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Abstract. In this paper we prove analyticity, stability and monotonicity of the filtration
function obtained as the solution of an inverse problem based on experimental measurements
of other quantities. The results follow from properties of a functional equation derived
from the model equations. Based on these results we propose modifications to a previously
presented method for determining the filtration function from effluent concentration history,
which make it more robust. Numerical results are presented.

1. Introduction

Models for deep bed filtration during the injection of water with solid inclusions depend
on an empirical filtration function λ(σ) that represents the rate of particle retention as a
function of deposition σ. This function cannot be measured directly, but must be recovered
from the measurements of injected and effluent particle concentrations.

Methods for determining a constant filtration coefficient λ from the effluent particle con-
centration history at the core outlet were studied in [14, 16, 7, 5]. In [2] a more general
method is presented, that determines a variable filtration λ(σ) based on the effluent and
injected particle concentration histories by solving a functional equation; this equation is
derived from an invariant along characteristic lines for the particle transport equation.

Some issues, related to the monotonicity and analyticity of the filtration function, were not
solved in [2]. The analyticity properties of the recovered solution justified the optimization
method utilized in [13], which imposed an analytical expression for the filtration function.
Physically, one expects λ(σ) to be a decreasing function; this was imposed in [2] through
assumptions on the data. These properties were also imposed in [13], where the cost function
to be optimized was restricted to a space of functions with these nice properties. In this
paper, we establish these properties as consequences of hypotheses on the experimental data
that can be easily verified.

Another aspect is related to oscillations observed in the numerical solution for λ(σ) that
appear in many situations, even when the outlet effluent concentration is smooth. In [2], an
artificial function space was found to allow stable numerical differentiation. Here a stronger
stability criterion is established, based on intrinsic properties of the functional equation.
These properties are the basis for a more robust method to recover the filtration function.

The numerical method developed in [15] suggests the usage of a system of equations differ-
ent from the basic equations used in [2]. It has been verified for real data that the suspended
particle concentration varies slowly with respect to the deposited particle concentration in
deep filtration. Thus it is reasonable to neglect the time derivative of the suspended particle
concentration from the mass conservation equation. This modification, called “first approxi-
mation” in the fundamental work of Herzig et al. [8], does not introduce significant changes
in the solution, while making it numerically easier to calculate. Much of the recovery method
developed in [2] is still valid for this case.
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This paper is organized as follows. In Section 2, we present the deep bed filtration model as
a quasi-linear hyperbolic system of equations. In Section 3, the recovery method for obtaining
the filtration function, which utilizes a functional equation, is summarized. In Section 4, we
present conditions for the monotonicity of λ(σ). In Section 5, we prove that λ(σ) is analytic,
assuming that the history of the effluent particle concentration ce satisfies certain properties,
including analyticity. The stability condition of the inverse problem is obtained in Section 6,
as a consequence of intrinsic properties of the functional equation. Numerical experiments
are presented in section 7. The method used in this case is different from that in [2], where
the stability depends on the numerical differentiation method employed.

2. The Direct problem

Our work utilizes the model for deep bed filtration developed in the fundamental work
of Herzig et al. [8], which consists of equations expressing the particle mass conservation
and the particle retention process [6, 8, 12]. They form a quasi-linear hyperbolic system of
equations containing the empirical filtration function λ(σ), which represents the kinetics of
particle retention. For linear flow, this model is given in non-dimensional form by a mass
conservation of particles

∂σ

∂T
+

∂c

∂X
= 0, (2.1)

and the empirical constitutive equation

∂σ

∂T
= λ(σ)c. (2.2)

The physical domain is dimensionless position X ∈ [0, 1] and time T ≥ 0. The non-
dimensional time “unit” is called PVI, from “pore volume injected”. The unknowns c(X,T )
and σ(X,T ) are the suspended and deposited particle concentrations, respectively. As
boundary data, we assume that the solid particle concentration entering the porous medium
is given and constant, i.e.,

c(0, T ) = co > 0, T ≥ 0. (2.3)

We have taken the inlet concentration c(0, T ) as constant just for simplicity. The general
case for variable inlet concentration data is studied in [1] and [2]; the results from the current
work extend directly to the general case.

As initial data, we assume that the rock contains no deposited particles:

σ(X, 0) = 0, 0 ≤ X ≤ 1. (2.4)

Remark 2.1. The direct problem of determining c(X, T ) and σ(X,T ) given λ(σ), i.e.,
solving the system (2.1)–(2.4), but using the “third approximation” of [8]

∂

∂T
(c + σ) +

∂c

∂X
= 0

instead of the “first approximation” (2.1), was studied in [2]; see also [3].

The existence and well posedness of the direct problem (2.1)–(2.4) can be established as
in [2] under the following:

Assumption 2.2. The filtration λ(σ) is a positive C1 function in 0 ≤ σ ≤ 1.
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From (2.2) and (2.3) we obtain the following ordinary differential equation along the line
X = 0:

d

dT
σ(0, T ) = λ(σ(0, T ))co, and σ(0, 0) = 0. (2.5)

Integrating (2.5) provides σ(0, T ), which under Assumption 2.2 is always positive and in-
creasing. The proof of the following result is similar to the proof of Theorem 2.4 in [2].

Theorem 2.3. Under Assumption 2.2, there exists a unique, well-posed solution in R =
{(X, T ) : 0 ≤ X ≤ 1; T ≥ 0} for the system (2.1)–(2.2) with boundary data (2.3) and initial
data (2.4). This solution is C2(R); it is obtained by solving for each T the system of ODE’s

dσ

dX
= −λ(σ)σ and

dc

dX
= −λ(σ)c, (2.6)

with initial conditions for (2.6a) given by σ(0, T ) calculated in (2.5) and for (2.6b) given by
c(0, T ) in (2.3).

Lemma 2.4. Consider the solution of (2.1)–(2.4) from Theorem 2.3. Then

σ(X, T )

c(X, T )
=

σ(0, T )

c(0, T )
, for T ≥ 0. (2.7)

Proof: Dividing (2.6a) by (2.6b) for constant T we obtain dσ/dc = σ/c. Integrating this
equation, we see that σ/c is invariant along lines T = const, hence (2.7) ¤.

Remark 2.5. Since the RHS of (2.6b) is negative, the function c(1, T ) is C2 and c(1, T ) < co

in some time interval [0, A], see [1].

As an example, the solution of (2.1)–(2.2) with data (2.3)–(2.4) for constant filtration
function λ(σ) = λ0 is:

c(X, T ) = coe
−λ0X , σ(X,T ) = λ0coTe−λ0X . (2.8)

For sufficiently large times, this solution is almost the same as the solution of the variant
of the model described in Remark 2.1, used in [2] and [5]. We expect the two models to
give almost identical results for any filtration function λ(σ) except for short times, which
are not relevant in practice, and focus on the system (2.1)–(2.2), because it has numerical
advantages (see [15]).

3. The functional equation

Here we summarize a recovery method for the filtration function analogous to that in [1]
and [2]. Assume that the effluent concentration c(1, T ) is a given C2 function of T . We
introduce the C3 function in 0 ≤ T ≤ A

C(T ) ≡
∫ T

0

c(1, s)ds, (3.1)

where A is the latest dimensionless time for which the data ce(T ) are available.
We now obtain relationships between the deposited and suspended particle concentrations

at the inlet and outlet points. From Assumption 2.2, we can define the first integral Ψ of
1/λ and the quantity m

Ψ(σ) =

∫ σ

0

dη

λ(η)
, m =

∫ 1

0

dη

λ(η)
, (3.2)
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such that
∂Ψ(σ)

∂T
= c, for σ ∈ [0, 1], (3.3)

see [2]. Notice that Ψ(0) = 0. We integrate equation (3.3) in T : using equation (2.4) we
find Ψ(σ(0, T )) = coT , and using (3.1) we find Ψ(σ(1, T )) = C(T ). From Assumption 2.2
and the definitions in (3.2), we know that Ψ′(σ) = 1/λ(σ) > 0, so there exists a function
g : [0,m] → [0, 1], with g(0) = 0 inverse of the function ψ = Ψ(σ)/co. Setting X = 1 in
(2.7), we obtain the following functional equation for σ = g(ψ):

g(C(T )) =
c(1, T )

co

g(coT ) =
C
′
(T )

co

g(coT ) for T ≥ 0.

Finally, denoting

τ ≡ coT so that
dT

dτ
=

1

co

, B = coA and D(τ) ≡ C(τ/co), (3.4)

equation (3.4) can be rewritten as

g(D(τ)) = D′(τ)g(τ) for τ ∈ [0, B], (3.5)

which is known as Julia’s equation in g for the prescribed D, see [10].

3.1. Recovery of the filtration function. In this section we show how to recover the
filtration function λ(σ) using (3.5), based on linear flow experimental data co and ce(T ).
The effluent concentration ce can be measured in the laboratory. The inlet concentration
co is known provided particles are not retained at the injection face, i.e., if there is no cake
formation ([1]). Ideally, the recovered λ(σ) should yield c(1, T ) = ce(T ) for the solution of
(2.1)–(2.4). In the situation of interest in this work, c(1, T ) should approximate well ce(T ).
Using (3.1) and (3.4) we redefine

D(τ) =

∫ τ/co

0

ce(s)ds, D : [0, B] → R. (3.6)

Motivated by the fact that the filtration function λ should be positive and by Remark 2.5
we make the following:

Assumption 3.1. The function ce(τ) is C2[0, B] and 0 < ce < co.

The existence and uniqueness of the solution of (3.5) is studied in [2], where the following
theorem is proved:

Theorem 3.2. Consider the Banach space G0
2 = {g ∈ C2[0, B], g(0) = 0} with norm

‖g‖ = ||g||∞ + ||g′||∞ + ||g′′||∞. Let D : [0, B] → R given by (3.6) be a C2 monotone
increasing function, such that D(0) = 0, D(τ) < τ and D

′
(0) < 1. Then the functional

equation (3.5) has a solution g ∈ G0
2, which is uniquely defined by the value of g′(0).

This unique solution is given by

g(τ) = g′(0)
∞∏

n=0

D(τn)

D′(τn)τn

, with τn = Dn(τ) ≡ D(Dn−1(τ)) and D0(τ) = τ ; (3.7)

here, D is given in (3.6) and τ ∈ [0, B] is arbitrary. The solution is completed the expressions

g′(0) = λ(0) = − log(ce(0)/co). (3.8)
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and

λ(σ) =
1

ψ′(σ)
=

dg

dτ
(τ) = g′(τ), (3.9)

which can be derived from the definition of g and equation (3.2) (see [2]).

4. Monotonicity

One of the physical premisses of the model is that the retention rate decreases when
the deposited particle concentration increases. Thus the filtration function λ(σ) should be
monotone decreasing. In this section we present conditions for the monotonicity of the
solution g of (3.5) and the derivative of the effluent concentration history. Differentiating
(3.5) and dividing by D

′
yields

g′(D(τ)) = g′(τ) + h(τ) for τ ≥ 0, with h(τ) =
D
′′

D′ (τ)g(τ). (4.1)

If the function h in (4.1) is monotone increasing one obtains sufficient conditions for the
filtration function to be monotone decreasing. We will need the following:

Assumption 4.1. We assume that (log(ce(τ)))
′
is a monotone increasing function in [0, B].

Remark 4.2. Notice that if c
′′
ece − (c

′
e)

2 > 0, an easy test to perform on the data, then
Assumption 4.1 holds. This follows from (log(ce(τ)))

′′
= (c

′′
ece − (c

′
e)

2)/c2
e.

The main result of this section is

Theorem 4.3. Under Assumption 4.1, if the solution g of (3.5) is a monotone increasing
function then the filtration function is monotone decreasing.

To prove this theorem, we must first introduce Lemma 4.4, which is a direct application
of Theorem 2.3.6, pag. 65 of [10] to our case:

Lemma 4.4. Let g ∈ G0
2 in equation (4.1). If the function h in (4.1) is monotone increasing

and limτ→0 h(τ) = 0, then equation (4.1) has a unique one-parameter family of monotone
decreasing solutions, which satisfy

g′(τ) = g′(ξ)−
∞∑

n=0

(
h(τn)− h(ξn)

)
. (4.2)

Here ξ is an arbitrary positive value; τn, ξn are given in (3.7b): τn = Dn(τ), ξn = Dn(ξ).

Remark 4.5. Taking ξ = 0 in (4.2) and using that g(0) = 0, formula (4.2) can be rewritten
as

g′(τ) = g′(0)−
∞∑

n=0

h(τn). (4.3)

Using (3.5), we define

Qi(τ) =
∞∑

m=0

D
′′
i (τm,i)

D
′
i(τm,i)

m∏
j=1

D
′
i(τm−j,i) or Qi(τ) =

∞∑
m=0

D
′′
i (τm,i)

D
′
i(τm,i)

τ
′
m,i, i = 1, 2; (4.4)

and (4.3) becomes
g′(τ) = g′(0)−Q(τ)g(τ). (4.5)

Eq. (4.5) is an explicit formula for λ(σ) since λ(σ) = g′(τ). The quantity λ(0) is given in
terms of experimental data in (3.8), Q(τ) in (4.4) and g in (3.7).
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Remark 4.6. If the function h in (4.1) is monotone increasing then λ is monotone decreasing.
To see this fact, we make τ < ξ in (4.2) and use τn < ξn (see 3.7b), which follows from the
fact that Dn is an increasing function. Then λ = g′ is monotone decreasing.

Now we can prove Theorem 4.3. The solution g ∈ G0
2 of equation (3.5), given in (3.7),

and D
′′
/D

′
= (1/co)(log(ce))

′
are both monotone increasing. From (4.1), we have that h is

monotone increasing as well. Finally, from Lemma 4.4 (see Remark 4.6), the solution of the
functional equation (4.1) is monotone decreasing. Recalling that λ = g

′
, we obtain that the

filtration function is monotone decreasing. ¤.
However, if we establish the monotonicity of the solution of the functional equation (3.5),

we can derive an alternate form of Theorem 4.3. We use the following:

Assumption 4.7. For τ ∈ [0, B] we assume that

(D
′
(τ))2τ −D(τ)(D

′
(τ)τ)

′
> 0. (4.6)

Lemma 4.8. Assume that the hypotheses of Theorem 3.2 are satisfied and let D in (3.6)
be such that Assumption 4.7 holds. Then the solution g of the functional equation (3.5) is
monotone increasing.

Proof: We set

G(τ) =
D(τ)

D′(τ)τ
, so that G′(τ) =

(D
′
(τ))2τ −D(τ)(D

′
(τ)τ)

′

(D′(τ)τ)2
; (4.7)

notice that G
′
is a fraction with numerator that coincides with the LHS of inequality (4.6)

and a positive denominator. Then Assumption 4.7 ensures that G
′
> 0 for all τ ∈ [0, B].

Let τ < ξ: substituting G from (4.7) in (3.7), we have

g(τ)/g(ξ) =
∞∏

j=1

(G(τj)/G(ξj)). (4.8)

Using the facts that τj < ξj and that the function G in (4.7) is increasing, we have G(τj) <
G(ξj) for j = 1, 2 . . .; and as a consequence of (4.8) we have g(τ) < g(ξ), so g is increasing.
¤

This allows us to put Theorem 4.3 in terms of Assumption 4.7:

Theorem 4.9. Under Assumptions 4.1 and 4.7, the filtration function is monotone decreas-
ing.

5. Analyticity

We now prove that λ(σ) is a real analytic function provided the effluent concentration
ce(τ) is real analytic, i.e.:

Lemma 5.1. If ce(τ) is real analytic in [0, B], then the solution of (3.5) is real analytic.

Because ce(τ) is real analytic, so is its integral D, and D
′

is also analytic. Since the
product and composition of analytic functions are analytic, the reciprocal of an analytic
function that is nowhere zero is analytic, then D(τ)/D′(τ)τ is analytic. Using the uniform
convergence of the series of the logarithm of (3.7), established in [2] under the hypotheses
of Theorem 3.2, we obtain that g is real analytic, and so is its derivative, and from (3.9) we
conclude that the filtration function λ(σ) is real analytic as well.
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Remark 5.2. In [2] the filtration function was obtained by solving equation (3.5) first
through the iterative procedure (3.7) and then by numerical differentiation. The latter step
is intrinsically ill-posed, so that oscillations were obtained in the solution. Formula (4.5)
avoids numerical differentiation of g: via Remark 4.5, we only need to replace the data ce by
an analytic approximation, if possible satisfying Assumptions 4.1 and 4.7.

6. Stability

Continuous dependence of the functional equation solution g on the given coefficient func-
tion D was established in [9]. However, actual bounds were not established. Here we give
such bounds that imply stability. Conditions for numerical stability of an implementation
of a recovery method for λ given co and ce were presented in [2]; we now establish stabil-
ity conditions based solely on intrinsic properties of the functional equation (3.5) and on
bounds on the data. To do so, in addition to the hypotheses for Theorem (3.2), we impose
the following:

Assumption 6.1. We assume that co, ce(τ) are such that D(τ) defined in (3.6) is a non-
negative C3 function for 0 ≤ τ ≤ B with B defined in (3.4) satisfying

0 ≤ D(τ) < τ, 0 < D′(τ) < d for 0 ≤ τ ≤ B; D(0) = 0 and D′′(0) 6= 0, (6.1)

where d < 1 is a constant. We assume that there exists a constant p such that

(D′′(τ)− 2D′(τ))/D′(0) < p, for all τ ∈ [0, B]. (6.2)

Assumption 6.2. We assume that the effluent particle concentration ce(τ) is restricted to

M = {ce ∈ C2[0, B] : 0 < r1 < ce(τ) ≤ r2 < co, 0 ≤ r3 ≤ c′e(τ) ≤ r4, r5 ≤ c′′e(τ) ≤ r6},
(6.3)

for certain constants r1, .., r6: notice the strict inequalities 0 < r1 < ce and r2 < co. Analo-
gously, the inlet particle concentration is restricted as follows:

0 < r7 < co < r8, (6.4)

for certain constants r7, r8.

Remark 6.3. The interval for co in (6.4) allows for experimental errors in the co measure-
ments to be taken into account, and for the definition of a single stability criterion for data
obtained from experiments for which co differs. The stability criterion derived here can also
be applied to the case where c(0, T ) is not constant, as is assumed in this work, but instead
varies along time in an interval [r7, r8].

Remark 6.4. In the case of constant filtration function, obviously the solution (2.8) of the
system satisfies Assumptions 6.1, 6.2 for X ∈ [0, 1].

Remark 6.5. Recall the expression for g′(0) in (3.8). Assumption 6.2 implies that g′(0) 6= 0,
and g′(0) < f for a certain constant f . These are consequences of the strict inequalities
imposed on r1 and r2 respectively. We consider here the class of solutions of the functional
equation (3.5) that satisfies the above conditions on g′(0).

The main result of this section is the following stability result.
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Theorem 6.6. Let us consider co1, co2, ce1, ce2 and define

D1(τ) ≡
∫ τ/co1

0

ce1(s)ds, D2(τ) ≡
∫ τ/co2

0

ce2(s)ds, (6.5)

such that Assumptions 6.1 and 6.2 are satisfied. Then there exist data-independent constants
m1, m2 such that

||λ1 − λ2||∞ ≤ m1|co1 − co2|+ m2

(
||ce1 − ce2||∞ + ||c′e1 − c

′
e2||∞

)
. (6.6)

In (6.6), the sup-norm is taken on [0, 1] for the filtration function and on [0, B] for the
effluent concentration function and its derivative. The proof of Theorem 6.6, found in Ap-
pendix A. is built from a number of lemmas. Accurate estimates for the constants appearing
in equation (6.6) can be easily collected from the lemmas. They are useful to evaluate to
sensitivity of the filtration function to the concentration data.

Remark 6.7. Since λ(σ) and ce(τ) are analytic, inequalities similar to (6.6) hold for deriva-
tives of all orders.

7. Numerical experiments

In [2] examples were shown illustrating that the filtration function λ(σ) was non–decreasing,
contrary to desired physical behaviour, even when the solution g of the functional equation
(3.5) was non–decreasing, as expected (recall that λ = g′). To obtain monotonicity a careful
but heuristic pre– and post–processing of data was done to obtain physically nice results.
Even so, this data processing allowed us to handle the data given in [11] only up to 70 PVI,
and required considerable human intervention.

Theorem 4.3 proves that a monotone decreasing filtration function is obtained when input
data and the solution of the functional equation (3.5) satisfy certain properties. To illustrate
this fact numerically, we take experimental data in a much longer time range than that
used in [2] and approximate the data by the real analytic functions given in Table 7.1. The
regularized approximations are very close to the original data, as can be seen in Figure 7.1.
Results with these approximations are better. We obtain filtration functions for which the
solution of the direct problem accurately matches the input data series up to 350 PVI rather
than only 70 PVI, i.e, these results are physically plausible for the whole data series. The

Series Expression Coefficients
1 a− b exp(−cxd) a = 0.95, b = 0.81, c = 2.9× 10−4, d = 1.72

2 a(1 + exp(b− cx)−1/d a = 0.83, b = 1.22, c = 0.01, d = 0.67

3 a + bx + cx2 + dx3 + ex4
a = 0.10, b = 1.3× 10−3, c = −2.8× 10−6

d = 2.6× 10−8, e = −5.3× 10−11

4 a + b cos(cx + d) a = 0.16, b = 0.04, c = 0.02, d = 1.26
Table 7.1. Analytic expressions used to approximate the four data series.

first three experimental series were approximated by functions with positive derivatives (see
Figure 7.1b), leading to monotone increasing g and monotone decreasing λ. On the other
hand, in the case of the fourth series, we see that when ce is non-monotone we obtain the
strange non-monotone profile for λ shown in Figure 7.2a as the top dotted curve.
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For the sake of verification, we solve the direct problem using the recovered filtration
function and we calculate the corresponding effluent concentration, shown in Figure 7.2b.
These values match accurately the regularized data shown in Figure 7.1b.
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a) Raw data series.
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b) Real analytic fits.

Figure 7.1. The left picture shows the data from [11]. The right picture
shows the approximations given by the expressions in Table 7.1. Each of the
curves here and in Figure 7.2 corresponds to one experiment.
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a) Filtration functions.
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b) Recovered profiles.

Figure 7.2. The filtration functions shown on the left figure were obtained
by solving the inverse problem with the smooth data presented in Figure 7.1b;
the direct problem was then solved using these filtration functions to produce
the figure on the right, which shows profiles visually indistinguishable from
the input data shown in Figure 7.1b.

These numerical experiments show that the extension defined here to the method intro-
duced in [2] for the calculation of the filtration function, using real analytic approximations
for the effluent concentration history, provides a simple, robust and fast algorithm applicable
to real data [4].

8. Conclusions

In a previous work [2], we assumed on physical grounds that the recovered filtration func-
tion had a monotonicity property. In this work, we establish mathematical conditions that
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ensure this monotonicity in terms of properties of the experimental data, and provide sta-
bility conditions based on intrinsic properties of the functional equation, such as analyticity.
The analyticity results presented here justify the use of analytic approximations for the
filtration function already used for the recovery method in [13], as well as for the effluent
concentration data, which are shown here to generate good results.

Appendix A. Proof of the stability theorem

Theorem 6.6 provides bounds that express the continuous dependency of the solution g(τ)
of (3.5) on the particle concentrations co, ce(τ), under Assumptions (6.1), (6.2). The proof is
built on a number of lemmas. The idea is to first estimate how changes in the concentration
co and ce modify D and its derivatives. This step is accomplished with Lemmas A.3 and
A.4. Next, we estimate how changes in D affect g(τ) and Q(τ) in (4.5). These estimates are
obtained in Lemmas A.5 through A.12.

We stress that all following derivations are under Assumptions 6.1 and 6.2. Denoting
s = D(τ), Equation (3.5) can be rewritten as

g(s) = D′(D−1(s))g(D−1(s)). (A.1)

We denote the inverse of Di as Υi = D−1
i (s) for i = 1, 2. All derivatives (e.g., D′) are with

respect to τ .
Some definitions will be useful as well: constants will be called “data-independent” if

they depend on co1, co2, ce1, ce2 only through the bounds for these quantities expressed in
Assumptions (6.1), (6.2), and the bounds for g and g′ given in the following theorem, which
was proved for d in (6.1b), p in (6.2) and f in Remark 6.5 (see [1, 2]).

Theorem A.1. The solutions g of the functional equation (3.5) are uniformly bounded by
f exp(1/(1− d)), and g′ are uniformly bounded by f exp(p/2(1− d)).

Remark A.2. The bound for the derivative g′ given in Theorem A.1 is correct. The different
bound given in the previous article [2] is a typographical error.

Lemma A.3. Under Assumptions (6.1), (6.2), there exist constants N1, . . . , N6 such that
(i) ||D′′

1 −D
′′
2 ||∞ ≤ N1|co1 − co2|+ N2||c′e1 − c

′
e2||∞,

(ii) ||D′
1 −D

′
2||∞ ≤ N3|co1 − co2|+ N4||ce1 − ce2||∞,

(iii) ||D1 −D2||∞ ≤ N5|co1 − co2|+ N6||ce1 − ce2||∞.

Proof: The derivatives of D1, D2 in (6.5) are D
′
1 = ce1/co1, D

′′
1 = c

′
e1/(co1)

2, etc.. We have

|c′e1/(co1)
2 − c

′
e2/(co2)

2| ≤ (co1co2)
−2((co2)

2|c′e1 − c
′
e2|+ |c′e2||(co1)

2 − (co2)
2|). (A.2)

Using N1 = 2r2
2/r

2
7 and N2 = r2

8/r
2
7 in (A.2) we obtain

||D′′
1 −D

′′
2 ||∞ ≤ N1|co1 − co2|+ N2||c′e1 − c

′
e2||∞.

We obtain analogously the inequalities (ii) and (iii).¤

Lemma A.4. Assuming, without loss of generality, that D1(B) < D2(B), there exists a
data-independent constant M such that the following inequalities hold:
(i) ||D−1

1 −D−1
2 ||∞ ≤ M ||D1 −D2||∞,

(ii) |D′
1(D

−1
1 (s))−D

′
2(D

−1
2 (s))| ≤ ||D′

1 −D
′
2||∞ + M ||D′

2||∞||D1 −D2||∞, s ∈ [0, D1(B)].
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Proof of (i): We assume that τ, η ∈ [0, D1(B)] ⊂ [0, D2(B)]. Fixed τ , let η = D1(D
−1
2 (τ));

it follows that D−1
1 (η) = D−1

2 (τ), and therefore

|D−1
1 (τ)−D−1

2 (τ)| = |D−1
1 (τ)−D−1

1 (η)|
We have D′

1 = ce1/co1, so (D−1
1 (τ))

′
= 1/D

′
1(τ) < (co1/r1), from Equation (6.3); using this

and (6.4) in the expression

D−1
1 (τ)−D−1

1 (η) =

∫ 1

0

∂

∂α
(D−1

1 (ατ + (1− α)η))dα,

we obtain

|D−1
1 (τ)−D−1

1 (η)| ≤ (co1/r1)|τ − η|
≤ (r8/r1)|D2(D

−1
2 (τ))−D1(D

−1
2 (τ))|. ¤ (A.3)

Proof of (ii): We apply the mean value theorem to the inequality

|D′
1(Υ1)−D

′
2(Υ2)| ≤ |D′

1(Υ1)−D
′
2(Υ1)|+ |D′

2(Υ2)−D
′
2(Υ1)|

to obtain

|D′
1(D

−1
1 (s))−D

′
2(D

−1
2 (s))| ≤ ||D′

1 −D
′
2||∞ + ||D′′

2 ||∞|D−1
1 (s)−D−1

2 (s)|; (A.4)

using (i) in (A.4) we obtain (ii). ¤

Lemma A.5. Let us denote by g1, g2 two solutions of Eq. (3.5) in G satisfying (3.8) with
corresponding D1, D2. Then there exist data-independent constants v1, v2, such that

||g1 − g2||∞ ≤ v1|co1 − co2|+ v2||ce1 − ce2||∞. (A.5)

Proof: From (A.1), we write

|g1(s)− g2(s)| = |D′
1(Υ1)g1(Υ1)−D′

2(Υ2)g2(Υ2)|
≤ |D′

1(Υ1)g1(Υ1)−D′
2(Υ2)g2(Υ1)|+ (A.6)

|D′
2(Υ2)g2(Υ1)−D′

2(Υ2)g2(Υ2)|;
applying the mean value theorem to the last two lines in the previous expression yields, for
the first one,

|D′
1(Υ1)g1(Υ1)−D′

2(Υ2)g2(Υ1)|
≤ |D′

1(Υ1)g1(Υ1)−D′
2(Υ2)g1(Υ1)|+ |D′

2(Υ2)g1(Υ1)−D′
2(Υ2)g2(Υ1)|

= |g1(Υ1)||D′
1(Υ1)−D′

2(Υ2)|+ |D′
2(Υ2)||g2(Υ1)− g1(Υ1)|

≤ ||g1||∞|D′
1(Υ1)−D′

2(Υ2)|+ ||D′
2||∞|(g2 − g1)(Υ1)|,

and for the second,

|D′
2(Υ2)g2(Υ1)−D′

2(Υ2)g2(Υ2)| ≤ ||D′
2||∞||g

′
2||∞||D−1

2 −D−1
1 ||∞.

Since ||D′
2||∞ < d < 1 (Assumption 6.1) we have from the previous inequalities that

(1− d)||g1 − g2||∞ ≤ ||D′
2||∞||g

′
2||∞|||D−1

2 −D−1
1 ||∞ + ||g1||∞|D′

1(Υ1)−D′
2(Υ2)|.

Finally, (A.5) is obtained applying Theorem A.1 and Lemmas A.3 and A.4 to the expression
above. ¤
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Lemma A.6. Let τm,i = Dm
i (τ), (see Equation (3.7b)) with i = 1, 2 and m = 0, 1, . . .. The

following inequalities hold:

|τm,2 − τm,1| ≤ ||D1 −D2||∞
m∑

k=0

dk. (A.7)

Proof: We prove this Lemma by induction. It is easy to see that the inequality for m = 0
is valid, using τ0,1 = D1(τ), τ0,2 = D2(τ); as induction hypothesis, assume that it is valid for
m. From the definitions in (3.7) and (6.1), and the mean value theorem, we write

|τm+1,2 − τm+1,1| ≤ |D2(D
m
2 (τ))−D2(D

m
1 (τ))|+ |D2(D

m
1 (τ))−D1(D

m
1 (τ))|

≤ ||D′
2||∞|τm,2 − τm,1|+ ||D1 −D2||∞

≤ d|τm,2 − τm,1|+ ||D1 −D2||∞

≤ d||D1 −D2||∞
m∑

k=0

dk + ||D1 −D2||∞

≤ ||D1 −D2||∞
(

1 + d

m∑

k=0

dk

)
= ||D1 −D2||∞

( m+1∑

k=0

dk

)
.¤

Lemma A.7. Let τm,i be as in Lemma (A.6). The following inequalities hold:

(i) |D′′
1 (τm,1)−D

′′
2 (τm,2)| ≤ ||D′′

1 −D
′′
2 ||∞ + ||D′′′

2 ||∞||D1 −D2||∞
m∑

k=0

dk.

(ii) |D′
1(τm,1)−D

′
2(τm,2)| ≤ ||D′

1 −D
′
2||∞ + ||D′′

2 ||∞||D1 −D2||∞
m∑

k=0

dk.

Proof: We prove only (i), since the proof of (ii) is analogous. Using the mean value
theorem, we derive

|D′′
1 (τm,1)−D

′′
2 (τm,2)| ≤ |D′′

1 (τm,1)−D
′′
2 (τm,1)|+ |D′′

2 (τm,1)−D
′′
2 (τm,2)|

≤ ||D′′
1 −D

′′
2 ||∞ + ||D′′′

2 ||∞|τm,1 − τm,2|.
Applying Lemma A.6 to the expression above yields (i). ¤
Lemma A.8. Let τm,i be as in Lemma (A.6), but m = 1, 2, . . .. The following inequalities
hold:

m∑
j=1

|D′
1(τm−j,1)−D

′
2(τm−j,2)| ≤ ||D′′

2 ||∞
( m∑

j=1

m−j∑

k=0

dk

)
||D1−D2||∞ + m||D′

1−D
′
2||∞. (A.8)

Proof: Using the mean value theorem, we write

|D′
1(τm−j,1)−D

′
2(τm−j,2)| ≤ |D′

1(τm−j,1)−D
′
2(τm−j,1)|+ |D′

2(τm−j,2)−D
′
2(τm−j,1)|

≤ ||D′
1 −D

′
2||∞ + ||D′′

2 ||∞|τm−j,2 − τm−j,1|.
Applying Lemma A.6 to the summation of these inequalities from j = 1 to m yields (A.8).¤
Lemma A.9. Let τm,i be as in Lemma (A.8). The following inequalities hold:

0 < τ
′
m,i =

m∏
j=1

D
′
i(τm−j,i) ≤ dm, i = 1, 2. (A.9)
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Proof: It is an immediate application of the definition of d given in Equation (6.1), i.e.
0 < D′

i < d.¤

Lemma A.10. Recall the definition of Qi in Remark 4.5: the following inequalities hold

0 < Qi ≤ K, i = 1, 2, (A.10)

for some constant K.

Proof: Using Lemma (A.9) in (4.4) we obtain

|Qi(τ)| ≤
∥∥∥∥
D
′′
i

D
′
i

∥∥∥∥
∞

∞∑
m=0

dm =

∥∥∥∥
D
′′
i

D
′
i

∥∥∥∥
∞

1

1− d
≤ K, i = 1, 2.

(Recall that D
′′
i = c

′
e,i/(co,i)

2 and D
′
i = ce,i/co,i. Since ce,i in M and co,i satisfy (6.4) then

D
′′
i /D

′
i with i = 1, 2 are uniformly bounded).¤

Lemma A.11. For m = 1, 2, . . . the following inequalities hold:

(τm,1 − τm,2)
′ ≤ dm−1

m∑
j=1

|D′
1(τj,1)−D

′
2(τj,2)|. (A.11)

Proof: Notice that (τm,1 − τm,2)
′

=
∏m

l=1 D
′
1(τl,1) −

∏m
l=1 D

′
2(τl,2), we prove (A.11) by

induction. It is obvious for m = 1; assuming it is valid for m− 1, we write
∣∣∣∣

m∏

l=1

D
′
1(τl,1)−

m∏

l=1

D
′
2(τl,2)

∣∣∣∣

≤ |D′
1(τm,1)|

∣∣∣∣
m−1∏

l=1

D
′
1(τl,1)−

m−1∏

l=1

D
′
2(τl,2)

∣∣∣∣+
( m−1∏

l=1

|D′
2(τ

2
l )|

)
|D′

1(τm,1)−D
′
2(τm,2)|

≤D
′
1(τm,1)d

m−2

m−1∑
j=1

|D′
1(τj,1)−D

′
2(τj,2)|+

( m−1∏

l=1

|D′
2(τl,2)|

)
|D′

1(τm,1)−D
′
2(τm,2)|. (A.12)

Using (6.1b) and (A.9) in (A.12) we obtain (A.11). ¤

Lemma A.12. Let us denote by g1, g2 two solutions of Eq. (3.5) in G satisfying (3.8) and
corresponding to D1, D2. Then there exist data-independent constants v1, v2, v3 such that

|Q1(τ)g1(τ)−Q2(τ)g2(τ)| ≤ v1|co1 − co2|+ v2||ce1 − ce2||∞ + v3||c′e1 − c
′
e2||∞. (A.13)

Proof: Let us define for 0 ≤ α ≤ 1:

Gn(τ, α) = αD
′′
1 (τn,1) + (1− α)D

′′
2 (τn,2), Fn(τ, α) = αD

′
1(τn,1) + (1− α)D

′
2(τn,2).

Using the convention that (ατ0,1 + (1− α)τ0,2)
′
= 1 we define as in (4.4)

Q(τ, α) =
∞∑

n=0

Gn(τ, α)

Fn(τ, α)
(ατn,1 + (1− α)τn,2)

′
, (A.14)

so that Q(τ, 1) = Q1(τ) and Q(τ, 0) = Q2(τ). Now for each τ

|Q1g1 −Q2g2| ≤ |Q1g1 −Q1g2|+ |Q2g2 −Q1g2| ≤ |Q1||g1 − g2|+ |g2||Q2 −Q1|.
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Thus it is necessary to bound |Q2(τ) − Q1(τ)|. From the mean value theorem there exists
α ∈ (0, 1) such that

Q2(τ)−Q1(τ) =
∂Q(τ, α)

∂α
. (A.15)

We have from (A.14) and (A.15) that for Q(τ, α) and Fn = Fn(τ, α) and Gn = Gn(τ, α):

∂Q

∂α
=

∞∑
n=0

(
(D

′′
1 (τn,1)−D

′′
2 (τn,2))Fn − (D

′
1(τn,1)−D

′
2(τn,2))Gn

(Fn)2

)
(ατn,1 + (1− α)τn,2)

′
+

∞∑
n=0

(Gn/Fn)(τn,1 − τn,2)
′
, (A.16)

where (τ0,1 − τ0,2)
′
= 0. Using Lemma (A.11) the following inequality holds:

|(τn,1 − τn,2)
′ | ≤ dn−1

n∑
j=1

|D′
1(τn−j,1)−D

′
2(τn−j,2)|.

Finally, using Lemma A.8 we obtain the following inequality:

|(τn,1 − τn,2)
′| ≤ dn−1

(
||D′′

2 ||∞
( n∑

j=1

n−j∑

k=0

dk

)
||D1 −D2||∞ + n||D′

1 −D
′
2||∞

)

≤ dn−1(n/(1− d))||D′′
2 ||∞||D1 −D2||∞ + ndn−1||D′

1 −D
′
2||∞. (A.17)

Notice that Lemma A.9 immediately gives for 0 ≤ α ≤ 1:

|(ατn,1 + (1− α)τn,2)
′| ≤ dn for n = 1, . . . . (A.18)

From Lemma A.7, Equations (A.15), (A.16), (A.17), (A.18), and the convergence of the
series

∑∞
n=1 dn−1 and

∑∞
n=0 ndn, the functions D

′
i, D

′′
i , D

′′′
i with i = 1, 2 are uniformly

bounded and the functions |Gn|, |Fn|, n = 0, 1, . . . are uniformly bounded below and above
by positive constants. Therefore, there exist data-independent constants t1, t2, t3 and s1, s2

such that

|Q2(τ)−Q1(τ)| ≤ t1||D′′
1 −D

′′
2 ||∞ + t2||D′

1 −D
′
2||∞ + t3||D1 −D2||∞ +

max
τ,α,n

{Gn/Fn}(s1||D′
1 −D

′
2||∞ + s2||D1 −D2||∞).

Thus there exist data-independent constant p1, p2, p3 such that

|Q2(τ)−Q1(τ)| ≤ p1||D′′
1 −D

′′
2 ||∞ + p2||D′

1 −D
′
2||∞ + p3||D1 −D2||∞.

From Lemmas (A.3) and (A.10), we have that (A.13) holds.¤
Using previous lemmas we can prove Theorem (6.6). Using (4.5) we obtain

|g′1(τ)− g′2(τ)| ≤ |g′1(0)− g′2(0)|+ |Q1(τ)g1(τ)−Q2(τ)g2(τ)|.
Now, using (3.8) and the mean value theorem we obtain

|g′1(0)− g′2(0)| = |λ1(0)− λ2(0)| ≤ (1/ξ1)||ce1 − ce2||∞ + (1/ξ2)|co1 − co2|
where ξ1 ∈ (ce1, ce2) and ξ2 ∈ (co1, co2). Thus, since ce ∈ M and we take co satisfying (6.4)
there exist data-independent constants n1, n2 such that

|g′1(0)− g′2(0)| = |λ1(0)− λ2(0)| ≤ n1|co1 − co2|+ n2||ce1 − ce2||∞.
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Thus

|g′1(τ)− g′2(τ)| ≤ n1|co1 − co2|+ n2||ce1 − ce2||∞ + |Q1(τ)g1(τ)−Q2(τ)g2(τ)|. (A.19)

Finally using (3.9) and (A.13) in (A.19), we obtain inequality (6.6). ¤
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