂u

∂t
+

∂

∂x
F12(u) = 0, (5.11)with the �ux F12 given by (5.10). We onlude that along the ritial line R3 the quantity

u (remembering that u = 1 − u3 = u1 + u2) is onserved aording to (5.11). So theritial line R3 is invariant under the evolution governed by system (2.23). In this sense,we an say that along R3 the behavior of the �uid is like two-phase �ow, with phases:(phase 1 �+� phase 2) and (phase 3). Compare the salar onservation law (5.11) and the��ux� funtion F12 de�ned in (5.10) with the onservation law and the orresponding �uxfuntion F ∂3

1 in (5.1) . Notie that the funtion F12 has exatly the same expression as
F ∂3

1 but with visosities µ3 instead of µ2 and µ1 + µ2 instead of µ1.In order to prove the seond part of the theorem we will assume that ρ > 0 ( then thease ρ < 0 an be regarded as a diret onsequene of Theorem 8.1).Assuming that ρ > 0 we will show that the entire segment R3 is an integral urve ofthe slow family. From (4.8), we have that in eah arbitrary point U the harateristispeed of the slow family is given by λ−(U). We denote by r−(U) = (r−1 (U), r−2 (U))T theright eigenvetor assoiated to λ−(U). We have that
(
DF (U) − λ−(U)I

)
r−(U) = 0, (5.12)more spei�ally

[
J11(U) − λ−(U)

]
r−1 (U) + J12(U)r−2 (U) = 0, (5.13)

J21(U)r−1 (U) +
[
J22(U) − λ−(U)

]
r−2 (U) = 0. (5.14)



Two-phase �ow for the simpli�ed pure gravitational problem. 39We will assume that U is an interior point of the saturation triangle, then from (4.5)-(4.6) we have J12(U) < 0, J21(U) < 0, so we obtain from (5.14) that
r−1 (U) =

[
λ−(U) − J22(U)

]
r−2 (U)

J21(U)
. (5.15)If we substitute (5.15) into (5.13) we see that (5.13) is satis�ed trivially.Sine r−(U) is an eigenvetor, from (5.15) we have r−2 (U) 6= 0. Thus we an assumewithout loss of generality r−2 (U) = 1 and r−1 (U) = J22(U)−λ−(U)

−J21(U)
. Let us alulate r−1 (U),more details appear in Appendix A.We an write

J22(U) − λ−(U) =
J22 − J11 +

√(
J22 − J11

)2
+ 4J12J21

2
. (5.16)Assume now that U ∈ R3. From (4.4)-(4.7) we obtain after some alulation thefollowing relations

J21(U) = −2
(µ2/µ1)u

3
1u3ρ

µ2
1µ3Λ2

, (5.17)
J22(U) − J11(U) = 2

u3
1u3ρ

µ2
1µ3Λ2

(1 − µ2/µ1), (5.18)
J12(U)J21(U) = 4

(µ2/µ1)u
6
1u

2
3ρ

2

µ4
1µ

2
3Λ

4
, (5.19)then

J22(U) − λ−(U) = −
µ1

µ2
J21(U) ⇒ r−1 (U) =

µ1

µ2
. (5.20)So we have proved that the eigenvetor r−(U) has the diretion of the segment R3 forany U ∈ R3.

Remark 5.4. For a more general ase in whih α 6= 0, ρ1 = ρ2 6= ρ3, we an apply thesame proedure to obtain that on R3 the �ow has again a two-phase behavior, but in suh aase the Riemann solution on R3 onsists of waves of both families. This is a onsequeneof the presene of the umbili point U∗
α on R3 (see Lemma 6.4).Remark 5.5. The fat that the solution behaves like a two-phase �ow along segment R3was already observed in the problem without gravity (see [1℄), therefore we an regard thetheorem above as a generalization of that result for the gravitational ase in whih two�uids have equal densities.



40 Chapter 5. Two-phase behavior in the pure gravitational problem.Remark 5.6. Notie that in the ase without gravity the presene of the umbili point inthe interior of the triangle again implies a hange of family along the integral urve thatoinides with R3, so the property that the entire segment R3 is part of an integral urve ofa single family holds only in the simpli�ed pure gravitational problem (i.e., α = 0, ρ1 = ρ2).



Chapter 6Hugoniot loi for verties in the generiproblem
This hapter summarizes the analysis of the Hugoniot loi of the verties V1, V2 and V3for the general ase in whih the veloity parameter α has an arbitrary value. In otherwords, onvetion and buoyany are both ative. The results have an important role inthe solution of the Riemann solutions with data for x > 0 orresponding to a vertex ofthe saturation triangle. Nevertheless, as in this work we only solve Riemann problems forthe �pure gravitational� ase (α = 0), it is su�ient to use the results in Prop. 6.1 andProp. 6.3, the rest of the hapter an be skipped.We want to study the Hugoniot lous for the three verties of the saturation triangle.Without loss of generality we an analyze the Hugoniot lous through the point V3. Wewill onsider the 2 × 2 system of onservation laws (2.23) that originates from droppingthe equation orresponding to the phase 3 in the equations for Corey model with �uxfuntions (2.20)-(2.22). If we employ the system of oordinates given by saturations ofphases 1 and 2 and use the de�nition of the saturation triangle given in (2.24), we have
V3 = (0, 0). We onsider an arbitrary state U = (u1, u2); the Rankine-Hugoniot relationfor a shok joining the state V3 with U is

F1(0, 0) − F1(u1, u2) = −σ(u1 − 0) (6.1)
F2(0, 0) − F2(u1, u2) = −σ(u2 − 0), (6.2)with σ representing the shok speed.Using the �ux expressions (2.20)-(2.21) into (6.1)-(6.2) we obtain the following Rankine-Hugoniot expression
σu1 =

u2
1

µ1

[α + (
u2

3

µ3

ρ13 +
u2

2

µ2

ρ12)]/Λ, (6.3)
σu2 =

u2
2

µ2

[α + (
u2

3

µ3

ρ23 +
u2

1

µ1

ρ21)]/Λ, (6.4)41



42 Chapter 6. Hugoniot loi for verties in the generi problemwhere Λ = Λ(u1, u2, u3) is given in (2.19). To obtain (6.3)-(6.4) we took advantage of thefat that F1 and F2 given in (2.20)-(2.21) vanish at V3.There are essentially two types of solutions for equations (6.3)-(6.4). One type orre-sponds to two-phase �ow. The other type orresponds to three-phase �ow.For onreteness, in order to analyze the two-phase �ow solutions for (6.3)-(6.4) letus onsider �uids 2 and 3 (the ase of �uids 1 and 3 is analogous), so assume u1 = 0.For this type of solution we are taking U ∈ ∂1, equation (6.3) is satis�ed trivially for allvalues of σ. The entire edge ∂1 of the saturation triangle belongs to H(V3). For a givenstate on this edge U = (0, u2), u2 > 0, the speed of the disontinuity is determined from(6.4) as
σ =

u2

µ2
[α + (1−u2)2

µ3
ρ23]

u2
2

µ2
+ (1−u2)2

µ3

. (6.5)Notie that for this ase, the �rst equation of (2.23) is satis�ed trivially, so the systemredues to the salar Bukley-Leverett equation (seond equation of (2.23)). This type ofsolution for Eqs. (6.3)-(6.4) is a two-phase disontinuity on the edge ∂1 (or on the edge
∂2, if u2 = 0).Let us onsider the ase of genuine three-phase �ow, i.e., assume u1 6= 0, u2 6= 0.For this type of solution, U belongs to the interior branh of H(V3). We eliminate σ in(6.3)-(6.4), and obtain, for u3 = 1 − u1 − u2

u2

µ2

(
α +

u2
3

µ3
ρ23 +

u2
1

µ1
ρ21

)
−

u1

µ1

(
α +

u2
3

µ3
ρ13 +

u2
2

µ2
ρ12

)
= 0. (6.6)As we already saw, both edges ∂1 and ∂2 are trivial branhes of H(V3). We de�ne thenon-trivial branh of the Hugoniot lous of V3 as

Ĥ(V3) = {U ∈ T, suh that (6.6) holds} . (6.7)This represents a urve through the vertex V3 given in impliit form. The speed σ an bereovered from any one of the equations (6.3) or (6.4).Reall that Λ1 and Λ2 are the mobilities of the phases 1 and 2 respetively (see thede�nitions in (2.19)). Multiplying (6.3) by Λ2, (6.4) by Λ1 and subtrating the results(notie that both Λ1 and Λ2 are di�erent from zero for this type of solution), we obtainafter some alulations
σ (Λ2u1 − Λ1u2) = Λ1Λ2ρ12. (6.8)The above equation is a neessary ondition that must be satis�ed by any state U ofthe non-trivial branh Ĥ(V3). This equation will provide interesting information. We willsplit our analysis in two ases. First we analyze the ase in whih phases 1 and 2 haveequal densities.



Three-phase �ow with two equal-density �uids 436.1 Three-phase �ow with two equal-density �uidsHere we analyze the simplest ase in whih the density di�erene ρ12 vanishes. Let us usethe notation ρ = ρ13 = ρ23.Assume σ 6= 0, so for U ∈ Ĥ(V3) we obtain from (6.8) that neessarily Λ2u1 = Λ1u2and therefore u1/µ1 = u2/µ2 (i.e., U ∈ R3 (see Eq. (2.29) and Fig. 6.1). From (6.3)-(6.4),we an see that ondition U ∈ R3 is also su�ient for U to belong to Ĥ(V3).For the ase σ = 0, as we have u1 6= 0, u2 6= 0, and ρ1 = ρ2 we obtain from theRankine-Hugoniot onditions (6.3)-(6.4) that neessarily α + u2
3ρ/µ3 = 0; therefore if

0 ≤ −αµ3/ρ ≤ 1, there exists a segment parallel to ∂3, given by u3 =
√

−αµ3/ρ thatbelongs to H(V3) with speed σ equal to zero. We are led to de�ne
Cα

3 =

{ {
U ∈ T : u3 =

√
−αµ3/ρ

} if 0 ≤ −αµ3/ρ ≤ 1,
∅ otherwise.Notie that we have proved the following result:Proposition 6.1. Assume that ρ1 = ρ2, then the Hugoniot Lous of the vertex V3 is givenby H(V3) = ∂1 ∪ ∂2 ∪ R3 ∪ Cα

3 . See Fig. 6.1.
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Figure 6.1: Dark urves: Hugoniot Lous of vertex V3 for the ase ρ1 = ρ2 when α 6= 0with 0 < −αµ3/ρ ≤ 1Remark 6.1. Notie that C0
3 = ∂3, so for the simpli�ed pure gravitational problem (α =

0, ρ12 = 0) the edge ∂3 not only is a diagonalization line but it also belongs to H(V3) withspeed σ = 0. This fat was expeted beause of the Triple Shok rule.Remark 6.2. It is well known (see [1℄) that in the absene of buoyany (i.e., ρ1 = ρ2 =
ρ3), the straight line segment R3 is part of the Hugoniot-Lous of the point V3. So we seethat Proposition 6.1 is a generalization of that result for the ase in whih the phases 1and 2 have equal densities while phase 3 has a di�erent density.



44 Chapter 6. Hugoniot loi for verties in the generi problem6.2 Three-phase �ow with three di�erent-density �uidsNow we will analyze the general ase ρ21 6= 0 in whih the urve Ĥ(V3) has a moreompliated shape (it is not omposed by straight line segments).We have the following lemmas.Lemma 6.1. For α non-zero, Ĥ(V3) intersets the edge ∂3 at a unique point P3. For thease α = 0, Ĥ(V3) intersets the edge ∂3 at the verties V1 and V2.Proof. Let us onsider u3 = 0 in equation (6.6). First notie that when ρ21 = 0 the point
B3 with oordinates given by (2.30) is the unique solution of Eq. (6.6). For ρ21 6= 0, aftersome alulations, we obtain

u2
2 − (1 + α(µ1 + µ2)/ρ21)u2 + αµ2/ρ21 = 0. (6.9)The solutions of equation (6.9) are

u±
2 =

1

2

(
(
1 +

α(µ1 + µ2)

ρ21

)
±

√
(
1 +

α(µ1 + µ2)

ρ21

)2
− 4

αµ2

ρ21

)
. (6.10)If (α/ρ21) < 0, the solution u−

2 is negative and has no interest, while the solution u+
2lies in (0, 1), therefore P3 has oordinates (1 − u+

2 , u+
2 , 0). Performing a similar analysisfor the ase (α/ρ21) > 0 we have u−

2 as the unique valid solution of (6.9), giving rise to
P3 = (1 − u−

2 , u−
2 , 0). For the ase α = 0, we obtain u−

2 = 0 and u+
2 = 1; therefore Ĥ(V3)intersets the boundary ∂3 at the verties V1 and V2.Lemma 6.2. The intersetion of Ĥ(V3) with the edges of the saturation triangle aredesribed as follows.(i) (1) Consider ρ13 = 0. We have:(a) α = 0 ⇔ ∂2 ⊂ Ĥ(V3).(b) α 6= 0 ⇔ Ĥ(V3) ∩ ∂2 = {V3}.(2) If ρ13 6= 0 then (αµ3/ρ31) ∈ [0, 1) ⇔ ∃!Sα

2 ∈ Ĥ(V3) ∩ ∂2 suh that Sα
2 6= V3.(ii) (1) Consider ρ23 = 0. We have:(a) α = 0 ⇔ ∂1 ⊂ Ĥ(V3).(b) α 6= 0 ⇔ Ĥ(V3) ∩ ∂1 = {V3}.(2) If ρ23 6= 0 then (αµ3/ρ32) ∈ [0, 1) ⇔ ∃!Sα

1 ∈ Ĥ(V3) ∩ ∂1 suh that Sα
1 6= V3.Proof. We will prove only item (ii) sine the proof of item (i) is analogous. First notiethat the vertex V3 = (0, 0, 1) ∈ Ĥ(V3) ∩ ∂1 ∩ ∂2. In item (ii) we are interested in theintersetions (out of V3) of the non-trivial lous Ĥ(V3) with the edge ∂1 so we take the



Three-phase �ow with three di�erent-density �uids 45limit when u1 → 0 with u2 6= 0 in (6.6), we have U = (u1, u2, u3) ∈ Ĥ(V3)∩ ∂1 if and onlyif
α +

u2
3

µ3
ρ23 = 0. (6.11)From (6.11) we see that item (ii.1) is trivial. If (αµ3/ρ32) ∈ [0, 1) we obtain from (6.11)that u3 =

√
αµ3/ρ32 is an admissible saturation value and therefore the point

Sα
1 = (0, 1 −

√
αµ3/ρ32,

√
αµ3/ρ32) (6.12)satis�es Sα

1 ∈ Ĥ(V3) ∩ ∂1 with Sα
1 6= V3, onluding the proof of item (ii.2).As we said before the proof for item (i) is analogous, spei�ally for (i.2) we will obtainthe point

Sα
2 = (1 −

√
αµ3/ρ31, 0,

√
αµ3/ρ31), (6.13)whih satis�es Sα

2 ∈ Ĥ(V3) ∩ ∂2 with Sα
2 6= V3.Remark 6.3. Notie that when |α| → 0 we have Sα

1 → V2 and Sα
2 → V1.Corollary 6.1. Assume ρ13 6= 0, ρ23 6= 0, (αµ3/ρ32) /∈ [0, 1) and (αµ3/ρ31) /∈ [0, 1), then

Ĥ(V3) ∩ ∂1 = Ĥ(V3) ∩ ∂2 = {V3}.Proof. This result is a diret onsequene of items (i.2) and (ii.2) of Lemma 6.2.Lemma 6.3. Assume ρ1 6= ρ2. We have the following assertions:(i) Ĥ(V3) does not interset R3 at any interior point of the saturation triangle.(ii) If U ∈ Ĥ(V3) and U is not a vertex of the saturation triangle, then σ(V3, U) 6= 0.Proof. Item (i) is a diret onsequene of the neessary ondition (6.8) for a state U tobelong to Ĥ(V3). Item (ii) will be also a onsequene of (6.8) for states out of the edges
∂1 and ∂2. If U ∈ Ĥ(V3)∩∂i for i = 1 or i = 2, then the onlusion follows from the shapeof the two-phase �ux funtions along the edges, see Fig. 5.1, and from the assumptionthat U is not a vertex of the saturation triangle.We ontinue the study of Ĥ(V3) given by (6.6) for the ase ρ1 6= ρ2. It is lear thatthis urve ontains the point V3. Depending of the parameter α a portion of this urvemay lie outside the saturation triangle.Assume (α + ρ13/µ3) 6= 0, then we an apply the impliit funtion theorem for Ĥ(V3)(equation (6.6)) in a neighborhood N (V3) of V3 = (0, 0) (here we use the oordinates
u1, u2 in (2.24) for the saturation triangle), obtaining u1 as funtion of u2, with slope

T3(α) =
du1

du2
(0, 0) =

µ1

µ2

(α + ρ23

µ3
)

(α + ρ13

µ3
)
. (6.14)



46 Chapter 6. Hugoniot loi for verties in the generi problemThe sign of T3(α) yields ruial information about the behavior of the loal urve (6.6),i.e., in a neighborhood of V3.Corollary 6.2. If T3(α) > 0 the loal urve (6.6) rosses the vertex V3, possessing aportion inside the saturation triangle, so in this sense we say that Ĥ(V3) starts from V3.If T3(α) < 0 the loal urve (6.6) rosses the vertex V3 and lies outside the saturationtriangle. In suh a ase we say that Ĥ(V3) does not start at V3.If T3(α) = 0 the loal urve (6.6) is tangent at V3 to the edge ∂1. If the inverse of
T3(α) vanishes, the loal urve (6.6) will be tangent at V3 to the edge ∂2. In both tangenyases either the whole loal urve lies entirely outside the saturation triangle or one halfof the loal urve lies inside the saturation triangle.Remark 6.4. We note that for su�iently large values of |α|, T3(α) is positive, thereforethe urve Ĥ(V3) starts from the vertex V3, ( i.e., it enters the saturation triangle).Remark 6.5. As expeted, lim

α→∞
T3(α) = µ1/µ2. This limit orresponds to the non-gravitational ase in whih Ĥ(V3) = R3.Remark 6.6. Notie that the formula for T3(α) in (6.14) is given in a retangular oordi-nates system (u1, u2). Nevertheless in most of the �gures along the work we use barientrioordinates in the saturation triangle.Sine ρ1 6= ρ2, if (α + ρ13/µ3) = 0 we have (α + ρ23/µ3) 6= 0, so we an apply theImpliit Funtion Theorem to obtain u2 as a funtion of u1 in a neighborhood of V3.De�ning T3(α) as the inverse of the fration in (6.14) it is possible to reah onlusionsanalogous to Corollary 6.2 and Remarks 6.4, 6.5.The following Proposition gives the qualitative behavior of the non-trivial Hugoniotbranh Ĥ(V3).Proposition 6.2. Assume ρ1 > ρ2 and α 6= 0, then we have the following assertions(plotting the urve in (6.6) it is possible to obtain Figs. 6.2-6.6).(i) When ρ1 > ρ3 > ρ2 :(i.1) If α > (ρ32/µ3) or α < (ρ31/µ3) we have that Ĥ(V3) is a onneted urve thatstarts at V3 and �nishes at P3 ∈ ∂3, without touhing the edges ∂1 and ∂2; seeFig. 6.2.(i.2) If 0 < α < (ρ32/µ3) we have that Ĥ(V3) is a onneted urve that starts at apoint Sα

1 ∈ ∂1 (Sα
1 6= V3) and �nishes at P3 ∈ ∂3; see Fig. 6.3.(i.3) If (ρ31/µ3) < α < 0 we have that Ĥ(V3) is a onneted urve that starts at

Sα
2 ∈ ∂2 (Sα

2 6= V3) and �nishes at P3 ∈ ∂3; see Fig. 6.4.



Three-phase �ow with three di�erent-density �uids 47(ii) When ρ3 ≥ ρ1 > ρ2 :(ii.1) If α < 0 or α > (ρ32/µ3) we have that Ĥ(V3) is a onneted urve that startsat V3 and �nishes at P3 ∈ ∂3, without touhing the edges ∂1 and ∂2; see Fig. 6.2.(ii.2) If (ρ31/µ3) < α < (ρ32/µ3) we have that Ĥ(V3) is a onneted urve that startsat Sα
1 ∈ ∂1 (Sα

1 6= V3) and �nishes at P3 ∈ ∂3; see Fig. 6.3.(ii.3) If 0 < α < (ρ31/µ3) then Ĥ(V3) is a disonneted urve with two branhes
V3�Sα

2 and Sα
1 �P3 where Sα

2 ∈ ∂2, Sα
1 ∈ ∂1, P3 ∈ ∂3; see Fig. 6.5.(iii) When ρ1 > ρ2 ≥ ρ3 :(iii.1) If α > 0 or α < (ρ31/µ3) we have that Ĥ(V3) is a onneted urve that startsat V3 and �nishes at P3 ∈ ∂3, without touhing the edges ∂1 and ∂2; see Fig. 6.2.(iii.2) If (ρ31/µ3) < α < (ρ32/µ3) then Ĥ(V3) is a onneted urve that starts at

Sα
2 ∈ ∂2 (Sα

2 6= V3) and �nishes at P3 ∈ ∂3; see Fig. 6.4.(iii.3) If 0 > α > (ρ32/µ3) then Ĥ(V3) is a disonneted urve with two branhes
V3�Sα

1 and Sα
2 �P3, where Sα

1 ∈ ∂1, Sα
2 ∈ ∂2, P3 ∈ ∂3; see Fig. 6.6.
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¶Figure 6.2: Dark urve: Hugoniot Lous of vertex V3 for items (i.1), (ii.1), (iii.1) of Propo-sition 6.2Proof. We will prove only item (ii), the proofs for items (i) and (iii) are similar.Assume ρ3 ≥ ρ1 > ρ2. We have ρ23 < 0 and ρ13 ≤ 0, so for α < 0 or α > (ρ32/µ3)we have T3(α) > 0 and therefore the urve (6.6) rosses the vertex V3 with a loal por-tion inside the saturation triangle. Thus Ĥ(V3) starts at the vertex V3. Ĥ(V3) �nishes at

P3 ∈ ∂3 as we proved in Lemma 6.1. The fat that Ĥ(V3) does not touh the boundaries ∂1and ∂2 is a onsequene of Corollary 6.1, onluding the proof of item (ii.1), see Fig. 6.2.
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Figure 6.3: Dark urve: Hugoniot Lous of vertex V3 for items (i.2) and (ii.2) of Proposi-tion 6.2. Light urve: points satisfying the Rankine-Hugoniot relation but lie outside thesaturation triangle
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SFigure 6.4: Dark urve: Hugoniot Lous of vertex V3 for items (i.3) and (iii.2) of Propo-sition 6.2. Light urve: points satisfying the Rankine-Hugoniot relation but lie outside thesaturation triangleFor (ii.2); see Fig. 6.3, we obtain T3(α) < 0, so the urve (6.6) rosses the vertex V3lying outside the saturation triangle and Ĥ(V3) does not start at the vertex V3. We alsohave

0 ≤ (αµ3/ρ32) < 1 < (αµ3/ρ31).Applying items (i.2) and (ii.2) of Lemma 6.2 we see that there exists a unique Sα
1 ∈

Ĥ(V3) ∩ ∂1 with Sα
1 6= V3 while Ĥ(V3) ∩ ∂2 = {V3}. The branh of the Hugoniot lousjoining Sα

1 with vertex V3 �lies outside� the saturation triangle and has no interest, so theurve Ĥ(V3) lying inside the saturation triangle starts at Sα
1 and �nishes at P3 ∈ ∂3 givenby Lemma 6.1.For (ii.3); see Fig. 6.5, we have the ondition 0 < α < (ρ31/µ3) < (ρ32/µ3), here wehave T3(α) > 0 therefore Ĥ(V3) enters the triangle in a neighborhood of the vertex V3.
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Figure 6.5: Dark urve: Hugoniot Lous of vertex V3 for item (ii.3) of Proposition 6.2.Light urve: points satisfying the Rankine-Hugoniot relation but lie outside the saturationtriangle
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Figure 6.6: Dark urve: Hugoniot Lous of vertex V3 for item (iii.3) of Proposition 6.2.Light urve: points satisfying the Rankine-Hugoniot relation but lie outside the saturationtriangleWe an assume ρ3 > ρ1 (notie that the ase ρ3 = ρ1 is trivial) so we obtain
0 ≤ (αµ3/ρ32) ≤ (αµ3/ρ31) < 1.Again applying the items (i.2) and (ii.2) of Lemma 6.2 there exist two points Sα

1 ∈ Ĥ(V3)∩
∂1 with Sα

1 6= V3 and Sα
2 ∈ Ĥ(V3)∩∂2 with Sα

2 6= V3. The urve Ĥ(V3) has two disonnetedbranhes. The �rst branh starts at the vertex V3 and �nishes at Sα
2 ∈ ∂2. The seondbranh starts at Sα

1 ∈ ∂1 and �nishes at a point P3 ∈ ∂3 given by Lemma 6.1.It is possible to analyze the limit ases α → 0, α → (ρ32/µ3) and α → (ρ31/µ3) forProp. 6.2. As we want to solve the pure gravitational problem as a �rst step to understandthe in�uene of the buoyany in the solutions of Riemann problem, in this work we willanalyze only the limit ase α → 0.



50 Chapter 6. Hugoniot loi for verties in the generi problemNotie that when α = 0 we have that all three verties belong to Ĥ(V3) (see Lemma 6.1);the following Proposition desribes the other points of the urve Ĥ(V3).Proposition 6.3. Assume ρ1 > ρ2 and α = 0. The following assertions hold:(i) For any of the ases (ρ1 > ρ3 > ρ2), (ρ1 = ρ3 > ρ2) or (ρ1 > ρ3 = ρ2) we have
Ĥ(V3)\{V1, V2, V3} = ∅, therefore H(V3) = ∂1 ∪ ∂2.(ii) If ρ3 > ρ1 > ρ2, Ĥ(V3)\{V1, V2, V3} is a onneted urve joining the verties V3 and
V1 (see Fig. 6.7(a)). This urve onsists only of interior points of the saturationtriangle.(iii) If ρ3 < ρ2 < ρ1, Ĥ(V3)\{V1, V2, V3} is a onneted urve joining the verties V3 and
V2 (see Fig. 6.7(b)). This urve onsists only of interior points of the saturationtriangle.
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¶(b)Figure 6.7: Dark urve: Hugoniot Lous of vertex V3 for the pure gravitational problem.(a) Case of item (ii) of Prop. 6.3. (b) Case of item (iii) of Prop. 6.3.Proof. Item (i) is a diret onsequene of Eq. (6.6) sine all the terms involved are negativequantities for all the ases mentioned.In order to prove item (ii), let us assume α < 0, then (α/ρ21) > 0. The intersetionpoint of Ĥ(V3) with the edge ∂3 is P3 = (1 − u−

2 , u−
2 , 0), where u−

2 is given by (6.10).Notie that in suh a ase we have P3 → V1 when α → 0−.Applying item (ii.1) of Proposition 6.2 for the limit ase α → 0−, we obtain that
Ĥ(V3) starts at V3 and �nishes at V1, without touhing the edges ∂1 and ∂2.In the same way we an apply item (ii.3) of Proposition 6.2 for the limit ase α → 0+;we will obtain the same result, sine Sα

2 → V1,Sα
1 → V2 (see Remark 6.3) and P3 → V2.



Three-phase �ow with three di�erent-density �uids 51For this limit ase notie that the branh Sα
1 − P3 yields the point V2, while the branh

V3 − Sα
2 yields a onneted urve starting at the vertex V3 and �nishing at the vertex V1;this urve onsists of interior points exept for the verties.The proof of item (iii) is analogous.Lemma 6.4. Assume α 6= 0. The unique interior umbili point U∗

α lies on the urve
Ĥ(V3).Proof. Let U∗

α be the interior umbili point, then it must satisfy the equations (4.38)-(4.40). For the quadrati mobilities (2.19) in the Corey model, Eq. (4.40) is
α(

u1

µ1
−

u2

µ2
) +

[
u1u

2
3

µ1µ3
ρ13 + (

u1u
2
2

µ1µ2
+

u2
1u2

µ1µ2
)ρ12 −

u2u
2
3

µ2µ3
ρ23

]
= 0. (6.15)By regrouping onveniently the terms in Eq. (6.15) we obtain (6.6), onluding that for theCorey model with quadrati mobilities, the umbili point U∗

α is ontained in Ĥ(V3).We an state the following result.Proposition 6.4. For α 6= 0, the unique interior umbili point U∗
α is the intersetionpoint of the non-trivial Hugoniot branhes for the three verties V1, V2 and V3, see forinstane Fig. 6.8.Remark 6.7. The fat that the umbili point U∗

α is unique for the Corey model inludinggravity was proved by Medeiros in [33℄.
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Figure 6.8: Hugoniot loi for the three verties in the ase ρ1 = ρ2 > ρ3, µ1 > µ2 and
0 < α < ρ23/µ1. The umbili point U∗

α is the intersetion point of the three urves in thesaturation triangle.



Chapter 7Hugoniot lous for edge points in thepure gravitational problem
In this hapter we analyze the Hugoniot lous for states UL on the edges ∂i for the puregravitational ase, in whih α = 0. Here UL will not be a vertex of the saturation triangle,as this ase was analyzed in the previous hapter. In the �rst setion we present a newmethod based on a geometri onstrution to obtain shoks joining states on di�erenttwo-phase regimes, provided that these regimes have a ommon state forming a wedge.This onstrution does not depend on the permeabilities, so it is appliable for generalpermeability models. In the seond setion we onsider the ase where UL lies on anedge orresponding to equal-density phases. In third and fourth setions we desribe theHugoniot lous for the remaining ases. The results of this hapter will be very importantfor the onstrution of the Riemann solutions desribed in Chapters 9 and 10.Without loss of generality we will analyze the Hugoniot lous for the edge ∂2, whihrepresents mixtures of phases 1 and 3. We will onsider the 2× 2 system of onservationlaw (2.23) that results after dropping the equation orresponding to phase 3. We onsidera state UL on the edge ∂2, UL = (uL

1 , 0, uL
3 ), with uL

3 = 1−uL
1 . Denote by U = (u1, u2, u3)an arbitrary state in the saturation triangle. The Rankine-Hugoniot relation for a shokjoining the left and right states UL and U is

F1(UL) − F1(U) = σ(uL
1 − u1) (7.1)

F2(UL) − F2(U) = σ(uL
2 − u2), (7.2)with σ representing the shok speed. Using the �ux expressions (2.20)-(2.21) into (7.1)-(7.2) we obtain the following expressions

σ(uL
1 − u1) =

(uL
1 )2(1 − uL

1 )2

µ1µ3ΛL

ρ13 −
u2

1

µ1

(
u2

3

µ3

ρ13 +
u2

2

µ2

ρ12)/Λ(U), (7.3)
σu2 =

u2
2

µ2

(
u2

3

µ3

ρ23 +
u2

1

µ1

ρ21)/Λ(U), (7.4)52



53where, from (2.19)
ΛL = Λ(UL) = (uL

1 )2/µ1 + (1 − uL
1 )2/µ3. (7.5)In Proposition 6.3 we have already found the Hugoniot lous for the verties, so fromnow on we assume that uL

1 6= 0 and uL
1 6= 1.From (7.4) it is obvious that the edge ∂2 is a trivial branh of H(UL). For U /∈ ∂2 wean divide the equation (7.4) by u2 to obtain:

σ =
u2

µ2
(
u2

3

µ3
ρ23 +

u2
1

µ1
ρ21)/Λ(U). (7.6)Equation (7.6) represents the speed σ of the disontinuity joining the state UL ∈ ∂2with any state U ∈ H(UL) out of the edge ∂2.Substituting (7.6) into equation (7.3) and performing some alulations we obtain

(uL
1 )3u2u

2
3

µ1µ2µ3
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(uL
1 )3u2u
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1µ2
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(uL

1 )2u1u2u
2
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µ1µ2µ3
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(uL
1 )2u3

1u2
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1µ2
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1 )u2(1 − uL
1 )2u2
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µ2µ2
3

ρ23 +
(uL

1 )u2
1u2(1 − uL

1 )2

µ1µ2µ3
ρ21 −

u1u2u
2
3(1 − uL

1 )2

µ2µ2
3

ρ23

−
u3

1u2(1 − uL
1 )2

µ1µ2µ3
ρ21 −

(uL
1 )2u2

1(1 − uL
1 )2

µ2
1µ3

ρ13 −
(uL

1 )2u2
2(1 − uL

1 )2

µ1µ2µ3
ρ13

−
(uL

1 )2u2
3(1 − uL
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µ1µ2
3

ρ13 +
(uL

1 )2u2
1u

2
3

µ2
1µ3

ρ13 +
u2

1u
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3(1 − uL

1 )2

µ1µ2
3

ρ13

−
(uL

1 )2u2
1u

2
2

µ2
1µ3

ρ21 −
u2

1u
2
2(1 − uL

1 )2

µ1µ2µ3
ρ21 = 0.

(7.7)
For uL

1 �xed, (7.7) represents a loal branh of the Hugoniot lous of UL that is di�erentfrom the edge ∂2.De�nition 7.1. We will all the portion of the urve (7.7) lying in the saturation triangleas the non-trivial branh of the Hugoniot lous of UL ∈ ∂2 and we will denote it by H̃(UL).Sometimes it is simpler to work diretly with Eqs. (7.3)-(7.4) rather than with Eq. (7.7).As u3 = 1 − u1 − u2, notie that the left hand side of Eq. (7.7) is a polynomial of fourthdegree in the variables u1 and u2. However, for some speial ases, like ρ2 = ρ3, it is pos-sible to obtain u2 from Eq. (7.7) as an expliit funtion of u1. This is a great advantageof Eq. (7.7).In order to understand the shape of H̃(UL) for UL in ∂2 the �rst step is to determine theintersetions of H̃(UL) with the other edges of the saturation triangle. In our partiularRiemann problem it is also an essential step. We present in the next setion a geometrianalysis that allows to onstrut general edge to edge shoks for any �ux funtions, anydensity and visosity values; however, for the sake of onreteness, we will illustrate themethod only for the ase ρ1 > ρ3 ≥ ρ2 and for left and right shok states in ∂2 and ∂3respetively.



54 Chapter 7. Hugoniot lous for edge points in the pure gravitational problem7.1 Edge to edge shoks: the wedge onstrution.The following geometri onstrution determines shoks joining states on di�erent two-phase edges of the saturation triangle. The onstrution is general and does not dependon the �onvetion/gravity ratio� α or on the form of the permeability funtions, so it isappliable to general permeability models. Nevertheless in this work we only use it forthe quadrati Corey model with gravity (2.23).Two edges of the saturation triangle have a ommon vertex forming a wedge. Withoutloss of generality we assume that the ommon vertex is V1. This means that phase 1 ispresent in both edges ∂2 and ∂3 of the wedge, phase 2 is present in the edge ∂3, whilephase 3 is present in the edge ∂2.We will illustrate the wedge onstrution for the ase ρ1 > ρ3 ≥ ρ2. We onsiderthe �ux funtion (F1, F2) of the system (2.23) restrited to the edges ∂2 and ∂3 . FromRemark 5.1 we see that the hoie F ∂2

1 (u1) or F ∂2

3 (u3) does not make any di�erene forthe solution, so we hoose the pair
F ∂2

1 (u1) =
u2

1(1 − u1)
2

µ1µ3

(u2
1

µ1
+ (1−u1)2

µ3

)ρ13 and u1 (7.8)as the two-phase �ux and the onserved quantity both restrited to the edge ∂2. As
ρ1 > ρ3 the plot of this �ux funtion is similar to the one shown in Fig. 5.1(a).For the restrition of the �ux to the two-phase edge ∂3 we will hoose for onveniene

F ∂3

2 (u2) =
u2

2(1 − u2)
2

µ1µ2

(u2
2

µ2
+ (1−u2)2

µ1

)ρ21, (7.9)where u2 is the onserved quantity. The plot of this funtion is shown in Fig. 5.1(b).The salar �ux funtions F ∂2

1 and F ∂3

2 govern di�erent two-phase regimes with a om-mon state V1. However we will reate a useful onstrution by de�ning an extended �uxfuntion involving both F ∂2

1 and F ∂3

2 in the same graph in a onveniently way. We de�nefor −1 ≤ u ≤ 1

F ∂2∂3

ext (u) =

{
F ∂2

1 (1 + u) if − 1 ≤ u ≤ 0,

F ∂3

2 (u) if 0 ≤ u ≤ 1.
(7.10)Notie that F ∂2∂3

ext is a ontinuous funtion of the variable u de�ned in the interval
[−1, 1]. For negative values of u, the funtion F ∂2∂3

ext oinides with the �ux F ∂2

1 restritedto the edge ∂2 while for positive values of u this extended �ux funtion oinides with the�ux F ∂3

2 restrited to the edge ∂3. For that reason in this setion we will abuse the notationdenoting by V1 the origin (u = 0, F ∂2∂3

ext (0) = 0
), V2 is the point (u = 1, F ∂2∂3

ext (1) = 0
) and

V3 is the point (u = −1, F ∂2∂3

ext (−1)
)

= 0, see the Fig. 7.1.
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Figure 7.1: Example of the extended �ux funtion F ∂2∂3

ext for µ1 = 1, µ2 = 1.7, µ3 = 0.9and ρ2 = ρ3Remark 7.1. Notie that the extended �ux F ∂2∂3

ext does not represent a genuine �ux fun-tion in a neighborhood of the state V1, the juntion of the edges ∂2 and ∂3 where both �uxfuntions F ∂2

1 and F ∂3

2 are de�ned.Remark 7.2. Di�erentiability at u = 0 of the funtion F ∂2∂3

ext is a onsequene of Eq.(5.2).The following Lemma will be ruial for the appliability of our onstrution.Lemma 7.1. Consider a state UL in the edge ∂2. If there exists U ∈ ∂3 suh that
U ∈ H(UL) then σ(UL, U) = σ(U, V1) = σ(UL, V1).Proof. See Fig. 7.2(a). Notie that the shok speed σ(UL, U) given in Eq. (7.4) oinideswith the slope of the straight line segment joining the vertex V1 to the point (u2, F

∂3

2 (u2)),so we have that σ(UL, U) = σ(U, V1). As UL, V1, U are not aligned states in the satura-tion triangle, we apply the Triple Shok Rule to onlude that σ(UL, U) = σ(U, V1) =
σ(UL, V1).Remark 7.3. The onverse also holds: if U ∈ ∂3 is suh that σ(U, V1) = σ(UL, V1),then U ∈ H(UL) and σ(UL, U) = σ(UL, V1). It follows from the seond version of theTriple-Shok Rule.The geometri onstrution: Consider a state U on one of the edges ∂2 or ∂3.Lemma 7.1 yields a onstrutive way to obtain all the intersetion points of H(U) withthe other edge. As we did in Fig. 7.2(a), we have to onstrut the seant joining V1 = (0, 0)(notie that this is the origin of the system of oordinates in Fig. 7.1; these oordinatesdo not orrespond to the oordinates in the saturation triangle) to (u, F ∂2∂3

ext (u)), anddetermine the intersetion points with the extended �ux on the other side relative to theorigin. The absissae of these points determine the states on the other edge that belongto H(U). Of ourse, the number of intersetion points of the seant with the graph onthe other side oinides with the number of states of H(U) that lie on the other edge.
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(a)

(b)Figure 7.2: (a) Extended �ux F ∂2∂3

ext for µ1 = µ2 = 1, µ3 = 0.5. The �gure illustrate theappliation of Triple Shok Rule and the result of Lemma 7.1. (b) Extended �ux F ∂2∂3

ext for
µ1 = µ2 = 1, µ3 = 1.5. In this ase for U in the interval (A, B), H̃(U) does not intersetthe other edge.Remark 7.4. An interesting ase ours when the segment is tangent to the extended�ux graph on one side while it is seant to the graph on the other side. In this ase, thereexists an interval of states U (the interval (A, B) in Fig. 7.2(b)) for whih H(U) does notinterset the other edge.Remark 7.5. Notie that for the results in Lemma 7.1 and for the geometri onstrution,the fat that the onstruted seant rosses the origin V1 is ruial in order to obtain avalid geometri desription of the shoks from one edge to the other.



Edge to edge shoks: the wedge onstrution. 57Let us denote by U∗ = (1 − u∗
2, u

∗
2, 0) the unique state on the edge ∂3 satisfying

σ(V1, U
∗) = (dF ∂3

2 /du2)(u
∗
2). The value of u∗

2 an be shown to be the unique real root ofthe following ubi polynomial in v:
(µ1 + µ2)v

3 + (µ1 − 3µ2)v
2 + 3µ2v − µ2. (7.11)Let us denote by P ∗ the point on the graph of F ∂2∂3

ext orresponding to the state U∗.Let us denote by S the straight line segment that is tangent at P ∗ to the graph of F ∂2∂3

ext ;this line rosses the origin of the oordinates system (whih orresponds to the vertex
V1). Depending of the quantities µ2, µ3, ρ13, ρ21 we will have zero, one (double) or twointersetion points (u, F ∂2∂3

ext (u)) of the segment S with the graph of F ∂2∂3

ext for negativevalues of u. In Fig. 7.3 we illustrate this fat for three di�erent values of µ3, keeping theparameters µ2, ρ13, ρ21 �xed. The three �ux urves of Fig. 7.3 oinide above the edge
∂3 beause we only hanged the parameter µ3 to obtain the three urves.For the ase in whih the extended �ux is like the solid urve in Fig. 7.3, the pair ofstates U0 in ∂2 and U∗ in ∂3 orresponding to the tangeny points P0 and P ∗ belongs tothe double ontat manifold (see Def. 3.7). As we show in Fig. 7.3 small perturbations ofthe parameters µ2, µ3, ρ13, ρ21 give rise to bifurations of this �double-tangeny� ase.

Figure 7.3: Extended �ux funtion F ∂2∂3

ext for three di�erent ases. Solid urve: µ1 = µ2 =
µ3 = 1, dashed urve µ1 = µ2 = 1, µ3 = 1.5, dotted urve µ1 = µ2 = 1, µ3 = 0.5. Theparameters ρ13 and ρ21 are the same for all the ases. Beause µ1 and µ2 are �xed the�ux is the same on ∂3.Proposition 7.1. Given the parameters µ2, µ3, ρ13, ρ21, we an desribe the intersetionpoints with the edge ∂3 of the Hugoniot lous H(UL) for a state UL on ∂2 as follows:(i) When the segment S does not interset the graph of F ∂2∂3

ext for negative values of u(this is the ase for the dashed urve in Fig. 7.3), onsider an arbitrary state UL in
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Figure 7.4: Extended �ux funtion F ∂2∂3

ext for the dotted �ux urve of Fig. 7.3. Illustrationfor the proof of item (ii) in Proposition 7.1.
∂2, then H̃(UL) intersets the edge ∂3 at two points. When S is tangent at a point
P0 to the graph of F ∂2∂3

ext (the ase of the solid urve in Fig. 7.3), for UL ∈ ∂2 with
UL 6= U0, H̃(UL) intersets the edge ∂3 at two points while H̃(U0) intersets the edge
∂3 only at the point U∗.(ii) Assume that S intersets at two points P1 and P2 the graph of F ∂2∂3

ext for negativevalues of u ( dotted urve in Fig. 7.3). Let us denote by U1 and U2 the states on
∂2 orresponding to P1 and P2 respetively. For UL ∈

(
V3, U1

) or UL ∈
(
U2, V1

) wehave that H̃(UL) intersets the edge ∂3 at two points di�erent from U∗. If UL = U1or UL = U2 we have that H̃(UL) intersets the edge ∂3 only at the point U∗. If
UL ∈

(
U1, U2

) there are no intersetion points between H̃(UL) and the edge ∂3.Proof. We only prove item (ii) sine item (i) is trivial using the same argument. InFig. 7.4 we draw only the dotted �ux of Fig. 7.3. The proof is a onsequene of thegeometrial onstrution and the Triple Shok Rule. The fan of light segments in Fig. 7.4represent the possible lines that ross the state V1 interseting the graph of F ∂2∂3

ext at twopoints for positive values of u. Consider a state UL = (uL
1 , 0, 1− uL

1 ) on the edge ∂2 suhthat PL = F ∂2

1 (uL
1 ) lies inside the fan. Denote by SL the segment of the fan that rossesthe point PL, denote by U∗

1 and U∗
2 the states on ∂3 orresponding to the intersetionpoints of the straight line SL with F ∂2∂3

ext for positive values of u. From Lemma 7.1 (seethe geometri onstrution) we have U∗
1 , U∗

2 ∈ H(UL) and σ(UL, U∗
1 ) = σ(UL, U∗

2 ) = m =
σ(UL, V1) = σ(V1, U

∗
1 ) = σ(V1, U

∗
2 ), where m is the slope of the segment SL and σ denotesthe shok speed. If UL = U1 or UL = U2 the points U∗

1 and U∗
2 ollapse into U∗. If

UL ∈ (U1, U2) then PL lies out of the fan and therefore there does not exist a state in ∂3belonging to H(UL).



Edge to edge shoks: the wedge onstrution. 59Proposition 7.2. Consider UL suh that H̃(UL) intersets the edge ∂3 at two points U∗
1and U∗

2 (see Fig. 7.5), then we have λ−(U∗
1 ) < σ(UL, U∗

1 ) = σ(UL, V1) = σ(UL, U∗
2 ) <

λ−(U∗
2 )Proof. First remember that for U = (1 − u2, u2, 0) in the interval (V1, Q3) we have

λ−(U) = (dF ∂3

2 /du2)(u2), λ+(U) = 0 while in the interval (Q3, V2) we have λ+(U) =
(dF ∂3

2 /du2)(u2), λ−(U) = 0 (here Q3 is the loal minimizing point of the �ux F ∂3

2 on theedge ∂3). The proof is a onsequene of Lemma 7.1 (see the wedge onstrution) and ofthe fat that the states U∗
1 and U∗

2 lie in opposite sides with respet to U∗, see Fig. 7.5.Remark 7.6. Given the states UL and U∗ ∈ H(UL) in di�erent edges of the wedge, it ispossible to ompare the harateristi speeds in both UL and U∗ with the shok speed anddetermine all the information about the Lax admissibility of the shok joining these states.This is an important advantage of the wedge onstrution.

Figure 7.5: Extended �ux funtion F ∂2∂3

ext for the ase µ1 = 1, µ2 = 1, µ3 = 0.5 and ρ2 = ρ3.The blak line is tangent to the extended �ux graph in P ∗. Notie that the states U∗
1 and

U∗
2 lie in opposite sides relative to U∗. The state U∗

2 does not oinide neessarily withthe loal minimum of the �ux F ∂2∂3

ext .Remark 7.7. An important fat about the wedge onstrution is that it an be extendedto other two-phase regimes besides the edges of the saturation triangle, for example: in thesimpli�ed problem ρ1 = ρ2 we an onstrut the wedge using the vertex V3, the two-phaseregimes ∂1 (or ∂2) and the ritial line R3.Now we will desribe the shape of the Hugoniot loi for points on the edges. We knowthat eah edge ∂i, i = 1, 2, 3 of the saturation triangle represents a two-phase regimewhere the phase i is absent and the other two �uids oexist. In this sense we say thatassoiated to eah edge of the saturation triangle there are two �uids. We will split theexposition in several ases.



60 Chapter 7. Hugoniot lous for edge points in the pure gravitational problem7.2 The two �uids on the edge have equal densitiesWe will analyse the ase in whih the phases 1 and 3 that are oexisting in the edge ∂2 ofthe saturation triangle have equal densities. So we assume that ρ1 = ρ3 6= ρ2, and let ususe the notation ρ = ρ21 = ρ23. For this ase, we see that all the remaining terms in (7.7)ontain u2 as a ommon fator, so we an divide by u2 6= 0 and rewrite equation (7.7) ina onvenient way
[
(u1 − uL

1 )(u2
1/µ1 + u2

3/µ3) + u2
1u2/µ1

]
ρΛL/µ2 = 0. (7.12)The easiest way to obtain Eq. (7.12) is diretly in (7.3)-(7.4). If we set u1 = 0 intoEq. (7.12) we obtain that neessarily u3 must be equal to zero, so the unique intersetionpoint of H̃(UL) with the edge ∂1 is the vertex V2. In a similar way, setting u3 = 0 intoEq. (7.12) we obtain V2 as the unique intersetion point of H̃(UL) with the edge ∂3.In order to obtain the intersetion points of H̃(UL) with the straight line segment R2(see (2.29)), we set u1/µ1 = u3/µ3 into Eq. (7.12), obtaining

u3/µ3[(u1 − uL
1 )(1 − u2) + u1u2] = 0. (7.13)Using again the de�nition of R2 and remembering that ∑ ui = 1, we perform somealulations starting with Eq. (7.13) to obtain

(1 − u2)
2[1 − uL

1 (1 + µ3/µ1)] = 0. (7.14)Equation (7.14) shows that an arbitrary state U on R2 with U 6= V2, belongs to H̃(UL)if and only if UL = B2 (see de�nition of B2 in (2.30)), so we have H̃(B2) = R2 and
H̃(UL) ∩ R2 = V2 for UL 6= B2. The fat H̃(B2) = R2 was expeted beause the �ow hastwo-phase behavior along R2 (see Theorem 5.1). The following proposition summarizesthe results above.Proposition 7.3. Consider the simpli�ed pure gravitational problem (α = 0 and ρ1 =
ρ3 6= ρ2). Assume UL ∈ ∂2 with UL /∈ {V1, V3, B2}. Then (see the Fig. 7.6):(i) H(V1) = ∂2 ∪ ∂3, H(V3) = ∂1 ∪ ∂2, H(B2) = ∂2 ∪ R2.(ii) H(UL) = H̃(UL) ∪ ∂2 where H̃(UL) ∩ ∂1 = H̃(UL) ∩ ∂3 = H̃(UL) ∩ R2 = V2.Remark 7.8. Notie that all the alulations of this setion would be avoided if we usethe geometrial wedge onstrution of Setion 7.1. Indeed this tool makes Proposition 7.3trivial (see Fig. 7.7) sine the two-phase �ux funtion restrited to the edge ∂2 is identiallyzero and the two-phase �ux funtions in ∂1, ∂3 and R2 are as in Fig. 5.1.
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Figure 7.6: Hugoniot lous for three di�erent states UL = U1
L, UL = U2

L and B2 on the edge
∂2 for the simpli�ed pure gravitational problem α = 0, ρ1 = ρ3 6= ρ2, see Prop. 7.3. Theedge ∂2 is a ommon branh for the loi of all states. We do not show the Lax admissibilityof the states in the loi beause it depends on the sign of ρ = ρ21 = ρ23.

(a) (b)
() (d)Figure 7.7: Illustration of extended �ux funtions for the simpli�ed pure gravitationalproblem ρ1 = ρ3 > ρ2 onneting the following two-phase regimes: (a) ∂2 and ∂1, (b)

∂2 and ∂3, () interval (V3, B2) and R2, (d) interval (V1, B2) and R2. The funtion F13denotes the two-phase ��ux� funtion along R2 analogous to the one de�ned in Eq. (5.10).The �gures show that for an arbitrary UL in ∂2 the intersetions of H̃(UL) with ∂1, ∂3 or
R2 is preisely the vertex V2. See Remark 7.8.7.3 The �uids in the edge have di�erent densities, thethird �uid is lighterWe analyze the ase in whih the phases 1 and 3 that oexist on the edge ∂2 of thesaturation triangle have distint densities; without loss of generality we assume ρ1 > ρ3.



62 Chapter 7. Hugoniot lous for edge points in the pure gravitational problemThere are three ases ρ1 > ρ3 ≥ ρ2, ρ2 ≥ ρ1 > ρ3 and ρ1 > ρ2 > ρ3. In this setion weonsider the ase ρ1 > ρ3 ≥ ρ2; the remaining ases will be the subjet of another setion.In order to understand the shape of the Hugoniot lous for an arbitrary state UL on ∂2the �rst step is to analyze the intersetions of H̃(UL) with all the edges of the saturationtriangle.First we will show that for UL on ∂2 the urve H̃(UL) given by (7.7) does not intersetthe edge ∂1 at any point. This fat is easily obtained by setting u1 = 0 in (7.7) and byregrouping onveniently to obtain
(uL

1 )u2u
2
3

µ2µ3
Λ(UL)ρ23 −

(uL
1 )2(1 − uL

1 )2

µ1µ3
Λ(U)ρ13 = 0. (7.15)As UL 6= V1, UL 6= V3 and ρ1 > ρ3 ≥ ρ2 the �rst term in Eq. (7.15) is non-positive andthe seond one is negative, onluding that H̃(UL) does not interset ∂1. This onlusionalso an be obtained using the wedge onstrution desribed in Setion 7.1.Now we analyze the intersetions of the urve H̃(UL) with the edge ∂2. Setting u2 = 0into Eq. (7.7) and performing some alulations we obtain

(u1 − uL
1 )P (u1) = 0, (7.16)where

P (u1) =
[
−(uL

1 )2/µ1 + (1 − uL
1 )2/µ2

]
u3

1 + (2 − uL
1 )
[
(uL

1 )2/µ1 − (1 − uL
1 )2/µ2

]
u2

1+

+
[
(1 − 2uL

1 )(1 − uL
1 )2/µ2

]
u1 + uL

1 (1 − uL
1 )2/µ2 (7.17)is a ubi polynomial in u1 for eah UL �xed. Tedious alulations show that

P (uL
1 ) = 2(uL

1 )3(1 − uL
1 )/µ1,so uL

1 is not a root of the polynomial P (we are assuming that UL 6= V1 and UL 6= V3).On the other hand, we have strong numerial evidene showing that polynomial (7.17)has one real root in the interval (0,1) so there exists U ′
L ∈ H̃(UL)∩ ∂2 suh that U ′

L 6= UL.The state U ′
L is a point of self-intersetion of the Hugoniot lous of UL, whih meansthat eah UL ∈ ∂2 is a seondary bifuration point for one of the families. The fat thatall states on the edges belong to the bifuration manifold for one of the families will beproved rigorously in Theorem 8.2.Now we analyze the intersetion points of H̃(UL) with the edge ∂3. Setting u3 = 0 intoEq. (7.7) we have that the intersetion points of H̃(UL) with the edge ∂3 are the roots in
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(u1) in u1:

PUL
(u1) =

[
Λ(UL)(1 − uL

1 )
]
u3

1 −
[(1 − uL

1 )

µ1µ2

Λ(UL)+

+
(
1/µ1 + 1/µ2

)(uL
1 )2(1 − uL

1 )2(ρ13/ρ21)

µ1µ3

]
u2

1+

+ 2
[(uL

1 )2(1 − uL
1 )2(ρ13/ρ21)

µ1µ2µ3

]
u1 −

(uL
1 )2(1 − uL

1 )2(ρ13/ρ21)

µ1µ2µ3
.

(7.18)
As ρ13 > 0 and ρ21 < 0, notie that

lim
u1→−∞

PUL
(u1) = −∞, PUL

(0) > 0, PUL
(1) > 0. (7.19)We onlude that independently of the state UL there exists at least one negative rootfor the polynomial PUL

, therefore the possibilities for PUL
to have real roots at interval(0,1) are the following: two di�erent roots, one double root or no real roots. We avoidthe analysis of the disriminant ∆L for the ubi polynomial PUL

by using the simplergeometri analysis presented in the Setion 7.1. This onstrution provides all the infor-mation about the intersetions of H(UL) with the edge ∂3. Notie that we illustrated themethod in Setion 7.1 exatly for the ase ρ1 > ρ3 ≥ ρ2 studied in this setion, so thenumber of intersetion points (zero, one or two) of the segment SL in Fig. 7.4 with theextended �ux funtion for positive values of u determines the sign of the disriminant ∆Lof the polynomial PUL
in Eq. (7.18) (∆L < 0, ∆L = 0 or ∆L > 0 respetively).In order to study the shape of the Hugoniot lous for an arbitrary UL ∈ ∂2, besidesthe intersetions with the boundary, whih we already analyzed, it is neessary to knowthe seondary bifuration points along ∂2, whih in�uene the interior of the saturationtriangle. We have numerial evidene showing the existene of two states W1 and W2 onthe edge ∂2 for whih the Hugoniot lous has a self-intersetion point inside the saturationtriangle. These points W1 and W2 belong to the seondary bifuration manifold of thefast family.As we mentioned in the geometrial onstrution in Setion 7.1, there are three dif-ferent possibilities for the relative position of the extended �ux funtion with respet tothe segment S (see Fig. 7.3). Proposition 7.1 explains some di�erenes between the threeases with regard to intersetions with the edge ∂3 of the Hugoniot lous of UL ∈ ∂2. Nev-ertheless if the parameters µ1, µ2, µ3 and ρ13, ρ21 for the tree ases are not too di�erent,when we move the state UL along the edge ∂2 from V3 to V1, the Hugoniot lous of ULdesribes qualitatively a similar behavior for all the three ases, with the only di�erenethat for one of the ases (dotted urve in Fig. 7.3) a branh of the lous eventually getsout of the saturation triangle, while for the other two ases (dashed and solid urvesin Fig. 7.3) a portion or a point of the above mentioned branh stays in the saturationtriangle.As an illustration, we show in Fig. 7.8 the sequene of Hugoniot loi H(UL) when welet the state UL move along the edge ∂2 from the vertex V3 to the vertex V1, for the ase
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LU(h)Figure 7.8: Hugoniot lous of UL ∈ ∂2 for the ase ρ1 > ρ3 = ρ2, with parameters
µ2, µ3, ρ13, ρ21 suh that F ∂2∂3

ext behaves like the dotted urve of Fig. 7.3 (two intersetionpoints with the segment S). Figures (a)-(h) show the sequene of H(UL) when UL movesfrom V3 to V1. We used the same notation for the relevant points in this �gure and inFig. 7.5. In �gures (b) and (g) the state UL oinides with the seondary bifurationpoints W1 and W2. Figures (d) and (e) show the Hugoniot lous for the states U1, U2de�ned in Fig. 7.5 and for an intermediate state UL; the arrows desribe the motion ofthe non-loal branh when UL moves from U1 to U2. In all the �gures we show the Laxadmissibility for the Hugoniot urves. Only the parts denoted by S− and S+ representadmissible (slow and fast) Lax shoks. The other symbols represent inadmissible shoks.where the extended �ux funtion is like the dotted urve of Fig. 7.3. We denote by U1 and
U2 the states on ∂2 orresponding to the points P1 and P2 respetively, see Fig. 7.5. Thestates W1 and W2 on ∂2 belong to the seondary bifuration manifold of the fast family;their relative positions with respet to the states U1 and U2 are shown in Fig. 7.5. All the�gures an be obtained by plotting the urve in (7.7). Only the parts of the loi denotedby S− and S+ represent admissible Lax shoks. The other symbols represent inadmissibleshoks. In Fig. 7.8 we did not illustrate all the intermediate steps of sequene of Hugoniotloi mentioned above; therefore, new segments of shoks sometimes appear or disappearwhen omparing onseutive �gures.Remark 7.9. In Fig. 7.8 we took ρ2 = ρ3; this is irrelevant beause for ρ1 > ρ3 > ρ2we obtain qualitatively the same sequene of Hugoniot lous shapes (with a few di�erenesin the admissibility for the lous branhes that will not a�et the Riemann solution).The other di�erene ours in the limit when UL → V1, see the results of Prop. 6.1 andProp. 6.3.Remark 7.10. Consider the ase in whih the extended �ux F ∂2∂3

ext is like the solid urveof Fig. 7.3, so that the states U1 and U2 ollapse into the state U0 (see Fig. 7.3). In suh aase the pair of points U0 and U∗ belong to the double ontat manifold of the slow family(see Def. 3.7). All the Hugoniot loi shown in the �gures 7.8(d) and 7.8(e) ollapse into



66 Chapter 7. Hugoniot lous for edge points in the pure gravitational problema single lous.Remark 7.11. If the extended �ux F ∂2∂3

ext is like the dashed urve of Fig. 7.3 we willhave qualitatively the same behavior for H(UL) exept that the non-loal branhes alwayskeeping a portion inside the saturation triangle. The sequene of Hugoniot loi for thisase would be Figs. 7.8(a), 7.8(b), 7.8(), 7.8(f), 7.8(g) and 7.8(h) (skipping �gures 7.8(d)and 7.8(e)).7.4 Remaining asesCase ρ2 ≥ ρ1 > ρ3.This ase is ompletely analogous to the one of the previous setion where ρ1 > ρ3 ≥ ρ2.In the partiular ase in whih ρ2 = ρ1 > ρ3 the sequene of Hugoniot loi is the same asthat shown in Fig. 7.8 provided we interhange the indies 3 and 1 everywhere. Howeverthere will be a hange in the admissibility of the Hugoniot urves beause of the symmetrybetween the simpli�ed pure gravitational problems ρ2 = ρ1 > ρ3 and ρ2 = ρ3 < ρ1, (seeTheorem 8.1 for details). Beause of this hange of admissibility, the Rieman solutionswith data UL ∈ ∂2, UR = V2 for the two ases will be drastially di�erent.As in the ase studied in Setion 7.3, where we found W1, W2 (see Figs. 7.8(b) and7.8(g)), here we have numerial evidene of the existene of two states on the edge ∂2(denoted by W3 and W4) that belong to the seondary bifuration manifold; now theyorrespond to the slow family. An explanation for this hange of family in the bifurationstates an be obtained from Theorem 8.1 for small density di�erenes, onsidering ρ2 ≥
ρ1 > ρ3 as a perturbation of the simpli�ed pure gravitational problem ρ2 = ρ1 > ρ3.Case ρ1 > ρ2 > ρ3.In this ase when UL ∈ ∂2 the non-trivial branh H̃(UL) (see Def. 7.1) ould intersetthe edge ∂1 or ∂3. In order to understand this phenomenon we will onsider a super-extended �ux funtion onneting the three edges ∂i, i = 1, 2, 3, see Fig. 7.9. Thissuper-extended �ux oinides with F ∂2

1 on ∂2, with F ∂3

2 on ∂3 and with F ∂1

3 on the edge
∂1. The onstrution proedure is analogous to the extended �ux F ∂2∂3

ext in Eq. (7.10), sowe will not give more details.There exist some relevant states on ∂2 where the number of intersetion points of theHugoniot lous with the edges ∂1 and ∂3 hanges. These relevant states are denoted by
U1, U2, U3, U4 in Fig. 7.9. These four states exist if eah of the segments denoted by S1 and
S2 interset the super-extended �ux in two points orresponding to the edge ∂2. In orderto simplify the exposition, we will assume that the relative position between these fourstates is preserved. For the ase illustrated by the dashed urve in Fig. 7.9 the situationwould be qualitatively di�erent sine the segment S1 does not interset the dashed graph.In Fig. 7.10, we see that for arbitrary states A ∈ (V3, U4) and E ∈ (U2, V1) the
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Figure 7.9: Dark urve: super-extended �ux for µ1 = µ2 = µ3 = 1, ρ13 = 1, ρ12 = 0.5,dashed urve: super-extended �ux for µ1 = µ2 = 1, µ3 = 3, ρ13 = 1, ρ12 = 0.5. The states
U1, U2, U3 and U4 orrespond to the intersetion points of the super-extended �ux withthe segments S1 and S2.

V3 V1
V2V2

P1

P2

P3

P4

U4 U3U1 U2

U *

P´'

U´'

S1

S2

v
2

v
3v

1

A B C D E

P *Figure 7.10: Super-extended �ux for µ1 = µ2 = µ3 = 1, ρ13 = 1, ρ12 = 0.5, The states
U1, U2, U3 and U4 orrespond to the intersetion points of the super-extended �ux withthe segments S1 and S2.orresponding Hugoniot loi interset eah edge ∂1 and ∂3 at two points. For state B in
(U4, U1) the Hugoniot lous intersets the edge ∂3 at two points but it does not intersetthe edge ∂1. For an arbitrary state C ∈ (U1, U3) the Hugoniot lous does not intersetany of the edges ∂1 or ∂3. For the state D ∈ (U3, U2) the Hugoniot lous intersets theedge ∂1 at two points but it does not interset ∂3. So the states U1, U2, U3, U4 subdividethe edge ∂2 into smaller intervals where the number of intersetion points of H̃(UL) for
UL in ∂2 with the other two edges is �xed.For small density di�erenes we an regard the ase ρ1 > ρ2 > ρ3 as a perturbation ofboth simpli�ed pure gravitational problems ρ1 = ρ2 > ρ3 and ρ1 > ρ2 = ρ3. The preseneof features of both simpli�ed problems in the ase ρ1 > ρ2 > ρ3 is natural. The numerialevidene for this ase shows existene of four seondary bifuration states on ∂2. Two ofthem, denoted by W1, W2, are assoiated to the fast family while the other two, W3, W4,are assoiated to the slow family, see for example Fig. 7.11.
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µ2, µ3, ρ13, ρ21 suh that the super-extended �ux funtion behaves like the solid urve ofFig. 7.9 (two intersetion points with eah of segments S1 and S2). Figures (a)-(j) showthe sequene of H(UL) when UL moves from V3 to V1. We used the same notation for therelevant points as in Fig. 7.9. In �gures (b), (d), (h) and (i) the state UL oinides withseondary bifuration states. The Hugoniot loi for the points Ui, i = 1, 2, 3, 4 (de�nedin Fig. 7.9) are shown in �gures (d), (f) and (g). In the �gure (g) the dark urves is theHugoniot lous for UL = U2 and the dashed urve is the Hugoniot-lous for UL = U3. Inthe �gures (f) and (g) the arrows desribe the motion of the non-loal branh when ULmoves from U1 to U2. In all the �gures we show the Lax admissibility for the Hugonioturves. Only the branhes denoted by S− and S+ represent admissible (slow and fast)Lax shoks. The other symbols represent inadmissible shoks.



70 Chapter 7. Hugoniot lous for edge points in the pure gravitational problemWe illustrate the behavior of H(UL) when we let the state UL move along the edge ∂2from V3 to V1 for a ase where the super-extended �ux funtion is like the solid urve inFig. 7.9. The sequene of the Hugoniot loi and the admissibility of the urves is shownin the Fig. 7.11; we did not illustrate all the intermediate steps of sequene of Hugoniotloi mentioned above; therefore, new segments of shoks sometimes appear or disappearwhen omparing onseutive �gures. All the �gures an be obtained by plotting the urvein (7.7).



Chapter 8Symmetry and bifurations in thesimpli�ed pure gravitational problem
In this hapter we prove a �reversal symmetry� theorem, whih holds for the simpli�ed puregravitational problem (SPGP). We also prove additional theoretial results for bifurationmanifolds in SPGP. These results will be used to provide support for the Riemann solutionobtained via numerial alulations that implement the wave urve method.8.1 Symmetry in the SPGPOur goal is to solve the Riemann problem for the �simpli�ed pure gravitational problem�(i.e., α = 0, ρ1 = ρ2 6= ρ3). Denoting by ρ = ρ13 = ρ23 we will analyze separately theases ρ > 0 and ρ < 0 sine their solutions are drastially di�erent. However the twoases have similarities: e.g., in both ases the vertex V3 is an umbili point (see Theorem(4.1)), and there exist two quasi-umbili points Q1 ∈ ∂1, Q2 ∈ ∂2; also the entire edge ∂3is a diagonalization line. The Hugoniot lous of the verties does not depend on the signof ρ. From Propositions 6.1 and 6.3 we have:

H(V3) = ∂1 ∪ ∂2 ∪ ∂3 ∪ R3, (8.1)
H(V1) = ∂2 ∪ ∂3, (8.2)
H(V2) = ∂1 ∪ ∂3. (8.3)Next we present a ruial result establishing a onnetion for harateristi speeds andintegral urves between the ases ρ > 0 and ρ < 0.Theorem 8.1. (Reversal symmetry.) Assume α = 0, ρ1 = ρ2 6= ρ3 and denote ρ =

ρ13 = ρ23. If ρ > 0 we de�ne ρp = ρ and ρn = −ρp. If ρ < 0 we de�ne ρp = −ρ and
ρn = −ρp. We onsider harateristi eigenvalues and eigenvetors for the two problems71



72 Chapter 8. Symmetry and bifurations in the SPGPorresponding to the densities ρp and ρn. Then we have the following relations
λ−

n = −λ+
p , r−n = r+

p , (8.4)
λ+

n = −λ−
p , r+

n = r−p , (8.5)where λ+
p , r+

p , λ−
p , r−p denote the harateristi speeds and the assoiated right eigenvetorsorresponding to the problem with positive parameter ρp while λ+

n , r+
n , λ−

n , r−n denote theharateristi speeds and the assoiated right eigenvetors orresponding to the problemwith negative parameter ρn = −ρp.Proof. Let us de�ne J̃ij = Jij/ρ; we obtain from (4.8) that
λ± =

ρ(J̃11 + J̃22) ± |ρ|
√

D̃

2
, (8.6)where D̃ =

(
J̃11 + J̃22

)2
− 4
(
J̃11J̃22 − J̃12J̃21

). For ρ = ρn = −ρp we have
λ±

n =
ρn(J̃11 + J̃22) ± |ρn|

√
D̃

2
= −

ρp(J̃11 + J̃22) ∓ |ρp|
√

D̃

2
= −λ∓

p , (8.7)onluding the proof of (8.4)-(a) and (8.5)-(a).We will denote by Jp (respetively Jn) the Jaobian matrix for ρ = ρp (respetively
ρ = ρn).Using the notation above and the properties (8.4)-(a), (8.5)-(a), we have that

0 = (Jn − λ±
n I)r±n = (ρnJ̃ − λ±

n I)r±n = (−ρpJ̃ + λ∓
p I)r±n

= −(ρpJ̃ − λ∓
p I)r±n = (Jp − λ∓

p I)r±n
(8.8)therefore we have proved that r±n is a right eigenvetor assoiated to the eigenvalue λ∓

ponluding the proof of (8.4)-(b) and (8.5)-(b).Remark 8.1. Conlusions analogous to those in Theorem 8.1 an be stated for the Hugo-niot loi as well, under reversal symetry in the SPGP: the shok speeds hange sign; thishange an be veri�ed from the R-H ondition (3.6) beause the �ux funtions hange signunder the symmetry. Therefore as a onsequene, we have that the integral urves, shokurves and all bifuration manifolds de�ned in Chapter 3 (in�etion, seondary bifura-tion, boundary ontat, double ontat, et.) are still idential but have opposite familywhen we pass from the ase ρ > 0 to the ase ρ < 0.8.2 Bifuration manifoldsNext we present some theoretial results desribing interesting properties of some bifur-ation manifolds.



Bifuration manifolds 73First we state two lemmas that will be used in this setion. Lemma 8.1 is a lassialresult and its proof an be found in Smoller [47℄. The proof of Lemma 8.2 an be foundin Appendix B.Lemma 8.1. Let A be a 2× 2 square diagonalizable matrix. Assume that the eigenvaluesof A are distint (λ1 6= λ2). Let XR be a matrix formed by the olumns of the righteigenvetors of A and XL be a matrix formed by the rows of the left eigenvetors of A.Then C ≡ XLXR is a diagonal matrix.Lemma 8.2. Consider the �pure gravitational problem� (α = 0) with ρ1 = ρ2 6= ρ3 and
µ1 = µ2 and let us denote ρ ≡ ρ13 = ρ23, µ ≡ µ1 = µ2. Then the harateristis speedsgiven by (4.8) are symmetri with respet to the variables u1 and u2 ( i.e., λ−(u1, u2) =
λ−(u2, u1) and the same for λ+).Proposition 8.1. For the � simpli�ed pure gravitational problem� (α = 0, ρ1 = ρ2 6= ρ3)with µ1 = µ2, we have R3 ⊂ Inf+ ∩ Bif+ if ρ > 0, and R3 ⊂ Inf− ∩ Bif− if ρ < 0(R3 was de�ned in (2.29)). In other words the segment R3 belongs to the in�etion andbifuration manifolds orresponding to the fast or slow family for eah ase ρ > 0 or ρ < 0,respetively.Proof. We will present the proof for the ase ρ > 0. Then the ase ρ < 0 will be a diretonsequene of Theorem 8.1 (see Remark 8.1). Under the hypotheses for the theorem,we have that at eah point of R3 the vetor (r−1 , r−2 )T = (1, 1)T is a right eigenvetorassoiated to the slow family (see proof of Theorem 5.1).Consider the matries XR =

(
1 r+

1

1 r+
2

) and XL =

(
l−1 l−2
l+1 l+2

)
, where l− = (l−1 , l−2 ) isa left eigenvetor assoiated to the slow family and r+ = (r+

1 , r+
2 )T , l+ = (l+1 , l+2 ) are rightand left eigenvetors assoiated to the fast family, respetively. Applying Lemma 8.1 weobtain that

XLXR =

(
l−1 + l−2 l−1 r+

1 + l−2 r+
2

l+1 + l+2 l+1 r+
1 + l+2 r+

2

) (8.9)is a diagonal matrix and therefore
{

l+1 + l+2 = 0
l−1 r+

1 + l−2 r+
2 = 0.

(8.10)From the �rst equation of the above system we obtain that for all U in R3, l+1 (U) = −l+2 (U)so that l+(U) ∝ (1,−1). In other words, along the segment R3 the left eigenvetorassoiated to the fast family is orthogonal to the segment diretion. On the other hand,for all U , U ′ in R3 we have (U ′ − U) =∝ (1, 1)T so we have
l+(U)(U ′ − U) = 0 ∀U, U ′ ∈ R3 (8.11)On the other hand, after some alulation we obtain the following expression for thefast-harateristi speed along the ritial line R3:
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λ+(U) =

(1 − u3)u
2
3

µµ3Λ(U)
∀U ∈ R3. (8.12)From (8.12) and utilizing the Rankine-Hugoniot relation for shoks joining two stateson the ritial line R3, is possible to show that

∀U ∈ R3, ∃U ′ ∈ R3 suh that λ+(U ′) = σ(U, U ′). (8.13)Equations (8.11) and (8.13) yield R3 ⊂ Bif+, see De�nition 3.4.In order to show that R3 ⊂ Inf+, we �rst note that J12(U) = J21(U) ∀U ∈ R3(see (4.4)-(4.7)), i.e., dF restrited to segment R3 is a symmetri matrix, therefore leftand right eigenvetors �oinide�, so we have r+(U)T = l+(U) ∝ (1,−1) ∀U ∈ R3. Onthe other hand, applying Lemma 8.2, we obtain that the harateristi speeds λ±(U),
U = (u1, u2) are symmetri funtions of the variables u1 and u2, so we have

∂λ±

∂u1

=
∂λ±

∂u2

⇒ ∇λ± ∝ (1, 1)T , (8.14)in partiular we have that
∇λ+(U) · r+(U) = 0, (8.15)onluding that R3 ⊂ Inf+ (see De�nition 3.5).Remark 8.2. We an repeat the argument above for the ase µ1 6= µ2 to obtain again

R3 ⊂ Bif+. However for suh ase R3 6⊂ Inf+.The following theorem desribes points on the edges ∂1 and ∂2 as seondary bifurationpoints.Theorem 8.2. Assume that α = 0 and ρ1 = ρ2 6= ρ3. De�ne ρ = ρ13 = ρ23. All the pointson edges ∂1 and ∂2 belong to the seondary bifuration manifold for one of the families,exept for the quasi-umbili points Q1, Q2 (in (4.19), (4.20)) and for the verties V1, V2of the saturation triangle. More spei�ally
[
(V3, Q2) ∪ (V3, Q1)

]
⊂ Bifj , (8.16)

[
(Q2, V1) ∪ (Q1, V2)

]
⊂ Bifk, (8.17)where j is �−� if ρ < 0, j is �+� if ρ > 0 and k is the opposite family to j.Proof. We provide the proof for the ase ρ > 0. Then the ase ρ < 0 will be a diretonsequene of Theorem 8.1 and Remark 8.1.Let U ∈ (V3, Q2), it is obvious that ∂2 ⊂ H(U). Depending on the sign of ρ thesalar �ux funtion F ∂2

1 restrited to the edge ∂2 has the shape of one of the funtions



Bifuration manifolds 75represented in Figs. 5.1(a) or 5.1(b) so it is lear that there exists U ′ ∈ (Q2, V1) suh that
U ′ ∈ H(U) with σ(U, U ′) = 0. Notie that (U −U ′) ∝ (1, 0)T sine both U and U ′ belongto the edge ∂2. On the other hand

l+(U ′)
(
DF (U ′) − λ+(U ′)I

)
= 0, (8.18)where l+ denotes a left eigenvetor orresponding to the fast harateristi speed λ+. As

U ′ ∈ (Q2, V1), from (4.4)-(4.8) we obtain after some alulations that λ+(U ′) = 0 while
J11(U

′) < 0, J12(U
′) < 0, J21(U

′) = 0, J22(U
′) = 0. So we obtain from (8.18):

l+1 (U ′)J11(U
′) = 0, (8.19)

l+1 (U ′)J12(U
′) = 0, (8.20)therefore l+1 (U ′) = 0 and we have that l+(U ′) ∝ (0, 1). Finally we see l+(U ′)(U − U ′) =

(0, 1) · (1, 0) = 0.We have found U ′ ∈ H(U) suh that σ(U, U ′) = λ+(U ′) = 0 and l+(U ′)(U − U ′) = 0,onluding that the interval (V3, Q2) is a subset of the bifuration manifold orrespondingto the fast family. The proofs for the other intervals are analogous.Remark 8.3. As a onsequene of Theorem 8.2 and supported by numerial evidene,the Hugoniot lous of any non-oinidene point on the edges ∂1, ∂2 has a self-intersetionlying on the respetive edge, see Fig 7.8 for illustration.



Chapter 9Solution for SPGP with heavyequal-density �uids
In this hapter we study the Riemann solution for the ase in whih α = 0, ρ1 = ρ2 > ρ3.Denoting by ρ = ρ13 = ρ23, we are in the ase ρ > 0. Based on numerial alulationswe will present the integral urves, the in�etion manifolds and the boundary ontatmanifolds orresponding to this simpli�ed pure gravitational problem (SPGP). The �guresshown in this setion are ruial for the solution of the Riemann problem. Although weshow �gures for the symmetrial visosity ase µ1 = µ2 = µ3, they illustrate the generalase.For the SPGP, with ρ > 0, the integral urves of eah family are shown in Figure 9.1.Notie that the segments (Q1, V2) ⊂ ∂1 and (Q2, V1) ⊂ ∂2 are integral urves of the slowfamily while the segments (Q1, V3) ⊂ ∂1 and (Q2, V3) ⊂ ∂2 are integral urves of the fastfamily. This hange of family along the edges when rossing the quasi-umbili points wasproved in Theorem 4.1.The in�etion manifolds of eah family are shown in Fig. 9.2. Here we use the super-sripts s and f (instead of − and +) for slow and fast family, respetively. The pointsdenoted by Is

1 , I
f
1 ∈ ∂1 and Is

2 , I
f
2 ∈ ∂2 represent the intersetions between the in�etionmanifolds of eah family and the edges ∂1, ∂2. These points oinide with the in�etionsof the two-phase �ux funtion F ∂2

1 and F ∂1

2 studied in Chapter 5, so we an interpret thein�etion branhes Is
1�Is

2 and If
1 �If

2 as ontinuations of two-phase in�etion points thatwould appear as onsequene of introduing a third phase into a given two-phase problem.An interesting fat we an observe in Fig. 9.2 is the existene, for slow-family, of anextra in�etion branh. This �extra� branh arises from the quasi-umbili points Q1, Q2and rosses the ritial line R3 at an in�etion point of the two-phase salar �ux funtion
F12 (see de�nition in Eq. (5.10)) restrited to the ritial line R3. On the other hand, forthe ase µ1 = µ2, the ritial line R3 is itself an in�etion branh for the fast-family (seeProp. 8.1), a fat that re�ets the symmetry of phases 1 and 2 with respet to densitiesand visosities. For more general ases in whih µ1 6= µ2, the ritial line R3 is not an76



77
2

V

3
V

1
V

2
Q

1
Q 3

B

(a)

2
V

2
Q

1
Q

3
V

1
V(b)Figure 9.1: Integral urves for the simpli�ed pure gravitational problem α = 0, ρ1 = ρ2 >

ρ3, in the ase µ1 = µ2 = µ3. (a) Slow-family integral urves. The arrows indiate thediretion of inreasing harateristi speed; notie the loal extremal speed at the dots,whih form the slow-family in�etion lous. (b) Fast-family integral urves. The arrowsindiate the diretion of inreasing harateristi speed; notie the loal extremal speedat the dots, whih form the fast-family in�etion lous. The points Q1 and Q2 denote thequasi-umbili points on the boundary.in�etion branh any more, see Fig. 9.2(b).Remark 9.1. In the more general ase when the �uids have di�erent densities, the �extra�in�etion branh of the slow-family intersets the edges ∂1 and ∂2 at points that are notneessarily the quasi-umbili points. Suh points are preisely where the zero-level urvesfor the slow-family harateristi speed lose di�erentiability.In Fig. 9.3 we show the boundary ontat urves (see Def. 3.9). We denote by
Es

∂j
, Ef

∂j
; j = 1, 2, 3 the branhes of the boundary ontat manifold orresponding tothe edge ∂j for slow and fast-family respetively. We also all these urves the extensionof the edges of the saturation triangles assoiated to one of the families. The extensionof relevant points are also plotted, reall that we denoted by P s

A (or P f
A), the extensionof a point A on the boundary, assoiated to the slow-family (fast-family) (i.e., the shokjoining the state A with the state P i

A is harateristi in P i
A for the family i). Thisorrespondene is not neessarily one to one.Consider the simpli�ed pure gravitational problem α = 0, ρ1 = ρ2 > ρ3. We wantto solve the generi Riemann problem with left data UL lying in the edge ∂i, i = 1, 2, 3of the saturation triangle, and right data UR orresponding to the opposite vertex Vi.For this ase, there exist essentially only two distint problems: UL ∈ ∂2, UR = V2 and

UL ∈ ∂3, UR = V3; the Riemann solutions for the two sets of data UL ∈ ∂1, UR = V1 and
UL ∈ ∂2, UR = V2 are analogous.
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c denote the in�etion points on the ritial line.First we state the following result.Lemma 9.1. Assume ρ1 = ρ2 > ρ3 and onsider the states Ai ∈ ∂i, i = 1, 2, 3; then:(i) We have σ(U, Ai) > 0 for all U ∈ H(Ai), i = 1, 2, out of the edge ∂i.(ii) We have σ(U, A3) < 0 for all U ∈ H(A3) out of the edge ∂3 and of the vertex V3.Proof. The proof follows from the Rankine-Hugoniot ondition (3.6) utilized for shoksjoining a state Ai ∈ ∂i with an arbitrary state U .9.1 RP1: Left data in ∂2, right data V2For this ase H(V2) = ∂1 ∪ ∂3 (see item (i) of Prop. 6.3); we also notie in Fig. 9.1 thatthe integral urves through vertex V2 oinide with the edges ∂1 and ∂3 near V2. Thus theoneivable ways to arrive at V2 are (see Fig. 9.1):(1) Arriving at V2 by a slow rarefation orresponding to the two-phase solution on ∂1.(2) Arriving at V2 by a zero-speed genuine ontat disontinuity orresponding to thetwo-phase solution on ∂3 (see Se.5.2).
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∂1
is the fast-family extension of the edge ∂1 while

Ef
∂2

is the fast-family extension of the edge ∂2. The edge ∂3, representing a mixture oftwo equal-density �uids, has no fast-family extension. The points Q1 and Q2 denote thequasi-umbili points on the boundary.Impossibility of alternative (1).Consider an arbitrary state A1 on the edge ∂1. It is impossible to use a rarefationto arrive at A1, sine both harateristi speeds derease in the outward diretion (seearrows in both Figs. 9.1). Thus we must use a shok to arrive at A1 from an arbitrarystate U out of the edge ∂1. From Lemma 9.1 we have σ(U, A1) > 0. On the other handas ρ2 > ρ3, the sequene of waves along the edge ∂1 joining the state A1 with the vertex
V2 onsists of one negative-speed shok followed by a rarefation wave ending at V2 withspeed equal to zero (see Fig. 9.4). This means that the possibility of a shok joining anarbitrary state U (out of ∂1) with A1, followed by the two-phase solution along ∂1, joiningthe states A1 and V2 presents speed inompatibility. For this reason we must exlude suha solution. In other words, for UL ∈ ∂2, UL 6= V3, UL 6= V1 we annot onstrut a solutionarriving �rst to ∂1 and follow it by the two-phase Oleinik solution to V2 without violatingthe geometri speed ompatibility ondition. Thus the possibility desribed in item (1) isexluded.Constrution of the Riemann solution.Now we will onstrut the Riemann solution using the seond alternative, i.e., in orderto arrive to V2 we must �rst reah ∂3 by a slow rarefation urve (see arrows in Fig. 9.1(a)),
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Figure 9.4: Two-phase Oleinik solution for left state A1 in ∂1 and right state V2. Thissolution begins with a negative-speed shok joining A1 with A∗.and follow it by a zero-speed ontat disontinuity on ∂3.Consider UL = (uL
1 , 0, uL

3 ) on ∂2. We will split our analysis in several ases:
(i) If UL = V1 the solution is a zero-speed genuine ontat joining V1 with V2.
(ii) If UL = V3, we will have three di�erent representations in state spae of the samesolution, the �rst one is the two-phase solution on the edge ∂1 that is a zero-speed doubleontat disontinuity joining V3 and V2. The seond representation of the solution onsistsin a zero-speed double ontat disontinuity joining V3 with V1 followed by a zero-speedgenuine ontat joining V1 with V2. The third representation of the solution is obtainedby the use of the two-phase �ow regime along the ritial line R3, by means of a zero-speed double ontat disontinuity joining V3 with B3 followed by a zero-speed genuineontat joining B3 with V2. Although these representations of the solutions are di�erentin state spae, all of them desribe the same solution in physial spae beause all thedisontinuities have zero-speed and ollapse into a single disontinuity.
(iii) Assume UL ∈ [Q2, V1), then we have λ+(UL) = 0 and λ−(UL) < 0 (by interhang-ing the indies 1 and 2 everywhere in Eqs. (4.35)-(4.36)). In this ase the slow-familyeigenvetor r−(UL) has the diretion of the edge ∂2 sine the slow integral urve trough

UL oinides with this boundary. Thus the solution of the Riemann problem begins withthe two-phase Bukley-Leverett solution along this edge. For UL to the right of the in�e-tion point Is
2 (shown in Fig. 9.2), the slow-family wave group is a single rarefation waveup to the vertex V1. For UL ∈ (Q2, I

s
2) the slow-family wave group onsists of a negative-speed shok wave joining the states UL and U∗ = (u1

∗, 0, 1 − u1
∗); where U∗ ∈ (Is

2 , V1)satisfy σ(UL, U∗) = dF ∂2

1 (u1
∗)/du1 = λ−(U∗), followed by a rarefation wave joining thestates U∗ and V1. Notie that the rarefation wave arrives at V1 with speed equal to zero.The solution ontinues with the �fast� wave group whih onsists of a zero-speed ontatdisontinuity joining the states V1 and V2.The solution for the ase UL ∈ [Is

2 , V1) is shown in Fig. 9.5 (see de�nition of Is
2 inFig. 9.2). The solution for the ase UL ∈ (Q2, I

s
2) oinides with the solution shown in



Fluids 1 and 3 on top, �uid 2 at bottom 81Figs. 9.6(b) and 9.6().Remark 9.2. Notie that the onvention of alling a wave group as belonging to the�slow-family� or �fast-family� laks of physial meaning for this problem, sine in general,we �nd both negative and positive harateristi speeds. A negative-speed wave movesupwards while a positive-speed wave moves downwards. Notie that a �slow� wave ouldhave a negative speed with larger absolute value than a �fast� wave.
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0(b)Figure 9.5: Riemann solution for UL ∈ [Is

2 , V1), UR = V2 in the ase ρ1 = ρ2 > ρ3. (a)Wave groups represented in the (x, t)-spae: solid lines represent the harateristi linesin a rarefation fan, dashed lines represent shoks, light lines orrespond to waves of theslow family, dark lines orrespond to waves of the fast family. (b) Saturation pro�les; thesolid urve indiates the saturation of phase 2, the dashed urve indiates the saturationof phase 1. Notie that �uids 1 and 3 our only for x < 0 and �uid 2 for x > 0.
(iv) Assume that UL ∈ (V3, Q2), then we have λ+(UL) > 0 and λ−(UL) = 0. Herethe integral urve of the fast family trough UL oinides with the boundary ∂2, whilethe integral urve of the slow family trough UL is transversal to ∂2. Apparently we anonstrut two solutions of the Riemann problem satisfying the Lax onditions. The �rstone is analogous to the previous ase (iii) (i.e., a two-phase Bukley-Leverett solutionup to the vertex V1 followed by a zero-speed ontat between the states V1 and V2), seeFigs. 9.6(b) and 9.6(). Notie that this solution an be onstruted without using theslow wave urve through UL. So in priniple it would be possible to onstrut �another�solution using the slow wave urve through UL in order to reah ∂3, an then follow it bya zero-speed ontat up to the vertex V2. In Appendix C we show that for this partiularRiemann problem, this seond onstrution via slow-family wave urve, does not representa new solution.Summarizing the results above and utilizing the notations from Setion 3.1., the Rie-mann solution for initial left and right data UL ∈ ∂2 and UR = V2 has the followingstruture
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(i) If UL = V1 : UL = V1
GC
−−→ V2 = UR. (9.1)(ii) If UL = V3 : UL = V3

C
−→ V2 = UR. (9.2)For this ase we have other two representations in state spae for the same physialsolution:(ii.2) UL = V3

C
−→ V1

GC
−−→ V2 = UR and (ii.3) UL = V3

C
−→ B3

GC
−−→ V2 = UR.
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2 , V1) : UL

R−

−−→ V1
C
−→ V2 = UR. (9.3)In Figs. 9.5(a), 9.5(b) we show the orresponding Riemann solution and the saturationpro�les.(iv) If UL ∈ (V3, I

s
2) : UL

SC−

−−→ U∗

R−

−−→ V1
C
−→ V2 = UR, (9.4)where U∗ ∈ ∂2, see Figs. 9.6(b) and 9.6().Remark 9.3. Although we do not prove rigorously that this solution is unique, the an-alytial and numerial arguments that we provide in the onstrution of the solution areompatible only with uniqueness of the solution.Physial interpretation of the solutions in RP1.Items (i) and (ii) orrespond to the well known two-phase �ow. In both ases thesolution is just as we expeted beause the �uid initially on top is not heavier than the�uid initially at the bottom, so it is natural to expet that the �uids do not move.Both items (iii) and (iv) orrespond to a genuine three-phase �ow. In RP1 we havetwo equal-density �uids and a third �uid lighter. Initially, there is a pure �uid below theinterfae. The mixture on top involves a �uid with the same density that the bottom �uidand a third lighter �uid. We expet a priori that the bottom �uid does not move upward,beause there is no heavier �uid. Thus we expet the interfae to remain intat andboth �uids initially on top to remain there all the time. We also expet that the densitydi�erene between the �uids on top leads to a two-phase �ow involving suh �uids, weexpet the lightest �uid to move upwards. We verify all these fats in the solutionspresented in items (iii) and (iv), depending on the initial mixture, we will have a two-phase �ow above the interfae with a single rarefation wave or a rarefation preeded bya shok.Remark 9.4. The Riemann problem RP2, with left data UL in ∂1 and right data

UR = V1, is analogous to RP1, so we omit its desription.9.2 RP3: Left data in ∂3, right data V3.We know from Prop. 6.1 that H(V3) = ∂1 ∪ ∂2 ∪ ∂3 ∪R3. The shoks from any state on ∂3to V3 have zero speed. On the other hand, the only integral urves rossing V3 are: (I) thefast-family integral urves oiniding with the edges ∂1, ∂2 near the vertex V3 and (II) theslow-family integral urve that oinides with the ritial line R3, see the Fig. 9.1. Thenwe have the following three possibilities to arrive at V3.



84 Chapter 9. Solution for SPGP with heavy equal-density �uids(1) Arriving at V3 by a fast shok along one of the edges ∂1 or ∂2.(2) Arriving at V3 by a slow shok along the ritial line R3.(3) Arriving at V3 by a zero-speed double ontat diretly from UL ∈ ∂3.First we analyze the two-phase �ow ases. If UL is one of the states V2, B3 or V1 we knowfrom Chapter 5 that the behavior is like two-phase �ow, so we an obtain the Riemannsolution using Oleinik's onstrution.As ρ2 > ρ3, if we hoose F ∂1

3 as the �ux restrited to the edge ∂1 with onservedquantity u3, this �ux funtion is like the �ux of Fig. 5.1(b). In Fig. 9.7(a) we showOleinik solution for the Riemann problem UL = V2, UR = V3.We illustrate the solution in Fig. 9.7 for UL = V2. The other ases are ompletelyanalogous. For the ase UL = V1 we have the two-phase Oleinik solution along the edge
∂2. The ase UL = B3 is the two-phase Oleinik solution along the ritial line R3; thislatter ase presents only waves of the slow-family group as we proved in Theorem 5.1.Now we analyze the genuine three-phase problem. We will show that when UL ∈
(V2, B3) (i.e., when initially the phase 2 is dominant with respet to the phase 1 abovethe interfae) the solution remains in the triangle V3�B3�V2, so in this ase the solutiononsist of a slow-family wave group whih reahes the edge ∂1, a onstant state, and thenit ontinues with a two-phase fast-family wave group. For suh a ase we show that theother possibilities for a solution arriving to V3 along the edge ∂2, the ritial line R3 orby a diret zero-speed double ontat must be exluded.Let us onsider UL ∈ (V2, B3), we will onstrut the Riemann solution for UR = V3.Exluding a zero-speed double ontat joining UL with V3.As we see in Fig. 9.7(a), the two-phase solution onsisting in a shok (in this ase,double ontat disontinuity) joining the verties V2 and V3 does not satisfy Oleinik'sentropy ondition. The alternative solution onsisting of a zero-speed double ontat dis-ontinuity joining UL ∈ (V2, B3) with V3 oinides in the physial spae with the followingsequene: a genuine zero-speed ontat disontinuity joining UL with V2 (orresponding totwo-phase solution along ∂3), followed by a zero-speed double ontat joining the verties
V2 and V3, but as we already saw the last wave of this sequene does not satisfy Oleinik'sonstrution, therefore it must be exluded.Wave urve onstrution.See the arrows in Fig. 9.1(a). The slow harateristi speed dereases along the slow-family integral urves inwards the saturation triangle, so the slow-family wave urve aris-ing from UL begins with a shok segment and �nishes at a point P s

UL
that belongs to the
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, pf
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). The two saturation pro�les interset at the saturationvalue orresponding to the quasi-umbili point Q1 where the wave speed is zero.
slow-family extension urve Es

∂3
. The slow-family wave urve ontinues from P s

UL
witha rarefation segment until it reahes the in�etion manifold and then ontinues witha omposite urve based into this rarefation segment. As the wave urve reahes theextension urve Es

∂1
of the edge ∂1 before arriving to the in�etion lous, the ompositeurve reahes the boundary ∂1 at a point UM , see Fig 9.9(a). There exist two possibilitiesfor the struture of the fast-family wave urve arising from UM , depending on the positionof UM relatively to the state P f

V3
, whih is the fast-family extension point on the edge ∂1of the vertex V3. If UM ∈ (V3, P
f
V3

) (as in the ase shown in Fig. 9.9(a)) the fast-familywave urve onsists only of a shok segment. If UM ∈ (P f
V3

, Q1) the fast-family wave urveonsists of a rarefation segment from UM�If
1 ontinuing with a omposite urve (basedon this rarefation segment) up to V3, see Fig. 9.10(a).
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(b)Figure 9.8: (a) Wedge onstrution for the two-phase regimes R3 and ∂1. This �gureis utilized to establish the speed ompatibility between wave groups in the solution. (b)Wedge onstrution for the two-phase regimesR3 and ∂2. This �gure is utilized to establishthe speed inompatibility between other waves that need to be exluded.The Riemann solution onsists of the following sequene of waves. There is a slow-family right-harateristi shok wave joining UL ∈ ∂3 to P s
UL
, followed by a slow rar-efation wave joining P s

UL
to a state P s

UM
on the urve Es

∂1
, followed by a slow-familyleft-harateristi shok joining P s

UM
to state UM in ∂1. If UM ∈ [P f

V3
, V3) the last wave inthe solution is a fast shok joining UM to V3, see Figs. 9.9(b) and 9.9(). If UM ∈ (Q1, P

f
V3

),the fast-family wave group onsists of a rarefation wave joining UM to P f
V3

followed by aleft-harateristi shok up to V3, see Figs. 9.10(b) and 9.10().Now we will show the ompatibility between the speeds of the slow-family wave groupjoining UL with UM and the fast-family wave group joining UM with V3.Speed ompatibility of the waves.We perform the wedge onstrution (desribed in Setion 7.1) for the two-phaseregimes R3 and ∂1 with a ommon vertex V3. Along ∂1 we hoose F ∂1

3 and u3 as �uxfuntion and onserved quantity; the phases oexisting in ∂1 have visosities µ2 and µ3.



Fluids 1 and 2 on top, �uid 3 at bottom 87On the other hand, along the ritial line R3 the �ux funtion is given by Eq. (5.10) withonserved quantity u. The visosities of the e�etive phases oexisting along R3 are µ3and µ1 + µ2. The relative di�erene between the densities of the �uids involved in thesetwo-phase regimes gives rise to a situation as in Fig. 9.8(a), where the tangent segmentto the graph at P s
V3

intersets the extended-�ux funtion at two points A1
1, A2

1 on theopposite side relative to V3. We have λ−(P s
V3

) = σ(P s
V3

, V3) = σ(V3, A
1
1) = σ(V3, A

2
1). InFig. 9.11(a) all these points are drawn in the saturation triangle, and the dotted urverepresents the Hugoniot lous through the relevant point P s

V3
∈ R3.On the other hand for UL ∈ (V2, B3) we have numerial evidene showing that UM ∈

(A1
1, Q1). Plotting the level urves for the slow-family harateristi speed we obtain

λ−(P s
UM

) < λ−(P s
V3

), see Fig. 9.11(). Thus we have σ(P s
UM

, UM) = λ−(P s
UM

) < λ−(P s
V3

) =
σ(P s

V3
, V3) < σ(UM , V3) (see Fig. 9.8(a) for last inequality), whih is evidene for theompatibility of speeds between the slow-family and fast-family wave groups.From Fig. 9.11(a) we notie that for UL su�iently near B3 the rarefation segmentof the slow-family wave urve intersets both extension urves Es

∂1
and Es

∂2
. We havealready onstruted the solution using the intersetion point P s

UM
in Es

∂1
, this solutionalways remains in the triangle V3�B3�V2. We have also veri�ed the speed ompatibilitybetween the slow-family and fast-family waves. Now we will show that the other possiblesolution that arises by the use of the point D on Es

∂2
onneting to a point D′ on the edge

∂2 must be exluded.Exluding the solution arriving at V3 along the edge ∂2 for UL ∈ (V2, B3).See Fig. 9.11(b), we denote by D′ a point on ∂2 for whih D is the extension, so
D′ ∈ H(D) and σ(D, D′) = λ−(D). It is possible to show that the shok joining D and
D′ is a Lax slow-shok. We will show that the possibility of utilizing that shok in thesolution must be exluded beause of speed inompatibility with the fast-family shokjoining D′ with V3.The inompatibility an be established by performing the wedge onstrution for thetwo-phase regimes R3 and ∂2, see Fig. 9.8(b) and by the usage of numerial arguments:
(1) plotting the level urves for the slow harateristi speed (see Fig. 9.11()) we notethat λ−(D) > λ−(P s

V3
)), (2) plotting the Hugoniot lous through D (see Fig. 9.11(b)) wedetermine the relative position of D′ with respet to A1

2. Beause of all these reasons weonlude that σ(D, D′) = λ−(D) > λ−(P s
V3

) = σ(P s
V3

, A1
2) > σ(D′, V3) (see Fig. 9.8(b) forlast inequality). Therefore the shok sequene D

CS−

−−→ D′ S+

−→ V3 has speed inompatibil-ity, so this solution must be exluded.In other words, if the left state UL of the Riemann problem belongs to the edge V2�B3of the triangle V3�B3�V2, then the solution remains inside this triangle. The dominantphase at the state UL (in this ase would be phase 2) remain dominant with respet tothe other phase present at UL, the Riemann solution reahes an intermediate state UMwhere the non-dominant phase at UL is missing. A similar invariane property was alsoobserved in the three-phase problem without gravity [1℄.



88 Chapter 9. Solution for SPGP with heavy equal-density �uidsNext we summarize the results above, we use the notations from Setion 3.1, theRiemann solution for initial left and right data UL ∈ ∂3 and UR = V3 has the followingstruture:(i) For the ase UL = V2 we have the two-phase solution, see Fig. 9.7:
UL

SC
−−→ P s

V2

R
−→ P f

V3

CS
−−→ V3 = UR, (9.5)(ii) For UL ∈ (V2, B3) suh that UM ∈ (Q1, P

f
V3

) see Fig 9.10:
UL

SC−

−−→ P s
UL

R−

−−→ P s
UM

CS−

−−→ UM
R+

−−→ P f
V3

CS+

−−→ V3 = UR. (9.6)(iii) For UL ∈ (V2, B3) suh that UM ∈ (P f
V3

, V3), see Fig 9.9:
UL

SC−

−−→ P s
UL

R−

−−→ P s
UM

CS−

−−→ UM
S+

−→ V3 = UR, (9.7)(iv) For UL ∈ (V2, B3) suh that UM = P f
V3
:

UL
SC−

−−→ P s
UL

R−

−−→ P s
UM

CS−

−−→ P f
V3

CS+

−−→ V3 = UR. (9.8)For the ase where phase 1 is dominant at the state UL, i.e., for UL ∈ (B3, V1), thesolution is ompletely analogous to the previous one, so we do not desribe it.Physial interpretation of the solutions in RP3.Case (i) orresponds to the well known two-phase solution involving phases 2 and 3,whih have distint densities. The ases (ii), (iii) and (iv) orrespond to genuine three-phase solutions. For these ases the mixture initially on top ontains the equal-density�uids 1 and 2, with phase 2 dominant with respet to the phase 1, i.e., the saturation ofphase 2 is larger than the saturation of phase 1. The �uid initially at bottom is lighter.The solutions for these ases have ertain similarity with the two-phase solution in ase(i). We notie that phase 2 (initially dominant on top) remains dominant with respet tothe phase 1 in the solution. The Riemann solution reahes an intermediate state wherephase 1 is missing. However, notie that for any one of these three-phase �ow ases, thesequene of waves in the solution ontains an additional shok preeding a homogeneousregion, see Fig 9.10 or Fig 9.9. This struture di�ers from the two-phase ase (i) shownin Fig. 9.7.
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Chapter 10Solution for SPGP with lightequal-density �uids
In this hapter we study the ase in whih α = 0, ρ1 > ρ2 = ρ3. Denoting ρ = ρ31 = ρ21,we are in the ase ρ < 0. As a onsequene of the reversal symmetry in Theorem 8.1,the integral urves, the in�etion manifolds and the boundary ontat manifolds orre-sponding to this �simpli�ed pure gravitational problem� are idential to those shown inthe previous hapter, but the families are interhanged. Besides, along the integral urvesof eah family, the inreasing diretion of the harateristi speed is reversed with respetto the ase analyzed in the previous hapter. For this ase the integral urves of eahfamily are shown in Figure 10.1. Notie that segments (Q3, V1) ⊂ ∂3 and (Q2, V1) ⊂ ∂2are integral urves of the slow family while segments (Q3, V2) ⊂ ∂3 and (Q2, V3) ⊂ ∂2 areintegral urves of the fast family. This hange of family along the edges when rossingthe quasi-umbili points was proved in Theorem 4.1.The in�etion manifolds of eah family for the symmetrial ase µ1 = µ2 = µ3 is shownin Fig. 10.2.In Fig. 10.3 we show the boundary ontat urves (see Def. 3.9). As in the previoussetion, we denote by Es

∂j
, Ef

∂j
; j = 1, 2, 3 the boundary ontat urves of the slow and fastfamily respetively, orresponding to the edge ∂j . We also all these urves the extensionsof the edges of the saturation triangle. Again we reall that P s

A (or P f
A), is the extensionof a point A on the boundary, assoiated to the the slow (or fast) family (i.e., the shokjoining the state A to the state P i

A is harateristi at P i
A for the family i).Consider the simpli�ed pure gravitational problem α = 0, ρ1 > ρ2 = ρ3. We wantto solve the generi Riemann problem with left data UL lying on the edge ∂i, i = 1, 2, 3of the saturation triangle, and right data UR oiniding with the opposite vertex Vi. Forthis ase, there exist essentially only two distint problems: UL ∈ ∂1, UR = V1 and

UL ∈ ∂2, UR = V2 (notie that the Riemann problems with data UL ∈ ∂2, UR = V2 and
UL ∈ ∂3, UR = V3 are analogous). 92
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for i = 1, 2, 3 are the fast-familyextension of the edges ∂i.First we state the following result.Lemma 10.1. Assume ρ1 > ρ2 = ρ3 and onsider the states Ai ∈ ∂i, i = 1, 2, 3, then:(i) we have σ(U, Ai) < 0 for all U ∈ H(Ai), i = 2, 3 out of the edge ∂i.(ii) we have σ(U, A1) > 0 for all U ∈ H(A1) out of the edge ∂1 and out of the vertex V1.Proof. The proof follows from Lemma 9.1 and the symmetry result for the Hugoniot loiin Remark 8.1. The shok speed hanges sign with respet to the SPGP studied in theprevious hapter.10.1 RP4: Left data in ∂2, right data V2For this ase H(V2) = ∂1 ∪ ∂3 (see item (i) of Prop. 6.3), we also see in Fig. 10.1 that theintegral urves through vertex V2 oinide with the edges ∂1 and ∂3 near V2. Thus thepossible ways to arrive at V2 are (see Fig. 10.1):(1) Arriving by a zero-speed genuine ontat disontinuity orresponding to the two-phase solution on ∂1 (see Se.5.2).



Fluids 1 and 3 on top, �uid 2 at the bottom 95(2) Arriving by a fast shok orresponding to the two-phase solution on ∂3.Exluding alternative (1).Inspeting the arrows in Fig. 10.1(b), we see that the only way to arrive at a point
A1 ∈ ∂1 is by a fast shok with positive speed (see item (ii) of Lemma 10.1). This shokannot preede the two-phase zero-speed genuine ontat along ∂1 up to V2. Therefore allsolutions arriving at V2 by the edge ∂1 must be exluded.Constrution of the Riemann solution.Now we will onstrut the solution using the seond alternative, i.e., in order to arriveto V2 we must �rst reah the edge ∂3 by means of a slow-family wave group followedby a fast-family two-phase wave group up to V2. Notie that as ρ1 > ρ2, hoosing F ∂3

2as the �ux restrited to the edge ∂3 with onserved quantity u2, F ∂3

2 is similar to the�ux in Fig. 5.1(b). We see that there exist two ways to arrive to the edge ∂3 through aslow-family wave urve.(2.1) Arriving to the interval (V2, Q3) by a slow rarefation urve (see arrows in Fig. 10.1(a)).(2.2) Arriving to the interval (Q3, V1) by a slow shok using a non-loal branh of theHugoniot lous through UL (see for example Fig. 7.8(a)- 7.8()).However the option (2.2) of reahing the edge ∂3 at states out of the interval (V2, Q3)must be exluded beause of Proposition 7.2; this type of shok leads to speed inompati-bility between the waves in the solution. In other words, the Riemann solution must beginwith a slow-family wave group, whih reahes the interval (V2, Q3) at a point UM , thenthe solution ontinues by means of the fast-family wave group, i.e., a two-phase Oleiniksolution joining UM to V2.Consider UL = (uL
1 , 0, uL

3 ) on ∂2. We will split our analysis in several ases.10.1.1 Two-phase solutions.
(i) If UL = V3 the solution is a zero-speed genuine ontat joining V3 with V2.
(ii) If UL = V1, the solution is the same two-phase Oleinik solution desribed in Fig. 9.7.10.1.2 Doubly harateristi shoks in three-phase solutions.See Fig. 7.8, by analyzing qualitatively the motion of the non-loal Hugoniot branh of
H(UL) when UL moves along ∂2 from V3 to V1, we notie that it reverses diretion twie.



96 Chapter 10. Solution for SPGP with light equal-density �uidsFirst the non-loal branh leaves the saturation triangle when UL = U1 and goes awayuntil UL reahes a ertain state D1, where the motion of the branh reverses and startsto approah again the triangle (see the arrows in Figs. 7.8(d)- 7.8(e)). From UL = U2 thenon-loal branh enters the saturation triangle until UL reahes ertain state D2 wherethe motion of the non-loal branh reverse again to approah the edge ∂3 (whih oinideswith the non-loal branh in the limit ase UL = V1).We state the following onjeture, whih is supported by strong numerial evideneand some analytial alulations.Conjeture 10.1. Consider the simpli�ed pure gravitational problem (SPGP) in whihthe equal-density �uids are lighter than the other �uid ( i.e., α = 0 and ρ1 > ρ2 = ρ3.The states D1 and D2 on ∂2 where the motion of the non-loal Hugoniot branh reverses,belong to the slow-family double ontat manifold. In other words, there exist D′
1 and D′

2suh that D′
i ∈ H(Di) and λ−(Di) = σ(Di, D

′
i) = λ−(D′

i) for i = 1, 2. The state D′
2always lies in the interior of the saturation triangle. The state D′

1 may lie: (a) outsidethe saturation triangle, (b) on the edge ∂3 of the saturation triangle, or () in the interiorof the saturation triangle, depending on the shape of the extended-�ux funtion F ∂2∂3

ext asfollows: ase (a) ours if the graph of F ∂2∂3

ext is like the dotted urve in Fig. 7.3, ase (b)ours if the graph of F ∂2∂3

ext is like the solid urve in Fig. 7.3, and ase () ours if thegraph of F ∂2∂3

ext is like the dashed urve in Fig. 7.3.Remark 10.1. Notie that when the graph of F ∂2∂3

ext is like the solid urve in Fig. 7.3, thedouble ontat pair D1, D
′
1 oinides with the double ontat pair U0, U

∗ in Fig. 7.3, thisis the �double tangeny� ase where U0 ∈ ∂2, U∗ ∈ ∂3 . As we an regard the other asesas bifurations of this �double tangeny� ase, we see that the seond part of the onjeture(about the relative position of D′
1) beomes natural.Now we state another onjeture, whih is also supported by numerial alulations.Conjeture 10.2. The slow harateristi speed λ−(U) derease monotonially when Umoves from ∂1 to ∂3 along the extension urve Es

∂2
in Fig. 10.3.Proposition 10.1. Assume that the Conjetures 10.1 and 10.2 are valid. Consider D∗

2on ∂2 suh that σ(D∗
2, D2) = λ−(D2). Then we have D∗

2 ∈ (V3, U1), where U1 is de�ned initem (ii) of Prop. 7.1 and is shown in the Figs. 7.3 and 10.4.Proof. From Conjeture 10.2, we have that λ−(D2) = λ−(D′
2) > λ−(U∗). On the otherhand we know that σ(U1, V1) = λ−(U∗) and we notie that λ−(D2) = σ(D∗

2, D2) <
σ(D∗

2, V1) (see Fig 10.4). Thus we obtain σ(U1, V1) = λ−(U∗) < σ(D∗
2, V1), whih implies

D∗
2 ∈ (V3, U1).
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2, U1)we have multiple solutions satisfying the generalized Lax riterion. It is neessary to usethe visous pro�les riterion to hoose the orret physial solution.Disonneted wave urvesConsider UL ∈ (V3, V1) and UR = V2, we �nd that the slow-family wave urve through
UL has disonneted branhes. For most of the values of UL on the edge ∂2, we must usea non-loal branh of the slow-family wave urve in order to reah the interval (V2, Q3)on ∂3.In Fig. 7.8 we illustrated the Hugoniot loi for distint values of UL ∈ ∂2, for the sameSPGP we are studying in the urrent hapter, therefore that �gure an be taken as thereferene for the shape of the Hugoniot loi. Reall that U1 and U2 were de�ned in item
(ii) of Prop. 7.1, these states an be alulated easily from the wedge onstrution (seeFig. 7.4).
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∂2
and Ef

∂2
are the (slowand fast) extensions orresponding to the edge ∂2. The dark urves represent the slow-family wave urve. As usual the solid part of the urves represent rarefation urves withan arrow indiating the inreasing diretion of the slow harateristi speed, the dashedportions represent shok urves. (a) Wave urve for UL ∈ (V3, W1). (b) Wave urve for

UL = W1. () Wave urve for UL = D∗
2 where D∗

2 ∈ ∂2 and σ(D2, D
∗
2) = λ−(D2). (d)Wave urve for UL ∈ (D∗

2, U1). (e) Wave urve for UL ∈ (U1, D2). (f) Wave urve for ULjust to the right of the double ontat state D2. In all the �gures we denoted by blakdots the relevant states for the onstrution of the Riemann solutions, the states denotedby white squares does not belong to the solutions.



Fluids 1 and 3 on top, �uid 2 at the bottom 99In Fig. 10.5 we show the slow-family wave urves for several values of UL ∈ ∂2. Wenote that for all values of UL there exists at least a wave urve branh that reahes theedge ∂3 at a point in the interval (V2, Q3), so the Riemann solution always exists. In thisase, the speed ompatibility between the fast-family waves and the slow-family waves istrivial sine the last wave of the slow-family group is a rarefation ending with zero-speedat the intermediate state UM , while the fast-family wave group, whih de�nes the two-phase solution joining UM to V2, always has positive speed. Notie that for UL ∈ (D∗
2, U1)(see Fig. 10.5(d)) there exist two branhes of the slow-family wave urve arriving to theinterval (V2, Q3). The �rst branh arises from the use of the slow-family extension P s

ULof the point UL. However, this onstrution provides a sequene of waves whih satis�esthe generalized Lax riterion but it does not satisfy the visous pro�le riterion, seeFig. 10.6(). The other branh arises from the use of the slow-family double ontat pair
D2, D

′
2, this type of solution satis�es both the generalized Lax riterion and the visouspro�le riterion, therefore this is the physially orret solution. For UL ∈ (U1, D2) onlythe non loal branh arising from the use of the slow-family double ontat pair D2, D

′
2lies in the sauration triangle.
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2, there exist an orbit joining the states ULand P s

UL
. As expeted this type of solution satis�es the visous pro�le riterion. (b) Case

UL = D∗
2 for this ase we obtain the phase portrait as a onsequene of the ollapse oftwo ritial points: a repelling node and a saddle. () Case UL just to the right of D∗

2,there does not exist an orbit joining UL and P s
UL
, there exist a saddle point whih doesnot permit any orbit to ross to the other side. The Riemann solution for this ases mustto be onstruted by using the double ontat pair D2, D

′
2.In fat, for any value of UL in (D∗

2, D2) (see Figs. 10.5(d)- 10.5(e)) we must use theslow-family double ontat pair D2, D
′
2 to onstrut the Riemann solution, while for theases UL ∈ (V3, D

∗
2) and UL ∈ (D2, V1) we use the extension P s

UL
of the point UL, seeFigs. 10.5(a), 10.5(b), 10.5(f).See Fig. 10.5(). For the ase UL = D∗

2, we have P s
D∗

2
= D′

2 (beause of the Tripleshok rule applied to D∗
2, D2, D

′
2), and we have two representations in state spae of thesame physial solution. The �rst representation onsists of a slow shok joining UL = D∗

2with their extension point P s
D∗

2
= D′

2, ontinued by a slow-family rarefation wave to
UM . The fast wave group is the two-phase Oleinik solution from UM to V2. The seondrepresentation onsists of a slow shok joining UL = D∗

2 with the state D2, whih isharateristi at D2; it is followed by a double ontat disontinuity joining D2 with D′
2;



100 Chapter 10. Solution for SPGP with light equal-density �uidsfrom this point up to the �nal state V2 we use the same sequene of waves employed inthe �rst representation. The key fat for these di�erent representations in state spaeto oinide in the physial spae is that the disontinuities involved have the same speed(notie that σ(D∗
2, D2) = λ−(D2) = λ−(D′

2) = σ(D∗
2, D

′
2)).In Fig. 10.5 we denoted by blak dots the states that are relevant for the onstrutionof the Riemann solutions, the states denoted by white squares do not take part in thesolutions.Remark 10.2. Notie a urious feature of the solution: if the mixture proportion of thestate UL lies inside the interval (D∗

2, D2) then the faster wave in the upward diretion(negative speeds) does not involve �uid 2 ( i.e., the solution does not enter the saturationtriangle). In other words, until the mixture proportion of the top �uids attains the ritialvalue given by D2, the bottom �uid (phase 2) does not move upwards.Now we summarize the results above, using the notations from Setion 3.1.The Riemann solution for the genuine three-phase �ow of the SPGP where α = 0,
ρ3 = ρ2 < ρ1, has the following struture(iii) For UL ∈ (V3, D

∗
2) suh that UM ∈ (V2, P

f
V2

):
UL

SC−

−−→ P s
UL

R−

−−→ UM
S+

−→ V2 = UR. (10.1)(iv) For UL ∈ (V3, D
∗
2) suh that UM = P f

V2
:

UL
SC−

−−→ P s
UL

R−

−−→ UM
CS+

−−→ V2 = UR. (10.2)(v) For UL ∈ (V3, D
∗
2) suh that UM ∈ (P f

V2
, Q3) or UL ∈ (D2, V1):

UL
SC−

−−→ P s
UL

R−

−−→ UM
R+

−−→ P f
V2

CS+

−−→ V2 = UR. (10.3)(vi) For UL ∈ (D∗
2, I

s
2), see Figs. 10.7() and 10.7(d), with UL

∗ ∈ ∂2:
UL

SC−

−−→ UL
∗

R−

−−→ D2
C−

−−→ D′
2

R−

−−→ UM
R+

−−→ P f
V2

CS+

−−→ V2 = UR, (10.4)(vii) For UL ∈ [Is
2 , D2), see Figs. 10.7(a) and 10.7(b):

UL
R−

−−→ D2
C−

−−→ D′
2

R−

−−→ UM
R+

−−→ P f
V2

CS+

−−→ V2 = UR, (10.5)(viii) For UL = D∗
2:

UL = D∗
2

SC−

−−→ P s
D∗

2
= D′

2
R−

−−→ UM
R+

−−→ P f
V2

CS+

−−→ V2 = UR. (10.6)



Fluids 2 and 3 on top, �uid 1 at the bottom 101For this ase we have another di�erent representation in state spae for the same physialsolution(viii.1) UL = D∗
2

SC−

−−→ D2
C−

−−→= D′
2

R−

−−→ UM
R+

−−→ P f
V2

CS+

−−→ V2 = UR. (10.7)(ix) For UL = D2:
UL = D2

C−

−−→ D′
2

R−

−−→ UM
R+

−−→ P f
V2

CS+

−−→ V2 = UR. (10.8)Physial interpretation of the solutions.We will only disuss the ases (vi) and (vii), whih are more interesting, see Fig. 10.7.For this Riemann problem, one of the top �uids has the same density as the bottom �uid,while the third �uid (initially on top) is the heaviest. The solution is totally unpreditablewithout mathematial analysis. The solution onsists of two wave groups separated by aonstant state. The �rst wave group moves upwards. It ontains a double ontat shokembedded into two rarefation waves; sometimes the upper rarefation is preeded byan additional shok (this is the sole di�erene between the two ases). Within the topwave group, the waves faster than the embedded shok involve only two �uids, preiselythe �uids that were on top initially; the �uid initially at the bottom is only present inthe solution below the embedded shok. The seond wave group moves downwards andinvolves two �uids only. This wave group onsists of a rarefation wave adjaent to afaster shok; in all these waves the lower-density �uid that was initially loated on top isabsent, i.e., the lower-density �uid never moves downwards, as one ould expet. Thereis a homogeneous region, i.e., a onstant state, separating the two wave groups. The spanof this region grows linearly with time.We observe a urious feature of this Riemann solution (see Remark 10.2): while theproportion in the mixture initially on top keeps within ertain range away from a ritialvalue, the mixture slows down the upward motion of the bottom �uid. This blokingproperty perhaps ould be important in appliations.10.2 RP5: Left data in ∂1, right data V1See Fig. 10.1, the edge ∂1 oinides with the slow-family integral urves through UL ∈ ∂1.In this ase the Riemann solution is trivial, the solution onsists of a zero-speed genuineontat from UL to the point V2, followed by a zero-speed double ontat disontinuityjoining V2 with V1. There exist three representation of this solution in state spae whihoinide in the physial spae:(i) UL
GC
−−→ V2

C
−→ V1 = UR.(ii) UL

GC
−−→ V3

C
−→ V1 = UR.
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(d)Figure 10.7: (a)-(b) Riemann solution for UL ∈ [Is
2 , D2), UR = V2 (Is

2 was de�ned inFig. 10.2) for the ase ρ1 > ρ2 = ρ3. ()-(d) Riemann solution for UL ∈ (D∗
2, I

s
2), UR = V2.In (a) and (): Riemann solution in (x, t)-spae: solid lines represent the harateristilines in a rarefation fan, dashed lines represent shok paths, light lines orrespond towaves of the slow family, dark lines orrespond to waves of the fast family. In (b) and(d): saturation pro�les; the solid urve indiates the saturation of phase 1, the dashedurve indiates the saturation of phase 2. The onstant states are UL = (uL
1 , 0, 1 − uL

1 ),
UM = (uM

1 , 0, 1 − uM
1 ) and V2 = (0, 1, 0). Other relevant states are the pair D2 =

(d, 0, 1 − d), D′
2 = (d′

1, d
′
2, 1 − d′

1 − d′
2) that belong to the double ontat manifold, andstates D∗

2 = (d∗, 0, 1 − d∗), UL
∗ = (uL

∗ , 0, 1 − uL
∗ ) whih satisfy σ(D∗

2, D2) = λ−(D2),
σ(UL, UL

∗ ) = λ−(UL
∗ )(iii) UL

GC
−−→ B1

C
−→ V1 = UR.Physial interpretation of the solutions.The physial interpretation is trivial, sine for this ase the bottom �uid is the heaviestwhile in top we have equal-density �uids, one ould expet that neither of the �uids wouldmove.Remark 10.3. The Riemann problem RP6: with left data UL in ∂3 and right data
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UR = V3, is analogous to the ase RP4, so we omit its desription.



Appendix AAdditional alulation for Theorem 5.1
The following alulations orrespond to the proof of Theorem 5.1. Assume ρ3 < ρ1 = ρ2.Let us denote ρ = ρ13 = ρ23. From (4.4)-(4.7) we have

J22 − J11 = 2ρ
( u2

1u2u
2
3

µ1µ2µ3Λ2
−

u4
2u3

µ2
2µ3Λ2

−
u1u

2
2u

2
3

µ1µ2µ3Λ2
+

u4
1u3

µ2
1µ3Λ2

)
, (A.1)

J12 = 2ρ
(
−

u2
1u2u

2
3

µ1µ2µ3Λ2
−

u2
1u

2
2u3

µ1µ2µ3Λ2
−

u4
1u3

µ2
1µ3Λ2

)
, (A.2)

J21 = 2ρ
(
−

u1u
2
2u

2
3

µ1µ2µ3Λ2
−

u2
1u

2
2u3

µ1µ2µ3Λ2
−

u4
2u3

µ2
2µ3Λ2

)
. (A.3)As we are supposing that (u1, u2) ∈ R3, we an substitute u1

µ1
= u2

µ2
into above ex-pression in a onvenient way in order to obtain the same denominator in all terms, so weobtain

J22 − J11 = 2ρ
( u3

1u
2
3

µ2
1µ3Λ2

−
u2

1u
2
2u3

µ2
1µ3Λ2

−
u2

1u2u
2
3

µ2
1µ3Λ2

+
u4

1u3

µ2
1µ3Λ2

)

= 2ρ
u2

1u3

µ2
1µ3Λ2

(
u1(1 − u1 − u2) − u2

2 − u2(1 − u1 − u2) + u2
1

)

= 2ρ
u2

1u3

µ2
1µ3Λ2

(
u1 − u2

)
= 2ρ

u3
1u3

µ2
1µ3Λ2

(
1 − µ2/µ1

)
,

(A.4)
J12 = 2ρ

(
−

u3
1u

2
3

µ2
1µ3Λ2

−
u3

1u2u3

µ2
1µ3Λ2

−
u4

1u3

µ2
1µ3Λ2

)

= −2ρ
u2

1u3

µ2
1µ3Λ2

(
u1(1 − u1 − u2) + u1u2 + u2

1

)
= −2ρ

u3
1u3

µ2
1µ3Λ2

,

(A.5)104
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J21 = 2ρ

(
−

u2
1u2u

2
3

µ2
1µ3Λ2

−
u3

1u2u3

µ2
1µ3Λ2

−
u2

1u
2
2u3

µ2
1µ3Λ2

)

= −2ρ
u2

1u3

µ2
1µ3Λ2

(
u2(1 − u1 − u2) + u1u2 + u2

2

)

= −2ρ
u2

1u2u3

µ2
1µ3Λ2

= −2ρ(µ2/µ1)
u3

1u3

µ2
1µ3Λ2

.

(A.6)
Let be ∆ = (J22 − J11)

2 + 4J12J21, from (A.4)-(A.6) we have
∆ = 4

u6
1u

2
3ρ

2

µ4
1µ

2
3Λ

4

(
(1 − µ2/µ1)

2 + 4µ2/µ1

)
= 4

u6
1u

2
3ρ

2

µ4
1µ

2
3Λ

4

(
1 + µ2/µ1

)2
. (A.7)Substituting (A.4) and (A.7) into (5.16) and using (A.6) we obtain

J22 − λ− = 2ρ
u3

1u3

µ2
1µ3Λ2

= −
µ1

µ2
J21. (A.8)



Appendix BProof of Lemma 8.2
First we see that the funtions J11 and J22 are symmetri funtions with respet to thevariables u1 and u2, so the funtion f0 = J11 + J22 is also symmetri.Let denote Θ = J11J22 − J12J21 Taking in to aount the relations (4.4)-(4.7), we obtainafter some alulations

Θ = f1 + f2 + f3 + f4 + f5 + f6 + f7, (B.1)where
f1(u1, u2) = −8ρ2

(u3
1u

4
2(1 − u1 − u2)

3

µ4µ2
3Λ

4
+

u4
1u

3
2(1 − u1 − u2)

3

µ4µ2
3Λ

4

)
, (B.2)

f2(u1, u2) = −4ρ2
(u1u

6
2(1 − u1 − u2)

3

µ4µ2
3Λ

4
+

u6
1u2(1 − u1 − u2)

3

µ4µ2
3Λ

4

)
, (B.3)

f3(u1, u2) = 4ρ2
(u1u

3
2(1 − u1 − u2)

6

µ3µ3
3Λ

4
+

u3
1u2(1 − u1 − u2)

6

µ3µ3
3Λ

4

)
, (B.4)

f4(u1, u2) = 4ρ2
(u1u2(1 − u1 − u2)

8

µ2µ4
3Λ

4

)
, (B.5)

f5(u1, u2) = −4ρ2
(u1u

4
2(1 − u1 − u2)

5

µ3µ3
3Λ

4
+

u4
1u2(1 − u1 − u2)

5

µ3µ3
3Λ

4

)
, (B.6)

f6(u1, u2) = −4ρ2
(u3

1u
2
2(1 − u1 − u2)

5

µ3µ3
3Λ

4
+

u2
1u

3
2(1 − u1 − u2)

5

µ3µ3
3Λ

4

)
, (B.7)

f7(u1, u2) = 4ρ2
(u2

1u
5
2(1 − u1 − u2)

3

µ4µ2
3Λ

4
+

u5
1u

2
2(1 − u1 − u2)

3

µ4µ2
3Λ

4

)
. (B.8)All the funtions ((B.2)-(B.8)) are symmetri in the variables u1 and u2 (Notie that

Λ =
u2
1
+u2

2

µ
+ (1−u1−u2)2

µ3
is symmetri), so the funtion Θ(u1, u2) is also symmetri withrespet to the variables u1 and u2. Then we have that harateristi speeds λ± = 1

2
(f0 ±√

f 2
0 − 4Θ) are symmetri funtions. 106



Appendix CUniqueness of solution for RP1
The following analysis mixes analytial and numerial arguments.Consider the simpli�ed pure gravitational problem α = 0, ρ1 = ρ2 > ρ3. For theRiemann problem of type RP1, onsider a left data UL ∈ (V3, Q2) and the right data
UR = V2.We want to show that the solution obtained by using the slow-family wave urveoinides with the solution desribed in hapter 9.Let us analyze the slow-family wave urve through UL. The �rst portion of the slow-family wave urve arising from UL onsists of a rarefation segment UL�Uinf where Uinfbelongs to the in�etion manifold; the wave urve ontinues with a omposite urve pa-rameterizing states on the right of shoks that are harateristi at the left states on therarefation segment UL�Uinf.There exist several possibilities for a slow-family omposite urve to �nish:

• The slow-family omposite urve reahes the boundary of the saturation triangle.
• The slow-family omposite urve reahes a state where the shok speed is equal toone of the harateristi speeds; in suh a ase the wave urve either ontinues witha new slow-family rarefation segment or with a fast-family rarefation segment.The state where the omposite urve �nishes together with the orresponding statein the base rarefation segment is a pair of states in the double ontat manifold(maybe involving both families).
• The slow-family omposite urve �nishes after utilizing all the states of the baserarefation segment; in this ase the slow-family wave urve ontinues with a shoksegment.We perform the analysis for the slow-family omposite based in the rarefation urve

UL�Uinf. First notie that the slow-family omposite urve annot arrive or end at a107



108 Chapter C. Uniqueness of solution for RP1point A3 on the edge ∂3 sine λ−(U) ≥ 0 for all U in the rarefation urve UL�Uinf (seeFig. 9.11()) while σ(U, A3) < 0 (see item (ii) of Lemma 9.1).We use a numerially obtained �gure to show that the slow-family omposite urveannot reah a point A2 on the edge ∂2, before onsuming the whole rarefation urve,see Fig. C.1. The slow-family boundary ontat manifold Es
∂2

that extends the edge ∂2intersets the in�etion manifold at a point P out of the triangle V3�V1�B3; however theintegral urve through UL remains always inside this triangle (beause the segment R3itself is a slow-family integral urve as we have shown in Theorem 5.1), so none of thestates in the rarefation branh UL�Uinf an be right extensions of A2 ∈ ∂2. Thus theomposite urve annot reah ∂2 before onsuming all the states in the rarefation urve.
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Figure C.1: Es
∂2

is the portion of the slow boundary ontat manifold whih extends theedge ∂2; this urve intersets the slow in�etion urve at P . The rarefation branhstarting at UL reahes the in�etion urve without interseting the urve Es
∂2
.As we already eliminated the solutions arriving to V2 along the edge ∂1 we do not worryabout the possibility of the slow-family omposite urve reahing ∂1 or reahing a pointin the interior of the triangle where the shok speed oinides with the fast harateristispeed (as the fast-family wave urves lead to the edge ∂1 too).On the other hand, we have numerial evidene showing that there does not existany state on the rarefation urve UL�Uinf that belongs to the slow-family double ontatmanifold, therefore the only remaining possibility is that the omposite based on thisrarefation urve will ontinue until it onsumes all the states of the rarefation urve.However this annot our out of the edge ∂2 beause of item (i) of Lemma 9.1 and ofthe equality λ−(UL) = 0. So the omposite urve will end at a point U

′

L = (u
′

L, 0, 1− u
′

L)in ∂2 suh that σ(UL, U
′

L) = 0 = λ−(UL), the slow-family wave urve ontinues along theedge ∂2 with the shok segment U
′

L�U∗ followed by a �nal rarefation segment U∗�V1, seeFig. 9.6(a). Here U
′

L is the same point desribed in Theorem 8.2 orresponding to UL.The state U∗ ∈ ∂2 satisfy σ(UL, U∗) = d
du1

F ∂2

1 (u1
∗). As u

′

L < u1
∗, this onstrution leads tothe same Riemann solution in Figs. 9.6(b) and 9.6().



Appendix DExtended bibliographi review
Riemann problem theory dates from 1860 when the shok tube problem was solved em-ploying the method of harateristis, see [39℄. That problem redues to solving a piee-wise onstant initial value problem for a system of non-linear onservation laws thatdesribes gas motion, Euler's equations. Riemann obtained the sale-invariant solutionand explained why rarefation waves and shok waves are generated when the membraneseparating regions with gases at di�erent pressures is broken.Non-linear onservation laws govern �ows in porous media. The simplest nonlinearproblem in porous media, the two-phase �ow injetion problem, was solved by Bukleyand Leverett [5℄ in 1942. Their resolution method an be interpreted geometrially bymeans of the graph of the standard S-shaped �ux funtion, giving rise to the frational�ow method, of ommon usage in petroleum enginering. This method is a powerful andsimple tool to solve �ow problems involving no more than two phases, but many hemialomponents, see [13℄, [14℄, [49℄.The Riemann problem for immisible three-phase �ow is more di�ult than for two-phase �ow. The frational �ow method annot be extended to three-phase �ow problemssuh as those arising for the rok permeability models of Corey et al. [6℄ and Stone [48℄.The resolution of suh problems requires a more general solution method, the wave urvemethod, developed by Liu [29℄, whih generalizes the Lax's theorem [28℄. This methodonstruts the solution by means of a sequene of rarefation waves, shok waves, andonstant states, by following a sequene of urves in state spae.The wave urve method developed by Liu assumes that the system of onservation lawsis stritly hyperboli. Nevertheless, systems of onservation laws modelling immisiblethree-phase �ow in porous media fail to be hyperboli.Marhesin, Paes Leme (unpublished, 1980) and Shearer [43℄ established that violationof strit hyperboliity ours inside the saturation triangle for immisible three-phase�ow without gravity. Bell, Trangenstein and Shubin [4℄ showed by means of numerialexperiments that Stone's model for permeabilities possesses an ellipti region in the satu-109



110 Chapter D. Extended bibliographi reviewration triangle whih in some sense is a repeller for waves. Other important works aboutellipti-hyperboli mixed problems modelling immisible three-phase �ow in porous mediaare Key�tz [26℄, Key�tz [27℄, Holden [15℄, Holden [17℄, Holden H. and Holden L. [16℄.Isaason, Marhesin, Plohr and Temple [20℄ showed that for Corey model of perme-abilities, there exist a sole isolated point where strit hyperboliity fails, whih was alledumbili point.Isaason and Temple [23℄ introdued the idea of studying the solutions in a neigh-borhood of umbili points by using homogeneous quadrati polynomial �ux funtions.Shae�er and Shearer [40℄ lassi�ed the umbili points for quadrati homogeneous sys-tems in four types, two of them, types I and II, are relevant for three-phase �ow models.Some works were dediated to the study of Riemann solutions for systems of two onser-vation laws with homogeneous quadrati �ux funtions, dealling with the di�erent fourumbili point types. For instane see Shearer, Shae�er, Marhesin and Paes-Leme [42℄,Isaason, Marhesin, Plohr and Temple [22℄, Shae�er and Shearer [41℄.Holden [15℄, Holden H. and Holden L. [16℄ studied examples of quadrati systemspresenting umbili points of type I and II of the Shae�er-Shearer lassi�ation [40℄and proved nonuniqueness of Riemann solutions using Lax [28℄ and Oleinik [34℄ entropyriteria, as extended by Liu [29℄ rather than using the traveling wave riterion.Azevedo and Marhesin [2℄ studied the Holden's model in [15℄, by using the onditionthat shok waves should be zero-di�usion limits of traveling waves for the paraboli sys-tem. They found that a moderate number of multiple solution our for this prototype ofStone's model. Azevedo, Marhesin, Plohr and Zumbrun [3℄ showed that, in the preseneof nontrivial di�usion terms, suh as those for apillary pressure, it is not the elliptiregion (resp. umbili point) that plays the role of an instability region; rather, it is theregion de�ned by Majda-Pego [31℄, whih depends on the di�usion terms too and ontainsthe ellipti region (resp. umbili point)Isaason, Marhesin, Plohr and Temple [20℄, solved by the wave urve method theRiemann problem for Corey's model for immisible three-phase �ow in porous medianegleting gravitational e�ets. Their method is more general than Liu's, beause itallows for loss of hyperboliity and for other di�ulties that typially our in three-phase �ow. In [20℄ the solution was obtained under the simplifying assumption that thethree �uids have equal visosities. De Souza [8℄ extended the study to the ase in whihone of the visosity parameters is slightly di�erent from the other two. Some mathematialdi�ulties arising in this study were resolved by Marhesin, Plohr and Sheter [32℄.In their dotoral theses Xu [53℄ and Rezende [36℄ studied topologial aspets of theelementary waves in the Corey's Model analyzed in [20℄.Hurley and Plohr [19℄ studied how hanging the di�usion terms a�et the solutions ofRiemann problems.Sheter, Marhesin and Plohr [45℄, [46℄ initiated a systemati program to lassify all



111Riemann solutions for (non-stritly) hyperboli systems of two onservation laws withthe identity visous pro�le riterion. In partiular wave urves were studied. This workextended the dotoral work of Furtado [9℄ whih used the Lax [28℄ and Oleinik [34℄ entropyriteria.Reently Azevedo, De Souza, Furtado, Marhesin and Plohr [1℄ showed appliationsof the wave urve method to solve the injetion problem for immisible three-phase �owin whih a mixture of water and gas is injeted into a horizontal one-dimensional porousmedium ontaining oil.On the other hand, buoyany e�ets in the �ow of two immisible �uids in porousmedia are quite well understood, as they are modelled by a salar onservation law, whileis easily solved through Oleinik's onstrution [34℄. For instane Proskurowski in [35℄solved the Bukley-Leverett equation for two-phase �ow in the presene of gravity. Thereare others works on two-phase �ow with gravity and their appliations, see e.g. [37℄, [38℄,[51℄, [24℄, [12℄.The state of the art for three-phase �ow with gravity is quite di�erent. Up to now,there are a few works on three-phase �ow with gravity taken in to aount. Medeiros [33℄performed an analysis of hyperboli singularities for ertain models inluding gravity.Trangenstein [50℄ showed that Stone model with gravity present ellipti regions. Medeirosand Trangenstein's results indiate that the only three-phase permeability models thathave umbili points, rather than ellipti regions, in the presene of gravity are Coreymodels, in whih eah permeability depends solely on its own �uid saturation.
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