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Abstract

We study the buoyancy-driven flow for a system of two nonlinear conservation laws that
models three-phase flow in a porous medium. We solve a class of Riemann problems for a
simplified case where two of the fluids have equal density. We also perform a hyperbolic
analysis for the system of conservation laws finding a new type of coincidence point on the
boundary of the saturation triangle. The investigation combines the theory of conservation
laws with computational experiments.

Resumo

Estudamos o escoamento trifasico de fluidos em meios porosos resultante exclusivamente
da for¢a de gravidade. O problema é modelado por um sistema de duas leis nao-lineares
de conservacao. Resolvemos uma classe de problemas de Riemann para o caso em que
dois fluidos tém densidades iguais. Também apresentamos uma anéalise geral de hiperbo-
licidade para o sistema de leis de conservacao, e caracterizamos um novo tipo de ponto de
coincidéncia, que se encontra na fronteira do triangulo de saturagoes. A pesquisa combina
analise teorica com experimentos numeéricos.
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Chapter 1

Introduction

We study the flow in a porous medium of three fluids under the effect of gravity force.
We assume that the fluids do not mix when put into a container and that they have
different densities and viscosities, in general. The flow occurs along a very long vertical
thin cylinder of porous rock surrounded by an impermeable material. We assume that
the rock cylinder is totally saturated by the three fluids and that initially there is an
impermeable interface separating a homogeneous mixture of two of the fluids on top from
the third fluid at the bottom, see Fig. 1.1. We pretend that until time zero the gravity
force is inactive, so the fluids do not move. We study the longitudinal motion of the fluids
from the instant when the gravity is activated and the interface disappears. This study
is done near the location of the initial interface as if the cylinder were infinitely long. For
example, one can think that the cylinder initially was in the horizontal position and at
time zero it is quickly rotated to the vertical position. Of course, we assume that there
are no phenomena such as fingering that cause irregularities in the flow transversely to
the cylinder axis. In mathematical language, this is equivalent to solve Riemann problems
for certain 2 x 2 systems of conservation laws in one-dimensional space measured along
the cylinder axis, for a special class of initial data. This system reflects the conservation
of mass of each incompressible fluid, as well as a generalization to immiscible fluids of
Darcy’s law of force relating pressure gradient to fluid flow rate in porous media.

The main applications of this work are petroleum recovery, geological carbon dioxide
storage to mitigate global warming, and clean up of hydrocarbon polluted aquifers.

It is well known that there exist two different convective transport phenomena that
take part in the motion of fluids within a porous medium: convection due to pressure gradi-
ents and buoyancy due to density differences between the fluids. Until now, all mathemat-
ical work on immiscible three-phase flow in porous media has focused on convection-driven
flow, when there are no gravitational effects. In this work we focus onto buoyancy-driven
flow, and we solve a class of Riemann problems for the “pure gravitational” case (i.e.,
neglecting convection effects due to longitudinal pressure gradients rather than due to
buoyancy).
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Inferface

Figure 1.1: Initial condition in the reservoir. Left figure: initial distribution of the three
fluids in the porous medium. FEach fluid is represented by a color (or a shade of gray).
Right figure: schematic representation for the saturation of the fluids at the initial time.

The solution of this problem depends on the physical properties of the three fluids.
In other words, the evolution from the initial situation reflects the disparity in densities
and viscosities of the fluids. Because of this fact this solution should be studied for all
physically meaningful values of the density and viscosity parameters. Nevertheless, as
a first step toward understanding the influence of gravity in three-phase flow in porous
media, we will consider the simplified case in which two of the fluids have equal densities.
We call this case the simplified pure gravitational problem, or SPGP.

We obtain interesting results, e.g., for the following initial situation: one of the fluids
above the interface has the same density as the fluid below the interface, while the other
fluid located above the interface is the heaviest. For certain initial proportions of the fluids
on top, the solution consists of two wave groups separated by a region with a constant
state, see Fig. 1.2. The first wave group moves upwards. It contains a shock embedded
into two spreading or rarefaction waves; sometimes the upper rarefaction is preceded by an
additional shock. Within this upward wave group, the waves faster than the embedded
shock involve only two fluids, precisely the fluids that were on top initially; the fluid
initially at the bottom is only present below the embedded shock. The second wave group
moves downwards and involves two fluids only. This wave group consists of a rarefaction
wave adjacent to a faster shock; in the downward waves the lower-density fluid that was
initially located on top is absent, i.e., the lower-density fluid never moves downwards,
as one could expect. As we said, there is a homogeneous region, i.e., a constant state,
separating the two wave groups. The span of this region grows linearly with time.

We observe a curious feature of this Riemann solution: while the proportion in the
mixture initially on top keeps within a certain range away from a critical value, the mixture
slows down the upward motion of the bottom fluid. This blocking property perhaps could



Figure 1.2: Schematic representation for saturations in a non trivial Riemann solution
for the “pure gravitational problem”, where the green and red fluids have equal densities,
while the blue fluid is heavier. The white arrows indicate the motion of the waves. Larger
arrows correspond to higher speeds of the waves.

be important in applications.

Riemann problem theory dates from 1860, when he solved the shock tube problem
employing the method of characteristics, see |39]. That problem reduces to solving a
piecewise constant initial value problem for a system of non-linear conservation laws that
describes gas motion, Euler’s equations. Riemann obtained the scale-invariant solution
and explained why rarefaction waves and shock waves are generated when the membrane
separating regions with gases at different pressures is broken.

Non-linear conservation laws govern flows in porous media. The simplest nonlinear
problem in porous media, the two-phase flow injection problem, was solved by Buckley
and Leverett |5 in 1942. Their resolution method can be interpreted geometrically by
means of the graph of the standard S-shaped flux function, giving rise to the fractional
flow method, of common usage in petroleum enginering. This method is a powerful and
simple tool to solve flow problems involving no more than two phases, but many chemical
components, see [13|, [14], [49].

The Riemann problem for immiscible three-phase flow is more difficult than for two-
phase flow. The fractional low method cannot be extended to three-phase flow problems
such as those arising for the rock permeability models of Corey et al. [6] and Stone [48|.
The resolution of such problems requires a more general solution method, the wave curve
method, developed by Liu [29], which generalizes the Lax’s theorem [28]. This method
constructs the solution by means of a sequence of rarefaction waves, shock waves, and
constant states, by following a sequence of curves in state space.
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The wave curve method developed by Liu assumes that the system of conservation laws
is strictly hyperbolic. Nevertheless, systems of conservation laws modelling immiscible
three-phase flow in porous media fail to be hyperbolic. Isaacson, Marchesin, Plohr and
Temple [20] showed that for Corey model for immiscible three-phase flow in porous
media, there exist a sole isolated point interior to the saturation triangle where strict
hyperbolicity fails (nowdays known as umbilic point). They also solved by the wave curve
method the Riemann problem, neglecting gravitational effects. Their method is more
general than Liu’s, because it allows for loss of hyperbolicity and for other difficulties that
typically occur in three-phase flow. In [20| the solution was obtained under the simplifying
assumption that the three fluids have equal viscosities. De Souza |8| extended the study
to the case in which one of the viscosity parameters is slightly different from the other
two.

Recently Azevedo, De Souza, Furtado, Marchesin and Plohr [1] showed applications
of the wave curve method to solve the injection problem for immiscible three-phase flow
in which a mixture of water and gas is injected into a horizontal one-dimensional porous
medium containing oil. See the “Extended bibliography review” in Appendix D.

On the other hand, buoyancy effects in the flow of two immiscible fluids in porous
media are quite well understood, as they are modelled by a scalar conservation law, which
is easily solved through Oleinik’s construction [34]. For instance Proskurowski in [35]
solved the Buckley-Leverett equation for two-phase flow in the presence of gravity. There
are other works on two-phase flow with gravity and their applications, see e.g. [37], [38],
[51], [24], [12].

The state of the art for three-phase flow with gravity is quite different. Up to now,
there are few works on three-phase flow with gravity taken in to account. Medeiros [33|
performed an analysis of hyperbolic singularities for certain models including gravity.

Here we study in detail the simplified pure gravitational problem (SPGP), i.e., ne-
glecting convection effects unrelated to buoyancy and assuming that two of the fluids
have equal densities. We expect that Riemann solutions for the simplified cases will help
in solving the more general problems of three different-density fluids, as such problems
can be interpreted as “perturbations” of the simplified cases. The Riemann solutions ob-
tained in this work together with the new theoretical results presented can be considered
a first step toward the study of the general three-phase flow in porous media driven by
both buoyancy and pressure gradients.

We explain briefly how this work is organized. In Chapter 2 we derive the system
of conservation laws that models three-phase flow in porous media with gravity, under
a few physical simplifications. We non-dimensionalize the equations, giving rise to the
“convection-to-gravity ratio” parameter «, which measures the dominant effect. We also
introduce the Corey model with quadratic permeabilities for the fluids used in this work.

In Chapter 3 we recall some basic aspects of the general theory for systems of con-
servation laws, of the theory of bifurcation of Riemann solution and of the wave curve



method in order to provide the non-specialist reader with a brief background on these
subjects. Specialists should skip it. We warn the non-specialist that this review is neither
complete nor perfectly accurate, to keep it short. However, it is too new to be found in
books.

In Chapter 4 we calculate the characteristic speeds for the system of conservation
laws corresponding to the Corey model with quadratic permeabilities. We determine
completely where strict hyperbolicity fails. The analysis is made for generic convection-to-
gravity ratio. We obtain a new type of points where characteristic speeds coincide, which
we call quasi-umbilic points. They are located at the boundary of the physical saturation
triangle, in the case when the gravitational effects are dominant. Understanding these
quasi-umbilic points and their influence on the Riemann solution are some of the main
theoretical results of this work.

In Chapter 5 we study two-phase flows occurring in the pure gravitational problem, in
which the convection-to-gravity ratio « is zero. The results of this chapter are necessary
for the Riemann solution studied in the present work since generically two-phase waves
can be part of a three-phase Riemann solution. This fact was observed by Azevedo et al.
in [1] too.

In Chapter 6 we perform the analysis of possible shocks separating two states, one of
which consists of a pure fluid, and the other is a mixture of the three fluids. This is done
by studying the Hugoniot loci for the vertices of the saturation triangle. The analysis is
done for a generic «, rather than for « = 0. These Hugoniot loci play an important role
in the resolution of the Riemann problem where the initial bottom state represents a pure

fluid.

In Chapter 7 we perform the analysis of shocks separating two states, one of which is
a mixture of two fluids, and the other is a genuine mixture of the three fluids. This is
done by studying the Hugoniot loci for states on the edges of the saturation triangle. This
analysis is necessary for the resolution of the Riemann problem where the initial top state
is a mixture of two fluids, while the third fluid is absent. In this chapter we present a
simple geometrical construction, the “wedge construction”, which allows the determination
of admissible shocks joining states on distinct two-phase regimes appearing in three-phase
flow, such as the ones represented by points on the edges of the saturation triangle. The
wedge construction is independent of the form of the two-phase flux functions, of the
permeability functions and of the presence of gravity; it depends only on the fact that
along the edges of the saturation triangle a phase is missing, so we have two-phase flow of
the existing fluids; therefore this construction can be extended for very general models. It
is one of the main results of this work. The wedge construction has the same mathematical
nature as the “banana construction” in [1].

In Chapter 8 we prove a “reversal symmetry” theorem, which holds for the simplified
pure gravitational problem. We also prove additional theoretical results for bifurcation
manifolds in SPGP. These results give support for the Riemann solution obtained partially
via numerical calculations of the waves curves.
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In Chapter 9 we solve the Riemann problem for the SPGP when the equal-density
fluids are heavier than the third fluid. We consider all the combinations of edge-opposite
vertex Riemann data. We construct the solution to satisfy generalized Lax conditions and
then we verify that this solution is admissible according to the viscous profile criterion.
Although we do not prove rigorously that the solution for each problem is unique, we
perform an analysis utilizing analytical and numerical arguments that support uniqueness
of the solution presented.

In Chapter 10 we solve the Riemann problem for the SPGP when the equal-density
fluids are lighter than the third fluid. Again we consider all the combinations of edge-
opposite vertex Riemann data. In most cases we analyzed, the slow-family wave curves
have disconnected branches that turn out to be crucial for the solution. The existence of
shocks between pairs of states that belong to a certain one-dimensional manifold, the slow-
family double contact manifold, is a new feature crucial for the existence of the Riemann
solutions. In this case the Lax entropy criterion alone does not guarantee uniqueness
of the solution, so we are led to use the full viscous profile criterion to select the sole
physically correct solution.

In Appendix A we perform additional calculations which complete the proof of The-
orem 5.1. In Appendix B we present the proof of Lemma 8.2. In Appendix C we show
numerical and analytical arguments for uniqueness of the Riemann solution for one of
the cases studied (RP1). In Appendix D we present an extended bibliographic review, in
order to summarize the main mathematical works relevant for three-phase flow in porous
media.

Along this work, we performed numerical experiments using the computer code RP
written by Marchesin, Isaacson and Plohr. This code allowed us to obtain the integral
curves, Hugoniot curves, the main bifurcation loci, the phase portraits for dynamical
systems and the wave curves, which are fundamental for the construction of the solution.
Numerical calculations in MATLAB were also performed.



Chapter 2

The model

In the first section of this chapter we derive the system of conservation laws that models
three-phase flow with gravity in porous media, under some physical assumptions listed at
the beginning of the section. In the second section we obtain the dimensionless equations
and the parameter groups relevant for the study of the buoyancy effects for three-phase
flow. In the third section we introduce the quadratic Corey model that we will use in the
entire work in order to highlight the phenomena of interest while avoiding complicated
analysis. In the last section of the chapter we define the triangle where the three fluid
saturations are defined, and some important lines and points inside the triangle that we
will use frequently along the work.

2.1 Derivation of the system of conservation laws

We will study a simplified model for three-phase flow in porous media assuming that the
porosity ¢ and the absolute permeability of the rock K are constant. The temperature
is constant and there is no mass interchange between phases. In this section we derive
the equations for an arbitrary spatial dimension, nevertheless in this work we restrict our
study to one spatial dimension assuming that the flow occurs uniformly in the vertical
direction filling the entire porous medium. We also neglect compressibility effects and
assume that there are no sources or sinks.

Let consider the conservation of mass for each phase

%QSUH—V-W:O i=1,2,3, (2.1)

where u; denotes saturation and v; is the seepage velocity of each phase. We assume that
Darcy’s Law is satisfied for each phase #:
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v; = —KE(Vpi — piges) 1=1,2,3, (2.2)
i

where k; is the relative permeability, p; is the pressure, u; is the viscosity and p; is the
density for each phase 7. We denoted by e, the unit vector in the vertical direction
pointing downwards, ¢ is the gravitational constant. We assume that the permeabilities
k; are functions of the saturations. We assume also that the fluids are incompressible, and
that the porous medium is totally saturated, meaning that Z?:l u; = 1. The viscosities
Wi, © = 1,2,3 are constant. In this section and in most of the work, we neglect capillary
pressure effects, so that the phase pressures are equal. In Chapters 9 and 10, we will
take into account such effects. They will be important in selecting physically admissible
shocks.

Now we define

i=1,2,3
fi = NJAN i=1,2,3; v = Z Vi (2.4)
i=1,2,3

the functions A; and f; are the mobility and the fractional flow function corresponding to
each phase i, A is the total mobility and v is the total seepage velocity.

We first note that )., ,, fi = 1. Let us assume that p; = p; (i.e., we are neglecting
the capillary pressures), so substituting Darcy’ s Law (2.2) in (2.4) and performing some
calculations we obtain

vi=vfi+ KN fipiges, i=1,2,3, (2.5)
J#i
where we are denoting by p;; the density difference p; — p; between the phases ¢ and j.
Finally, we substitute (2.5) into the system (2.1) to obtain the system of conservation
laws for the saturations u, us and us

0
EQSUH—V-E:O, 1=1,2,3, (2.6)
where
F=vfi+G;, i=1,23, (2.7)

are the components of the vector flow function (Fy, Fy, F5)T containing the gravitational
terms

Gy = KA ((1— fi)pis + faps2)ge-,
Gy = KAy ((1 — fa)par + fsprs)ge-, :
Gs = KA3((1 — f3)ps2 + f1p21)g€z- (2.10)
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Remark 2.1. Notice that G1 + Gy + G3 = 0, therefore Fy + Fy + F3 = Vv (the total
velocity).

By adding the equations in (2.5) and using the relations (2.3)-(2.4), we obtain that
V - v = 0; this equality reflects the incompressibility of the fluids. Another important
fact to take into account is that the conservation of mass system (2.1) has a redundant
equation, ¢.e., any of these equations can be derived from the other two if we use the
incompressibility property of the fluids and the fact that the medium is totally saturated.
Because of this redundance we can drop any equation in (2.6) obtaining a 2 x 2 system of
conservation law to be studied. The equation to be dropped will be chosen conveniently
for each case.

2.2 Dimensionless equations

In this section we rewrite the system of conservation law (2.6) in non-dimensional form, in
order to identify the most important non-dimensional parameter groups for the evolution
problem, and we reduce to the minimal the number of parameters appearing in the system
of conservation law.

We denote as K, [m?] the reference absolute permeability, v, [m/s] the reference
velocity of the problem, p.s [kg/m?] the reference density, L [m] the reference length of
the system and fiyer [kg-m_l -3_1] the reference viscosity. Now we define the dimensionless
variables as follows

/tV: tVref/L¢7 i:X/Lu v:V/Vrefa k = K/Kref7

~ - , (2.11)
Ay = Niptwet,  Di = pif Press  Hhi = i/ fhees, 0= 1,2,3.
As a consequence of above definitions we obtain other useful relations:

i=1,2,3

If we substitute the dimensionless variables and the relations above into the system
(2.6), we obtain

8Ui

- +V-(Ffi+C,G) =0, i=1,2,3, (2.13)
where

Gy = KN (1= f)ps + fopn) ez, (2.14)

Go = KA (1 — fo)por + fas) e, (2.15)

ég = k/’ig((l - fé)ﬁgQ + .]?1,521>62, (216)
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and Cy = If;eff'%ffff'g is the dimensionless parameter reflecting the gravitational effects.
re re

We can choose reference values in different ways. As we are interested in cases in which
the total velocity is small (possibly equal to zero) but with non-negligible gravitational
effects, we set the reference velocity as v, = %, so we obtain that C; = 1 in (2.13).
We denote by

~ VoV et

o=V = = =0
Vref Kref * Pref * g

(2.17)

Omitting the “~" and dropping the equation corresponding to phase 3 in (2.13) we
obtain the following 2 x 2 system of conservation law

8Ui
ot

+ V- (ozfi(ul, UQ) + Gi(ul,ug)) = O, 1= 1, 2, (218)

where now G; and G5 denote the dimensionless gravitational terms given by (2.14) and
(2.15).

The parameter « defined in (2.17) is called in this work the “convection/gravity ratio”
(cgr). Nevertheless, from Eq. (2.18) with gravitational terms given in (2.14)-(2.15) notice
that for equal-density fluids the gravitational terms vanish independently of the value of
a.

2.3 The Corey model

We will restrict our analysis to the Corey model with quadratic permeabilities. With this
choice we can highlight the phenomena of interest while avoiding complicated analysis.
(We expect that solutions for more realistic models are qualitatively similar to those of
quadratic models). Explicitly, the mobility of each phase depends only of the saturation
of the phase and is quadratic, i.e.,

Ai(wg) =uf/pe, i=1,23 A=Y ul/m, (2.19)

i=1,2,3

Notice that for simplicity we are setting to zero irreducible saturation values, so we
are neglecting the fact that the fluids become immobile at non-zero saturation.

From now on we restrict our study to one spatial dimension flows, by assuming that
the flow occurs uniformly in the vertical direction x, filling the entire porous medium. In
our convention, the gravitational force points to the positive z-direction.

The flux functions (including gravity) for the quadratic Corey model with permeabil-
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ities in (2.19) are

uf uj u

Fy(uy, ug,u3) = —(Oé + —p13 + _,012>/A(u1>u2a u3), (2.20)
H1 K3 K2

Fy(ur, ug, u3) = —(a + —pa23 + —/321)/A(U1,U2, us), (2.21)
M2 H3 H1
uj ui uj

Fy(uy, u, us) = — (o + —ps1 + —=ps2) [A(uy, ug, ug). (2.22)
M3 H1 H2

As uz = 1 —uy —us, we drop the equation corresponding to phase 3 and rewrite the 2 x 2
system (2.18) for this model (in one dimension denoted by z):

ou o]
S+ =P (ug,u
{ ot oz 1( 1 2) (223)

=0
% + ((%Fg(ul,’l@) = 0,

with flux functions Fi, F; given by (2.20)-(2.21), which have « as a parameter.

2.4 The saturation triangle

In order to study the Riemann solution for three-phase flow with gravity for the Corey
model, we need to perform all the calculations in the space of saturations. We define the
saturation triangle as follow

T={(u,u) ER*: 0<uy <1, 0<up <1ug+up <1} (2.24)
a useful alternative definition would be
T ={(u,ug,uz) ER*: 0<u; <1, i=1,2,3, andug=1—ug — us} . (2.25)
We will use any one of the above expressions for the saturation triangle according to the
situation.
The interior of the saturation triangle in the context of (2.25) is
T={UeT:u;#0 i=1,2,3}. (2.26)
The point of maximum saturation for phase ¢ is the vertex of the triangle denoted by
Vi={UeT : u =1}. (2.27)

The two-phase edge opposite to V;, which does not include the phase 7, will be denoted
by
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For each phase i, let 5,k € {1,2,3} be the indices of the other two phases; we define
Ri:{UET:ﬂ:%,j%k}, (2.29)
Hi Mk
where p;, 1, are the viscosities of the phases j, k.
Notice that R; defined by (2.29) represents a segment starting from the vertex V; and

ending on the edge 0; at the point B;. The coordinates of the points B;, i = 1,2, 3, are
given by

— pp  _ps _ (B 7 _(_n 7
By = (0, u2+2us’ uzfus)’ By = (ul-l-lus’o’ Hl'sHS)’ Bs = (Ml-i-luz’ u1+2u2’0)' (2.30)

Remark 2.2. For the case j1; = py, we have that B; is the middle point of the edge 0;.

All segments and points defined above are displayed in Fig. 2.1

Figure 2.1: Saturation triangle for a case where all viscosities are distinct. Segments R;,
vertices V; and points B;



Chapter 3

(General bifurcation theory for Riemann
problems

In this chapter we recall some basic aspects of general theory for systems of conservation
laws and the theory of bifurcation of Riemann solutions, in order to provide the non-
specialist reader with a brief background on these subjects. Specialists should skip it.
Essentially we collect information from [21], |9], |20], |40], [45].

3.1 Riemann solutions for a system of conservation laws.
Lax conditions.

Consider the system of conservation laws
U+FU),=0 (3.1)

governing the evolution, in one space dimension, of a 2-dimensional state vector U(z, 1),
i.e., for each (z,t), U(x,t) € R? The function F : Q C R? — R? is called the flux.
The characteristic speeds for Eq. (3.1), i.e., the eigenvalues A=, AT of the Jacobian matrix
dF(U), are given by the formula

NE(U) = (1/2) (tr(dF(U)) + /Jtr(dF(U))2 — 4det(dF(U))> (3.2)

Definition 3.1. The system (3.1) is hyperbolic if \*(U) € R, VU € Q C R2.

In the hyperbolic region, where the characteristic speeds are real, we have the natural

ordering
AT(U) < AT(U), (3.3)

so we call A= the slow-family characteristic speed and A™ the fast-family characteristic
speed. The nonlinearity of I’ implies the dependence of the characteristic speeds on U;

13
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which leads, in general, to focusing of waves and the formation of discontinuous solutions,
so that Eq. (3.1) must be interpreted in the sense of distributions.

Remark 3.1. Sometimes we will denote by s and f (instead of — and +) the slow and
fast families, respectively.

Definition 3.2. Riemann Problem. A Riemann problem for the conservation law (3.1)
15 a special Cauchy problem with initial data

U ifae<0
U(O,x)—{ Uz >0, (3.4)

where Uy, and Uy are constant.

The general solutions of Eq. (3.1) consist of weak solutions that respect the invariance
of the equation under the scaling transformation (¢, z) — (ct, cx) with ¢ > 0. Such scale-
invariant solutions satisfy the initial conditions of the Riemann problem as well as the
PDE (3.1).

Conversely, solutions of a Riemann problem are expected to be scale-invariant, i.e.,
they depend on ¢ and z only through the combination £ = z/t. Although Riemann
problems are only special initial value problems, the solutions of the general Cauchy initial
value problem may be viewed as a nonlinear superposition of scale invariant solutions [11].

A scale-invariant solution can be partitioned into several groups of waves; the waves
in each group move together as a single entity. More precisely, we define a wave group
to be a scale-invariant solution that contains no intermediate constant states. Thus a
solution of a Riemann problem comprises a sequence of wave groups moving apart from
each other, as in Fig. 3.1(a). Wave groups are composed of two basic ingredients: centered
rarefaction waves and centered discontinuous waves, see Fig. 3.1(b).

Rarefaction
wave

Disconfinuity

Figure 3.1: Scale-invariant solutions. (a) Example of solution for a Riemann problem,
comprising a sequence of two wave groups. (b) A centered rarefaction wave and a centered
discontinuous wave.

A centered rarefaction wave associated with a characteristic family i (“—" or “+7) is
constructed using integral curves of the “differential equation”

U =ri(U), (3.5)
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where r*(U) is a right eigenvector of dF(U) corresponding to A*(U) in (3.2). We notice that
(3.5) is an ordinary differential equation only locally in regions where strict hyperbolicity
is satisfied, the sign and amplitude of r* are arbitrary. A rarefaction wave corresponds to
a segment of an integral curve along which A is nondecreasing; it is defined by inverting

the relation \'(U) = &.

A centered discontinuous wave is a jump discontinuity that propagates at speed ¢ and
separates two states U; and U,, where U, U, and o satisfy the system of two equations

_U[Ur - Ul] + F(Ur) - F(Ul) =0, (36)

called the Rankine-Hugoniot jump condition. By convention, U; is on the left side of the
discontinuity and U, is on the right side. In general, these states are different from the
states Uy, and Uy of the Riemann problem initial data. For a fixed Uj, the set of states U
such that the pair U, U satisfy (3.6) for some o comprises the Hugoniot locus, H(U;). The
Hugoniot locus H(U;) through U; can be constructed by finding the zero-set Hy, (U,0) =0
of the Hugoniot function Hy, : R? x R — R? defined by

Hy,(U,0) = —o(U—-U))+ F(U) - F(U)). (3.7)
The projection of this zero-set onto state space gives H(U,).

A very useful tool employed in this work is the Triple Shock Rule |22]|. Next we state
two distinct version of this result.

Triple Shock Rule (first version). For system (3.1), assume that the states Uy, Us
and Us satisfy Uy € H(Us), Uy € H(Us) and Uy € H(Uy). Then either Uy, Uy, Us are
collinear or else o(Usy, Uy) = o(Us, Uy) = o(Uy, Us).

Triple Shock Rule (second version). For system (3.1), assume that the states
Ul, Us and Us S(J,tZ'Sfy U, € H(Ul), Us € H(Ug) and O'(Ul,UQ) = O'(UQ,Ug) then Us €
H(Ul) and O'(Ul, U3) = O'(Ul, U2> = O'(Ug, Ug)

To avoid non-uniqueness of solutions of Riemann problems, the class of allowable dis-
continuous waves must be restricted. For systems of n conservation laws that are genuinely
nonlinear, Lax [28] introduced the admissibility requirement that the characteristics of one
family impinge on both sides of the discontinuity, while the characteristics of the other
families cross the discontinuity undergoing deflection. For more general conservation laws,
characteristics must be permitted to become tangent to the discontinuity, so we have the
following definitions for admissible shocks.

Definition 3.3. Slow-family and fast-family shock wave. We define a centered
discontinuous wave to be a (generalized) Lax discontinuity of the slow-family (slow shock)
provided that the characteristic speeds are related to the propagation speed as follow:

AN (U) <o <A (U), and o < X7 (U,). (3.8)
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where only one of the inequalities in (3.8) (a) is allowed to become an equality. Similarly,
we define a centered discontinuous wave to be a (generalized) Lax discontinuity of the fast-
family (fast shock) provided that the characteristic speeds are related to the propagation
speed as follow:

MU <o <A (U), and N (U) < o. (3.9)

where only one of the inequalities in (3.9) (a) is allowed to become an equality.

In certain cases we allow equalities in (3.8) or (3.9) to occur. They will be discussed
latter. Lax used the nomenclature 1-and 2-shock for slow and fast shocks.

If we adopt the admissibility criterion based on characteristics and assume that both
characteristic speeds are distinct, then any wave, i.e., rarefaction wave or discontinuity,
has an associated family. In this work we only consider solutions satisfying: (1) no slow
wave is preceded by a wave of the fast family; and (2) two waves of the same family must
belong to the same wave group. Therefore a solution of a Riemann problem can contain
at most 2 wave groups, a slow wave group followed by a fast wave group. These facts [30]
generalize the classical picture [11] in which a solution of a Riemann problem consists of
at most 2 shock or rarefaction waves, separated by constant states, where each wave is
associated with a distinct family.

In order to describe the Riemann solution we will use the notation found in Furtado [9].
Thus we will denote U; - U, to express the fact that U is connected to U, (on the right)
by an elementary wave of type w. The elementary waves types are denoted as follows.

Wave nomenclature

(a) R~ if the wave is a rarefaction of the slow family.

)
(b) R if the wave is a rarefaction of the fast family.
(¢) S= AN (U,) <o <A (U)) and 0 < AT (U,)
(d) ST i AT (U,) <o < AT (U;) and A~ (U)) < o
(e) CS™ it A (U,) <o =X (U) and o0 < AT (U,)
(f) CST if AT (U,) < o=\ (U).
(g) SC= AN (U,) =0 <A (U).
(h) SC* if AH(U,) =0 < AT (U}) and A\~ (1) < o
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1) C; it A U) =0 = A (U,).

(m) (GC)* if the wave is a genuine contact for the family 4, i.e., a wave on which
VAl =

Remark 3.2. Notice that discontinuities (c), (d) denote classical Lax shock of slow and
fast families respectively. The discontinuities (e), (f) denote shocks that are characteristic
at the left (i.e., with speed equal to a characteristic speed on the left), for both families,
and discontinuities (g), (h) denote shocks that are characteristic on the right. Finally
the discontinuities (i), (j) denote double contact discontinuities of slow and fast family
respectively, while (k) and (1) denote a double-contact discontinuity involving the two
families. Finally (m) denotes a genuine contact, this is a discontinuity travelling with
constant characteristic speed, see [47], [49].

Remark 3.3. For two-phase solutions we will use the same notation for the elementary
wave without using superscripts.

Lax original or generalized criteria, however, are sometimes overly restrictive and other
times too lax: a Riemann problem might have no solution or it might have many. We are
led to impose the admissibility criterion to require discontinuous waves to possess viscous
profiles, as described in the next section. This is the viscosity admissibility criterion. In
general, it is distinct from the characteristic criterion, since there exist Lax discontinuities
that do not have viscous profiles, while some discontinuities with viscous profiles are not
of Lax type, see [25]. The viscosity criterion, too, can fail to guarantee existence and
uniqueness of solutions of Riemann problems. In this work we construct solutions to
satisfy Lax criterion and after we verify that such solutions also satisfy the viscosity
admissibility criterion.

3.2 Viscosity admissibility criterion

Typically, Eq. (3.1) is an approximation to a system of the form
Ui + F(u), = e[DU)U, ], (3.10)

in the (singular) limit as ¢ — 0%. Here D is the viscosity matrix, which models certain
physical effects (such as capillarity effects in multiphase flow in porous media) that are
neglected in the model. We usually require that the eigenvalues of D(U) have positive
real part; this guarantees that short wavelength perturbations of constant solutions decay
exponentially in time. For more details, see Majda-Pego [31] and Azevedo et al. [3].

Physically realizable solutions of Eq. (3.1) are expected to be limits of solutions of
the parabolic equation (3.10). In particular, certain centered discontinuous waves arise as
limits of travelling wave solutions as follows. A travelling wave depends on ¢ and x only
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through the combination £ = (z — ot)/e, and it approaches limits U, and U, as £ — +oc.
Therefore Eq. (3.10) can be integrated once to obtain the associated ODE system

—o[U(§) = U]+ F(U(€)) — F(U;) = DU(E))U(€), (3.11)

where the dot denotes differentiation with respect to . Taking the limits of Eq. (3.11)
as & — +oo shows that U,., U; and o must be related by the Rankine-Hugoniot condition
(3.6), so that U, and U, are critical points for the ODE system. As e — 07, the spatial
region over which the solution makes the transition from U; to U, shrinks to a point at
x = ot. Consequently, the travelling wave solution approaches a centered discontinuous
wave. Thus a discontinuity is said to have a viscous profile when the system of ordinary
differential equation (3.11) has a connecting orbit flowing from U; to U,. It is natural to
regard a discontinuity as admissible only if it has a viscous profile; this is the viscosity
criterion for shock admissibility |7], [18], [10].

The critical points of a system of ordinary differential equations are crucial to its study.
For Eq. (3.11), a critical point is a state U, that satisfies the Rankine-Hugoniot condition
for the given state U; and the speed . For ODE’s, in the hyperbolic case the behavior of
solutions in the neighborhood of a critical point U, is reflected in qualitative features of
solutions of the linearization of Eq. (3.11) about U,:

[—o + F(U)|(U - U,) = D(U,)U . (3.12)

Such solutions are determined by the eigenvalues § and corresponding eigenvectors Uﬁ
that satisfy

[—o + F'(U.))Us = BD(U.)Us . (3.13)

For example, U = U, + Zg cg exp(ﬁf)f]g when the eigenvalues are distinct. Thus the
character of the critical point is determined by the eigenvalues [3.

As we are restricted to system of two conservation laws, (3.11) is a system of ODE’s
in the plane. A critical point is classified as an anti-saddle point (i.e., a node, focus or
center) or as a saddle point. Generically an orbit for the system of ODE’s connects either
two saddle points, two anti-saddle points or a saddle and an anti-saddle. In studies of
viscous profiles for shock waves the first step is to choose D as the identity matrix. For
this choice the eigenvalues at a critical point U, are 3; = \(U.) — 0,7 = —,+. A Lax
shock of the slow family has o < A7 (U;) < AT (U;) and A~ (U,) < o < AT(U,), so that
the critical points U; and U, of Eq. (3.11) are, respectively, a repelling node and a saddle
point. Similarly, U; and U, are, respectively, a saddle point and an attracting node in the
case of a Lax shock wave of the fast family. In summary, an admissible discontinuity of
Lax type corresponds to a saddle-node connection.
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3.3 The Bethe-Wendroff theorem

Away from primary and secondary bifurcation points, the Hugoniot locus is a curve and
it may be parameterized by a single variable. We use a superimposed dot to denote the
derivative with respect to this variable and let o(U) be the speed of the shock as U moves
along the Hugoniot locus. The following theorem gives an analytic description of the
qualitative behavior of o(U).

Theorem 3.1. (Bethe-Wendroff, see [52]) Consider the Hugoniot locus through a state
Up. Let U be a point on the locus and assume that (3.14) does not hold at U. Then
the following are equivalent: (a) ¢ = 0, (b) AX(U) = o(U) for some i. In this case,
N(U) —a(U) and 6(U) vanish to the same order. Also, the characteristic vector of the
1-th family is tangent with the same order to the Hugoniot locus.

Remark 3.4. The Bethe-Wendroof theorem can be stated for the composite locus too.

The Bethe-Wendroff theorem relates the monotonicity of the propagation speed along
the Hugoniot and composite curves to the admissibility of the shock waves, at points
where equality in the Lax entropy relations (3.8)-(3.9) holds with respect to one of the
characteristic speeds for U,. This fact makes Bethe-Wendroff theorem an important tool
in the construction of waves curves.

3.4 Bifurcation manifolds

Now we define certain 1-dimensional “manifolds” which play a fundamental role in the
wave curve construction in our problem in two unknowns. They are not genuine mani-
folds since they may have self intersections or other singularities.

The secondary bifurcation manifold consists of the states which do not satisfy the hy-
pothesis of the implicit function theorem; generically, the Hugoniot locus changes topol-
ogy at such locus. In general we know that locally through each state Uy there exist
two Hugoniot branches, each branch transversal to the other, so each Uy, is a primary
bifurcation.

Definition 3.4. A state U belongs to the secondary bifurcation manifold for the
family i (denoted by Bif, i = —,+) if there exist a state U’ # U such that

U € H(U) with \'(U") =o(U,U") and 1"(U)U —U) =0 (3.14)
where we have denoted by I'(U") a left eigenvector of the Jacobian matriz dF (U’).
Now we will define the inflection manifold; it is named by analogy with scalar conser-

vation laws. It is the manifold where genuine nonlinearity is lost, ¢.e., the eigenvalue does
not vary monotonically along a rarefaction curve near an inflection point.
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Definition 3.5. The state U belongs to the inflection manzifold for the family i (denoted
by Inf, i = —,+) if and only if

VA(U) -r'(U) =0 (3.15)
where we have denoted by r'(U) a right eigenvector of the Jacobian matriz dF(U).
Remark 3.5. Rarefaction curves stop at inflection manifold.

The following definition corresponds to the hysteresis manifold, which contains states

of a composite segment joined to the end of a rarefaction segment by a nonlocal shock
wave.

Definition 3.6. The state U lies on the Hysteresis manaifold for the family ¢, if there
exist a state U # U such that

UeHUY) with X(U)=a(U,U") and VX(U')-r(U) =0 (3.16)

where we have denoted by r'(U’) a right eigenvector of the Jacobian matriz at the point
U'.
Remark 3.6. Notice that such U’ in the definition of the Hysteresis must be on the

inflection manifold.

Definition 3.7. The state U belongs to the (i, j)-Double Contact manifold if there
exist a state U’ such that

U e HU) with N(U)=o(UU)=N({U, (3.17)
where the families i and j may be the same or different.
Remark 3.7. A shock joining such U and U’ is called a double-contact shock.

Remark 3.8. States on the Double Contact manifold can be junctions of composite and
rarefaction segments in wave curves. This is analogous with the scalar case, where a shock
happen to be embedded between two rarefaction waves, see Oleinik [34].

Definition 3.8. (Eztension of a point) Consider a state A in the saturation triangle. We
say that P is the extension of the point A corresponding to the family i, if Py € H(A)
and o(A, Py) = XN((PY); in other words, the shock joining the state A with the state P is
characteristic at Py for the family i.

Remark 3.9. One can define another extension, in which the shock is characteristic at

A

Because of the presence of the boundary of the physical region, another manifold plays
a role in the model problem, which we call an interior boundary contact and is defined as
the internal extension of the physical boundary.
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Definition 3.9. The state U belongs to the boundary contact manaifold for the famaily
i (or extension of the boundary), denoted by EY if there exist a state U’ such that

UeHU) with U on the boundary and N(U) = o(U,U"). (3.18)

Remark 3.10. A boundary contact wave occurs when a junction between wave segments
coincides with the boundary.

Remark 3.11. Notice that hysteresis manifold is the (suitable) extension of the inflection
manifold.

3.5 Wave curves

In this section, we describe briefly the concept of wave curve. A wave curve of the family
1, starting at the state Uy, is a parametrization of the states U in state space that can be
connected on the right hand side of Uy by an ¢-wave group, in other words a wave curve is
a parametrization of certain coherent sequences of invariant waves as points in the space
of possible states.

As we already said, in physical space, Riemann solutions consist of sequences of rar-
efaction fans, discontinuities and constant states. In the cases studied in this work, these
elementary waves are grouped into waves that belong either to the slow-family or the
fast-family. These solutions obey the geometrical constraint that speeds in physical space
increase from left to right.

Wave curves in this type of problems (in which strict hyperbolic and genuine nonlin-
earity fail) differ from classical wave curves in several respects, see [30] and [34]. First,
they are represented in state space by three types of elementary segments, consisting not
only of shock curves and rarefaction curves as in the classical case, but also of composite
curves, which represent shock waves adjacent to rarefaction waves. The final state U of a
composite curve satisfies

UcHU) with X(U') =o(U,U),

where U’ traverses a rarefaction segment. Second, in each wave curve there are many
such elementary segments. Each elementary segment must stop whenever its wave speed
attains an extremum, and the type of elementary segment that follows is determined by
simple rules. Third, since Hugoniot curves possess nonlocal (i.e., detached) branches,
wave curves also have complicated shapes; e.g., they may have disconnected parts or
branching points, see [20].

The continuation rules for wave curves are justified by the Bethe-Wendroff theorem,
as applied to determine the qualitative behavior of the wave speed along a wave curve.
This analysis is conveniently performed using wave speed diagrams, which generalize to
systems Oleinik’s convex envelope construction for scalar conservation laws [34]. Using
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these techniques, the stability of waves curves with respect to perturbations of the left
state can be established [9)].

A typical wave speed diagram is shown in Fig. 3.2(b). The horizontal axis corresponds
to a parametrization of the wave curve, and the vertical axis is speed. The solid lines are
the two characteristic speeds, while the dashed (resp. crossed) curves are the propagation
speeds of shocks waves (resp. composite waves). The particular example shows the speeds
for the fast-family wave curve starting at a state Uy in the interior of the saturation
triangle, for the simplified pure gravitational problem (o = 0, p; = ps > p3). Near
this state the curve consists of rarefaction and shock waves, as usual. The rarefaction
segment ends when the characteristic speed reaches a maximum, where the wave curve
continues through a segment of composite waves. Points on the composite correspond
to points on the rarefaction at the same speed; these points which work back along the
rarefaction segment, are indicated by dots. The composite segment ends when its speed
coincides with the faster characteristic speed on the right, and is followed by another
rarefaction segment, whose speed eventually maximizes, leading to another composite
segment. This composite segment ends when the corresponding rarefaction points have
reached the beginning of the segment; then the wave curve continues with a new composite
segment based on the previous rarefaction segment. Finally this last composite wave ends
when the speed coincides with the fast-family characteristic speed on the left, where the
wave curve becomes a shock segment.

The wave curve corresponding to the wave speed diagram is shown in Fig. 3.2(a).
Again, solid, dashed, and crossed curves represent rarefaction, shock, and composite seg-
ments respectively.

>N

Uj

/, \\ .
x % o

// \\ o X *

/ o Edad \/

(a) (b)

Figure 3.2: Example of wave curve for the case « = 0, p; = ps > ps3. (a) Fast-family wave
curve through Up. (b) Wave speed diagram.
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3.6 Hyperbolicity, umbilic and quasi-umbilic points

3.6.1 Loss of strict hyperbolicity

The system of conservation law (3.1) is strictly hyperbolic if the Jacobian matrix dF'(U)
has real and distinct eigenvalues for all U in state space.

The hyperbolic character of the system of conservation law can be lost in different
ways, so we define:

Definition 3.10. A point U = (uy,us) is called a coincidence point for the flux F if
the eigenvalues of the Jacobian matriz dF coincide at this point, i.e., if A= (U) = AT (U).

Definition 3.11. We say that a coincidence point U* = (uf, u}) is an umbilic point of
the PDE system (with flow function given by F), if it satisfies the following conditions

(H1) dF(U*) is diagonalizable.

(H2) There is a neighborhood V of U* such that dF(U) has distinct eigenvalues for all
vev-U.

Remark 3.12. If there exist €) region where the eigenvalues are complex conjugate, this
region is called "elliptic region”.

Definition 3.12. We have the following definitions:

(i) We say that a coincidence point U is a quast-umbilic point if the condition (H2)
holds but (H1) fails.

(i1) We say that a coincidence point U belongs to a diagonalization curve if there
exists a curve through U along which condition (H2) fails but condition (H1) holds.
If such curve is a line, we call it as diagonalization line.

Remark 3.13. Quasi-umbilic points and diagonalization lines seem to have been charac-
terized for the first time in this work.

3.6.2 Hyperbolicity analysis.

Schaeffer and Shearer [40] classified umbilic points for the general 2 x 2 system of conser-
vation laws, by means of a local analysis of the quadratic form arising from the Taylor
expansion of the flux function in a neighborhood of the umbilic point. This analysis is
possible only if hypotheses H1 and H2 hold. They also presented in |40| some ideas
that will help us in performing an hyperbolicity analysis and determine the umbilic and
quasi-umbilic points of the system of conservation laws. In the following we summarize
the main ideas.



24 CHAPTER 3. General bifurcation theory for Riemann problems

For a real 2 x 2 matrix M let us define

1
devM = M — §(trM)I (3.19)
as the projection of M into the space of trace-free matrices. In (3.19), dev is known as
the deviator operator. The deviator of a matrix M retains all information about multiple
eigenvalues. We Introduce coordinates on the (three dimensional) space of trace-free
matrices by the formula

(3.20)

B X Y+ Z
devM—(Y_Z _x )

In other words, X,Y, Z are the coordinates associated with the basis of 2 x 2 matrices

1 0 01 0 1
0 -1 )7\10)/)"\ -1 0)
Now we have an important result for the deviator of a matrix M proven in [40]:

Proposition 3.1.

(i) M has equal eigenvalues and is diagonalizable if and only if devM = 0.

(i) M has distinct real eigenvalues, coincident real eigenvalues, or complex conjugate
eigenvalues according to whether (X,Y, Z) lies outside, on the surface of, or inside
the cone X2 +Y? = 72, respectively.

Remark 3.14. This proposition follows from the fact that the characteristic polynomial
for (3.20) is A2 — X2 —Y? + Z? = 0.

Application of the deviator operator to the Jacobian matrix

We can consider the mapping dev dF' (deviator of the Jacobian Matrix of the system
of conservation laws (3.1)) from the U-plane into the space of trace-free matrices given
by U +— (X,Y, Z); geometrically, this mapping defines a surface in R3. Condition (H1)
implies that all the umbilic points are mapped into the origin, the vertex of the cone
X24Y? =72 Let be U* an umbilic point; since F is strictly hyperbolic on a punctured
neighborhood of the umbilic point V — U*, the image of V — U* must lie outside this cone,
i.e., in the open region {X? + Y? > Z?}. Assuming that this surface is nonsingular at
U*, Tt follows that the tangent plane lies in the region X? +Y? > 72,

The following result was also proved by Schaeffer and Shearer [40].

Theorem 3.2. Let U* be a coincidence point, condition (H2) is satisfied if and only if
the surface that is the image of R? by dev dF is nonsingular at U* and, the punctured
tangent plane at U* lies in the open region {X* +Y? > Z?}.
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Characteristic analysis

In this chapter we calculate the Jacobian matrix of the 2x2 conservation law system (2.23),
with flux functions given by (2.20)-(2.21). We calculate a formula for the characteristic
speeds. We present an exhaustive analysis of the conservation law in order to determine
where strict hyperbolicity fails; the analysis includes the cases in which two of the phases
have equal densities, for which the solutions have special structures.

4.1 Characteristic speed analysis

We will denote by dF or J the Jacobian matrix of the vector flux function (F;, Fy)T
corresponding to the 2 x 2 system given in (2.23). We write

O(F, Fy) (
8(u1,u2)

Jll J12

= oA+ B. 4.1
Jon J22) ad + (4.1)

We recall the definition of A; and A in Eq. (2.19). We will denote by A; the derivative
dA;/du; for i = 1,2,3. The matrix A in (4.1) is given by

o NA=AOA)Our)  —A(OA)Du,) 5

it is the part of the Jacobian matrix that represents the motion without gravity, and the
bir bi2

B = 4.3

( bt b (43)

is the part of the Jacobian matrix that represents buoyancy effects (which depend of the
densities difference between the fluids), with elements

matrix

25
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’ A1 A2 A, A — A1 (8A/8u1) Ag(aA/8U1>
b = Ay [(1 - X)pli’» + Xpsz] -\ [( ! A2 >P13 + TP&],
A1 (OA/Ou ASA — Ay (ON/Ou
by = Ay [%pm 4 22 /262 / 2)p32],
As(OA/Ou AA — A (ON/Ou
byt = Ay [%Pz:@ | /1\(2 / 1),031]’
’ A2 A1 A/ A — AQ(&A/@UQ) Al(aA/8U2>
bao = A, [(1 - K)pz?, + Kp31] — Ay [( 2 A2 >P23 + Tﬂsl]-
Thus we have for J in (4.1)
aujui  oudus  qugui o wgug wyudu?
J11:2< i Rt bt S 12,012+ 123Pl2—|—
Ha b2 Haps M3 a5 123 A4
i wud uny wPudus N g (44)
P13+ 5P13 — —5 P13 T /)32> /A%,
Hafafis H1ps Hips3 Hipafis
auduy  autus  ulu uugu?
J12=2(— 12 13 §2P12+ 123 oot
My fho Mty TR Hipafes
U2U2U3 U4U3 (45)
L2 P32 — ; Pls)/AZ,
Hifafis HiH3
auius  auius  uus uyuiul
J21=2(— 2 2 o+ ——2 S g
My fho Hafts  [1pey Hipafes
U2U2U3 U4U3 (46)
L P31 — 3 st)/AZ,
Hipapi3 Ha 3
auduy  oudus  ougui  uju uugu?
J22=2< 12y - 28 72 ;2,021 L2038 it
My fho M2ty M2 3 M1k Hipafes A7
Gy wd udus  wPudus N (4.7)
P23 5P23 — —5—pP23 + P31>/A )
Hafafis a3 Haft3 Hipafis

The formula for the characteristic speeds of equation (2.23) in terms of J in (4.1) is

- (Jin + Ja2) £ \/(Jll + J22)2 - 4(J11J22 - J12J21) (4.8)
= 5 . .

)\:I:

4.2 Hyperbolicity analysis

For Corey three-phase flow model without gravity effects, Marchesin et al. [20] showed
the existence of four umbilic points. Three of them are the vertices of the saturation
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triangle; there is also an additional umbilic point inside the saturation triangle. In the
rest of the triangle the system is strictly hyperbolic.

In this work (in the presence of gravity effects) we will split our analysis in two different
cases. In the first one the parameter « (the convection/gravity ratio) is equal to zero: we
call this case “the pure gravitational problem”, because the motion of the flow occurs only
as a consequence of gravitational buoyancy effects due to fluid density differences.

In the second case « is non zero. This problem presents different levels of complexity
depending of the value of a. For high values of o the behavior of this problem would be
similar to the case without gravity studied by Marchesin et al. in [20|, while for small
values of « (i.e, for predominant gravitational effects) the problem could acquire high
levels of complexity presenting features from both the pure gravitational problem and the
problem without gravity.

Applying the deviator operator (see definition in Eq. (3.19)) to the Jacobian matrix
dF, we obtain from (4.4)-(4.7) a parametrization for the surface dev(dF') in the three-
dimensional space of trace-free matrices with coordinates (X,Y, Z) given by (3.20). So
we obtain

dev(dF) = (X(ul,uQ),Y(ul,uQ),Z(ul,ug)), (4.9)

where XY, Z are given below, remembering that ug =1 — uy — us:

2 2 2 2 2 2
x=( + +

1 b2 M3 H2ft3 25 2) H2ft3 a3
4 2,2 2,2 4

ULu ULUSU ULUSU UL

1U9 P12 1UU3P12 1UU3013 1U3P13

R fi1afts fi1ftafts I (4.10)
_ uiuzp13 i uiuzuzp1y i uitgpr2 n UTULU3 P12 B '
T [i1 a3 113 p [i1 2t
_ uugu3pa3 _ UgU3 P23 U§U3/J23> /A2
Hiftafis Iy 115143 ’
v <aufu3 _auuj N aujuz  aujuy
a3 Ha b2 H2ft3 a2
uiuzp12 B utuauzpas B uTuZUz P23 B U%nglg_ (4.11)
[1iHe Mz i3 Hipapis [iHs '
_ u1lip12 B U usuz 3 B utuiuzpr3 B u;*u?,ms)/AQ
Ve Hipapi3 Hipafes [ 13 ’
g (au%u3 _aufuy | awui  ouug
Hapts Ha 2 a2 23
i U%?pm B uuzu3 P23 n utuzuz 1y B Ui‘ié3/713+ (4.12)
ik Hipafes Hipafes Hik3
1 U1U§1/J212 I u1u§u§p13 n U%Z?)P%)/Ag‘
Hifty Hifafes Ha 3
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4.2.1 Hyperbolicity analysis for the “pure gravitational problem”

Consider the “pure gravitational problem” (a = 0). First we analyze a simplified model in
which two fluids have equal densities while the third fluid has a different density. We call
this problem the “simplified pure gravitational problem”. In this section we take phases
1 and 2 as having equal densities while phase 3 has a different density; see Fig. 2.1 for
notation.

Proposition 4.1. Consider the “pure gravitational problem” where o = 0, p1 = py # ps,
and denote p = p13 = pag. Then the system (2.23) is hyperbolic on the saturation triangle
and all the coincidence points lie on its boundary. The vertex V3 is an umbilic point. The
entire edge 03 is a diagonalization line; also there exist two quasi-umbilic points Q1 € Oy,
Q2 € Oy. The system is strictly hyperbolic in the rest of the closed saturation triangle.

Proof. Substituting a = 0 and p = p13 = pa3 in equations (4.10)-(4.12) we obtain

| [uwudui o wqul | ujug o ujuz o Uiugui o ugls A2
X = + 2 2 2, o 2 /A
Hifofty  papty  H3fy o R3S Hap2fty o fl2fiy
4 2,2 4 2, .2 2,2
Hafes  Hiflefls RT3 Hif2fs Hapb2ft3
4 2,2 4 2, 22
Ul UUFU UTU U U
7— p(Vte S _ Uity _ MUl
Hafes  Hifops HiH3 H1H2f3

From (4.13) we have

Y+ Z=p U%U32<_ uy U_§_2U2U3>’
YA Ha H2 H2 (4.14)
u3u3 us  _ud _ujug '
PR I P S P

papizA? 2 H1 H1
We notice that (Y + Z)/p <0 and (Y — Z)/p <0, therefore

Y2-2*>0 VUET. (4.15)

Thus X2 4+ Y? > Z?% in T showing that there does not exist an “elliptic region”, in other
words, that the system (2.23) is hyperbolic in the saturation triangle.

In general it is known that Uj is a coincidence point for the characteristic speeds (see
Sec. 3.6.2) if and only if

X2(Up) + Y2(Uy) — Z*(Uy) = 0. (4.16)

From (4.15)-(4.16) we obtain the following necessary and sufficient conditions for Uy to
be a coincidence point:

(i) X(Up) =0, together with
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(i) Y(Uo) = Z(Uy) or Y (Uy) = —Z(Uh).

Now for Uy = (u?, u3, ul), using (4.14) we see that

0.0 .0 0.0 .0 0_ 0_
Y (uy, uy, ug) Z(uy, ug, uz) Uy =0 or ug =0,

4.17
Y (00, u0) = — Z(u®,ud,ud) < u® =0 or ul=0. (4.17)

We note that the edge 95 is mapped by dev(dF) into the vertex of the cone X2 +Y? =
Z?, therefore the entire edge 95, including the vertices V; and V5 of the saturation triangle,
is a diagonalization line according to Proposition 3.1 and Eqs (4.13).

For Uy out of the edge 93 we have two cases. If u > 0, u! = 0 we obtain two other
coincidence points on the edge d; by requiring that X (u,u3,u3) = 0. One of them is
the vertex V5 = (0,0,1), which is an umbilic point (notice that X(0,0,1) = Y (0,0,1) =

7(0,0,1) = 0). Define

alpi, py) = ——F—=—, Vi#] (4.18)
o iy
The other coincidence point
Q1= <0, alpz, pt3), 1 — alp, Ms)) (4.19)

is mapped by dev(dF') into the cone surface out of the vertex of the cone, so according
to Proposition 3.1, the Jacobian matrix dF'(Q;) is non diagonalizable. We know from
the above calculations that () is a boundary coincidence point, which is isolated if we
restrict our analysis to the saturation triangle. Nevertheless, in order to classify )
as a quasi-umbilic point, we prove that (); is an isolated coincidence point in a whole
neighborhood of @)1, so we extend our hyperbolicity analysis for points with a negative
first component, i.e., to allow infinitesimal “negative saturations” for phase 1. From
(4.14), we see that if a point U. # ()1 belongs to a sufficiently small neighborhood of
@1 (and therefore its first component u5 could be negative but it is close to zero) we
have that (Y(U.) + Z(U.))/p < 0 and (Y(U.) — Z(U.))/p < 0. Thus we obtain that
X2(U.)+Y?(U.)+ Z*(U.) > 0, concluding that @ is an isolated coincidence point. Thus
()1 is a quasi-umbilic point.

For the case u3 > 0, u) = 0 and u{ > 0 we obtain in a similar way the point on the
edge O,

Q2 = (a(:ulu 113), 0,1 — a(p, M3)>a (4.20)

which is quasi-umbilic point. ]

Now we have the following Proposition for the case in which the three phases have
distinct densities.
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Proposition 4.2. Assume o = 0, p1 # p2 # p3 # p1. Then the system (2.23) is
hyperbolic on the saturation triangle; all the coincidence points are isolated and lie on its
boundary. The vertices Vi, Vo and V3 are umbilic points. There exist three quasi-umbilic
points Q; € 0;, i = 1,2,3. The system is strictly hyperbolic in the rest of the closed
saturation triangle.

Proof. Medeiros [33] proved that for the Corey model including gravitational effects with
zero total flow speed, the system is strictly hyperbolic in the interior of the saturation
triangle. Now we will analyze hyperbolicity at the boundary of the triangle.

Setting = 0 in equations (4.10)-(4.12) we obtain the following relations

Yz — 2(%‘%2/)12 _ Ufuzu?g/)z:a _ U%U§U3P23 _ U1U3/?13>/A2 (4.21)
Hife2 Hapafts Hafafis T
2,,2 4 2,2
Vv g7 — _2<U1U2U3013 n U1U2f>212 | Whtaus,is U2U3,023>/A2 (4.22)
Hiftafis H1pts Hafafts /~L2/~L3
X_ 7 — <u1U§U§p12 N uw§p213 | Uiuzuzp U2U3,023 ) e (4.23)
Hipafes Hips Mz i3 [i2}13

If U = (0, @iz, 1 — ip) € Oy, from (4.21) we have Y (U) + Z(U) = 0. Thus Y2(U) = Z*(U)
and from (4.16) U is a coincidence point if and only if X (U) = 0. From (4.10) we have

Ay la(1 —dg)pay (1 — uy)® B 11_% .
XO) == Oy ) e

setting X(U) = 0 we obtain three coincidence points on the edge 0y, which are V5, V3
and () given in (4.19). According to Proposition 3.1, the points V5, V3 are umbilic
because for Vo we have X(0,1,0) = Y(0,1,0) = Z(0,1,0) = 0 and for V3 we have
X(0,0,1) = Y(0,0,1) = Z(0,0,1) = 0. The point @ is again quasi-umbilic because it
is mapped by dev(dF') onto the cone surface out of the vertex. The fact that () is an
isolated coincidence point follows from (4.21)-(4.22), since (Y (U.) + Z(U.))/(u5)*paz < 0
and (Y(U.) — Z(U.))/p2s < 0 for all point U; in a neighborhood of ¢ which imply that
X2(U) + Y*(U.) + Z*(U.) > 0.

For U = (i1,0,1 — iy) € 9y, from (4.22) we have Y(U) — Z(U) = 0 and therefore U
is again a coincidence point if and only if X (U) = 0, where

o (=) (=) Ay
= pps(A(0))? < M “1)7 "

as in the previous case three coincidence points are obtained: the umbilic points V;, V3
and a quasi-umbilic point Q)2 in (4.20) on the edge Os.

If U = (i1, 1—11,0) € O3, from (4.23) we have X (U)—Z(U) = 0, and X*(U) = Z*(U).
Therefore U is a coincidence point if and only if Y () = 0. From (4.11) we have

Ayl —dn)pie (1= i) B 12_1{’ .
YO == R ) -
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in this case, we obtain the umbilic points V7, V5. We obtain also a quasi-umbilic point ()3
on the edge 0s:

Qs = (a(p1, p2), 1 — a(p, 1), 0), (4.27)
where a(py, o) is given in (4.18).

4.2.2 Hyperbolicity analysis for the general gravitational problem

We analyze hyperbolicity when the convection/gravity ratio « is non-zero; even though we
will not use these results in the rest of the work. As we said earlier, the complexity of this
analysis depends on the value of a.. For values of || so high that the convection effects are
dominant with respect to the gravitational effects, the three vertices are umbilic points
and there exist an additional umbilic point U in the interior of the saturation triangle
(Medeiros [33]). For small non-zero values of |«a| (i.e., for predominant gravitational
effects) the problem, besides the four umbilic points will also possess quasi-umbilic points
at the boundary of the triangle. The following proposition summarizes these results.

Proposition 4.3. Consider the system (2.23) with o # 0, in the saturation triangle.
Then the following assertions are true:

(i) The vertices of the saturation triangle are umbilic points. In the interior of the
triangle the system is strictly hyperbolic except at the umbilic point U .

(11) Without loss of generality, consider the two-phase edge 0y where phases 2 and 3
coexist. Assume also ps > ps3, then there exists a quasi-umbilic point Q1 € 0y if and
only if « lies in the interval (—%” <a< %3) The system s strictly hyperbolic in
the rest of the edge 0.

(111) In the case py = ps all points on the edge 0y are strictly hyperbolic, except for the
vertices Vo, V3.

Remark 4.1. As phases 1,2,3 are arbitrary we can write items (i1), (iii) of Prop. 4.3
using any permutation of indices {1,2,3} obtaining analogous results for the other edges

Oy and Os.

Remark 4.2. Notice that in the case o # 0, when py = p3 we have strict hyperbolicity
on the edge 0, except for the vertices Va, V. This behavior differs from the simplified pure
gravitational case, where 0y is a diagonalization line (see Prop. 4.1 with the indices 1 and
3 interchanged,).

Proof. (i)- It is obvious that the vertices Vi, V5 and V3 are umbilic points since

X(V)=Y(Vi) = Z(V) =0, i=123
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The existence of the interior umbilic point U} and the strict hyperbolicity of the remaining
interior points for the case a # 0 was proved by Medeiros [33].

(77)- From equations (4.4)-(4.7) we obtain that the characteristic values at a point
U € 0, are

AU) = 0, (4.28)

us(1 — u us (1 —uy)?

MN(U) = 22(7;)@——2 + u)ng + a>. (4.29)
prapiz A H2 H3

Here the eigenvalues A and A* are not associated to specific families since A* could be

positive or negative. The important fact is that U € 0; will be a coincidence point if and

only if A*(U) = 0; this occurs on this edge at the vertices V5, V3 and at the intermediate
point Qf

QF = (0,g0. 1~ qu), where g solves (q3/s — (1= ga)*/ps)pas = 0. (4.30)

From (4.30) we have that Q¢ € T if and only if

B 6P (4.31)

Now we will prove under condition (4.31) that Q% is a quasi-umbilic point. As in Propo-

sition 4.2 using Eqs. (4.10), it is possible to show that Qf € 9, is an isolated coincidence

point. Next we will prove that it is not an umbilic point, by contradiction. Assume that
¢ is an umbilic point, then necessarily X (Qf) =Y (Q$) = Z(Q$) = 0.

From (4.11) we have that

v(Qp) = =) ( _ a2 (4.32)

[i24t3 12
where A is evaluated at Q.

Equations (4.30) and (4.31) imply 0 < ¢, < 1, so we have from (4.32) that a =
q2pa3/ 2. Substituting this value into the definition (4.30) for ¢,, we obtain

oy _ g = L= 0a)" (4.33)

2 3

The fact 0 < g, < 1 contradicts (4.33). We conclude that Qf is a quasi-umbilic point

because ()Y is an isolated coincidence point that is not mapped to the vertex of the cone
X?24Y?2 =272

(i73)- For the case py = p3 we can see from (4.10)-(4.12) that for U in 0,

X(U) = —ou2us /A2 y/([) = S8 /A2 7([]) = — 2835 /A2 where A = A(U).

12143 23 213
(4.34)
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If U is not a vertex we have from (4.34) that X(U) is non-zero. We also have
Y(U) + Z(U) = 0, therefore X?(U) + (Y?(U) — Z*(U)) > 0. We have obtained the
strict hyperbolicity of the system on the edge 0; except at the vertices V5 and V. U

The following theorem describes the edges as integral curves that change family when
crossing the quasi-umbilic points.

Theorem 4.1. Consider the system (2.23) for any value of o, in the saturation triangle.
Assume that ps # ps and that (4.31) holds, i.e., the quasi-umbilic point QY € 0y exists.
We have the following facts along the edge 0. Analogous facts are true along Oy and Os.

(a) The single right eigenvector at Qf has the direction of the edge 0.

b) Away from the vertices Vs, V3 and the quasi-umbilic point QF on Oy, the right eigen-
( 1 g g
vector corresponding to one of the families is parallel to 0y, while the eigenvector for
the other family is transversal to 0.

(¢) Consider a point U in the edge 0y. Let us move the point U along the integral curve
that coincides with the edge. There is a change of family when U crosses the quasi-
umbilic point Qf.

(d) For U out of the coincidence points on 0y, one of the characteristic speeds is equal
to zero while the other one is non-zero. The family of the zero-characteristic speed
(resp. mnon-zero characteristic speed) changes according to the position of U with
respect to the quasi-umbilic point Q.

All this facts are illustrated in e.g., Fig. 9.1.

Proof. Without loss of generality we assume that ps > p3. If (4.31) holds we guarantee
the existence of the quasi-umbilic point Qf € 0.

Consider a point U € 0;. From (4.4)-(4.7) we obtain Jy;(U) = 0, J12(U) = 0 and the
eigenvalues of the Jacobian matrix at this point are given by (4.28) and (4.29).

(a)-Let us denote by 7*(U) the right eigenvector associated to the eigenvalue \*(U).

We have
e = (3 ) (46 =

Since \*(U) and Jo1(U) do not vanish simultaneously along 9y, we obtain r;(U) = 0 for
all U € 0; and therefore the eigenvector 7*(U) has the direction of the edge d;. For the
particular case U = Qf we conclude the result of item (a).

(b)- We already proved that for U € 0; the eigenvector associated to the eigenvalue A* is
parallel to the edge 9. If U # Q% we denote by r°(U) the right eigenvector corresponding
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to the zero eigenvalue. We have

100 =ty ey ) (o) ) =0

Out of the quasi-umbilic point \* # 0 so we obtain that r¥ must be different from zero
and r§(U) = Jy (U)r)(U)/N*, concluding that the eigenvector r(U) is transversal to the
edge 0.

(¢)- From the calculations above we have that the right eigenvector r* associated to the
non-zero eigenvalue \* has the direction of the edge 9;. But notice that for the eigenvalue
zero we have

_ _ ] ATU) iU € [V, Q1]
0= ={ 30 v e hean 3
while for the non-zero eigenvalue
cny = § AU) <0 iU € (V2,QF)
r) = { NHU) >0 iU € (Vi Q) (4.56)
so we have U) iU € (Vo0
* _ T 1 € 2 (1x
O ={ 1) e on 437
reflecting change of family along the edge 0, when crossing Q.
(d)-The proof of this item is a consequence of Eqs. (4.35)-(4.36). O

Now we give an implicit formula for the umbilic point U given in Prop 4.3, item (7).
Requiring that X (U}) = Y(U}) = Z(U%) = 0 at U7, the following relations hold

a(Ay — A) + [A1Aypar + (AoAy + ASAs)pas + A1 Aspis] = 0, (4.38)
(A} — A3) + [AoA pro + (A A5 + A As)pis + AaAypas]) = 0, (4.39)
a(A] — AY) + [ATAspis 4+ (A2A] + ASA1) pro + AjAsps0]) = 0. (4.40)

Remark 4.3. Equations (4.38)-(4.40) represent curves crossing the umbilic point U;
only two of these equations are independent; any one of them can be obtained from the
other two by a simple addition or subtraction. The umbilic point U} is the intersection
point of any pair of curves given implicitly by (4.38)-(4.40) inside the saturation triangle.



Chapter 5

Two-phase behavior in the pure
gravitational problem.

In this chapter we study two-phase flows occurring in the pure gravitational problem,
in which a = 0. We recall the well known features of the two-phase flows restricted to
the edges 0;. It is known that the Riemann solution for two-phase regime is obtained by
the Oleinik construction. A new result of interest is obtained for the pure gravitational
problem simplified so that two fluids 7 and k have equal densities; we show that within
the triangle there is a straight line segment R; through the vertex V; (see definition in
(2.29)), where the three-phase problem behaves like a two-phase flow.

The results presented in this chapter will be very useful for the analysis of Hugoniot loci
in the chapters that follow and for the construction of Riemann solutions for three-phase
flow.

5.1 Two-phase flow on edges of the saturation triangle

Without loss of generality we will study the two-phase flow on the edge 0s. To fix ideas,
let us assume p; # py. We notice that on 0 the system (2.23) reduces to the scalar
equation

ou 0 5 u? (1 —uy)?
Oty R =0, where Py = — 90" )
x M1/~L2(M—1+ 1 )

is a scalar flux function.

Remark 5.1. Because of Remark 2.1, since o = 0 (and consequently v = 0), we see that
F2(uy) = —F%(uy), so the choice F*(uy) and uy or F(uy) and uy as the two-phase fluz
function and conserved quantity along the O3 edge makes no difference. In other words,
we can use any one of the PDE’s: (uq); + (Ff?’(ul))m =0 or (ug); + (F2‘93(u2))m = 0.

35
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We can calculate the derivative of this flux function,

AFP (ur)  —2pioui (1 — ug) Puy)

— 5.2)
u? —u1)2\2 "’ (
duy JBY) (u_i + %)
where I " " I
Plup) = 1+—1u3—3—1u2+3—1u——1 5.3
(1) ( M2)1 ,Uzl ,Uzl L2 ( )

is a cubic polynomial. We will show this polynomial has only one real root. Indeed
with the change of variable ¢ = u; — ju1 /(g1 + p2) we eliminate the quadratic term for
polynomial P, obtaining a new cubic polynomial in ¢ of the form

¢+ pC+q, (5.4)
with
S i 3 % )2 %
H2 H2 2
(1+122)2 ((1+%)) (1+% 1+

If we consider the discriminant A = (4p3 + 27q2), it is known from elementary algebra
that if A > 0, the polynomial (5.4) in ¢ has only one real root. In our case we see that
A > 0 since all the quantities involved in the expression for p in (5.5) are positive. Is easy

to see that u; = 3/ %/(1 + 3 %) is the unique root of the cubic polynomial P, so we can

rewrite the derivative of the flux function on the edge 03 as follows
dF183(U1) . —2p12u1(1 — ul)(ul — ﬂl)p(ul)
J = , (5.6)
Uy

o (A + U=tal)?

where P(u;) has no real roots.

Assume that p; > po. We notice that the flux function Fl83 (u1) has only three local
extrema in the interval (0, 1), one of them a local maximum at 41 (minimum if p; < py)
depending on the viscosities p; and g, and two local minima (maxima if p; < py) at the
end points u; = 0,u; = 1, therefore the flux function has only two inflection points in
this interval. The plot of F (u;) for a non-symmetrical case is shown in Fig. 5.1(a).

Remark 5.2. Notice that the point of local mazimum (minimum if p; < ps) for the two-
phase flux Fl83 (u1) coincides in the saturation triangle with the quasi-umbilic point called
Q3. For the symmetrical case where py = ps we have up = 1/2.

Because of Remark 5.1 we have that the plot of F{*(uy) is like the Fig. 5.1(b).

Remark 5.3. We must regard this two-phase problem as a particular case of the general
three-phase flow, in this sense, we can say that local extrema for the scalar function F183 (uq)
correspond to all coincidence points on the 03 edge; because of item (c) of Theorem (4.1)
the two sides of the edge O3 relative to the coincidence point Q3 are identical to integral
curves for different families. Similarly the derivative of the two-phase flur function Fl83
coincides with the characteristic speed of the fast (slow if p1 < pa) family in the interval
(Va, Q3) and with the characteristic speed of the slow (fast if py < p2) family in the interval
Q2. VA).
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0.02 T T T T 0
0.018 1 -0.002 -
0.016 - 1 -0.004 -
0.014 1 -0.006
0.012- 1 -0.008 -
0.011 1 -0.01f
0.008 - 1 -0.012
0.006 - 1 -0.014
0.004 - 1 -0.016
0.002 1 -0.018

() ! : ! ! -0.02

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
bt
(a) (b)

Figure 5.1: For both cases ji; = 1, pup = 0.5, pyz = 0.7. (a) Two-phase scalar flux F} (u,).
(b) Two-phase scalar flux F2 (uy).

If both left and right states of the Rieman problem lie on the 03 edge, the solution
of the Riemann problem is the well known Oleinik solution [34] for the Buckley-Leverett
equation (5.1) with flux function shown in Fig. 5.1(a).

5.2 Two-phase flow for the simplified pure gravitational
problem.

Now, assume p; = ps # ps. If we restrict the system (2.23) to the 03 edge, with v = 0, all
components of the flow function are identically equal to zero, and the system reduces to

8Ui
ot
The wave joining any pair of states on the edge d5 for this case is an immobile “genuine”

contact discontinuity (the speed o is equal to zero). Along the other edges the solution is
the Buckley-Leverett solution as described in the previous section.

=0, i=1,2 (5.7)

Two-phase flow along the critical line

Now we will show that when p; = p, the system (2.23) restricted to the segment Rg
(see Fig.(2.1)) behaves like a two-phase flow problem too. We call the segment Rj for this
simplified problem the “critical line”. We have the following theorem

Theorem 5.1. Assume o« = 0, py = pa # p3 and denote p = p13 = pog. Let Uy and
Ur be states on the critical line Rs. The Riemann solution U(x,t) satisfies uy(z,t)/p =
us(x,t)/ e for all t,z (i.e., the solution remains on Rz for all times). The Riemann
solution consists of waves solely from the slow family if p > 0, and solely from the fast
family if p < 0.
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Proof. Following Azevedo et al. [1], we can parameterize the line segment Rj3 in terms of
the saturation of phase 3

(1 —ug) " (1 —ug)
— Uy =
M1+ 2 1+ po

Rg,:{(ul,ug):ul ,OSUgSl} (58)

Using this parametrization of Rs and the expressions for the flow components (2.20)-(2.21)
we obtain that along segment R3

w2  (1-u)?

F P F
1 ((’f:;)‘j)z ’“;2 = —2, where uw =1 — us. (5.9)
H 13 + p1tp2 2

Now we define the following function of the variable u along Rj

u2 (1—“)2

F E: Tt
Fia(u) = (1 +M2)M_1 = (m +M2)M_z = W (5.10)

2
1 _ur
3 + p1tp2

If we substitute the parametrization (5.8) of the segment Rj into the system (2.23)
we obtain that on R3 both equations of the system reduce to the scalar gravitational
Buckley-Leverett equation

ou 0

with the flux Fj5 given by (5.10). We conclude that along the critical line R3 the quantity
u (remembering that u = 1 — ug = u; + ug) is conserved according to (5.11). So the
critical line Rg is invariant under the evolution governed by system (2.23). In this sense,
we can say that along R3 the behavior of the fluid is like two-phase flow, with phases:
(phase 1 “+” phase 2) and (phase 3). Compare the scalar conservation law (5.11) and the
“flux” function Fio defined in (5.10) with the conservation law and the corresponding flux
function Fl‘93 in (5.1) . Notice that the function Fjs has exactly the same expression as
Fl83 but with viscosities ug instead of ps and py + po instead of p;.

In order to prove the second part of the theorem we will assume that p > 0 ( then the
case p < 0 can be regarded as a direct consequence of Theorem 8.1).

Assuming that p > 0 we will show that the entire segment Rj3 is an integral curve of
the slow family. From (4.8), we have that in each arbitrary point U the characteristic
speed of the slow family is given by A=(U). We denote by r=(U) = (r; (U),r; (U))T the
right eigenvector associated to A~ (U). We have that

(DF(U) =X (U)])r—(U) =0, (5.12)
more specifically

[J1(U) = A= (U)]ry (U) + Jio(U)ry (U) =0, (5.13)
Jon(U)ry (U) + [Jaa(U) — A (U)]ry (U) = 0. (5.14)
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We will assume that U is an interior point of the saturation triangle, then from (4.5)-
(4.6) we have Jy5(U) < 0, J2;1(U) < 0, so we obtain from (5.14) that

A (U) = Jos(U)] 75 (U)
Jo1(U)

rT(U) = (5.15)

If we substitute (5.15) into (5.13) we see that (5.13) is satisfied trivially.

Since r~(U) is an eigenvector, from (5.15) we have r; (U) # 0. Thus we can assume
without loss of generality r5 (U) = 1 and r; (U) = 222920 et us caleulate r; (U),

. : . 72 0)
more details appear in Appendix A.

We can write

) = Jog — Ji1 + \/(J22 - J11)2 +4J12J2

Joo(U) = A" (U 5

(5.16)

Assume now that U € Rs. From (4.4)-(4.7) we obtain after some calculation the
following relations

3
P2/ ) ususp
In(U) = _2% (5.17)
wlu
JalU) = (V) = 22585 (1= ua/m), (5.18)
1
u6u2 2
Jio(U) oy (U) = 4(”22’% Kﬁ”, (5.19)
then i i
In(U) = A~ (U) = == Jn(U) = r{ (U) = —. (5.20)
K2 H2

So we have proved that the eigenvector 7~ (U) has the direction of the segment Rj for
any U € Rs.

O

Remark 5.4. For a more general case in which o # 0, p1 = pa # ps, we can apply the
same procedure to obtain that on Rs the flow has again a two-phase behavior, but in such a
case the Riemann solution on Rs consists of waves of both families. This is a consequence
of the presence of the umbilic point U’ on Rz (see Lemma 6.4).

Remark 5.5. The fact that the solution behaves like a two-phase flow along segment Rs
was already observed in the problem without gravity (see [1]), therefore we can regard the
theorem above as a generalization of that result for the gravitational case in which two
fluids have equal densities.
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Remark 5.6. Notice that in the case without gravity the presence of the umbilic point in
the interior of the triangle again implies a change of family along the integral curve that
coincides with Rs, so the property that the entire segment R is part of an integral curve of
a single family holds only in the simplified pure gravitational problem (i.e., a = 0, p1 = pa).



Chapter 6

Hugoniot loci for vertices in the generic
problem

This chapter summarizes the analysis of the Hugoniot loci of the vertices Vi, V5 and Vj
for the general case in which the velocity parameter o has an arbitrary value. In other
words, convection and buoyancy are both active. The results have an important role in
the solution of the Riemann solutions with data for > 0 corresponding to a vertex of
the saturation triangle. Nevertheless, as in this work we only solve Riemann problems for
the “pure gravitational” case (« = 0), it is sufficient to use the results in Prop. 6.1 and
Prop. 6.3, the rest of the chapter can be skipped.

We want to study the Hugoniot locus for the three vertices of the saturation triangle.
Without loss of generality we can analyze the Hugoniot locus through the point V5. We
will consider the 2 x 2 system of conservation laws (2.23) that originates from dropping
the equation corresponding to the phase 3 in the equations for Corey model with flux
functions (2.20)-(2.22). If we employ the system of coordinates given by saturations of
phases 1 and 2 and use the definition of the saturation triangle given in (2.24), we have
V3 = (0,0). We consider an arbitrary state U = (uy, us); the Rankine-Hugoniot relation
for a shock joining the state V3 with U is

Fl(0,0)—Fl(Ul,UQ):—O'(ul—()) .
FQ(O, 0) — FQ(Ul, ’L@) = —O'(UQ — 0), (62)

with o representing the shock speed.
Using the flux expressions (2.20)-(2.21) into (6.1)-(6.2) we obtain the following Rankine-
Hugoniot expression

u u u
our = —la+ (=213 + —pr12)] /A, (6.3)
H1 H3 M2
us = 2ot (B gy 1 U, /A (6.4)
OUuy = —= — — , :
? 2 2] % 251 2
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where A = A(uq, ug, uz) is given in (2.19). To obtain (6.3)-(6.4) we took advantage of the
fact that I} and F}, given in (2.20)-(2.21) vanish at V.

There are essentially two types of solutions for equations (6.3)-(6.4). One type corre-
sponds to two-phase flow. The other type corresponds to three-phase flow.

For concreteness, in order to analyze the two-phase flow solutions for (6.3)-(6.4) let
us consider fluids 2 and 3 (the case of fluids 1 and 3 is analogous), so assume u; = 0.
For this type of solution we are taking U € 0;, equation (6.3) is satisfied trivially for all
values of 0. The entire edge 0; of the saturation triangle belongs to H(V3). For a given
state on this edge U = (0, uz),us > 0, the speed of the discontinuity is determined from
(6.4) as

uz H2) 23
R (6.5)
=2 4 2
H2 13

Notice that for this case, the first equation of (2.23) is satisfied trivially, so the system
reduces to the scalar Buckley-Leverett equation (second equation of (2.23)). This type of
solution for Eqs. (6.3)-(6.4) is a two-phase discontinuity on the edge 0; (or on the edge
82, if Ug = 0)

Let us consider the case of genuine three-phase flow, i.e., assume u; # 0,uy # 0.
For this type of solution, U belongs to the interior branch of H(V3). We eliminate o in
(6.3)-(6.4), and obtain, for uz =1 — u; — uy

u u’ u? u u? u?
—2( + —3/)23 + —1p21) — —1(Oé + —3/)13 + —2012) =0. (6.6)
M2 M3 241 241 M3 2

As we already saw, both edges d; and 0y are trivial branches of H(V3). We define the
non-trivial branch of the Hugoniot locus of V5 as

H(V3) = {U € T, such that (6.6) holds} . (6.7)

This represents a curve through the vertex V3 given in implicit form. The speed o can be
recovered from any one of the equations (6.3) or (6.4).

Recall that A; and Ay are the mobilities of the phases 1 and 2 respectively (see the
definitions in (2.19)). Multiplying (6.3) by Ag, (6.4) by A; and subtracting the results
(notice that both A; and A, are different from zero for this type of solution), we obtain
after some calculations

o (A2u1 - A1U2) = A1A2p12. (68)

The above equation is a necessary condition that must be satisfied by any state U of
the non-trivial branch H(V3). This equation will provide interesting information. We will
split our analysis in two cases. First we analyze the case in which phases 1 and 2 have
equal densities.
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6.1 Three-phase flow with two equal-density fluids

Here we analyze the simplest case in which the density difference p;5 vanishes. Let us use
the notation P = P13 = P23-

Assume o # 0, so for U € H(V3) we obtain from (6.8) that necessarily Agu; = Ajus
and therefore w; /py = ua/ps (i.e., U € Ry (see Eq. (2.29) and Fig. 6.1). From (6.3)-(6.4),

we can see that condition U € Rj is also sufficient for U to belong to H(V3).

For the case 0 = 0, as we have u; # 0, us # 0, and p; = py we obtain from the
Rankine-Hugoniot conditions (6.3)-(6.4) that necessarily o + u3p/ps = 0; therefore if
0 < —aps/p < 1, there exists a segment parallel to d3, given by us = \/—aus/p that
belongs to H(V3) with speed o equal to zero. We are led to define

Cg:{ {UeT ug=\/—aus/p} if0<—aus/p <1,

0 otherwise.
Notice that we have proved the following result:

Proposition 6.1. Assume that p; = po, then the Hugoniot Locus of the vertex V3 is given
by H(‘/Qg) = 81 U 82 U R3 U Cgé See F’Lg 6.1.

v 5" o, Vi

Figure 6.1: Dark curves: Hugoniot Locus of vertex V3 for the case p1 = py when o # 0
with 0 < —aug/p <1

Remark 6.1. Notice that C9 = 93, so for the simplified pure gravitational problem (o =
0, p12 = 0) the edge O3 not only is a diagonalization line but it also belongs to H(V3) with
speed o = 0. This fact was expected because of the Triple Shock rule.

Remark 6.2. [t is well known (see [1]) that in the absence of buoyancy (i.e., p1 = ps =
p3), the straight line segment Rs is part of the Hugoniot-Locus of the point V3. So we see
that Proposition 6.1 is a generalization of that result for the case in which the phases 1
and 2 have equal densities while phase 3 has a different density.
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6.2 Three-phase flow with three different-density fluids

Now we will analyze the general case py; # 0 in which the curve H(V3) has a more
complicated shape (it is not composed by straight line segments).

We have the following lemmas.

Lemma 6.1. For a non-zero, 7:{(‘/},) intersects the edge O3 at a unique point P3. For the
case a = 0, H(V3) intersects the edge O3 at the vertices Vi and V5.

Proof. Let us consider uz = 0 in equation (6.6). First notice that when ps; = 0 the point
Bs with coordinates given by (2.30) is the unique solution of Eq. (6.6). For py; # 0, after
some calculations, we obtain

uz — (1+ a(p + pa)/par)us + vz por = 0. (6.9)

The solutions of equation (6.9) are

u§:1<(1+w)i\/(1+w)2_4%>_ (6.10)

P21 P21 P21

If (a/pa1) < 0, the solution u, is negative and has no interest, while the solution ug

lies in (0,1), therefore P3 has coordinates (1 — uj,uj,0). Performing a similar analysis

for the case (a/p21) > 0 we have uy as the unique valid solution of (6.9), giving rise to
Py = (1 —uy,u;,0). For the case o = 0, we obtain u; = 0 and ug = 1; therefore H(V3)
intersects the boundary 0; at the vertices V; and V5. O

Lemma 6.2. The intersection of 7%(‘/3) with the edges of the saturation triangle are
described as follows.

(i) (1) Consider p;5 = 0. We have:
(a) a =0 dy, C H(V3).
(b) o #0 & H(Vs) Ny = {Vs}.
(2) If p1s # 0 then (oyus/ps1) € [0,1) < 3NSg € H(V3) Ny such that S # V.
(ii) (1) Consider ps3 = 0. We have:
(a) a =08 C H(V3).
(b) a# 0« H(Vs) N oy = {Va}.
(2) If pas # 0 then (ous/psy) € [0,1) < 3NS5 € H(Vs) Ny such that S¢ # V.

Proof. We will prove only item (ii) since the proof of item (i) is analogous. First notice
that the vertex V3 = (0,0,1) € H(V3) N 01 N Jp. In item (ii) we are interested in the
intersections (out of V3) of the non-trivial locus H(V3) with the edge 0; so we take the
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limit when u; — 0 with ug # 0 in (6.6), we have U = (uy, us, u3) € H(V3) Ny if and only

if
2

O+ 2 pyy = 0. (6.11)
3

From (6.11) we see that item (4i.1) is trivial. If (aus/ps2) € [0,1) we obtain from (6.11)
that ug = \/aus/ps2 is an admissible saturation value and therefore the point

ST =(0,1- \/O‘M3/,032, \/Oéug/pgz) (6.12)
satisfies S¢ € H(V3) Ny with S¢ # Vi, concluding the proof of item (i4.2).

As we said before the proof for item (7) is analogous, specifically for (i.2) we will obtain
the point

Sy = (1= aps/pn, 0,V aus/ps), (6.13)

which satisfies S € H(V3) N dy with Sg # Vi. O
Remark 6.3. Notice that when |o| — 0 we have S¢ — Vy and S§ — V;.
Corollary 6.1. Assume p13 # 0, p23 # 0, (aps/ps2) ¢ [0,1) and (aps/ps1) ¢ [0, 1), then

~ ~

H(Vs) N oy = H(Vs) N0, = {Vs}.

Proof. This result is a direct consequence of items (¢.2) and (4:.2) of Lemma 6.2. O
Lemma 6.3. Assume p; # ps. We have the following assertions:

(i) 7:{(‘/3) does not intersect Ry at any interior point of the saturation triangle.

(ii) If U € H(V3) and U is not a vertex of the saturation triangle, then o(Vs,U) # 0.

Proof. Ttem (i) is a direct consequence of the necessary condition (6.8) for a state U to
belong to H(V3). Ttem (ii) will be also a consequence of (6.8) for states out of the edges
01 and 0. If U € 7:{(‘/3) No; for i = 1 or i = 2, then the conclusion follows from the shape
of the two-phase flux functions along the edges, see Fig. 5.1, and from the assumption
that U is not a vertex of the saturation triangle. 0J

We continue the study of 7:{(‘/3) given by (6.6) for the case p; # po. It is clear that
this curve contains the point V3. Depending of the parameter a a portion of this curve
may lie outside the saturation triangle.

Assume (o + pi3/p3) # 0, then we can apply the implicit function theorem for H(V5)
(equation (6.6)) in a neighborhood N (V3) of V3 = (0,0) (here we use the coordinates
uy, us in (2.24) for the saturation triangle), obtaining u; as function of uy, with slope

duy (o —fs)
T e ——— =’ 14
3(0&) dUQ (07 0) n (Oé ,2133 ) (6 )



46 CHAPTER 6. Hugoniot loci for vertices in the generic problem

The sign of T5(«) yields crucial information about the behavior of the local curve (6.6),
i.e., in a neighborhood of V3.

Corollary 6.2. If T5(ar) > 0 the local curve (6.6) crosses the vertex Vs, possessing a
portion inside the saturation triangle, so in this sense we say that 7%(‘/3) starts from Vs.
If T5(a) < O the local curve (6.6) crosses the vertex Vi and lies outside the saturation
triangle. In such a case we say that 7%(‘/3) does not start at Vs.

If T3(a)) = 0 the local curve (6.6) is tangent at Vs to the edge Oy. If the inverse of
T3(a) vanishes, the local curve (6.6) will be tangent at V3 to the edge Oy. In both tangency
cases either the whole local curve lies entirely outside the saturation triangle or one half
of the local curve lies inside the saturation triangle.

Remark 6.4. We note that for sufficiently large values of |a|, T3(«) is positive, therefore
the curve H(V3) starts from the vertex Vs, (i.e., it enters the saturation triangle).

Remark 6.5. As expected, lim T3(«) = pi/pe. This limit corresponds to the non-
gravitational case in which 7:l(V3) = Rj3.

Remark 6.6. Notice that the formula for T5(«) in (6.14) is given in a rectangular coordi-
nates system (uy,us). Nevertheless in most of the figures along the work we use baricentric
coordinates in the saturation triangle.

Since p; # po, if (o + p13/p3) = 0 we have (a + poz/p3) # 0, so we can apply the
Implicit Function Theorem to obtain uy as a function of u; in a neighborhood of V3.
Defining T3(«) as the inverse of the fraction in (6.14) it is possible to reach conclusions
analogous to Corollary 6.2 and Remarks 6.4, 6.5.

The following Proposition gives the qualitative behavior of the non-trivial Hugoniot
branch H(Vj3).

Proposition 6.2. Assume p; > py and o # 0, then we have the following assertions
(plotting the curve in (6.6) it is possible to obtain Figs. 6.2-6.6).
(i) When py > ps > ps

(i.1) If o > (psa/ps) or a < (psy/ps) we have that H(V3) is a connected curve that
starts at Vs and finishes at P3 € 03, without touching the edges 0, and Oy; see
Fig. 6.2,

(i.2) If 0 < a < (psz/ps) we have that H(Vs) is a connected curve that starts at a
point SY € Oy (S # Vi) and finishes at Py € 03; see Fig. 6.3.

(i.8) If (ps1/ps) < a < 0 we have that H(V3) is a connected curve that starts at
Sy € 0y (8§ # Vi) and finishes at P € 05; see Fig. 6.4.
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(ZZ) When pP3 = p1 > P2
(ii.1) If a < 0 or a > (psy/ps) we have that H(V3) is a connected curve that starts
at V3 and finishes at Py € 03, without touching the edges 01 and Oy; see Fig. 6.2.

(ii.2) If (ps1/ps) < a < (ps2/ps) we have that H(V3) is a connected curve that starts
at S§ € 0y (5S¢ # V3) and finishes at Py € 05; see Fig. 6.3.

(ii.3) If 0 < a < (psi/ps) then H(Vs) is a disconnected curve with two branches
V3-5% and S{'~P3 where S € 0y, S{ € 01, Py € 03; see Fig. 6.5.
(111) When py > pa > ps :

(iii.1) If @ > 0 or o < (ps1/ps) we have that H(V3) is a connected curve that starts
at V3 and finishes at Py € 03, without touching the edges 01 and Oy; see Fig. 6.2.

(iii.2) If (psi/ps) < @ < (psz/ps) then H(V3) is a connected curve that starts at
Sy € 0y (8§ # Vi) and finishes at Ps € 05; see Fig. 6.4.

(iii.3) If 0 > a > (psa/us) then H(V3) is a disconnected curve with two branches
V3-SY and S$—Ps, where S¢ € 0y, S € 09, Py € 03; see Fig. 6.6.

Figure 6.2: Dark curve: Hugoniot Locus of vertex Vs for items (i.1), (#i.1), (iii.1) of Propo-
sition 6.2

Proof. We will prove only item (i7), the proofs for items (i) and (#ii) are similar.

Assume p3 > p; > pe. We have py3 < 0 and p3 < 0, so for a < 0 or o > (p32/p13)
we have T3(a) > 0 and therefore the curve (6.6) crosses the vertex V3 with a local por-
tion inside the saturation triangle. Thus H(V3) starts at the vertex Vs. H(V5) finishes at
P; € 03 as we proved in Lemma 6.1. The fact that 7%(‘/3) does not touch the boundaries 0,
and 0y is a consequence of Corollary 6.1, concluding the proof of item (ii.1), see Fig. 6.2.
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V. v,
3 52

Figure 6.3: Dark curve: Hugoniot Locus of vertex Vs for items (i1.2) and (ii.2) of Proposi-
tion 6.2. Light curve: points satisfying the Rankine-Hugoniot relation but lie outside the
saturation triangle

Figure 6.4: Dark curve: Hugoniot Locus of vertex Vs for items (i.3) and (ii.2) of Propo-
sition 6.2. Light curve: points satisfying the Rankine-Hugoniot relation but lie outside the
saturation triangle

For (ii.2); see Fig. 6.3, we obtain T3(a) < 0, so the curve (6.6) crosses the vertex V3
lying outside the saturation triangle and H(V3) does not start at the vertex V3. We also
have

0 < (aps/ps2) < 1< (apz/ps1).

Applying items (7.2) and (ii.2) of Lemma 6.2 we see that there exists a unique S{ €
H(Vs) N9, with S¢ # V3 while H(V3) N &, = {V5}. The branch of the Hugoniot locus
joining S{" with vertex V5 “lies outside” the saturation triangle and has no interest, so the
curve H(V3) lying inside the saturation triangle starts at S and finishes at P; € 5 given
by Lemma 6.1.

For (ii.3); see Fig. 6.5, we have the condition 0 < a < (p31/p3) < (ps2/p3), here we
have T3(«) > 0 therefore H(V3) enters the triangle in a neighborhood of the vertex V.
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Vl

Figure 6.5: Dark curve: Hugoniot Locus of vertex Vs for item (ii.3) of Proposition 6.2.
Light curve: points satisfying the Rankine-Hugoniot relation but lie outside the saturation
triangle

Figure 6.6: Dark curve: Hugoniot Locus of vertex Vi for item (iii.3) of Proposition 6.2.
Light curve: points satisfying the Rankine- Hugoniot relation but lie outside the saturation
triangle

We can assume p3 > p; (notice that the case p3 = p; is trivial) so we obtain

0 < (aps/ps2) < (aps/ps1) < 1.

Again applying the items (i.2) and (ii.2) of Lemma 6.2 there exist two points S¢ € H (V)N
dy with S¢ # Vi and S¢ € H(V3)Nd, with S§ # Vi. The curve H(V3) has two disconnected
branches. The first branch starts at the vertex V5 and finishes at S$ € ;. The second
branch starts at S{' € 0 and finishes at a point P; € 03 given by Lemma 6.1. O

[t is possible to analyze the limit cases & — 0, & — (p32/p3) and o — (ps1/ps3) for
Prop. 6.2. As we want to solve the pure gravitational problem as a first step to understand
the influence of the buoyancy in the solutions of Riemann problem, in this work we will
analyze only the limit case a — 0.
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Notice that when oz = 0 we have that all three vertices belong to ?:K(V},) (see Lemma 6.1);
the following Proposition describes the other points of the curve H(V3).

Proposition 6.3. Assume p; > ps and a = 0. The following assertions hold:

(i) For any of the cases (p1 > p3 > p2), (p1 = ps > p2) or (p1 > p3 = pa) we have
H(Va)\{Vi, Vo, Va} = 0, therefore H(V3) = 0, U 0.

(ii) If ps > p1 > pa, 7:{(\/3)\{1/1, Vo, V3} is a connected curve joining the vertices V3 and
Vi (see Fig. 6.7(a)). This curve consists only of interior points of the saturation
triangle.

(iii) If ps < pa < p1, H(Va)\{V4, Va, V3} is a connected curve joining the vertices Vs and
Vo (see Fig. 6.7(b)). This curve consists only of interior points of the saturation
triangle.

Figure 6.7: Dark curve: Hugoniot Locus of vertex V5 for the pure gravitational problem.
(a) Case of item (i7) of Prop. 6.3. (b) Case of item (iii) of Prop. 6.3.

Proof. Ttem (i) is a direct consequence of Eq. (6.6) since all the terms involved are negative
quantities for all the cases mentioned.

In order to prove item (i), let us assume o < 0, then (a/py1) > 0. The intersection
point of H(V3) with the edge 05 is P3 = (1 — uy,uy,0), where uy is given by (6.10).
Notice that in such a case we have P; — V] when o« — 0.

~ Applying item (éi.1) of Proposition 6.2 for the limit case o — 07, we obtain that
H(V3) starts at V3 and finishes at V3, without touching the edges 0; and 0.

In the same way we can apply item (¢i.3) of Proposition 6.2 for the limit case o — 07;
we will obtain the same result, since S& — V;,5¢ — V5 (see Remark 6.3) and P; — V4.
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For this limit case notice that the branch S{ — P yields the point V5, while the branch
V3 — S¢ yields a connected curve starting at the vertex V3 and finishing at the vertex Vi;
this curve consists of interior points except for the vertices.

The proof of item (7i7) is analogous. O

Lemma 6.4. Assume o # 0. The unique interior umbilic point U} lies on the curve

~

H(Vs).

Proof. Let U’ be the interior umbilic point, then it must satisfy the equations (4.38)-
(4.40). For the quadratic mobilities (2.19) in the Corey model, Eq. (4.40) is

2 2 2 2

U1 U9 u1u ULu U3 U2 U2U

(—— =)+ [ —2pis+ (—=+——)pa — —2pas| = 0. (6.15)
M1 2 M3 Hifte  Hif2 a3

By regrouping conveniently the terms in Eq. (6.15) we obtain (6.6), concluding that for the
Corey model with quadratic mobilities, the umbilic point U} is contained in H(V3). O

We can state the following result.

Proposition 6.4. For a # 0, the unique interior umbilic point U} is the intersection
point of the non-trivial Hugoniot branches for the three vertices Vi, Vo and Vi, see for
instance Fig. 6.8.

Remark 6.7. The fact that the umbilic point U is unique for the Corey model including
gravity was proved by Medeiros in [33].

Figure 6.8: Hugoniot loci for the three vertices in the case p1 = py > ps, p1 > o and
0 < a < pag/p1. The umbilic point U is the intersection point of the three curves in the
saturation triangle.



Chapter 7

Hugoniot locus for edge points in the
pure gravitational problem

In this chapter we analyze the Hugoniot locus for states Uy, on the edges 0; for the pure
gravitational case, in which o« = 0. Here U, will not be a vertex of the saturation triangle,
as this case was analyzed in the previous chapter. In the first section we present a new
method based on a geometric construction to obtain shocks joining states on different
two-phase regimes, provided that these regimes have a common state forming a wedge.
This construction does not depend on the permeabilities, so it is applicable for general
permeability models. In the second section we consider the case where Uy lies on an
edge corresponding to equal-density phases. In third and fourth sections we describe the
Hugoniot locus for the remaining cases. The results of this chapter will be very important
for the construction of the Riemann solutions described in Chapters 9 and 10.

Without loss of generality we will analyze the Hugoniot locus for the edge 0o, which
represents mixtures of phases 1 and 3. We will consider the 2 x 2 system of conservation
law (2.23) that results after dropping the equation corresponding to phase 3. We consider
a state U, on the edge 0y, Uy, = (uf,0,u}), with uf =1 —uf. Denote by U = (uy, ug, u3)
an arbitrary state in the saturation triangle. The Rankine-Hugoniot relation for a shock
joining the left and right states Uy and U is

FU) - FU) = o(uf —wu) (7.1)
Fy(U) = Fa(U) = oluy — uy),

with o representing the shock speed. Using the flux expressions (2.20)-(2.21) into (7.1)-
(7.2) we obtain the following expressions

W2(1 — k)2 w2 u2
U(UlL—Ul) = ( 1) ( A 1) 013——1(—3,013+—2012)/A(U)a (7.3)
M3, H1 3 [i5)
2 .2 2
Uy  Us Uy
ouy = —(— + — AU), 7.4
2 Mz(ugp23 ,ulﬂzl)/ (U) (7.4)
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where, from (2.19)
Ap = AUL) = (u)*/p + (1= ui)?/ ps. (7.5)

In Proposition 6.3 we have already found the Hugoniot locus for the vertices, so from
now on we assume that ul # 0 and uf # 1.

From (7.4) it is obvious that the edge 0, is a trivial branch of H(UL). For U ¢ 0y we
can divide the equation (7.4) by wus to obtain:
w2

= p23+u—p21>/A< ). (7.6)

o=—(=
M2 3

u3

Equation (7.6) represents the speed o of the discontinuity joining the state U, € 0,
with any state U € H(Uy) out of the edge 0».

Substituting (7.6) into equation (7.3) and performing some calculations we obtain

(urfugey  (Wi)ugud o (up)wugus o (ur)*udu

23 D) 21 23 D)
H1fe2afts Hik2 Hip2apts Hik2

P21

(ufJuz(1 — ui)?uj (uf )utus(l — uf)? uugu3 (1 — up)?
+ 3 23 + P21 — ) P23
Ha s Mz i3 M2ty
Cudw(l—ub)? @b —ub)? (@bl - ub)? -
P21 B 13 P13 (7.7)
Hafafis HiH3 Hafafis
EPO—ud) gt o)
- 3 13 3 13+ ) P13
H1p3 Hik3 H1p3
w2022 W2u2(1 — ukb)?
_(1)2 192 1 — Tus( 1)/)21:0'
HiH3 Hiftafis

For u¥ fixed, (7.7) represents a local branch of the Hugoniot locus of Uy, that is different
from the edge 0s.

Definition 7.1. We will call the portion of the curve (7.7) lying in the saturation triangle
as the non-trivial branch of the Hugoniot locus of Uy, € 0y and we will denote it by H(UL).

Sometimes it is simpler to work directly with Eqs. (7.3)-(7.4) rather than with Eq. (7.7).
As ug = 1 — uy — ug, notice that the left hand side of Eq. (7.7) is a polynomial of fourth
degree in the variables u; and us. However, for some special cases, like ps = p3, it is pos-
sible to obtain us from Eq. (7.7) as an explicit function of w;. This is a great advantage
of Eq. (7.7).

In order to understand the shape of’I:{(UL) for Uy, in 0y the first step is to determine the
intersections of H(UL) with the other edges of the saturation triangle. In our particular
Riemann problem it is also an essential step. We present in the next section a geometric
analysis that allows to construct general edge to edge shocks for any flux functions, any
density and viscosity values; however, for the sake of concreteness, we will illustrate the
method only for the case p; > p3 > py and for left and right shock states in d, and 05
respectively.
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7.1 Edge to edge shocks: the wedge construction.

The following geometric construction determines shocks joining states on different two-
phase edges of the saturation triangle. The construction is general and does not depend
on the “convection/gravity ratio” « or on the form of the permeability functions, so it is
applicable to general permeability models. Nevertheless in this work we only use it for
the quadratic Corey model with gravity (2.23).

Two edges of the saturation triangle have a common vertex forming a wedge. Without
loss of generality we assume that the common vertex is V4. This means that phase 1 is
present in both edges J; and 05 of the wedge, phase 2 is present in the edge 05, while
phase 3 is present in the edge 0s.

We will illustrate the wedge construction for the case p; > p3 > po. We consider
the flux function (F7, Fy) of the system (2.23) restricted to the edges dy and d3 . From
Remark 5.1 we see that the choice F?(u;) or F2(us) does not make any difference for
the solution, so we choose the pair

u?(1 —uy)?
Fo2(uy) = 12% (11_)u1)2 prs and u; (7.8)
M1M3(H—1+7H3 )

as the two-phase flux and the conserved quantity both restricted to the edge 0. As
p1 > ps the plot of this flux function is similar to the one shown in Fig. 5.1(a).

For the restriction of the flux to the two-phase edge 03 we will choose for convenience

P21, (79)

where uy is the conserved quantity. The plot of this function is shown in Fig. 5.1(b).

The scalar flux functions F* and F2* govern different two-phase regimes with a com-
mon state V;. However we will create a useful construction by defining an extended flux
function involving both F182 and F283 in the same graph in a conveniently way. We define
for -1 <u<1

F2(1+u) if —1<u<0
0203 _ 1 = = Y
Fe:ct (u) - { F283(u) if 0 S u S 1. (710)

Notice that F%2% is a continuous function of the variable u defined in the interval

[—1,1]. For negative values of u, the function F22% coincides with the flux F% restricted

to the edge 0y while for positive values of u this extended flux function coincides with the
flux F¥® restricted to the edge 5. For that reason in this section we will abuse the notation
denoting by V; the origin (u =0, F22(0) = 0), V3 is the point (u =1, F22(1) = 0) and

ext ext

V3 is the point (u = —1,Fa283(—1)) =0, see the Fig. 7.1.

ext
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0,002+

0,001+

-0,001+

Figure 7.1: Ezample of the extended flux function Ffftas for py =1, puo = 1.7, u3 = 0.9
and p = p3

Remark 7.1. Notice that the extended flux Ff;ta3 does not represent a genuine flux func-

tion in a neighborhood of the state Vi, the junction of the edges 0y and 03 where both fluz
functions F* and F* are defined.

Remark 7.2. Differentiability at w = 0 of the function Ff;t83 15 a consequence of Eq.
(5.2).

The following LLemma will be crucial for the applicability of our construction.

Lemma 7.1. Consider a state Uy in the edge Oy. If there exists U € O3 such that
UeHUL) then o(U,U) =o(U,Vy) =0o(Ur, V7).

Proof. See Fig. 7.2(a). Notice that the shock speed o(Up,U) given in Eq. (7.4) coincides
with the slope of the straight line segment joining the vertex V4 to the point (us, F2%(us)),
so we have that o(UL,U) = o(U, V). As Up,V4,U are not aligned states in the satura-
tion triangle, we apply the Triple Shock Rule to conclude that o(Up,U) = o(U, V1) =
O'(UL, ‘/1) O

Remark 7.3. The converse also holds: if U € 03 is such that o(U, Vi) = (U, V1),
then U € H(Uy) and o(Ur,U) = (U, V1). 1t follows from the second version of the
Triple-Shock Rule.

The geometric construction: Consider a state U on one of the edges 0y or 0s.
Lemma 7.1 yields a constructive way to obtain all the intersection points of H(U) with
the other edge. As we did in Fig. 7.2(a), we have to construct the secant joining V; = (0, 0)
(notice that this is the origin of the system of coordinates in Fig. 7.1; these coordinates
do not correspond to the coordinates in the saturation triangle) to (u, F22%(u)), and
determine the intersection points with the extended flux on the other side relative to the
origin. The abscissae of these points determine the states on the other edge that belong
to H(U). Of course, the number of intersection points of the secant with the graph on

the other side coincides with the number of states of H(U) that lie on the other edge.
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(b)

Figure 7.2: (a) Extended flux F?2% for iy = py = 1, pg = 0.5. The figure illustrate the

ext

application of Triple Shock Rule and the result of Lemma 7.1. (b) Extended flux Ff;tag for

p1 = p2 =1, pug = 1.5. In this case for U in the interval (A, B), H(U) does not intersect
the other edge.

Remark 7.4. An interesting case occurs when the segment is tangent to the extended
fluz graph on one side while it is secant to the graph on the other side. In this case, there
exists an interval of states U (the interval (A, B) in Fig. 7.2(b)) for which H(U) does not
intersect the other edge.

Remark 7.5. Notice that for the results in Lemma 7.1 and for the geometric construction,
the fact that the constructed secant crosses the origin Vi is crucial in order to obtain a
valid geometric description of the shocks from one edge to the other.
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Let us denote by U* = (1 — u},u3,0) the unique state on the edge 03 satisfying
o(Vi,U*) = (dF2 /duy)(ub). The value of uj can be shown to be the unique real root of
the following cubic polynomial in v:

(1 + p2)v® + (g — 3p2)v? + 3ev — ps. (7.11)

Let us denote by P* the point on the graph of F2% corresponding to the state U*.
Let us denote by S the straight line segment that is tangent at P* to the graph of FfjtaS;
this line crosses the origin of the coordinates system (which corresponds to the vertex
V1). Depending of the quantities po, 3, p13, p21 we will have zero, one (double) or two
intersection points (u, F22%(u)) of the segment S with the graph of F2% for negative
values of u. In Fig. 7.3 we illustrate this fact for three different values of u3, keeping the
parameters ps, p13, p21 fixed. The three flux curves of Fig. 7.3 coincide above the edge

03 because we only changed the parameter us to obtain the three curves.

For the case in which the extended flux is like the solid curve in Fig. 7.3, the pair of
states Uy in 05 and U* in 05 corresponding to the tangency points Py and P* belongs to
the double contact manifold (see Def. 3.7). As we show in Fig. 7.3 small perturbations of
the parameters o, p3, p13, po1 give rise to bifurcations of this “double-tangency” case.

Figure 7.3: Extended flur function Ff;tag for three different cases. Solid curve: py, = pg =
s =1, dashed curve py = py = 1, ps = 1.5, dotted curve py = po = 1, pus = 0.5. The
parameters piz and poy are the same for all the cases. Because iy and o are fived the

fluzx is the same on O3.

Proposition 7.1. Given the parameters s, s, p13, po1, we can describe the intersection
points with the edge O3 of the Hugoniot locus H(Uy) for a state Uy on Oy as follows:

(i) When the segment S does not intersect the graph of Ff;t83 for negative values of u

(this is the case for the dashed curve in Fig. 7.3), consider an arbitrary state Uy, in
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Figure 7.4: Extended flux function F%29% for the dotted fluz curve of Fig. 7.3. Illustration

ext

for the proof of item (ii) in Proposition 7.1.

0o, then 7'~l(UL) intersects the edge O3 at two points. When S is tangent at a point
Py to the graph of Ffftas (the case of the solid curve in Fig. 7.3), for Uy € Oy with
Uy # Uy, ﬂ(UL) intersects the edge Oz at two points while 7:{(U0) intersects the edge
Oz only at the point U*.

(ii) Assume that S intersects at two points Py and Py the graph of F22% for negative
values of u ( dotted curve in Fig. 7.3). Let us denote by Uy and Uy the states on
0y corresponding to Py and Py respectively. For U € (Vg, Ul) or Uy, € (Ug,Vl) we
have that 7:{(UL) intersects the edge 03 at two points different from U*. If U, = U,
or U, = Us we have that 7:{(UL) intersects the edge O3 only at the point U*. If
Up € (Ul, Ug) there are no intersection points between ﬂ(UL) and the edge 0O3.

Proof. We only prove item (ii) since item (7) is trivial using the same argument. In
Fig. 7.4 we draw only the dotted flux of Fig. 7.3. The proof is a consequence of the
geometrical construction and the Triple Shock Rule. The fan of light segments in Fig. 7.4
represent the possible lines that cross the state V) intersecting the graph of Ffjt83 at two
points for positive values of u. Consider a state Uy, = (ul, 0, 1 — u¥) on the edge 9, such
that P, = F%(ul) lies inside the fan. Denote by Sy the segment of the fan that crosses
the point Py, denote by U; and U; the states on 03 corresponding to the intersection
points of the straight line S, with F%2% for positive values of u. From Lemma 7.1 (see
the geometric construction) we have U}, Uy € H(U) and (U, U) = (U, Us) = m =
o(Up, V1) = o(V1,Uf) = o(V1,Us), where m is the slope of the segment S, and o denotes
the shock speed. If U, = U; or Uy = U, the points Uy and U; collapse into U*. If
Up € (Uy,Uy) then Pp lies out of the fan and therefore there does not exist a state in Js
belonging to H(Up). O
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Proposition 7.2. Consider Uy, such that H(Uy) intersects the edge 95 at two points U}
and Uj (see Fig. 7.5), then we have A\~ (U{) < o(UL,Uf) = o(Ur, V1) = o(UL,U;) <
A~ (U3)

Proof. First remember that for U = (1 — ug, us,0) in the interval (Vi,Q3) we have
A= (U) = (dF2 Jdusg)(us), X (U) = 0 while in the interval (Qs, V) we have A\*(U) =
(dFP /duy)(uz), A= (U) = 0 (here Qs is the local minimizing point of the flux F2* on the
edge 03). The proof is a consequence of Lemma 7.1 (see the wedge construction) and of
the fact that the states Uy and Uj lie in opposite sides with respect to U*, see Fig. 7.5. O

Remark 7.6. Given the states U, and U* € H(UyL) in different edges of the wedge, it is
possible to compare the characteristic speeds in both Uy, and U* with the shock speed and
determine all the information about the Lax admissibility of the shock joining these states.
This is an important advantage of the wedge construction.

Figure 7.5: Extended flux function Ff;fB for the case iy = 1, o = 1, uz = 0.5 and ps = p3.
The black line is tangent to the extended flux graph in P*. Notice that the states Uy and
Us lie in opposite sides relative to U*. The state Us does not coincide necessarily with
the local minimum of the flur F222

Remark 7.7. An important fact about the wedge construction is that it can be extended
to other two-phase regimes besides the edges of the saturation triangle, for example: in the
stmplified problem p; = py we can construct the wedge using the vertex Vs, the two-phase

regimes 0y (or O2) and the critical line Rs.

Now we will describe the shape of the Hugoniot loci for points on the edges. We know
that each edge 0;, i = 1,2,3 of the saturation triangle represents a two-phase regime
where the phase ¢ is absent and the other two fluids coexist. In this sense we say that
associated to each edge of the saturation triangle there are two fluids. We will split the
exposition in several cases.
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7.2 The two fluids on the edge have equal densities

We will analyse the case in which the phases 1 and 3 that are coexisting in the edge 0, of
the saturation triangle have equal densities. So we assume that p; = p3 # po, and let us
use the notation p = pg; = peg. For this case, we see that all the remaining terms in (7.7)
contain uy as a common factor, so we can divide by uy # 0 and rewrite equation (7.7) in
a convenient way

(w1 = uf) (ul/pn + w3/ ps) + wfus/ ] pAr/ps = 0. (7.12)

The easiest way to obtain Eq. (7.12) is directly in (7.3)-(7.4). If we set u; = 0 into
Eq. (7.12) we obtain that necessarily uz must be equal to zero, so the unique intersection
point of ﬂ(UL) with the edge 0; is the vertex V5. In a similar way, setting uz = 0 into
Eq. (7.12) we obtain V5 as the unique intersection point of 7‘~l(UL) with the edge 0s.

In order to obtain the intersection points of H(UL) with the straight line segment Ry
(see (2.29)), we set uy/p1 = uz/ps into Eq. (7.12), obtaining

U3//L3[(U1 — Uf)(l - Ug) -+ U1U2] = 0. (713)

Using again the definition of Ry and remembering that > u; = 1, we perform some
calculations starting with Eq. (7.13) to obtain

(1= uo)[L — ul (1 + pa/ 1)) = 0. (7.14)

Equation (7.14) shows that an arbitrary state U on Ry with U # V5, belongs to ﬂ(UL)
if and only if U, = B, (see definition of B, in (2.30)), so we have H(B;) = R, and
7:{(UL) N Ry = V, for Uy, # B,. The fact ﬂ(Bg) = R, was expected because the flow has
two-phase behavior along Ry (see Theorem 5.1). The following proposition summarizes
the results above.

Proposition 7.3. Consider the simplified pure gravitational problem (o = 0 and p; =
p3 # p2). Assume Ur, € Oy with Up ¢ {V1, V3, Bo}. Then (see the Fig. 7.6):

(i) H(V1) = 8, U 85, H(V3) = 8, U ds, H(By) = 85 U Ry.
(ZZ) H(UL) = ﬂ(UL) U 02 where ﬂ(UL) N 81 = ﬂ(UL) N 83 = ﬂ(UL) N R2 = ‘/2

Remark 7.8. Notice that all the calculations of this section would be avoided if we use

the geometrical wedge construction of Section 7.1. Indeed this tool makes Proposition 7.3

trivial (see Fig. 7.7) since the two-phase fluz function restricted to the edge Oy is identically
zero and the two-phase flux functions in 01,03 and Ry are as in Fig. 5.1.
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V,

v Ui 2, Bz (']2 vV,

Figure 7.6: Hugoniot locus for three different states U, = U}, Up = U? and By on the edge
0o for the simplified pure gravitational problem o = 0, p1 = ps # ps, see Prop. 7.3. The
edge Oy is a common branch for the loci of all states. We do not show the Lax admissibility
of the states in the loci because it depends on the sign of p = pa1 = pas.

(c) (d)

Figure 7.7: Ilustration of extended flux functions for the simplified pure gravitational
problem p; = p3 > py connecting the following two-phase regimes: (a) dy and 0y, (b)
Oy and 05, (c) interval (V3, By) and Ry, (d) interval (V;, By) and Rs. The function Fi3
denotes the two-phase “flux” function along Ry analogous to the one defined in Eq. (5.10).
The figures show that for an arbitrary Uy in 0, the intersections of 7‘~l(UL) with 0p, 05 or
Ry is precisely the vertex V5. See Remark 7.8.

7.3 The fluids in the edge have different densities, the
third fluid is lighter

We analyze the case in which the phases 1 and 3 that coexist on the edge 0y of the
saturation triangle have distinct densities; without loss of generality we assume p; > ps.
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There are three cases py > p3 > pa, p2 > p1 > ps and p; > pa > ps. In this section we
consider the case p; > p3 > po; the remaining cases will be the subject of another section.

In order to understand the shape of the Hugoniot locus for an arbitrary state Uy, on 0,
the first step is to analyze the intersections of H(U}) with all the edges of the saturation
triangle.

First we will show that for Uz, on 0, the curve H(Uy) given by (7.7) does not intersect
the edge 0, at any point. This fact is easily obtained by setting u; = 0 in (7.7) and by
regrouping conveniently to obtain

T R o 1

Ha 3 i3

A(U)p13 = 0. (7.15)

As Up # Vi,UL # Vs and p; > p3 > py the first term in Eq. (7.15) is non-positive and
the second one is negative, concluding that H(Uy) does not intersect d;. This conclusion
also can be obtained using the wedge construction described in Section 7.1.

Now we analyze the intersections of the curve 7'~£(UL) with the edge 0. Setting us = 0
into Eq. (7.7) and performing some calculations we obtain

(ur = ut) P(uy) =0, (7.16)

where

P(ur) = [=(up)?/pn + (1 = up)?/po] wf + (2 = wy) [(uf)*/ iy — (1= uy)*/ pa] i+
+ [(1 = 2up)(1 = uf)?/ o] ur 4wy (1 = up)?/ s
(7.17)
is a cubic polynomial in u; for each Uy, fixed. Tedious calculations show that

P(uy) = 2(up)*(1 — uy)/m,

SO uf is not a root of the polynomial P (we are assuming that Uy, # V; and Uy, # V3).

On the other hand, we have strong numerical evidence showing that polynomial (7.17)
has one real root in the interval (0,1) so there exists U} € H(UL) N, such that U # Uy.
The state U} is a point of self-intersection of the Hugoniot locus of Up, which means
that each Uy € 05 is a secondary bifurcation point for one of the families. The fact that
all states on the edges belong to the bifurcation manifold for one of the families will be
proved rigorously in Theorem 8.2.

Now we analyze the intersection points of ’H(UQ) with the edge 03. Setting uz = 0 into
Eq. (7.7) we have that the intersection points of H(Uy) with the edge 05 are the roots in
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the interval (0,1) of the cubic polynomial Py, (u1) in uy:

uf)

_ _oys o [0 —
Poy () = [AUL) (1= w)ud = | =PEAW) +

LN\2 1— LN\2

Hips

19 [(Uf)z(l - Uf)z(Plg/le)}ul _ (u)*(1 — Uf)2(,013/,021)'
Hip2p3 Hapea s
As p13 > 0 and po; < 0, notice that
lim Py, (uy) = —o0, Py, (0)>0, Py, (1)>0. (7.19)

UL ——00

We conclude that independently of the state U there exists at least one negative root
for the polynomial Fy,, therefore the possibilities for Py, to have real roots at interval
(0,1) are the following: two different roots, one double root or no real roots. We avoid
the analysis of the discriminant Aj for the cubic polynomial Py, by using the simpler
geometric analysis presented in the Section 7.1. This construction provides all the infor-
mation about the intersections of H(U.) with the edge 05. Notice that we illustrated the
method in Section 7.1 exactly for the case p; > p3 > py studied in this section, so the
number of intersection points (zero, one or two) of the segment Sy in Fig. 7.4 with the
extended flux function for positive values of v determines the sign of the discriminant Aj,
of the polynomial Py, in Eq. (7.18) (AL <0, Ay =0 or Ay > 0 respectively).

In order to study the shape of the Hugoniot locus for an arbitrary U, € 0,, besides
the intersections with the boundary, which we already analyzed, it is necessary to know
the secondary bifurcation points along d, which influence the interior of the saturation
triangle. We have numerical evidence showing the existence of two states W, and W5 on
the edge 0y for which the Hugoniot locus has a self-intersection point inside the saturation
triangle. These points W, and W5 belong to the secondary bifurcation manifold of the
fast family.

As we mentioned in the geometrical construction in Section 7.1, there are three dif-
ferent possibilities for the relative position of the extended flux function with respect to
the segment S (see Fig. 7.3). Proposition 7.1 explains some differences between the three
cases with regard to intersections with the edge d5 of the Hugoniot locus of U, € J;. Nev-
ertheless if the parameters py, po, ps and pi3, po; for the tree cases are not too different,
when we move the state Uy along the edge d, from V3 to V4, the Hugoniot locus of U,
describes qualitatively a similar behavior for all the three cases, with the only difference
that for one of the cases (dotted curve in Fig. 7.3) a branch of the locus eventually gets
out of the saturation triangle, while for the other two cases (dashed and solid curves
in Fig. 7.3) a portion or a point of the above mentioned branch stays in the saturation
triangle.

As an illustration, we show in Fig. 7.8 the sequence of Hugoniot loci H(Uy) when we
let the state Uy, move along the edge 0, from the vertex V3 to the vertex V4, for the case
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V2
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Figure 7.8: Hugoniot locus of U, € 0, for the case p; > p3 = py, with parameters
W, I3, P13, P21 such that Fea;tas behaves like the dotted curve of Fig. 7.3 (two intersection
points with the segment S). Figures (a)-(h) show the sequence of H(UL) when Uj, moves
from V5 to V3. We used the same notation for the relevant points in this figure and in
Fig. 7.5. In figures (b) and (g) the state Uy coincides with the secondary bifurcation
points W, and Ws. Figures (d) and (e) show the Hugoniot locus for the states U, Uy
defined in Fig. 7.5 and for an intermediate state Up; the arrows describe the motion of
the non-local branch when Uy, moves from Uy to Us. In all the figures we show the Lax
admissibility for the Hugoniot curves. Only the parts denoted by S~ and S* represent

admissible (slow and fast) Lax shocks. The other symbols represent inadmissible shocks.

where the extended flux function is like the dotted curve of Fig. 7.3. We denote by U; and
U, the states on 0, corresponding to the points P, and P, respectively, see Fig. 7.5. The
states W7 and W5 on 0y belong to the secondary bifurcation manifold of the fast family;
their relative positions with respect to the states U; and U, are shown in Fig. 7.5. All the
figures can be obtained by plotting the curve in (7.7). Only the parts of the loci denoted
by S~ and ST represent admissible Lax shocks. The other symbols represent inadmissible
shocks. In Fig. 7.8 we did not illustrate all the intermediate steps of sequence of Hugoniot
loci mentioned above; therefore, new segments of shocks sometimes appear or disappear
when comparing consecutive figures.

Remark 7.9. In Fig. 7.8 we took ps = p3; this is irrelevant because for p1 > ps > po
we obtain qualitatively the same sequence of Hugoniot locus shapes (with a few differences
in the admissibility for the locus branches that will not affect the Riemann solution).
The other difference occurs in the limit when Uy, — Vi, see the results of Prop. 6.1 and
Prop. 6.3.

Remark 7.10. Consider the case in which the extended fluz F2% is like the solid curve
of Fig. 7.3, so that the states Uy and Uy collapse into the state Uy (see Fig. 7.3). In such a
case the pair of points Uy and U* belong to the double contact manifold of the slow famaily
(see Def. 3.7). All the Hugoniot loci shown in the figures 7.8(d) and 7.8(e) collapse into
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a single locus.

Remark 7.11. If the extended flux Ffftas is like the dashed curve of Fig. 7.3 we will
have qualitatively the same behavior for H(UL) except that the non-local branches always
keeping a portion inside the saturation triangle. The sequence of Hugoniot loci for this
case would be Figs. 7.8(a), 7.8(b), 7.8(c), 1.8(f), 1.8(g) and 7.8(h) (skipping figures 7.8(d)

and 7.8(¢e)).

7.4 Remaining cases

Case py > p1 > ps.

This case is completely analogous to the one of the previous section where p; > p3 > po.
In the particular case in which py = p; > p3 the sequence of Hugoniot loci is the same as
that shown in Fig. 7.8 provided we interchange the indices 3 and 1 everywhere. However
there will be a change in the admissibility of the Hugoniot curves because of the symmetry
between the simplified pure gravitational problems p, = p; > p3 and py = p3 < py, (see
Theorem 8.1 for details). Because of this change of admissibility, the Rieman solutions
with data Uy, € 0y, Ugp = V5 for the two cases will be drastically different.

As in the case studied in Section 7.3, where we found Wy, Wy (see Figs. 7.8(b) and
7.8(g)), here we have numerical evidence of the existence of two states on the edge 0,
(denoted by W3 and W,) that belong to the secondary bifurcation manifold; now they
correspond to the slow family. An explanation for this change of family in the bifurcation
states can be obtained from Theorem 8.1 for small density differences, considering py >
p1 > ps as a perturbation of the simplified pure gravitational problem py = p; > ps.

Case p; > p2 > ps.

In this case when Uy, € 95 the non-trivial branch H(Uy) (see Def. 7.1) could intersect
the edge 0y or d3. In order to understand this phenomenon we will consider a super-
extended flux function connecting the three edges 0;, i = 1,2,3, see Fig. 7.9. This
super-extended flux coincides with Fl82 on Oy, with F283 on 03 and with F??l on the edge
01. The construction procedure is analogous to the extended flux Fea;tas in Eq. (7.10), so
we will not give more details.

There exist some relevant states on d, where the number of intersection points of the
Hugoniot locus with the edges 0; and 03 changes. These relevant states are denoted by
Uy, Us, Us, Uy in Fig. 7.9. These four states exist if each of the segments denoted by S; and
S, intersect the super-extended flux in two points corresponding to the edge 0. In order
to simplify the exposition, we will assume that the relative position between these four
states is preserved. For the case illustrated by the dashed curve in Fig. 7.9 the situation
would be qualitatively different since the segment S; does not intersect the dashed graph.

In Fig. 7.10, we see that for arbitrary states A € (V3,U;) and E € (U, V;) the
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Figure 7.9: Dark curve: super-extended flux for py = ps = puz = 1, p13 = 1, p1o = 0.5,
dashed curve: super-extended flux for iy = ps =1, puz =3, p13 = 1, p1o = 0.5. The states
Uy, Us, Us and Uy correspond to the intersection points of the super-extended flux with
the segments S1 and Ss.

Figure 7.10: Super-extended fluz for py = ps = pus = 1, p13 = 1, p12 = 0.5, The states
Uy, Us, Us and Uy correspond to the intersection points of the super-extended flux with
the segments S1 and Ss.

corresponding Hugoniot loci intersect each edge 9, and 03 at two points. For state B in
(Uy, Uy) the Hugoniot locus intersects the edge d; at two points but it does not intersect
the edge 0;. For an arbitrary state C' € (U, Us) the Hugoniot locus does not intersect
any of the edges 0, or 0;. For the state D € (Us, Us) the Hugoniot locus intersects the
edge 0, at two points but it does not intersect 0. So the states Uy, U, Uz, Uy subdivide
the edge 0y into smaller intervals where the number of intersection points of ﬂ(UL) for
Uy in 0y with the other two edges is fixed.

For small density differences we can regard the case p; > p; > p3 as a perturbation of
both simplified pure gravitational problems p; = ps > p3 and p; > ps = p3. The presence
of features of both simplified problems in the case p; > py > p3 is natural. The numerical
evidence for this case shows existence of four secondary bifurcation states on 0. Two of
them, denoted by Wi, Ws, are associated to the fast family while the other two, W3, Wy,
are associated to the slow family, see for example Fig. 7.11.



68 CHAPTER 7. Hugoniot locus for edge points in the pure gravitational problem




Remaining cases 69

Figure 7.11: Hugoniot locus of U, € 0y for the case p; > py > p3, with parameters
2, 143, P13, P21 such that the super-extended flux function behaves like the solid curve of
Fig. 7.9 (two intersection points with each of segments S; and S;). Figures (a)-(j) show
the sequence of H(Up) when Up, moves from V3 to V4. We used the same notation for the
relevant points as in Fig. 7.9. In figures (b), (d), (h) and (i) the state UL, coincides with
secondary bifurcation states. The Hugoniot loci for the points U;, i = 1,2,3,4 (defined
in Fig. 7.9) are shown in figures (d), (f) and (g). In the figure (g) the dark curves is the
Hugoniot locus for Uy, = U, and the dashed curve is the Hugoniot-locus for Uy, = Us. In
the figures (f) and (g) the arrows describe the motion of the non-local branch when U,
moves from U; to Us. In all the figures we show the Lax admissibility for the Hugoniot
curves. Only the branches denoted by S~ and ST represent admissible (slow and fast)
Lax shocks. The other symbols represent inadmissible shocks.
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We illustrate the behavior of H(U) when we let the state U, move along the edge 0,
from V5 to V] for a case where the super-extended flux function is like the solid curve in
Fig. 7.9. The sequence of the Hugoniot loci and the admissibility of the curves is shown
in the Fig. 7.11; we did not illustrate all the intermediate steps of sequence of Hugoniot
loci mentioned above; therefore, new segments of shocks sometimes appear or disappear

when comparing consecutive figures. All the figures can be obtained by plotting the curve
in (7.7).



Chapter 8

Symmetry and bifurcations in the
simplified pure gravitational problem

In this chapter we prove a “reversal symmetry” theorem, which holds for the simplified pure
gravitational problem (SPGP). We also prove additional theoretical results for bifurcation
manifolds in SPGP. These results will be used to provide support for the Riemann solution
obtained via numerical calculations that implement the wave curve method.

8.1 Symmetry in the SPGP

Our goal is to solve the Riemann problem for the “simplified pure gravitational problem”
(i.e., a = 0, p1 = pa # p3). Denoting by p = p13 = peg we will analyze separately the
cases p > 0 and p < 0 since their solutions are drastically different. However the two
cases have similarities: e.g., in both cases the vertex V3 is an umbilic point (see Theorem
(4.1)), and there exist two quasi-umbilic points @)1 € 01, Q2 € 0s; also the entire edge 05
is a diagonalization line. The Hugoniot locus of the vertices does not depend on the sign
of p. From Propositions 6.1 and 6.3 we have:

H(V3) =0 Udy U0s U R3,
H(V1) = 0y U 05,

Next we present a crucial result establishing a connection for characteristic speeds and
integral curves between the cases p > 0 and p < 0.
Theorem 8.1. (Reversal symmetry.) Assume o = 0, p1 = ps # p3 and denote p =

p13 = pas. If p > 0 we define p, = p and p, = —p,. If p < 0 we define p, = —p and
pn = —pp. We consider characteristic eigenvalues and eigenvectors for the two problems

71
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corresponding to the densities p, and p,. Then we have the following relations

-\t et
A, =N, T, =Ty,
+ o\ + -
Ay ==X, T,=T,, (8.5)
where )\;, r;;, A, ,1, denote the characteristic speeds and the associated right eigenvectors

corresponding to the problem with positive parameter p, while X\ - A\ r. denote the

n»'n’ n»'n

characteristic speeds and the associated right eigenvectors corresponding to the problem
with negative parameter p, = —pp.

Proof. Let us define J;; = J;;/p; we obtain from (4.8) that

\E p(Ji1 + Joo) £ |/7|\/B

5 ; (8.6)
where D = (ju + j22)2 — 4(j11j22 — j12j21). For p = p, = —p, we have
L palJit Jn) £ |Pn|\/B ot Jn)F |,0p|\/B =
A= 5 = — 5 ==\, (8.7)

concluding the proof of (8.4)-(a) and (8.5)-(a).
We will denote by J, (respectively .J,) the Jacobian matrix for p = p, (respectively

P = Pn).
Using the notation above and the properties (8.4)-(a), (8.5)-(a), we have that

0= (Ju = NED)E = (pu] = NED)rE = (=] + AT D)

’ (8.8)
= _(ppj - )‘;F])Tf = (Jp - )‘;FI)T?LE

therefore we have proved that r is a right eigenvector associated to the eigenvalue AT
concluding the proof of (8.4)-(b) and (8.5)-(b). O

Remark 8.1. Conclusions analogous to those in Theorem 8.1 can be stated for the Hugo-
niot loci as well, under reversal symetry in the SPGP: the shock speeds change sign; this
change can be verified from the R-H condition (3.6) because the fluz functions change sign
under the symmetry. Therefore as a consequence, we have that the integral curves, shock
curves and all bifurcation manifolds defined in Chapter 3 (inflection, secondary bifurca-
tion, boundary contact, double contact, etc.) are still identical but have opposite family
when we pass from the case p > 0 to the case p < 0.

8.2 Bifurcation manifolds

Next we present some theoretical results describing interesting properties of some bifur-
cation manifolds.
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First we state two lemmas that will be used in this section. Lemma 8.1 is a classical
result and its proof can be found in Smoller [47|. The proof of Lemma 8.2 can be found
in Appendix B.

Lemma 8.1. Let A be a 2 X 2 square diagonalizable matriz. Assume that the eigenvalues
of A are distinct (A\y # o). Let Xg be a matriz formed by the columns of the right
eigenvectors of A and Xy be a matriz formed by the rows of the left eigenvectors of A.
Then C'= X1 Xgr s a diagonal matriz.

Lemma 8.2. Consider the “pure gravitational problem” (o = 0) with p; = ps # p3 and
1 = pe and let us denote p = p13 = paz, b = 1 = pe. Then the characteristics speeds
given by (4.8) are symmetric with respect to the variables wy and ug (i.e., A~ (uq,uz) =
A" (ug,uq1) and the same for \T ).

¢

Proposition 8.1. For the “ simplified pure gravitational problem” (o =0, py = ps # p3)
with py = pe, we have Ry C Infiy N Bify if p > 0, and Rs C Inf_NBif_ if p <0
(Rs was defined in (2.29)). In other words the segment R belongs to the inflection and
bifurcation manifolds corresponding to the fast or slow family for each case p > 0 or p <0,
respectively.

Proof. We will present the proof for the case p > 0. Then the case p < 0 will be a direct
consequence of Theorem 8.1 (see Remark 8.1). Under the hypotheses for the theorem,
we have that at each point of Rz the vector (r{,ry)" = (1,1)7 is a right eigenvector
associated to the slow family (see proof of Theorem 5.1).
. . 1 orf Iy Iy _ o
Consider the matrices Xg = 1 ot and X = o) where {7 = (I7,15) is
2 1 b

a left eigenvector associated to the slow family and r™ = (r{",r)7, IT = (I, 1) are right
and left eigenvectors associated to the fast family, respectively. Applying Lemma 8.1 we
obtain that

(TG T+ Gy
X1 Xp = ( E O s (8.9)
is a diagonal matrix and therefore
I+ =0
{ Iyrf + 1,3 =0. (8.10)

From the first equation of the above system we obtain that for all U in R3, I (U) = —I5(U)
so that [T(U) o (1,—1). In other words, along the segment Rj the left eigenvector

associated to the fast family is orthogonal to the segment direction. On the other hand,
for all U, U’ in Rz we have (U’ — U) = (1,1)T so we have

NU) U —-U)=0 VU,U € Ry (8.11)

On the other hand, after some calculation we obtain the following expression for the
fast-characteristic speed along the critical line Rj:
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1 — 2
L= us)ts oy e (8.12)

YUy = s A(U)

From (8.12) and utilizing the Rankine-Hugoniot relation for shocks joining two states
on the critical line Rg, is possible to show that

VU € R3,3U" € Rz such that \™(U") = (U, U"). (8.13)

Equations (8.11) and (8.13) yield Ry C Bif,, see Definition 3.4.

In order to show that R3 C Inf,, we first note that Jio(U) = Jo1(U) VU € R3
(see (4.4)-(4.7)), i.e., dF restricted to segment Rz is a symmetric matrix, therefore left
and right eigenvectors “coincide”, so we have r*(U)T = I*(U) o (1,—1) YU € R3. On
the other hand, applying Lemma 8.2, we obtain that the characteristic speeds \*(U),
U = (uy,uz) are symmetric functions of the variables u; and usy, so we have

ONE  ONF
== V) (1) 8.14
8u1 8uz x ( ’ ) ' ( )
in particular we have that
VAT (U) - rH(U) =0, (8.15)
concluding that R3 C Inf, (see Definition 3.5). O

Remark 8.2. We can repeat the argument above for the case py # ps to obtain again
R3 C Bif,. However for such case Ry ¢ Inf,.

The following theorem describes points on the edges 0; and 0, as secondary bifurcation
points.

Theorem 8.2. Assume that o = 0 and py = ps # ps. Define p = p13 = pas. All the points
on edges 0y and Oy belong to the secondary bifurcation manifold for one of the families,
except for the quasi-umbilic points Q1, Q2 (in (4.19), (4.20)) and for the vertices Vi, V3

of the saturation triangle. More specifically

[(V3,Q2) U (v3,Q)] < Bif, (3.16)
[(Qz; Vi) U (@1, Vz)] C Bify, (8.17)

“

where 7 18 “=7if p <0, 7 is “+7if p > 0 and k is the opposite family to j.

Proof. We provide the proof for the case p > 0. Then the case p < 0 will be a direct
consequence of Theorem 8.1 and Remark 8.1.

Let U € (V5,Q2), it is obvious that dy C H(U). Depending on the sign of p the
scalar flux function F?* restricted to the edge 0, has the shape of one of the functions
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represented in Figs. 5.1(a) or 5.1(b) so it is clear that there exists U’ € (Q2, V1) such that
U' € H(U) with ¢(U,U") = 0. Notice that (U —U’)  (1,0)7 since both U and U’ belong
to the edge 0. On the other hand

(U (DFU") = X*(U"I) =0, (8.18)

where [T denotes a left eigenvector corresponding to the fast characteristic speed A*. As
U € (Qq,V1), from (4.4)-(4.8) we obtain after some calculations that A*(U’) = 0 while
JH(U/) < 0, Jlg(U/) < 0, JQl(U/) = 0, JQQ(U/) = 0. So we obtain from (818)

IF(U)Ju(U) =0, (8.19)
I (U)Ji2(U") = 0, (8.20)

therefore I (U’) = 0 and we have that [T (U’) o< (0,1). Finally we see [T(U")(U — U’) =
(0,1)-(1,0) =0.

We have found U’ € H(U) such that o(U,U") = AT(U') = 0 and IT(U")(U - U') =0,
concluding that the interval (V3, @2) is a subset of the bifurcation manifold corresponding
to the fast family. The proofs for the other intervals are analogous. O

Remark 8.3. As a consequence of Theorem 8.2 and supported by numerical evidence,
the Hugoniot locus of any non-coincidence point on the edges 01, s has a self-intersection
lying on the respective edge, see Fig 7.8 for illustration.



Chapter 9

Solution for SPGP with heavy
equal-density fluids

In this chapter we study the Riemann solution for the case in which o = 0, p; = py > p3.
Denoting by p = pi13 = po3, we are in the case p > 0. Based on numerical calculations
we will present the integral curves, the inflection manifolds and the boundary contact
manifolds corresponding to this simplified pure gravitational problem (SPGP). The figures
shown in this section are crucial for the solution of the Riemann problem. Although we
show figures for the symmetrical viscosity case p; = s = ug, they illustrate the general
case.

For the SPGP, with p > 0, the integral curves of each family are shown in Figure 9.1.
Notice that the segments (Q1,V2) C 0y and (Qq, V;) C 0, are integral curves of the slow
family while the segments (Q1,V3) C 91 and (Q2,V3) C 9, are integral curves of the fast
family. This change of family along the edges when crossing the quasi-umbilic points was
proved in Theorem 4.1.

The inflection manifolds of each family are shown in Fig. 9.2. Here we use the super-
scripts s and f (instead of — and +) for slow and fast family, respectively. The points
denoted by ]f,[{ € 0y and I3, ]g € 0, represent the intersections between the inflection
manifolds of each family and the edges 0, J;. These points coincide with the inflections
of the two-phase flux function F? and F{" studied in Chapter 5, so we can interpret the
inflection branches I? I and I/ I as continuations of two-phase inflection points that
would appear as consequence of introducing a third phase into a given two-phase problem.

An interesting fact we can observe in Fig. 9.2 is the existence, for slow-family, of an
extra inflection branch. This “extra” branch arises from the quasi-umbilic points @1, Q)
and crosses the critical line R3 at an inflection point of the two-phase scalar flux function
Fi5 (see definition in Eq. (5.10)) restricted to the critical line R3. On the other hand, for
the case pu; = po, the critical line Ry is itself an inflection branch for the fast-family (see
Prop. 8.1), a fact that reflects the symmetry of phases 1 and 2 with respect to densities
and viscosities. For more general cases in which p; # o, the critical line Rz is not an
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V3 Qz Vl

Figure 9.1: Integral curves for the simplified pure gravitational problem o« = 0, p; = ps >
p3, in the case uy = ps = pg. (a) Slow-family integral curves. The arrows indicate the
direction of increasing characteristic speed; notice the local extremal speed at the dots,
which form the slow-family inflection locus. (b) Fast-family integral curves. The arrows
indicate the direction of increasing characteristic speed; notice the local extremal speed
at the dots, which form the fast-family inflection locus. The points ); and ()2 denote the
quasi-umbilic points on the boundary.

inflection branch any more, see Fig. 9.2(b).

Remark 9.1. In the more general case when the fluids have different densities, the “extra”
inflection branch of the slow-family intersects the edges 01 and Oy at points that are not
necessarily the quasi-umbilic points. Such points are precisely where the zero-level curves
for the slow-family characteristic speed lose differentiability.

In Fig. 9.3 we show the boundary contact curves (see Def. 3.9). We denote by
Egj,Egj;j = 1,2,3 the branches of the boundary contact manifold corresponding to
the edge 0; for slow and fast-family respectively. We also call these curves the extension
of the edges of the saturation triangles associated to one of the families. The extension
of relevant points are also plotted, recall that we denoted by P%; (or Pj;), the extension
of a point A on the boundary, associated to the slow-family (fast-family) (i.e., the shock
joining the state A with the state P} is characteristic in P} for the family 7). This
correspondence is not necessarily one to one.

Consider the simplified pure gravitational problem o = 0, p; = ps > p3. We want
to solve the generic Riemann problem with left data Uy lying in the edge 0;, i = 1,2,3
of the saturation triangle, and right data Ug corresponding to the opposite vertex V;.
For this case, there exist essentially only two distinct problems: Uy € 0y, Ugp = V5 and
U, € 05, Ugr = V3; the Riemann solutions for the two sets of data Uy, € 0;, Ur = V; and
Uy € 0y, Ugp = V5 are analogous.
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v,

4

Figure 9.2: Inflection curves for the case o = 0, p1 = pa > p3. (a) Symmetric case p; =
o = p3. The dark curves are the inflection locus corresponding to the fast family, with
branches R3 = V3—Bs and I{—[g. The light curves are the inflection locus corresponding
to the slow family, with branches I5-I5 and Q;-Q2. (b) Non-symmetric case p; > po.
The points Q1 and ()2 denote the quasi-umbilic points on the boundary. The points I,
and I! denote the inflection points on the critical line.

First we state the following result.
Lemma 9.1. Assume p; = ps > p3 and consider the states A; € 0;, 1 = 1,2, 3; then:
(i) We have o(U, A;) > 0 for allU € H(A;), i = 1,2, out of the edge 0.
(ii) We have o(U, A3) < 0 for all U € H(As) out of the edge O3 and of the vertex V.

Proof. The proof follows from the Rankine-Hugoniot condition (3.6) utilized for shocks
joining a state A; € 0; with an arbitrary state U. !

9.1 RP1: Left data in 0, right data V5

For this case H(V,) = 0y U 05 (see item (i) of Prop. 6.3); we also notice in Fig. 9.1 that
the integral curves through vertex V5 coincide with the edges d; and 0 near V5. Thus the
conceivable ways to arrive at V5 are (see Fig. 9.1):

(1) Arriving at V5 by a slow rarefaction corresponding to the two-phase solution on 0;.

(2) Arriving at V, by a zero-speed genuine contact discontinuity corresponding to the
two-phase solution on 05 (see Sec.5.2).
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Figure 9.3: Boundary contact manifolds (or extensions) for « = 0, p1 = pa > ps, 1 =
o = pz. The light curves represent the slow-family boundary contact manifold, the branch
Ej,, 1= 1,2,3 is the slow-family extension of the edge 0;. The dark curves represent the
fast-family boundary contact manifold, Egl is the fast-family extension of the edge 0y while
Egz is the fast-family extension of the edge Oy. The edge O3, representing a mizture of
two equal-density fluids, has no fast-family extension. The points ()1 and Q2 denote the
quasi-umbilic points on the boundary.

Impossibility of alternative (1).

Consider an arbitrary state A; on the edge 0;. It is impossible to use a rarefaction
to arrive at A;, since both characteristic speeds decrease in the outward direction (see
arrows in both Figs. 9.1). Thus we must use a shock to arrive at A; from an arbitrary
state U out of the edge 0;. From Lemma 9.1 we have o(U, A;) > 0. On the other hand
as pg > ps3, the sequence of waves along the edge 0; joining the state A; with the vertex
V5 consists of one negative-speed shock followed by a rarefaction wave ending at V5 with
speed equal to zero (see Fig. 9.4). This means that the possibility of a shock joining an
arbitrary state U (out of 0;) with Ay, followed by the two-phase solution along 0y, joining
the states A; and V5 presents speed incompatibility. For this reason we must exclude such
a solution. In other words, for Uy, € 0y, U # V3, U, # Vi we cannot construct a solution
arriving first to 0; and follow it by the two-phase Oleinik solution to V5 without violating
the geometric speed compatibility condition. Thus the possibility described in item (1) is
excluded.

Construction of the Riemann solution.

Now we will construct the Riemann solution using the second alternative, i.e., in order
to arrive to V5 we must first reach 03 by a slow rarefaction curve (see arrows in Fig. 9.1(a)),
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Figure 9.4: Two-phase Oleinik solution for left state Ay in Oy and right state V5. This
solution begins with a negative-speed shock joining Ay with A,.

and follow it by a zero-speed contact discontinuity on 0Os.
Consider Uy, = (u¥,0,u%) on 5. We will split our analysis in several cases:
(2) If U, = V1 the solution is a zero-speed genuine contact joining V; with V5.

(17) If Uy, = V3, we will have three different representations in state space of the same
solution, the first one is the two-phase solution on the edge 0; that is a zero-speed double
contact discontinuity joining V3 and V5. The second representation of the solution consists
in a zero-speed double contact discontinuity joining V3 with V4 followed by a zero-speed
genuine contact joining Vi with V5. The third representation of the solution is obtained
by the use of the two-phase flow regime along the critical line R3, by means of a zero-
speed double contact discontinuity joining V5 with B3 followed by a zero-speed genuine
contact joining Bs with V5. Although these representations of the solutions are different
in state space, all of them describe the same solution in physical space because all the
discontinuities have zero-speed and collapse into a single discontinuity.

(¢73) Assume Uy, € [(Q)a, V1), then we have AT (UL) = 0 and A~ (U) < 0 (by interchang-
ing the indices 1 and 2 everywhere in Eqs. (4.35)-(4.36)). In this case the slow-family
eigenvector v~ (Ur) has the direction of the edge 0, since the slow integral curve trough
Uy coincides with this boundary. Thus the solution of the Riemann problem begins with
the two-phase Buckley-Leverett solution along this edge. For Uy, to the right of the inflec-
tion point 75 (shown in Fig. 9.2), the slow-family wave group is a single rarefaction wave
up to the vertex V;. For Uy € (Q2, I5) the slow-family wave group consists of a negative-
speed shock wave joining the states Uy and U, = (ul,0,1 — wl); where U, € (I5,V7)
satisfy o(Up, U,) = dF?(ul)/du; = A~(U,), followed by a rarefaction wave joining the
states U, and V;. Notice that the rarefaction wave arrives at V; with speed equal to zero.
The solution continues with the “fast” wave group which consists of a zero-speed contact
discontinuity joining the states V; and V5.

The solution for the case Uy, € [I5,V}) is shown in Fig. 9.5 (see definition of I3 in
Fig. 9.2). The solution for the case Uy € (Qs,[5) coincides with the solution shown in
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Figs. 9.6(b) and 9.6(c).

Remark 9.2. Notice that the convention of calling a wave group as belonging to the
“slow-family” or “fast-family” lacks of physical meaning for this problem, since in general,
we find both negative and positive characteristic speeds. A negative-speed wave moves
upwards while a positive-speed wave moves downwards. Notice that a “slow” wave could
have a negative speed with larger absolute value than a “fast” wave.
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Figure 9.5: Riemann solution for Uy, € [I5, V1), Ugr = V4 in the case p; = p2 > ps. (a)
Wave groups represented in the (z,t)-space: solid lines represent the characteristic lines
in a rarefaction fan, dashed lines represent shocks, light lines correspond to waves of the
slow family, dark lines correspond to waves of the fast family. (b) Saturation profiles; the
solid curve indicates the saturation of phase 2, the dashed curve indicates the saturation
of phase 1. Notice that fluids 1 and 3 occur only for x < 0 and fluid 2 for x > 0.

(iv) Assume that Uy € (V3,0Qs), then we have A\*(Uy) > 0 and A\~ (U,) = 0. Here
the integral curve of the fast family trough U, coincides with the boundary 0, while
the integral curve of the slow family trough Uy is transversal to 0. Apparently we can
construct two solutions of the Riemann problem satisfying the Lax conditions. The first
one is analogous to the previous case (iii) (i.e., a two-phase Buckley-Leverett solution
up to the vertex V; followed by a zero-speed contact between the states V; and V3), see
Figs. 9.6(b) and 9.6(c). Notice that this solution can be constructed without using the
slow wave curve through Uy. So in principle it would be possible to construct “another”
solution using the slow wave curve through Uy, in order to reach 03, an then follow it by
a zero-speed contact up to the vertex V5. In Appendix C we show that for this particular
Riemann problem, this second construction via slow-family wave curve, does not represent
a new solution.

Summarizing the results above and utilizing the notations from Section 3.1.; the Rie-
mann solution for initial left and right data U, € 0, and Ur = V5 has the following
structure
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Figure 9.6: Riemann solution for U, € (V3,15), Ug = V4 in the case p; = ps > p3, (a)
slow-family wave curve through Uy, € (V3,Q2). The solid curve denotes a rarefaction
segment, the curve marked by crosses denotes a composite segment based on states on
the rarefaction curve Uy Upye. The dashed curve is a shock segment. (b) wave groups
represented in the (x,t)-space: solid lines represent the characteristic lines in a rarefaction
fan, dashed lines represent shocks, light lines correspond to waves of the slow family,
dark lines correspond to waves of the fast family. (¢) Saturation profiles, the solid curve
indicates the saturation of phase 2, the dashed curve indicates the saturation of phase 1.
Notice that fluids 1 and 3 occur only for < 0 and fluid 2 for = > 0.

() It U, =V, U, =V, <% v, = Up. (9.1)
(i) If Uy, = V; : U, =V S Vy = U (9.2)

For this case we have other two representations in state space for the same physical
solution:

(i2) U, =V SV E5 V= Uy and  (ii3) U, = V3 S By €5 v, = Up.
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(i) U, € [I5,V1): UL 251 S 1, = Up. (9.3)

In Figs. 9.5(a), 9.5(b) we show the corresponding Riemann solution and the saturation
profiles.

(W) IEU, € (Vs I5) . Up 25U, 25 v S v, = Uy, (9.4)

where U, € 0y, see Figs. 9.6(b) and 9.6(c).

Remark 9.3. Although we do not prove rigorously that this solution is unique, the an-
alytical and numerical arguments that we provide in the construction of the solution are
compatible only with uniqueness of the solution.

Physical interpretation of the solutions in RP1.

Items (i) and (ii) correspond to the well known two-phase flow. In both cases the
solution is just as we expected because the fluid initially on top is not heavier than the
fluid initially at the bottom, so it is natural to expect that the fluids do not move.

Both items (iii) and (iv) correspond to a genuine three-phase flow. In RP1 we have
two equal-density fluids and a third fluid lighter. Initially, there is a pure fluid below the
interface. The mixture on top involves a fluid with the same density that the bottom fluid
and a third lighter fluid. We expect a priori that the bottom fluid does not move upward,
because there is no heavier fluid. Thus we expect the interface to remain intact and
both fluids initially on top to remain there all the time. We also expect that the density
difference between the fluids on top leads to a two-phase flow involving such fluids, we
expect the lightest fluid to move upwards. We verify all these facts in the solutions
presented in items (iii) and (iv), depending on the initial mixture, we will have a two-
phase flow above the interface with a single rarefaction wave or a rarefaction preceded by
a shock.

Remark 9.4. The Riemann problem RP2, with left data Uyp in 01 and right data
Ugr = Vi, is analogous to RP1, so we omit its description.

9.2 RP3: Left data in 03, right data V3.

We know from Prop. 6.1 that H(V3) = 9, Udy U003 U R3. The shocks from any state on 05
to V3 have zero speed. On the other hand, the only integral curves crossing V3 are: (I) the
fast-family integral curves coinciding with the edges 0y, d; near the vertex V3 and (I7) the
slow-family integral curve that coincides with the critical line R3, see the Fig. 9.1. Then
we have the following three possibilities to arrive at Vj.
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(1) Arriving at V3 by a fast shock along one of the edges 9y or 0s.
(2) Arriving at V5 by a slow shock along the critical line Rj.
(3) Arriving at V3 by a zero-speed double contact directly from Uy, € 0s.

First we analyze the two-phase flow cases. If U, is one of the states V5, Bs or Vi we know
from Chapter 5 that the behavior is like two-phase flow, so we can obtain the Riemann
solution using Oleinik’s construction.

As ps > ps, if we choose F??l as the flux restricted to the edge 0; with conserved
quantity wus, this flux function is like the flux of Fig. 5.1(b). In Fig. 9.7(a) we show
Oleinik solution for the Riemann problem U, = V,, Ug = V3.

We illustrate the solution in Fig. 9.7 for Uy, = V5. The other cases are completely
analogous. For the case Uy, = Vi we have the two-phase Oleinik solution along the edge
0Jy. The case U, = Bs is the two-phase Oleinik solution along the critical line Rj; this
latter case presents only waves of the slow-family group as we proved in Theorem 5.1.

Now we analyze the genuine three-phase problem. We will show that when U €
(Va, B3) (i.e., when initially the phase 2 is dominant with respect to the phase 1 above
the interface) the solution remains in the triangle V3 Bj V5, so in this case the solution
consist of a slow-family wave group which reaches the edge 0;, a constant state, and then
it continues with a two-phase fast-family wave group. For such a case we show that the
other possibilities for a solution arriving to V3 along the edge 0,, the critical line R3 or
by a direct zero-speed double contact must be excluded.

Let us consider U, € (V5, B3), we will construct the Riemann solution for Ug = V.

Excluding a zero-speed double contact joining Uy with V5.

As we see in Fig. 9.7(a), the two-phase solution consisting in a shock (in this case,
double contact discontinuity) joining the vertices V5 and V3 does not satisfy Oleinik’s
entropy condition. The alternative solution consisting of a zero-speed double contact dis-
continuity joining Uy € (Vs, B3) with V3 coincides in the physical space with the following
sequence: a genuine zero-speed contact discontinuity joining Uy, with V4 (corresponding to
two-phase solution along 03), followed by a zero-speed double contact joining the vertices
V5 and V3, but as we already saw the last wave of this sequence does not satisfy Oleinik’s
construction, therefore it must be excluded.

Wave curve construction.

See the arrows in Fig. 9.1(a). The slow characteristic speed decreases along the slow-
family integral curves inwards the saturation triangle, so the slow-family wave curve aris-
ing from U}, begins with a shock segment and finishes at a point Py, that belongs to the
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VZ

Figure 9.7: Riemann solution for U, = V5, Ug = V3 in the case p; = py > ps, (a) Oleinik’s
construction. (b) Wave groups represented in the (x,t)-space: solid lines represent the
characteristic lines in a rarefaction fan, dashed lines represent shock paths, light lines
correspond to waves of the slow family, dark lines correspond to waves of the fast family.
(¢) Saturation profiles: the solid curve indicates saturation of phase 2, the dashed curve
indicates saturation of phase 3. The coordinates of the following points are P, = (0,1 —

Py, Dy,) and P"% = (0,1 —p{%,p{%). The two saturation profiles intersect at the saturation
value corresponding to the quasi-umbilic point (); where the wave speed is zero.

slow-family extension curve Ej . The slow-family wave curve continues from P with
a rarefaction segment until it reaches the inflection manifold and then continues with
a composite curve based into this rarefaction segment. As the wave curve reaches the
extension curve £ of the edge 0, before arriving to the inflection locus, the composite
curve reaches the boundary 0; at a point Uy, see Fig 9.9(a). There exist two possibilities
for the structure of the fast-family wave curve arising from Uj;, depending on the position
of Uy relatively to the state P‘J/;, which is the fast-family extension point on the edge 0,

of the vertex Vi. If Uy € (V53, P{,;) (as in the case shown in Fig. 9.9(a)) the fast-family
wave curve consists only of a shock segment. If Uy, € (P{/;, (1) the fast-family wave curve

consists of a rarefaction segment from Uy, I{ continuing with a composite curve (based
on this rarefaction segment) up to Vi, see Fig. 9.10(a).
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Figure 9.8: (a) Wedge construction for the two-phase regimes R3 and 0;. This figure
is utilized to establish the speed compatibility between wave groups in the solution. (b)
Wedge construction for the two-phase regimes R3 and 0,. This figure is utilized to establish
the speed incompatibility between other waves that need to be excluded.

The Riemann solution consists of the following sequence of waves. There is a slow-
family right-characteristic shock wave joining U € J3 to P , followed by a slow rar-
efaction wave joining P to a state Py —on the curve Ej , followed by a slow-family

left-characteristic shock joining P =~ to state Uy in O1. If Uy € [P‘J/;, V3) the last wave in
the solution is a fast shock joining Uy, to Vi, see Figs. 9.9(b) and 9.9(¢c). If Uy € (Q1, P"%),

the fast-family wave group consists of a rarefaction wave joining Uy, to P‘J/; followed by a
left-characteristic shock up to Vi, see Figs. 9.10(b) and 9.10(c).

Now we will show the compatibility between the speeds of the slow-family wave group
joining Uy with Uy, and the fast-family wave group joining U, with V3.

Speed compatibility of the waves.

We perform the wedge construction (described in Section 7.1) for the two-phase
regimes R3 and 0; with a common vertex V3. Along 0; we choose Fgl and us as flux
function and conserved quantity; the phases coexisting in 0; have viscosities po and ps.
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On the other hand, along the critical line R the flux function is given by Eq. (5.10) with
conserved quantity u. The viscosities of the effective phases coexisting along Rz are us
and g1 + po. The relative difference between the densities of the fluids involved in these
two-phase regimes gives rise to a situation as in Fig. 9.8(a), where the tangent segment
to the graph at Py, intersects the extended-flux function at two points Aj, A7 on the
opposite side relative to V3. We have A\~ (P,) = o(Pg,, V3) = 0(V3, A7) = o(V5,A47). In
Fig. 9.11(a) all these points are drawn in the saturation triangle, and the dotted curve
represents the Hugoniot locus through the relevant point Py, € Rs.

On the other hand for Uy, € (V,, B3) we have numerical evidence showing that Uy, €
(AL, Q1). Plotting the level curves for the slow-family characteristic speed we obtain
AT (P5,,) < A (Py,), see Fig. 9.11(c). Thus we have (P, ,Uy) = A (F5,,) < A~ (Py,) =
o(Py,, V) < o(Un,Va) (see Fig. 9.8(a) for last inequality), which is evidence for the
compatibility of speeds between the slow-family and fast-family wave groups.

From Fig. 9.11(a) we notice that for Uy, sufficiently near Bz the rarefaction segment
of the slow-family wave curve intersects both extension curves Ej and Ej . We have
already constructed the solution using the intersection point P —in Ej , this solution
always remains in the triangle V3 B3 V5. We have also verified the speed compatibility
between the slow-family and fast-family waves. Now we will show that the other possible
solution that arises by the use of the point D on Ej connecting to a point D’ on the edge
0> must be excluded.

Excluding the solution arriving at V3 along the edge 0, for Uy, € (Vs, Bs).

See Fig. 9.11(b), we denote by D’ a point on 0y for which D is the extension, so
D' € H(D) and (D, D’) = A~ (D). It is possible to show that the shock joining D and
D’ is a Lax slow-shock. We will show that the possibility of utilizing that shock in the
solution must be excluded because of speed incompatibility with the fast-family shock
joining D" with V.

The incompatibility can be established by performing the wedge construction for the
two-phase regimes Rz and 0y, see Fig. 9.8(b) and by the usage of numerical arguments:
(1) plotting the level curves for the slow characteristic speed (see Fig. 9.11(c)) we note
that A™(D) > A™(Fy,)), (2) plotting the Hugoniot locus through D (see Fig. 9.11(b)) we
determine the relative position of D’ with respect to Al. Because of all these reasons we
conclude that o(D,D') = A~ (D) > A\~ (Py,) = o(Py,, Ay) > o(D', Vs) (see Fig. 9.8(b) for

- +
last inequality). Therefore the shock sequence D oL pr L V3 has speed incompatibil-
ity, so this solution must be excluded.

In other words, if the left state Uy of the Riemann problem belongs to the edge Vo—Bj3
of the triangle V3 B3 V5, then the solution remains inside this triangle. The dominant
phase at the state Uy (in this case would be phase 2) remain dominant with respect to
the other phase present at Up, the Riemann solution reaches an intermediate state Uy,
where the non-dominant phase at Uy, is missing. A similar invariance property was also
observed in the three-phase problem without gravity [1].
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Next we summarize the results above, we use the notations from Section 3.1, the
Riemann solution for initial left and right data U, € 03 and Ur = V3 has the following
structure:

(i) For the case Uy = V5 we have the two-phase solution, see Fig. 9.7:
U 2% Py, & Pl S vy = U, (9.5)

(ii) For Up € (Va, Bs) such that Uy € (Ql,P‘J/;) see Fig 9.10:

v, 2 Py opy S vy B P Ly — U (9.6)

(iii) For U, € (Vi, Bs) such that Uy, € (P‘J/;, V3), see Fig 9.9:

R

U, 2 Py oy Uy S v = Uy, 9.7)

(iv) For Uy, € (Va, Bs) such that Uy = P‘]/;:

CS~ f OS*

U, 2y B oy, S PLSS V= Up (9.8)

For the case where phase 1 is dominant at the state Uy, i.e., for U, € (Bs,V}), the
solution is completely analogous to the previous one, so we do not describe it.

Physical interpretation of the solutions in RP3.

Case (i) corresponds to the well known two-phase solution involving phases 2 and 3,
which have distinct densities. The cases (ii), (iii) and (iv) correspond to genuine three-
phase solutions. For these cases the mixture initially on top contains the equal-density
fluids 1 and 2, with phase 2 dominant with respect to the phase 1, i.e., the saturation of
phase 2 is larger than the saturation of phase 1. The fluid initially at bottom is lighter.
The solutions for these cases have certain similarity with the two-phase solution in case
(i). We notice that phase 2 (initially dominant on top) remains dominant with respect to
the phase 1 in the solution. The Riemann solution reaches an intermediate state where
phase 1 is missing. However, notice that for any one of these three-phase flow cases, the
sequence of waves in the solution contains an additional shock preceding a homogeneous
region, see Fig 9.10 or Fig 9.9. This structure differs from the two-phase case (i) shown
in Fig. 9.7.
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Fast-family
wave curve

(b)

Figure 9.9: Riemann solution for U, € (Vs, B3), Ug = V3 with Uy € [P{;S,V},), in the
case p; = py > p3. (a) Riemann solution represented by wave curves in the saturation
triangle. As usual, for each family, the dashed curve denotes a shock segment, the solid
curve denotes a rarefaction segment and the crossed curve denotes a composite segment.
We also draw the slow-family inflection branches Inf_ and the slow-family boundary
contact manifolds (extensions Ej ) corresponding to each edge d;. Some relevant points
are also drawn. (b) Riemann solution represented in the (z,t)-space, solid lines represent
the characteristic lines for a rarefaction fan, dashed lines represent shock paths, light lines
correspond to waves of the slow family, dark lines correspond to waves of the fast family.
(c) Saturation profiles: the solid curve indicates saturation of phase 2, the dashed curve
indicates saturation of phase 3. The constant states have coordinates Uy, = (1 —uZ, uk,0),
Uy = (0,ud?;1 —udf) and V3 = (0,0,1). The two saturation profiles intersect at a
saturation value where the characteristic speed is negative.
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Figure 9.10: Riemann solution for Uy, € (Va, Bs), Ur = V3 with Uy, € (Ql,P‘J,;), in the
case p; = ps > p3, (a) Riemann solution represented by wave curves in the saturation
triangle. As usual, for each family, the dashed curve denotes a shock segment, the solid
curve denotes a rarefaction segment and the crossed curve denotes a composite segment.
We also draw the slow-family inflection branches Inf_ and the slow-family boundary
contact manifolds (extensions Ej ) corresponding to each edge d;. Some relevant points
are also drawn. (b) Riemann solution represented in the (z,t)-space, solid lines represent
the characteristic lines for a rarefaction fan, dashed lines represent shock paths, light lines
correspond to waves of the slow family, dark lines correspond to waves of the fast family.
(c) Saturation profiles: the solid curve indicates saturation of phase 2, the dashed curve
indicates saturation of phase 3. The constant states have coordinates Uy, = (1 —uZ, uk,0),
Uy = (0,ud?;1 —udf) and V3 = (0,0,1). The two saturation profiles intersect at a
saturation value where the characteristic speed is negative.
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Figure 9.11: (a) Slow-family wave curve for Uy near Bs. The wave curve intersect both
extensions curves Ej and Ej at points Pj —and D respectively. The dotted curve
represent the Hugoniot locus through FPy.. The slow-family inflection curves was also
drawn. (b) The solid dark curve is the Hugoniot locus through D. The dotted curve is
the Hugoniot locus through Py,. (c) Zoomed in region drawing non-negative level curves
for the slow-family characteristic speed, the dark curve represent the zero-level curve. The
point denoted by I, is the global maximizing point for A=(U). This point coincides with
an inflection point of the two-phase flux function Fj, restricted to the critical line Rs.
The points D, Py , Py, are the same that in figure (a).



Chapter 10

Solution for SPGP with light
equal-density fluids

In this chapter we study the case in which a = 0, p; > po = p3. Denoting p = p31 = po1,
we are in the case p < 0. As a consequence of the reversal symmetry in Theorem 8.1,
the integral curves, the inflection manifolds and the boundary contact manifolds corre-
sponding to this “simplified pure gravitational problem” are identical to those shown in
the previous chapter, but the families are interchanged. Besides, along the integral curves
of each family, the increasing direction of the characteristic speed is reversed with respect
to the case analyzed in the previous chapter. For this case the integral curves of each
family are shown in Figure 10.1. Notice that segments (Q3, V1) C 03 and (Q2, V1) C Oy
are integral curves of the slow family while segments (Q3,V2) C 93 and (Q, V3) C 0 are
integral curves of the fast family. This change of family along the edges when crossing
the quasi-umbilic points was proved in Theorem 4.1.

The inflection manifolds of each family for the symmetrical case p; = o = p3 is shown
in Fig. 10.2.

In Fig. 10.3 we show the boundary contact curves (see Def. 3.9). As in the previous
section, we denote by Egj, Egj; J = 1,2, 3 the boundary contact curves of the slow and fast
family respectively, corresponding to the edge 9;. We also call these curves the extensions
of the edges of the saturation triangle. Again we recall that P (or PIZ), is the extension
of a point A on the boundary, associated to the the slow (or fast) family (i.e., the shock
joining the state A to the state PY is characteristic at P for the family 7).

Consider the simplified pure gravitational problem o = 0, p; > ps = p3. We want
to solve the generic Riemann problem with left data U, lying on the edge 0;, i = 1,2,3
of the saturation triangle, and right data Uy coinciding with the opposite vertex V;. For
this case, there exist essentially only two distinct problems: Uy, € 0, Up = V; and
Up € 05, Up = V5 (notice that the Riemann problems with data Uy € 0y, Ug = V5 and
Up € 03, Ug = V3 are analogous).

92
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Figure 10.1: Integral curves for the simplified pure gravitational problem a = 0, p; > ps =
p3, in the case pu; = pe = pz. (a) Slow-family integral curves. The arrows indicate the
direction of increasing characteristic speed; notice the local extremal speed at the dots,
which form the slow-family inflection locus. (b) Fast-family integral curves. The arrows
indicate the direction of increasing characteristic speed; notice the local extremal speed
at the dots, which form the fast-family inflection locus. The points ()2 and ()3 denote the
quasi-umbilic points on the boundary.

Figure 10.2: Inflection curves for the case a =0, p1 > pa = p3, 1 = po = ps. The light
curves are the inflection locus corresponding to the slow family, with branches Ry = V,-By
and I35 I5. The dark curves are the inflection locus corresponding to the fast family, with
branches I{ ]3]: and Q2 Q3. The points (QQa and Q)3 denote the quasi-umbilic points on the
boundary. The points I. and I. denote the inflection points on the critical line.
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Figure 10.3: Boundary contact manifolds for a = 0, p1 > ps = p3, 1 = po = ps. The
light curves are the slow-family boundary contact curves, the branch Ej, is the slow-family
extension of the edge Oy and the branch Ej, is the slow-family extension of the edge O3,
the edge 0, where the equal-density fluids coezist has no slow-family extension. The dark
curves are the fast-family boundary contact curves, Egi for 1= 1,23 are the fast-family
extension of the edges ;.

First we state the following result.
Lemma 10.1. Assume p; > ps = p3 and consider the states A; € 0;, i = 1,2, 3, then:
(1) we have o(U, A;) <0 for all U € H(A;), i = 2,3 out of the edge 0.
(i1) we have o(U, A1) > 0 for allU € H(A1) out of the edge Oy and out of the vertex V.
Proof. The proof follows from Lemma 9.1 and the symmetry result for the Hugoniot loci

in Remark 8.1. The shock speed changes sign with respect to the SPGP studied in the
previous chapter. ]

10.1 RP4: Left data in 9, right data V5

For this case H(V2) = 0; U 03 (see item (i) of Prop. 6.3), we also see in Fig. 10.1 that the
integral curves through vertex V5 coincide with the edges d; and 03 near V5. Thus the
possible ways to arrive at V5 are (see Fig. 10.1):

(1) Arriving by a zero-speed genuine contact discontinuity corresponding to the two-
phase solution on J; (see Sec.5.2).
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(2) Arriving by a fast shock corresponding to the two-phase solution on 0s.

Excluding alternative (1).

Inspecting the arrows in Fig. 10.1(b), we see that the only way to arrive at a point
Ay € 0y is by a fast shock with positive speed (see item (ii) of Lemma 10.1). This shock
cannot precede the two-phase zero-speed genuine contact along 9; up to V5. Therefore all
solutions arriving at V5 by the edge 0d; must be excluded.

Construction of the Riemann solution.

Now we will construct the solution using the second alternative, i.e., in order to arrive
to Vo we must first reach the edge 03 by means of a slow-family wave group followed
by a fast-family two-phase wave group up to V5. Notice that as p; > ps, choosing FQ83
as the flux restricted to the edge 03 with conserved quantity wus, F283 is similar to the
flux in Fig. 5.1(b). We see that there exist two ways to arrive to the edge 05 through a
slow-family wave curve.

(2.1) Arriving to the interval (V5, @3) by a slow rarefaction curve (see arrows in Fig. 10.1(a)).

(2.2) Arriving to the interval (@3, V) by a slow shock using a non-local branch of the
Hugoniot locus through Uy (see for example Fig. 7.8(a)- 7.8(c)).

However the option (2.2) of reaching the edge 03 at states out of the interval (3, Q3)
must be excluded because of Proposition 7.2; this type of shock leads to speed incompati-
bility between the waves in the solution. In other words, the Riemann solution must begin
with a slow-family wave group, which reaches the interval (V5, Q3) at a point Uy, then
the solution continues by means of the fast-family wave group, i.e., a two-phase Oleinik
solution joining Uy, to V5.

Consider Uy, = (u¥,0,uf) on 95, We will split our analysis in several cases.

10.1.1 Two-phase solutions.

(1) If Uy = V5 the solution is a zero-speed genuine contact joining V3 with V5.

(17) If Uy, = Vi, the solution is the same two-phase Oleinik solution described in Fig. 9.7.

10.1.2 Doubly characteristic shocks in three-phase solutions.

See Fig. 7.8, by analyzing qualitatively the motion of the non-local Hugoniot branch of
H(Ur) when Up, moves along 0, from V3 to Vi, we notice that it reverses direction twice.
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First the non-local branch leaves the saturation triangle when U, = U; and goes away
until Uy, reaches a certain state D;, where the motion of the branch reverses and starts
to approach again the triangle (see the arrows in Figs. 7.8(d)- 7.8(e)). From Uy, = U, the
non-local branch enters the saturation triangle until Uy, reaches certain state D, where
the motion of the non-local branch reverse again to approach the edge 05 (which coincides
with the non-local branch in the limit case U, = V}).

We state the following conjecture, which is supported by strong numerical evidence
and some analytical calculations.

Conjecture 10.1. Consider the simplified pure gravitational problem (SPGP) in which
the equal-density fluids are lighter than the other fluid (i.e., a = 0 and py > ps = ps.
The states D1 and Dy on Oy where the motion of the non-local Hugoniot branch reverses,
belong to the slow-family double contact manifold. In other words, there exist D} and D
such that D, € H(D;) and A\ (D;) = o(D;, D)) = A\~(D}) for i = 1,2. The state D}
always lies in the interior of the saturation triangle. The state D} may lie: (a) outside
the saturation triangle, (b) on the edge Os of the saturation triangle, or (c¢) in the interior
of the saturation triangle, depending on the shape of the extended-fluz function F2% as

ext
follows: case (a) occurs if the graph of F2% is like the dotted curve in Fig. 7.3, case (b)
occurs if the graph of Fea;tas is like the solid curve in Fig. 7.3, and case (c) occurs if the
graph of Fea;ta?’ is like the dashed curve in Fig. 7.5.

Remark 10.1. Notice that when the graph of Fea;ta?’ 18 like the solid curve in Fig. 7.3, the
double contact pair Dy, D) coincides with the double contact pair Uy, U* in Fig. 7.8, this
is the “double tangency” case where Uy € Oy, U* € 03 . As we can regard the other cases
as bifurcations of this “double tangency” case, we see that the second part of the conjecture

(about the relative position of D)) becomes natural.

Now we state another conjecture, which is also supported by numerical calculations.

Conjecture 10.2. The slow characteristic speed \~(U) decrease monotonically when U
moves from Oy to O3 along the extension curve Ej in Fig. 10.5.

Proposition 10.1. Assume that the Conjectures 10.1 and 10.2 are valid. Consider D}
on Oy such that o(D5, Dy) = A~ (D3). Then we have D} € (Vs,Uy), where Uy is defined in
item (ii) of Prop. 7.1 and is shown in the Figs. 7.3 and 10.4.

Proof. From Conjecture 10.2, we have that A= (Ds) = A7(D)}) > A~ (U*). On the other
hand we know that o(U;, Vi) = A~ (U*) and we notice that \=(Dy) = (D3, Dy) <
o(D35, V1) (see Fig 10.4). Thus we obtain o(Uy, V1) = A= (U*) < o(D3, V1), which implies
D3 € (Vs,Uh). [
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Figure 10.4: Eztended fluz function. Notice that D5 € (V3,Uy). In the interval (D3, Uy)
we have multiple solutions satisfying the generalized Lax criterion. It is necessary to use
the viscous profiles criterion to choose the correct physical solution.

Disconnected wave curves

Consider Uy, € (V3,V]) and Ui = V5, we find that the slow-family wave curve through
U}, has disconnected branches. For most of the values of U, on the edge 0;, we must use
a non-local branch of the slow-family wave curve in order to reach the interval (V5, Q3)
on 0Os.

In Fig. 7.8 we illustrated the Hugoniot loci for distinct values of Uy, € 05, for the same
SPGP we are studying in the current chapter, therefore that figure can be taken as the
reference for the shape of the Hugoniot loci. Recall that U; and U, were defined in item

(17) of Prop. 7.1, these states can be calculated easily from the wedge construction (see
Fig. 7.4).
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Figure 10.5: Slow-family wave curves for some states U on 0, for the problem o = 0,
p1 > p2 = ps3, in the case py = pg = pz. The solid light curves £ and Eé; are the (slow
and fast) extensions corresponding to the edge dy. The dark curves represent the slow-
family wave curve. As usual the solid part of the curves represent rarefaction curves with
an arrow indicating the increasing direction of the slow characteristic speed, the dashed
portions represent shock curves. (a) Wave curve for Uy € (V3, W;). (b) Wave curve for
Up = Wi. (¢) Wave curve for U, = Dj where Dy € 0y and o(Ds, D}) = A~ (D5). (d)
Wave curve for Uy, € (Dj,Uy). (e) Wave curve for Uy, € (Uy, Ds). (f) Wave curve for Uy,
just to the right of the double contact state D,. In all the figures we denoted by black
dots the relevant states for the construction of the Riemann solutions, the states denoted
by white squares does not belong to the solutions.
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In Fig. 10.5 we show the slow-family wave curves for several values of U, € 0;. We
note that for all values of U, there exists at least a wave curve branch that reaches the
edge O3 at a point in the interval (V3, Q3), so the Riemann solution always exists. In this
case, the speed compatibility between the fast-family waves and the slow-family waves is
trivial since the last wave of the slow-family group is a rarefaction ending with zero-speed
at the intermediate state U,;, while the fast-family wave group, which defines the two-
phase solution joining Uy, to V3, always has positive speed. Notice that for Uy € (D}, Uy)
(see Fig. 10.5(d)) there exist two branches of the slow-family wave curve arriving to the
interval (V3,@Q3). The first branch arises from the use of the slow-family extension P
of the point Ur. However, this construction provides a sequence of waves which satisfies
the generalized Lax criterion but it does not satisfy the viscous profile criterion, see
Fig. 10.6(c). The other branch arises from the use of the slow-family double contact pair
Dy, D}, this type of solution satisfies both the generalized Lax criterion and the viscous
profile criterion, therefore this is the physically correct solution. For Uy € (Uy, Ds) only
the non local branch arising from the use of the slow-family double contact pair Dy, D)
lies in the sauration triangle.

Figure 10.6: (a) Case Uy just to the left of Dj, there exist an orbit joining the states Uy,
and P . As expected this type of solution satisfies the viscous profile criterion. (b) Case
U, = Dj for this case we obtain the phase portrait as a consequence of the collapse of
two critical points: a repelling node and a saddle. (c) Case U just to the right of Dj,
there does not exist an orbit joining Uy, and Py, , there exist a saddle point which does
not permit any orbit to cross to the other side. The Riemann solution for this cases must
to be constructed by using the double contact pair Do, D5,.

In fact, for any value of Uy in (D3, Dy) (see Figs. 10.5(d)- 10.5(e)) we must use the
slow-family double contact pair Dy, Dj to construct the Riemann solution, while for the
cases Uy € (V3,D3) and Uy € (D, V1) we use the extension P of the point Uy, see
Figs. 10.5(a), 10.5(b), 10.5(f).

See Fig. 10.5(c). For the case Uy, = Dj, we have Pp. = Dj (because of the Triple
shock rule applied to D3, Dy, D)), and we have two representations in state space of the
same physical solution. The first representation consists of a slow shock joining U, = D}
with their extension point Pp. = D), continued by a slow-family rarefaction wave to
Uy The fast wave group is the two-phase Oleinik solution from Uy, to V5. The second
representation consists of a slow shock joining Up = D3 with the state D,, which is
characteristic at Dy; it is followed by a double contact discontinuity joining Dy with D5;
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from this point up to the final state V5 we use the same sequence of waves employed in
the first representation. The key fact for these different representations in state space
to coincide in the physical space is that the discontinuities involved have the same speed

(notice that o(D3, Do) = A~ (Dy) = A~ (Djy) = o(D3, D))).

In Fig. 10.5 we denoted by black dots the states that are relevant for the construction
of the Riemann solutions, the states denoted by white squares do not take part in the
solutions.

Remark 10.2. Notice a curious feature of the solution: if the mixture proportion of the
state Uy, lies inside the interval (D3, Do) then the faster wave in the upward direction
(negative speeds) does not involve fluid 2 (i.e., the solution does not enter the saturation
triangle). In other words, until the mizture proportion of the top fluids attains the critical
value given by Do, the bottom fluid (phase 2) does not move upwards.

Now we summarize the results above, using the notations from Section 3.1.

The Riemann solution for the genuine three-phase flow of the SPGP where a = 0,
p3 = pa < p1, has the following structure

(iii) For Uy, € (Vi, Dj) such that Uy, € (Va, PL):
U, 5 P A vy v = Uy, (10.1)

(iv) For Uy, € (Va, Dj) such that Uy, = P/

U, 25 Py, 2 Uy S5 v, = Us, (10.2)

(v) For Uy, € (V5, D3) such that Uy, € (P‘]/;,Qg) or Up, € (Dy, V1):

U, 25y, 2 Uy B PL S v, = U (10.3)

(vi) For Uy, € (D3, I), see Figs. 10.7(c) and 10.7(d), with UL € 05:

U, 2 vt 2 py, S Dy B vy B PSS vy = U, (10.4)
(vii) For Uy, € [I5, Ds), see Figs. 10.7(a) and 10.7(b):
R~ f CSt
UL—>D2—>D —>UM—>P —— Vo = Ug, (10.5)
(viii) For Uy, = Dj:
Uy = D; °% Py, = Dy *5 Uy 25 Pl 955 Wy = U, (10.6)
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For this case we have another different representation in state space for the same physical
solution

(ii1) Uy = Dy 5% Dy, Sz Dy B vy, B pl S5 v, = U, (10.7)
(IX) For UL = DQZ
U, =D, < py 2 vy B PL S v, = U (10.8)

Physical interpretation of the solutions.

We will only discuss the cases (vi) and (vii), which are more interesting, see Fig. 10.7.
For this Riemann problem, one of the top fluids has the same density as the bottom fluid,
while the third fluid (initially on top) is the heaviest. The solution is totally unpredictable
without mathematical analysis. The solution consists of two wave groups separated by a
constant state. The first wave group moves upwards. It contains a double contact shock
embedded into two rarefaction waves; sometimes the upper rarefaction is preceded by
an additional shock (this is the sole difference between the two cases). Within the top
wave group, the waves faster than the embedded shock involve only two fluids, precisely
the fluids that were on top initially; the fluid initially at the bottom is only present in
the solution below the embedded shock. The second wave group moves downwards and
involves two fluids only. This wave group consists of a rarefaction wave adjacent to a
faster shock; in all these waves the lower-density fluid that was initially located on top is
absent, i.e., the lower-density fluid never moves downwards, as one could expect. There
is a homogeneous region, i.e., a constant state, separating the two wave groups. The span
of this region grows linearly with time.

We observe a curious feature of this Riemann solution (see Remark 10.2): while the
proportion in the mixture initially on top keeps within certain range away from a critical
value, the mixture slows down the upward motion of the bottom fluid. This blocking
property perhaps could be important in applications.

10.2 RP5: Left data in 0y, right data V;

See Fig. 10.1, the edge 0, coincides with the slow-family integral curves through U € 0;.
In this case the Riemann solution is trivial, the solution consists of a zero-speed genuine
contact from Uy to the point V5, followed by a zero-speed double contact discontinuity
joining V5 with V;. There exist three representation of this solution in state space which
coincide in the physical space:

() U S5 v, S Vi = Ug.

(i) U, <5 v5 S v = Up.
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172 Saturation

(c) (d)

Figure 10.7: (a)-(b) Riemann solution for U, € [I5,Ds), Ugr = V5 (15 was defined in
Fig. 10.2) for the case p; > pa = p3. (¢)-(d) Riemann solution for Uy, € (D3, I5), U = Va.
In (a) and (c): Riemann solution in (x,t)-space: solid lines represent the characteristic
lines in a rarefaction fan, dashed lines represent shock paths, light lines correspond to
waves of the slow family, dark lines correspond to waves of the fast family. In (b) and
(d): saturation profiles; the solid curve indicates the saturation of phase 1, the dashed
curve indicates the saturation of phase 2. The constant states are U;, = (u¥,0,1 — ul),
Uy = (wh,0,1 —uf) and Vo = (0,1,0). Other relevant states are the pair Dy =
(d,0,1 —d), D = (d},d,, 1 — d} — dj) that belong to the double contact manifold, and
states D} = (d*,0,1 — d*), UL = (uf,0,1 — uk) which satisfy o(Dj, Dy) = A= (D,),
o(UL, Ur) = A~ (UY)

*

(iii) U, <% B, S Vi = Up.

Physical interpretation of the solutions.

The physical interpretation is trivial, since for this case the bottom fluid is the heaviest
while in top we have equal-density fluids, one could expect that neither of the fluids would
move.

Remark 10.3. The Riemann problem RP6: with left data Uy in 03 and right data
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Ugr = V3, is analogous to the case RP/, so we omit its description.



Appendix A

Additional calculation for Theorem 5.1

The following calculations correspond to the proof of Theorem 5.1. Assume p3 < p; = po.

Let us denote p = p13 = pos. From (4.4)-(4.7) we have

2 2 4 2,,2 4

22 — J11 — - - 9
papopsA? papsA? ppopsA? A2

7 20 uugul uuius utug )

12 = 4p— - - )
prapiopsN? pipopsA? i A

J 20 Ul uuius usus )

21 = - - - -
prapiapsN? pupiopsA? s A

As we are supposing that (uj,us) € Rs, we can substitute %

(A.1)
(A.2)

(A.3)

= % into above ex-

1 2
pression in a convenient way in order to obtain the same denominator in all terms, so we

obtain
Jos— T = 20( udul wiuduz  utugul ufug )
20 — J11 = - -
pipsA? s iAo s
wiu
= 2pu%;37\2 (ul(l — Uy — up) —ui — ug(l —uy — uy) + u%)
U2U3 U3U3
=2p———(u1 — us) = 2p———(1 = pa/p11),
p3psA? ( ) 13psA? ( )
u3u2 U3U21,L3 U4U3
J12=2p(— 21 /3\2_ 21 A2 21 A2)
K13 HIp3 V]
U2U3 U3U3
=—-2p ! ul(l—ul—uz)+u1uQ+u2 = —2p17,
el ) pipsA?
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(A.5)
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2 2 3 2,2

Jor = 2p( — - -
( pisA? pipsA? pfps A
= — u — Uy —u uUlLu Uu
p,U%,U?»Az 2 1 2 1U2 2
u2u2u3 U3U3
= —2p——5 = —2p(ka/ ) 5.
TGN (he/ )M%ugA2

Let be A = (JQQ - J11)2 + 4J12J21, from (A4)—(A6) we have
ufuzp?
pipaAt

6,22
ujugp

4,274
pipsA

A=4 (1= pa/ ) + dpaa/ ) = 4

Substituting (A.4) and (A.7) into (5.16) and using (A.6) we obtain

3
Uy /~L1J
= ——Ja.

piusA? iy

Jog — A =2p

(1 +M2/M1)2-

(A.8)
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B

Proof of Lemma 8.2

First we see that the functions Ji; and Joy are symmetric functions with respect to the
variables u; and us, so the function fy = Ji; + Joo is also symmetric.
Let denote © = Jy1Joy — JiaJ21 Taking in to account the relations (4.4)-(4.7), we obtain
after some calculations

where

fius, ug)
fa(ua, up)
fa(ua, up)
fa(ua, up)
f5(us, ug)
fe(us, ug)
Ja(us, ug)

All the functions (

O=fi+fot+fs+fa+fs+ f6+ fr,

)3)

)3)

),

)5)

R 2(u§u§(1 —uy —ug)®  ujud(l—uy — uy
IS it pzAt
_ 2(u1ug(1 —uy —ug)®  uSus(l — uy — uy
Al gAY
_ 3 2(u1u§(1 —uy —up)®  wdus(l — uy — ug)®
1oAY P usAt
- i),
2 ps At
_ 4 2(u1u‘21(1 —uy —up)®  utus(l — uy — us
(P A (P usAt
_ 2(u§’u§(1 —uy —up)®  wdud(l — uy — uy
pEpgAY PPNt
_ 2(u%u‘;’(l —uy —ug)®  wdui(l — uy — up)?
prusAt ppaAt

)5)

).

Y

Y

Y

Y

(B.1)

(B.2)
(B.3)

(B.4)

(B.2)-(B.8)) are symmetric in the variables u; and us (Notice that
2

A — U%‘Fu% —I— (l—ul—u2)

I 13

is symmetric), so the function ©(uy,us) is also symmetric with

respect to the variables u; and u,. Then we have that characteristic speeds AL = %(fo +

V f& — 40) are symmetric functions.
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Appendix C

Uniqueness of solution for RP1

The following analysis mixes analytical and numerical arguments.

Consider the simplified pure gravitational problem o = 0,p; = py > p3. For the
Riemann problem of type RP1, consider a left data U, € (V3,Q2) and the right data
Ur =V,

We want to show that the solution obtained by using the slow-family wave curve
coincides with the solution described in chapter 9.

Let us analyze the slow-family wave curve through Uy. The first portion of the slow-
family wave curve arising from Uj, consists of a rarefaction segment Up—U;,s where Uj¢
belongs to the inflection manifold; the wave curve continues with a composite curve pa-
rameterizing states on the right of shocks that are characteristic at the left states on the
rarefaction segment Uy, Ulys.

There exist several possibilities for a slow-family composite curve to finish:

e The slow-family composite curve reaches the boundary of the saturation triangle.

e The slow-family composite curve reaches a state where the shock speed is equal to
one of the characteristic speeds; in such a case the wave curve either continues with
a new slow-family rarefaction segment or with a fast-family rarefaction segment.
The state where the composite curve finishes together with the corresponding state
in the base rarefaction segment is a pair of states in the double contact manifold
(maybe involving both families).

e The slow-family composite curve finishes after utilizing all the states of the base
rarefaction segment; in this case the slow-family wave curve continues with a shock
segment.

We perform the analysis for the slow-family composite based in the rarefaction curve
Ur U First notice that the slow-family composite curve cannot arrive or end at a
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point Az on the edge d3 since A_(U) > 0 for all U in the rarefaction curve Uy, Uy (see
Fig. 9.11(c)) while (U, A3) < 0 (see item (i7) of Lemma 9.1).

We use a numerically obtained figure to show that the slow-family composite curve
cannot reach a point Ay on the edge 0, before consuming the whole rarefaction curve,
see Fig. C.1. The slow-family boundary contact manifold E3, that extends the edge J,
intersects the inflection manifold at a point P out of the triangle V3—V;— Bs; however the
integral curve through Uy remains always inside this triangle (because the segment Rj
itself is a slow-family integral curve as we have shown in Theorem 5.1), so none of the
states in the rarefaction branch Uy U, can be right extensions of As € 0. Thus the
composite curve cannot reach 0y before consuming all the states in the rarefaction curve.

Figure C.1: Ej, s the portion of the slow boundary contact manifold which extends the
edge Oy; this curve intersects the slow inflection curve at P. The rarefaction branch
starting at Ur reaches the inflection curve without intersecting the curve Ej .

As we already eliminated the solutions arriving to V5 along the edge 0 we do not worry
about the possibility of the slow-family composite curve reaching 9; or reaching a point
in the interior of the triangle where the shock speed coincides with the fast characteristic
speed (as the fast-family wave curves lead to the edge 9y too).

On the other hand, we have numerical evidence showing that there does not exist
any state on the rarefaction curve Uy, Uj,s that belongs to the slow-family double contact
manifold, therefore the only remaining possibility is that the composite based on this
rarefaction curve will continue until it consumes all the states of the rarefaction curve.
However this cannot occur out of the edge d; because of item (i) of Lemma 9.1 and of
the equality A~ (UL) = 0. So the composite curve will end at a point U, = (u},0,1—u})
in 0y such that o(Up,U;) = 0= A"(Uy), the slow-family wave curve continues along the
edge 0y with the shock segment U}J— U, followed by a final rarefaction segment U,— V7, see
Fig. 9.6(a). Here U; is the same point described in Theorem 8.2 corresponding to Up.
The state U, € 0y satisty o(Up, U,) = dimFlaz(ui). As u}; < ul, this construction leads to
the same Riemann solution in Figs. 9.6(b) and 9.6(c).
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Extended bibliographic review

Riemann problem theory dates from 1860 when the shock tube problem was solved em-
ploying the method of characteristics, see |39]. That problem reduces to solving a piece-
wise constant initial value problem for a system of non-linear conservation laws that
describes gas motion, Euler’s equations. Riemann obtained the scale-invariant solution
and explained why rarefaction waves and shock waves are generated when the membrane
separating regions with gases at different pressures is broken.

Non-linear conservation laws govern flows in porous media. The simplest nonlinear
problem in porous media, the two-phase flow injection problem, was solved by Buckley
and Leverett |5 in 1942. Their resolution method can be interpreted geometrically by
means of the graph of the standard S-shaped flux function, giving rise to the fractional
flow method, of common usage in petroleum enginering. This method is a powerful and
simple tool to solve flow problems involving no more than two phases, but many chemical
components, see [13], [14], [49].

The Riemann problem for immiscible three-phase flow is more difficult than for two-
phase flow. The fractional low method cannot be extended to three-phase flow problems
such as those arising for the rock permeability models of Corey et al. [6] and Stone [48|.
The resolution of such problems requires a more general solution method, the wave curve
method, developed by Liu [29]|, which generalizes the Lax’s theorem |28]. This method
constructs the solution by means of a sequence of rarefaction waves, shock waves, and
constant states, by following a sequence of curves in state space.

The wave curve method developed by Liu assumes that the system of conservation laws
is strictly hyperbolic. Nevertheless, systems of conservation laws modelling immiscible
three-phase flow in porous media fail to be hyperbolic.

Marchesin, Paes Leme (unpublished, 1980) and Shearer [43| established that violation
of strict hyperbolicity occurs inside the saturation triangle for immiscible three-phase
flow without gravity. Bell, Trangenstein and Shubin [4] showed by means of numerical
experiments that Stone’s model for permeabilities possesses an elliptic region in the satu-
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ration triangle which in some sense is a repeller for waves. Other important works about
elliptic-hyperbolic mixed problems modelling immiscible three-phase flow in porous media
are Keyfitz [26], Keyfitz [27|, Holden |15], Holden [17|, Holden H. and Holden L. |16].

Isaacson, Marchesin, Plohr and Temple [20] showed that for Corey model of perme-
abilities, there exist a sole isolated point where strict hyperbolicity fails, which was called
umbilic point.

Isaacson and Temple [23| introduced the idea of studying the solutions in a neigh-
borhood of umbilic points by using homogeneous quadratic polynomial flux functions.
Schaeffer and Shearer [40]| classified the umbilic points for quadratic homogeneous sys-
tems in four types, two of them, types I and II, are relevant for three-phase flow models.
Some works were dedicated to the study of Riemann solutions for systems of two conser-
vation laws with homogeneous quadratic flux functions, dealling with the different four
umbilic point types. For instance see Shearer, Schaeffer, Marchesin and Paes-Leme [42],
I[saacson, Marchesin, Plohr and Temple [22|, Schaeffer and Shearer |41].

Holden [15], Holden H. and Holden L. [16] studied examples of quadratic systems
presenting umbilic points of type I and II of the Schaeffer-Schearer classification [40]
and proved nonuniqueness of Riemann solutions using Lax 28] and Oleinik [34| entropy
criteria, as extended by Liu [29] rather than using the traveling wave criterion.

Azevedo and Marchesin |2] studied the Holden’s model in |15], by using the condition
that shock waves should be zero-diffusion limits of traveling waves for the parabolic sys-
tem. They found that a moderate number of multiple solution occur for this prototype of
Stone’s model. Azevedo, Marchesin, Plohr and Zumbrun [3] showed that, in the presence
of nontrivial diffusion terms, such as those for capillary pressure, it is not the elliptic
region (resp. umbilic point) that plays the role of an instability region; rather, it is the
region defined by Majda-Pego [31|, which depends on the diffusion terms too and contains
the elliptic region (resp. umbilic point)

I[saacson, Marchesin, Plohr and Temple |20], solved by the wave curve method the
Riemann problem for Corey’s model for immiscible three-phase flow in porous media
neglecting gravitational effects. Their method is more general than Liu’s, because it
allows for loss of hyperbolicity and for other difficulties that typically occur in three-
phase flow. In [20] the solution was obtained under the simplifying assumption that the
three fluids have equal viscosities. De Souza [8| extended the study to the case in which
one of the viscosity parameters is slightly different from the other two. Some mathematical
difficulties arising in this study were resolved by Marchesin, Plohr and Schecter [32].

In their doctoral theses Xu [53] and Rezende |36] studied topological aspects of the
elementary waves in the Corey’s Model analyzed in [20].

Hurley and Plohr |19] studied how changing the diffusion terms affect the solutions of
Riemann problems.

Schecter, Marchesin and Plohr |45], |46] initiated a systematic program to classify all
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Riemann solutions for (non-strictly) hyperbolic systems of two conservation laws with
the identity viscous profile criterion. In particular wave curves were studied. This work
extended the doctoral work of Furtado |9] which used the Lax |28] and Oleinik |34 entropy
criteria.

Recently Azevedo, De Souza, Furtado, Marchesin and Plohr [1] showed applications
of the wave curve method to solve the injection problem for immiscible three-phase flow
in which a mixture of water and gas is injected into a horizontal one-dimensional porous
medium containing oil.

On the other hand, buoyancy effects in the flow of two immiscible fluids in porous
media are quite well understood, as they are modelled by a scalar conservation law, while
is easily solved through Oleinik’s construction [34]. For instance Proskurowski in [35]
solved the Buckley-Leverett equation for two-phase flow in the presence of gravity. There

are others works on two-phase flow with gravity and their applications, see e.g. |37, |38|,
[51], [24], [12].

The state of the art for three-phase flow with gravity is quite different. Up to now,
there are a few works on three-phase flow with gravity taken in to account. Medeiros [33|
performed an analysis of hyperbolic singularities for certain models including gravity.
Trangenstein [50] showed that Stone model with gravity present elliptic regions. Medeiros
and Trangenstein’s results indicate that the only three-phase permeability models that
have umbilic points, rather than elliptic regions, in the presence of gravity are Corey
models, in which each permeability depends solely on its own fluid saturation.
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