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Abstract

In this work we present some results on minimal and constant mean curvature
surfaces in homogeneous 3-manifolds.

First, we classify the compact embedded surfaces with constant mean
curvature in the quotient of H2 × R by a subgroup of isometries generated
by a horizontal translation along horocycles of H2 and a vertical translation.
Moreover, in H2 × R, we construct new examples of periodic minimal surfaces
and we prove a multi-valued Rado theorem for small perturbations of the
helicoid.

In some metric semidirect products, we construct new examples of com-
plete minimal surfaces similar to the doubly and singly periodic Scherk min-
imal surfaces in R3 . In particular, we obtain these surfaces in the Heisenberg
space with its canonical metric, and in Sol3 with a one-parameter family of
non-isometric metrics.

After that, we prove a half-space theorem for an ideal Scherk graph Σ ⊂
M × R over a polygonal domain D ⊂ M, where M is a Hadamard surface
with bounded curvature. More precisely, we show that a properly immersed
minimal surface contained in D × R and disjoint from Σ is a translate of Σ.

Finally, based in a joint paper with L. Hauswirth, we prove that if a
properly immersed minimal surface in the quotient space H2 × R /G has finite
total curvature then its total curvature is a multiple of 2π, and moreover,
we understand the geometry of the ends. Here G is a subgroup of isometries
generated by a vertical translation and a horizontal isometry in H2 without
fixed points.

Keywords: Minimal surfaces, constant mean curvature surfaces, periodic
surfaces, uniqueness, finite total curvature.
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Resumo

Neste trabalho apresentamos alguns resultados sobre superf́ıcies mı́nimas e
de curvatura média constante em variedades homogêneas tridimensionais.

Primeiro, classificamos as superf́ıcies compactas mergulhadas com cur-
vatura média constante no quociente de H2 × R por um subgrupo de isome-
trias gerado por uma translação horizontal ao longo de horociclos de H2

e uma translação vertical. Além disso, em H2 × R, constrúımos novos ex-
emplos de superf́ıcies mı́nimas periódicas e provamos um teorema de Rado
multi-valuado para pequenas perturbações do helicóide.

Em alguns produtos semidiretos métricos, contrúımos novos exemplos de
superf́ıcies mı́nimas completas similares às superf́ıcies mı́nimas de Scherk
duplamente e simplesmente periódicas em R3 . Em particular, obtemos estas
superf́ıcies no espaço de Heisenberg com sua métrica canônica, e em Sol3 com
uma famı́lia a um parâmetro de métricas não isométricas.

Depois disso, provamos um teorema de semi-espaço para um gráfico de
Scherk ideal Σ ⊂ M × R sobre um domı́nio poligonal D ⊂ M, onde M
é uma superf́ıcie de Hadamard com curvatura limitada. Mais precisamente,
mostramos que uma superf́ıcie mı́nima propriamente imersa contida em D×R
e disjunta de Σ é uma translação de Σ.

Finalmente, baseado num trabalho em colaboração com L. Hauswirth,
provamos que se uma superf́ıcie mı́nima propriamente imersa em H2 × R /G
tem curvatura total finita, então sua curvatura total é um múltiplo de 2π
e, além disso, entendemos a geometria dos fins. Aqui G é um subgrupo de
isometrias gerado por uma translação vertical e uma isometria horizontal de
H2 sem pontos fixos.

Palavras-chave: Superf́ıcies mı́nimas, superf́ıcies com curvatura média con-
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stante, superf́ıcies periódicas, unicidade, curvatura total finita.
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Introduction

One of the most natural and established topics in the differential geometry of
surfaces is the global theory of minimal and constant mean curvature surfaces
in the space forms R3,S3 and H3. This is a classic field that remains very
active nowadays and uses a wide variety of techniques from different subjects,
for example, variational calculus, complex analysis, topology, elliptic PDE
theory and others.

The extension of this classic global theory for the case of immersed
surfaces in homogeneous Riemannian three-dimensional manifolds has at-
tracted the attention of many researchers in the last decade. These homoge-
neous manifolds are the most simple and symmetric Riemannian manifolds
that we can consider besides the space forms, together forming the eight
3-dimensional Thurston geometries.

This theory is extremely rich, with lots of beautiful examples. Minimal
surfaces in H2 × R, for instance, have been used by Collin and Rosenberg
[4] to give counterexamples to a well-known conjecture of Schoen and Yau
about harmonic diffeomorphisms between the complex plane and the disk.

In this work we will present our contributions to the theory of minimal and
constant mean curvature surfaces. We will prove some results associated to
uniqueness questions, classification problems, construction of new examples
of minimal surfaces, halfspace theorems and related themes. Our new results
stated here are proved in the papers [18, 35, 36, 37].

In the first chapter, we fix some notations, give some basic definitions,
and state well known results that we use in the other chapters.

In Chapter 2, we start by proving an Alexandrov type theorem for a
quotient space of H2 × R . More precisely, we classify the compact embed-
ded surfaces with constant mean curvature in the quotient of H2 × R by a
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subgroup of isometries generated by a parabolic translation along horocycles
of H2 and a vertical translation. Section 2.4 is devoted to the construction
of new examples of periodic minimal surfaces in H2 × R . In Section 2.5, we
prove a multi-valued Rado theorem for small perturbations of the helicoid in
H2 × R.

Chapter 3 focuses on construction of complete minimal surfaces in some
metric semidirect products. In Section 3.3, we construct a doubly periodic
minimal surface, and in Section 3.4, we construct a singly periodic minimal
surface. These surfaces are similar to the doubly and singly periodic Scherk
minimal surfaces in R3 . In particular, we obtain these surfaces in the Heisen-
berg space with its canonical metric, and in Sol3 with a one-parameter family
of non-isometric metrics.

In Chapter 4, we prove a half-space theorem for an ideal Scherk graph
Σ ⊂M×R over a polygonal domain D ⊂M, where M is a Hadamard surface
with bounded curvature. More precisely, we show that a properly immersed
minimal surface contained in D × R and disjoint from Σ is a translate of Σ.

Finally, in Chapter 5, based in a joint work with L. Hauswirth, we prove
that if a properly immersed minimal surface in the quotient space H2 × R /G
has finite total curvature then its total curvature is a multiple of 2π and,
moreover, we understand the geometry of the ends. Here G denotes a sub-
group of isometries generated by a vertical translation and a horizontal isom-
etry in H2 without fixed points.

Instituto de Matemática Pura e Aplicada 2 2013



CHAPTER 1

Preliminaries

In this chapter we fix notations, give definitions and state some well known
results which will be used throughout this work. In Section 1.1, we list
some basic definitions as minimal, stable and parabolic surface, and we recall
the first and second variational formulae of area. In Section 1.2, we state
the maximum principle, which we will use several times in this work. In
section 1.3, we state an important result about curvature estimates for stable
minimal surfaces. In section 1.4, we give the definition of the Flux formula
and state the Flux theorem. Finally, in Section 1.5, we state the Douglas
criterion for the existence of a minimal annulus with a certain contour.

1.1 Terminology and some basic facts

Let (M, g) be a Riemannian 3-manifold and consider Σ a surface in M. The
mean curvature vector of Σ at a point p is defined by

~HΣ(p) =
1

2

2∑
i=1

(AΣ)p(ei, ei),

where AΣ denotes the second fundamental form of Σ, and {e1, e2} is an
orthonormal basis of TpΣ with respect to the induced metric.

Let ν be a local unit normal vector field along Σ around p ∈ Σ. The
mean curvature of Σ at p with respect to ν is defined by

HΣ(p) = 〈 ~HΣ(p), ν(p)〉.

3
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Remark 1. If there is no ambiguity we will denote the second fundamental
form, the mean curvature vector and the mean curvature of Σ only by A, ~H
and H, respectively.

Let F : Σ × (−ε, ε) → M be a smooth normal variation of compact
support of Σ, that is, F (p, 0) = p for all p, F (p, t) = p for all t and p outside
some compact set, and the variational vector field X = ∂F

∂t
(p, 0) is orthogonal

to TpΣ. Denote Σt = F (p, t).

Proposition 1 (First variation formula of area). We have

d

dt
|Σt|
∣∣∣∣
t=0

= −2

∫
Σ

〈 ~H,X〉 dσ,

where |Σt| and dσ denote the area of Σt and the area element of Σ with respect
to the induced metric, respectively.

We say that Σ is a minimal surface if
d

dt
|Σt|
∣∣
t=0

= 0 for every smooth

normal variation Σt of Σ. Hence, Σ is minimal if, anf only if, ~H ≡ 0.
Throughout this work we only consider oriented surfaces in oriented Rie-

mannian manifolds. Hence, we can take ν a globally defined unit normal
vector field along Σ, and then any variational vector field X of a smooth
normal variation Σt of Σ can be written as X = φν, for some function
φ ∈ C∞0 (Σ).

Proposition 2 (Second variation formula of area). We have

d2

dt2
|Σt|
∣∣∣∣
t=0

=

∫
Σ

|∇Σφ|2 − (Ric(ν, ν) + |A|2)φ2 dσ,

where Ric denotes the Ricci curvature of M, and ∇Σφ denotes the gradient
of φ on Σ with respect to the induced metric.

We say that a minimal surface Σ is stable if

d2

dt2
|Σt|
∣∣∣∣
t=0

> 0,

for every smooth normal variation of compact support Σt of Σ.
Notice that if Σ is area-minimizing then Σ is a stable minimal surface,

and the condition of stability is equivalent to the first eigenvalue of the Jacobi
operator L = ∆Σ + Ric(ν, ν) + |A|2 to be nonnegative. Here, ∆Σ denotes the
Laplacian on Σ with respect to the induced metric.

Let us remark that a simple and useful fact that implies stability is
transversality to a Killing field, that is, if a minimal surface is transversal to
a Killing field, then it is stable (see, for example, Lemma 2.1 [40]).

Instituto de Matemática Pura e Aplicada 4 2013
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Definition 1. A surface Σ ⊂ M is called parabolic if the only functions
u : Σ → R that satisfy u ≤ 0 and ∆u ≥ 0 are the constant functions.
Otherwise, we say that Σ is hyperbolic.

1.2 Maximum principle

A very useful result for studying surfaces with constant mean curvature is
the maximum principle.

Theorem 1 (Maximum principle). Let Σ1 and Σ2 be two constant mean
curvature surfaces. Suppose there exists p ∈ Σ1∩Σ2 such that Σ1 and Σ2 are
tangent at p, and Σ2 lies in the mean convex side of Σ1 in a neighborhood of
p. Then H2 ≥ H1, and the equality holds if, and only if, Σ1 = Σ2.

In particular, the maximum principle implies that if two minimal surfaces
are tangent at a point, and one surface lies on one side of the other in a
neighborhood of that point, then these two minimal surfaces coincide.

For surfaces with boundary we have the following result.

Theorem 2 (Boundary maximum principle). Let Σ1 and Σ2 be two constant
mean curvature surfaces tangent at a point p ∈ ∂Σ1∩∂Σ2. Suppose that in a
neighborhood of p, Σ1 and Σ2 can be seen as graphs over the same domain in
TpΣ1 = TpΣ2, and Σ2 lies in the mean convex side of Σ1 in this neighborhood
of p. Then H2 ≥ H1, and the equality holds if, and only if, Σ1 = Σ2.

1.3 Curvature estimates

Rosenberg, Souam and Toubiana [50] obtained an estimate for the norm of
the second fundamental form of stable H-surfaces in Riemannian 3-manifolds
assuming only a bound on the sectional curvature. Their estimate depends
on the distance to the boundary of the surface and only on the bound on the
sectional curvature of the ambient manifold. More precisely, they proved the
following result.

Theorem 3 (Rosenberg, Souam and Toubiana, [50]). Let (M, g) be a com-
plete smooth Riemannian 3-manifold of bounded sectional curvature |K| ≤
Λ < +∞. Then there exists a universal constant C which depends neither
on M nor on Λ, satisfying the following:

For any immersed stable H-surface Σ in M with trivial normal bundle,
and for any p ∈ Σ we have

|A(p)| ≤ C

min{d(p, ∂Σ), π
2
√

Λ
}
.

Instituto de Matemática Pura e Aplicada 5 2013
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On the assumption of uniform curvature estimates we have the following
classical result.

Proposition 3. Let M be a homogeneous 3-manifold. Let Σn be an oriented
properly embedded minimal surface in N. Suppose there exist c > 0 such
that for all n, |AΣn| ≤ c, and a sequence of points {pn} in Σn such that
pn → p ∈ M. Then there exists a subsequence of Σn that converges to a
complete minimal surface Σ with p ∈ Σ.

1.4 Flux formula

An important tool for studying minimal and, more generally, constant mean
curvature surfaces are the formulae for the flux of appropriately chosen am-
bient vector fields across the surface.

Let u be a function defined in D whose graph is a minimal surface, and
consider X = ∇u

W
defined on D, where W 2 = 1 + |∇u|2. For an open domain

U ⊂ D, and α a boundary arc of U, we define the flux formula across α as

Fu(α) =

∫
α

〈X, ν〉 ds;

here α is oriented as the boundary of U and ν is the outer conormal to U
along α.

Theorem 4 (Flux Theorem). Let U ⊂ D be an open domain. Then

1. If ∂U is a compact cycle, Fu(∂U) = 0.

2. If α is a compact arc of U, Fu(α) ≤ |α|.

3. If α is a compact arc of U on which u diverges to +∞,

Fu(α) = |α|.

4. If α is a compact arc of U on which u diverges to −∞,

Fu(α) = −|α|.

1.5 Douglas criterion

While a Jordan curve in Euclidean 3-space always bounds a minimal disk,
it is generally quite difficult to decide whether a set of several contours is

Instituto de Matemática Pura e Aplicada 6 2013



Ana Menezes Minimal and constant mean curvature surfaces in homogeneous 3-manifolds

capable of bounding a minimal surface having a prescribed topological type.
There is a very important criterion, due to Douglas [9] (see [27], Theorem
2.1, for the case of a general Riemannian manifold), which guarantees the
existence of such minimal surface in certain instances. Although the Douglas
criterion is quite general, we will only state the particular case that we will
use here. For the general statement, see [27].

Theorem 5 (Douglas criterion). Let Γ1 and Γ2 be two disjoint Jordan curves.
Consider S1 and S2 two least area minimal disks with boundary Γ1 and Γ2,
respectively. If there is an annulus A with boundary Γ1 ∪ Γ2 such that

area(A) ≤ area(S1) + area(S2),

then there exists a least area minimal annulus with boundary Γ1 ∪ Γ2.

Instituto de Matemática Pura e Aplicada 7 2013



CHAPTER 2

The Alexandrov problem in a quotient space of H2 × R

In this chapter we prove an Alexandrov type theorem for a quotient space of
H2 × R . More precisely we classify the compact embedded surfaces with con-
stant mean curvature in the quotient of H2 × R by a subgroup of isometries
generated by a horizontal translation along horocycles of H2 and a verti-
cal translation. Moreover, we construct some examples of periodic minimal
surfaces in H2 × R and we prove a multi-valued Rado theorem for small per-
turbations of the helicoid in H2 × R.

2.1 Introduction

Alexandrov, in 1962, proved that the only compact embedded constant mean
curvature hypersurfaces in Rn,Hn and Sn+ are the round spheres. Since then,
many people have proved an Alexandrov type theorem in other spaces.

For instance, W.T. Hsiang and W.Y. Hsiang [25] showed that a compact
embedded constant mean curvature surface in H2 × R or in S2

+ × R is a
rotational sphere. They used the Alexandrov reflection method with vertical
planes in order to prove that for any horizontal direction, there is a vertical
plane of symmetry of the surface orthogonal to that direction.

To apply the Alexandrov reflection method we need to start with a vertical
plane orthogonal to a given direction that does not intersect the surface, and
in S2×R this fact is guaranteed by the hypothesis that the surface is contained
in the product of a hemisphere with the real line. We remark that in S2×R,
we know that there are embedded rotational constant mean curvature tori,

8
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but the Alexandrov problem is not completely solved in S2 × R . In other
simply connected homogeneous spaces with a 4-dimensional isometry group
(Nil3, P̃SL2(R), some Berger spheres), we do not know if the solutions to the
Alexandrov problem are spheres.

In Sol3, Rosenberg proved that an embedded compact constant mean
curvature surface is a sphere [7].

Recently, Mazet, Rodŕıguez and Rosenberg [29] considered the quotient of
H2 × R by a discrete group of isometries of H2 × R generated by a horizontal
translation along a geodesic of H2 and a vertical translation. They classified
the compact embedded constant mean curvature surfaces in the quotient
space. Moreover, they constructed examples of periodic minimal surfaces
in H2 × R, where by periodic we mean a surface which is invariant by a
non-trivial discrete group of isometries of H2 × R .

We also consider periodic surfaces in H2 × R . The discrete groups of
isometries of H2 × R we consider are generated by a horizontal translation
ψ along horocycles c(s) of H2 and/or a vertical translation T (h) for some
h > 0. In the case the group is the Z2 subgroup generated by ψ and T (h),
the quotient spaceM = H2 × R /[ψ, T (h)] is diffeomorphic to T2×R, where
T2 is the 2-torus. Moreover,M is foliated by the family of tori T(s) = c(s)×
R /[ψ, T (h)] which are intrinsically flat and have constant mean curvature
1/2. In this quotient space M, we prove an Alexandrov type theorem.

Moreover, we consider a multi-valued Rado theorem for small perturba-
tions of the helicoid. Rado’s theorem (see [47]) is one of the fundamental
results of minimal surface theory. It is connected to the famous Plateau
problem, and states that if Ω ⊂ R2 is a convex subset and Γ ⊂ R3 is a
simple closed curve which is graphical over ∂Ω, then any compact minimal
surface Σ ⊂ R3 with ∂Σ = Γ must be a disk which is graphical over Ω, and
then unique, by the maximum principle. In [8], Dean and Tinaglia proved a
generalization of Rado’s theorem. They showed that for a minimal surface
of any genus whose boundary is almost graphical in some sense, the minimal
surface must be graphical once we move sufficiently far from the boundary.
In our work, we consider this problem for minimal surfaces in H2 × R whose
boundary is a small perturbation of the boundary of a helicoid, and we prove
that the solution to the Plateau problem is the only compact minimal disk
with that boundary (see Theorem 7).

This chapter is organized as follows. In section 2.2, we introduce some
notation used in this chapter. In Section 2.3, we classify the compact em-
bedded constant mean curvature surfaces in the space M, that is, we prove
an Alexandrov type theorem for doubly periodic H-surfaces (see Theorem
6). In section 2.4, we construct some examples of periodic minimal surfaces
in H2 × R . In section 2.5, we prove a multi-valued Rado theorem for small

Instituto de Matemática Pura e Aplicada 9 2013
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perturbations of the helicoid (see Theorem 7).

2.2 Terminology

Throughout this chapter, the Poincaré disk model is used for the hyperbolic
plane, that is,

H2 = {(x, y) ∈ R2 | x2 + y2 < 1}

with the hyperbolic metric g−1 = 4
(1−x2−y2)2

g0, where g0 is the Euclidean

metric in R2 . In this model, the asymptotic boundary ∂∞H2 of H2 is identified
with the unit circle. Consequently, any point in the closed unit disk is viewed
as either a point in H2 or a point in ∂∞H2. We denote by 0 the origin of H2 .

In H2 we consider γ0, γ1 the geodesic lines {x = 0}, {y = 0}, respectively.
For j = 0, 1, we denote by Yj the Killing vector field whose flow (φl)l∈(−1,1) is
given by hyperbolic translation along γj with φl(0) = (l sin πj, l cosπj) and
(sinπj, cosπj) as attractive point at infinity. We call (φl)l∈(−1,1) the flow of
Yj even though the family (φl)l∈(−1,1) is not parameterized at the right speed.

We denote by π : H2 × R→ H2 the vertical projection and we write t for
the height coordinate in H2 × R . In what follows, we will often identify the
hyperbolic plane H2 with the horizontal slice {t = 0} of H2 × R . The vector
fields Yj, j = 0, 1, and their flows naturally extend to horizontal vector fields
and their flows in H2 × R .

Consider any geodesic γ that limits to the point p0 ∈ ∂∞H2 at infinity
parametrized by arc length. Let c(s) denote the horocycle in H2 tangent
to ∂∞H2 at p0 that intersects γ at γ(s). Given two points p, q ∈ c(s), we
denote by ψ : H2 × R → H2 × R the parabolic translation along c(s) such
that ψ(p) = q.

We write pq to denote the geodesic arc between the two points p, q of
H2 × R .

2.3 The Alexandrov problem for doubly pe-

riodic constant mean curvature surfaces

Take two points p, q in a horocycle c(s), and let ψ be the parabolic translation
along c(s) such that ψ(p) = q. We have ψ(c(s)) = c(s) for all s. Consider
G the Z2 subgroup of isometries of H2 × R generated by ψ and a vertical
translation T (h), for some positive h.We denote byM the quotient of H2 × R
by G. The manifold M is diffeomorphic but not isometric to T2×R and
is foliated by the family of tori T(s) = (c(s) × R)/G, s ∈ R, which are
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intrinsically flat and have constant mean cuvature 1/2. Thus the tori T(s)
are examples of compact embedded constant mean curvature surfaces inM.

We have the following answer to the Alexandrov problem in M.

Theorem 6. Let Σ ⊂M be a compact immersed surface with constant mean
curvature H. Then H ≥ 1

2
. Moreover,

1. If H = 1
2
, then Σ is a torus T(s), for some s;

2. If H > 1
2

and Σ is embedded, then Σ is either the quotient of a rotational
sphere, or the quotient of a vertical unduloid (in particular, a vertical
cylinder over a circle).

Proof. Let Σ be a compact immersed surface in M with constant mean
curvature H. As Σ is compact, there exist s0 ≤ s1 ∈ R such that Σ is
between T(s0) and T(s1), and it is tangent to T(s0),T(s1) at points q, p,
respectively, as illustrated in Figure 2.1.

Figure 2.1: Σ ⊂M.

For s < s0, the torus T(s) does not intersect Σ, and Σ stays in the
mean convex region bounded by T(s). By comparison at q, we conclude that
H ≥ 1

2
. If H = 1

2
, then by the maximum principle, Σ is the torus T(s0), and

we have proved the first part of the theorem.
To prove the last part, suppose Σ is embedded and consider the quotient

space M̃ = H2 × R /[T (h)], which is diffeomorphic to H2 × S1. Take a con-

nected component Σ̃ of the lift of Σ to M̃, and denote by c̃(s) the surface

c(s)×S1. Observe that c̃(s) is the lift of T(s) to M̃. Moreover, let us consider

two points p̃, q̃ ∈ Σ̃ whose projections in M are the points p, q, respectively.
It is easy to prove that Σ̃ separates M̃. In fact, suppose by contradiction

this is not true, then we can consider a geodesic arc α : (−ε, ε) → M̃ such

that α(0) ∈ Σ̃, α′(0) ∈ T Σ̃⊥ and we can join the points α(−ε), α(ε) by a

curve that does not intersect Σ̃, hence we obtain a Jordan curve, which we
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still call α, whose intersection number with Σ̃ is 1 modulo 2. Notice that
the distance between Σ̃ and c̃(s0) is bounded. Since we can homotop α so
it is arbitrarily far from c̃(s0), we conclude that a translate of α does not

intersect Σ̃, contradicting the fact that the intersection number of α and Σ̃
is 1 modulo 2. Thus Σ̃ does separate M̃.

Let us call A the mean convex component of M̃ \ Σ̃ with boundary Σ̃

and B the other component. Hence M̃ \ Σ̃ = A ∪B.
Let γ be a geodesic in H2 that limits to p0 ∈ ∂∞H2, γ(+∞) = p0 (the point

where the horocycles c(s) are centered) and let us assume that γ intersects

Σ̃ in at least two points.
Consider (lt)t∈R the family of geodesics in H2 orthogonal to γ and denote

by P (t) the totally geodesic vertical annulus lt × S1 of M̃ = H2 × S1 (see

Figure 2.2). Since Σ̃ is a lift of the compact surface Σ, it stays in the region

between c̃(s0) and c̃(s1), and the distance from any point of Σ̃ to c̃(s0) and
to c̃(s1) is uniformly bounded.

Figure 2.2: The family of totally geodesic annuli P (t).

By our choice of γ, the ends of each P (t) are outside the region bounded

by c̃(s), hence P (t)∩Σ̃ is compact for all t. Moreover, for t close to −∞, P (t)

is contained in B and P (t)∩ Σ̃ is empty. Then start with t close to −∞ and

let t increase until a first contact point between Σ̃ and some vertical annulus,
say P (t0). In particular, we know the mean curvature vector of Σ̃ does not
point into

⋃
t≤t0 P (t).

Continuing to increase t and starting the Alexandrov reflection procedure
for Σ̃ and the family of vertical totally geodesic annuli P (t), we get a first

contact point between the reflected part of Σ̃ and Σ̃, for some t1 ∈ R . Observe
that this first contact point occurs because we are assuming that the geodesic
γ intersects Σ̃ in at least two points.

Then Σ̃ is symmetric with respect to P (t1). As Σ̃ ∩
(⋃

t0≤t≤t1 P (t)
)

is
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compact, then Σ̃ is compact. Hence, given any horizontal geodesic α we can
apply the Alexandrov procedure with the family of totally geodesic vertical
annuli Q(t) = l̃t × S1, where (l̃t)t∈R is the family of horizontal geodesics

orthogonal to α, and we obtain a symmetry plane for Σ̃.
Hence we have shown that if some geodesic that limits to p0 intersects

Σ̃ in two or more points, then Σ̃ lifts to a rotational cylindrically bounded
surface Σ̄ in H2 × R . If Σ̄ is not compact then Σ̄ is a vertical unduloid, and
if Σ̄ is compact we know, by Hsiang-Hsiang’s theorem [25], Σ̄ is a rotational
sphere. Therefore, we have proved that in this case Σ ⊂ M is either the
quotient of a rotational sphere or the quotient of a vertical unduloid.

Now to finish the proof let us assume that every geodesic that limits to
p0 intersects Σ̃ in at most one point. In particular, the geodesic β that limits
to p0 and passes through p̃ ∈ c̃(s1) intersects Σ̃ only at p̃. Write β− to denote
the arc of β between β(−∞) and p̃ (see Figure 2.3).

Figure 2.3: Geodesic β.

As β ∩ Σ̃ = {p̃}, we have β− ∩ Σ̃ = ∅ and then β− ⊂ B, since Σ̃ separates

M̃.
Hence at the point p̃ ∈ Σ̃ ∩ c̃(s1), the mean curvature vectors of Σ̃ and

c̃(s1) point to the mean convex side of c̃(s1) and Σ̃ lies on the mean concave
side of c̃(s1), then by comparison we get H ≤ 1

2
. But we already know that

H ≥ 1
2
. Hence H = 1

2
and Σ̃ = c̃(s1), by the maximum principle. Therefore,

in this case we conclude Σ = T(s1).

Remark 2. Note that a vertical unduloid, contained in a cylinder D × R
and invariant by a vertical translation T (l) in H2 × R, passes to the quotient
space M = H2 × R /[ψ, T (h)] as an embedded surface if the quotient of D
is embedded and the number l is a multiple of h. Analogously, a rotational
sphere of height l contained in a cylinder D × R in H2 × R passes to the
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quotient as an embedded surface if l < h and the quotient of D is embedded
in M.

2.4 Construction of periodic minimal surfaces

In this section we are interested in constructing some new examples of peri-
odic minimal surfaces in H2 × R invariant by a subgroup of isometries, which
is either isomorphic to Z2, or generated by a vertical translation, or gener-
ated by a screw motion. In fact, we only consider subgroups generated by a
parabolic translation ψ along a horocycle and/or a vertical translation T (h),
for some h > 0.

Periodic minimal surfaces in R3 have received great attention since Rie-
mann, Schwarz, Scherk (and many others) studied them. They also appear
in the natural sciences. In [33], Meeks and Rosenberg proved that a periodic
properly embedded minimal surface of finite topology (in R3 /G,G a discrete
group of isometries acting properly discontinuously on R3, G 6= (1)) has fi-
nite total curvature and the ends are asymptotic to standard ends (planar,
catenoidal, or helicoidal). In a joint paper with Hauswirth [18], we consider
the same study for periodic minimal surfaces in H2 × R . The first step is to
understand what are the possible models for the ends in the quotient. This
is one reason to construct examples.

2.4.1 Doubly periodic minimal surfaces

In H2 consider two geodesics α, β that limit to the same point at infinity,
say α(−∞) = p0 = β(−∞). Denote B = α(+∞) and D = β(+∞). Take a
geodesic γ contained in the region bounded by α and β that limits to the same
point p0 at infinity. Parametrize these geodesics so that α(t)→ B, β(t)→ D
and γ(t)→ p0 when t→ +∞.

Fix h > π and consider the following Jordan curve:

Γt = (α(t), 0), (γ(t), 0) ∪ (α(t), 0), (α(t), h) ∪ (β(t), 0), (γ(t), 0)

∪(β(t), 0), (β(t), h) ∪ (α(t), h), (γ(t), h) ∪ (β(t), h), (γ(t), h)

as illustrated in Figure 4.1.
Consider a least area embedded minimal disk Σt with boundary Γt. Let

Y be the Killing field whose flow (φl)l∈(−1,1) is given by translation along the
geodesic γ. Notice that Γt is transversal to the Killing field Y. Hence given any
geodesic γ̄ orthogonal to γ, we can use the Alexandrov reflection technique
with the foliation of H2 × R by the vertical planes (φl(γ̄))l∈(−1,1) to show that
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Figure 2.4: Curve Γt.

Σt is a Y -Killing graph. In particular, Σt is stable and unique (see Lemma
2.1 in [40]). This gives uniform curvature estimates for Σt0 for points far from
the boundary (see Main Theorem in [50]). Rotating Σt by angle π around the
geodesic arc (α(t), 0), (γ(t), 0) gives a minimal surface that extends Σt, has
int(α(t), 0), (γ(t), 0) in its interior, and is still a Y -Killing graph. Thus we get
uniform curvature estimates for Σt in a neighborhood of (α(t), 0), (γ(t), 0).
This is also true for the three other horizontal geodesic arcs in Γt.

Observe that for any t, Σt stays in the half-space determined by BD×R
that contains Γt, by the maximum principle.

As h > π, we can use as a barrier the minimal surface Sh ⊂ H2 × (0, h)
which is a vertical bigraph with respect to the horizontal slice {t = h

2
}.

The surface Sh is invariant by translations along the horizontal geodesic
γ0 = {x = 0} and its asymptotic boundary is (τ × {0}) ∪ (0, 1, 0)(0, 1, h)
∪(τ × {h}) ∪ (0,−1, 0)(0,−1, h), where τ = ∂∞H2 ∩ {x > 0}. For more
details about the surface Sh, see [29, 30, 51].

For l close to 1, the translated surface φl(Sh) does not intersect Σt. Hence
the surface Σt is contained between φl(Sh) and BD × R .

Notice that when t→ +∞, Γt converges to Γ, where

Γ = (α× {0}) ∪ (β × {0}) ∪ (α× {h})∪
(β × {h}) ∪ (D, 0)(D, h) ∪ (B, 0)(B, h).

Therefore, as we have uniform curvature estimates and barriers at infinity,
there exists a subsequence of Σt that converges to a minimal surface Σ, where
Σ lies in the region of H2 × [0, h] bounded by α × R, β × R, BD × R and
φl(Sh); with boundary ∂Σ = Γ.

Hence the surface obtained by reflection in all horizontal boundary geodesics
of Σ is invariant by ψ2 and T (2h), where ψ is the horizontal translation along
horocycles that sends α to β. Moreover, this surface in the quotient space
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H2 × R /[ψ2, T (2h)] is topologically a sphere minus four points. Two ends
are asymptotic to vertical planes and two are asymptotic to horizontal planes
(cusps), all of them with finite total curvature.

Proposition 4. There exists a doubly periodic minimal surface (invariant by
horizontal translations along a horocycle and by a vertical translation) such
that, in the quotient space, this surface is topologically a sphere minus four
points, with two ends asymptotic to vertical planes and two asymptotic to
horizontal planes, all of them with finite total curvature.

2.4.2 Vertically periodic minimal surfaces

Take α any geodesic in H2 × {0}. For h > π, consider the vertical segment
α(−∞)× [0, 2h], and a point p ∈ ∂∞H2, p 6= α(−∞), α(+∞). For some small
ε > 0, consider the asymptotic vertical segment joining (p, ε) and (p, h + ε).
Now, connect (p, ε) to (α(−∞), 0) and (p, h + ε) to (α(−∞), 2h) by curves
in ∂∞H2 × R, whose tangent vectors are never horizontal or vertical, and
so that the resulting curve Γ is differentiable. Also, consider the horizontal
geodesic β connecting p to α(+∞).

Parametrize α by arc length, and consider γ a geodesic orthogonal to α
passing through α(0). Let us denote by d(t) the equidistant curve to γ in a
distance |t| that intersects α at α(t). For each t consider a curve Γt contained
in the plane d(t) × R with endpoints (α(t), 0) and (α(t), 2h) such that Γt is
contained in the region R bounded by α×R, β ×R,H2×{0} and H2×{2h}
with the properties that its tangent vectors do not point in the horizontal
direction and Γt converges to Γ when t→ −∞. In particular, Γt is transversal
to the Killing field Y whose flow (φl)l∈(−1,1) is given by translation along the
geodesic γ.

Write αt to denote the vertical segment α(t)× [0, 2h] (see Figure 2.5).

Figure 2.5: Curves Γ−n and Γ.
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For each n, let Σn be the solution to the Plateau problem with boundary
Γ−n ∪ (α([−n, n]) × {0}) ∪ (α([−n, n]) × {2h}) ∪ αn. By our choice of the
curves Γt, the boundary ∂Σn is transverse to the Killing field Y. Using the
foliation of H2 × R by the vertical planes φl(α), l ∈ (−1, 1), the Alexandrov
reflection technique shows that Σn is a Y -Killing graph. In particular, it is
unique and stable [40], and we have uniform curvature estimates far from
the boundary [50]. When we apply the rotation by angle π around α × {0}
to the minimal surface Σn, we get another minimal surface which extends
Σn, is still a Y-Killing graph and has int(α([−n, n]) × {0}) in its interior.
Hence we obtain uniform curvature estimates for Σn in a neighborhood of
α([−n, n])× {0}. This is also true for α([−n, n])× {2h} and αn.

Observe that Σn is contained in the region R, for all n.
By our choice of Γ, for each q ∈ Γ, we can consider two translations of

the minimal surfaces Sh (considered in the last section) that pass through
q so that one of them has asymptotic boundary under Γ, the other one has
asymptotic boundary above Γ and their intersection with Γ is just the point
q considered or is the whole vertical segment (p, ε)(p, h+ ε). Hence, the
envelope of the union of all these translated surfaces Sh forms a barrier to
Σn, for all n.

Then, as we have uniform curvature estimates and barriers at infinity, we
conclude that there exists a subsequence of Σn that converges to a minimal
surface Σ with (α(+∞)× [0, 2h])∪Γ = ∂∞Σ, and then ∂Σ = Γ∪ (α×{0})∪
(α× {2h}) ∪ (α(+∞)× [0, 2h]).

Therefore, the surface obtained by reflection in all horizontal boundary
geodesics of Σ is a vertically periodic minimal surface invariant by T (4h).
In the quotient space this minimal surface has two ends; one is asymptotic
to a vertical plane and has finite total curvature, while the other one is
topologically an annular end and has infinite total curvature.

Proposition 5. There exists a singly periodic minimal surface (invariant by
a vertical translation) such that, in the quotient space, this surface has two
ends, one end is asymptotic to a vertical plane and has finite total curvature,
while the other one is topologically an annular end and has infinite total
curvature.

2.4.3 Periodic minimal surfaces invariant by screw mo-
tion

Now we construct some examples of periodic minimal surfaces invariant by
a screw motion, that is, invariant by a subgroup of isometries generated by
the composition of a horizontal translation with a vertical translation.
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Consider two geodesics α, β in H2 that limit to the same point at in-
finity, say α(+∞) = p0 = β(+∞). For h > π, consider a smooth curve Γ
contained in the asymptotic boundary of H2 × R, connecting (α(−∞), 2h) to
(β(−∞), 0) and such that its tangent vectors are never horizontal or vertical.
Also, take a point p ∈ ∂∞H2 in the halfspace determined by β×R that does
not contain α.

For some small ε > 0, consider the asymptotic vertical segment joining
(p, ε) and (p, h+ ε). Now, connect (p, ε) to (p0, 0) and (p, h+ ε) to (p0, 2h) by
curves in ∂∞H2 × R whose tangent vectors are never horizontal or vertical,
and such that the resulting curve Γ̂ is differentiable.

Parametrize α by arc length, and consider γ a geodesic orthogonal to α
passing through α(0). Let us denote by d(t) the equidistant curve to γ in

a distance |t| that intersects α at α(t). For each t, s consider two curves Γ̂t
and Γs contained in the plane d(t)× R and d(s)× R, respectively, with the

properties that their tangent vectors are never horizontal, Γ̂t joins (α(t), 2h)

to (β(t), 0), Γs joins (α(s), 2h) to (β(s), 0), Γ̂t converges to Γ̂ when t→ +∞,
Γs converges to Γ when s→ −∞, and both curves are contained in the region
R bounded by α×R, θ×R,H2×{0} and H2×{2h}, where θ is the geodesic
with endpoints p and β(−∞) (see Figure 2.6).

Figure 2.6: Curves Γ̂t,Γs, Γ̂ and Γ.

For each n, let Σn be the solution to the Plateau problem with boundary
Γ−n∪(α([−n, n])×{2h})∪Γ̂n∪(β([−n, n])×{0}). The surface Σn is contained
in the region R. As in the previous section, we can show that Σn is a Killing
graph, then it is stable, unique and we have uniform curvature estimates far
from the boundary. Rotating Σn by angle π around the geodesic α × {2h}
we get a minimal surface which extends Σn, is still a Killing graph, and
has int(α([−n, n]) × {2h}) in its interior. Hence we get uniform curvature
estimates for Σn in a neighborhood of α([−n, n]) × {2h}. This is also true
for β([−n, n])× {0}. Thus when n→ +∞, there exists a subsequence of Σn

that converges to a minimal surface Σ with Γ ∪ Γ̂ ⊂ ∂∞Σn. Using the same
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argument as before with suitable translations of the surface Sh as barriers, we
conclude that in fact ∂∞Σ = Γ∪Γ̂, and then ∂Σ = Γ∪(α×{2h})∪(β×{0})∪Γ̂.

The surface obtained by reflection in all horizontal boundary geodesics
of Σ is a minimal surface invariant by ψ2 ◦ T (4h), where ψ is the horizon-
tal translation along horocycles that sends α to β. There are two annular
embedded ends in the quotient, each of infinite total curvature.

Proposition 6. There exists a minimal surface invariant by a screw mo-
tion such that, in the quotient space, this minimal surface has two annular
embedded ends, each one of infinite total curvature.

Now we will construct another interesting example of a periodic minimal
surface invariant by a screw motion.

Denote by γ0, γ1 the geodesic lines {x = 0}, {y = 0} in H2, respectively.
Let c be a horocycle orthogonal to γ1, and consider p, q ∈ c equidistant
points to γ1. Take α, β geodesics which limit to p0 = (1, 0) = γ1(+∞) and
pass through p, q, respectively. Fix ε > 0 and h > π. Consider the points
A = α(−t0), C = α(t0), B = β(−t0), D = β(t0), and let us consider the
following Jordan curve (see Figure 2.7):

Γt0 = (α([−t0, t0])× {−ε}) ∪ (C,−ε)(D, 0) ∪ (β([−t0, t0])× {0})

∪(α([−t0, t0])× {h}) ∪ (C, h)(D, h+ ε) ∪ (β([−t0, t0])× {h+ ε})

∪(A,−ε)(A, h) ∪ (B, 0)(B, h+ ε).

Figure 2.7: Curve Γt0 .

We consider a least area embedded minimal disk Σt0 with boundary Γt0 .
Denote by Y1 the Killing vector field whose flow (φl)l∈(−1,1) gives the

hyperbolic translation along γ1 with φl(0) = (l, 0) and p0 as attractive point
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at infinity. As Γt0 is transversal to the Killing field Y1, we can prove, using
the maximum principle, that Σt0 is a Y1-Killing graph with convex boundary,
in particular, Σt0 is stable and unique [40]. This yields uniform curvature
estimates far from the boundary [50]. Rotating Σt0 by angle π around the
geodesic arc α([−t0, t0])×{−ε} gives a minimal surface that extends Σt0 , has
int(α([−t0, t0])×{−ε}) in its interior, and is still a Y1-Killing graph. Thus we
get uniform curvature estimates for Σt0 in a neighborhood of α([−t0, t0]) ×
{−ε}. This is also true for the three other horizontal geodesic arcs in Γt0 .

Write F = α(−∞), G = β(−∞). Observe that, by the maximum princi-
ple, for any t0, Σt0 stays in the halfspace determined by FG×R that contains
Γt0 .

Since h > π, we can consider the minimal surface Sh (considered in Sec-
tion 2.4.1) as a barrier. For l close to 1, the translated surface φl(Sh) does not
meet Σt0 . The surface Σt0 is contained between φl(Sh) and FG × R . When
t0 → +∞, Γt0 converges to Γ, where

Γ = (α× {−ε}) ∪ (p0,−ε)(p0, 0) ∪ (β × {0})

∪(α× {h}) ∪ (p0, h)(p0, h+ ε) ∪ (β × {h+ ε})

∪(F,−ε)(F, h) ∪ (G, 0)(G, h+ ε).

Using the maximum principle, we can prove that Σt is contained between
φl(Sh) and FG × R, for all t > t0. Therefore, there exists a subsequence of
the surfaces Σt that converges to a minimal surface Σ, where Σ lies in the
region between H2×{−ε} and H2×{h+ε} bounded by α×R, β×R, FG×R
and φl(Sh); and has boundary ∂Σ = Γ.

Hence the surface obtained by reflection in all horizontal boundary geodesics
of Σ is invariant by ψ2 ◦ T (2(h + ε)), where ψ is the horizontal translation
along horocycles that sends α to β. Moreover, this surface in the quotient
space has two vertical ends and two helicoidal ends, each one of finite total
curvature.

Proposition 7. There exists a minimal surface invariant by a screw motion
such that, in the quotient space, this minimal surface has four ends. Two
vertical ends and two helicoidal ends, all of them with finite total curvature.

2.5 A multi-valued Rado Theorem

The aim of this section is to prove a multi-valued Rado theorem for small
perturbations of the helicoid. Recall that Rado’s theorem says that mini-
mal surfaces over a convex domain with graphical boundaries must be disks
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which are themselves graphical. We will prove that for certain small per-
turbations of the boundary of a (compact) helicoid there exists only one
compact minimal disk with that boundary. By a compact helicoid we mean
the intersection of a helicoid with certain compact regions in H2 × R . The
idea here originated in the work of Hardt and Rosenberg [16]. We will apply
this multi-valued Rado theorem to construct an embedded minimal surface
in H2 × R whose boundary is a small perturbation of the boundary of a
complete helicoid.

Consider Y the Killing field whose flow φθ, θ ∈ [0, 2π), is given by rota-
tions around the z-axis. For some 0 < c < 1, let D = {(x, y) ∈ H2;x2 + y2 ≤
c}. Take a helix h0 of constant pitch contained in a solid cylinder D × [0, d],
so that the vertical projection of h0 over H2×{0} is ∂D, and the endpoints of
h0 are in the same vertical line. Let us denote by Γ0 the Jordan curve which
is the union of h0, the two horizontal geodesic arcs joining the endpoints of
h0 to the z-axis, and the part of the z-axis. Call H the compact part of the
helicoid that has Γ0 as its boundary. We know that H is a minimal surface
transversal to the Killing field Y at the interior points. Take θ < π/4, and
consider H1 = φ−θ(H) and H2 = φθ(H). Hence H1,H2 are two compact
helicoids with boundary ∂H1 = φ−θ(Γ0), ∂H2 = φθ(Γ0).

Consider h a small smooth perturbation of the helix h0 with fixed end-
points such that h is transversal to Y and h is contained in the region be-
tween φ−θ(h0) and φθ(h0) in ∂D× [0, d]. Call Γ the Jordan curve which is the
union of h, the two horizontal geodesic arcs and a part of the z-axis, hence
Γ = (Γ0 \ h0) ∪ h (see Figure 2.8).

Figure 2.8: Curve Γ.

Denote byR the convex region bounded byH1 andH2 in the solid cylinder
D × [0, d]. The Jordan curve Γ is contained in the simply connected region
R which has mean convex boundary. Then we can consider the solution to
the Plateau problem in this region R, and we get a compact minimal disk H
contained in R with boundary ∂H = Γ.

Proposition 8. Under the assumptions above, H is transversal to the Killing
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field Y at the interior points. Moreover, the family (φθ(H))θ∈[0,2π) foliates
D × [0, d] \ {z-axis}.

Proof. As H is a disk, we already know that each integral curve of Y inter-
sects H in at least one point.

Observe that φπ/2(R) ∩ R \ {z-axis} = ∅ and, in particular, φπ/2(H) ∩
H \ {z-axis} = ∅. Moreover, notice that the tangent plane of φπ/2(H) never
coincides with the tangent plane of H along the z-axis; at each point of the
z-axis the surfaces are in disjoint sectors. So as one decreases t from π/2
to 0, the surfaces φt(H) and H have only the z-axis in common and they
are never tangent along the z-axis. More precisely, as t decreases, t > 0,
there can not be a first interior point of contact between the two surfaces by
the maximum principle. Also there can not be a point on the z-axis which
is a first point of tangency of the two surfaces for t > 0, by the boundary
maximum principle. Thus the surfaces φt(H) and H have only the z-axis in
common for t > 0. The same argument works for −π/2 ≤ t < 0. Therefore
the surfaces φt(H) foliate D × [0, d] \ {z-axis}, for t ∈ [0, 2π).

In particular, we have concluded that each integral curve of Y intersects
H in exactly one point. Denote by R2 the region in R bounded by H and
H2, and denote by N the unit normal vector field of H pointing toward
R2. As each integral curve of Y intersects H in exactly one point, we have
〈N, Y 〉 ≥ 0 on H. As 〈N, Y 〉 is a Jacobi function on the minimal surface H,
we conclude that necessarily 〈N, Y 〉 > 0 in intH. Therefore, H is transversal
to the Killing field Y at the interior points.

Theorem 7 (A multi-valued Rado Theorem). Under the assumptions above,
H is the unique compact minimal disk with boundary Γ.

Proof. Set Γθ = φθ(Γ) and Hθ = φθ(H), so Hθ is a minimal disk with ∂Hθ =
Γθ. By Proposition 8, the family (Hθ)θ∈[0,2π) gives a foliation of the region
D × [0, d] \ {z-axis}.

Let M 6= H be another compact minimal disk with boundary Γ. We will
analyse the intersection between M and each Hθ.

First, observe that M ∩Hθ 6= ∅ for all θ and by the maximum principle
M ⊂ D × [0, d].

Fix θ0. Given q ∈ Hθ0 ∩M, then either q ∈ intM or q ∈ Γ = ∂M.
Suppose q ∈ intM.
If the intersection is transversal at q, then in a neighborhood of q we have

that Hθ0 ∩M is a simple curve passing through q. If we let θ0 vary a little,
we see in M a foliation as in Figure 2.9 (a).

On the other hand, if M is tangent to Hθ0 at q, as the intersection of
any two minimal surfaces is locally given by an n-prong singularity, that is,

Instituto de Matemática Pura e Aplicada 22 2013



Ana Menezes Minimal and constant mean curvature surfaces in homogeneous 3-manifolds

Figure 2.9: q ∈ intM.

2n embedded arcs which meet at equal angles (see Claim 1 of Lemma 4 in
[23]), then in a neighborhood of q we have that Hθ0 ∩M consists of 2n curves
passing through q and making equal angles at q. If we let θ0 vary a little, we
see in M a foliation as in Figure 2.9 (b).

Now suppose q ∈ Γ.
If q ∈ Γ∩{z-axis}, to understand the trace of Hθ0 on M in a neighborhood

of q we proceed as follows. Rotation by angle π of H2 × R about the z-
axis extends M smoothly to a minimal surface M̃ that has q as an interior
point. Each Hθ also extends by this rotation (giving a helicoid H̃θ). So

in a neighborhood of q, we understand the intersection of M̃ and H̃θ0 . The

surfaces M̃ and H̃θ0 are either transverse or tangent at q as in Figure 2.9.
Then when we restrict to M ∩ Hθ0 and let θ0 vary slightly, we see that the
trace of Hθ0 on M near q is as in Figure 2.10, since the segment on the z-axis
through q is in M ∩Hθ0 .

Figure 2.10: q ∈ Γ ∩ {z-axis}.

On the other hand, if q ∈ Γ\{z-axis} then θ0 = 0, since Γθ∩Γ\{z-axis} =
∅ for any θ 6= 0. Note that we cannot have M ∩ H homeomorphic to a
semicircle in a neighborhood of q, since this would imply that M is on one
side of H at q and this contradicts the boundary maximum principle. Thus
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when we let θ0 = 0 vary a little, we have two possible foliations for M in a
neighborhood of q as indicated in Figure 2.11.

Figure 2.11: q ∈ Γ \ {z-axis}.

Now consider two copies of M and glue them together along the boundary.
Since M is a disk, when we glue these two copies of M we obtain a

sphere with a foliation whose singularities have negative index by the analysis
above. But this is impossible. Therefore, there is no other minimal disk with
boundary Γ besides H.

Remark 3. This proof clearly works to prove Theorem 2 for slightly perturbed
helicoids in R3.

Now let us construct an example of a complete embedded minimal sur-
face in H2 × R whose asymptotic boundary is a small perturbation of the
asymptotic boundary of a complete helicoid.

Consider the (compact) helix β(u) = (cosu, sinu, u) for u ∈ [0, 4π]. Notice
that β is a multi-graph over ∂∞H2 . Consider α(u) a perturbation of β(u)
such that α is transversal to ∂∞H2×{τ} for any τ ∈ [0, 4π], α(0) = β(0),
α(4π) = β(4π) and so that the vertical distance between α(s) and α(s+ 2π)
is bigger than π for any s ∈ [0, 2π].

Now for t ∈ [0, 1], consider the curves αt(u) = (1− t)(0, 0, u) + tα(u), u ∈
[0, 4π]. Call Γt (respectively Γ1) the Jordan curve which is the union of αt
(respectively α), the two horizontal geodesics joining the endpoints of αt
(respectively α) to the z-axis, and the part of the z-axis between z = 0 and
z = 4π. Note that when t goes to 1, the curves Γt converge to the curve
Γ1. Denote by Ht the minimal disk with boundary Γt. By Theorem 7, Ht is
stable and unique. In particular, we have uniform curvature estimates for
points far from the boundary. As before, using rotation by angle π around
horizontal geodesics, we can prove that there is uniform curvature estimates
for Ht in a neighborhood of the two horizontal geodesic arcs of Γt.

As in the previous section, the envelope of the union of the translated
surfaces Sπ forms a barrier to the sequence Ht, hence we conclude that there
exists a subsequence of Ht that converges to a minimal surface H1 with
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boundary ∂H1 = Γ1. Rotation by angle π of H2 × R around the z-axis ex-
tends H1 smoothly to a minimal surface which has two horizontal (straight)
geodesics in its boundary. Thus the surface obtained by reflection in all
horizontal boundary geodesics of H1 is a minimal surface whose asymptotic
boundary is a small perturbation of the asymptotic boundary of the complete
helicoid in H2 × R which has β contained in its asymptotic boundary.
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CHAPTER 3

Periodic minimal surfaces in semidirect products

In this chapter we prove existence of complete minimal surfaces in some
metric semidirect products. These surfaces are similar to the doubly and
singly periodic Scherk minimal surfaces in R3 . In particular, we obtain these
surfaces in the Heisenberg space with its canonical metric, and in Sol3 with
a one-parameter family of non-isometric metrics.

3.1 Introduction

In this chapter we construct examples of periodic minimal surfaces in some
semidirect products R2 oA R, depending on the matrix A. By periodic surface
we mean a properly embedded surface invariant by a nontrivial discrete group
of isometries.

One of the most simple examples of semidirect product is H2 × R =

R2 oAR, when we take A =

(
1 0
0 0

)
. In this space, Mazet, Rodŕıguez and

Rosenberg [29] proved some results about periodic constant mean curvature
surfaces and they constructed examples of such surfaces. One of their meth-
ods is to solve a Plateau problem for a certain contour. In [48], using a similar
technique, Rosenberg constructed examples of complete minimal surfaces in
M2×R, where M is either the two-sphere or a complete Riemannian surface
with nonnegative curvature or the hyperbolic plane.

Meeks, Mira, Pérez and Ros [31] have proved results concerning the ge-
ometry of solutions to Plateau type problems in metric semidirect products
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R2 oA R, when there is some geometric constraint on the boundary values of
the solution (see Theorem 8).

The first example that we construct is a complete periodic minimal surface
similar to the doubly periodic Scherk minimal surface in R3. It is invariant
by two translations that commute and it is a four punctured sphere in the
quotient of R2 oA R by the group of isometries generated by the two trans-
lations. In the last section we obtain a complete periodic minimal surface
analogous to the singly periodic Scherk minimal surface in R3 .

These surfaces are obtained by solving the Plateau problem for a geodesic
polygonal contour Γ (it uses a result by Meeks, Mira, Pérez and Ros [31]
about the geometry of solutions to the Plateau problem in semidirect prod-
ucts), and letting some sides of Γ tend to infinity in length, so that the
associated Plateau solutions all pass through a fixed compact region (this
will be assured by the existence of minimal annuli playing the role of barri-
ers). Then a subsequence of the Plateau solutions will converge to a minimal
surface bounded by a geodesic polygon with edges of infinite length. We
complete this surface by symmetry across the edges. The whole construction
requires precise geometric control and uses curvature estimates for stable
minimal surfaces.

These results are obtained for semidirect products R2 oA R where A =(
0 b
c 0

)
. For example, we obtain periodic minimal surfaces in the Heisen-

berg space, when A =

(
0 1
0 0

)
, and in Sol3, when A =

(
0 1
1 0

)
, with

their well known Riemannian metrics. When we consider the one-parameter

family of matrices A(c) =

(
0 c
1
c

0

)
, c ≥ 1, we get a one-parameter family

of metrics in Sol3 which are not isometric.

3.2 Definitions and preliminary results

Generalizing direct products, a semidirect product is a particular way in
which a group can be constructed from two subgroups, one of which is a
normal subgroup. As a set, it is the cartesian product of the two subgroups
but with a particular multiplication operation.

In our case, the normal subgroup is R2 and the other subgroup is R . Given
a matrix A ∈M2(R), we can consider the semidirect product R2 oA R, where
the group operation is given by

(p1, z1) ∗ (p2, z2) = (p1 + ez1Ap2, z1 + z2), p1, p2 ∈ R2, z1, z2 ∈ R (3.1)
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and

A =

(
a b
c d

)
∈M2(R).

We choose coordinates (x, y) ∈ R2, z ∈ R . Then ∂x = ∂
∂x
, ∂y, ∂z is a

parallelization of G = R2 oA R . Taking derivatives at t = 0 in (3.1) of the
left multiplication by (t, 0, 0) ∈ G (respectively by (0, t, 0), (0, 0, t)), we obtain
the following basis {F1, F2, F3} of the right invariant vector fields on G:

F1 = ∂x, F2 = ∂y, F3 = (ax+ by)∂x + (cx+ dy)∂y + ∂z. (3.2)

Analogously, if we take derivatives at t = 0 in (3.1) of the right mul-
tiplication by (t, 0, 0) ∈ G (respectively by (0, t, 0), (0, 0, t)), we obtain the
following basis {E1, E2, E3} of the Lie algebra of G:

E1 = a11(z)∂x + a21(z)∂y, E2 = a12(z)∂x + a22(z)∂y, E3 = ∂z, (3.3)

where we have denoted

ezA =

(
a11(z) a12(z)
a21(z) a22(z)

)
.

We define the canonical left invariant metric on R2 oA R, denoted by 〈, 〉 ,
to be that one for which the left invariant basis {E1, E2, E3} is orthonormal.

The expression of the Riemannian connection ∇ for the canonical left
invariant metric of R2 oA R in this frame is the following:

∇E1 E1 = aE3 ∇E1 E2 = b+c
2
E3 ∇E1 E3 = −aE1 − b+c

2
E2

∇E2 E1 = b+c
2
E3 ∇E2 E2 = dE3 ∇E2 E3 = − b+c

2
E1 − dE2

∇E3 E1 = c−b
2
E2 ∇E3 E2 = b−c

2
E1 ∇E3 E3 = 0.

In particular, for every (x0, y0) ∈ R2, γ(z) = (x0, y0, z) is a geodesic in G.

Remark 4. As [E1, E2] = 0, thus for all z, R2 oA{z} is flat and the horizontal
straight lines are geodesics. Moreover, the mean curvature of R2 oA{z} with
respect to the unit normal vector field E3 is the constant H = tr(A)/2.

The change from the orthonormal basis {E1, E2, E3} to the basis {∂x, ∂y, ∂z}
produces the following expression for the metric 〈, 〉 :

〈, 〉(x,y,z) = [a11(−z)2 + a21(−z)2]dx2 + [a12(−z)2 + a22(−z)2]dy2 + dz2

+[a11(−z)a12(−z) + a21(−z)a22(−z)](dx⊗ dy + dy ⊗ dx)

= e−2tr(A)z{[a21(z)2 + a22(z)2]dx2 + [a11(z)2 + a12(z)2]dy2}+ dz2

−e−2tr(A)z[a11(z)a21(z) + a12(z)a22(z)](dx⊗ dy + dy ⊗ dx).
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In particular, for every matrix A ∈ M2(R), the rotation by angle π
around the vertical geodesic γ(z) = (x0, y0, z) given by the map R(x, y, z) =
(−x+ 2x0,−y + 2y0, z) is an isometry of (R2 oA R, 〈, 〉) into itself.

Remark 5. As we observed, the vertical lines of R2 oA R are geodesics of
its canonical metric. For any line l in R2 oA{0} let Pl denote the vertical
plane {(x, y, z) : (x, y, 0) ∈ l; z ∈ R} containing the set of vertical lines
passing through l. It follows that Pl is ruled by vertical geodesics and, since
rotation by angle π around any vertical line in Pl is an isometry that leaves
Pl invariant, then Pl has zero mean curvature.

Although the rotation by angle π around horizontal geodesics is not al-
ways an isometry, we have the following result.

Proposition 9. Let A =

(
0 b
c 0

)
∈ M2(R) and consider the horizontal

geodesic α = {(x0, t, 0) : t ∈ R} in R2 oA{0} parallel to the y-axis. Then
the rotation by angle π around α is an isometry of (R2 oA R, 〈, 〉) into itself.
The same result is true for a horizontal geodesic parallel to the x-axis.

Proof. The rotation by angle π around α is given by the map φ(x, y, z) =
(−x+ 2x0, y,−z), so φx = −∂x, φy = ∂y and φz = −∂z.

If A =

(
0 b
c 0

)
, then

ezA =


∞∑
k=0

(bc)kz2k

(2k)!

∞∑
k=1

bkck−1z2k−1

(2k − 1)!
∞∑
k=1

ckbk−1z2k−1

(2k − 1)!

∞∑
k=0

(bc)kz2k

(2k)!

 .

Hence, a11(z) = a22(z) and e−zA =

(
a11(z) −a12(z)
−a21(z) a11(z)

)
. Then

〈, 〉(x,y,z) = {[a21(z)2 + a11(z)2]dx2 + [a11(z)2 + a12(z)2]dy2}+ dz2

−[a11(z)a21(z) + a12(z)a11(z)](dx⊗ dy + dy ⊗ dx)

and

〈, 〉φ(x,y,z) = {[a21(z)2 + a11(z)2]dx2 + [a11(z)2 + a12(z)2]dy2}+ dz2

+[a11(z)a21(z) + a12(z)a11(z)](dx⊗ dy + dy ⊗ dx).
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Therefore, 〈φx, φx〉φ(x,y,z) = 〈∂x, ∂x〉(x,y,z) , 〈φy, φy〉 = 〈∂y, ∂y〉 , 〈φz, φz〉 =
〈∂z, ∂z〉 , that is, φ is an isometry. Analogously, we can show that the rotation
by angle π around a horizontal geodesic parallel to the x-axis is also an
isometry.

Remark 6. When the matrix A in R2 oA R is

(
0 1
0 0

)
and

(
0 1
1 0

)
, we

have the Heisenberg space and Sol3, respectively, with their well known Rie-
mannian metrics. When we consider the one-parameter family of matrices

A(c) =

(
0 c
1
c

0

)
, c ≥ 1, we get a one-parameter family of metrics in Sol3

which are not isometric. For more details, see [32].

Meeks, Mira, Pérez and Ros [31] have proved results concerning the ge-
ometry of solutions to Plateau type problems in metric semidirect products
R2 oA R, when there is some geometric constraint on the boundary values of
the solution. More precisely, they proved the following theorem.

Theorem 8 (Meeks, Mira, Pérez and Ros, [31]). Let X = R2oAR be a metric
semidirect product with its canonical metric and let Π : R2oAR→ R2oA{0}
denote the projection Π(x, y, z) = (x, y, 0). Suppose E is a compact convex
disk in R2 oA {0}, C = ∂E and Γ ⊂ Π−1(C) is a continuous simple closed
curve such that Π : Γ→ C monotonically parametrizes C. Then,

1. Γ is the boundary of a compact embedded disk Σ of finite least area.

2. The interior of Σ is a smooth Π-graph over the interior of E.

3.3 A doubly periodic Scherk minimal sur-

face

Throughout this section, we consider the semidirect product R2 oA R with

the canonical left invariant metric 〈, 〉 , where A =

(
0 b
c 0

)
. In this space,

we prove the existence of a complete minimal surface analogous to Scherk’s
doubly periodic minimal surface in R3.

Fix 0 < c0 < c1 and let a be a sufficiently small positive quantity such
that

a <

∫ c1

c0

√
a2

11(z) + a2
21(z) +

√
a2

11(z) + a2
12(z)dz

−
∫ c1

c0

√
(a11(z) + a12(z))2 + (a11(z) + a21(z))2dz.

(3.4)
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Observe that we can find such positive number a, since |∂x| =
√
a2

11(z) + a2
21(z),

|∂y| =
√
a2

11(z) + a2
12(z) and |∂x+∂y| =

√
(a11(z) + a12(z))2 + (a11(z) + a21(z))2.

For each c > 0, consider the polygon Pc in R2 oA R with the sides
α1, α2, α

c
3, α

c
4 and αc5 defined below.

α1 = {(t, 0, 0) : 0 ≤ t ≤ a}

α2 = {(0, t, 0) : 0 ≤ t ≤ a}

αc3 = {(a, 0, t) : 0 ≤ t ≤ c}

αc4 = {(0, a, t) : 0 ≤ t ≤ c}

αc5 = {(t,−t+ a, c) : 0 ≤ t ≤ a},

as illustrated in Figure 3.1.

Figure 3.1: Polygon Pc.

We will denote α0
1 = {(t, 0, 0) : 0 ≤ t < a}, α0

2 = {(0, t, 0) : 0 ≤ t < a},
α3 = {(a, 0, t) : t > 0} and α4 = {(0, a, t) : t > 0}, hence P∞ = α0

1 ∪ α0
2 ∪

α3 ∪ α4 ∪ {(a, 0, 0), (0, a, 0)}.
Let Π : R2 oAR→ R2 oA {0} denote the projection Π(x, y, z) = (x, y, 0).

The next proposition is proved in Lemma 1.2 in [31], using the maximum
principle and the fact that for every line L ⊂ R2 oA {0}, the vertical plane
Π−1(L) is a minimal surface.

Proposition 10. Let E be a compact convex disk in R2oA{0} with boundary
C = ∂E and let Σ be a compact minimal surface with boundary in Π−1(C).
Then every point in intΣ is contained in intΠ−1(E).
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Observe that, for each c > 0, the polygon Pc is transverse to the Killing
field X = ∂x + ∂y and each integral curve of X intersects Pc in at most one
point. From now on, denote by P the commom projection of every Pc over
R2 oA{0}, that is, P = Π(Pc) = Π(Pd) for any c, d ∈ R, and denote by
E the disk in R2 oA {0} with boundary P. Let us denote by R the region
E × {z ≥ 0}. Using Theorem 8, we conclude that Pc is the boundary of a
compact embedded disk Σc of finite least area and the interior of Σc is a
smooth Π-graph over the interior of E.

Let Ωc = {(t,−t+ a, s) : 0 ≤ t ≤ a; 0 ≤ s ≤ c}.

Proposition 11. If S is a compact minimal surface with boundary Pc, then
S = Σc.

Proof. By Proposition 10, intΣc, intS ⊂ intΠ−1(E), then, in particular,
intΣc, intS ⊂ int{ϕt(p) : t ∈ R; p ∈ Ωc}, where ϕt is the flow of the Killing
field X.

As S is compact, there exists t such that ϕt(Σc)∩ S = ∅. If S 6= Σc, then
there exists t0 > 0 such that ϕt0(Σc) ∩ S 6= ∅ and for t > t0, ϕt(Σc) ∩ S = ∅.
Since for all t 6= 0, ϕt(Pc) ∩ S = ∅, then the point of intersection is an
interior point and, by the maximum principle, ϕt0(Σc) = S. But that is a
contradiction, since t0 6= 0. Therefore, S = Σc.

For each n ∈ N, let Σn be the solution to the Plateau problem with
boundary Pn. By Theorem 8 and Proposition 11, Σn is stable and unique. We
are interested in proving the existence of a subsequence of Σn that converges
to a complete minimal surface with boundary P∞. In order to do that, we
will use a minimal annulus as a barrier (whose existence is guaranteed by the
Douglas criterion) to show that there exist points pn ∈ Σn,Π(pn) = q ∈ intE
for all n, which converge to a point p ∈ R2 oA R, and then we will use
Proposition 3.

Consider the parallelepiped with the faces A,B,C,D,E and F , defined
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below.

A = {(u,−ε, v) : ε ≤ u ≤ a+ ε; c0 ≤ v ≤ c1}

B = {(−ε, u, v) : ε ≤ u ≤ a+ ε; c0 ≤ v ≤ c1}

C = {(u,−u, v) : −ε ≤ u ≤ ε; c0 ≤ v ≤ c1}

D = {(u,−u+ a, v) : −ε ≤ u ≤ a+ ε; c0 ≤ v ≤ c1}

E = {(u,−u+ v, c0) : −ε ≤ u ≤ v + ε; 0 ≤ v ≤ a}

F = {(u,−u+ v, c1) : −ε ≤ u ≤ v + ε; 0 ≤ v ≤ a},
where ε is a positive constant that we will choose later. Observe that each
one of these faces is the least area minimal surface with its boundary. Let us
analyse the area of each face.

1. In the plane {y = constant} the induced metric is given by g(x, z) =
(a2

11(z) + a2
21(z))dx2 + dz2. Hence,

area A =

∫ c1

c0

∫ a+ε

ε

√
a2

11(z) + a2
21(z)dxdz

= a

∫ c1

c0

√
a2

11(z) + a2
21(z)dz.

2. In the plane {x = constant} the induced metric is given by g(y, z) =
(a2

11(z) + a2
12(z))dy2 + dz2. Hence,

area B =

∫ c1

c0

∫ a+ε

ε

√
a2

11(z) + a2
12(z)dxdz

= a

∫ c1

c0

√
a2

11(z) + a2
12(z)dz.

3. The face C is contained in the plane parameterized by φ(u, v) =
(u,−u, v) and the face D is contained in the plane parameterized by ψ(u, v) =
(u,−u+ a, v). We have ψu = φu = ∂x − ∂y, ψv = φv = ∂z. Then, |ψu ∧ ψv| =
|φu ∧ φv| =

√
(a11(z) + a12(z))2 + (a11(z) + a21(z))2. Hence,

area C =

∫ c1

c0

∫ +ε

−ε

√
(a11(z) + a12(z))2 + (a11(z) + a21(z))2dudv

= 2ε

∫ c1

c0

√
(a11(z) + a12(z))2 + (a11(z) + a21(z))2dz,
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area D =

∫ c1

c0

∫ a+ε

−ε

√
(a11(z) + a12(z))2 + (a11(z) + a21(z))2dudv

= (a+ 2ε)

∫ c1

c0

√
(a11(z) + a12(z))2 + (a11(z) + a21(z))2dz.

4. By Remark 4, the plane {z = constant} is flat, and then the induced
metric is the Euclidean metric. Hence,

area E = area F =

∫ a

0

∫ v+ε

−ε
dudv =

a(a+ 4ε)

2
.

Therefore,

area C + area D + area E + area F < area A+ area B

se, e somente se,

(a+ 4ε)

[
a+

∫ c1

c0

√
(a11 + a12)2 + (a11 + a21)2dz

]
< a

∫ c1

c0

√
a2

11 + a2
21dz

+ a

∫ c1

c0

√
a2

11 + a2
12dz

se, e somente se,

ε <
a

4

∫ c1

c0

√
a2

11 + a2
21 +

√
a2

11 + a2
21dz

a+

∫ c1

c0

√
(a11 + a12)2 + (a11 + a21)2dz

− a

4
. (3.5)

As we chose a satisfying (3.4), the factor in the right hand side of (3.5) is
a positive number, then we can choose ε > 0 such that the Douglas criterion
is satisfied. Hence we obtain a minimal annulus A with boundary ∂A ∪ ∂B
such that its projection Π(A) contains points of intE, where E is the disk in
RoA{0} with boundary P. (See Figure 3.2).

As R2 oA{z} is a minimal surface, the maximum principle implies that,
for each c, Σc is contained in the slab bounded by the planes {z = 0} and
{z = c}. Then for c < c0, Σc∩A = ∅. As Σc is unique, Σc varies continuously
with c, and when c increases the boundary ∂Σc = Pc does not touch ∂A.
Therefore, using the maximum principle, Σc ∩ A = ∅ for all c, and Σc is
under the annulus A, which means that over any vertical line that intersects
A and Σc, the points of Σc are under the points of A.

Consider ϕt the flow of the Killing field X = ∂x + ∂y. Observe that
{ϕt(A)}t<0 forms a barrier for all points pn ∈ Σn such that Π(pn) is contained
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Figure 3.2: Annulus A.

in a neighborhood U ⊂ E of the origin o = (0, 0, 0). Moreover, for any c2 < c3

we can use the flow ϕt of the Killing field X and the maximum principle to
conclude that Σc2 is under Σc3 in the same sense as before.

As, by Theorem 8, each Σc is a vertical graph in the interior, then Σc ∩
Π−1(q) is only one point pc, for every point q ∈ intE. Moreover, by the
previous paragraph, the sequence pc = Σc∩Π−1(q) is monotone. Then, since
we have a barrier, the sequence {pn = Σn ∩ Π−1(q)} converges to a point
p ∈ Π−1(q), for all q ∈ U .

In order to understand the convergence of the surfaces Σn we need to
observe some properties of these surfaces.

First, notice that rotation by angle π around α3, which we will denote by
Rα3 , is an isometry. By the Schwarz reflection, we obtain a minimal surface

Σ̃n = Σn ∪Rα3(Σn) that has intα3 in its interior. Note that the boundary of

Σ̃n is transverse to the Killing field X = ∂x + ∂y, and if ϕt denotes the flow

of X, we have that ϕt(∂Σ̃n) ∩ Σ̃n = ∅ for all t 6= 0, hence, using the same
arguments of the proof of Proposition 11, we can show that the minimal
surface Σ̃n is the unique minimal surface with its boundary. In particular, it is
area-minimizing, and then it is stable. Hence, by Theorem 3, we have uniform
curvature estimates for points far from the boundary of Σ̃n. In particular, we
get uniform curvature estimates for Σn in a neighborhood of α3. Analogously,
we have uniform curvature estimates for Σn in a neighborhood of α4.

Hence, for every compact contained in {z > 0} ∩R, there exists a subse-
quence of Σn that converges to a minimal surface. Taking an exhaustion by
compact sets and using a diagonal process, we conclude that there exists a
subsequence of Σn that converges to a minimal surface Σ that has α3 ∪α4 in
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its boundary. From now on, we will use the notation Σn for this subsequence.
It remains to prove that in fact Σ is a minimal surface with boundary

P∞. In order to do that, we will use the fact that the interior of each Σn

is a vertical graph over the interior of E. Let us denote by un the function
defined in intE such that Σn = Graph(un). We already know that un−1 < un
in intE for all n.

Claim 1. There are uniform gradient estimates for {un} for points in α0
1∪α0

2.

Proof. For x0 < 0 and δ > 0 consider the vertical strip bounded by β1 =
{(x0, y, c1) : −δ ≤ y ≤ 0}, β2 = {(x0, t,− c1

a
t + c1) : 0 ≤ t ≤ a}, β3 =

{(x0, t − δ,− c1
a
t + c1) : 0 ≤ t ≤ a} and β4 = {(x0, y, 0) : a − δ ≤ y ≤ a}.

This is a minimal surface transversal to the Killing field ∂x, hence any small
perturbation of its boundary gives a minimal surface with that perturbed
boundary. Thus, if we consider a small perturbation of the boundary of this
vertical strip by perturbing slightly β1 by a curve contained in {x ≥ x0}
joining the points (x0,−δ, c1) and (x0, 0, c1), we will get a minimal surface S
with this perturbed boundary. This minimal surface S will have the property
that the tangent planes at the interior of β4 are not vertical, by the maximum
principle with boundary.

Applying translations along the x-axis and y-axis, we can use the trans-
lates of S to show that Σn is under S in a neighborhood of α0

2, and then we
have uniform gradient estimates for points in α0

2. Analogously, constructing
similar barriers, we can prove that we have uniform gradient estimates in a
neighborhood of α0

1.

Observe that besides the gradient estimates, the translates of the minimal
surface S form a barrier for points in a neighborhood of α0

1 ∪ α0
2.

We have that Σn is a monotone increasing sequence of minimal graphs
with uniform gradient estimates in α0

1 ∪ α0
2, and it is a bounded graph for

points in a neighborhood U of the origin (because of the barrier given by the
annulus A). Therefore, there exists a subsequence of Σn that converges to a

minimal surface Σ̃ with α0
1 ∪ α0

2 in its boundary. As we already know that

Σn converges to the minimal surface Σ, we conclude that in fact Σ = Σ̃, and
then Σ is a minimal surface with α0

1 ∪ α0
2 ∪ α3 ∪ α4 in its boundary. Notice

that we can assume that Σ has P∞ as its boundary, with Σ being of class C1

up to P∞ \ {(a, 0, 0), (0, a, 0)} and continuous up to P∞.
Now considering the rotation by angle π around α1 of Σ, we obtain the

surface illustrated in Figure 3.3.
Continuing to rotate by angle π around the horizontal line in R2 oA{0},

the resulting surface will be a minimal surface with four vertical lines as its

Instituto de Matemática Pura e Aplicada 36 2013



Ana Menezes Minimal and constant mean curvature surfaces in homogeneous 3-manifolds

Figure 3.3: Rotation by angle π around α1 of Σ.

boundary: {(a, 0, t) : t ∈ R}, {(0, a, t) : t ∈ R}, {(−a, 0, t) : t ∈ R}, {(0,−a, t) :
t ∈ R}.

Now we can use the rotations by angle π around the vertical lines to get
a complete minimal surface that is analogous to the doubly periodic minimal
Scherk surface in R3 . It is invariant by two translations that commute and
it is a four punctured sphere in the quotient of R2 oA R by the group of
isometries generated by the two translations.

Theorem 9. In any semidirect product R2 oA R, where A =

(
0 b
c 0

)
,

there exists a periodic minimal surface similar to the doubly periodic Scherk
minimal surface in R3.

3.4 A singly periodic Scherk minimal surface

Throughout this section, we consider the semidirect product R2 oA R with

the canonical left invariant metric 〈, 〉 , where A =

(
0 b
c 0

)
. In this space,

we construct a complete minimal surface similar to the singly periodic Scherk
minimal surface in R3.

Fix c0 > 0 and take 0 < ε < a sufficiently smalls so that

a+ 2ε <

∫ c0

0

√
a2

11(z) + a2
21(z)dz.

For each c > 0, consider the polygon Pc in R2 oA R with the six sides
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defined below.
αc1 = {(t, 0, 0) : 0 ≤ t ≤ c}

αc2 = {(c, t, 0) : 0 ≤ t ≤ a}

αc3 = {(t, a, 0) : 0 ≤ t ≤ c}

αc4 = {(0, a, t) : 0 ≤ t ≤ c}

αc5 = {(0, t, c) : 0 ≤ t ≤ a}

αc6 = {(0, 0, t) : 0 ≤ t ≤ c},

and for each δ > 0 with δ < a/2, consider the polygon P δ
c with the following

six sides.
αδ,c1 =

{
(t, δ

c
t, 0) : 0 ≤ t ≤ c

}
αδ,c2 = {(c, t, 0) : δ ≤ t ≤ a− δ}

αδ,c3 =
{

(t, ac−δt
c
, 0) : 0 ≤ t ≤ c

}
,

αc4, α
c
5, α

c
6, as illustrated in Figure 3.4.

Figure 3.4: Polygons Pc and P δ
c .

Denote by Ω(δ, c) the region in R2 oA{0} bounded by αδ,c1 , αδ,c2 , αδ,c3 and
the segment {(0, t, 0) : 0 ≤ t ≤ a}. For each c and δ, we have compact
minimal surfaces Σc and Σδ

c with boundary Pc and P δ
c , respectively, which

are solutions to the Plateau problem. By Theorem 8, we know that Σc
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and Σδ
c are stable and smooth Π-graphs over the interior of Ω(0, c),Ω(δ, c),

respectively. We will show that Σc is the unique compact minimal surface
with boundary Pc.

Fix c. For each 0 < δ < a/2, P δ
c is a polygon transverse to the Killing field

∂x and each integral curve of ∂x intersects P δ
c in at most one point. Thus

we can prove, as we did in Proposition 11, that Σδ
c is the unique compact

minimal surface with boundary P δ
c .

Denote by uδc, vc the functions defined in the interior of Ω(δ, c),Ω(0, c),
whose Π-graphs are Σδ

c,Σc, respectively. Then, as ∂x is a Killing field and
each P δ

c is transversal to ∂x, we can use the flow of ∂x and the maximum
principle to prove that for δ′ < δ we have 0 ≤ uδc ≤ uδ

′
c ≤ vc in intΩ(δ, c),

hence vc is a barrier for our sequence uδc. Because of the monotonicity and
the barrier, the family uδc converges to a function uc defined in intΩ(0, c)
whose graph is a compact minimal surface with boundary Pc, and we still
have uc ≤ vc on Ω(0, c).

Now we will find another compact minimal surface with boundary Pc,
whose interior is the graph of a function wc defined in intΩ(0, c) such that
vc ≤ wc and we will show that uc = wc. In order to do that, for each
0 < δ < a/2, consider the polygon P̃ δ

c with the six sides defined below.

α̃δ,c1 = {(t, δt−δc
c
, 0) : 0 ≤ t ≤ c}

αc2 = {(c, t, 0) : 0 ≤ t ≤ a}

α̃δ,c3 = {(t, (a+δ)c−δt
c

, 0) : 0 ≤ t ≤ c}

α̃δ,c4 = {(0, a+ δ, t) : 0 ≤ t ≤ c}

α̃δ,c5 = {(0, t, c) : −δ ≤ t ≤ a+ δ}

α̃δ,c6 = {(0,−δ, t) : 0 ≤ t ≤ c}.

Denote by Ω̃(δ, c) the region in R2 oA{0} bounded by α̃δ,c1 , αc2, α̃
δ,c
3 and

the segment {(0, t, 0) : −δ ≤ t ≤ a + δ}. For each δ, we have a compact

minimal disk Σ̃δ
c with boundary P̃ δ

c and the interior of Σ̃δ
c is a smooth Π-

graph over the interior of Ω̃(δ, c). As P̃ δ
c is transversal to the Killing field ∂x,

we can prove that Σ̃δ
c is the unique compact minimal surface with boundary

P̃ δ
c .

Denote by wδc the function defined in intΩ̃(δ, c) whose graph is Σ̃δ
c. Using

the flow of ∂x and the maximum principle, we can prove that for δ′ < δ we
have wδ

′
c ≤ wδc in intΩ̃(δ′, c) and for all δ, vc ≤ wδc in intΩ(0, c). Because of
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Figure 3.5: Polygons Pc and P̃ δ
c .

the monotonicity and the barrier, the family wδc converges to a function wc
defined in intΩ̃(0, c) = intΩ(0, c) whose graph is a compact minimal surface
with boundary Pc, and we still have vc ≤ wc in intΩ(0, c).

Let us call Σ1,Σ2 the graphs of uc, wc, respectively. We will now prove
that Σ1 = Σ2. Denote by νi the conormal to Σi along Pc, i = 1, 2. (See Figure
3.6).

Figure 3.6: Σ1 and Σ2.

Suppose that uc 6= wc, then in fact we have uc < wc in intΩ(0, c). As ∂x
is tangent to αc1 and αc3, then 〈νi, ∂x〉 = 0, i = 1, 2, in αc1 and αc3. In the other
sides of Pc we have 〈ν1, ∂x〉 < 〈ν2, ∂x〉 . Therefore,∫

Pc

〈ν1, ∂x〉 <
∫
Pc

〈ν2, ∂x〉 .

Instituto de Matemática Pura e Aplicada 40 2013



Ana Menezes Minimal and constant mean curvature surfaces in homogeneous 3-manifolds

But, using the Flux Formula for Σ1 and Σ2 with respect to the Killing field
∂x, we have ∫

Pc

〈ν1, ∂x〉 = 0 =

∫
Pc

〈ν2, ∂x〉 .

Then, uc = wc and therefore, Σc = Σ1 = Σ2. In particular, Σc is the unique
compact minimal surface with boundary Pc.

Denote by Ω(∞) the infinite strip {(x, y, 0) : x ≥ 0, 0 ≤ y ≤ a}, and
by R the region {(x, y, z) : x ≥ 0, 0 ≤ y ≤ a, z ≥ 0}. Moreover, denote
α1 = {(x, 0, 0) : x > 0}, α3 = {(x, a, 0) : x > 0}, α4 = {(0, a, z) : z > 0} and
α6 = {(0, 0, z) : z > 0}, hence P∞ = α1 ∪ α3 ∪ α4 ∪ α6 ∪ {(0, 0, 0), (0, a, 0)}.

For each n ∈ N, let Σn be the unique compact minimal surface with
boundary Pn. We are interested in proving the existence of a subsequence of
Σn that converges to a complete minimal surface with boundary P∞. Using
the existence of a minimal annulus, guaranteed by the Douglas criterion, we
will show that there exist points pn ∈ Σn, Π(pn) = q ∈ int Ω(∞) for all n,
which converge to a point p ∈ R2 oAR, and then we will use Proposition 3.

Consider the parallelepiped with faces A,B,C,D,E and F, defined below.

A = {(u,−ε, v) : ε ≤ u ≤ d; 0 ≤ v ≤ c0}

B = {(u, a+ ε, v) : ε ≤ u ≤ d; 0 ≤ v ≤ c0}

C = {(u, v, 0) : ε ≤ u ≤ d;−ε ≤ v ≤ a+ ε}

D = {(u, v, c0) : ε ≤ u ≤ d;−ε ≤ v ≤ a+ ε}

E = {(ε, u, v) : −ε ≤ u ≤ a+ ε; 0 ≤ v ≤ c0}

F = {(d, u, v) : −ε ≤ u ≤ a+ ε; 0 ≤ v ≤ c0},

where d > ε is a constant that we will choose later.
As we did in the last section, we can calculate the area of each one of

these faces and we obtain:

area A = area B = (d− ε)
∫ c0

0

√
a2

11(z) + a2
21(z)dz,

area C = area D = (d− ε)(a+ 2ε),

area E = area F = (a+ 2ε)

∫ c0

0

√
a2

11(z) + a2
12(z)dz.
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Hence,

area C + area D + area E + area F < area A+ area B

se, e somente se,

(d− ε)(a+ 2ε) + (a+ 2ε)

∫ c0

0

√
a2

11 + a2
12dz < (d− ε)

∫ c0

0

√
a2

11 + a2
21dz

se, e somente se,

(d− ε)
[
(a+ 2ε)−

∫ c0

0

√
a2

11 + a2
21dz

]
< −(a+ 2ε)

∫ c0

0

√
a2

11 + a2
12dz

se, e somente se,

d > ε−
(a+ 2ε)

∫ c0

0

√
a2

11(z) + a2
12(z)dz

(a+ 2ε)−
∫ c0

0

√
a2

11(z) + a2
21(z)dz

.

As we chose a + 2ε <

∫ c0

0

√
a2

11(z) + a2
21(z)dz, we can choose d > ε so

that the Douglas criterion is satisfied. Thus, there exists a minimal annulus
A with boundary ∂A ∪ ∂B such that its projection Π(A) contains points of
intΩ(∞). (See Figure 3.7).

Figure 3.7: Annulus A.

We know that, for each c < ε, Σc ∩A = ∅. When c increases Pc does not
intersect ∂A, then, using the maximum principle, Σc ∩ A = ∅ for all c, and
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Σc is under the annulus A. Thus, there exists a point q ∈ intΩ(∞) such that
pn = Σn ∩ Π−1(q) has a subsequence that converges to a point p ∈ Π−1(q).
Observe that applying the flow of the Killing field ∂x to the annulus A we
can conclude that, in the region {x ≥ d}, the surfaces Σn are bounded above
by, for example, the plane {z = c0}.

In order to understand the convergence of the surfaces Σn we need to
prove some properties of these surfaces.

Claim 2. The surfaces Σn are transversal to the Killing field ∂x in the inte-
rior.

Proof. Fix n. Suppose that at some point p ∈ intΣn the tangent plane TpΣn

contains the vector ∂x. As the planes that contain the direction ∂x are min-
imal surfaces, we have that Σn and TpΣn are minimal surfaces tangent at
p, and then the intersection between them is formed by 2k curves, k ≥ 1,
passing through p making equal angles at p. By the shape of Pn (the bound-
ary of Σn), we know that TpΣn intersects Pn either in only two points or in
one point and a segment of straight line (αn1 or αn3 ). Therefore, we will have
necessarily a closed curve contained in the intersection. As Σn is simply con-
nected this curve bounds a disk in Σn, but as the parallel planes to TpΣn are
minimal surfaces, we can use the maximum principle to prove that this disk
is contained in the plane TpΣn and then they coincide, which is impossible.
Thus, the vector ∂x is transversal to Σ at points p ∈ intΣn .

Observe that, besides the interior points, the surfaces Σn are also transver-
sal to ∂x at the points in α4 and α6, by the maximum principle with boundary.
Thus rotation by angle π around α4 (respectively α6) gives a minimal surface
which is also transversal to the Killing field ∂x in the interior, extends the
surface Σn and has αn4 (respectively αn6 ) in the interior. Therefore, we have
uniform curvature estimates for Σn up to α4 ∪ α6.

Hence, for every compact contained in {z > 0} ∩R, there exists a subse-
quence of Σn that converges to a minimal surface. Taking an exhaustion by
compact sets and using a diagonal process, we conclude that there exists a
subsequence of Σn that converges to a minimal surface Σ that has α4 ∪α6 in
its boundary. From now on we will use the notation Σn for this subsequence.

It remains to prove that in fact Σ is a minimal surface with boundary
P∞. In order to do that, we will use the fact that each Σn is a vertical graph
in the interior. Let us denote by un the function defined in intΩ(n) such that
Σn = Graph(un), where Ω(n) = {(x, y, 0) : 0 ≤ x ≤ n; 0 ≤ y ≤ a}.

Claim 3. un−1 < un in intΩ(n− 1).
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Proof. Recall that each Σn is the limit of a sequence of graphs Σ̃δ
n = Graph(wδn),

whose boundary is transversal to ∂x. Using the flow of the Killing field ∂x,
we can prove that each Σ̃δ

n is above Σn−1, and then the limit surface Σn has
to be above Σn−1. In fact, Σn is strictly above Σn−1 in the interior, because
as Σn and Σn−1 are minimal surfaces, if they intersect at an interior point,
there will be points of Σn under Σn−1, and we already know that, by the
property of Σ̃δ

n, this is not possible.

Claim 4. There are uniform gradient estimates for {un} for points in α1∪α3.

Proof. We will use the same idea as in Claim 1. For y0 > a and δ > 0
consider the vertical strip bounded by β1 = {(x, y0, c0) : d ≤ x ≤ d + δ},
β2 = {(t, y0,

c0
d
t) : 0 ≤ t ≤ d}, β3 = {(t + δ, y0,

c0
d
t) : 0 ≤ t ≤ d} and

β4 = {(x, y0, 0) : 0 ≤ x ≤ δ}. This is a minimal surface transversal to
the Killing field ∂y, hence any small perturbation of its boundary gives a
minimal surface with that perturbed boundary. Thus, if we consider a small
perturbation of the boundary of this vertical strip by perturbing slightly β1 by
a curve contained in {y ≤ y0} joining the points (d, y0, c0) and (d+ δ, y0, c0),
we will get a minimal surface S with this perturbed boundary. This minimal
surface S will have the property that the tangent planes at the interior points
of β4 are not vertical, by the maximum principle with boundary.

Applying translations along the x-axis and y-axis, we can use the trans-
lates of S to show that Σn is under S in a neighborhood of α3, and then we
have uniform gradient estimates for points in α3. Analogously, we can prove
that we have uniform gradient estimates in a neighborhood of α1.

Observe that besides the gradient estimates, the translates of the minimal
surface S form a barrier for points in a neighborhood of α1 ∪ α3.

We have that Σn is a monotone increasing sequence of minimal graphs
with uniform gradient estimates in α1 ∪ α3, and it is a bounded graph for
points in {x ≥ d} (because of the barrier given by the annulus A). Therefore,

there exists a subsequence of Σn that converges to a minimal surface Σ̃ with
α1∪α3 in its boundary. As we already know that Σn converges to the minimal
surface Σ, we conclude that in fact Σ = Σ̃, and then Σ is a minimal surface
with α1∪α3∪α4∪α6 in its boundary. Notice that we can assume that Σ has
P∞ as its boundary, with Σ being of class C1 up to P∞\{(0, 0, 0), (0, a, 0)} and
continuous up to P∞. The expected “singly periodic Scherk minimal surface”
is obtained by rotating recursively Σ by an angle π about the vertical and
horizontal geodesics in its boundary.

Theorem 10. In any semidirect product R2 oA R, where A =

(
0 b
c 0

)
,
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there exists a periodic minimal surface similar to the singly periodic Scherk
minimal surface in R3.
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CHAPTER 4

A half-space theorem for ideal Scherk graphs in M × R

In this chapter we prove a half-space theorem for an ideal Scherk graph
Σ ⊂M×R over a polygonal domain D ⊂M, where M is a Hadamard surface
with bounded curvature. More precisely, we show that a properly immersed
minimal surface contained in D × R and disjoint from Σ is a translate of Σ.

4.1 Introduction

A well known result in the global theory for proper minimal surfaces in the
Euclidean 3-space is the half-space theorem by Hoffman and Meeks [24], which
says that if a properly immersed minimal surface S in R3 lies on one side of
some plane P, then S is a plane parallel to P. Moreover, they also proved the
strong half-space theorem, which says that two properly immersed minimal
surfaces in R3 that do not intersect must be parallel planes.

This problem of giving conditions which force two minimal surfaces of a
Riemannian manifold to intersect has received considerable attention, and
many people have worked on this subject.

Let us observe that there is no half-space theorem in Euclidean spaces of
dimensions bigger than 4, since there exist rotational proper minimal hyper-
surfaces contained in a slab.

Similarly, there exists no half-space theorem for horizontal slices in H2 × R,
since rotational minimal surfaces (catenoids) are contained in a slab [41, 42].
However there are half-space theorems for constant mean curvature (CMC) 1

2

surfaces in H2 × R [21, 43]. For instance, Hauswirth, Rosenberg and Spruck
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[21] proved that if S is a properly immersed CMC 1
2

surface in H2 × R, con-
tained on the mean convex side of a horocylinder C, then S is a horocylinder
parallel to C; and if S is embedded and contains a horocylinder C on its
mean convex side, then S is a horocylinder parallel to C. And in [43] Nelli
and Sa Earp showed that the mean convex side of a simply connected rota-
tional CMC 1

2
surface can not contain a complete CMC 1

2
surface besides the

rotational simply connected ones.
Other examples of homogeneous manifolds where there are half-space

theorems for minimal surfaces are Nil3 and Sol3 [1, 5, 6]. For instance, we
know that if a properly immersed minimal surface S in Nil3 lies on one side
of some entire minimal graph Σ, then S is the image of Σ by a vertical
translation.

In [28], Mazet proved a general half-space theorem for constant mean
curvature surfaces. Under certain hypothesis, he proved that in a Riemannian
3-manifold of bounded geometry, a constant mean curvature H surface on
one side of a parabolic constant mean curvature H surface Σ is an equidistant
surface to Σ.

Here we consider the half-space problem for an ideal Scherk graph Σ over
a polygonal domain D ⊂ M, where M denotes a Hadamard surface with
bounded curvature, that is, M is a complete simply connected Riemannian
surface with curvature −b2 ≤ KM ≤ −a2 < 0, for some constants a, b ∈ R .
More precisely, we prove the following result.

Theorem 11. Let M denote a Hadamard surface with bounded curvature
and let Σ = Graph(u) be an ideal Scherk graph over an admissible polygonal
domain D ⊂ M. If S is a properly immersed minimal surface contained in
D × R and disjoint from Σ, then S is a translate of Σ.

We remark that Mazet’s theorem does not apply in our case for Scherk
surfaces. In fact, one of his hypothesis is that the equidistant surfaces have
mean curvature pointing away from the original surface. However, an end
of a Scherk surface is asymptotic to some vertical plane γ × R, where γ is
a geodesic, so the equidistant surface is asymptotic to γs × R, where γs is
an equidistant curve to γ. Hence, in the case of a Scherk surface, the mean
curvature vector of an equidistant surface points toward the Scherk surface.

4.2 Definitions and preliminary results

In this section we present some basic properties of Hadamard manifolds and
state some previous results. For more details, see [13] or [10, 11, 12].
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Let M be a Hadamard manifold, that is, a complete simply connected
Riemannian manifold with non positive sectional curvature. We say that two
geodesics γ1, γ2 of M , parameterized by arc length, are asymptotic if there
exists a constant c > 0 such that the distance between them satisfies

d(γ1(t), γ2(t)) ≤ c, for all t ≥ 0.

Note that to be asymptotic is an equivalence relation on the oriented unit
speed geodesics of M. We call each one of these classes a point at infinity. We
denote by M(∞) the set of points at infinity and by γ(+∞) the equivalence
class of the geodesic γ. Throughout this section, we only consider oriented
unit speed geodesics.

Let us assume that M has sectional curvature bounded from above by a
negative constant. Then we have two important facts:

1. For any two asymptotic geodesics γ1, γ2, the distance between the two
curves γ1|[t0 ,+∞), γ2|[t0 ,+∞) is zero for any t0 ∈ R .

2. Given x, y ∈ M(∞), x 6= y, there exists a unique geodesic γ such that
γ(+∞) = x and γ(−∞) = y, where γ(−∞) denotes the corresponding
point at infinity when the orientation of γ is changed.

For any point p ∈M, there is a bijective correspondence between the set
of unit vectors in the tangent plane TpM and M(∞), where a unit vector
v is mapped to the point at infinity γv(∞), γv denoting the geodesic with
γv(0) = p and γ′v(0) = v. Analogously, given a point p ∈ M and a point at
infinity x ∈ M(∞), there exists a unique geodesic γ such that γ(0) = p and
γ(+∞) = x. In particular, M(∞) is bijective to a sphere.

There exists a topology onM∗ = M∪M(∞) satisfying that the restriction
to M agrees with the topology induced by the Riemannian distance. This
topology is called the cone topology of M∗ (see [13], for instance).

In order to define horospheres we consider Busemann functions. Given a
unit vector v, the Busemann function Bv : M → R associated to v is defined
as

Bv(p) = lim
t→+∞

(d(p, γv(t))− t) .

This is a C2 convex function on M and it satisfies the following properties.
Property 1. The gradient ∇Bv(p) is the unique unit vector w in TpM

such that γv(∞) = γw(−∞).
Property 2. If w is a unit vector such that γv(∞) = γw(∞) then Bv−Bw

is a constant function on M.
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Definition 2. Given a point at infinity x ∈M(∞) and a unit vector v such
that γv(∞) = x, the horospheres at x are defined as the level sets of the
Busemann function Bv.

We have the following important facts with respect to horospheres.

• By Property 2, the horospheres at x do not depend on the choice of the
vector v.

• The horospheres at x give a foliation of M, and as Bv is a convex
function, each one bounds a convex domain in M called a horoball.

• The intersection between a geodesic γ and a horosphere at γ(∞) is
always orthogonal from Property 1.

• Take a point p ∈ M and let Hx denote a horosphere at x. If γ is the
geodesic passing through p with γ(+∞) = x, then Hx∩ γ is the closest
point on Hx to p.

• Given x, y ∈M(∞), if γ is a geodesic with these points at infinity, and
Hx, Hy are disjoint horospheres, then the distance between Hx and Hy

coincides with the distance between the points Hx ∩ γ and Hy ∩ γ.

Now we will restrict M to be a Hadamard surface with curvature bounded
from above by a negative constant, and we will write horocycle and horodisk
to mean horosphere and horoball, respectively.

Let Γ be an ideal polygon of M, that is, Γ is a polygon all of whose sides
are geodesics and the vertices are at infinity M(∞). We assume Γ has an even
number of sides α1, β1, α2, β2, ..., αk, βk. Let D be the interior of the convex
hull of the vertices of Γ, so ∂D = Γ and D is a topological disk. We call D
an ideal polygonal domain.

Definition 3. An ideal Scherk graph over D is a minimal surface which is
the graph of a function defined in D that takes the values +∞ on each αi,
and −∞ on each βi.

For the sake of completeness, and in order to understand the hypothesis
on our main result (Theorem 12), let us describe the necessary and sufficient
conditions on the domain D, proved by Gálvez and Rosenberg [13], for the
existence of an ideal Scherk graph over D.

At each vertex ai of Γ, place a horocycle Hi so that Hi ∩Hj = ∅ if i 6= j.
Each αi meets exactly two horodisks. Denote by α̃i the compact arc of

αi outside the two horodisks, and denote by |αi| the length of α̃i, that is, the
distance between these horodisks. Analogously, we can define β̃i and |βi|.
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Now define

a(Γ) =
k∑
i=1

|αi|

and

b(Γ) =
k∑
i=1

|βi|.

Observe that a(Γ)−b(Γ) does not depend on the choice of the horocycles,
because given two horocycles H1, H2 at a point x ∈M(∞) and a geodesic γ
with x as a point at infinity, then the distance between H1 and H2 coincides
with the distance between the points γ ∩H1 and γ ∩H2.

Definition 4. An ideal polygon P is said to be inscribed in D if the vertices
of P are among the vertices of Γ. Hence its edges are either interior in D or
equal to some αi or βj.

The definition of a(Γ) and b(Γ) extends to inscribed polygons:

a(P) =
∑
αi∈P

|αi| and b(P) =
∑
βi∈P

|βi|.

We denote by |P| the length of the boundary arcs of P exterior to the
horodisks bounded by Hi at the vertices of P . We call this the truncated
length of P .

Definition 5. An ideal polygon Γ is said to be admissible if the two following
conditions are satisfied.

1. a(Γ) = b(Γ);

2. For each inscribed polygon P in D, P 6= Γ, and for some choice of the
horocycles at the vertices, we have

2a(P) < |P| and 2b(P) < |P|.

Moreover, an ideal polygonal domain D is said to be admissible if its bound-
ary Γ = ∂D is an admissible polygon.

The properties of an admissible polygon are the necessary and sufficient
conditions for the existence of an ideal Scherk graph over D ⊂M [13].
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4.3 Main Result

In this section we consider a Hadamard surface M with bounded curvature,
that is, M is a complete simply connected Riemannian surface with curvature
−b2 ≤ KM ≤ −a2 < 0, for some constants a, b ∈ R . We now can establish
our main result.

Theorem 12. Let M denote a Hadamard surface with bounded curvature
and let Σ = Graph(u) be an ideal Scherk graph over an admissible polygonal
domain D ⊂ M. If S is a properly immersed minimal surface contained in
D × R and disjoint from Σ, then S is a translate of Σ.

To prove this theorem we follow an idea of Rosenberg, Schulze and Spruck
[49], by constructing a discrete family of minimal graphs in D × R .

Let Σ = Graph(u) be an ideal Scherk graph over D with Γ = ∂D. Given
any point p ∈ D, consider the geodesics starting at p and going to the vertices
of Γ. Take the points over each one of these geodesics which are at a distance
n from p. Now consider the geodesics joining two consecutive points as in
Figure 4.1.

Figure 4.1: Construction of convex domain.

The angle at which two of these geodesics meet is less than π, hence we
can smooth the corners to obtain a convex domain Dn with smooth boundary
Γn = ∂Dn and such that D1 ⊂ D2 ⊂ ... ⊂ Dn ⊂ ... is an exhaustion of D.

Denote by An the annular-type domain Dn \ D̄1 and by Σn the graph of
u restrict to An. Hence Σn is a stable minimal surface, and any sufficiently
small perturbation of ∂Σn gives rise to a smooth family of minimal surfaces
Σn,t with Σn,0 = Σn. We use this fact to the deformation of ∂Σn which is
the graph over ∂An given by ∂1 ∪ ∂n,t for t ≥ 0, where ∂1 = (Γ1 × R) ∩ Σ,
∂n,t = (Γn × R) ∩ T (t)(Σ) and T (t) is the vertical translation by height t.
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Then for t sufficiently small, there exists a minimal surface Σn,t which is the
graph of a smooth function un,t defined on An with boundary ∂1 ∪ ∂n,t. Note
that un,t satisfies the minimal surface equation on An and, by the maximum
principle, Σn,t stays between Σ and Σ(t) = T (t)(Σ). We will show that there
exists a uniform interval of existence for un,t, that is, we will prove that
there exists δ0 > 0 such that for all n and 0 ≤ t ≤ δ0, the minimal surfaces
Σn,t = Graph(un,t) exist.

Figure 4.2: Minimal surface Σn,t.

Consider δ0 > 0 sufficiently small so that u2,t exists for any t ∈ [0, δ0]. We
will show this δ0 works for all n ≥ 2. In order to do that we will prove that
for n > 2 the set Bn = {τ ∈ [0, δ0];un,t exists for 0 ≤ t ≤ τ} is in fact the
interval [0, δ0].

Claim 5. The set Bn is open and closed. Hence Bn = [0, δ0].

Proof. By stability Bn is an open set. Now consider an increasing sequence
τk ∈ Bn such that τk → τ when k →∞. The family of minimal graphs Σn,τk

is contained in the region bounded by Σ and Σ(τ), and ∂1 ⊂ ∂Σn,τk for all
k, then there exists a minimal surface Σn,τ which is the limit of the surfaces
Σn,τk with ∂1 ⊂ ∂Σn,τ . It remains to prove Σn,τ is a graph. As D2 ⊂ Dn, we
already know that for all k, un,τk ≤ u2,δ0 in a neighborhood of Γ1, then the
gradient of un,τk is uniformly bounded in a neighborhood of Γ1. Suppose there
exists a sequence pk ∈ Γn with un,τk(pk)→ p ∈ ∂n,τ such that |∇un,τk(pk)| →
∞. This implies the minimal surface Σn,τ is vertical at p. Considering the
horizontal geodesic γ that passes through p and is tangent to ∂n,τ (recall
∂n,τ is convex) we can apply the maximum principle with boundary to Σn,τ

and γ × (−∞ , τ ] to conclude they coincide, which is impossible. Thus we
have uniform gradient estimates for un,τk in Γ1 ∪ Γn = ∂An. By Lemma 3.1
in [49], we have uniform gradient estimates for un,k on An, and then there
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exists a function un,τ such that Σn,τ = Graph(un,τ ) is a minimal graph with
boundary ∂Σn,τ = ∂1 ∪ ∂n,τ , what implies τ ∈ Bn and the set Bn is closed.

Therefore, we have proved that for all n ≥ 2 and 0 ≤ t ≤ δ0, there exists a
function un,t defined on An such that Σn,t = Graph(un,t) is a minimal surface
with boundary ∂Σn,t = ∂1 ∪ ∂n,t.

Fix t ∈ (0, δ0] . For a fixed no, consider the sequence {un,t|Ano
} for n > no.

We already know un,t ≤ uno,t in a neighborhood of Γ1, hence we have uniform
gradient estimates in such neighborhood. Moreover, as we have uniform
curvature estimates for points far from the boundary, and Γn 6⊂ Ano for all
n > no, we can get uniform curvature estimates for Σn,t on Ano for all n > no.
Thus there exists a subsequence {unj ,t|Ano

} that converges to a function ûno

defined over Ano whose graph Σ̂no is a minimal surface with ∂1 ⊂ ∂Σ̂no and
u ≤ ûno ≤ u+ t over Ano .

Using the same argument above, the sequence {unj ,t|A2no
} for nj > 2no has

a subsequence {unjk,t|A2no
} that converges to a function û2no defined over A2no

whose graph Σ̂2no is a minimal surface with ∂1 ⊂ ∂Σ̂2no and u ≤ û2no ≤ u+ t
over A2no .

As {unjk,t|A2no
} ⊂ {unj ,t|Ano

}, we conclude that û2no = ûno in Ano .
Continuing this argument to Akno for all k > 2 and applying the diagonal

process, we prove that there exists a subsequence of {un,t} that converges to

a function û∞ defined over Ω = D \ D̄1 whose graph Σ̂∞ is a minimal surface
with ∂Σ̂∞ = ∂1, u ≤ û∞ < u+ t over Ω, and û∞ = ûkno in Akn0 for all k.

For simplicity, let us write û and Σ̂ to denote û∞ and Σ̂∞.
Note the minimal surface Σ̂ = Graph(û) assumes the same infinite bound-

ary values at Γ as the ideal Scherk graph Σ = Graph(u). Consider the re-
striction of u to Ω and continue denoting by Σ the graph of u restricted to
Ω. We will show that Σ and Σ̂ coincide by analysing the flux of the functions
u, û across the boundary of Ω, which is Γ1 ∪ Γ.

Let α1, β1, α2, β2, ..., αk, βk be the geodesic sides of the admissible ideal
polygon Γ with u(αi) = +∞ = û(αi) and u(βi) = −∞ = û(βi). For each n,
consider pairwise disjoint horocycles Hi(n) at each vertex ai of Γ such that
the convex horodisk bounded by Hi(n+1) is contained in the convex horodisk
bounded by Hi(n). For each side αi, let us denote by αni the compact arc of
αi which is the part of αi outside the two horodisks, and by |αni | the length of
αni , that is, the distance between the two horodisks. Analogously, we define
βni for each side βi. Denote by cni the compact arc of Hi(n) contained in the
domain D and let Pn be the polygon formed by αni , β

n
i and cni .

As the function u is defined in the interior region bounded by Pn, and
Pn is a compact cycle, then Fu(Pn) = 0, by the Flux Theorem. In the other
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hand, as u ≤ û we have Fu(Pn) ≤ Fû(Pn), and then Fû(Pn) ≥ 0. Moreover,
the flux of û across Pn satisfies

Fû(Pn) =
∑

i Fu(α
n
i ) +

∑
i Fu(β

n
i ) +

∑
i Fu(c

n
i )

≤
∑

i(|αni | − |βni |) +
∑

i |cni |.

Notice that |cni | → 0 when n→∞ and, since Γ is an admissible polygon,
we have

∑
i |αni | =

∑
i |βni |, for any n. Hence we conclude

Fû(Pn)→ 0 when n→∞.

Then Fu(Γ) = limn→∞ Fu(Pn) = 0 = limn→∞ Fû(Pn) = Fû(Γ).
In the other hand, as Pn is homotopic to Γ1, we have Fû(Γ1) = Fû(Pn)

for any n, and we conclude that Fû(Γ1) = 0. Analogously (or using the Flux
Theorem as we did for Pn), we also have Fu(Γ1) = 0. Therefore, we have
proved that the functions u and û have the same flux across the boundary
∂Ω = Γ1 ∪ Γ.

As Σ = Graph(u) and Σ̂ = Graph(û) are two minimal graphs over Ω =
D \ D̄1 such that u ≤ û, ∂Σ = ∂Σ̂ and Fu(∂Ω) = Fû(∂Ω), we conclude that
necessarily u ≡ û over Ω, that is, Σ̂ is the Scherk graph over Ω with ∂Σ̂ = ∂1.

Remark. We have proved that for any t ∈ (0 , δ0] we can get a subse-
quence of the minimal surfaces Σn,t that converges to a minimal surface Σ̂

which is the Scherk graph over D \ D̄1 with ∂Σ̂ = ∂1.

Now we are able to prove the theorem.

Proof of Theorem 12. As Σ∩S = ∅, we can suppose that S is entirely un-
der Σ. Pushing down Σ by vertical translations, we will have two possibilities:
either a translate of Σ touches S for the first time in the interior, and then,
by the maximum principle, we conclude they coincide; or S is asymptotic at
infinity to a translate of Σ. Let us analyse this last case.

Without loss of generality, we can suppose that S is asymptotic at infinity
to Σ. If S 6= Σ, then as S is proper there is a point p0 ∈ Σ and a cylinder
C = BΣ(p0, r0) × (−r0, r0) for some r0 > 0 such that S ∩ C = ∅, where
BΣ(p0, r0) is the intrinsic ball centered at p0 with radius r0. We can assume r0

is less than the injectivity radius of Σ at p0. In our construction of the surfaces
Σn,t, we can choose D1 so that ∂1 ⊂ BΣ(p0,

r0
2

), and take t = min{ r0
2
, δ0}.

Observe that when we translate Σn,t vertically downwards by an amount
t, the boundaries of the translates of Σn,t stay strictly above S. Thus, by the
maximum principle, all the translates remain disjoint from S. We call Σ

′
n,t

this final translate with boundary ∂Σ
′
n,t = ∂

′
1 ∪ ∂

′
n, where T (t)(∂

′
1) = ∂1 ⊂ Σ

and ∂
′
n ⊂ Σ. Hence, all the surfaces Σ

′
n,t lie above S and, as we proved before,
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there exists a subsequence of Σ
′
n,t that converges to the ideal Scherk graph

Σ
′

defined over D \ D̄1 with T (t)(Σ
′
) = Σ. In particular, we conclude that S

lies below Σ
′
, which yields a contradiction, since we are assuming that S is

asymptotic at infinity to Σ.

2
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CHAPTER 5

On doubly periodic minimal surfaces in H2 × R with

finite total curvature in the quotient space

In this chapter we develop the theory of properly immersed minimal surfaces
in the quotient space H2 × R /G, where G is a subgroup of isometries gener-
ated by a vertical translation and a horizontal isometry in H2 without fixed
points. The horizontal isometry can be either a parabolic translation along
horocycles in H2 or a hyperbolic translation along a geodesic in H2 . In fact,
we prove that if a properly immersed minimal surface in H2 × R /G has finite
total curvature then its total curvature is a multiple of 2π and, moreover, we
understand the geometry of the ends. These results hold true more generally
for properly immersed minimal surfaces in M × S1, where M is a hyperbolic
surface with finite topology whose ends are isometric to one of the ends of
the above spaces H2 × R /G.

This whole chapter is based in a joint paper with L. Hauswirth [18].

5.1 Introduction

Among all the minimal surfaces in R3, the ones of finite total curvature are
the best known. In fact, if a minimal surface in R3 has finite total curvature
then this minimal surface is either a plane or its total curvature is a non-zero
multiple of 2π. Moreover, if the total curvature is −4π, then the minimal
surface is either the Catenoid or the Enneper’s surface [44].

In 2010, Hauswirth and Rosenberg [20] developed the theory of complete
embedded minimal surfaces of finite total curvature in H2 × R . In that work
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they proved that the total curvature of such surfaces must be a multiple of
2π, and they gave simply connected examples whose total curvature is −2πm,
for each nonnegative integer m.

In the last few years, many people have worked on this subject and
classified some minimal surfaces of finite total curvature in H2 × R (see
[19, 22, 39, 52]).

In [39], Morabito and Rodŕıguez constructed for k ≥ 2 a (2k − 2)-
parameter family of properly embedded minimal surfaces in H2 × R invari-
ant by a vertical translation which have total curvature 4π(1 − k), genus
zero and 2k vertical Scherk-type ends in the quotient by the vertical trans-
lation. Moreover, independently, Morabito and Rodŕıguez [39] and Pyo [45]
constructed for k ≥ 2 examples of properly embedded minimal surfaces with
total curvature 4π(1 − k), genus zero and k ends, each one asymptotic to a
vertical plane. In particular, we have examples of minimal annuli with total
curvature −4π.

It was expected that each end of a complete embedded minimal surface
of finite total curvature in H2 × R was asymptotic to either a vertical plane
or a Scherk graph over an ideal polygonal domain. However in [46], Pyo and
Rodŕıguez constructed new simply-connected examples of minimal surfaces
of finite total curvature in H2 × R, showing this is not the case.

Here we consider H2 × R quotiented by a subgroup of isometries G ⊂
Isom(H2 × R) generated by a horizontal isometry in H2 without fixed points,
ψ, and a vertical translation, T (h), for some h > 0. The isometry ψ can be
either a parabolic translation along horocycles in H2 or a hyperbolic transla-
tion along a geodesic in H2 . We prove that if a properly immersed minimal
surface in H2 × R /G has finite total curvature then its total curvature is a
multiple of 2π, and moreover, we understand the geometry of the ends. More
precisely, we prove that each end of a properly immersed minimal surface of
finite total curvature in H2 × R /G is asymptotic to either a horizontal slice,
or a vertical geodesic plane or the quotient of a Helicoidal plane. Where by
Helicoidal plane we mean a minimal surface in H2 × R which is parameter-
ized by X(x, y) = (x, y, ax + b) when we consider the halfplane model for
H2 .

Let us mention that these results hold true for properly immersed minimal
surfaces in M × S1, where M is a hyperbolic surface (KM = −1) with finite
topology whose ends are either isometric to M+ or M−, which we define in
the next section.
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5.2 Definitions and preliminary results

Unless otherwise stated, we use the Poincaré disk model for the hyperbolic
plane, that is

H2 = {(x, y) ∈ R2 | x2 + y2 < 1}

with the hyperbolic metric g−1 = σg0 = 4
(1−x2−y2)2

g0, where g0 is the Eu-

clidean metric in R2 . In this model, the asymptotic boundary ∂∞H2 of H2 is
identified with the unit circle.

We write pq to denote the geodesic arc between the two points p, q.
We consider the quotient spaces H2 × R /G, where G is a subgroup of

Isom(H2 × R) generated by a horizontal isometry on H2 without fixed points,
ψ, and a vertical translation, T (h), for some h > 0. The horizontal isometry
ψ can be either a horizontal translation along horocycles in H2 or a horizontal
translation along a geodesic in H2 .

Let us analyse each one of these cases for ψ.
Consider any geodesic γ that limits to a point p0 ∈ ∂∞H2 parametrized

by arc length. Let c(s) be the horocycles in H2 tangent to ∂∞H2 at p0 that
intersects γ at γ(s), and write d(s) to denote the horocylinder c(s) × R in
H2 × R . Taking two points p, q ∈ c(s), let ψ : H2 × R → H2 × R be the
parabolic translation along d(s) such that ψ(p) = q. We have ψ(d(s)) = d(s)
for all s. If G = [ψ, T (h)], then the manifold M which is the quotient of
H2 × R by G is diffeomorphic to T2×R, where T2 is the 2-torus. Moreover,
M is foliated by the family of tori T(s) = d(s)/G, which are intrinsically flat
and have constant mean cuvature 1/2. (See Figure 5.1).

Figure 5.1: M = H2 × R /[ψ, T (h)], where ψ is a parabolic isometry.

Now take a geodesic γ in H2 and consider c(s) the family of equidistant
curves to γ, with c(0) = γ. Write d(s) to denote the plane c(s)×R in H2 × R .
Given two points p, q ∈ c(s), let ψ : H2 × R → H2 × R be the hyperbolic
translation along γ such that ψ(p) = q. We have ψ(d(s)) = d(s) for all s.
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If G = [ψ, T (h)], then the manifold M which is the quotient of H2 × R by
G is also diffeomorphic to T2×R and M is foliated by the family of tori
T(s) = d(s)/G, which are intrinsically flat and have constant mean cuvature
1
2
tanh(s). (See Figure 5.2).

Figure 5.2: M = H2 × R /[ψ, T (h)], where ψ is a hyperbolic isometry.

In these quotient spaces we have two different types of ends. One where
the injectivity radius goes to zero at infinity, which we denote by M+, and
another one where the injectivity radius is strictly positive, which we denote
by M−.

Hence M+ =
⋃
s≥0 d(s)/[ψ, T (h)], where ψ is a parabolic translation

along horocycles, and M− =
⋃
s≥0 d(s)/[ψ, T (h)], for ψ hyperbolic trans-

lation along a geodesic in H2, or M− =
⋃
s≤0 d(s)/[ψ, T (h)], where ψ can

be either a parabolic translation along horocycles or a hyperbolic translation
along a geodesic in H2 . (See Figure 5.3).

Figure 5.3: M+ and M−.

From now one we will not distinguish between the two quotient spaces
above. We will denote both by M.

Let Σ be a Riemannian surface and X : Σ→M be a minimal immersion.
As

M = H2 × R /[ψ, T (h)] ∼= H2/[ψ]× S1,
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we can write X = (F, h) : Σ → H2/[ψ] × S1, where F : Σ → H2/[ψ] and
h : Σ → S1 are harmonic maps. We consider local conformal parameters
z = x+ iy on Σ. Hence

|Fx|2σ + (hx)
2 = |Fy|2σ + (hy)

2

〈Fx, Fy〉σ + hx.hy = 0
(5.1)

and the metric induced by the immersion is given by

ds2 = λ2(z)|dz|2 = (|Fz|σ + |Fz̄|σ)2|dz|2. (5.2)

Considering the universal covering π : H2 × R → H2/[ψ] × S1 we can

take Σ̃, a connected component of the lift of Σ to H2 × R, and we have
X̃ = (F̃ , h̃) : Σ̃ → H2 × R such that π(Σ̃) = Σ and F̃ : Σ̃ → H2, h̃ : Σ̃ → R
are harmonic maps. We denote by ∂̃t, ∂t the vertical vector fields in H2 × R
and H2/[ψ] × S1, respectively. Observe that the functions n3 : Σ → R,
ñ3 : Σ̃ → R, given by n3 = 〈∂t, N〉 , ñ3 =

〈
∂̃t, Ñ

〉
, where N, Ñ are the unit

normal vectors of Σ, Σ̃, respectively, satisfy ñ3 = n3 ◦ π. Then if we define
the functions ω : Σ→ R, ω̃ : Σ̃→ R so that tanh(ω) = n3 and tanh(ω̃) = ñ3,
we get ω̃ = ω ◦ π.

As we consider X a conformal minimal immersion, we have

n3 =
|Fz|2 − |Fz̄|2

|Fz|2 + |Fz̄|2
(5.3)

and

ω =
1

2
ln
|Fz|
|Fz̄|

. (5.4)

Note that the same formulae are true for ñ3 and ω̃.
We know that for local conformal parameters z̃ on Σ̃, the holomorphic

quadratic Hopf differential associated to F̃ , given by

Q̃(F̃ ) = (σ ◦ F̃ )2F̃z̃
¯̃
F z̃(dz̃)2,

can be written as (h̃z̃)
2(dz̃)2 = −Q̃. Then, since h̃ and h differ by a constant

in a neighborhood, (hz)
2(dz)2 = −Q is also a holomorphic quadratic differ-

ential on Σ for local conformal parameters z on Σ. We note Q has two square
roots globally defined on Σ. Writing Q = φ(dz)2, we denote by η = ±2i

√
φdz

a square root of Q, where we choose the sign so that

h = Re

∫
η.
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Using (5.2), (5.4) and the definition of Q, we have

ds2 = 4(cosh2ω)|Q|. (5.5)

As the Jacobi operator of the minimal surface Σ is given by

J =
1

4 cosh2 ω|φ|

[
∆0 − 4|φ|+ 2|∇ω|2

cosh2 ω

]
and Jn3 = 0, then

∆0ω = 2 sinh(2ω)|φ|, (5.6)

where ∆0 denotes the Laplacian in the Euclidean metric |dz|2, that is, ∆0 =
4∂2

zz̄.
The sectional curvature of the tangent plane to Σ at a point z is −n2

3 and
the second fundamental form is

II =
ωx

coshω
dx⊗ dx− ωx

coshω
dy ⊗ dy + 2

ωy
coshω

dx⊗ dy.

Hence, using the Gauss equation, the Gauss curvature of (Σ, ds2) is given
by

KΣ = −tanh2ω − |∇ω|2

4(cosh4ω)|φ|
. (5.7)

5.3 Main Results

In this section, besides prove the main theorem of this chapter, we will firstly
demonstrate some properties of an end when it is properly immersed inM+

or in M−, which are interesting by theirselves.
We will write [d(0), d(s)] to denote the slab ∪0≤t≤sd(t) in H2 × R whose

boundary is d(0) ∪ d(s).

Lemma 1. There is no proper minimal end E in M+ with ∂M+ ∩E = ∂E
whose lift is an annulus in H2 × R .

Proof. Let us prove it by contradiction. Suppose we have a proper minimal
end E inM+ with ∂M+∩E = ∂E whose lift Ẽ is a proper minimal annulus
in H2 × R . Hence ∂Ẽ ⊂ d(0), Ẽ ⊂

⋃
s≥0 d(s) and Ẽ ∩ d(s) 6= ∅ for any s,

where d(s) = c(s)× R, c(s) horocycle tangent at infinity to p0.

Choose p 6= p0 ∈ ∂∞H2 such that (pp0 × R) ∩ ∂Ẽ = ∅.
Now consider q ∈ ∂∞H2 contained in the halfspace determined by pp0×R

that does not contain ∂Ẽ such that (pq × R) ∩ d(0) = ∅. Let q go to p0. If

there exists some point q1 such that (pq1 × R) ∩ Ẽ 6= ∅, then, as p, q1 /∈ d(s)
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for any s, and E is proper, that intersection is a compact set in Ẽ. Therefore,
when we start with q close to p and let q go to q1, there will be a first contact
point between pq0 ×R and Ẽ, for some point q0. By the maximum principle
this yields a contradiction. Therefore, we conclude that pp0 × R does not
intersect Ẽ. Choosing another point p̄ in the same halfspace determined by
pp0 × R as Ẽ such that (p̄p0 × R) ∩ ∂Ẽ = ∅, we can use the same argument

above and conclude that Ẽ is contained in the region between pp0 × R and
p̄p0 × R . Call α = pp0 and ᾱ = p̄p0.

Figure 5.4: Curve γ.

Now consider a horizontal geodesic γ with endpoints q, q̄ such that q is
contained in the halfspace determined by α×R that does not contain Ẽ, and q̄
is contained in the halfspace determined by ᾱ×R that does not contain Ẽ (see

Figure 5.4). Up to a horizontal translation, we can suppose Ẽ ∩ (γ×R) 6= ∅.
As E is proper, the part of Ẽ between ∂Ẽ and Ẽ ∩ (γ × R) is compact, then

there exists M ∈ R such that the function h̃ restrict to this part satisfies
−M ≤ h̃ ≤ M. Consider the function v that takes the value +∞ on γ and
take the value M on the asymptotic arc at infinity of H2 between q and q̄
that does not contain p0. The graph of v is a minimal surface that does not
intersect Ẽ. When we let q, q̄ go to p0 we get, using the maximum principle,
that Ẽ is under the graph of v and then h̃|Ẽ is bounded above by M , since
v converges to the constant function M uniformly on compact sets as q, q̄
converge to p0 (see [29], section B). Using a similar argument, we can show

that h̃|Ẽ is also bounded below by −M . Therefore Ẽ is an annulus contained
in the region bounded by α× R, ᾱ× R,H2×{−M} and H2×{M}.

Take four points p1, p2, p3, p4 ∈ ∂∞H2 such that p1, p2 is contained in the
halfspace determined by α×R that does not contain Ẽ, and p3, p4 is contained
in the halfspace determined by ᾱ × R that does not contain Ẽ. Moreover,
choose these points so that there exists a complete minimal surface A taking
value 0 on p1p2 and p3p4, and taking value +∞ on p2p4 and p1p3 (see Figure
5.5). This minimal surface exists by [4].
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Figure 5.5: Minimal graph A.

Up to a vertical translation, A does not intersect Ẽ and A is above
Ẽ. Pushing down A (under vertical translation) and using the maximum

principle, we conclude that A = Ẽ, which is impossible.

Remark 7. We do not use any assumption on the total curvature of the end
to prove the previous lemma.

Lemma 2. If a proper minimal end E with finite total curvature is contained
in M−, then E has bounded curvature and infinite area.

Proof. Suppose E does not have bounded curvature. Then there exists a
divergent sequence {pn} in E such that |A(pn)| ≥ n, where A denotes the
second fundamental form of E. As the injectivity radius of M− is strictly
positive, there exists δ > 0 such that for all n, the exponential map expM :
D(0, δ) ⊂ TpnM → BM(pn, δ) is a diffeomorphism, where BM(pn, δ) is the
extrinsic ball of radius δ centered at pn inM. Without loss of generality, we
can suppose BM(pn, δ) ∩BM(pk, δ) = ∅.

The properness of the end implies the existence of a curve c ⊂ E homo-
topic to ∂E such that every point in the connected component of E \ c that
does not contain ∂E is at a distance greater than δ from ∂E. Call E1 this
component. Hence each point of E1 is the center of an extrinsic ball of radius
δ disjoint from ∂E.

Denote by Cn the connected component of pn in BM(pn, δ) ∩ E1 and
consider the function fn : Cn → R given by

fn(q) = d(q, ∂Cn)|A(q)|,

where d is the extrinsic distance.
The function fn restricted to the boundary ∂Cn is identically zero and

fn(pn) = δ|A(pn)| > 0. Then fn attains a maximum in the interior. Let qn
be such maximum. Hence δ|A(qn)| ≥ d(qn, ∂Cn)|A(qn)| = fn(qn) ≥ fn(pn) =
δ|A(pn)| ≥ δn, what yields |A(qn)| ≥ n.
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Now consider rn = d(qn,∂Cn)
2

and denote by Bn the connected component
of qn in BM(qn, rn) ∩ E1. We have Bn ⊂ Cn. If q ∈ Bn, then fn(q) ≤ fn(qn)
and

d(qn, ∂Cn) ≤ d(qn, q) + d(q, ∂Cn)

≤ d(qn,∂Cn)
2

+ d(q, ∂Cn)

⇒ d(qn, ∂Cn) ≤ 2d(q, ∂Cn),

hence we conclude that |A(q)| ≤ 2|A(qn)|.
Call g the metric on E and take λn = |A(qn)|. Consider Σn the homothety

of Bn by λn, that is, Σn is the ball Bn with the metric gn = λng. We can
use the exponential map at the point qn to lift the surface Σn to the tangent
plane TqnM ≈ R3, hence we obtain a surface Σ̃n in R3 which is a minimal
surface with respect to the lifted metric g̃n, where g̃n is the metric such that
the exponential map expqn is an isometry from (Σ̃n, g̃n) to (Σn, gn).

We have Σ̃n ⊂ BR3(0, λnrn), |A(0)| = 1 and |A(q)| ≤ 2 for all q ∈ Σ̃n.
Note that 2λnrn = fn(qn) ≥ fn(pn) ≥ δn, hence λnrn → +∞ as n→∞.
Fix n. The sequence

{
Σ̃k ∩BR3(0, λnrn)

}
k≥n

is a sequence of compact

surfaces in R3, with bounded curvature, passing through the origin and the
metric gk converges to the canonical metric g0 in R3 . Then a subsequence
converges to a minimal surface in (R3, g0) passing through the origin with
the norm of the second fundamental form at the origin equal to 1. We can
apply this argument for each n and using the diagonal sequence argument,
we obtain a complete minimal surface Σ̃ in R3, with 0 ∈ Σ̃ and |A(0)| = 1.

In particular, Σ̃ is not the plane. Then by Osserman’s theorem [44], we have∫
Σ̃
|A|2 ≥ 4π.
We know that the integral

∫
Σ
|A|2 is invariant by homothety of Σ, hence∫

Bn

|A|2 =

∫
Σn

|A|2 =

∫
Σ̃n

|A|2.

Consider a compact K ⊂ Σ̃ sufficiently large so that
∫
K
|A|2 ≥ 2π. Fix n

such that K ⊂ B(0, λnrn). As a subsequence of Σ̃k ∩ BR3(0, λnrn) converges

to Σ̃ ∩BR3(0, λnrn), then for k sufficiently large, we have that∫
Σ̃k∩B(0,λnrn)

|A|2 ≥ 2π − ε,

for some small ε > 0. It implies
∫
Bk
|A|2 ≥ 2π− ε, for k sufficiently large. As
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Bi ∩Bj = ∅, we conclude that
∫
E
|A|2 = +∞. But this is not possible, since∫

E

|A|2 =

∫
E

−2KE + 2KsecM(E) ≤ −2

∫
E

KE < +∞.

Therefore, E has necessarily bounded curvature.
Since E is complete, there exist ε > 0 and a sequence of points {pn}

in E such that pn diverges in M− and BE(pk, ε) ∩ BE(pj, ε) = ∅, where
BE(pk, ε) ⊂ E is the intrinsic ball centered at pk with radius ε. As E has
bounded curvature, then there exists τ < ε such that BE(pk, τ) is a graph
with bounded geometry over a small disk D(0, τ) of radius τ in TpkE, and
the area of BE(pk, τ) is greater or equal to the area of D(0, τ). Therefore,

area(E) ≥
∑
n≥1

area (BE(pn, τ)) =∞.

Definition 6. We write Helicoidal plane to denote a minimal surface in
H2 × R which is parametrized by X(x, y) = (x, y, ax + b) when we consider
the halfplane model for H2 .

Now we can state the main result of this chapter.

Theorem 13. Let X : Σ ↪→M = H2 × R /[ψ, T (h)] be a properly immersed
minimal surface with finite total curvature. Then

1. Σ is conformally equivalent to a compact Riemann surface M with
genus g minus a finite number of points, that is, Σ = M \ {p1, ..., pk}.

2. The total curvature satisfies∫
Σ

Kdσ = 2π(2− 2g − k).

3. The ends contained in M− are necessarily asymptotic to a vertical
plane γ × S1 and the ends contained in M+ are asymptotic to either

• a horizontal slice H2 /[ψ]× {c}, or

• a vertical plane γ × S1, or

• the quotient of a Helicoidal plane.
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4. If we parametrize each end by a punctured disk then either the holo-
morphic quadratic differential Q extends to zero at the origin (in the
case where the end is asymptotic to a horizontal slice) or Q extends
meromorphically to the puncture with a double pole and residue zero.
In this last case, the third coordinate satisfies h(z) = b arg(z) + O(|z|)
with b ∈ R.

Proof. The proof of this theorem uses arguments of harmonic diffeomor-
phisms theory as can be found in the work of Han, Tam, Treibergs and Wan
[14, 15, 54] and Minsky [38].

From a result by Huber [26], we deduce that Σ is conformally a compact
Riemann surface M minus a finite number of points {p1, ..., pk}, and the ends
are parabolic.

We consider M
∗

= M − ∪iB(pi, ri), the surface minus a finite number
of disks removed around the punctures pi. As the ends are parabolic, each
punctured disk B∗(pi, ri) can be parametrized conformally by the exterior of
a disk in C, say U = {z ∈ C; |z| ≥ R0}.

Using the Gauss-Bonnet theorem for M
∗
, we get∫

M
∗
Kdσ +

k∑
i=1

∫
∂B(pi,ri)

kg ds = 2π(2− 2g − k). (5.8)

Therefore, in order to prove the second item of the theorem is enough to
show that for each i, we have∫

∂B(pi,ri)

kg ds =

∫
B(pi,ri)

Kdσ.

In other words, we have to understand the geometry of the ends. Let us
analyse each end.

Fix i, denote E = B∗(pi, ri) and let X = (F, h) : U = {|z| ≥ R0} →
H2/[ψ]×S1 be a conformal parametrization of the end E. In this parameter we
express the metric as ds2 = λ2|dz|2 with λ2 = 4(cosh2ω)|φ|, where φ(dz)2 = Q
is the holomorphic quadratic differential on the end.

If Q ≡ 0 then φ ≡ 0 and h ≡ constant, what yields that the end E of Σ
is contained in some slice H2 /[ψ]× {c0}. Then, in fact, the minimal surface
Σ is the slice H2 /[ψ] × {c0}. Note that by our hypothesis on Σ this case is
possible only when the horizontal slices ofM have finite area. Therefore, we
can assume Q 6≡ 0.

Following the ideas of [15] and section 3 of [20], we can show that finite
total curvature and non-zero Hopf differential Q implies that Q has a finite
number of isolated zeroes on the surface Σ. Moreover, for R0 > 0 large enough
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we can show that there is a constant α such that (cosh2 ω)|φ| ≤ |z|α|φ| and
then, as the metric ds2 is complete, we use a result by Osserman [44] to
conclude that Q extends meromorphically to the puncture z =∞. Hence we
can suppose that φ has the following form:

φ(z) =

(∑
j≥1

a−j
zj

+ P (z)

)2

,

for |z| > R0, where P is a polynomial function.
Since φ has a finite number of zeroes on U, we can suppose without loss

of generality that φ has no zeroes on U, and then the minimal surface E is
transverse to the horizontal sections H2 /[ψ]× {c}.

As in a conformal parameter z, we express the metric as ds2 = λ2|dz|2,
where λ2 = 4(cosh2ω)|φ|, then on U

−KΣλ
2 = 4(sinh2 ω)|φ|+ |∇ω|2

cosh2 ω
≥ 0. (5.9)

Hence,

−
∫
U

KdA =

∫
U

4(sinh2 ω)|φ||dz|2 +

∫
U

|∇ω|2

cosh2ω
|dz|2

=

∫
U

4(cosh2ω)|φ||dz|2 −
∫
U

4|φ||dz|2 +

∫
U

|∇ω|2

4(cosh4ω)|φ|
dA

= area(E)− 4

∫
U

|φ||dz|2 +

∫
U

|∇ω|2

4(cosh4ω)|φ|
dA,

where the last term in the right hand side is finite by (5.7), once we have
finite total curvature.

By the above equality, we conclude that area(E) is finite if, and only

if, φ =
(∑

j≥2
a−j

zj

)2

. Equivalently, area(E) is infinite if, and only if, φ =(∑
j≥1

a−j

zj
+ P (z)

)2

, with P 6≡ 0 or a−1 6= 0.

Claim 1: If the area of the end is infinite, then the function ω goes to
zero uniformly at infinity.

Proof. To prove this we use estimates on positive solutions of sinh-Gordon
equations by Han [14], Minsky [38] and Wan [54] to our context.

Given V any simply connected domain of U = {|z| ≥ R0}, we have the
conformal coordinate w =

∫ √
φdz = u + iv with the flat metric |dw|2 =

Instituto de Matemática Pura e Aplicada 67 2013



Ana Menezes Minimal and constant mean curvature surfaces in homogeneous 3-manifolds

|φ||dz|2 on V . In the case where P 6≡ 0, the disk D(w(z), |z|/2) contains a
ball of radius at least c|z| in the metric |dw|2 where c does not depend on z.
In the case where P ≡ 0 and a−1 6= 0, we consider the conformal universal
covering Ũ of the annulus U given by the conformal change of coordinate
w = ln(z)+f(z), where f(z) extends holomorphically by zero at the puncture.
Any point z in U lifts to the center w(z) of a ball D(w(z), ln(|z|/2)) ⊂ Ũ for
|z| > 2R0 large enough.

The function ω lifts to the function ω̃◦w(z) := ω(z) on the w-plane which
satisfies the equation

∆|φ|ω̃ = 2 sinh 2ω̃

where ∆|φ| is the Laplacian in the flat metric |dw|2. On the disk D|φ|(w(z), 1)
we consider the hyperbolic metric given by

dσ2 = µ2|dw|2 =
4

(1− |w − w(z)|2)2
|dw|2.

Then µ takes infinite values on ∂D(w(z), 1) and since the curvature of
the metric dσ2 is K = −1, the function ω2 = lnµ satisfies the equation

∆|φ|ω2 = e2ω2 ≥ e2ω2 − e−2ω2 = 2 sinhω2,

Then the function η(w) = ω̃(w)− ω2(w) satisfies

∆|φ|η = e2ω̃ − e−2ω̃ − e2ω2 = e2ω2
(
e2η − e−4ω2e−2η − 1

)
,

which can be written in the metric dσ̃2 = e2ω2|dw|2 as

∆σ̃η = e2η − e−4ω2e−2η − 1.

Since ω2 goes to +∞ on the boundary of the disk D|φ|(w(z), 1), the func-
tion η is bounded above and attains its maximum at an interior point q0. At
this point η0 = η(q0) we have

e2η0 − e−4ω2e−2η0 − 1 ≤ 0.

which implies

e2η0 ≤ 1 +
√

1 + 4a2

2
,

where a = e−2ω2(q0) ≤ sup 1
µ2
≤ 1

4
. Thus at any point of the disk D|φ|(w(z), 1),

ω̃ satisfies

ω̃ ≤ ω2 +
1

2
ln(

2 +
√

5

4
).
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We observe that the same estimate above holds for −ω̃. Then at the point
z, we have

|ω(z)| = |ω̃(w(z))| ≤ ln 4 +
1

2
ln(

2 +
√

5

4
) := K0

uniformly on R ≥ R0. Using this estimate we can apply a maximum principle
as considered by Minsky (see [38], Lemma 3.3). We know that for |z| large, we
can find a disk D|φ|(w(z), r) with r large too and the metric |dw|2 = |φ||dz|2 is
flat. If (u, v) are Euclidean coordinates based at w(z), we define a comparison
function F on the disk D|φ|(w(z), r) by

F (u, v) =
K0

cosh r
cosh

√
2u cosh

√
2v.

Then F ≥ K0 ≥ ω on ∂D|φ|(w(z), r), ∆|φ|F = 4F everywhere and
F (w(z)) = K0

cosh r
. Suppose the minimum of F − ω̃ is a point p0 where

ω̃(p0) ≥ F (p0). Then 0 ≤ ω̃(p0) ≤ 2 sinh 2ω̃(p0) and

∆|φ|(F − ω̃)(p0) = 4F (p0)− 2 sinh 2ω̃(p0) ≤ 4(F (q0)− ω̃(q0)) ≤ 0.

Therefore we have necessarily ω̃ ≤ F on the disk. Considering the same
argument to F + ω̃ we can conclude |ω̃| ≤ F. Hence

|ω̃(w(z))| ≤ K0

cosh r
(5.10)

and then |ω̃| → 0 uniformly at the puncture, consequently |ω| → 0 uniformly
at infinity.

Claim 2: If P 6≡ 0 then the end E is not proper in M.

Proof. Suppose P 6≡ 0. Up to a change of variable, we can assume that the
coefficient of the leading term of P is one. Then, for suitable complex number
a0, ..., ak−1, we have

P (z) = zk + ak−1z
k−1 + ...+ a0 and

√
φ = zk(1 + o(1)).

Let us define the function

w(z) =

∫ √
φ(z)dz =

∫ (∑
j≥1

a−j
zj

+ a0 + ...+ zk

)
dz.
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If a−1 = a+ ib and we denote by θ ∈ R a determination of the argument
of z ∈ U, then locally

Im(w)(z) = b log|z|+ aθ +
|z|k+1

k + 1
(sin(k + 1)θ + o(1)) (5.11)

and

Re(w)(z) = a log|z| − bθ +
|z|k+1

k + 1
(cos(k + 1)θ + o(1)). (5.12)

If C0 > max{|Im(w)(z)|; |z| = R0}, then the set U ∩ {Im(w)(z) = C0} is
composed of k + 1 proper and complete curves without boundary L0, ..., Lk
(see Figure 5.6).

Figure 5.6: Lj for k = 2.

Take R a simply connected component of U ∩ {Im(w)(z) ≥ C0}. The
holomorphic map w(z) gives conformal parameters w = u + iv, v ≥ C0, to
X(R) ⊂ E.

Then X̃(w) = (F̃ (w), v) is a conformal immersion of R in H2 × R and we
have

|F̃u|2σ = |F̃v|2σ + 1 and
〈
F̃u, F̃v

〉
σ

= 0.

Hence the holomorphic quadratic Hopf differential is

QF̃ = φ(w)(dw)2 =
1

4

(
|F̃u|2σ − |F̃v|2σ + 2i

〈
F̃u, F̃v

〉
σ

)
=

1

4
(dw)2

and the induced metric on these parameters is given by ds2 = cosh2ω̃|dw|2.
Consider the divergent curve γ(v) = X̃(u0 + iv) = (F̃ (u0, v), v). We have

dH2(F̃ (u0, C0), F̃ (u0, v)) ≤
∫ v

C0

|F̃v|dv =

∫ v

C0

| sinh ω̃|dv <∞,
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once we know |ω̃| → 0 at infinity by Claim 1.
Thus, when we pass the curve γ to the quotient by the third coordinate,

we obtain a curve in E which is not properly immersed in the quotient space
M. Therefore, the claim is proved and we have P ≡ 0 necessarily.

Suppose E ⊂M+. We have E = X(U) homeomorphic to S1 × R . Up to
translation (along a geodesic not contained in T(0)), we can suppose that E
is transverse to T(0). Then E∩T(0) is k jordan curves d1, ..., dj, α1, ..., αl, j+
l = k, where each di is homotopically zero in E and each αi generates the
fundamental group of E, π1(E).

We will prove that l = 1 necessarily and the subannulus bounded by α1

is contained in ∪s≥0 T(s).
Assume l 6= 1. Then there exist α1, α2 ⊂ T(0) generators of π1(E). As

E ∼= S1×R, there exists F ⊂ E such that F ∼= S1× [0, 1] and ∂F = α1 ∪α2.
So F is compact and its boundary is on T(0). By the maximum principle,
F ∩ (∪s<0 T(s)) = ∅. Hence F ⊂ ∪s≥0 T(s) and then, since E ⊂ M+, there
exist a third jordan curve α3 that generates π1(E) and another cylinder
G such that G ∩ (∪s<0 T(0)) 6= ∅ and ∂G is either α1 ∪ α3 or α2 ∪ α3,
but we have just seen that such G can not exist. Therefore l = 1, that is,
E∩T(0) = α∪d1∪...∪dj, where α generates π1(E). Moreover, the subannulus
bounded by α is contained in ∪s≥0 T(s), and each di ⊂ E bounds a disk on
E contained in ∪s≥0 T(s).

Remark 8. The same holds true for E ⊂ M−, that is, if E ⊂ M− and E
is transversal to T(s) then E ∩ T(s) is ls + 1 curves α, d1, ..., dls , where di is
homotopically zero in E and α generates π1(E).

Take a point p in the horocycle c(0) ⊂ H2 and consider e1 = c(0)/[ψ],
e2 = p× R /[T (h)]. The curves e1, e2 are generators of π1(T(0)).

As E ⊂M+ and π1(M+) = π1(T(0)), we can consider the inclusion map
i∗ : π1(E)→ π1(T(0)) and i∗([α]) = n[e1] +m[e2], where m,n are integers.

Case 1.1: n = m = 0. This case is impossible.
In fact, n = m = 0 implies that E lifts to an annulus in H2 × R and we

already know by Lemma 1 that is not possible.

Case 1.2: n 6= 0,m = 0.
We can assume, without loss of generality, that ∂E ⊂ T(0). Call Ẽ a

connected component of π−1(E ∩M+) such that π(Ẽ) = E. We have that

Ẽ is a proper minimal surface and its boundary ∂Ẽ = π−1(∂E) is a curve in
d(0) invariant by ψn.

By the Trapping Theorem in [3], Ẽ is contained in a horizontal slab.

Hence h̃|Ẽ is a bounded harmonic function, and then h|E is a bounded har-
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monic function defined on a punctured disk. Therefore h has a limit at
infinity, and then we can say that Q extends to a constant at the origin, say
zero. In particular, h̃ has a limit at infinity.

The end of Ẽ is contained in a slab of width 2ε > 0 and by a result of
Collin, Hauswirth and Rosenberg [2], Ẽ is a graph outside a compact domain

of H2 × R . This implies that Ẽ has bounded curvature. Then there exists
δ > 0 such that for any p ∈ E, BE(p, δ) is a minimal graph with bounded
geometry over the disk D(0, δ) ⊂ TpE.

Now fix s and consider a divergent sequence {pn} in E. Applying hyper-
bolic translations to {pn}(horizontal translations along a geodesic of H2 that
sends pn to a point in T(s)), we get a sequence of points in T(s) which we
still call {pn}. As T(s) is compact, the sequence {pn} converges to a point
p ∈ T(s) and the sequence of graphs BE(pn, δ) converges to a minimal graph
BE(p, δ) with bounded geometry over D(0, δ) ⊂ TpE.

As h has a limit at infinity, this limit disk BE(p, δ) is contained in a
horizontal slice. Then we conclude that n3 → 1 and |∇h| → 0 uniformly at
infinity, what yields a C1-convergence of E to a horizontal slice. Now using
elliptic regularity we get that E converges in the C2-topology to a horizontal
slice. In particular, the geodesic curvature of αs goes to 1 and its length goes
to zero, where αs is the curve in E ∩ T(s) that generates π1(E).

Denote by Es the part of the end E bounded by ∂E and αs. Applying
the Gauss-Bonnet theorem for Es, we obtain∫

Es

K +

∫
αs

kg −
∫
∂E

kg = 0.

By our analysis in the previous paragraph, we have
∫
αs
kg → 0, when s→∞.

Then when we let s go to infinity, we get∫
E

K =

∫
∂E

kg,

as we wanted to prove.

Claim 3: If m 6= 0 then the area of the end is infinite.

Proof. In fact, consider g : Σ → R the extrinsic distance function to T(0),
that is, g = dM( . ,T(0)). Hence |∇Mg| = 1 and g−1(s) = Σ∩T(s). We know
for almost every s, Σ ∩ T(s) = αs ∪ d1 ∪ ... ∪ dl, where αs generates π1(E)
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and di is homotopic to zero in E. Then, by the coarea formula,∫
{g≤s}

1dA =

∫ s

−∞

(∫
{g=τ}

dsτ
|∇Σg|

)
dτ ≥

∫ s

0

|ατ |dτ

≥
∫ s

0

|e2|dτ = s|e2|,

where the last inequality follows from the fact we are supposing that i∗[αs]
has a component [e2], and in the last equality we use that the curve e2 has
constant length. Hence when we let s go to infinity, we conclude that the
area of E is infinite.

So if E ⊂ M+ and m 6= 0, then the area of E is infinite. Also, we know
by Lemma 2 that all the ends contained in M− have infinite area. Thus we
will analyse all these cases together using the commom fact of infinite area.

Suppose we have an end E with infinite area. We can assume without loss

of generality that ∂E ⊂ T(0). We know that φ =
(∑

j≥1
a−j

zj

)2

with a−1 6= 0

for |z| ≥ R0, and |ω| → 0 uniformly at infinity by Claim 1. In particular, we
know that the tangent planes to the end become vertical at infinity.

Let X : D∗(0, 1) ⊂ C → M be a conformal parametrization of the
end from a punctured disk (we suppose, without loss of generality, that the
punctured disk is the unit punctured disk). Now consider the covering of
D∗(0, 1) by the halfplaneHP := {w = u+iv, u < 0} through the holomorphic
exponential map ew : HP → D∗(0, 1). Hence, we can take X̂ = X ◦ ew :
HP →M a conformal parametrization of the end from a halfplane.

We denote by h, ĥ the third coordinates of X and X̂, respectively. We
already know h(z) = a ln |z| + b arg(z) + p(z) for z ∈ D∗(0, 1), where either
a or b is not zero, and p is a polynomial function. Hence |p(z)| → 0 when
|z| → 0 and ĥ(w) = au + bv + p̂(w), where u = Re (w), v = Im (w) and
p̂(w) = p(ew).

As the halfplane is simply connected, consider X̃ : HP → H2 × R the lift
of X̂ into H2 × R . We have X̃ = (F̃ , h̃), where h̃(w) = au+ bv + p̃(w), with
|p̃(w)| → 0 when |w| → ∞. Up to a conformal change of parameter, we can

suppose that h̃(w) = au+ bv.

Observe ∂Ẽ = X̃({u = 0}) and the curve {h̃ = c} is the straight line
{au+ bv = c}. We have three cases to analyse.

Case 2.1: a = 0, b 6= 0, that is, the third coordinate satisfies h(z) =
b arg(z) +O(|z|).

Without loss of generality we can suppose b = 1. Hence in this case,
h̃(w) = v and ∂Ẽ = X̃({u = 0}).
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We have X̃(w) = (F̃ (w), v) a conformal immersion of Ẽ, and

|F̃u|2σ = |F̃v|2σ + 1 and
〈
F̃u, F̃v

〉
σ

= 0.

Hence the holomorphic quadratic Hopf differential is

Q̃F̃ = φ̃(w)(dw)2 =
1

4

(
|F̃u|2σ − |F̃v|2σ + 2i

〈
F̃u, F̃v

〉
σ

)
=

1

4
(dw)2

and the induced metric on these parameters is given by ds2 = cosh2ω̃|dw|2.
Moreover, by (5.10) there exists a constant K0 > 0 such that

|ω̃(w)| ≤ K0

coshr
, (5.13)

for r =
√
u2 + v2 sufficiently large.

Using Schauder’s estimates and (5.13), we obtain

|ω̃|2,α ≤ C (| sinh ω̃|0,α + |ω̃|0) ≤ Ce−r.

Then
|∇ω̃| ≤ Ce−r. (5.14)

Now consider the curve γc = Ẽ∩H2×{v = c}, that is, γc(u) = (F̃ (u, c), c).
Let (V, σ(η)|dη|2) be a local parametrization of H2 and define the local func-

tion ϕ as the argument of F̃u, hence

F̃u =
1√
σ

cosh ω̃eiϕ and F̃v =
i√
σ

sinh ω̃eiϕ.

If we denote by kg the geosedic curvature of γc in (V, σ(η)|dη|2) and by
ke the Euclidean geodesic curvature of γc in (V, |dη|2), we have

kg =
ke√
σ
− 〈∇

√
σ, n〉
σ

,

where n = (− sinϕ, cosϕ) is the Euclidean normal vector to γc. If t denotes
the arclength of γc, we have

ke = ϕt =
ϕu
√
σ

cosh ω̃

and

〈∇
√
σ, n〉
σ

=
〈∇log

√
σ, n〉√
σ

=
1

2
√
σ

(cosϕ(log σ)η2 − sinϕ(log σ)η1) .
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Then,

kg =
ϕu

cosh ω̃
− 1

2
√
σ

(cosϕ(log σ)η2 − sinϕ(log σ)η1) . (5.15)

In the complex coordinate w, we have

F̃w =
eω̃+iϕ

2
√
σ

and F̃w̄ =
e−ω̃+iϕ

2
√
σ
. (5.16)

Moreover, the harmonic map equation in the complex coordinate η = η1 +iη2

of H2 (see [53], page 8) is

F̃ww̄ + (log σ)ηF̃wF̃w̄ = 0. (5.17)

Then using (5.16) and (5.17) we obtain

(−ω̃ + iϕ)w = −
√
σ
(

1√
σ

)
w
− (log σ)ηF̃w

= 1
2
(log σ)w − (log σ)ηF̃w

= 1
2

(
(log σ)ηF̃w + (log σ)η̄

¯̃
Fw

)
− (log σ)ηF̃w

= 1
2
(log σ)η̄

¯̃
Fw − 1

2
(log σ)ηF̃w,

(5.18)

where 2(log σ)η = (log σ)η1 − i(log σ)η2 and
¯̃
Fw = 1

2
√
σ
e−ω̃−iϕ.

Taking the imaginary part of (5.18), we get

ϕu + ω̃v =
cosh ω̃

2
√
σ

(cosϕ(log σ)η2 − sinϕ(log σ)η1) . (5.19)

By (5.15) and (5.19), we deduce

kg = − ω̃v
cosh ω̃

. (5.20)

Therefore, by (5.13) and (5.14), when c → +∞, kg(γc)(u) → 0 and also
when we fix c and let u go to infinity the geodesic curvature of the curve γc
goes to zero. In particular, for c sufficiently large, the asymptotic boundary
of γc consists in only one point (see [19], Proposition 4.1).

We will prove that the family of curves γc has the same boundary point at
infinity independently on the value c. Fix u0 and consider αu0 the projection

Instituto de Matemática Pura e Aplicada 75 2013



Ana Menezes Minimal and constant mean curvature surfaces in homogeneous 3-manifolds

onto H2 of the curve X̃(u0, v) = (F̃ (u0, v), v), that is, αu0(v) = F̃ (u0, v) ∈
H2 . We have α′u0(v) = F̃v and |α′u0(v)|σ = | sinh ω̃|. Then

d(αu0(v1), αu0(v2)) ≤ l(αu0|[v1,v2]) =

∫ v2

v1

| sinh ω̃|dv ≤
∫ v2

v1

sinh e−rdv,

where r =
√
u2

0 + v2. Thus, for any v1, v2, we have d(αu0(v1), αu0(v2)) → 0
when u0 → −∞.

Therefore, the asymptotic boundary of all horizontal curves γc in Ẽ co-
incide, and we can write ∂∞Ẽ = p0 × R.

Observe that as h̃|∂Ẽ is unbounded, then we have two possibilities for

∂Ẽ, either ∂Ẽ is invariant by a vertical translation or is invariant by a screw
motion ψn ◦ T (h)m, n,m 6= 0.

Subcase 2.1.1: ∂Ẽ invariant by vertical translation and E ⊂M+.
In this case, by the Trapping Theorem in [3], Ẽ is contained in a slab

between two vertical planes that limit to the same vertical line at infinity,
p0 × R. Moreover, since |ω̃| → 0, then we get bounded curvature by (5.7).
The same holds true for E in M+.

Thus, using the same argument as in Case 1.2, we can show that in fact
E converges in the C2-topology to a vertical plane. Therefore, the geodesic
curvature of αs goes to zero and its length stays bounded, where αs is the
curve in E ∩ T(s) that generates π1(E).

Applying the Gauss-Bonnet theorem forEs, the part of the end E bounded
by ∂E and αs, we obtain∫

Es

K +

∫
αs

kg −
∫
∂E

kg = 0.

By our analysis in the previous paragraph, we have
∫
αs
kg → 0, when s→∞.

Then, when we let s go to infinity, we get∫
E

K =

∫
∂E

kg,

as we wanted to prove.
Subcase 2.1.2: ∂Ẽ invariant by vertical translation and E ⊂M−.
As ∂Ẽ invariant by vertical translation, then we can find a horizontal

geodesic γ in H2 such that γ limits to p0 at infinity and γ × R does not
intersect ∂Ẽ. Call q0 the other endpoint of γ. Take q ∈ ∂∞H2 contained
in the halfspace determined by γ × R that does not contain ∂Ẽ. As the
asymptotic boundary of Ẽ is just p0 × R, then qq0 × R does not intersect Ẽ
for q sufficiently close to q0. Also note that for any q, qq0 × R can not be
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tangent at infinity to Ẽ, because E is proper in M. Thus, if we start with
q close to q0 and let q go to p0, we conclude that in fact γ × R does not
intersect Ẽ, by the maximum principle. Now if we consider another point
q̄0 ∈ ∂∞H2 contained in the same halfspace determined by γ ×R as ∂Ẽ and
such that γ̄ × R = q̄0p0 × R does not intersect ∂Ẽ, we can prove using the
same argument above that γ̄ × R does not intersect Ẽ. Thus we conclude
that Ẽ is contained in the region between two vertical planes that limit to
p0 × R.

As |ω̃| → 0, we get bounded curvature by (5.7). So E ⊂ M− is a
minimal surface with bounded curvature contained in a slab bounded by two
vertical planes that limit to the same point at infinity. Hence, using the same
argument as in Case 1.2, we can show that E converges in the C2-topology
to a vertical plane. Therefore, as in Subcase 2.1.1 above, we get∫

E

K =

∫
∂E

kg.

Subcase 2.1.3: ∂Ẽ invariant by screw motion and E ⊂M+.
In this case, by the Trapping Theorem in [3], Ẽ is contained in a slab

between two parallel Helicoidal planes and, since |ω̃| → 0, we get bounded
curvature by (5.7). Then E is a minimal surface in M+ with bounded cur-
vature contained in a slab between the quotient of two parallel Helicoidal
planes.

Thus, using the same argument as in Case 1.2, we can show that in fact
E converges in the C2-topology to the quotient of a Helicoidal plane. In
particular, the geodesic curvature of αs goes to zero and its length stays
bounded, where αs is the curve in E ∩ T(s) that generates π1(E).

Applying the Gauss-Bonnet theorem forEs, the part of the end E bounded
by ∂E and αs, we obtain∫

Es

K +

∫
αs

kg −
∫
∂E

kg = 0.

By our previous analysis, we have
∫
αs
kg → 0, when s→∞. Then, when we

let s go to infinity, we get ∫
E

K =

∫
∂E

kg,

as we wanted to prove.
Subcase 2.1.4: ∂Ẽ invariant by screw motion and E ⊂M−.
By Remark 8, we know that for almost every s ≤ 0, Ẽ ∩ d(s) contains a

curve invariant by screw motion, so it is not possible to have p0 × R as the
only asymptotic boundary. Thus this subcase is not possible.
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Case 2.2: a 6= 0. We will show this is not possible.
Consider the change of coordinates by the rotation eiθw : HP → H̃P ,

where tan θ = a
b

(notice that if b = 0, then θ = π/2) and H̃P = eiθ(HP ) ⊂
{w̃ = ũ+iṽ}. From now on, when we write one curve in the plane w̃ = ũ+iṽ,

we mean the part of this curve contained in H̃P .
In this new parameter w̃, we have ∂Ẽ = X̃({bũ + aṽ = 0}), the curve

{h̃ = c} is the straight line {ṽ = c√
a2+b2

}. (See Figure 5.7).

Figure 5.7: Parameter w̃ = ũ+ iṽ.

Now consider the curve β(t) = (0, t), t ≥ 0. The angle between X̃(β)

and ∂Ẽ is θ 6= 0 and X̃(β) is a divergent curve in Ẽ. However, the curve

F̃ (β) = F̃ (0, t) satisfies

l(F̃ (β)) =
1

|a|

∫ t

0

|F̃ṽ|dṽ =
1

|a|

∫ t

0

| sinh ω̃|dṽ ≤ C,

for some constant C not depending on t, since we know by (5.10) that |ω̃| → 0

at infinity. This implies that when we pass the curve X̃(β) to the quotient
space M, we obtain a curve in E which is not proper in M, what is impos-
sible, since the end E is proper.

Therefore, analysing the geometry of all possible cases for the ends of
a proper immersed minimal surface with finite total curvature Σ in M, we
have proved the theorem.

Remark 9. The case of a Helicoidal end contained inM+ is in fact possible,
as shows the second example constructed in Section 2.4.3. (See Proposition
??).
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