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Abstract

Let f : M — M be a C"-diffeomorphism, r > 1, defined in a compact
boundary-less surface M. We prove that if K is a compact f-invariant subset
of M with a dominated splitting then f/K is h-expansive. Reciprocally, if
there exists a C" neighborhood of f, U, such that for g € U there exists K,
compact invariant such that g/K, is h-expansive then there is a dominated
splitting for K.
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1 Introduction

To obtain results about the complexity of the dynamics of a discrete or con-
tinuous time dynamical system as recurrence, existence of periodic orbits, SRB
measures, etc., one usually try to express dynamic properties at the infinitesimal
level, i.e.: precise definitions are given prescribing the behavior of the tangent map
Df : TM — TM of a diffeomorphism f : M — M. Examples of that are the
concepts of hyperbolicity, partial hyperbolicity and the existence of a dominated
splitting. On the other hand a robust dynamic property (i.e. a property that holds
for a system and all nearby ones) should leave its impromptus in the behavior of
the tangent map of those differentiable systems sharing that property. In [PPV],
[SV] and [PPSV] it has been studied the influence of expansiveness when it holds in
a homoclinic class H associated to a hyperbolic periodic point p such that H and
the corresponding homoclinic classes Hy, , for all diffeomorphism g nearby f, are
expansive. It is proved there that in that case D f/H has a dominated splitting and
moreover f/H is hyperbolic in the codimension one case ([PPV], [PPSV]). In the
general codimension case we also obtain hyperbolicity adding an extra hypothesis
called germ-expansiveness (see [SV]).

In this paper we relax expansiveness asking what should be the properties of the
tangent map Df of a diffeomorphism f defined on a surface such that robustly



exhibits h-expansiveness (entropy-expansiveness, see definitions below). We obtain
that for such maps it exists a dominated splitting. On the other hand we prove
that if K admits a dominated splitting then it is h-expansive. Thus robust h-
expansiveness is equivalent to the existence of a dominated spitting.

Moreover, we give here an example of a C*° diffeomorphism that is not h-
expansive. By a result of Buzzi (see [Bu]) such an example is asymptotically
h-expansive (see definition below) since it is C°°. The first examples of a dif-
feomorphism that is not h-expansive and even not asymptotically h-expansive was
given by Misiurewicz in [Mi] answering a question posed by Bowen. We give our
example here because of its good properties from various points of view. First it
is clear that it has not a dominated splitting. Second it is defined on S2, is er-
godic and even has Bernoulli property. Third it admits analytic models a stronger
property than being C°.

Let us now give precise definitions. Let M be a compact connected boundary-
less Riemannian d-dimensional manifold and f : M — M a homeomorphism. Let
K be a compact invariant subset of M and dist : M x M — IR" a distance in M
compatible with its Riemannian structure. For E, F C K, n € IN and 6 > 0 we say
that E (n,d) spans F with respect to f if for each y € F there is x € E such that
dist(f7(x), fi(y)) < 6 for all j = 0,...,n — 1. Let r,(6, F) denote the minimum
cardinality of a set that (n,d) spans F. Since K is compact ,(d, F') < co. We
define

B(f, F,8) = lim sup —log(ra(6, F))

n—oo 1

and
h(f, F) = lim h(f, F,3)..

The last limit exists since h(f, F, ) increases as ¢ decreases to zero.
For xz € K let us define

Pe(z, [) =Te(z) = {y € M /d(f"(2), ["(y)) < e, n e Z}.

Following Bowen (see [Bo|) we say that f/K is entropy-expansive or h-
expansive if and only if there exists € > 0 such that

h(e) = jglgh(f, Ie(z)) = 0.

The importance of f being h-expansive is that the topological entropy of f
restricted to K, h(f/K), is equal to its estimate using e: h(f, K) = h(f, K,e¢).
More precisely:



Theorem 1.1. For all homeomorphism f defined in a compact invariant set K it
holds

h(f, K) < h(f, K,¢€) + h}(e) in particular h(f, K) = h(f, K,€) if h3(e) = 0.
Proof. See [Bo|, Theorem 2.4. O

A weaker property of that of being h-expansive is that of being asymptotically
h-expansive ([Mi]). Let K be a compact metric space and f : K — K an
homeomorphism. We say that f is asymptotically h-expansive if and only if

lim h(e) = 0.

Thus we do not require that for a certain e > 0 hj(€) = 0 but that h}(e) — 0 when
€ — 0. It has been proved by Buzzi that any C*° diffeomorphism defined on a
compact manifold is asymptotically h-expansive. Hence our example although not
h-expansive is asymptotically h-expansive.

Definition 1.1. We say that a compact f-invariant set A admits a dominated
splitting if the tangent bundle TaAM has a continuous D f-invariant splitting E ® F
and there exist C > 0, 0 < X\ < 1 such that

IDfE@)| - 1D F(f" (@) < CA" Vo e A, n > 0. (1)
Our main results are the following:

Theorem A. Let M be a compact boundaryless C*° surface and f : M — M
be a C" diffeomorphism such that K C M is a compact f-invariant subset with a
dominated splitting E @ F. Then f/K is h-expansive.

Since the property of having a dominated splitting is open we may conclude
that any g C! close to f is such that g/K 4 is h-expansive.

In case M is a d-dimensional manifold with d > 3 the existence of a dominated
splitting is not enough to guarantee h-expansiveness as it is shown in the examples
presented below.

Observe that the identity map id : M — M is h-expansive and moreover if the
topological entropy of a map f : M — M vanishes, h(f) = 0, then it is h-expansive.
Nevertheless, the persistence of h-expansiveness has a dynamical meaning.

Theorem B. Let M be a compact boundaryless C*° surface and f : M — M
be a C" diffeomorphism. Let H(p) be an f-homoclinic class associated to the f-
hyperbolic periodic point p. Assume that there is a C' neighborhood U of f such
that for any g € U it holds that there is a continuation H(py) of H(p) such that
H(pg) is h-expansive. Then H(p) has a dominated splitting.



2 Examples

Let us now give an example of an analytic diffeomorphism that is not h-expansive.

2 1 .
11 ) Since the

entries of A are integers and det(A) = 1, the lattice Z? is preserved by this
action and therefore it passes to the quotient T? = IR?/Z?. This gives us a very

well known linear Anosov diffeomorphism a : T? — T2. Let [z,y] represent the
equivalence class of (z,y) € IR? in IR?/Z> We define in IR?/Z? the relation

We consider in IR? the action given by the matrix A = <

[z,y] ~ [~7,—y] = —[x,y]. The quotient T2/ ~ gives the sphere S?. In order
to see this let us take the square in IR? limited by the straight lines z = —%,
T = %, Yy = —%, Yy = % We obtain a fundamental domain for the torus and we

identify it with T2. In the quotient T? the vertices A (1/2,1/2),B (-1/2,1/2),C
(=1/2,-1/2), D(1/2,—1/2), of the square are all identified. Let us call E to the
point (1/2,0), F to the point (—1/2,0), G to the point (0,1/2) and H to the
point (0,—1/2). Observe that E is identified with F and G is identified with H
in T2. Now observe that the boundary of the square OEAG is identified with the
boundary of the square OEDH (by the relations (z,y) ~ —(x,y) and (z,y) ~ (2/,y)
if (x — ',y —1') € Z*). Hence both squares are two different disks glued in their
boundaries by this identification. This gives a sphere. Moreover, the rest of the
square ABCD doesn’t give more points to the quotient because the squares OEAG
and OFCH, and OEDH and OFBG, are identified by the relation (z,y) ~ —(z,y).
On the other hand a([z,y]) ~ —a([z,y]) = a(—[z,y]) by linearity, and therefore
projects to S? as a map g : S? — S?, known as a generalized pseudo-Anosov
map. If IT : T2 — §2 is the projection defined by the relation ~, we may write
g(z) = H(a(II7!(z))). Observe that the projection IT : T? — S? is a branched
covering and that the definition of ¢ doesn’t depend on the pre-image of z by II71.
Therefore periodic points of a projects in periodic points of g and dense orbits of
a projects in dense orbits of g. For g there are singular points P where the local
e-stable and e-unstable sets are arcs with the point P as an end-point. This local
stable (unstable) sets are called 1-prongs (see figure 1 where O is a point with
1-prongs).

Let O € S? be the image by II of [0,0]. Then O is (the unique) fixed point of
g. The point O is singular because the unstable manifold of [0,0] in T? projects
to S? as an arc ending at O (because [z,y] ~ —[z,y]). The stable and unstable
manifolds of the points in T2 near (0,0) projects to points in S? near O like in
Figure 1. The intersection of the stable and unstable manifolds of the points (0, z)
and (0, —x) consists of four points identified by pairs by the relation [z,y] ~ —[z,y].
If [z,y] € T? projects to X € S2, let us call sx and ux to the projections of the
e-local stable and e-local unstable manifolds respectively of the point [z,y]. Hence



if a point X is very near to a singular point like O its local stable and unstable
sets, sx and u,, will intersect twice. Points in sx are in the e-local stable set of
X and points in ux are in the e-local unstable set of X. Moreover, if Y € sx
then dist(¢™(Y),¢" (X)) — 0 when n — +oo. Similarly for points in ux replacing
n — 400 by n — —oo.

Let us choose the singular point O and given ¢ > 0 choose P # O a periodic
point satisfying dist(P,0) < ¢’. Such a point exists since periodic points are dense
for the Anosov diffeomorphism a defined on T? and projects on S? as periodic points
for g. Let {P, P’} = sp Nup. Then it is not difficult to see that given € > 0 there
is € > 0 small enough such that P" € W*(P)NWZ(P). Thus we have a homoclinic
intersection between e-local stable and e-local unstable arcs of the periodic point
P, P’ being a homoclinic point such that its orbit is always at a distance less than
€ from the orbit of P. It follows that for all ¢ > 0 there are points P such that
I'.(P) contains a small horseshoe. Thus g : S — S? is not h-expansive. Moreover,
this example is transitive and there are real analytic models for g : 2 — 52 (see
[Ge], and [LL)).

Figure 1: Generalized pseudo-Anosov

Clearly the example is a homoclinic class which has no dominated splitting.

Let us show that property (1) sole does not imply h-expansiveness in dimension
3 or more. Consider the 3-manifold S? x S! with g : S? — S? as in the example
above, and put in S! a diffeomorphism A : S — S with a North-South dynamics,
say, N € S! is a source and S € S' is a sink and the w-limit of any point in S*
is S and the a-limit of every point in S' is N. We may assume that |Dhy| > 2k
where k = sup{||Dg(x)|,r € S?}. Let us define f : S? x S1 — 52 x S! by



f(x,y) = (9(x), h(y)). Then if K = S? x {N}, K is compact invariant and there is
a dominated splitting for K, E® F, where E = T,,5%, F = TxS'. By the previous
example f is not h-expansive.

This example shows what is the problem; the strongly expanding direction F'
along S' does not interferes on the dynamics of f/S52. Thus property (1) holds for
f defined on S? x S! albeit does not for g = f/S2.

3 Proof of Theorem A

Here we shall prove

Theorem 3.1. Let M be a closed smooth surface and f : M — M be a C”
diffeomorphism such that K C M is a compact f-invariant subset with a dominated
splitting E® F. Then f/K is h-ezpansive.

We need the following lemma.

Lemma 3.2 (Pliss). Let 0 < A\; < A2 < 1 and assume that there exists n > 0
arbitrarily large such that

[TIDf/EF @) < A

j=1

Then there ezist a positive integer N = N (A1, A2, f), ¢ = ¢(A1, A2, f) > 0 such that
if n > N then there exist numbers

0<nm <no<---<my<n
such that

h .

I 1Df/EF @)l < A5,

Jj=nr

forallr=1,2,...,1, with |l > cn, and for all h with n, < h <n.
Proof. The proof of this lemma can be found in [P11]. O

Proof of Theorem A. Let M be a surface and K C M a compact and f invariant
subset such that there is a dominated splitting £ & F defined on it. By continuity
of f and Df there is §g > 0 such that we may extend the cones defining equation
(1) to the closed dp neighborhood of K, U(K) = {y € M /dist(y, K) < do}. If
the orbit of a point y, orb(y), is contained in U(K) then for that point there

are defined local center-stable and center-unstable manifolds W2 (y) and Wk (y)



where loc > 0 stands for a small real number. Moreover, there is 41, 0 < d; < dp
such that if dist(f7(y), f7(z)) < &; for all j = 0,...,n and z € W (y) then
f(z) € WE(fI(y)) for all j = 0,...,n. Similarly for the local center unstable

manifold (see [PS1, Lemma 3.0.4 and Corollary 3.2]).
We need the following lemma:

Lemma 3.3. There is 62, 0 < d3 < 81 such that if the length of the arc [y, 2] C
W (y) is greater than 6 > 0 for 0 < 6 < 62, £([y,2]°) > 0, then dist(y, z) > §/2.

Moreover, there is a constant L > 0 such that if dist(y,z) < 6 then £([y,z]**) < L.
Similarly for an arc [y, 2] C WE(y).

Proof. Since E(y), E(z) are continuous sub-bundles in U(K) we may find dz, 0 <
d2 < 01 such that given n > 0 /(E(y), E(w)) < n for all w € B(y,d2) NU(K) (the
number J§p can be chosen so small that B(y,dp) is contained in a local chart, so
that we may assume locally that we are in IR?). Thus if we parameterize [y, z] by

arc-length 3 : [0,1] — M, with 4(0) = y, A1) = =, then F/(s) = (8,(s), Gy(s)) is
parallel to E(3(s)). Therefore, since (3](s))? + (85(s))? = 1, we have by the Mean
Value Theorem

dist(y, z) = [|8(1) — B(O)]| =
= /(51(1) = B1(0))? + (B2(1) — B2(0))% = \/((ﬁi(sl))2 + (B3(s2))? - 1 =

G
=1 (1= (O + RO - B e0P + ) ) -

:chﬁﬂ<”2<@@ﬂ> +(85(0))° w<>>>>
L+ (B (s1)2 + (B (s2))2) -

> 1(1 - 181(0) — B (s0)I(81(0) + (1) + 18(0) — B (52) (54(0) + Bh(s2)) -
But, since Z(E(A(s)), E(B(0))) < 1,

1(81(s) = B1(0), Ba(s) — B2(0))|| < 2sin(n/2) <n, for small 7.

Therefore, taking into account that 31(0) + 51 (s1) < |51(0)|+ |81 (s1)| < 2 and that
the same is true with respect to 35 we have

dist(y, z) > (1 —4n) > 1/2

if n > 0 is sufficiently small. The proof that if dist(y,z) < § then ¢([y, 2]**) < L is
similar. O



Continuing with the proof of Theorem A we observe that taking an iterate f™
of f we may assume that the constant C' > 0 appearing in the definition of the
dominated splitting, equation (1), is one. Since for a compact invariant set X we
have that the topological entropy h(f™/X) = m - h(f/X), if we prove that for
some € > 0, h(f™/T¢(x, f)) = 0 then the same is true for f. Thus we assume that
for f itself C' = 1.

Let A = VA < X = VX < A3 = VA < 1. If it were necessary we take ds3,
0 < 03 < dy such that if dist(z, w) < 3 then

L IDHEGL L IDEYEG)

IDf/E(w) IDf=/F(w)]]
where ¢ > 0 is such that (1 +¢)A2 < As.

We recall that when a dominated splitting E @ F' is defined in a compact set
like U(K) we may find v > 0 such that for all y € U(K) it holds that the angle
between E(y) and F(y) is greater than v, /(E(y), F(y)) > ~. Let us pick a point
r € U(K) and, identifying IR? with a coordinate neighborhood around z, let Iz (x)
be the straight line for « with the direction of E(z) and Iz (x) the straight line with
the direction of F'(x). From a point yo € Ip(x), yo # =, we consider the straight
line yo +1p(z) parallel to E(x). Then for any point y in yo+ g (z) we have that the
distance between y and x is greater than the distance between yy and x multiplied
by sin-~y, dist(y, ) > dist(yo, x) sin~y, (see figure 2).

<l+e,

1.(x)

Figure 2: Bounds for the distance between = and y € yo + lp(z)

Since the local center unstable manifold is tangent to F' and the local center



stable manifold is tangent to £ we may assume that d3 is so small that

. . sin
dist(y, ) > dist(yo, x)(ﬁ (2)
for yo € Wik(x) N B(x,03), y € Wi.(yo) N B(x,d3).
Let now € > 0 be such that
03
€< (1+2siny) ®)

We will prove that for all z € K, h(f/T'c(x)) = 0. This will prove that f/K is
entropy-expansive.
Let us assume first that y € W (z) NTe(x), y # x. Then orb(y) C U(K) and

loc\T

therefore for all j € Z it holds that

IDF/EFNINDLES ()] < A
and so .
[TIDf/EF @)IIDF T F(F @)l < A", ¥ > 1.
j=1
If it were the case that

H 1D EF )l < A

for arbitrarily large n > 0 then by Lemma 3.2 there are N = N (A1, A2) € IN and
¢ = ¢(A1,A2) > 0 such that if n > N there exists 1 <np < np_1 <...<ny <n
with £ > ¢-n and

n;
— ] i_h
[TIDf Y E(F W)l < A5
j=h
forn; > h > 1;i=1,...,k. Observe in particular that ny > c¢-n otherwise we
cannot have k > ¢-n. By our choice of d3 we then have that

[LIDr=tEF )l < A3,
j=h

for all h: ny > h > 1if dist(f7(2), f/(y)) < d3 forall j: h < j < ny.
If now we have z in the local center unstable arc [z,y|" joining x and y and
p = dist(z,y) > 0, we have, taking h = 1, that

L, y)™) < O™ (), F™ ()] )A



)

, by Lemma 3.3

Since [f"(x), f*(y)]°" is tangent to F' and dist(f"(z), f*
< we obtain that

< e€
there is a constant L > 0 such that £([f"(x), f"(y)]**) hus

(v))
L. Thu
[z, y]™) < L- )\gl_l

and since 0 < A3 < 1 and n; > ¢-n — oo when n — oo we conclude that p = 0
and x = y contradicting our hypothesis.
Hence we have that it is not true that for arbitrarily large n > 0

H IDfY/F(fi(y)] < AT,

and since

TTIDt/EF @)D FF @) < A",
j=1

we may conclude that

TTIDF/EG ) < A7

j=1
for all n large. Thus, in the notation of [PS1], I = [z,y]* is a e-E-interval. There
are two cases: either ¢(f"(I)) — 0 when n — oo or ¢(f™(I)) # 0. In any case
we may assume that for all point z € I we have that W7 (2) is a stable manifold.
Thus W2 (1) attracts a neighborhood in M.
Let us assume first that ¢(f™(I)) — 0 when n — oo. Choose ¢ > 0 and let us
find bounds for r,(¢, WSS (I)). Since £(f"(I)) — 0 there is ng > 0 such that
diam(f"(Wg2(I))) < ¢ for all n > ng. Then we may find a finite subset E such
that (¢, no)-spans W (I) and this set also ((,n)-spans WS (I) for all n > 0. It

loc loc
follows readily that

h(f, Wige(I),€) —hmsup%log(rn(g We) =0

n—oo

and therefore h(f, W2 (1)) = 0.

On the other hand, if ¢(f™(I)) # 0 then by [PS1, Proposition 3.1] we have
that for all z € I, the omega -limit set of z, w(z), is a periodic orbit or lies in a
periodic circle. In the proof of that proposition Pujals and Sambarino use that f
is of class C2. But this is used in the case when £(f™(I)) — 0 when n — oo in
order to argue as in Schwartz’s proof of the Denjoy property ([Sc]). If we already
know that £(f™(I)) / 0 then it is enough to assume f of class C! to ensure that
the w-limit of I is contained in a periodic arc or circle and this is implicit in the

proof of [PS1, Proposition 3.1].
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In case of w(z) being included in a periodic circle C this circle is normally hyperbolic
attracting a neighborhood V of C and points in V' converge exponentially fast to C.
If f is C? then as in [PS1] we conclude that the dynamics by f7 (7 being the period
of C) in C is conjugate to an irrational rotation while if f is just C! we only have
semi-conjugacy (we may have a Cantor set in C and wandering intervals). In any
case (conjugacy or semi-conjugacy with an irrational rotation R,) we profit from
the fact that h(R,) = 0. This implies that if f7/C is conjugate or semi-conjugate
to R, then h(f7/C) = 0.

On the other hand if w(z) is a periodic orbit, say of a point ¢, since £(f™(I)) < §
for all n > 0 we have that there is a periodic point ¢’ in W% (q) such that attracts

loc

points in f"(I\{x}) (for instance the other end-point of f"(I) different from f™(z)),
see [PS1, Lemma 3.3.1]. Note than since W% (q) is an arc, the period of ¢’ is the

loc

same of that of ¢, or the double of it. Let P be the set of periodic points of f
in W2(g)\{¢}. Then all of them have the same period, say 7. The set P divides

loc

Wt (q) in arcs on which the dynamics by f7 is monotone. It follows that the

topological entropy of f7/W£%(q) is zero.

loc

So in both cases, periodic orbit or periodic circle, f™™ (W (I)) approaches an f7

invariant one-dimensional manifold £ such that the topological entropy h(f7, L) =
0. Let ¢ > 0 and m € IN large be given an find S C L, (m,() spanning £. We
may find ng and a subset S of f*(I) for n > ng, such that (m, () spans f"(I) with
respect to f7. Projecting along the fibers of the local center-stable manifolds which,
by equation (1), are dynamically defined (WS (2) is strong stable for all z € £)

loc

we know that there is n; > 0 such that for any point z € I, £(f"(W E(z))) < (.

loc
We add points to S in order to ensure that we do have a (m,() spanning set for

frWwes(I)) form=0,1,...,n1 — 1. We conclude that h(f, WS (I),() = 0. Since

loc

¢ > 0 is arbitrary we obtain that h(f, WS (I)) = 0. By [Bo, Corollary 2.3] we have

loc

that if there is a e-E-interval I such that T'c(x) C W5 (I) then h(Tc(z), f) = 0.

loc
Similarly if y € W (z) then J = [z,y]* is an e-F-interval and reasoning with

the a-limit of J we obtain that h(f, W“(J)) =0.

loc

Assume now that y ¢ W5 (z), y ¢ WS(z). By domination

loc loc
IDF/EINDFHYE(fRI <A, VzeK

and this still holds for points such that their orbits are in the dg-neighborhood
of K as is the case of y. Therefore there are defined W (y) and W (y) which
are embedded arcs. Since the angle between £ and F' is bounded by v > 0 from
below, reducing e if it were necessary, we may assume that WS (y) cuts WS(x)

and W (x) cuts WS(y) in points yr and yg respectively. By our assumption

ye # x and yp # z.

11



F(x)

Figure 3: Case when y ¢ WS (x), y ¢ WSk(x).

loc loc

Suppose that there are n > 0 arbitrarily large such that for A; it holds that
n .
ITIDF/IEG (o)l < AT
j=1

Then, choosing A9 and A3 as we did above, by Pliss ’ Lemma there is N =
N(M\,X\2) € IN and ¢ = ¢(A1,A2) > 0 such that if n > N there is ny > ¢-n
such that

h
[TID/EG )l <Ay ¥1<h<n,
j=1

and changing Ay by A3 the same holds for points z in [z,yg]®. It follows that
dist(z, yg) < dist(f~™ (x), f~™ (yg))As" ' Therefore

st/ (), £ () > DL 0E)
3
Since by (2)

sin 7y

diSt(f_nl (x)’ fm (y)) > diSt(f_nl (Z‘), " (yE»m

12



we conclude, taking into account that 0 < A3 < 1, that

e _ dist(x,yg)  sinvy
dist(f~™ m > .

if ny is large enough contradicting the fact that y € I'c(z). We conclude in this
case that yg must coincide with = contradicting our hypothesis.

So, we cannot have arbitrarily large contraction from time —n to 0 and as a
consequence we have that [z,yg]® is a -F-interval for some 0 < § < Jp. So the
arguments employed above in the case when y € WS () apply.

In any case we have proved that

Ce(x) c WEL(JT)UWELT)

loc loc

for a 4-FE-interval I and a 4-F-interval J and that

h(fs Wige()) = h(f, Wige(I)) = 0

so that h(f,Tc(z)) = 0. O

4 Proof of Theorem B

In this section we prove the following

Theorem 4.1. Let M be a compact boundaryless C°° surface and f : M — M
be a C" diffeomorphism. Let H(p) be an f-homoclinic class associated to the f-
hyperbolic periodic point p. Assume that there is a C' neighborhood U of f such
that for any g € U it holds that there is a continuation H(py) of H(p) such that
H(pgy) is h-expansive. Then H(p) has a dominated splitting.

In order to prove this theorem we will use results of Downarowicz and Newhouse
(see [DN] and [Nh2]). Recall that a subshift (g,Y) is the restriction of the full shift
in a finite alphabet to a closed invariant subsystem.

Definition 4.1. Let f : X — X be a homeomorphism of a compact metric space
X. A symbolic extension of the pair (f,X) is a pair (g,Y), where (g,Y) is a
subshift with a continuous surjection ™ : Y — X such that fm = mg. A symbolic
extension is principal if the topological entropy of the extension coincides with that
of the original system, that is, h(g,Y) = h(f, X).

In [DN] the following theorems are proved.
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Theorem 4.2. Fiz2 <r < oo. There is a residual subset R of the space Diff " (M)
of CT-diffeomorphisms of a closed surface M such that if f € R and f has a
homoclinic tangency, then f has no principal symbolic extension.

Proof. See [DN, Theorem 1.4]. O

Moreover, if f has no principal symbolic extension then f cannot be asymptot-
ically h-expansive as has been proved by M. Boyle, D. Fiebig and U. Fiebig (see
[BFF)).

Proof of Theorem B. Let M and f : M — M be as in Theorem A and H(p)
an f-homoclinic class associated to the f-hyperbolic periodic point p. Assume
that there is a C' neighborhood U of f such that for any g € U it holds that
there is a continuation H(p,) of H(p) such that H(p,) is h-expansive. Let x €
W#(p) N W*(p) be a transverse homoclinic point associated to the periodic point
p. We define E(z) = T,W?5(p) and F(z) = T,W*"(p). Since p is hyperbolic we
have that E(x) ® F(x) = T, M. Moreover, E(z) and F(x) are D f-invariant, i.e.:
Df(E(x)) = E(f(z)) and Df(F(x)) = F(f(x)).

By definition H(p) = clos(hom(p)) where hom(p) is the set of transverse ho-
moclinic points associated to p so if we prove that there is a dominated splitting
for hom(p) we are done since then we can extend by continuity the splitting to the
closure H (p).

Let us prove that there is a dominated splitting for hom(p). To do so it is
enough to prove that there exists m > 0 such that for some k: 0 < k < m it holds
for all € hom(p) that

1D /E@)|Df*/F(f* ()] <

|

Hence arguing by contradiction let us assume that for all m > 0 there is z,, €
hom(p) such that for all k: 0 < k < m we have

1
k —k k

IDFE/E@m)IHIDf/F(fH (@m)) > 5 -
Using the arguments developed by Mané for periodic points in [Mal] modified as in
[SV] for homoclinic points, for any v > 0 and € > 0 we may find m > 0, depending
on € and v, such that with an e-C'-perturbation ¢’ of f we obtain a homoclinic point
x4 associated to py such that the angle at z between W} (x4, ¢') and W (x4, 4")
is less than 7. Since C?-diffeomorphisms are dense in C''-topology we may assume
that ¢’ is C?. Since v is arbitrarily small we may C'-perturb ¢’ obtaining g of
class C? with a tangency at z, between Wj (z,) and W/, (z,). Moreover this
perturbation can be assumed to give us a C2-robust tangency of Henon-like type
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(see [Nh1]). By the results of [DN] and [Nh2] we conclude that there is no symbolic
extension for g/ H (py). Therefore, by [BFF], g/H (pg) is not asymptotic h-expansive
and a fortiori it is not h-expansive contradicting our hypotheses. This finishes the

proof of Theorem B. O
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