
LOWER BOUNDS FOR THE HAUSDORFF DIMENSION OF THE
GEOMETRIC LORENZ ATTRACTOR: THE HOMOCLINIC CASE

CRISTINA LIZANA AND LEONARDO MORA†

Abstract. We provide lower bounds for the Geometric Lorenz attractor in
terms of the eigenvalues of the singularity and the symbolic dynamics associ-
ated to the geometrical distribution of the attractor.

1. Introduction

In 1963, E. Lorenz [L] introduced the following three-dimensional system of
differential equations:

(LS)

x′ = σ(y − x)

y′ = rx− y − x z

z′ = x y − b z

where σ, r, and b are positive valued parameters, as a simplified model in order to
explain the weather behavior. He found that, for the following values of the above
parameters: σ = 10, b = 8/3 and r = 28, the trajectory of any point tends to the
same complicated set, the so-called Lorenz attractor.

Since the divergence of the above systems is negative, its follows that the Lebesgue
measure of the above set is zero. So the next step is to ask for its Hausdorff dimen-
sion. Numerical experiments give that this value is around 2.05.

In order to understand the dynamics of (LS) and in particular the geometry of
the Lorenz attractor, in late seventies it was introduced a geometric model by Guck-
enheimer, Williams [GW] and Afraimovich, Bykov and Shilnikov [ABS2]. That is,
a three-dimensional flow L (see next section for a definition), whose dynamics is
the same as that of (LS)(see [T]).

A first approximation to answer the above question is to ask for the Hausdorff
dimension of the attractor in the geometric model. In [AP]and [S], this dimension
is characterized in terms of the pressure of the system and in terms of the Lyapunov
exponents and the entropy respect to a good invariant measure associated to the
system.

In this paper, we address the problem to found lower bounds for the attractor
associated to L. The first lower bound that can be obtained for the Hausdorff
dimension is that it is greater or equal than 2, since there exists a periodic orbit
in the attractor with a unstable manifold of dimension two. The questions now is
if the dimension can be strictly greater than two and whether it can be obtained
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lower bounds in terms of the characteristic data of the system, in particular, the
relationship with the eigenvalues of the unique singularity in the system. Here, we
provide answer to these questions for the geometric model in the homoclinic case.
The way to do that is reducing the problem for the phase flow L to a discrete time
problem, i.e., a Poincaré return map induced by L for some cross-section surface.
Let us denote that return map by F and let ΛF be the hyperbolic attractor of F .
Then we have the following theorem

Theorem 1. If L is homoclinic, then there exists 0 < γ < 1 such that

dimH(ΛF ) ≥ 1 + ln ρ(A)/ ln
(

1
γa

)
> 1,

where ρ(A) is the spectral radius of the matrix A, a (0, 1)-matrix which describes
the geometric distribution of ΛF and a =

∑
i uivi where u and v are respectively

the right and left Perron-Frobenius eigenvectors of A.

Remark 1. It follows from the proof of Theorem (1) that if n is the number
of turns of the homoclinic orbit around the singularity O of the flow L, then
γ ≥ K1 mini{|mi|α}, where mi is the least period orbit (≥ n) which shadows
the intersection of the homoclinic orbit with the cross-section surface used to build
the Poincaré return map. In the monotone case (see section 5 for a definition) the
estimative can be improved using the only two-periodic point of the map F instead
of the periodic orbit mentioned previously.

Remark 2. The relationship between α and the eigenvalues of the singularity is

given by α = −λ3

λ1
where λ1 and λ3 are respectively, the expanding and the weak

contractive eigenvalues of the singularity.

Corollary 2. The Geometric Lorenz attractor of the flow L has

dimH(Λ) ≥ 2 + ln ρ(A)/ ln
(

1
γa

)
> 2.

The authors would like to thanks Professor C. Morales for useful discussions
about the Geometric Lorenz attractor.

2. The Geometric Lorenz Attractor

In this section we are going to describe a vector field L in R3 with a dynamics
corresponding to the Lorenz systems for certain parameters.

So let L be a smooth vector field such that it has a singular attractor Λ, with a
singularity at O = (0, 0, 0). At this singularity, DL has eigenvalues λ1, λ2 and λ3

satisfying λ2 < λ3 < 0 < λ1. Also it is assumed that λ3 + λ1 > 0.
Now we consider the section V = {(x, y, z) : z = 1, |x|, |y| ≤ 1}, as it is shown

in Figure 1, the vector field L points downward in the interior of this square. So a
return map F is well defined except at the intersection points of the stable manifold
of the singularity O with the section V . This intersection is given by the segment
D = {(x, y, z) ∈ S : x = 0}. Using x, y as coordinates on V we request that
F (x, y) = (f(x), g(x, y)) has the following properties:

(1) F (−x,−y) = −F (x, y);
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(2) There exists two constants K1 < K2 < 1 such that

K1|x|α ≤ ‖∂g

∂y
(x, y)‖ ≤ K2|x|α;

(3) The following limits exist:

lim
x→0+

F (x, y) = P1 = (p11, p12) and lim
x→0−

F (x, y) = P2 = (p21, p22);

(4) f ′(x) >
√

2;

(5) |detDF (x, y)| = |f ′(x)
∂g

∂y
(x, y)| < b < 1, for x 6= 0.

Then image of V under F looks like that in Figure 2, where V0 = {(x, y) ∈ V : x <
0} and V1 = {(x, y) ∈ V : x > 0}.

Letting Dn = F−n(D) and ΛF =
⋂∞

0 F i(V \Di), then the Geometric Lorenz
attractor turns out to be the set

Λ =

(⋃

t∈R
ΛF

)
∪O.

Remark 3. We can think of F = (f, g) as being the following map

f(x) =





−1 + Axα, if x > 0,

1−A(−x)α, if x < 0

,

where A ∈ (1, 2), α ∈ (0, 1) and αA >
√

2, and
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g(x, y) =





−1
2

+ Bxα + Cy xβ , if x > 0

1
2
−B(−x)α + Cy (−x)β , if x < 0

,

We have the following relation between α and β above and the eigenvalues of O :

α = −λ3

λ1
and β = −λ2

λ1
.

The points Pi are the first intersections of the branches Wu
i (O) of the unstable

manifold of O with the transversal section V as can be seen in Figure 1.

Definition 3. We say that Λ is homoclinic if both Wu
i (O) are included in W s(O),i.e.,

Wu
i (O) is an homoclinic orbit.

3. Shift of finite Type

In this section we recall several notions and results in symbolic dynamics. We
will follow closely to [LM]

Let A be a finite set of symbols which we will call the alphabet. The set AN (N
is the set {0, 1, 2, . . .}) is known as the full shift in A, i.e., the set of all sequences
of symbols from A. We would write the elements i of AN by

i = i0i1i2...,

and denote by σ : AN ←↩ the shift transformation: σ(i) = j where js = is+1. A
word (block) over A is a finite sequence of symbols from A. For i and r ≤ s we let
i[r,s] be the word given by irir+1...is.

Definition 4. If F is a finite collection of words over A, then a subset X ⊂ AN
will be called a shift space of finite type if for each i ∈ X and any pair r ≤ s we
have that i[r,s] /∈ F .
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Observe that all these subsets of AN are compact and invariant under the shift
transformation, i.e., σ(X) = X. One important example for us is the set X ⊂

{0, 1}N given by the restriction F = {
n−times︷ ︸︸ ︷
000 . . . 0,

n−times︷ ︸︸ ︷
111 . . . 1}. Another class of examples

are the subshifts of finite type. Here the collection of restrictions F is given by a
transition matrix A of zeros and ones in the following way: iris ∈ F iff Airis = 0.
We observe that not all shifts of finite type are subshifts of finite type: The shift

with restrictions F = {00, 11} has the transition matrix
(

0 1
1 0

)
, but the shift of

finite type associated to the restrictions F = {000, 111} cannot be described as a
subshift of finite type. On the other hand, it is true that all shifts of finite type are
conjugated to a subshift of finite type perhaps with other alphabet, the following
proposition establishes this. It is easy to see that for a shift space of finite type all
words in F can be considered of the same length.

Proposition 5. Let X ⊂ AN be a shift of finite type, then there exists Φ : X → Y
a conjugation (Φ ◦ σ = σ ◦ Φ and Φ a homeomorphism), where Y is a subshift of
finite type over the alphabet built with the words not in F .

Proof. Let N +1 be the length of the words in F and B = {i0i1 . . . iN : i0i1 . . . iN /∈
F}. Let Y be the subshift of finite type over B given by the matrix A with
Ai0i1...iN j0j1...jN = 1 if i1 . . . iN = j0j1 . . . jN−1 , otherwise the value of the ma-
trix entry is zero. Now we consider the map Φ : X → BN defined as

Φ(i) =




iN
...
i1
i0







iN+1

...
i2
i1







iN+2

...
i3
i2


 · · · ,

by construction we have that φ(X) = Y . The inverse map of φ is given by



iN
...
i1
i0







iN+1

...
i2
i1







iN+2

...
i3
i2


 · · · → i0i1i2i3 . . .

Example 1. In order to illustrate, consider the shift space X ⊂ {0, 1}N given by the
restriction F = {000, 111}, the alphabet associated is given by B = {001, 010, 011, 100,
101, 110} and the transition matrix A is given by

A =




0 1 1 0 0 0
0 0 0 1 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 1 0




In fact, the shift space given by the restriction F = {
n−times︷ ︸︸ ︷
000...0 ,

n−times︷ ︸︸ ︷
111...1 } has a

transition matrix of dimension 2n − 2 with the same pattern as that of A above.
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In regard to the dynamics of σ|X we have that this dynamical system is one-side
transitive iff the following property holds: if for every ordered pair of allowed blocks
u, v in X there exists another one w such that uwv is an allowed one also. This
last property is known as irreducibility of σ|X. When X is a subshift of finite type,
this is equivalent to the irreducibility of the matrix A.

Example 2. The shift X given by the restrictions F = {
n−times︷ ︸︸ ︷
000...0 ,

n−times︷ ︸︸ ︷
111...1 } is irre-

ducible. Since, when
• u ends with a 0 and v begins with a 0, we take w = 101.
• u ends with a 0 and v begins with a 1, we take w = 1010.
• u ends with a 1 and v begins with a 0, we take w = 0101.
• u ends with a 1 and v begins with a 1, we take w = 010.

4. Cantor-like Sets

In this section we study the Hausdorff dimension of Cantor-like sets in R as
defined in [P]. So let Λ0 and Λ1 two closed intervals and Q ⊂ {0, 1}N a compact
set with σ(Q) = Q, where σ is the shift transformation. The Cantor sets that we
are going to consider are given by

C =
∞⋂

n=0

⋃

(i0i1...in)

Λi0i1...in ,

where the sets Λi0i1...in are closed intervals and satisfy the following conditions:
(1) The n-tuple (i0i1 . . . in) is Q-admissible: there exists an element j ∈ Q such

that j0j1 . . . jn = i0i1 . . . in;
(2) Λi0i1...inj ⊂ Λi0i1...in for j = 0, 1;
(3) l(Λi0i1...in) → 0 as n →∞, where l(I) denotes the length of the interval I;
(4) Λi0i1...in

⋂
Λj0j1...jn = ∅ for any (j0j1 . . . jn) 6= (i0i1 . . . in).

The set C turns out to be perfect, nowhere dense and totally disconnected. We
shall say that Q is the symbolic dynamics associated to C. We want to estimate
the Hausdorff dimension of C, more concretely to get lower bounds for it. It is a
remarkable fact that the Hausdorff dimension of C is determined by the dynamics
of Q when the convergence in item (3) above is of the following type: l(Λi0i1...in) ≥
Kλi0 . . . λin where 0 < λj < 1 and K > 0. In [P, Theorems 14.1 and 14.3, pag.
135], it is proved the following estimate for the Hausdorff dimension of C.

Proposition 6. Let C be a Cantor set as above and assume that there exists
0 < γ < 1 such that

lim inf
n→∞

min{ 1
n

log λi0 . . . λin} ≥ ln γ,

where the minimum is taken over all admissible n-tuples i0 . . . in. Then for ε > 0,
we have that dimH F ≥ sγε , where sγε is the unique zero of the equation

PQ(sφ) = 0,

whit φ : Q → R given by φ(i) = log(γ1+ε) and PQ is the topological pressure
associated to Q.

Now assume that the Cantor set C has an associated symbolic dynamic Q which
is a shift of finite type. Then we have
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Proposition 7. sγε is the unique zero of the equation

ρ(AMt) = 1,

where A is the matrix associated to the subshift of finite type Φ(Q), Mt is the matrix
diag(γ1+ε, . . . , γ1+ε) and ρ(B) denotes the spectral radius of the matrix B.

Proof. By Proposition 5, Q is conjugated by a mapping Φ to a subshift of finite
type with a transition matrix A over an alphabet B. The topological pressures PQ

and PΦ(Q) are related as follows PQ(ψ) = PΦ(Q)(ψ ◦ Φ). For φ(i) = log(γ1+ε) it
corresponds the function φ̃ : BN → R

φ̃







iN
...
i1
i0







iN+1

...
i2
i1







iN+2

...
i3
i2


 · · ·


 = log(γ1+ε),

that is φ ◦ Φ = φ̃. By Proposition 6, we get that s satisfies

0 = PQ(sφ) = PΦ(Q)(sφ̃).

By Theorem A2.8 in [P, pag 108] we finally get with Mt that PΦ(Q)(ψ ◦ Φ) equals
log(ρ(AMt)) as we wanted to show.

In order to get a lower bound for s, we need lower bounds for the spectral radius
of a matrix. Consider A a nonnegative matrix as above of order r and let u and v
be the positive Perron-Frobenius eigenvectors of A and At respectively, associated
to the eigenvalue ρ(A) (Perron-Frobenius Theorem). The following lower bound is
proved in [FK].

Proposition 8. If D is a diagonal matrix and A is an irreducible matrix, then

ρ(AD) ≥ (Πr
1d

uivi
i ) ρ(A).

From this Proposition we get then

Theorem 9. For a Cantor-like set as above we have

dimH C ≥ ln ρ(A)/ ln
(

1
γa

)
,

where a =
∑

i ui vi with u and v the Perron-Frobenius eigenvectors associated to
the matrix A.

Proof. This follows immediately from Proposition 7 and 8 since for every ε > 0 we
get

dimH C ≥ ln ρ(A)/ ln
(

1
γ(1+ε)a

)
.

The conclusion is obtained taking the limit when ε → 0 .

Remark 4. Similar lower bounds can be obtained for Cantor-like sets formed be-
ginning with p disjoint sets {Λi}p−1

0 instead of the two sets Λ0 and Λ1.

Remark 5. This lower bounds is non-trivial only if ρ(A) > 1. This fact can be
assured in the following context. Let s = minj{

∑
j ai j} and S = maxj{

∑
j ai j},

if the matrix A is a (0, 1)-matrix with at least one 1 in each row, is an irreducible
one and s 6= S then ρ(A) > s ≥ 1.
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Example 3. Consider a Cantor C with Q the Golden Mean shift, i.e., a subshift of

finite type with transition matrix A =
(

0 1
1 1

)
and AMt =

(
0 λt

1

λt
0 λt

1

)
. It is easy

to see that the equation ρ(AMt) = 1 is equivalent to the equation

λt
1 + (λ0 λ1)t = 1.

Also we have

ρ(A) =
1
2
(1 +

√
5),

u = v = (
1
2
(−1 +

√
5), 1),

α =
1
4
(−1 +

√
5)2 + 1 =

5−√5
2

≈ 1.38197.

So letting λ = min{λ0, λ1}, we get that

dimH C ≥ log(
1
2
(1 +

√
5))/ log

(
1

λ1.38197

)

5. Transversal Cantor like-sets

Let F : V \ D → V the first return map of the Geometric Lorenz flow. The
attractor ΛF is locally a product of a Cantor set by an interval at points different
from points in the unstable manifold of the singularity. We are going to describe
this Cantor set as a Cantor-like set in the homoclinic case, i.e., for some n ≥ 1 we
have that Fn(Pi) ∈ D.

We are going to consider two cases: the monotone and non-monotone cases.
Monotone Case: Assume that fr(±1) = 0 for r ≥ 2 and the finite sequence
{f i(±1)}r−1

0 is monotone. Let {Q, F (Q)} be the unique two- periodic orbit of F

with Q ∈ V1 and consider the segments L+(−) given by {(x, y) : x = q+(−), y > 0(<
0)} where Q = (q+, r) and F (Q) = (q−,−r). We remark that q± /∈ ⋃

n≥0 f−n(0).

Proposition 10. For L = L+ ∪L−, we have that ΛF

⋂
L is a Cantor-like set with

a symbolic dynamics given by the shift of finite type Q ⊂ {0, 1}N with restriction

F = {
r+1︷ ︸︸ ︷

00 . . . 0,

r+1︷ ︸︸ ︷
11 . . . 1}.

Proof. In order to describe ΛF

⋂
L we need to describe the successive intersections

Ei = F (V \D1) ∩ · · · ∩ F i(V \Di). In order to do that, we are going to show how
the connected components of Ei are codified. We denote the set F (V0) by I0 and
F (V1) by I1 as it is shown in the left picture of Figure 3 below, so E1 = I0 ∪ I1.
For E2, we proceed as follows. We denote Iij = F (Ij ∩Vi), then it is easy to check
that E2 = ∪1

i,j=0Iij . The right picture of Figure 3 illustrate these sets.
Now let i0i1 . . . is be a finite piece of a sequence of zeros and ones. We let

Ii0i1...is = F (Ii1...is ∩ Vi0), when Ii1...is ∩ Vi0 6= ∅.
Now we will show that the admissible sequence i0i1i2 . . . are those which no

admit blocks il . . . il+r+1 of the form either

r+1︷ ︸︸ ︷
00 . . . 0 or

r +1︷ ︸︸ ︷
11 . . . 1. In order to do that,

we observe that for i ≤ r, Ei is formed by 2i−2 lobes, those included in {y > 0} with
the right end at P2 and the left end at {F (P1), . . . , F i−1(P1)} and those included in
{y < 0} with the left end at P1 and the right end at {F (P2), . . . , F i−1(P2)}. Also
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we have two wedge with the right end at P2 and the left end at P1 respectively,
with the side on the segment given by x = f i(p11) and x = f i(p21). This situation
is shown in the Figure 4 below. At each step in the construction, each lobe is
substituted by two lobes with the same ends and each wedge is substituted by a
new wedge and one lobe with right end at Pi and the left end of the lobe at the side
of the previous wedge. The left side of the new wedge is contained in the image of
the side of the previous wedge.

For i ≥ r + 1 the pattern varies since we loose the images of the wedges, since
they are totally contained in V0 or V1. Until here the finite sequence i0i1 . . . is

with s ≤ r have no restriction. At this point the sequences

r +1︷ ︸︸ ︷
00 . . . 0 and

r+1︷ ︸︸ ︷
11 . . . 1

are missing since to have I 00...0︸︷︷︸
r+1

we would have the wedge I 00...0︸︷︷︸
r

meeting V0 but

this is no the case. The same happens with the other wedge corresponding to
I 11...1︸︷︷︸

r

. Now the process goes on, the wedges are substituted by one lobes (no more

wedges from now on) and the new sets Ii0i1...is avoid sequence having the blocks

{
r +1︷ ︸︸ ︷

00 . . . 0,

r+1︷ ︸︸ ︷
11 . . . 1}. The reason to avoid these blocks is that

I00...0︸︷︷︸
r+1

ir+2...is = F (I00...0︸︷︷︸
r

ir+2...is ∩ V0)

= F (I00...0︸︷︷︸
r−1

ir+2...is ∩ V0)

...

= F (Iir+2...is ∩ V0)
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and this would imply that after r iterated the image of Iir+2...is still meets V0 which

is an absurd. With a similar argument the case corresponding to the block

r+1︷ ︸︸ ︷
11 . . . 1

is proved.
Now let Ii0i1i2...is = Ii0i1i2...is

⋂
L, then

ΛF ∩ L =
∞⋂
0

⋃

(i0i1...in)

Λi0i1...in

with i0i1 . . . in admissible, i.e, no admitting the blocks {
r +1︷ ︸︸ ︷

00 . . . 0,

r+1︷ ︸︸ ︷
11 . . . 1}.

Now we are going to estimate the length of the intervals Ii0i1...is . Let λ =
K1|q+|α and λ = K2|q+|α. Since Ii0i1...is = F (Ii1...is ∩ Vi0) we obtain that

(1) 2λs+1 ≤ l(Ii0i1...is) ≤ 2λ
s+1

,

so lims→∞ l(Ii0i1...is) = 0.

Non-monotone Case: Firstly, as in the monotone case we show how to codify
the connected components of Ei. Until f i(−1) ≤ 0 the codification is the same as
in the monotone case. After the first time where f j0(−1) > 0 we loose the blocks

j0+1︷ ︸︸ ︷
00 . . . 0 and

j0+1︷ ︸︸ ︷
11 . . . 1. Now, from here until j = r+1, we loose those blocks j0j1 . . . js

with s ≤ r + 1 for which Ij1...js is a subset of V \ Vj0 . Finally, when we arrive at
r + 1 we loose a finite set of blocks of length s ≤ r + 1. So, as in the monotone
case, we have a symbolic dynamics Q which is a subshift of finite type where the

set of forbidden blocks F include the blocks {
j0+1︷ ︸︸ ︷

00 . . . 0,

j0+1︷ ︸︸ ︷
11 . . . 1} where j0 is the first

time when f j(−1) > 0.
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Now, we introduce several vertical segments in order to capture the transversal
behavior of ΛF . We proceed in the following way. Since the periodic points are
dense , we choose one of them of period s and denote it by M . This point has to be
near enough to P1, and such that its orbit shadows that of P1, during its existence.
Let mi = π(F i(M)) where π(M) is the first coordinate of M .For i ∈ [0, r] we choose
vertical segments Lmi such that the size of these segments is enough to catch those
components of Ej that begin at F i(P1). More concretely, Lmi

= F i(ms−1×[−1, 1]).

Proposition 11. We have that ΛF

⋂
Lm1

⋂ · · ·⋂ Lmr
is a Cantor-like set with a

symbolic dynamics given by the shift of finite type Q ⊂ {0, 1}N with restriction F

which include the blocks {
j0+1︷ ︸︸ ︷

00 . . . 0,

j0+1︷ ︸︸ ︷
11 . . . 1}, where j0 is the first time when f j0(−1) >

0.

Proof. For the estimative of the length of the intervals Ii0i1...is , let λ = K1 mini{|mi|α}
and λ = K2 maxi{|mi|α}. Since Ii0i1...is

= F (Ii1...is
∩ Vi0) we obtain, as in the

monotone case, that

(2) 2λs+1 ≤ l(Ii0i1...is) ≤ 2λ
s+1

,

so lims→∞ l(Ii0i1...is) = 0.

Remark 6. We mention, since we need to know it in the next section, that the
symbolic set Q associated to the transversal Cantor sets above is one-side transitive.
That is so, since the whole dynamics in the geometric Lorenz attractors is itself
transitive.

One could ask if the monotone case is the only possible, the following example
shows that this is not so.

Example 4. Consider the following configuration for the orbit of ±1:

−1 f(−1) d− f2(−1) 0

f3(−1)

1f(1)d+f2(1)

Here f(d±) = 0. In this configuration we have that the following blocks are
missing: {0000, 1111, 01000, 10111}.

6. Proof of Theorem 1

Proof. It is well known that at points different from Pi and its finite orbit O(Pi),
the set ΛF is locally the product of an interval by a Cantor set. More concretely it
is proved in [ABS1] that for any point in ΛF \(O(P1) ∪O(P2)) its unstable manifold
goes from one point of O(P1) to other point of O(P2). Since these sets are finite the
size of the unstable manifolds above are bounded below away from zero. Also the
tangent space of these manifold varies smoothly in

⋃
i (ΛF

⋂
Lmi), since the points

there are far away from D. So we can build a Lipchitz homeomorphism between a
neighborhood Ui ⊂ ΛF of ΛF

⋂
Lmi and (ΛF

⋂
Lmi)× (mi − ε,mi + ε), so

dimH(Ui) ≥ dimH((ΛF ∩ Lmi)× (mi − ε,mi + ε)) ≥ 1 + dimH(ΛF ∩ Lmi).
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Applying now Theorem (9) to the sets ΛF ∩ Lmi we get

dimH(ΛF ) ≥ max{dimH(Ui)} ≥ 1 + log ρ(A)/ log
(

1
γa

)

References

[ABS1] Afraimovich, V. S., Bykov, V.V. & Shilnikov, L.P. On structurally unstable attracting
limit sets of Lorenz Attractors Type, Trans. Moscow Math. Soc. 44, (1983), 153-216.

[ABS2] Afraimovich, V. S., Bykov, V.V. & Shilnikov, L.P. On the origin and structure of the
Lorenz attractor, Soviet Phys. Dokl. 22 (1977), 336-339.

[AP] Afraimovich, V. S. & Pesin, Y. Dimension of Lorenz Type Attractors. Soviet Sci. Rev.
Sect. C Math. Phys. Rev., 6, (1987), 169–241.

[FK] Friedland, S. & Karlin, S. Some inequalities for the spectral radius of non-negative matrices
and applications, Duke Math. J. 42 (1975), no. 3, 459-490.

[GW] Guckenheimer, J. & Williams, R. F. Structural stability of Lorenz attractors, Publ. Math.
IHES. 50 (1979), 59-72.

[L] Lorenz, E. Deterministic nonperiodic flow, J. Atmos. Sci. 20 (1963), 130-141.
[LM] Lind, D. & Marcus, B. Symbolic Dynamics and Coding Cambridge University Press, 1995.
[P] Pesin, Y. Dimension Theory in Dynamical Systems, Chicago Lectures in Mathematics,

1997.
[PW] Pesin, Y. & Weiss, H. On the dimension of deterministic and random Cantor-like sets,

symbolic dynamics, and the Eckmann-Ruelle conjecture. Comm. Math. Phys. 86(1996),105-
153.

[S] Steinberger, T. Hausdorff dimension of attractors for two dimensional Lorenz transforma-
tions. Israel J. Math. 116 (2000), 253–269.

[T] Tucker, W. The Lorenz attractors exists, C.R. Acad. Sci. Paris Sér. I Math. 328 (1999),
1197-1202.
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