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Abstract We study the long term dynamics and the multiscale aspects of a within-host HIV

model that takes into account both mutation and treatment with enzyme inhibitors. This model

generalizes a number of other models that have been extensively used to describe the HIV

dynamics. Since the free virus dynamics occurs on a much faster time-scale than cell dynamics,

the model has two intrinsic time scales and should be viewed as a singularly perturbed system.

Using Tikhonov’s theorem we prove that the model can be approximated by a lower dimensional

nonlinear model. Furthermore, we show that this reduced system is globally asymptotically

stable by using Lyapunov’s stability theory.
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1 Introduction

The Acquired Immunodeficiency Syndrome (AIDS) epidemic was one of the most devastating

health issues during the last decades of the XX century and remains a challenge as the XXI

century ushers in [20]. The problem is even more striking in less developed areas [37]. The

accumulated sequence of difficulties associated to the AIDS epidemics ranging from social and

cultural to biological and modeling issues makes the topic highly relevant for research [1, 18].

As a consequence, mathematical tools have been applied to help understand the complex

dynamics of the immune system and its response to viral infection [2]. Indeed, a better un-

derstanding of this dynamics seems to be a important factor in the development of effective

long-term therapies or possibly preventive vaccines for deadly diseases such as the Human im-

munodeficiency virus (HIV) infection [18]. From the mathematical point of view, there has been

several research lines and approaches [1,4,5,8,13,14,17,18,22–24,27,30,31,35]. Among those, we

shall consider in the present article the within host dynamics of the HIV virus. It has received

a substantial amount of attention. See for example [23,24] and references therein.

It has been known for a while that the virus dynamics is much faster than the dynamics of the

cells that host the viruses as well as of the uninfected cells [9,10,13,15,16,25,28]. Furthermore,

it is well documented that one of the elusive characteristics of the HIV biological behavior is the

regular change of its genetic signature by constant mutation. Thus leading to different strains

of the same viruses. Mathematical models incorporating such aspect have been studied by a

number of authors. See [30] and references therein.

In this article we consider a differential equation model for the within-host dynamics of the

HIV that takes into account mutation, treatment with enzyme inhibitors and the different time

scales that are relevant to a realistic analysis of the problem. To incorporate such different time

scales, we make use of the multiscale analysis techniques that have been used in many other

areas (see for example [12, 21, 34, 36]) and in the context of biological modeling of infectious

diseases in [3,26,29]. We prove the existence of a reduced system whose dynamics approximates

in a suitable way that of the relevant variables in the full system. We also prove global stability
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of such system by exhibiting an appropriate Lyapunov function. Such function is inspired by

the one used in [30].

The HIV Dynamics

As the human immunodeficiency viruses are not capable of reproducing themselves, they ma-

nipulate the CD4+ T cells to generate numerous copies of themselves. The replication cycle

begins with free virus connecting to the target cell and injecting HIV RNA into the cell. Once

the HIV RNA is inside the cell, it makes a DNA copy of its viral RNA. The viral DNA is then

inserted in the CD4+ T cells DNA.

After that, host cells will produce viral particles and assemble new HIV virions. The final

step of the viral cycle is the release of these virions. The release of viral genetic material into

host cells triggers a complex immune response. This process results in the activation of cytotoxic

T cells (or CD8+ T cells) that will bind to infected cells and induce apoptosis.

AIDS treatments consist of antiretroviral drugs capable of inhibiting (at least partially)

the enzymes required during the replication cycle. Entry inhibitors prevent entry of the virus

into the cell. Integrase inhibitors block the activity of the enzyme integrase, responsible for

the insertion of HIV DNA to human DNA. Reverse Transcriptase Inhibitors directly block the

action of this enzyme and virus multiplication. Protease inhibitors of HIV, prevent infected cells

from producing infectious virus particles. Thus, the new copies of HIV will not be able to infect

new cells.

As mentioned before, one of the main characteristics of HIV is its extensive genetic variability,

that is, the replication process can generate new virions with slightly modified genetic content.

From the point of view of the model, this will result in a different class of infected cells and

immune cells. This leads to the study of the interplay between immune response and virus

diversity for a number of different strains, as discussed in [19].

The Mathematical Model

Several models have been proposed in order to describe the HIV in-vivo dynamics [1, 6, 8, 13,

17–19, 23, 24]. We consider a slightly generalized form of the model studied by Nowak and

Bangham [19]. Let n be the number of strains and i denote the index indicating each different

strains. The model that we consider has (4n + 1) variables: susceptible CD4+ T cells (X),

infected CD4+ T cells (Yi), virions (Vi), defective viruses (Hi) and cytotoxic T cells (Zi). These
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quantities denote the abundance of the corresponding quantities in a given volume of blood or

tissue.

The model assumes that uninfected CD4+ T cells are produced at a constant rate λ and die

at rate dX. Each strain of free virus particles infects the uninfected cells at a rate proportional

to the product of their concentrations, βiXVi. Infected cells produce free virus particles at a

rate proportional to their abundance, kiYi, die at a rate aiYi and are killed by cytotoxic T cells

at rate piYiZi. Free viral particles die at rate uiVi. Finally, the rate of proliferation of defense

cells is given by biZi. The Figure 1 summarizes the HIV replication cycle described above in

the case of a single strain.

Figure 1: Description of the HIV model with the parameters described in Table 1.

Upon considering the enzyme inhibitors described above and combining the dynamics of

HIV, host cells and defense cells we obtain the following first-order ODE system

Ẋ = λ− dX − (1− EE)X
∑

i∈N βiVi

Ẏi = (1− EE)XβiVi − aiYi − piYiZi

V̇i = (1− ET )(1− EP )(1− EI)kiYi − uiVi

Ḣi = EPkiYi − uiHi

Żi = ciYiZi − biZi

(1)

for i ∈ N = {1, 2, ..., n}. Table 1 summarizes the biological meaning of each parameter.

Outline of the Article

This work is organized as follows: In Section 2 we introduce an extended version of the model

previously studied by Nowak and Bangham [18, 19] and also [30]. In practical situations such

model displays different scales and in order to obtain good quantitative results it is crucial

to perform a perturbation analysis. The first step consists in writing down a dimensionless
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Parameter Meaning
λ CD4+ T cells supply rate
βi Infection rate
ki Free virus production rate
ci cytotoxic T cells production rate
ET efficiency of the reverse transcriptase inhibitor
EE efficiency of the entry inhibitor
EP efficiency of the protease inhibitor
EI efficiency of the integrase inhibitor
1/d average life-time of uninfected CD4+ T cells
1/ai average life-time of infected CD4+ T cells
1/ui average life-time of free virus
1/bi average life-time of cytotoxic T cells

Table 1: Description of parameters meaning in the compartmental model (1).

version of the system. In this section we also review some of the model’s key properties such as

equilibria, global stability and introduce some definitions that will be used throughout the text.

In Section 3, we provide the necessary background on Tikhonov’s theorem. This theorem is then

applied in Section 4 where we also present the reduced system associated to our model. Then, we

describe the equilibria of the reduced system and prove global stability results using a Lyapunov

function. The use of Tikhonov’s theorem leads to a way of approximating the solutions of the

full model by solutions of the reduced system that can be very useful in practical applications.

We conclude with some numerical illustration of our results.

2 Model Properties

Many properties of the System (1) are already known. Indeed, Pastore [22] showed that the

solutions to a similarly system are invariant on the positive orthant and identified the equilib-

rium points. Souza & Zubelli [30] studied the equivalent model that does not consider enzyme

inhibitors. They characterized the stable equilibrium points and also showed that model is glob-

ally asymptotically stable by using appropriate Lyapunov functions. Before we review these

properties in detail, we shall rewrite the system in a dimensionless form.

2.1 The Dimensionless System

Since the equation describing the evolution of Hi is uncoupled from the other ones in System (1),

we can analyze the system without such equation. Moreover, we can embed (1 − EE) in the

constants βi and rename (1− ET )(1− EP )(1− EI)ki by the constants ki, for i ∈ N . Letting

(x, yi, vi, zi) =

(
d

λ
X,

ai
λ
Yi,

βi
d
Vi,

pi
ai
Zi

)
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and t = d · T , we obtain the system (where the derivatives are taken w.r.t. t):

ẋ = 1− x− x
∑

i∈N vi

ẏi = γi (xvi − yi − yizi)

v̇i = ηi
(
Ri0yi − vi

)
żi = σi

(
Ii0yizi − zi

)
(2)

for i ∈ N , where Ri0 = βiλki/daiui denotes the basic reproductive ratio of each strain and

γi =
ai
d
, ηi =

ui
d
, σi =

bi
d

and Ii0 =
ciλ

aibi
.

2.2 Properties of the System: Equilibrium Points and Global Stability

In this section we will introduce some properties of the System (2). This result will be used in

Section 4.1 to show that the equilibria of the Reduced System (10) are the projections of the

original System (1).

Before stating the main results, we introduce some notation. It is well known (see for

example [18, 19, 30]) that some quantities involving the system parameters are important in

determining the global equilibria of the system. The first one is the basic reproductive ratio,

defined above. Following [30], without loss of generality, we assume that the strains are indexed

in a nonincreasing order of the constants Ri0. Similarly, we define the basic reproductive ratio

in the presence of the immune response

RiI = 1 +
Ri0
Ii0
.

Given a set of indices I ⊆ N , let us denote:

RII = 1 +
∑
i∈I

Ri0
Ii0
.

For a more concise notation, y will denote the vector (y1, y2, ..., yn) (similarly for v and z).

System (2) has a variety of equilibria. In order to deal with such equilibrium points, we shall

follow the notation used in [30]

WjJ = (xjJ , yjJ , vjJ , zjJ )
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where J is a subset of N and j ∈ {N − J }.

From the biological point of view, J is the set of indices of the strains that remain in the

organism and are fought by the immune system while j is the indice of the strain that remains

in the organism without been fought by the immune system

Theorem 1. [30] If the basic reproductive ratios of the virus strains are distinct, then System (2)

has 2n−1(2 + n) equilibrium points WjJ are described by

1. For J = ∅ and j = 0, then x0∅ = 1 and

yi0∅ = vi0∅ = zi0∅ = 0 ,∀i ∈ N .

2. For J = ∅ and j ∈ N , then xj∅ = 1/Rj0 ,

yjj∅ = 1− 1

Rj0
, vjj∅ = Rj0 − 1, zjj∅ = 0, and yij∅ = vij∅ = zij∅ = 0, ∀i 6= j .

3. For J 6= ∅ and j = 0, then x0J = 1/RJI ,

yi0J =
1

Ii0
, vi0J =

Ri0
Ii0
, , zi0J =

Ri0
RJI
− 1, ∀i ∈ J

and

yij∅ = vij∅ = zij∅ = 0, ∀i /∈ J .

4. For J 6= ∅ and j ∈ N − J , then xjJ = 1/RJI ,

yjjJ = 1−
RJI
Rj0

, vjjJ = Rj0 −R
J
I , zjjJ = 0,

yijJ =
1

Ii0
, vijJ =

Ri0
Ii0
, zijJ =

Ri0

Rj0
− 1, ∀i ∈ J ,

and

yijJ = vijJ = zijJ = 0 otherwise.

To state the result of global stability we need some definitions. Following [30], let us define

the set of strong responders as

S = {i ∈ N ;Ri0 > RiI} .
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We shall say that this set S is consistent if j ∈ S implies i ∈ S for all i ∈ N such that i < j.

We shall say that I ⊆ S is antigenic set if Ri0 > RII for all i ∈ I. In addition, if Ri0 6 RII for all

i /∈ I also holds, we shall say that I is a purely antigenic set. Finally, let l be the largest integer

such that I = {1, 2, ..., l} is an antigenic set. If J 6= ∅, then we shall say that J is the maximal

antigenic set.

Theorem 2. [30] Assume that Ri0 > Ri+1
0 for i = 1, ..., n−1 and that the set of strong responders

is consistent. Then, System (2), defined on R3n+1
>0 , with initial condition in its interior, has a

globally asymptotically stable equilibrium given as follows:

(i) W0∅ if R1
0 6 1;

(ii) W1∅ if R1
0 > 1 and R1

0 6 R1
I ;

(iii) If R1
0 > R1

I , let J be the antigenic maximal set.

(a) W0J if J is a purely antigenic set;

(b) WjJ otherwise, where j is the smallest integer outside J .

The proof of Theorems 1 and 2 can be found in [30]. See also [4].

Note that for the case of the system with inhibitors the basic reproductive ratio of each strain

is Ri0(1 − EE)(1 − ET )(1 − EP )(1 − EI), therefore lower than in the case without inhibitors.

This reduction may cause change in the type of globally stable equilibrium point. For certain

values of the inhibitors efficiencies it is possible that the immune system fails to fight certain

strains that would have been fought without the inhibitors. Despite of that, the presence of the

inhibitor will not increase the viral load component of the new globally stable limit.

3 Tikhonov’s Theorem

In practical situations, the presence of different scales in System (2) leads to a singularly per-

turbed System (2). In this context, we shall see that Tikhonov’s theorem is applicable. We start

with Tikhonov’s theorem in its general form.

The singularly perturbed system that we are interested on possesses two characteristic time

scales one of order 1 and another one of order ε� 1. The system then takes the form

ẋ = f(t, x, y), x(0) = x0

εẏ = g(t, x, y), y(0) = y0

(3)
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where f and g are sufficiently regular functions from open subsets of R×Rm1×Rm2 to Rm1 and

Rm2 . Tikhonov’s theorem gives conditions ensuring that the solution (x(t, ε), y(t, ε)) of Eq. (3)

converge to (x̄(t), ȳ(t, x̄)) where (x̄, ȳ) is the the solutions of the degenerate system:

ẋ = f(t, x, y), x(0) = x0

0 = g(t, x, y)
(4)

The interest in such a reduction lies on the fact that the degenerate system forms an algebraic

differential system and, in many cases, the complexity of the problem is greatly reduced. Note

also that, for small ε, the System (3) becomes very stiff and the solution to (4) offers a much

better and more robust approximation.

To apply Tikhonov’s theorem we need a several assumptions as described below.

Assumption 1. Assume that the functions

f : [0, T ]× Ū × V 7→ Rm1and g : [0, T ]× Ū × V 7→ Rm2

are continuous and satisfy the Lipschitz condition w.r.t. the variables x and y in [0, T ]× Ū ×V,

where Ū is a compact set in Rm1, V is a bounded open set in Rm2, and T > 0.

Assumption 2. Assume that there exists a vector function φ(t, x) continuous in [0, T ]×Ū such

that φ(t, x) ∈ V and

g(t, x, φ(t, x)) ≡ 0.

This function will be referred to as a root of the equation g(t, x, y) = 0. Furthermore, the root

φ is isolated in [0, T ]× Ū , that is, there exists δ > 0, independently of x, such that

0 < ||y − φ(t, x)|| < δ

implies g(t, x, y) 6= 0 in [0, T ]× Ū .

The system of differential equations

dỹ

dτ
= g(t, x, ỹ) (5)

for which t and x are treated as parameters, is called the boundary layer equation associated

to the System (3).
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Assumption 3. Assume that the singular point φ(t, x) of the boundary layer Equation (5) is

an asymptotically stable equilibrium, uniformly w.r.t. (t, x) ∈ [0, T ] × Ū , that is, for any η > 0

there exists δ > 0 such that for all (t, x) ∈ [0, T ] × Ū the inequality ||ỹ(0, t, x) − φ(t, x)|| < δ

implies

||ỹ(τ, t, x)− φ(t, x)|| < η and lim
τ→∞

ỹ(τ, t, x) = φ(t, x), ∀τ > 0

where the above convergence is uniform for (t, x) ∈ [0, T ]× Ū .

Consider now the reduced system, that is, the first equation of the degenerate System (4),

replacing a root φ(t, x)

˙̄x = f(t, x̄, φ(t, x̄)), x̄(0) = x0 (6)

Assumption 4. Assume that the function (t, x) 7→ f(t, x, φ(t, x)) satisfies the Lipschitz con-

dition w.r.t. x in [0, T ] × Ū and that the unique solution of the reduced System (6) on [0, T ]

satisfies x̄(t) ∈ int(Ū) for all t ∈]0, T [.

Assumption 5. Assume that y0 belongs to the basin of attraction of the solution y = φ(0, x0)

of equation g(0, x0, y) = 0, that is, the solution ŷ = ŷ(τ) of the simplified initial layer equation

dŷ

dτ
= g(0, x0, ŷ), ŷ(0) = y0 (7)

satisfies ŷ(τ) ∈ V for all τ > 0 and

lim
τ→∞

ŷ(τ) = φ(0, x0).

Theorem 3 (Tikhonov’s Theorem). Under Assumptions 1-5, there exists ε0 > 0 such that for

any ε ∈ ]0, ε0] there exists a unique solution (x(t, ε), y(t, ε)) of the singularly perturbed System (3)

on [0, T ] satisfying

lim
ε→0

x(t, ε) = x̄(t), t ∈ [0, T ]

and

lim
ε→0

y(t, ε) = ȳ(t), t ∈ (0, T ] ,
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where (x̄(t), ȳ(t)) is the solution of the degenerate System (4).

Tikhonov’s theorem connects the solutions of the singularly perturbed system and the

degenerate system. Note that only the first convergence in Tikhonov’s theorem is uniform

(w.r.t. t ∈ [0, T ]). However, in the second limit, the convergence is uniform on any interval

[T0, T ], T0 > 0. This is the so-called initial layer effect and one can include the initial layer term

to obtain the uniform convergence on [0, T ].

Proposition 4. Let Assumptions 1-5 be satisfied. Then,

lim
ε→0

[y(t, ε)− ȳ(t)− ŷ(t/ε) + φ(0, x0)] = 0, t ∈ [0, T ] (8)

where ȳ(t) is the solution of the degenerate System (4), ŷ(t/ε) is the solutions of the simplified

initial layer Equation (7), and φ is the root of Assumption 2.

We now add one extra assumption, namely:

Assumption 6. Suppose that |δ1| < µ and |δ2| < µ where µ is a sufficiently small but fixed

number independently of ε. Assume that, for t ∈ [0, T ], f(t, x̄ + δ1, ȳ + ŷ + δ2) and g(t, x̄ +

δ1, ȳ + ŷ + δ2) are continuous together with their derivatives w.r.t. δ1 and δ2 up and including

the second order.

Under this further assumption, one can prove the stronger result:

Theorem 5. Let Assumptions 1-6 be satisfied and suppose that ∂g
∂y (t, x, y)

∣∣∣
y=φ(t,x)

exists, is

continuous and is negative for t ∈ [0, T ]. Then, we have the following estimates

x(t, ε) = x̄(t) +O(ε)

y(t, ε) = ȳ(t) + ŷ (t/ε)− φ(0, x0) +O(ε)

uniformly on [0, T ].

For the proof of the above results we refer the reader to [3, 33,34,36].

4 The Asymptotic Expansion of the Model

As discussed in the Introduction, the dynamics of free virus occurs on a time scale much faster

than the dynamics of the cells of the host organism. While the cells have a half-life of the
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order of days, virions have a half-life of about a few hours [16, 25, 28]. This implies that ηi is

much bigger than γi and σi. Therefore, it is natural to consider the dynamics of System (2) for

ηi = ηi/ε where ε is a small parameter and ηi has the same order of magnitude of γi and σi.

On the order hand the healthy CD4 + cells have a half-life of about 35 days while the virions

have a half-life of 6 hours. This leads to ε of the order of 7 × 10−3. The System (2) will be in

the form

ẋ = 1− x− x
∑

i∈N vi

ẏi = γi (xvi − yi − yizi)

εv̇i = ηi
(
Ri0yi − vi

)
żi = σi

(
Ii0yizi − zi

)
(9)

subject to initial conditions x0, y
i
0, v

i
0 and zi0. We now have System (9) in the form of System (3)

and we are ready to use Tikhonov’s theorem to connect the solutions of (9) and the following

reduced system

ẋ = 1− x− x
∑

i∈N R
i
0yi

ẏi = γi
(
xRi0yi − yi − yizi

)
żi = σi

(
Ii0yizi − zi

) (10)

with initial conditions x0, yi0 and zi0.

Note that the reduced system has the form of a food chain system [11], where the suscep-

tible CD4+ T cells act as the environmental resources, the infected CD4+ T cells as prey and

immunological response cells as predators.

4.1 Properties of the Reduced System

Before we apply Tikhonov’s theorem, we shall prove some properties of the reduced System (10).

Note that the non-negative orthant of R2n+1 is invariant by the flow of the system. Moreover, if

the initial conditions are in the interior of R2n+1
>0 , then all solution will be remain in this open set

for all t > 0. We also have that the solutions are bounded, as stated in the proposition below.

The proof follows the ideas of [22].

Proposition 6. Let ψ : [0,∞)→ R2n+1 solution of the System (10) with ψ(t0) ∈ R2n+1
>0 . Then

ψ ∈ L∞[t0,∞).
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Proof: As the system is positively invariant, we have

ẋ(t) = 1− x(t)− x(t)
∑
i∈N

vi(t) 6 1− x(t)

so d
dt(e

tx(t)) 6 et and integrating from t0 to t we have

x(t) 6 1− et0−t + et0−tx(t0) 6 1 + x(t0).

For yi note that

ẏi(t) = γi
(
xRi0yi − yi − yizi

)
6 γi

(
xRi0 − 1

)
yi 6

(
γMxR

i
0 − γm

)
yi

where γM = maxi∈N {γi} and γm = mini∈N {γi}. Denoting Y(t) =
∑

i∈N yi(t) we have

Ẏ(t) + γmY(t) 6 γMx(t)
∑
i∈N

Ri0yi(t) = γM (−ẋ+ 1− x(t))

whence

Y(t) 6 Y(t0)eγm(t0−t) + γMe
−γmt

∫ t

t0

(1− ẋ(s)− x(s)) eγmsds

6 Y(t0) +
γM
γm

+ γMx(t0) +
γM
γm

(γm − 1) (1 + x(t0)) e−γmt0

where we use eγm(t0−t) 6 1, x(t) > 0 and

∫ t

t0

x(s)eγm(s−t)ds 6
1 + x(t0)

γm
e−γmt0

since x(t) 6 1 + x(t0). Therefore Y(t) is limited and, as yi(t) > 0 for all t > t0, it follows that

yi(t) is limited.

Similarly, we can prove that

Z(t) 6 Z(t0) +
σM
σm

+ σMx(t0) +
σM
σm

(σm − 1) (1 + x(t0)) e−σmt0

where σM = maxi∈N {σi}, σm = mini∈N {σi} and Z(t) =
∑

i∈N zi(t). This and the positivity of

each zi(t) implies the result.
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Using the same notation for the index for equilibrium points that was previously used, we

have the following result:

Theorem 7. If the basic reproductive ratios of each virus strain are distinct, then System (10)

admits 2n−1(2 +n) equilibrium points WjJ that correspond to the points described in Theorem 1

omitting entries of vi.

The proof of this theorem follows the same idea of the analogous theorem presented in [30].

Finally, we prove the global stability for the System (10) using Lyapunov Theory.

Theorem 8. Assume that Ri0 > Ri+1
0 for i = 1, ..., n − 1 and that the set of strong responders

is consistent. Then, System (10), defined on R2n+1
>0 , with initial condition in its interior, has a

globally asymptotically stable equilibrium given as follows:

(i) W0∅ if R1
0 6 1;

(ii) W1∅ if R1
0 > 1 and R1

0 6 R1
I ;

(iii) If R1
0 > R1

I , let J the antigenic maximal set.

(a) W0J if J is a purely antigenic set;

(b) WjJ otherwise, where j is the smallest integer outside J .

Proof: The existence of the j mentioned in the case (iii)(b) is proved in [30]. For each asymp-

totically stable equilibrium point W ∗ = (x∗, y∗1, ..., z
∗
n) consider the following function

V = x− x∗ ln
x

x∗
+
∑
i∈N

[
1

γi

(
yi − y∗i ln

yi
y∗i

)
+

1

σiIi0

(
zi − z∗i ln

zi
z∗i

)]

where the term with logarithm should be omitted if the corresponding coordinate is zero. Then,

V̇ = 1− x− x∗

x
+ x∗ +

∑
i∈N

[
x∗yiR

i
0 − yi −Ri0y∗i x+ y∗i + ziy

∗
i − z∗i yi +

z∗i
Ii0
− zi
Ii0

]
. (11)

For each case, we will replace the respective equilibrium point in the Equation (11) and we will

prove that V̇ 6 0, that is, V is a Lyapunov function. In addition, we have that, for each case,

the set for which the equality V̇ = 0 is satisfied contains only one positively invariant subset

and this subset is exactly the respective equilibrium point. This proves the theorem.

Case (i)

V̇ = 1− x+ 1 +
∑
i∈N

[
yiR

i
0 − yi −

zi
Ii0

]
= −(1− x)2

x
+
∑
i∈N

[
yi(R

i
0 − 1)− zi

Ii0

]
6 0

14



since Ri0 6 R1
0 6 1.

Case (ii)

V̇ = 1− x− 1

R1
0x

+
1

R1
0

−R1
0

(
1− 1

R1
0

)
x+

(
1− 1

R1
0

)
+ z1

(
1− 1

R1
0

)
− z1

I1
0

−
n∑
i=2

zi
Ii0

= − 1

Ri0x
(R1

0 − 1)2 + z1

(
1−

R1
I

R1
0

)
−

n∑
i=2

zi
Ii0

6 0

since R1
0 6 R1

I .

Case (iii)(a)

V̇ = 1− x− 1

RJI x
+

1

RJI
+
∑
i∈J

[
−R

i
0

Ii0
x+

Ri0
RJI

1

Ii0

]
+
∑
i/∈J

[(
Ri0
RJI
− 1

)
yi −

zi
Ii0

]

= −
RJI
x

(
x− 1

RJI

)2

+
∑
i/∈J

[(
Ri0
RJI
− 1

)
yi −

zi
Ii0

]
6 0

where we use 1 +
∑

i∈J
Ri

0

Ii0
= RJI and, since J a purely antigenic set,

Ri
0

RJI
− 1 6 0.

Case (iii)(b)

V̇ = 1− x− 1

xRj0
+

1

Rj0
+
∑
i∈J

[
−R

i
0

Ii0
x+

Ri0

Rj0I
i
0

]
+

∑
i/∈J∪{j}

[(
Ri0

Rj0
− 1

)
yi −

zi
Ii0

]

+

[
−Rj0x

(
1−

RJI
Rj0

)
+

(
1−

RJI
Rj0

)
+ zj

(
1−

RJI
Rj0

)
− zj

Ij0

]

+
∑

i/∈J∪{j}

[(
Ri0

Rj0
− 1

)
yi −

zi
Ii0

]

= − 1

xRj0

(
xRj0 − 1

)2
+
zj

Rj0

(
Rj0 −R

J
I −

1

Ij0

)
+

∑
i/∈J∪{j}

[(
Ri0

Rj0
− 1

)
yi −

zi
Ii0

]

6
zj

Rj0

(
Rj0 −R

J
I −

Rj0
Ij0

)
+

∑
i/∈J∪{j}

[(
Ri0

Rj0
− 1

)
yi

]

where we use
∑

i∈J
Ri

0

Ii0
= RJI − 1. Note that if j belongs to the set of strong responders

then Rj0 − RJI −
Rj

0

Ij0
6 0 (since J is maximal). Otherwise we have Ri0 − 1 6 Rj

0

Ij0
and then

Rj0 −R
J
I −

Rj
0

Ij0
6 −(RJI − 1) 6 0. Furthermore,

∑
i/∈J∪{j}

[(
Ri0

Rj0
− 1

)
yi

]
6 0

since ∀i /∈ J ∪ {j} we have i > j and then, Ri0 < Rj0. Therefore, we have V̇ 6 0.
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4.2 The Main Result

We shall now apply the Tikhonov’s theorem to System (9) in order to show that the limit

equation satisfied by the solutions as ε→ 0 is the solutions of an algebraic differential system.

We known that solutions of System (9) are bounded (see [22]) and only the bounds on vi

depend on ε. However, fixed ε0 > 0, we have that for all ε 6 ε0 the concentrations of vi is

bounded by constants independently of ε. Because of this and as the degenerate system also is

bounded (independently of ε), we can choose a compact set in Ū ⊂ R2n+1 and a bounded open

set V ⊂ Rn such that (x, y, z, v) ∈ Ū × V for all t > 0, where (x, y, z, v) are the solutions of the

degenerate system or of System (9). Moreover, for initial conditions in the interior of R3n+1
>0 , we

can choose Ū such that the solutions (x, y, z) will be remain in the interior of this compact set

for all t > 0.

Theorem 9. Let Ū and V be the sets described above. Then, there exists ε0 > 0 such that for

any ε ∈ ]0, ε0] we have a unique solution (x(t, ε), y(t, ε), v(t, ε), z(t, ε)) of the Problem (3) with

initial conditions in the interior of the corresponding sets. Moreover,

lim
ε→0

[x(t, ε)− x̄(t)] = 0

lim
ε→0

[yi(t, ε)− ȳi(t)] = 0

lim
ε→0

[
vi(t, ε)−Ri0ȳi(t)−

(
vi0 −Ri0yi0

)
e−t/ε

]
= 0

lim
ε→0

[zi(t, ε)− z̄i(t)] = 0

where (x̄, ȳ, z̄) is the solution of the reduced System (10).

Proof: The result follows from Tikhonov’s Theorem 3 and the Proposition 4 since the Assump-

tions 1− 5 are valid, as we shown below.

We write System (9) as

ẋ = f1(t, x, y, z, v)

ẏ = f2(t, x, y, z, v)

ż = f3(t, x, y, z, v)

εv̇ = g(t, x, y, z, v)

where f and g are the appropriate entries of the RHS of Equation (9).

(Assumption 2) Let the φ : [0, T ] × Ū 7→ Rn be defined by φi(t, x, y, z) = Ri0yi(t). Then φ is

16



an isolated root of g since given δ > 0 we have, for any (t, x, y, z) ∈ [0, T ]× Ū

0 < ||v − φ|| < δ ⇔ 0 < |vi −Ri0yi| < δ ∀i ∈ N

⇔ gi(t, x, y, z, φ) 6= 0 ∀i ∈ N .

(Assumption 3) The boundary layer equation is given by

dṽ

dτ
= g(t, x, y, z, ṽ)

where t, x, y, and z are treated as parameters. Then, ṽi(τ, t, x, y, z) = Ri0yi(t) + cie
−ηiτ , with

ci constants. Given ν > 0, let’s choose δ = ν. So, if |ṽi(0, t, x, y, z) − φi(t, x, y, z)| < δ (that is

|ci| < δ), then

|ṽi(τ, t, x, y, z)− φi(t, x, y, z)| = |cie−ηiτ | 6 δe−ηiτ 6 δ = ν

for all i ∈ N and (t, x, y, z) ∈ [0, T ]× Ū . Furthermore,

lim
τ→∞

ṽi(τ, t, x, y, z) = Ri0yi(t) = φi(t, x, y, z).

(Assumption 4) As Ū is bounded, the Lipschitz condition of f follows and the choice of Ū

yields the second part of the assumption.

(Assumption 5) Note that the solution v̂ of the simplified initial layer equation is

v̂i(τ) = Ri0y
i
0 + (vi0 −Ri0yi0)e−ηiτ .

Thus, v̂i(τ) ∈ V, due to the choice of V, and

lim
τ→∞

v̂i(τ) = Ri0y
i
0 = φi(0, x0, y0, z0).

Therefore, v0 belongs to the basin of attraction of the solution v = φ(0, x0, y0, z0) of equation

g(0, x0, y0, z0, v) = 0.

Applying Tikhonov’s Theorem we have the limits for x, y and z. As for the limit of v, just

17



replace

v̄i = Ri0ȳi(t)

v̂i = Ri0yi(t) +
(
vi0 −Ri0yi(t)

)
e−tηi/ε

φi(0, x0, y0, z0) = Ri0y
i
0

in the limit of Proposition 4.

Theorem 10. Let (x(t, ε), yi(t, ε), vi(t, ε), zi(t, ε)) be the solution of the problem (3) with initial

condition in the interior of Ū ×V and (x̄, ȳi, z̄i) be the solution of the reduced System (10). Then,

we have the following estimates

x(t, ε) = x̄(t) +O(ε)

yi(t, ε) = ȳi(t) +O(ε)

vi(t, ε) = Ri0ȳi(t) +
(
vi0 −Ri0yi0

)
e−tηi/ε +O(ε)

zi(t, ε) = z̄i(t) +O(ε)

uniformly on [0, T ].

Proof: Take f and g as in the proof of the previous theorem. Since yi0 > 0, we have that

∂gi
∂v

(t, x, y, z, v)

∣∣∣∣
v=φ(t,x,y,z)

= −Ri0yi(t) < 0 .

Furthermore, it is continuous for all t ∈ [0, T ]. Also, since x̄, ȳ, z̄ and v̂ are continuous, is easy

to see that the Assumption 6 is valid. Applying the Theorem 5 we obtain the above estimates.

The estimates relatives to the System (1) can be seen in Appendix.

4.3 Numerical Illustration

In this section we present some numerical illustrations of the results presented in this paper.

Note that all parameters involved are non-dimensional. For simplicity we consider the case of

one strain (n = 1).

Figures (2), (3) and (4) illustrate the three cases of the Theorem 8, that is, show the conver-
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gence of the solutions of the reduced System (10) to one of the globally asymptotically stable

equilibrium points.

Figure (5) shows the attractiveness of the quasi-steady state for viral load, that is, compare

the solution of the quasi-steady state of the viral load v̄(t) = R0ȳ(t) with the approximation

of v(t, ε), given by Theorem 10, for different values of ε. Here ȳ is the solution of the reduced

System (10). This figure illustrates that the initial layer term, given by (v0 −R0y0) e−t/ε, tends

to disappear for ε small enough, except for the very small times due to the difference in initial

conditions.

Figures (6), (7), (8) and (9) illustrate the expressions of Theorems 9 and 10 for the susceptible

cells (x), infected cells (y), viral load (v) and defense cells (z), respectively. According to the

theorems, when we decrease ε the right side of the expressions approximate the solutions of the

Problem (9).

(a) x̄(t) (b) ȳ(t)

(c) z̄(t)

Figure 2: Convergence of solutions of the (reduced) System (10) the equilibrium points, according to the case
(i) of the Theorem 8. The parameters used were I0 = R0 = 0.5 < 1, γ = σ = 5, x0 = 1, y0 = 10−3 and z0 = 10−3.
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5 Conclusion

The existence of an asymptotic reduced dynamics for the model that was proved in Section 4

allows a number of applications. A first one is the possibility of solving a simpler system for

numerical simulations and predictions. Indeed, the full system leads to very stiff differential

equations if we use the constants associated to the realistic biological parameters. Another

application is the possibility of using it to predict in a more robust form the short term dynamics

and to calibrate the model. Yet another application is the possibility of inferring R0 from the

behavior and stability of the reduced dynamics in a simpler form.

Note that, in the simplified case of only one strain, the system of ODE’s discussed in this

article is similar (but not the same) to the model discussed in [29]. The System (9) has one

more equation (z - equation) and the second equation has one more nonlinear term, correlating

the infected cells (y) and the immune system (z). Furthermore, even in the case z(t) ≡ 0, the

two systems do not match. Indeed, the equations involving the multiscale term do not have the

same format. Thus the results of the present paper are related to those of [29] but do not come

as a consequence thereof.

One natural follow up of the present work would be consider more general systems than

those described by the dynamics (3) and analyze then at the light of [7, 32]. We are currently

pursuing such avenue.

Appendix

As mentioned in Section 4.2, we present here the main Theorem 10 adapted to the original

variables of System (1).

Consider the reduced system below with respect to the System (1)


˙̄X = λ− dX̄ − (1− EF )(1− ET )(1− EP )(1− EI)X̄

∑
i∈N βi

ki
ui
Ȳi

˙̄Yi = (1− EE)(1− ET )(1− EP )(1− EI)Xβi kiui Ȳi − aiȲi − piȲiZ̄i
˙̄Zi = ciȲiZ̄i − biZ̄i

(12)

for i ∈ N = {1, 2, ..., n}.

Then the estimates of the Theorem 10 can be rewritten in terms of the original variables of

System (1):
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X(T, ε) = X̄(T ) +O(ε)

Yi(T, ε) = Ȳi(T ) +O(ε)

Vi(T, ε) = (1− ET )(1− EP )(1− EI)
ki
ui
Ȳi(T )

+

(
vi0 − (1− ET )(1− EP )(1− EI)

ki
ui
yi0

)
e−T/ε +O(ε)

Zi(T, ε) = Z̄i(T ) +O(ε)
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(a) x̄(t) (b) ȳ(t)

(c) z̄(t)

Figure 3: Convergence of solutions of the reduced System (10) to the equilibrium points, according to the case
(ii) of the Theorem 8. The parameters used were R0 = 10 > 1 and I0 = 0.5, getting RI = 21 > R0, γ = σ = 5,
x0 = 1, y0 = 10−3 and z0 = 10−3.

(a) x̄(t) (b) ȳ(t)

(c) z̄(t)

Figure 4: Convergence of solutions of the reduced System (10) to the equilibrium points, according to the case
(iii) of the Theorem 8. The parameters used were I0 = 2 and R0 = 10, getting RI = 6 < R0, γ = σ = 5, x0 = 1,
y0 = 10−3 and z0 = 10−3.
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Figure 5: Attractiveness of the quasi-steady state for viral load: the continuous line is v̄(t) = R0ȳ(t), where ȳ
is the solution of the reduced System (10), and the dotted lines is the approximation of v(t, ε), that is, R0ȳ(t) +
(v0 −R0y0) e−t/ε for different values of ε. The parameters used were γ = 62, σ = 5, x0 = 1, y0 = 10−3, v0 = 10−1,
z0 = 10−6, R0 = 3, I0 = 2 and ε = 1, 0.3 and 0.1.

(a) ε = 0.1 (b) ε = 0.01

(c) ε = 0.001

Figure 6: Convergence of the asymptotic solution of Theorems 9 and 10 for the susceptible cells (x). The
continuous line represents the solution of the System (9) while the dotted line are the approximation of x(t, ε)
given by the results of Section 4.2. The parameters used were γ = 62, σ = 5, x0 = 1, y0 = 10−3, v0 = 10−1,
z0 = 10−6, R0 = 3, I0 = 2, η̄ = 1 and ε = 0.1, 0.01 and 0.001.
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(a) ε = 0.1 (b) ε = 0.01

(c) ε = 0.001

Figure 7: Convergence of the asymptotic solution of Theorems 9 and 10 for the infected cells (y). The continuous
line represents the solution of the System (9) while the dotted line are the approximation of y(t, ε) given by the
results of Section 4.2. The parameters used were γ = 62, σ = 5, x0 = 1, y0 = 10−3, v0 = 10−1, z0 = 10−6, R0 = 3,
I0 = 2, η̄ = 1 and ε = 0.1, 0.01 and 0.001.
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(a) ε = 0.1 (b) ε = 0.01

(c) ε = 0.001

Figure 8: Convergence of the asymptotic solution of Theorems 9 and 10 for the viral load (v). The continuous
line represents the solution of the System (9) while the dotted line are the approximation of v(t, ε) given by the
results of Section 4.2. The parameters used were γ = 62, σ = 5, x0 = 1, y0 = 10−3, v0 = 10−1, z0 = 10−6, R0 = 3,
I0 = 2, η̄ = 1 and ε = 0.1, 0.01 and 0.001.
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(a) ε = 0.1 (b) ε = 0.01

(c) ε = 0.001

Figure 9: Convergence of the asymptotic solution of Theorems 9 and 10 for the defense cells (z). The continuous
line represents the solution of the System (9) while the dotted line are the approximation of z(t, ε) given by the
results of Section 4.2. The parameters used were γ = 62, σ = 5, x0 = 1, y0 = 10−3, v0 = 10−1, z0 = 10−6, R0 = 3,
I0 = 2, η̄ = 1 and ε = 0.1, 0.01 and 0.001.
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