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Abstract

Let f : M → M be a Cr-diffeomorphism, r ≥ 1, defined in a compact
boundary-less surface M . We prove that if K is a compact f -invariant subset
of M with a dominated splitting then f/K is h-expansive. Reciprocally, if
there exists a Cr neighborhood of f , U , such that for g ∈ U there exists Kg

compact invariant such that g/Kg is h-expansive then there is a dominated
splitting for Kg.
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1 Introduction

To obtain results about the complexity of the dynamics of a discrete or con-
tinuous time dynamical system as recurrence, existence of periodic orbits, SRB
measures, etc., one usually try to express dynamic properties at the infinitesimal
level, i.e.: precise definitions are given prescribing the behavior of the tangent map
Df : TM → TM of a diffeomorphism f : M → M . Examples of that are the
concepts of hyperbolicity, partial hyperbolicity and the existence of a dominated
splitting. On the other hand a robust dynamic property (i.e. a property that holds
for a system and all nearby ones) should leave its impromptus in the behavior of
the tangent map of those differentiable systems sharing that property. In [PPV],
[SV] and [PPSV] it has been studied the influence of expansiveness when it holds in
a homoclinic class H associated to a hyperbolic periodic point p such that H and
the corresponding homoclinic classes Hg , for all diffeomorphism g nearby f , are
expansive. It is proved there that in that case Df/H has a dominated splitting and
moreover f/H is hyperbolic in the codimension one case ([PPV], [PPSV]). In the
general codimension case we also obtain hyperbolicity adding an extra hypothesis
called germ-expansiveness (see [SV]).
In this paper we relax expansiveness asking what should be the properties of the
tangent map Df of a diffeomorphism f defined on a surface such that robustly

1



exhibits h-expansiveness (entropy-expansiveness, see definitions below). We obtain
that for such maps it exists a dominated splitting. On the other hand we prove
that if K admits a dominated splitting then it is h-expansive. Thus robust h-
expansiveness is equivalent to the existence of a dominated spitting.

Moreover, we give here an example of a C∞ diffeomorphism that is not h-
expansive. By a result of Buzzi (see [Bu]) such an example is asymptotically
h-expansive (see definition below) since it is C∞. The first examples of a dif-
feomorphism that is not h-expansive and even not asymptotically h-expansive was
given by Misiurewicz in [Mi] answering a question posed by Bowen. We give our
example here because of its good properties from various points of view. First it
is clear that it has not a dominated splitting. Second it is defined on S2, is er-
godic and even has Bernoulli property. Third it admits analytic models a stronger
property than being C∞.

Let us now give precise definitions. Let M be a compact connected boundary-
less Riemannian d-dimensional manifold and f : M → M a homeomorphism. Let
K be a compact invariant subset of M and dist : M ×M → IR+ a distance in M
compatible with its Riemannian structure. For E, F ⊂ K, n ∈ IN and δ > 0 we say
that E (n, δ) spans F with respect to f if for each y ∈ F there is x ∈ E such that
dist(f j(x), f j(y)) ≤ δ for all j = 0, . . . , n − 1. Let rn(δ, F ) denote the minimum
cardinality of a set that (n, δ) spans F . Since K is compact rn(δ, F ) < ∞. We
define

h(f, F, δ) = lim sup
n→∞

1
n

log(rn(δ, F ))

and
h(f, F ) = lim

δ→0
h(f, F, δ) .

The last limit exists since h(f, F, δ) increases as δ decreases to zero.
For x ∈ K let us define

Γε(x, f) = Γε(x) = {y ∈ M / d(fn(x), fn(y)) ≤ ε, n ∈ ZZ} .

Following Bowen (see [Bo]) we say that f/K is entropy-expansive or h-
expansive if and only if there exists ε > 0 such that

h∗f (ε) = sup
x∈K

h(f,Γε(x)) = 0 .

The importance of f being h-expansive is that the topological entropy of f
restricted to K, h(f/K), is equal to its estimate using ε: h(f, K) = h(f, K, ε).
More precisely:
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Theorem 1.1. For all homeomorphism f defined in a compact invariant set K it
holds

h(f,K) ≤ h(f, K, ε) + h∗f (ε) in particular h(f, K) = h(f, K, ε) if h∗f (ε) = 0 .

Proof. See [Bo], Theorem 2.4.

A weaker property of that of being h-expansive is that of being asymptotically
h-expansive ([Mi]). Let K be a compact metric space and f : K → K an
homeomorphism. We say that f is asymptotically h-expansive if and only if

lim
ε→0

h∗f (ε) = 0 .

Thus we do not require that for a certain ε > 0 h∗f (ε) = 0 but that h∗f (ε) → 0 when
ε → 0. It has been proved by Buzzi that any C∞ diffeomorphism defined on a
compact manifold is asymptotically h-expansive. Hence our example although not
h-expansive is asymptotically h-expansive.

Definition 1.1. We say that a compact f-invariant set Λ admits a dominated
splitting if the tangent bundle TΛM has a continuous Df -invariant splitting E⊕F
and there exist C > 0, 0 < λ < 1 such that

‖Dfn|E(x)‖ · ‖Df−n|F (fn(x))‖ ≤ Cλn ∀x ∈ Λ, n ≥ 0. (1)

Our main results are the following:

Theorem A. Let M be a compact boundaryless C∞ surface and f : M → M
be a Cr diffeomorphism such that K ⊂ M is a compact f -invariant subset with a
dominated splitting E ⊕ F . Then f/K is h-expansive.

Since the property of having a dominated splitting is open we may conclude
that any g C1 close to f is such that g/Kg is h-expansive.

In case M is a d-dimensional manifold with d ≥ 3 the existence of a dominated
splitting is not enough to guarantee h-expansiveness as it is shown in the examples
presented below.

Observe that the identity map id : M → M is h-expansive and moreover if the
topological entropy of a map f : M → M vanishes, h(f) = 0, then it is h-expansive.
Nevertheless, the persistence of h-expansiveness has a dynamical meaning.

Theorem B. Let M be a compact boundaryless C∞ surface and f : M → M
be a Cr diffeomorphism. Let H(p) be an f-homoclinic class associated to the f-
hyperbolic periodic point p. Assume that there is a C1 neighborhood U of f such
that for any g ∈ U it holds that there is a continuation H(pg) of H(p) such that
H(pg) is h-expansive. Then H(p) has a dominated splitting.
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2 Examples

Let us now give an example of an analytic diffeomorphism that is not h-expansive.

We consider in IR2 the action given by the matrix A =
(

2 1
1 1

)
. Since the

entries of A are integers and det(A) = 1, the lattice ZZ2 is preserved by this
action and therefore it passes to the quotient T2 = IR2/ZZ2. This gives us a very
well known linear Anosov diffeomorphism a : T2 → T2. Let [x, y] represent the
equivalence class of (x, y) ∈ IR2 in IR2/ZZ2. We define in IR2/ZZ2 the relation
[x, y] ∼ [−x,−y] = −[x, y]. The quotient T2/ ∼ gives the sphere S2. In order
to see this let us take the square in IR2 limited by the straight lines x = −1

2 ,
x = 1

2 , y = −1
2 , y = 1

2 . We obtain a fundamental domain for the torus and we
identify it with T2. In the quotient T2 the vertices A (1/2, 1/2),B (−1/2, 1/2),C
(−1/2,−1/2), D(1/2,−1/2), of the square are all identified. Let us call E to the
point (1/2, 0), F to the point (−1/2, 0), G to the point (0, 1/2) and H to the
point (0,−1/2). Observe that E is identified with F and G is identified with H
in T2. Now observe that the boundary of the square OEAG is identified with the
boundary of the square OEDH (by the relations (x, y) ∼ −(x, y) and (x, y) ∼ (x′, y′)
if (x− x′, y − y′) ∈ ZZ2). Hence both squares are two different disks glued in their
boundaries by this identification. This gives a sphere. Moreover, the rest of the
square ABCD doesn’t give more points to the quotient because the squares OEAG
and OFCH, and OEDH and OFBG, are identified by the relation (x, y) ∼ −(x, y).
On the other hand a([x, y]) ∼ −a([x, y]) = a(−[x, y]) by linearity, and therefore
projects to S2 as a map g : S2 → S2, known as a generalized pseudo-Anosov
map. If Π : T2 → §2 is the projection defined by the relation ∼, we may write
g(x) = Π(a(Π−1(x))). Observe that the projection Π : T2 → S2 is a branched
covering and that the definition of g doesn’t depend on the pre-image of x by Π−1.
Therefore periodic points of a projects in periodic points of g and dense orbits of
a projects in dense orbits of g. For g there are singular points P where the local
ε-stable and ε-unstable sets are arcs with the point P as an end-point. This local
stable (unstable) sets are called 1-prongs (see figure 1 where O is a point with
1-prongs).

Let O ∈ S2 be the image by Π of [0, 0]. Then O is (the unique) fixed point of
g. The point O is singular because the unstable manifold of [0, 0] in T2 projects
to S2 as an arc ending at O (because [x, y] ∼ −[x, y]). The stable and unstable
manifolds of the points in T2 near (0, 0) projects to points in S2 near O like in
Figure 1. The intersection of the stable and unstable manifolds of the points (0, x)
and (0,−x) consists of four points identified by pairs by the relation [x, y] ∼ −[x, y].
If [x, y] ∈ T2 projects to X ∈ S2, let us call sX and uX to the projections of the
ε-local stable and ε-local unstable manifolds respectively of the point [x, y]. Hence
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if a point X is very near to a singular point like O its local stable and unstable
sets, sX and ux, will intersect twice. Points in sX are in the ε-local stable set of
X and points in uX are in the ε-local unstable set of X. Moreover, if Y ∈ sX

then dist(gn(Y ), gn(X)) → 0 when n → +∞. Similarly for points in uX replacing
n → +∞ by n → −∞.

Let us choose the singular point O and given ε′ > 0 choose P 6= O a periodic
point satisfying dist(P, 0) < ε′. Such a point exists since periodic points are dense
for the Anosov diffeomorphism a defined on T2 and projects on S2 as periodic points
for g. Let {P, P ′} = sP ∩ uP . Then it is not difficult to see that given ε > 0 there
is ε′ > 0 small enough such that P ′ ∈ W u

ε (P )∩W s
ε (P ). Thus we have a homoclinic

intersection between ε-local stable and ε-local unstable arcs of the periodic point
P , P ′ being a homoclinic point such that its orbit is always at a distance less than
ε from the orbit of P . It follows that for all ε > 0 there are points P such that
Γε(P ) contains a small horseshoe. Thus g : S2 → S2 is not h-expansive. Moreover,
this example is transitive and there are real analytic models for g : S2 → S2 (see
[Ge], and [LL]).

p p’ 

s 
p 

s 

0 

0 

u 
0 

u 
p g 

k 

(p’) 

Figure 1: Generalized pseudo-Anosov

Clearly the example is a homoclinic class which has no dominated splitting.
Let us show that property (1) sole does not imply h-expansiveness in dimension

3 or more. Consider the 3-manifold S2 × S1 with g : S2 → S2 as in the example
above, and put in S1 a diffeomorphism h : S1 → S1 with a North-South dynamics,
say, N ∈ S1 is a source and S ∈ S1 is a sink and the ω-limit of any point in S1

is S and the α-limit of every point in S1 is N . We may assume that |DhN | > 2k
where k = sup{‖Dg(x)‖, x ∈ S2}. Let us define f : S2 × S1 → S2 × S1 by
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f(x, y) = (g(x), h(y)). Then if K = S2×{N}, K is compact invariant and there is
a dominated splitting for K, E⊕F , where E = TxS2, F = TNS1. By the previous
example f is not h-expansive.

This example shows what is the problem; the strongly expanding direction F
along S1 does not interferes on the dynamics of f/S2. Thus property (1) holds for
f defined on S2 × S1 albeit does not for g = f/S2.

3 Proof of Theorem A

Here we shall prove

Theorem 3.1. Let M be a closed smooth surface and f : M → M be a Cr

diffeomorphism such that K ⊂ M is a compact f-invariant subset with a dominated
splitting E ⊕ F . Then f/K is h-expansive.

We need the following lemma.

Lemma 3.2 (Pliss). Let 0 < λ1 < λ2 < 1 and assume that there exists n > 0
arbitrarily large such that

n∏

j=1

‖Df/E(f j(x))‖ ≤ λn
1 .

Then there exist a positive integer N = N(λ1, λ2, f), c = c(λ1, λ2, f) > 0 such that
if n ≥ N then there exist numbers

0 ≤ n1 ≤ n2 ≤ · · · ≤ nl ≤ n

such that
h∏

j=nr

‖Df/E(f j(x))‖ ≤ λh−nr
2 ,

for all r = 1, 2, . . . , l, with l ≥ cn, and for all h with nr ≤ h ≤ n.

Proof. The proof of this lemma can be found in [Pl1].

Proof of Theorem A. Let M be a surface and K ⊂ M a compact and f invariant
subset such that there is a dominated splitting E ⊕F defined on it. By continuity
of f and Df there is δ0 > 0 such that we may extend the cones defining equation
(1) to the closed δ0 neighborhood of K, U(K) = {y ∈ M / dist(y,K) ≤ δ0}. If
the orbit of a point y, orb(y), is contained in U(K) then for that point there
are defined local center-stable and center-unstable manifolds W cs

loc(y) and W cu
loc(y)
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where loc > 0 stands for a small real number. Moreover, there is δ1, 0 < δ1 ≤ δ0

such that if dist(f j(y), f j(z)) ≤ δ1 for all j = 0, . . . , n and z ∈ W cs
loc(y) then

f j(z) ∈ W cs
loc(f

j(y)) for all j = 0, . . . , n. Similarly for the local center unstable
manifold (see [PS1, Lemma 3.0.4 and Corollary 3.2]).

We need the following lemma:

Lemma 3.3. There is δ2, 0 < δ2 ≤ δ1 such that if the length of the arc [y, z]cs ⊂
W cs

loc(y) is greater than δ > 0 for 0 < δ ≤ δ2, `([y, z]cs) > δ, then dist(y, z) > δ/2.
Moreover, there is a constant L > 0 such that if dist(y, z) ≤ δ then `([y, z]cs) ≤ L.
Similarly for an arc [y, z]cu ⊂ W cu

loc(y).

Proof. Since E(y), E(z) are continuous sub-bundles in U(K) we may find δ2, 0 <
δ2 ≤ δ1 such that given η > 0 6 (E(y), E(w)) < η for all w ∈ B(y, δ2) ∩ U(K) (the
number δ0 can be chosen so small that B(y, δ0) is contained in a local chart, so
that we may assume locally that we are in IR2). Thus if we parameterize [y, z] by
arc-length β : [0, l] → M , with β(0) = y, β(l) = z, then β′(s) = (β′1(s), β

′
2(s)) is

parallel to E(β(s)). Therefore, since (β′1(s))
2 + (β′2(s))

2 = 1, we have by the Mean
Value Theorem

dist(y, z) = ‖β(l)− β(0)‖ =

=
√

(β1(l)− β1(0))2 + (β2(l)− β2(0))2 =
√

((β′1(s1))2 + (β′2(s2))2 · l =

= l

(
1− (

√
((β′1(0))2 + (β′2(0))2 −

√
((β′1(s1))2 + (β′2(s2))2)

)
=

= l

(
1− (β′1(0))2 − (β′1(s1))2 + (β′2(0))2 − (β′2(s2))2

1 +
√

((β′1(s1))2 + (β′2(s2))2)

)
≥

≥ l
(
1− |β′1(0)− β′1(s1)|(β′1(0) + β′1(s1)) + |β′2(0)− β′2(s2)|(β′2(0) + β′2(s2))

)
.

But, since 6 (E(β(s)), E(β(0))) < η,

‖(β′1(s)− β′1(0), β′2(s)− β′2(0))‖ ≤ 2 sin(η/2) < η, for small η .

Therefore, taking into account that β′1(0)+β′1(s1) ≤ |β′1(0)|+ |β′1(s1)| ≤ 2 and that
the same is true with respect to β′2 we have

dist(y, z) ≥ l(1− 4η) > l/2

if η > 0 is sufficiently small. The proof that if dist(y, z) ≤ δ then `([y, z]cs) ≤ L is
similar.
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Continuing with the proof of Theorem A we observe that taking an iterate fm

of f we may assume that the constant C > 0 appearing in the definition of the
dominated splitting, equation (1), is one. Since for a compact invariant set X we
have that the topological entropy h(fm/X) = m · h(f/X), if we prove that for
some ε > 0, h(fm/Γε(x, f)) = 0 then the same is true for f . Thus we assume that
for f itself C = 1.
Let λ1 = 3

√
λ < λ2 = 4

√
λ < λ3 = 5

√
λ < 1. If it were necessary we take δ3,

0 < δ3 ≤ δ2 such that if dist(z, w) ≤ δ3 then

1− c <
‖Df/E(z)‖
‖Df/E(w)‖ < 1 + c and 1− c <

‖Df−1/F (z)‖
‖Df−1/F (w)‖ < 1 + c ,

where c > 0 is such that (1 + c)λ2 ≤ λ3.
We recall that when a dominated splitting E ⊕ F is defined in a compact set

like U(K) we may find γ > 0 such that for all y ∈ U(K) it holds that the angle
between E(y) and F (y) is greater than γ, 6 (E(y), F (y)) > γ. Let us pick a point
x ∈ U(K) and, identifying IR2 with a coordinate neighborhood around x, let lE(x)
be the straight line for x with the direction of E(x) and lF (x) the straight line with
the direction of F (x). From a point y0 ∈ lF (x), y0 6= x, we consider the straight
line y0 + lE(x) parallel to E(x). Then for any point y in y0 + lE(x) we have that the
distance between y and x is greater than the distance between y0 and x multiplied
by sin γ, dist(y, x) ≥ dist(y0, x) sin γ , (see figure 2).

x

y
0

l

l

l

(x)

(x)

(x)

E

F

E0
y +

φ>γ

y

d(x,y
0
)sin φ

Figure 2: Bounds for the distance between x and y ∈ y0 + lE(x)

Since the local center unstable manifold is tangent to F and the local center
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stable manifold is tangent to E we may assume that δ3 is so small that

dist(y, x) ≥ dist(y0, x)(
sin γ

2 + sin γ
) (2)

for y0 ∈ W cu
loc(x) ∩B(x, δ3), y ∈ W cs

loc(y0) ∩B(x, δ3).
Let now ε > 0 be such that

ε <
δ3

(1 + 2 sin γ)
. (3)

We will prove that for all x ∈ K, h(f/Γε(x)) = 0. This will prove that f/K is
entropy-expansive.

Let us assume first that y ∈ W cu
loc(x) ∩ Γε(x), y 6= x. Then orb(y) ⊂ U(K) and

therefore for all j ∈ ZZ it holds that

‖Df/E(f j−1(y))‖ ‖Df−1/F (f j(y))‖ < λ

and so
n∏

j=1

‖Df/E(f j−1(y))‖ ‖Df−1/F (f j(y))‖ < λn, ∀n ≥ 1 .

If it were the case that
n∏

j=1

‖Df−1/F (f j(y))‖ ≤ λn
1

for arbitrarily large n > 0 then by Lemma 3.2 there are N = N(λ1, λ2) ∈ IN and
c = c(λ1, λ2) > 0 such that if n ≥ N there exists 1 ≤ nk < nk−1 < . . . < n1 ≤ n
with k > c · n and

ni∏

j=h

‖Df−1/F (f j(y))‖ ≤ λni−h
2 ,

for ni ≥ h ≥ 1; i = 1, . . . , k. Observe in particular that n1 > c · n otherwise we
cannot have k > c · n. By our choice of δ3 we then have that

n1∏

j=h

‖Df−1/F (f j(z))‖ ≤ λn1−h
3 ,

for all h : n1 ≥ h ≥ 1 if dist(f j(z), f j(y)) ≤ δ3 for all j : h ≤ j ≤ n1.
If now we have z in the local center unstable arc [x, y]cu joining x and y and

ρ = dist(x, y) > 0, we have, taking h = 1, that

`([x, y]cu) ≤ `([fn1(x), fn1(y)]cu)λn1−1
3 .
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Since [fh(x), fh(y)]cu is tangent to F and dist(fh(x), fh(y)) ≤ ε, by Lemma 3.3
there is a constant L > 0 such that `([fh(x), fh(y)]cu) ≤ L. Thus we obtain that

`([x, y]cu) ≤ L · λn1−1
3

and since 0 < λ3 < 1 and n1 > c · n → ∞ when n → ∞ we conclude that ρ = 0
and x = y contradicting our hypothesis.

Hence we have that it is not true that for arbitrarily large n > 0

n∏

j=1

‖Df−1/F (f j(y))‖ ≤ λn
1 ,

and since
n∏

j=1

‖Df/E(f j−1(y))‖ ‖Df−1/F (f j(y))‖ < λn ,

we may conclude that
n∏

j=1

‖Df/E(f j−1(y))‖ ≤ λn
1 ,

for all n large. Thus, in the notation of [PS1], I = [x, y]cu is a ε-E-interval. There
are two cases: either `(fn(I)) → 0 when n → ∞ or `(fn(I)) 6→ 0. In any case
we may assume that for all point z ∈ I we have that W cs

loc(z) is a stable manifold.
Thus W cs

loc(I) attracts a neighborhood in M .
Let us assume first that `(fn(I)) → 0 when n → ∞. Choose ζ > 0 and let us
find bounds for rn(ζ, W cs

loc(I)). Since `(fn(I)) → 0 there is n0 > 0 such that
diam(fn(W cs

loc(I))) ≤ ζ for all n ≥ n0. Then we may find a finite subset E such
that (ζ, n0)-spans W cs

loc(I) and this set also (ζ, n)-spans W cs
loc(I) for all n ≥ 0. It

follows readily that

h(f, W cs
loc(I), ζ) = lim sup

n→∞
1
n

log(rn(ζ, W cs
loc(I)) = 0

and therefore h(f, W cs
loc(I)) = 0.

On the other hand, if `(fn(I)) 6→ 0 then by [PS1, Proposition 3.1] we have
that for all z ∈ I, the omega -limit set of z, ω(z), is a periodic orbit or lies in a
periodic circle. In the proof of that proposition Pujals and Sambarino use that f
is of class C2. But this is used in the case when `(fn(I)) → 0 when n → ∞ in
order to argue as in Schwartz’s proof of the Denjoy property ([Sc]). If we already
know that `(fn(I)) 6→ 0 then it is enough to assume f of class C1 to ensure that
the ω-limit of I is contained in a periodic arc or circle and this is implicit in the
proof of [PS1, Proposition 3.1].
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In case of ω(x) being included in a periodic circle C this circle is normally hyperbolic
attracting a neighborhood V of C and points in V converge exponentially fast to C.
If f is C2 then as in [PS1] we conclude that the dynamics by f τ (τ being the period
of C) in C is conjugate to an irrational rotation while if f is just C1 we only have
semi-conjugacy (we may have a Cantor set in C and wandering intervals). In any
case (conjugacy or semi-conjugacy with an irrational rotation Rα) we profit from
the fact that h(Rα) = 0. This implies that if f τ/C is conjugate or semi-conjugate
to Rα then h(f τ/C) = 0.
On the other hand if ω(x) is a periodic orbit, say of a point q, since `(fn(I)) < δ
for all n ≥ 0 we have that there is a periodic point q′ in W cu

loc(q) such that attracts
points in fn(I\{x}) (for instance the other end-point of fn(I) different from fn(x)),
see [PS1, Lemma 3.3.1]. Note than since W cu

loc(q) is an arc, the period of q′ is the
same of that of q, or the double of it. Let P be the set of periodic points of f
in W cu

loc(q)\{q}. Then all of them have the same period, say τ . The set P divides
W cu

loc(q) in arcs on which the dynamics by f τ is monotone. It follows that the
topological entropy of f τ/W cu

loc(q) is zero.
So in both cases, periodic orbit or periodic circle, f τn(W cs

loc(I)) approaches an f τ

invariant one-dimensional manifold L such that the topological entropy h(f τ ,L) =
0. Let ζ > 0 and m ∈ IN large be given an find S′ ⊂ L, (m, ζ) spanning L. We
may find n0 and a subset S of fn(I) for n ≥ n0, such that (m, ζ) spans fn(I) with
respect to f τ . Projecting along the fibers of the local center-stable manifolds which,
by equation (1), are dynamically defined (W cs

loc(z) is strong stable for all z ∈ L)
we know that there is n1 > 0 such that for any point z ∈ I, `(fn(W cs

loc(z))) < ζ.
We add points to S in order to ensure that we do have a (m, ζ) spanning set for
fm(W cs

loc(I)) for m = 0, 1, . . . , n1 − 1. We conclude that h(f,W cs
loc(I), ζ) = 0 . Since

ζ > 0 is arbitrary we obtain that h(f, W cs
loc(I)) = 0. By [Bo, Corollary 2.3] we have

that if there is a ε-E-interval I such that Γε(x) ⊂ W cs
loc(I) then h(Γε(x), f) = 0.

Similarly if y ∈ W cs
loc(x) then J = [x, y]cs is an ε-F -interval and reasoning with

the α-limit of J we obtain that h(f,W cu
loc(J)) = 0 .

Assume now that y /∈ W cs
loc(x), y /∈ W cu

loc(x). By domination

‖Df/E(z)‖ ‖Df−1/F (f(z)‖ < λ, ∀ z ∈ K

and this still holds for points such that their orbits are in the δ0-neighborhood
of K as is the case of y. Therefore there are defined W cs

loc(y) and W cu
loc(y) which

are embedded arcs. Since the angle between E and F is bounded by γ > 0 from
below, reducing ε if it were necessary, we may assume that W cs

loc(y) cuts W cu
loc(x)

and W cs
loc(x) cuts W cu

loc(y) in points yF and yE respectively. By our assumption
yE 6= x and yF 6= x.
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Figure 3: Case when y /∈ W cs
loc(x), y /∈ W cu

loc(x).

Suppose that there are n > 0 arbitrarily large such that for λ1 it holds that

n∏

j=1

‖Df/E(f−j(yE))‖ ≤ λn
1 .

Then, choosing λ2 and λ3 as we did above, by Pliss ’ Lemma there is N =
N(λ1, λ2) ∈ IN and c = c(λ1, λ2) > 0 such that if n > N there is n1 > c · n
such that

h∏

j=1

‖Df/E(f−j(yE))‖ ≤ λh
2 ∀ 1 ≤ h ≤ n1 ,

and changing λ2 by λ3 the same holds for points z in [x, yE ]cs. It follows that
dist(x, yE) ≤ dist(f−n1(x), f−n1(yE))λn1−1

3 . Therefore

dist(f−n1(x), f−n1(yE)) ≥ dist(x, yE)
λn1

3

.

Since by (2)

dist(f−n1(x), f−n1(y)) ≥ dist(f−n1(x), f−n1(yE))
sin γ

2 + sin γ
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we conclude, taking into account that 0 < λ3 < 1, that

dist(f−n1(x), f−n1(y)) ≥ dist(x, yE)
λn1

3

· sin γ

2 + sin γ
> ε

if n1 is large enough contradicting the fact that y ∈ Γε(x). We conclude in this
case that yE must coincide with x contradicting our hypothesis.

So, we cannot have arbitrarily large contraction from time −n to 0 and as a
consequence we have that [x, yE ]cs is a δ-F -interval for some 0 < δ < δ0. So the
arguments employed above in the case when y ∈ W cu

loc(x) apply.
In any case we have proved that

Γε(x) ⊂ W cs
loc(J) ∪W cu

loc(I)

for a δ-E-interval I and a δ-F -interval J and that

h(f, W cs
loc(J)) = h(f, W cu

loc(I)) = 0

so that h(f, Γε(x)) = 0.

4 Proof of Theorem B

In this section we prove the following

Theorem 4.1. Let M be a compact boundaryless C∞ surface and f : M → M
be a Cr diffeomorphism. Let H(p) be an f-homoclinic class associated to the f-
hyperbolic periodic point p. Assume that there is a C1 neighborhood U of f such
that for any g ∈ U it holds that there is a continuation H(pg) of H(p) such that
H(pg) is h-expansive. Then H(p) has a dominated splitting.

In order to prove this theorem we will use results of Downarowicz and Newhouse
(see [DN] and [Nh2]). Recall that a subshift (g, Y ) is the restriction of the full shift
in a finite alphabet to a closed invariant subsystem.

Definition 4.1. Let f : X → X be a homeomorphism of a compact metric space
X. A symbolic extension of the pair (f, X) is a pair (g, Y ), where (g, Y ) is a
subshift with a continuous surjection π : Y → X such that fπ = πg. A symbolic
extension is principal if the topological entropy of the extension coincides with that
of the original system, that is, h(g, Y ) = h(f, X).

In [DN] the following theorems are proved.

13



Theorem 4.2. Fix 2 ≤ r < ∞. There is a residual subset R of the space Diff r(M)
of C r-diffeomorphisms of a closed surface M such that if f ∈ R and f has a
homoclinic tangency, then f has no principal symbolic extension.

Proof. See [DN, Theorem 1.4].

Moreover, if f has no principal symbolic extension then f cannot be asymptot-
ically h-expansive as has been proved by M. Boyle, D. Fiebig and U. Fiebig (see
[BFF]).

Proof of Theorem B. Let M and f : M → M be as in Theorem A and H(p)
an f -homoclinic class associated to the f -hyperbolic periodic point p. Assume
that there is a C1 neighborhood U of f such that for any g ∈ U it holds that
there is a continuation H(pg) of H(p) such that H(pg) is h-expansive. Let x ∈
W s(p) ∩W u(p) be a transverse homoclinic point associated to the periodic point
p . We define E(x) = TxW s(p) and F (x) = TxW u(p). Since p is hyperbolic we
have that E(x) ⊕ F (x) = TxM . Moreover, E(x) and F (x) are Df -invariant, i.e.:
Df(E(x)) = E(f(x)) and Df(F (x)) = F (f(x)).

By definition H(p) = clos(hom(p)) where hom(p) is the set of transverse ho-
moclinic points associated to p so if we prove that there is a dominated splitting
for hom(p) we are done since then we can extend by continuity the splitting to the
closure H(p).

Let us prove that there is a dominated splitting for hom(p). To do so it is
enough to prove that there exists m > 0 such that for some k : 0 ≤ k ≤ m it holds
for all x ∈ hom(p) that

‖Dfk/E(x)‖ ‖Df−k/F (fk(x))‖ ≤ 1
2

.

Hence arguing by contradiction let us assume that for all m > 0 there is xm ∈
hom(p) such that for all k : 0 ≤ k ≤ m we have

‖Dfk/E(xm)‖ ‖Df−k/F (fk(xm))‖ >
1
2

.

Using the arguments developed by Mañé for periodic points in [Ma1] modified as in
[SV] for homoclinic points, for any γ > 0 and ε > 0 we may find m > 0, depending
on ε and γ, such that with an ε-C1-perturbation g′ of f we obtain a homoclinic point
xg′ associated to pg′ such that the angle at xg′ between W s

loc(xg′ , g
′) and W u

loc(xg′ , g
′)

is less than γ. Since C2-diffeomorphisms are dense in C1-topology we may assume
that g′ is C2. Since γ is arbitrarily small we may C1-perturb g′ obtaining g of
class C2 with a tangency at xg between W s

loc(xg) and W u
loc(xg). Moreover this

perturbation can be assumed to give us a C2-robust tangency of Hènon-like type
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(see [Nh1]). By the results of [DN] and [Nh2] we conclude that there is no symbolic
extension for g/H(pg). Therefore, by [BFF], g/H(pg) is not asymptotic h-expansive
and a fortiori it is not h-expansive contradicting our hypotheses. This finishes the
proof of Theorem B.
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