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Abstract

The Gilbert–Varshamov bound guarantees the existence of families of codes over the
finite field F` with good asymptotic parameters. We show that this bound can be improved
for all non-prime fields F` with ` ≥ 49, except possibly ` = 125. We observe that the
same improvement even holds within the class of transitive codes and within the class of
self-orthogonal codes.

The Gilbert–Varshamov bound guarantees the existence of families of codes over the finite
field F` with good asymptotic parameters (information rate and relative minimum distance). In
case ` ≥ 49 is a square, the bound was improved by the famous Tsfasman–Vlăduţ–Zink bound
[12], using Goppa’s algebraic geometry codes and modular curves with many rational points over
F`. Also, for ` = pn with odd n > 1 and very large p (depending on n), there are improvements
of the GV bound due to Niederreiter and Xing [9].

For a linear code C we denote by n(C), k(C) and d(C) its length, dimension and minimum
distance. By R(C) = k(C)/n(C) and δ(C) = d(C)/n(C) we denote the information rate and the
relative minimum distance of C, respectively.

Following Manin [8], we define the set U` ⊆ R2 to be the set of all points (δ,R) such that
there exists a family of codes (Ci)i≥0 over F` with n(Ci) → ∞, δ(Ci) → δ and R(Ci) → R, as
i→∞. Manin proved that there exists a function α` : [0, 1]→ [0, 1] such that

U` = {(δ,R) ∈ R2 | 0 ≤ δ ≤ 1, 0 ≤ R ≤ α`(δ) }.

This function α`(δ) is continuous and non-increasing, and one knows that α`(0) = 1 and α`(δ) = 0
for 1− `−1 ≤ δ ≤ 1. All other values of α`(δ) are unknown.

The explicit description of the function α`(δ) is considered to be one of the most important
(and most difficult) problems in coding theory. Many upper bounds for α`(δ) are known, among
them the (asymptotic) Plotkin bound and the linear programming bound, see [6] and [7]. One
may argue that lower bounds are more important since every non-trivial lower bound for α`(δ)
assures the existence of long codes over F` having good parameters. The classical lower bound
for α`(δ) is the Gilbert–Varshamov bound (GV bound) which states that

α`(δ) ≥ 1− δ log`(`− 1) + δ log`(δ) + (1− δ) log`(1− δ), for all δ ∈ (0, 1− `−1). (1)
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Using algebraic geometry codes (see [10, Proposition 8.4.6], [12]), Tsfasman, Vlăduţ and Zink
proved another lower bound:

α`(δ) ≥ 1− δ −A(`)−1 for 0 ≤ δ ≤ 1− `−1. (2)

Here A(`) is Ihara’s constant. It is defined as follows:

A(`) = lim sup
g→∞

N`(g)/g,

where N`(g) is the maximum number of rational places that a function field over F` of genus g
can have. If ` is a square then

A(`) =
√
`− 1, (3)

which was first shown by Ihara [5]. Tsfasman, Vlăduţ and Zink gave in [12] an independent proof
of Equation (3) in the cases ` = p2 and ` = p4, with a prime number p. Actually, in [5] and [12]
only the inequality A(`) ≥

√
`− 1 was shown. The opposite inequality was proved shortly after

by Drinfeld and Vlăduţ [3]. Combining Equation (3) with Inequality (2), one obtains the bound

α`(δ) ≥ 1− δ − 1/(
√
`− 1) for square `, (4)

which improves the Gilbert–Varshamov bound (1) on a non-empty interval I` ⊆ (0, 1− `−1) for
every square ` ≥ 49.

We point out that, while the proof of the GV bound (1) is simple, the proof of Equation
(3) (and hence the proof of the bound (4)) is highly non-trivial. It requires tools from number
theory and algebraic geometry. A more elementary proof was given by Garcia and Stichtenoth
[4].

For certain non-prime values of `, the class field tower method of Serre provides lower bounds
for A(`) which are sufficient for improving the GV bound over F` in these cases, see [9, Theorem
6.2.8]. However, these values of ` are very large. The main result of our note is that Inequality
(2), together with a new lower bound for Ihara’s constant A(`), improves the GV bound (1) for
most non-prime fields F`.

The harmonic mean of two positive real numbers a, b is denoted by H(a, b); i.e.

H(a, b) = 2ab/(a+ b).

The floor and the ceiling of a are bac and dae, respectively.

Main Theorem. Let ` = pn with p prime and n ≥ 2. Then we have

α`(δ) ≥ 1− δ − 1

H
(
pdn/2e − 1, pbn/2c − 1

) for 0 ≤ δ ≤ 1− `−1. (5)

For all non-prime ` ≥ 49, except for ` = 125, Inequality (5) is better than the GV bound in a
non-empty interval I` ⊆ (0, 1− `−1).

Proof. If ` = pn with n even, then H(pdn/2e−1, pbn/2c−1) = pn/2−1 =
√
`−1, hence Inequality

(5) coincides with the Tsfasman–Vlăduţ–Zink bound (4). We can therefore assume that ` = pn

with n = 2m+ 1 ≥ 3. In [1] we have constructed a family of function fields (Fi)i≥0 over F` with
the limit

lim
i→∞

number of rational places of Fi

genus of Fi
≥ H(pdn/2e − 1, pbn/2c − 1). (6)
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Together with Inequality (2), this proves the first statement of the Main Theorem. It remains to
show that the bound (5) improves the GV bound for ` > 125. We have to compare the function

f(δ) := 1− δ log`(`− 1) + δ log`(δ) + (1− δ) log`(1− δ)

with the linear function

h(δ) := 1− δ − 1

H
(
pdn/2e − 1, pbn/2c − 1

)
on the interval (0, 1−`−1). We follow the proof of [9, Theorem 6.2.7]. Note that f(δ) is a convex,
monotonously decreasing function on the whole interval. Hence it is sufficient to compare the
values f(δ0) and h(δ0) where δ0 is determined by the condition f ′(δ0) = −1. One checks easily
that δ0 = (`− 1)/(2`− 1). The desired inequality h(δ0) > f(δ0) means therefore that

1− δ0 − 1/H > 1− δ0 log`(`− 1) + δ0 log`(δ0) + (1− δ0) log`(1− δ0), (7)

where we set H := H(pm+1−1, pm−1) = 2(pm+1−1)(pm−1)/(pm+1+pm−2). A straightforward
calculation shows that Inequality (7) is equivalent to the condition

(2m+ 1) ln p

H
< ln 2 + ln

(
1− 1

2`

)
. (8)

Observe that H ≥ pm for pm 6= 2, so the left hand side of (8) is less or equal to

(2m+ 1) ln p

pm
,

while the right hand side of (8) is bigger or equal to (ln 2 − 1/`). This follows from the Taylor
series of ln(1− x). So it will be sufficient to prove the inequality

(2m+ 1) ln p < pm
(
ln 2− 1/`

)
. (9)

The validity of Inequality (9) is easily checked in the cases (p = 2 and m ≥ 3), (p = 3, 5 or 7
and m ≥ 2) and (p ≥ 11 and m ≥ 1). In the case (p = 7 and m = 1) one checks directly that
Inequality (8) holds. In the case (p = 5 and m = 1, i.e., ` = 125), Inequality (8) does not hold.
This finishes the proof of the Main Theorem.

We recall that a code C is called transitive if its automorphism group acts transitively on the
coordinates of the code. For instance, cyclic codes are transitive. A code C which is contained in
its dual C⊥, is called self-orthogonal. In [11] it was shown that the class of transitive codes and
also the class of self-orthogonal codes attain the bound (4) if ` is a square. Analogous results
hold for all non-prime `:

Theorem 2. Let ` = pn with p prime and n ≥ 2, and set H := H
(
pdn/2e − 1, pbn/2c − 1

)
. Let

R ≥ 0, δ ≥ 0 be real numbers with R = 1− δ−H−1. Then there exists a family (Cj)j≥0 of linear
codes over F` with parameters [nj , kj , dj ] such that the following hold:

(1) all Cj are transitive codes;

(2) nj →∞ as j →∞;

(3) limj→∞ kj/nj ≥ R and limj→∞ dj/nj ≥ δ.
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For all non-prime ` ≥ 49, except possibly for ` = 125, these codes are better than the GV bound
in a non-empty interval I` ⊆ (0, 1− `−1).

Theorem 3. Let ` = pn with p prime and n ≥ 2, and set H := H
(
pdn/2e − 1, pbn/2c − 1

)
. Let

0 ≤ R ≤ 1/2 and δ ≥ 0 be real numbers with R = 1 − δ − H−1. Then there exists a family
(Cj)j≥0 of linear codes over F` with parameters [nj , kj , dj ] such that the following hold:

(1) all Cj are self-orthogonal codes;

(2) nj →∞ as j →∞;

(3) limj→∞ kj/nj ≥ R and limj→∞ dj/nj ≥ δ.

For all non-prime ` ≥ 49, except possibly for ` = 125, these codes are better than the GV bound
in a non-empty interval J` ⊆ (0, 1− `−1).

The proofs of these theorems are analogous to the proofs of Theorems 1.5 and 1.6 in [11]. The
main ingredient in [11] is a certain tower of function fields E = (E0 ⊆ E1 ⊆ . . .) over F` (` being
a square) where all extensions Ei/E0 are Galois and its limit satisfies

lim
i→∞

number of rational places of Ei

genus of Ei
≥
√
`− 1. (10)

In the case ` = pn with n ≥ 3 odd, we replace this tower E by a ‘Galois’ tower N over F` whose
limit satisfies Inequality (6), see [2, Theorem 1].
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