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Resumo

Considere o seguinte processo de percolacéo dependerenauclidiana tridi-
mensional Z3: para cada coluna dessa rede que é paralela a um dos eixos co-
ordenados decidimos remové-la ou ndo de acordo com um cadonptro de-
pendendo apenas da sua direcdo. As colunas sado removidas @@ maneira
independente uma das outras e, ap0s decidir-se 0 estadaaeima delas, é
obtido um conjunto aleatério de sitios restantes, denaossitios abertosEsse
modelo apresenta dependéncias de alcance infinito queemdpropriedades in-
teressantes para o conjunto dos sitios abertos. Algumas dab existem para
percolacdo de Bernoulli ou outros modelos em que as depelagésao locais
ou mais fracas. E provado que, quando removem-se as colamaslta prob-
abilidade, ndo ha componentes conexas infinitas, quasarmaite. Por outro
lado, caso elas sejam removidas com baixa probabilidade et componentes
passam a exisitir. 1sso estabelece uma transicéo de fasegse modelo. Tam-
bém mostra-se que a probabilidade da cauda relativa aca@imndponete conexa
contendo a origem decai exponencialmente quando ao mersadodparametros
séo fixados grandes. Se, ao contrario, dois parametrosrsadds relativamente
pequenos entéo a versdo truncada dessa cauda tem decameantiximo, poli-
nomial. Também prova-se que o nimero de componentes conaXase super-
critica é, ou um, ou infinito.

Palavras chaves Percolacdo dependente, transicdo de fase, decaimento de
conectividade.
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Abstract

We consider the following percolation process defined orZthiattice: For each
column that is parallel to one of the coordinate axis we dewiiether to remove
it or not with a probability (or parameter) depending onlyitsndirection. The
columns are removed or not independently, and after estabg the state of each
one of them we are left with a random subset of remaining sa#lsdopen sites
This model contains infinite-range dependencies that iathteresting properties
for the set of open sites. Some of them are not present in tiroB#i percolation
or in percolation models having only local or weaker depeds. It is proven
that, if the columns are removed with high probability theare are no infinite
components, almost surely. On the other hand, in case tkeagaroved with low
probability, then such components indeed exist. This éstas the phase tran-
sition for this model. We also show that the tail distribatior the radius of the
open cluster containing the origin decays exponentialy fehen at least two of
the parameters are fixed to be high. However, if two of therpatars are taken
relatively small, then the truncated version for this taitdys, at most, polynomi-
ally fast. We also prove that the number of infinite connect®ahponents in the
supercritical phase is either one or infinite, almost surely
Keywords: Dependent percolation, phase transition, connectivetag.
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Chapter 1

Introduction

1.1 Mathematical setting

We consider a sitpercolationprocess in which we remove the columns of #¥e
lattice independently with intensity depending on thefediion. More precisely,
we consider theoordinate planes

7Dl - {(ZC,y,O)7 'Tvy S Z}
7)2 - {(SC,O,Z); T,z € Z}

Ps={(0,y,2); y,z € Z}

and, for each € {1,2,3} we defineQ2; = {0,1}”" endowed with ther-field
generated by the cylinder sets that we denoterhyWe writew; to indicate the
elements of2;. Fix p; € [0,1] and letP,, be the probability measure for which
{w;(v);v € P;} are mutually independeBernoullirandom variables with mean
p;. Take now(); x €y x Q3 with the products-field and the product measure
P,, x P, x P,,. This corresponds to take independently three two-dinoeiasi
Bernoulli(or i.i.d.) site percolatiorprocesses each one defined in the correspond-
ing coordinate plane. A point € P; is said to bev;-openif w;(v) = 1.

Take 2 = {0,1}%° with the o-field generated by the cylinder sets and for a
site(z,y, z) € Z* we define

w(z,y,z) = wi(z,y,0)ws(x,0, 2)ws(0,y, 2). (1.2)

1



2 CHAPTER 1. INTRODUCTION

Let p = (p1,p2, p3) and denote by, the distribution of the random element
underP,, x P,, x P, i.e, for each evend € (2 let

Py (A) =Py, x Py, X P, ({w € A}). (1.2)

We say that a sitéxr,y,z) € Z3 is w-openor justopenif w(z,y,z) = 1.
Otherwise(z, y, z) is said to bev-closedor closed The three dimensional per-
colation process with la#,, will be calledCoordinate Percolation oZ?. This
process clearly has infinite-range dependencies sinc@&dtance, knowing that
wi(z,y,0) = 0implies thatv(x, y, z) = 0 forall z € Z. The numberg;, = 1,2,3
will be called the parameters of the model. Our aim is to stilndyconnectivity
properties of the set of open sitesZi as the values of those components are
varied.

Remarkl.l1

e We have defineds € {0,1}”’ as a random element ift; x Q, x Q.
However we will also refer to it as a process{inrsampled by the measure
Pp.

e The processv could be defined without embedding the two-dimensional
percolation processes #°. However we prefer to do so in order to make
the arguments clearer geometrically.

e Sometimes, in order to simplify the notation, we may notidgtish be-
tweenP; andZ?. Thus if that is clear that we are referring to an element of
P, we may write(z, y) instead of(z, y,0). Similarly we may write(x, z)
for (2,0, z) € P, and(y, z) for (0,y, z) € Ps.

For understanding the connectivity properties of this nhade useful to have
in mind the following picture: For each column that is nornwathe planeP;, toss
a coin having probability; of landing head up. If it lands tail up then remove all
sites lying in that column. After performing all tosses ipdadently and removing
the appropriate sites, declare all remaining sites to ba.opeen we are left with
a random set of open sites that have By

Since we will need to use results on percolation theory foratision® and3,
we give some definitions and state some results in generadiiond. \We write
IP, to refer to the measure describiBgrnoulli site percolatiorwith intensity p
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in Z¢. Denoting byy an element of0, 1}%", thenlP, is the measure for which
the random variable§)(v); v € Z?} are mutually independent Bernoulli random
variables with meap.

The origin ofZ¢ and of the plane®; will be denoted byd. For a nonnegative
integern defineB?(n;v) = {w € Z%; |w — v|, < n} theboxof radiusn around
v in Z% where| - |, stands for thé,.-norm inZ?. We write B4(n) = B%(n;0).
The boundary of the bo®?(n;v) is 0B (n;v) = {w € Z% |w — v|w = n}. A
path inZ? is a sequence of sités= {vg, vy, ...} such thafv,,; — v;| = 1 for all
i. We will also consider finite paths = {vg, vy, . . . v, } defined in the same way.
Given an elemeny € {0, I}Zd we say that the path is n-openor simply open
if n(v) = 1 for all sitesv € T'. For a pair of sites oZ¢, v andw we denote by
{v +> w} the event that there is an open path startingatd ending atv. In case
this event happens we say thais connected tav. For a setd C Z¢ we define
{v+ A} = Uyea{v <> w}. We also defindv <+ oo} = N {v <+ B%(n)}.

For a fixedn € {0, 1}Zd, the maximal connected components of open sites
of Z¢ are calledr-clustersor simply clusters We denote byC(v) the cluster
containingu. Then{v <» oo} = {|C(v)| = 0o} corresponds to the event that the
sitewv lies in an infinite cluster (herg- | stands for the cardinality of a set). For
the origin we simply writeC’ = C'(0). Note thatC'(v) is empty whem(v) = 0.
Analogously we defin€’;(v) thew;-cluster in?; containingv € P;.

For Bernoulli site percolation iZ.? we defined(p) = P,({0 <+ oo}) and
p(Z%) = inf{p € [0, 1]; 0(p) > 0}. It is well known thatd < p.(Z?) < 1 for all
d > 2 (see for instance@ri99, Theorem 1.10, page 14]). We then say that there
exists aphase transitiorior this model.

For the percolation model given bY.Q) we define the percolation function by
0(p) = P,({0 <+ oo}). For a givenp € [0, 1]* we say that there is percolation if
O(p) > 0. Otherwise we say that there is no percolation. It is a sirfgatethat
the percolation function is increasing in each paramessumes the values zero
if some of them is equal to zero, and assume the value oneof tlem are equal
to one. From now on we will restrict ourselves to the caseshithp; > 0 for all
1.

The next theorem establishes the analogous result for oueps.

Theorem 1.2. There exist9.(Z?) < p* < 1 such that ifp; > p* for all i €
{1,2,3} thend(p) > 0. On the other hand, if; < p.(Z*) andp,; < 1 for two
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indicesi # j € {1,2,3} thend(p) = 0.

Suppose that we restrict ourselves to the gase p, = p3; = p and define as
for the Bernoulli percolation,

pe = inf{p € [0,1]; 0((p,p,p)) > 0}

Then, as a consequence of the last theorem we ha(®?) < p. < p*.

Theoreml.2is proven in ChapteR. The proof is separated in two steps. In
Corollary2.4we show that there is no percolation for small values of thrarpa
eters, establishing thus the second statement of thisdirecfhe first statement
of this theorem is proven as a consequence of The@®mWe will also show
thatp, < [p.(Z*)]'/* wherep/,(Z*) stands for the critical probability for oriented
percolation orZ?. It is an interesting question whether or not> p.(Z?). We
believe that this inequality holds, however we do not havecafp

We say that a parametgr is sub-critical (resp. supercritical) i < p.(Z?)
(resp. p; > p.(Z?)). The next result establishes bounds for the decay rate of
the tail probability for the radius of the cluster contamiie origin. Those rates
depend on the number of sub-critical and supercriticalrpatars.

Theorem 1.3. Consider the coordinate percolation proces<h If at least two
parameters are sub-critical, then there exists a constap) > 0 such that

Py ({0 <> 9B°(n)}) < exp (=4 (p)n). (1.3)

On the other hand, if at least two of the parameters are sufigal while a third
one is non-zero then there are constantp) > 0 anda’(p) > 0 such that

Py ({0 <> 0B%(n), |C| < o0}) > o/ (p)n =P, (1.4)

The proof of equationl(.3) is given in Sectior8.1while the proof of equation
(1.4) appears at the end of SectiBr2 For the latter, several block arguments are
used in order to construct-open paths irZZ® with high probability. The details
are provided throughout Sub-sectidhg.1and3.2.2

It has been proved by Menshikomgn8g and by Aizenman and Barsky
[AB87] that for Bernoulli percolation irZ¢ there is a constant(p) > 0 such
that

P, ({0 <> 0B (n)}) < exp (—¢(p)n) (1.5)
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whenevep < p.(Z). Equation {.3) above gives the same behavior for our model
when (for instance) all the three parameters of the modadyecritical. On those
cases we say that theredgponential decafor the tail distribution for the radius
of the cluster of the origin.

On the other hand, if we set two of the parameters to be supeatfbut not
equal to one) while the third one is taken sub-critical, timeview of Theorenil.2
there is no percolation thus equatidn4) can be rewritten as

Py ({0 <+ 0B*(n)}) > o/ (p)n P, (1.6)

This gives a quite different behavior for the sub-criticahpe of our model when
compared to the Bernoulli percolation processes and wehlsgywe havesub-
exponential decafor the tail distribution of the radius of the cluster of thegin.
In fact the rate of decay for this tail distribution is at mpstynomial. In particu-
lar, considering the case in which all the three parametersg@ual to each other,
if p. > p.(Z?) really holds then equation&.@) and (1.6) would give us a change
in the rate of decay for those talil distributions within thaoscritical phase. This
behavior is not present in the Bernoulli case.

Equation (.4) is also interesting for the supercritical regime of our relodin
fact, it follows from the works of Chayes, Chayes and Newnta@Ni87 (see
also [Gri99, Chapter 8.4]) that for supercritical Bernoulli percotatiin Z¢ there
are positive constantd(p, d) ando(p) > 0 such that

P, ({0 <+ 9B%(n), |C| < 0o}) < A(p,d)n exp (—no(p)).

Thus if one setp; > p* for all i € {1,2,3} then by Theoreni.3 our model
exhibits a quite different kind of decay.

Although we expect that, > p.(Z*) some techniques used in the proof of
Theoremsl.2and1.3 can be used to show that if we fix two parameters slightly
greater thamp.(Z?) and then set the third one to be high enough than there is
percolation. More precisely we have:

Theorem 1.4.Letp;, p; > p.(Z*) for two indicesi # j € {1,2,3}. Then there
exists ac > 0 (depending om; andp;) such that if the third component pfis
greater thanl — e thenf(p) > 0.
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This result add some more information about the phase dragfahe model
and is proven in Chapter. Note that this is equally good for proving the second
statement in Theoreh.2

In percolation theory one is usually interested in studdivgnumber of dis-
tinct infinite clusters. This is a random variable that weaterby N. We have
that

Theorem 1.5. Consider coordinate percolation d&*. Almost surely undepP,,
N is a constant random variable that takes values in thg[8¢t, co}.

The proof for this theorem is given in the Chapter The fact thatV e
{0,1, 00} has been proved before by Newman and SchulnN®B8fla NS8114
for a class of percolation processes that are ergodic uhddattice translations
and that satisfies a property knownfeste energy conditionintuitively this con-
dition states that it is possible to perform local changemievent having positive
probability obtaining at the end an event that still haveipp@sprobability. Af-
ter that, Aizenman, Kesten and Newm&KN87] showed that, for a broad class
of translation-invariant percolation processeih there is at most one infinite
cluster. That includes the Bernoulli case and some longergegcolation mod-
els. Some years later Burton and KeaB&89] produced a simple proof for the
unigueness of the infinite cluster, when it exists, for ahslation-invariant mod-
els that have finite energy. This class of models include #gra&ulli percolation
process and the Ising model. Due to the fact that the medsuteave infinite
range dependencies it does not satisfy this condition, scamaot apply their
results directly. However the measitg x P, x P,, have finite energy and we
use this fact in the proof of the result.

1.2 Related models

In the last section we have introduced tBeordinate Percolatiomnd have stated
the main results that we will prove about this process. Ag tiere stated we have
also compared them to their corresponding results foBemoulli percolation
Due to the dependencies that the coordinate percolatioibiexsin many situa-
tions those results are quite distinct from those avail&dsiBernoulli percolation.
Also the proofs of many results such as the existence of aeghassition requires
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new ideas as we shall see in ChafeiThat is not peculiar to coordinate perco-
lation. In fact there are many important percolation modelshich the state of
different sites may not be independent of each other, andllyseven to show
that a phase transition occurs or not for those models is kealgang question.
In this section we present a quick introduction to some o$¢hmodels and state
some of their properties that have been proved by many diffeauthors.

An example of the physically important dependent percotteits theRandom
Cluster modelhat couples Bernoulli percolation and tRetts model Depen-
dencies also appears naturally when one wants to study timeeoce of some
events in Bernoulli percolation by using sofmleck argumentsFor that one starts
by dividing the original lattice into some (usually largdptks in such a way
that the probability of observing some set of configuratiatiin those blocks is
high. Blocks for which those configurations are observetheilcalled hergood
blocks The main idea is to define a block to be good ‘carefully’ ineartb guar-
antee that if there are sufficiently many good blocks therotiginal event in the
initial scale will happen. We will use some block argument€hapteiS.

For the kind of dependent percolation models mentionedarptieviou para-
graph we have that the dependencies decay with the distarntbe isense that
the configuration within two set of sites become almost imtheient as those sets
are taken to be far apart from each other. For models contathis kind of de-
pendencies we can use the general methods of Liggett, Sehwmand Stacey
[LSS97 and guarantee that some increasing events will occur byirtting the
process from below by a Bernoulli percolation process (seti&2.2.3for more
precise information).

However, as for the coordinate percolation, there are sompeitant models
in which the dependencies may not decay with the distance.nOtable example
is a model introduced by Winkler (se€&/[n00]) and commonly known ag/inkler
percolation. This model was introduced in terms of collgdnrandom walks as
follows: Consider a connected graphand let{ X (i) };eny and{Y (i) };en be two
independent copies of a single random walkin The graphG is said to be
navigableif there is a positive probability of finding a pathlying in the positive
quadrant ofZ* such that, for alli, j) € v we have thatX (i) # Y (j). This is
equivalent to saying that one can delay or move back one orriaodom walks
in a clever way so that they still move arbitrarily forwardtbe long rung without
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colliding to each other.

If we considelG = k,, the complete graph with vertices, then this problem is
equivalent to the following dependent percolation proteg: For each colunm
and each row of.%, select uniformly at random and independently one number in
the set{1, ..., k}. Declare a site to be open if the numbers assigned to its e¢olum
and its row are different. Then look for a pathZa composed only of open sites.

It it has been proved independently by Winkl&inh00] and Ballister, Bol-
lobas and StaceyBBSO0(Q that the graph is navigable wheh> 4. For applica-
tions in distributed computation one is mainly interestedastricting the paths
to be oriented. If there is a postive probability of findingsypaths then we say
that there is percolation. It has been conjectured by Wirtklat there is a posi-
tive probability of finding such paths whenevep> 4 and this conjecture remains
open in its full formulation. However, analogously to whatabserved for our
coordinate percolation process @n (see equationl(4)) it has been proved by
Gacs [5ac0qQ that if there is percolation in the oriented case, then tiodability
for the origin to be connect up to distankebut not to infinity decays at most
polynomially ink.

There exists also an example loénd percolatiormodel inZ? in which the
state of each of its edge is determined by random variabfiexed by the columns
and rows of this lattice: Th€orner Percolatiormodel. More precisely we con-
sider two independent sequences.ofl. Bernoulli random variables with param-
eter1/2: {n(i)}icz and{&j)}jecz. Let{(4,7), (4,5 + 1)} be the ‘vertical’ edge
connecting the vertice@, j) and(i,j + 1). We declare this edge to be open if
jis even andy(i) = 1 or if j is odd andn(i) = 0. Otherwise we declare this
edge to be closed. Similarly we declare each ‘horizontadegd:, j), (i + 1, 7)}
to be be open if is even and (j) = 1 or if i is odd and<(j) = 0. This rules of
retention induces a random configuration of open edges $atlidr each site of
7? there are exactely two open edges incident to it. Furthezrtimrse two edges
are perpendicular to each other.

Corner percolation was introduced by Balint Toth as a degdéaeease of the
Six Vertex Modehlso known as théce-Type Modela very popular model in
statistical mechanics (see for instanBax82). For that model, it was shown by
Pete Pet0§ that there is no percolation. In fact, he shows that all teltssare
finite cycles of open edges. He also computes exponentsdaath of decay of
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the tail probability for the diameter of the cycle contamthe origin. In that case
the decay is polynomial and the exponent is shown to be equal® — v/17) /4.

Despite from the similarity with the Winkler percolatiohgtcoordinate perco-
lation process that we have introduced in the last sectianimgpired by a rather
different depedent site percolation model callRdndom InterlacementsThis
model was introduced ir§zn1Q by Sznitman and consits of studing the vacant
set of sites of a Poisson point process in the space of donfihéte trajectories on
Z% modulo time shifts. Loosly speaking it is the complement 8ba&son ‘soup’
of doubly-infinte trajectories of a random walk #f for d > 3. If the intensity
of the Poisson process is high one should expect that thentvaet of the ran-
dom interlacements contains no infinite connected compsnehereas for low
intensities such a component should appear. This meanghitaandom inter-
lacements should exhibit a phase transition as the inteofsihe Possion process
is varied. In fact, Sznitmarg§zn1Q and Sidoravicius and Sznitma8$09 proves
that this phase transition takes place.

This process can be thought as a model for corrosion if ongimeahat sites
are being removed as some corrosive particle diffuses imedum performing
simple random walks. The vacant set can then be regardee asttlof sites that
have not been removed by the corrosive particle. Indee®VinQ8g] it shown that
if a random walk runs in a d-dimensional discrete torus uptima proportinal to
its volume then the local picture left by the trace of thatd@am walk converge to
the law of a random interlacementf.

What if instead of removing sites lying in the trace of somedian walk, we
just remove sites in straight lines? If we remove straigmgi that are parallel
to the axis independently we will just have the coordinateg@ation process
discrebed in Sectioh.1

Recently, also inspired by the random interlacements g)c/keson and
Windisch [TW10] have considered the same sort of question in a continuwm set
ting defining aPoisson cylindepercolation model. More precisely, they study the
percolative properties of the the vacant set of a thickeoing Poisson process
defined on the space of linesRf. Equivalently, their model consist in studing
the set of points ofR? that has not been covered by the union of all bi-infinite
cilynders having diameter one and having their axes givethbylines in a re-
alisation of such a Poisson process. Note that, differdralyy our model, their
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model is isotropic (all directions are equivalent) and iras for all dimension

d > 3. For this model they are able to prove that there is a phassitian for all

d > 4: If the intensity of underlying Poisson process is high ttieare is no per-
colation, while there is percolation if the intensity isfstiently small. Although
they are able to prove that there is no percolationdfer 3 with high intensity it

is still open to prove that there is percolation for smakkmgities. In fact they also
show that for anyl > 4, if the intensities are low enough then there is an infinite
connected component already in subspaces of dimeagsibar d = 3 this is not
the case: They show that the probability of having percotatin any subspace of
dimensior2 vanishes.



Chapter 2

Phase transition

In this chapter we prove Theorein2, establishing thus the phase transition for
the model described in the previous chapter.

2.1 Absence of percolation for small parameters

Let 7, : Z® — P; be the projection fronZ? into P;. Then equation(.1) can be
rewritten as:

ww) =[] wi(mw). (2.1)

1=1,2,3
Identifying a configurationv € Z* with the set of its opens sites™' ({1}) :=
{v € Z3; w(v) = 1} and similarly for thew; andw; ! ({1}) € P; this equation
shows thatr; (w) C w;. Furthermore, since the processgslefined in each plane
P; are independent Bernoulli percolation processes withrpeterp; > 0, if w
is aw;-open site inP;, then the columnr; * (w) has infinitely manyw-open sites
(Pp-almost surely). Thusy, = m; (w) almost surely with respect t8,. Let
B2(n) = m; (B*(n)) be the boxes of size in P; and define the events:

Ai(n) = {w € Q; 7;(C(0)) contains a path connectirigto B2 (n)}.
Note that, ifw € A;(n) thenw; € {0 <+ dBZ(n)}.

Lemma 2.1. For anyv € Z3, m; (C(v)) is a connected subset 6f (m;(v)). In
particular, if |C;(0)| < oo then{w € A;(n)} does not happen for infinitely many
indicesn.

11
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Figure 2.1: The blue set’ in the planeP; represents (C(0)). In red we have
the wy-closed segments x {22} andI x {z3} contained in the plan®,. The
w-cluster at the origin has to be contained in thibehaving the other two blue
sets as the top and bottom.

Proof. Let w',w” € m (C(v)). Pickv € =, '({w'}) N C(v) andv” €

7 '({w"}) N C(v). SinceC(v) is connected there exists an open phth=
{v1,..., v} With v; = v" andvy, = »”. We can considel’ as being a contin-
uous curve irR? by joining each pair of site&;_1, v;) by the line segment that
connect them. The projection of this curve iffpis a continuous curve connect-
ing w’ andw” and containing only points i®; and the segments connecting them
sor;(I') is a path that connects’ to w”. Since, in additiornr;(w) C w; we have
that this path isv;-open. O

Corollary 2.2. If w € {0 +» 9B?(n)} then for at least two indices j € {1,2, 3}
w € A;j(n)NA;(n). Inparticularw; € {0 <> 9B}(n)} andw; € {0 + 0B (n)}.

Proof. Letw € {0 <+ dB3(n)}. Then there is aw-open pati® = {v,...,v,,}
such thaty, = 0 andwv,, € dB?*(n). Leti be so thatr;(v,,) € 9B?(n). By the
previous lemmagr; (C'(0)) contains aw;-open path connectin@ to ;(v,,,) in P;,
sow € A;(n). The proof is finished by noting that there are at least twibies
choices of indices such thatr;(v,,) € dBZ(n). O

We shall use Corollarg.2in order to prove that the origin cannot belong to an
infinite w-cluster if some of the;-clustersC;(0) is finite. The (informal) idea for
the proof is the following: Suppose that (0) is finite. By the previous lemma,
the projection of'(0) into P, is contained irC'; (0), thenC'(0) must be contained



2.1. ABSENCE OF PERCOLATION FOR SMALL PARAMETERS 13

in the‘tube’ 7, (C1(0)). However, the projection of this tube infy, is a‘strip’
S that have finite width. Then almost surely we will find somgclosed paths
traversingS. This means that the tube will be cut above and beneath the pia
preventing”'(0) from being infinite (see Figur.1). More precisely:

Lemma 2.3. If eitherp, # 1, or p3 # 1 then
Py, X Py, X Py ({w € {0 ¢ 00}} N {|C1(0)] < 00}) = 0.

Proof. For simplicity, we fix for this proofp, # 1. We also writePP for the
measure?,, x P,, x IP,,. Note that ifC';(0) = C" for a finite setC’ C P, then,
by Lemma2.1, A;(n) cannot happen for larger than the diameter @f’. If in
addition{0 «+» 9B3(n)} happens fon larger than the diameter &’ then, by
Corollary2.2, w belongs ta4,(n) N As(n). So we have:

P ({w € {0 > co}} N {|C1(0)| < o0})
— Z P <ﬂ {we {0+ 0B*(n)}} N{Ci(0) = Cl})

C'cPy
|C'|<o0

n=1

< Z P (limnsup {w € AQ(n) N Ag(n)} N {01(0) _ C/}) (22)

C'CcPy
|C'|< o0

< ¥ lim P ({w € A2(n)} N {C1(0) = C'}).

C'CP1
C'[<o0
Let us fixC’" C P; afinite connected set. Lét= {x € Z; 3 y € Z such that
(x,y) € C'} and letS = {(z,2) € Py;x € I} (see Figure.1). Note that/ is a
finite set of integers and that, by Lemi24, if C;(0) = C’ thenn, (C(0)) C C".
Thus we have that
1 (m2(C(0))) = 7o (m1(C(0))) C I x {0} := {(2,0) € Py;z € [} C Py
and, in particularr,(C(0)) C 7 *(I x {0}) = S. Then it follows that
{w e Ay (n)} N{C1(0) =C"} C {0« dB3(n)in S},
where the event on the right hand side is a cylindgPinThus
le P({w € Ay(n)}N{C1(0) =C"}) <

lim P, ({0 <> 9B3(n) in S}) =0,

n—oo

(2.3)
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where the fact that the limit in the right hand side is zero barjustified with
the following argument: sincg, < 1, thenP,,-almost surely there are (random)
integersz; < 0 andz, > 0 such that thesegmentd x {z;} and/ x {z,} are
wo-closed so thaf0 <> B3 (n) in S} cannot happen it > max{—=z;, 2, }.

The proof is now completed by plugging equati@i3j into (2.2). O

Of course we can choose any combination of indices othed that2 for the
statement of the last lemma. Recall tha;if< p.(Z?) then the evenf|C;(0)| <
oo} has probability one undé?,,. Then a direct application of the last lemma
gives us the proof of the second statement in Thedr&dthat we state as a corol-
lary.

Corollary 2.4 (Second statement in Theoreh®). If for i # j € {1,2,3} we
have thap; # 1 andp; < p.(Z?) thenP,, ({0 +» oo}) = 0.

2.2 The existence of the supercritical phase

2.2.1 Directed paths inP; and their ‘lifts’

An argument similar to that in the proof of Lemn2a3 can be used in order to
show that the probability of percolation within any slabZfis zero (this is true
if, for instance, at least parameters ameingn, andps are different from one, re-
gardless of how high they are chosen). However, that is mot&lse for Bernoulli
percolation. In fact Grimmett and Marstran@¥190] have shown that the criti-
cal value for the Bernoulli percolation process restridted slab of thickness
converges te.(Z4) ask goes to infinity. The fact that this does not hold for our
model restricts the tools that can be used in order to stuelytbperties of the
supercritical phase of this model. In particular, in ordeptove that this super-
critical phase indeed exists it is hopeless to look for itdini-components lying
in any coordinate plan®; or in a slab ofZ?. Instead we construct a sort of ori-
ented subgraph &2 in which we can forget about the strong dependencies of the
original process. We begin the construction in this sectibere we define what
is adirected pathand itslift.

We say that a path = {vg,vi,vs,...} C Z? is adirected pathif v, €
{vn + (0,1),v, + (1,0)} for all n > 0. Similarly we define the directed paths in
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eachP; using the identification witlZ.? as in Remark..1
Let " = {vo, vy, v9,...} C P; be ainfinite directed path having = 0. Fix
n_1 = —1, ng = 0 and for each integer > 1 set

n; =inf{n >n;_1;(vy — Uy 1,Vny1 — vs) = 0}

where(- , -) stands for the restriction of the inner product®fto P;. Informally,
those are the indices for which one have to turn by an angh® oegrees when
going along the path. Definingl’; = U, <, {v.} thenl' = J;Z,T’;. Since
theI'; are disjoint this induces a partition bfinto ‘straight segments’

For a finite integeV/ we say that" is M-directedif

sup{n; —nj_1; j € Z} < M.

In this case we have that each ‘segmdnt'’contains at mosd/ sites. IfI' is a
infinite M -directed path, then for each integel 0 there is a uniqué'(t) € Z
such that(¢,I'(¢)) € I'. We say that” is lower than[ if for eacht we have
I"(t) < I'(t). For any collection of infinitel/-directed paths there exists the
lowest pathin this family defined as the path= {(¢, L(t));t > 0} whereL(t) is
the minimum ofl’(¢) asI" runs over all paths in the collection.

For each directed pafh C P, let us define itdift " as being the subgraph of
72 given by:
=71 (T).
It can be visualized as a copy of t#é-lattice that has been alternately folded left
and right at the column;s;l(vnj) by an angle 00 degrees and then embedded in
7?2 in such a way that its projection inf®, is exactlyl’ (see Figure.2). Defining,
for eachj, I'; = =, 'T'; thenl’ = (J32, T'; is a partition into the disjoirstripsT;.

We conclude this section proving that if we chogséo be high enough then,
underP,,, the probability that there exists an infinité-directed open path start-
ing from the origin is positive. For that we use some singlented percolation
arguments in a rescaled lattice. In our context orientedgation onZ? (or in any
lattice isomorphic to it) will consist in looking for the estence of infinite directed
paths in configurations sampled frdfy (or the in the corresponding measure for
other lattices) and in studying the properties of those gatid of the connected
components emerging from the model. As for ordinary Bernpelrcolation, it
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Iyf... T2 Ial. . Ta. | T4 Ts
SN S IO R
p(v)w
'Un6 'UTLO 7171.1 'UTLZ 'UTLS 7Jn4 7Jn5 7Jn6

@) (b)

Figure 2.2: (a) The directed path and the grapi’; (b) the grapH_ is isomor-
phic toZ?2.

is well known that this model also exhibits a phase transitibere exists a crit-
ical value0 < p’.(Z*) < 1 such that the probability of finding such paths is zero
for eachp < p.(Z*) while it is strictly positive for anyp > p/.(Z?*). For more
information on oriented percolation sdayrd4].

When considering oriented percolation we restrict the kihallowable paths
it is harder for the origin to percolate, 6(Z?*) > p.(Z?). If we increase further
the restriction on the paths and look for the existence afiiefi\/-directed paths
then it is intuitively clear that, as we increase the valuéhefparametep, there
might exist some threshold above which the probability oflifig such a path
starting from the origin is positive. Next we outline an argent for proving this
fact for M = 2 that we state in Propositiah5. The reader who accepts this fact
can skip the discussion below going to SectiR.2

LetZ? = {(z + 1/2,y + 1/2); x,y € Z} be thedual lattice of Z?. We
identify each site ofZ? with the uniqueface of Z? having this site lying in its
center. Consider the following subset

L={(z+1/2,y+1/2€Z} 2 +y=3k k=0,1,2,... andy/2 < = < 2y}

and add directed edges connecting each face 1/2,y + 1/2) € L to the faces
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A7
;Ij*hi} v
}—I—{ -

0 2 4 6 8
(@) (b) (©

.1 faces and _I open faces
ssociated sites P

N =~ O @

Figure 2.3: (a) The regiori. with an oriented path of open faces; (b) The corre-
sponding oriented path d&? (c) The corresponding oriented path of associated
sites ofZ2.

(z+2)+1/2,(y+1)+1/2)and((z + 1) + 1/2, (y + 2) + 1/2). Note that this
lattice is isomorphic to the positive quadrant of thelattice endowed with ori-
ented arcs connecting its sites (see FiguiBxa) and (b)).

We say thata facer + 1/2,y + 1/2) € Z2 isopenif the sites(x, y), (z+1, y)
and(z + 1,y + 1) are all open. Those sites will be called #ites associatetb
the given face. Thus we have tHas ({(x + 1/2,y + 1/2) is open}) = p*. It
follows that if we sep > [p,(Z?)]"/* then theP,,-probability of finding an infinite
directed path of open faceslinis positive. Now if we fix such an infinite path and
look to the set of sites associate to each face in it, then weafinfinite2-directed
open path irZ? (see Figur€.3(c)). From the discussion in the previous we have
proved the following proposition:

Proposition 2.5. Letp > [p.(Z2)]"/*. Then

P, ({3 an infinite2-directed open path starting &t}) > 0. (2.4)

2.2.2 Restriction to the lift of directed paths

A random elemenf defined in{0, 1}%" is called ak-dependent percolation if
wheneverd, B C Z% are two sets lying al; -distance greater thelt apart from
each other then the familigSX (v)},c4 and{X(v)},cp are independent. The
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notion of aK -dependent percolation process is extended to other gregtasally
by considering the graph distance on them.

We will consider the process restricted td". The point in doing so is that if
we writew(w) = wy (1 (w))n(w) wheren(w) = wq(m(w))ws(ms(w)) thenn is a
M-dependent percolation dn

For a matter of concreteness, from now on welTix {vy, vy, v9,...} CP;a
M-directed path satisfying

vo = (0,0,0) and v, = (1,0,0) (2.5)

For each sitev € T let j(w) be the unique index such thate T'; andk(w)
be the unique index such that

T (W) = Vk(w) (2.6)
A sitew e I will be uniquely represented as
w = (k(w), h(w)) (2.7)

whereh(w) is the value of the-coordinate ofw, which we call theneightof w
(see Figure.2).

Set, on the one hand{w) = 2 if j(w) is odd and’(w) = 3 if j(w) is even
and, on the other hand;(w) = 2 if j(w) is even and”(w) = 3 if j(w) is odd.
Then define the following random fields in

(w)

w/
w// (w)

vw) (T (w)) (2.8)
() (T (w)) (2.9)

=w
=w
Using the definitions of’, /” and equations2(6), and @.8) we can rewrite
equation 2.1) as
w(w) = Wi (Vg )W (w)w" (w) = w1 (Vi) ) (w) (2.10)
wherey, is the percolation process Ihgiven by
n(w) = wa(me(w))ws(m3(w)) = w'(w)w"(w). (2.11)

Next we show that the processesis a Bernoulli percolation processin



2.2. THE EXISTENCE OF THE SUPERCRITICAL PHASE 19

Proposition 2.6. LetI" C P; be aM-directed path satisfying the conditioR.p)
and setp, = ps = p. Then undef?,, the processes’ defined ol by 2.8 is a
Bernoulli site percolation with parameter

Proof. Since the mapping — () (w) from I" onto P, U P; is injective, we
have that{w’(w)} i is a random field defined in terms of a collection:afd.
Bernoulli random variables having mearfunderP,). Thus it is a Bernoulli site
percolation with parameter. ]

Using the last result we can characterizas aM-dependent percolation on

I.

Proposition 2.7. LetI" C P; be aM-directed path satisfying the conditioB.b),
and setp, = p3 = p. Then undet?,, the process) defined ol by 2.11) is a
M-dependent percolation process With ({n(w) = 1}) =

Proof. Recall the representation for the siteslimiven by equatior2.7. Let ¢
be the mapping fron’ onto itself defined by)(w) = (1)1, h(w)). In words,
if w belongs to the striﬁj theni(w) is the site lying in thecorner of the strip
T';_, that shares the same height with Note that, sinc& is M-directed then the
(graph) distance betweenands)(w) in T is at most)/. The projection ofy(w)
into Py (y(w)) IS the same as the projectionwfinto Py (., thus

W' (w) = wirw) (M) (W) = W) (TrEw) @W))) = w'(Gw)).
Plugging the last equation int@.(L1) we have that

n(w) = w'(w)w' (¥ (w)). (2.12)

By equation 2.12) then(w) is determined by the value of in w itself and in
¥(w). Sincew’ has been shown to be a Bernoulli percolation proce$sire get
thatn is a M-dependent percolation procesdinFurthermore, we have that

Py ({n(w) = 1}) =P, x P, ({w'(w)w"(w) = 1})
= Ppyy X Posy {wrw) (M) (w)) wirw) () (w)) = 1})
=Py, ({wrw) (mrw)(w)) =1}) x
Pory (@) (M (w)) =1})
= Pu(w)P(w) = P2P3 = P
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Remark?.8.

¢ If we do not requirey, to be equal tp; then the marginals e’ are still mu-
tually independent Bernoulli random variables, howeveyttan have mean
equal top, or to p; depending on which striﬁj they lie in. Furthermore
is still a M -dependent percolation process With ({n(w) = 1}) = paps.

e The fundamental assumption required in order for the pré&froposition
2.7to work is thatl" is M-directed. The conditior2(5) not essential at all
and was only introduced in order to enable us to introduceptbeesses
in (2.8). In casel’ does not satisfy this constraint then we would need to
interchange the roles df and!” in the definition of these processes and
Proposition2.7would still hold.

2.2.3 Proof of Theoreml.2

We are now in the position to prove the existence of peramtafithe parameters
are taken to be high enough. This will complete the proof cgdreml.2

We can assign a partial order to the §@11}Zd by definingn < ' if n(v) <
n'(v) for all v € Z¢. A random variableX defined on{0, 1}Z is said to be in-
creasing ifX (n) < X (1) whenevem < /. An eventA c {0,1}%" is said to be
increasing ifl 4 is increasing. Instances of increasing events{@re+ 9B%(n)}
and{0 « oo}. If x andy/ are two Borel measures dif), 1}%* we say that/
dominates stochasticallyif ;/(.A) > 1(.A) for all increasing eventl.

We will use the following result on dependent percolationgaisses oiZ.?
due to Liggett, Schonmann and Stacey: If the process sahaty conditioned
on what happens outside a given neighborhood of each séepribbability of
having that site open is large enough then this process daesrstochastically
a Bernoulli percolation process with positive density. tRarmore the density of
the dominated Bernoulli percolation can be made arbitratdse to one provided
that the conditional probability referred above is maddicehtly close to one
(see LSS97 Theorem 0.0] for the precise statement). Note that thisirapply
in particular to the class af/-dependent percolation processes.

Theorem 2.9. Suppose that, > [p/(Z?)]"/*. Then exists somg € (0,1) such
that if p; > p, for j = 2,3 thenP, ({0 <+ oo}) > 0.
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Proof. We denote? = P,, x P,, x P,, andE the expectation with respect o
Let.4; be the event that there is an infintalirected path starting from the origin
in P, and satisfying condition2(5). By Proposition2.5 we have thaf’(A4,) =
P,, (A1) > 0. On the event that such paths existliebe the lowest path among
them and let” be its lift. Then

}_1>> (2.13)

However, for almost alb; € A,

P (w e {0 & ocoin f} )fl) (W) =P, xP,, (77 e {0300 1in f(wl)}> ,
(2.14)
where, for eachy, the random field) = 7(w,) is defined in" = I'(w;) by (2.11).
Since, for eachv; € Ay, I'(w,) is a2-directed path, by Propositich 7, we
have that the processis a2-dependent percolation procesdinvith

Py, x Ppy ({n(w) = 1}) = paps — 1

asp, andps approachl simultaneously. Lep > p.(Z*) and denote by: the
measure corresponding to Bernoulli percolationft@ml) with densityp. Recall
that by the representation = (k(w), h(w)) for w € T (see equatior.7) for

eachw; € A, the graphl(w,) is isomorphic taZ? = {(z,y) € Z?; = > 0}. In

addition, by the fact that.(Z?) = p.(Z2 (see Har6Q and [Fis61]) we have that
1 describes a supercritical site percolation process. Byidme 0.0 in LSS97

one can find @, large enough such thatpf andp; are both greater thamn, then
the distribution of the procegsdominates.. It follows that

P, x P, (n € {000 in f(@}) > 4 <{0Hoo in f<w1)}) > 0.

Plugging this inequality into equatior2.(l4 and then substituting in equation
(2.13 yields thatP,, ({0 <> co}) > 0. ]
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The last result gives:

Proof of Theoreml..2 The second statementin Theoréris given by the Corol-
lary 2.4. Settingp* = max{[p.(Z*)]'/3, po} and using Theorer@.9we see that if
all componentg, are greater thap* thenP,(w € {0 <+ oo}) > 0. This proves
the first statement in Theorein2 O

2.2.4 Upper bound forp,

Using the formula fom it is possible to show that the parametgrin the state-
ment Theoren?.9 can be chosen to be equal[m(ZQ)]l/g. This gives an upper
bound forp.. We outline the argument that leads to this conclusion usiagame
notation as in the previous proof.

We fix p; > [p;(Z?)]l/3 andp, = p; = p wherep will be chosen afterwards.
Fix w, € A; and letl’ = I'(w;) be the lift of the lowest infinit@-directed open
path starting at the origin oP; and use the representation = (k(w), h(w))
for w € I'. We construct a partition of into blocks of three site§'® =
{R(j,h); j >0, h € Z}, whereR(j,h) = {w € T; h(w) = h, 3j < k(w) <
3(7+ 1)}. In order to view'® as a subgraph we will add an edge between two
blocksR(j,h) andR(j', ') if |j" — j| + |h" — h| = 1. For a fixedw € 2 a block
R is said to be good it'(w) = 1 for all w € R. Recall the definition of’ in
(2.8). From Propositior2.6, if p, = p3 = p then this process is a Bernoulli perco-
lation process if. Define the proces¥ = {X(R(j,h)); j > 0, h € Z} where
X(R(j,h)) = Lirynisgood- ThenX represents the process of good blocks in
I'® and is described by a Bernoulli percolation measure witsitep®. Thus,
settingp > | C(Zz)]l/?’, the probability of finding an infinite path of good blocks
in T® starting from the blockz(0, 0) is strictly positive. Recall that the process
7, given by equationd.11) is obtained by multiplying/’(1)(w)) andw’(w). Since
the graph distance betweerfw) andw in T is at most2, and each good block
R(j, h) is composed of three neighboringopen sites we have that: to each path
of good blocks starting &(0, 0) that corresponds at least one pathyafpen sites
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starting at the sitevy = (k(wo), h(wp)) := (2,0). Then,

P, x P, (?7 c {0 & o0in f(@}) > (2.15)
[Ppg x By, (n c {0 & wpin f(wl)}ﬂ X (2.16)
[IP’m < B, (n c {wo & ooin f(wl)})] >0 (2.17)

where the first inequality comes from the Harris-FKG inedualnd the second
one comes from the fact that both events in its left hand site Ipositive proba-
bility. Note that this is the same conclusion obtained inagiun 2.14).

By the results of HarrisHlar6d an Fisher Fis61, if p > p.(Z?) then the con-
figurations of Bernoulli site percolation ¢ have, almost surely, the following
property: There exists a nested sequence of open semitsincuhe semi-space
{(z,y); x >0, y € Z} connecting{(y,0);y > 0} to {(y,0); y < 0}.

Translating this result to the proce&S R(j, h)) we see that there exists (al-
most surely) a sequence of nested open semi-circuits tirtkiesef R(0,y); y >
0} to {R(0,y);y < 0} in I'®. To each such sequence there corresponds a nested
sequence of semi-circuits ofopen sites in' connecting{w € T; k(w) =
2, h(w) > 0} to {w € I'; k(w) = 2, h(w) < 0}. Since any infinite cluster
in T would have to intersect an infinite numbergbpen circuits, the existence
of such a sequence of circuits assures the uniqueness gfdister inT". In ad-
dition, the fact that all sites in,(I") arew;-open, yields that the infinite-cluster
is contained in an infinite-cluster. In particular, the infinite open cluster in the
restriction of the process to I is also unique.

Remark2.1Q The discussion in the last paragraph does not imply the eniegs
for the infinitew-cluster when it exists.

Proposition 2.11.1f w; € A; andp; > (pC(ZQ))l/?’ fori=1,2,3then
P,, x P, (77 e {0 & ooin f(wl)}> > 0.

Moreover, in the even{n € {0+ ooin f(wl)}} the infinite open cluster ab
restricted tol'(w;) is unique. In particular, ifp; > [p.(Z?)]'/? forall i = 1,2, 3,
then

P, ({0 < oo}) > 0.
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As a simple consequence of the last proposition and fromd3itpn 2.3 we
highlight the next simple bounds for the critical pojnt

Corollary 2.12. For the coordinate percolation process given lylj with p; =
p2 = p3 the critical parametep, satisfy:

1/3

pe(Z?) < pe < [PL(Z7)] (2.18)



Chapter 3

The radius of the open cluster at the
origin

In this chapter we prove equatioh.8) establishing thus the exponential decay for
the tail distribution of the cluster containing the origor the coordinate percola-
tion process irZ® when at least two parameters of the model are sub-critical. W
also prove equatiori(4) establishing that the rate of decay is at most polynomial
when at least two of the componentswfare super-critical. Those two results
give Theorent.3

3.1 Exponential decay

The proof of equation(.3) is a consequence of CorollaB/2 and from Men-
shikov’s [Men8q and Aizenman and BarskyAB87] results on the exponential
decay for Bernoulli percolation (see equatidng). The idea is the following:
Suppose that the the evefit € {0 <+ 9B3(n)}} happens. Then, for at least
one index: such thatw; is a sub-critical Bernoulli percolation i®;, the event
{0 <+ 9B%(n)} will also happen. Applying equatiorl () yields the result. We
state that result as the following proposition:

Proposition 3.1 (First statement in Theoreth3). Consider the coordinate per-
colation model inZ3. If at least two parameters are sub-critical then there is a
constant)(p) such that

Py ({0 <> 0B%(n)}) < exp (—¢(p)n). (3.1)

25
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Proof. By Corollary2.2, if {0 «+ 0B*(n)} occurs, then; € {0 «» 9B?(n)} for
at least two different indiceg € {1,2,3}. Then, writingP for P,, x P,, x P,
we have:

Pp ({0 0B*(n)}) < > P(w;€ {0+ 0B}(n) forallje A}) (3.2)
Ac{1,2,3}
|A]=2

Any fixed subsetd C {1, 2,3} with |A| = 2 must contain an index such that
w; Is a sub-critical Bernoulli site percolation proces$in Fixe, for convenience,
pe @andps the sub-critical parameters pfand definex(p) = min{v(p2), ¥ (ps) }
where ) (py) and vy (p3) are given by equationl(5) applied to the percolation
process irP, andP; respectively. By equatiorl(5) we have that:

P (w; € {0 < 0B:(n) forall j € A}) < exp(—a(p)n).
Plugging that into equatior8(2) yields:
Py ({0 <+ 0B*(n)}) < 3exp (—a(p)n).

We can then choose suitably @n< ¢(p) < a(p) for which equation3.1) holds
for all n.
]

3.2 Polynomial decay

3.2.1 Crossing events in a block lattice

In this section we derive some results about crossing ewestsme rescaled lat-
tices isomorphic t&2. Those rescaled lattices will be composed of blocks of sites
from Z? or Z3. If the configuration within those blocks satisfies some emient
properties (to be defined latter) we will say that the blocgasd The existence
of crossings of good blocks in the rescaled lattices willdl@artant in the next
sections where we will use them in order to assure the existeh some long
open paths in the origin&l*-lattice.

Let R(n,m) = {(z,y) € Z*, 0 <z <n-1,0 <y < m-— 1} be
the rectangle having the origin @f as its bottom-left corner and horizontal and
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vertical sides containing andm vertices respectively. A path of nearest-neighbor
sites traversing this rectangle from its left side to ithitigide will be called #eft-
to-right crossingor acrossing from left to rightn R(n,m). Similarly we define
abottom-to-top crossingr acrossing from bottom to toim R(n, m). For a given
w € ) we say that a crossing is open if all of its sites arepen. Define the
following crossing events
A(n,m) = {there is an open left-to-right crossingit{n, m)} 33
B(n,m) = {there is an open bottom-to-top crossingitv, m)}. (3:3)

Forl, k € Z we defineR(n, m; k,l) = R(n,m) + {(kn,im)} and denote by
A(n,m; k,l) and B(n, m; k,[) the crossing events iR(n, m; k,[) that are ana-
loguous to the ones irB(3). Moreover, in order to refer to the analogue of the
rectanglesRk(n,m; k,[) that lie on’P; and the analogue of the crossing events
in {0,1}7 we write R;(n, m; k,1), A;(n,m; k,1) andB;(n, m; k, ) respectively.
Whenn = m we may drop the index: and write for instanceR(n; k,[) for
referring toR(n, n; k,1).

Let a x-path inZ? be a sequencéuy, vy, ..., v, } of sites such thaty; —
vj—1le = 1forall j = 1,...,7 (Where| - | stands for thé, -distance inZ?).
Denote byA*(n, m; k, () the event that there existsgpath crossingdz(n, m; k, )
from left-to-right having all its sites closed. Similarlgfine the analogous events
B*(n,m; k, ) for bottom-to-top crossings. It is well known in percolatitheory
thatB(n, m; k,[) happens if and only if4*(n, m; k, ) does not happen.

If now Z?2 stands for the graph with vertex s&t and with an edge between
each pair of vertices lying dt.-distance one from each other apdZ?) the
critical density for Bernoulli percolation on this lattidhen we have that,.(Z?) +
p.(Z?) = 1 (see Rus81for a proof). Thugp > p.(Z?*) implies thatl —p < p.(Z?)
so by Menshikov’s and Aizenman and Barsky Theorem there @natant) =
Y (p) > 0 such that for alh,

P, ({there is ax -path of closed sites froto 9B (n)}) < e ¥®".  (3.4)

For a real numbed let us definda| = min{n € Z; n > a} the least integer
greater tham and |a| = maz{n € Z; n < a} the greatest integer smaller than
a. Fix a constant > 0. Note that the probability that there is a closegath
connecting some fixed site in the left side Bf[clogn|,n) to some other site
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lying in the right side of this rectangle is at most equal te tine probability that
the origin is connected to the boundary of a box of radiuleg n| by a closed
x-path. Then using equatioB.@) we have that:

B, (B ([clogn],n)) = 1 - B, (A" (clogn],n))

3.5
>1— ne ¥@eclogn _ 1 ) 1-cih(p) (3:5)

where the facton appears since we havechoices for the starting points of a
crossing inR ([clogn],n). Now if we fix ¢ > ¢(p)~! equation 8.5) yields,

lim P, (B ([clogn],n)) = 1. (3.6)
In particular, for any integet > 0,

lim P, (A (kn,n)) = lim P, (B (n, kn)) = 1. (3.7)

s oo n—00

Let T, (j,1,h) = {(z,y,2) € Z% jn <z < (j+1n—1,In <y <
(I+1)n—1, hn < z < (h+1)n—1}. Note thatl',,(j,, h) C Z? areblockswith
siden and satisfyr, (fn(j,l,h)> = Ri(nij,1), m (fn(j,l,h)) = Ry(n;j, h)
and 74 (fn(j,l,h)> — Ry(n;l,h). We defineA, = {[(j,l,h): j,l.h € 7}
and introduce a graph structure Ag by inserting an edge between two blocks
I,.(j,1,h) andl,, (4,1, ') whenevetj — j'| + |l — I'| + |h — I'| = 1. Note that
when seen as a graph,, is isomorphic to théZ3-lattice.

AblockT',,(j,1, h) is said to begoodif the following event happens:

[As(2n,n; 5, h) N Ba(n, 2n; §, k)] N [As(2n, n; 1, h) N By(n, 2n; 1, h)]
By the Harris-FKG inequality and by equatia®. {) we have that
P,, x P, (f“n(j, I,h)is good) >
[Py (A (20,15 4, W) X [Bpy (As(2n, 51, 2))] — 1

asn gets large. So, choosinglarge enough, we can assume that the probability
of a block to be good is high. More specifically we have:

Lemma 3.2. Letu € [0,1). Suppose thap,, ps > p.(Z?). Then there is an
integern = n(py, p3, u) such that

P, x B, (f‘n(j, I, h)is good) > u. (3.8)
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Figure 3.1: The blockT',,(3, 3, 3) is a good block. In the left picture we see the
definitions of the pathg;(3, 3) and(;(3, 3) for i = 2, 3. In the right we represent
the setR, (clog k, k).

Forc > 0 andk € Z let

Ry(clogh, k) = {0 (Lj/2), [5/2], h) € A0 < j < [clogh], 0 < h < k}
= {fn(j,l,h) €Ay 0<j <[clogk], 0 <h <k, lzjorl=j+1}.
If we regard the subset,, R, (clogk, k) as a sub-graph of,,, then it is isomor-

phic to the rectangl&(2[clog k], k) C Z? that have lenght[clog k] and height
k (see Figure3.1). Define further,

B, (clogk, k) = {3 a top-to-bottom crossing of good boxesfy (¢ log k, k)}

Lemma 3.3.Letp,y, p3 > p.(Z*) andp, # 0. Then there are, = n(p,, p3) € Z,,
c = c(p2,p3) > 0andd = d(p2, p3) > 0 such that for allk € Z,

P, x P, ([;’n(clog k, k:)) > 4. (3.9)

Proof. Takep such thatp; > p > p.(Z?) for i = 2,3. As an application of
equation 8.6) (with £ playing the role of,) we can choose constants- c(p) > 0
andd = o(p) > 0 such that

Py (B (2[clogk], k) = 6

for all integerk > 0.
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Let X = {X(j,h)}(jnez be the process ofD, 1}7° given by

X(j,h) = 1{fn(L%j,[%1,h) is good}
and denote by its law. The definition of a block to be good depends only on the
restriction of thew, andws; processes to the projections of this block and of its

neighboring blocks into the plan@s andP;. Thus the we have that the process
X is a two-dependent percolation process and that

P, xP, (Bn(clog k, k)) — 1 (B, (2[clogk, k). (3.10)
Then, by LSS97 Theorem 0.0] we have that there exigts (0, 1) such that, if
p({X (G, h) =1}) > u, (3.11)

then X dominates stochastically a Bernoulli site percolationhwarametep.

By Lemma3.2we can choose large enough so that equatidh11) holds. Then
using the fact thaB,, (2[clog k], k) is an increasing event and the stochastic dom-
ination, we have that:

(B, (2[clogk], k) > Py (B, (2[clog k], k)) > 0.

Plugging this last inequality into equatioB.10 finishes the proof. 0J

3.2.2 Constructing paths from projections

For this section we will fixpy, ps > p.(Z?), ¢ = c(p2, p3), andn = n(ps, p3)
as given by Lemma&.3We will also drop the subscript that refer to the size
of the renormalized blocks ift,,, T,,, B,, B., R., A, and others. Then, the
previous lemma assures that the probability of existengetifs of good blocks
in R(clog k, k) is bounded by below uniformly asincreases. In order easy the
notation, let us not distinguish betwedticlog k, k) c A andl;,, '(j,1,h) C
7? where the union is taken over

{(G,1,k); 0<j<T[clogk], 0<h<k l=jorl=j+1}.

The point in considering crossings of good blocksiift log k, k) is that to each
such a crossing there corresponds a path{vg, vy, . . ., v, } of sites ofZ?® having
the following properties
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e ~is a path contained iR (clog k, k)

e v, belongs tor (R(clogk, k)) andv, € {(z,y,2) € R(clogk,k);z =
(k—1)n}.

e The projections ofy into P, andP; are respectively, andws-open paths.

In order to prove the existence of such a patlve present, as a lemma, a proce-
dure that enables us to create pathZirhaving their projections lying in cross-
ings of rectangles dP, andP; previously defined. Before that we introduce some
more notation.

For a sitev = (z,y,z) € Z* we defineh(z) = z the value of its third co-
ordinate that we call théeightof v. For two sitesv = (x,0,2) € P, and
w = (0,y, z) € P3with h(v) = h(w) = z we define

vXw=(x,0,2) x (0,y,2) = (x,y, 2) (3.12)

In words,v x w is the unique site having andw as its projections ont®, and
P; respectively. Let
V= {U07U17"'7Um} CZB (313)

be a path. We define itsariation as being
h(7) = h(vm) — h(vo). (3.14)
For any0 < k < m we denote
A = Lug, ... v} (3.15)
the pathy stopped at it¢-th step. Denoting for any € Z
7= m(y) = inf{j > 0; h(v;) = k} (3.16)
we can define the path stopped at the first time it hits heidit:
y Ak =) (3.17)

If the infimum in equation3.16) is taken over an empty set we simply takek =
~. For a pathy as in 3.13 we define itgeversalas being the path

¥ = {Vm, Um—1, -, 00} (3.18)
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If we now takey as in 3.13 and another path

v = {wo, ..., Wy} (3.19)

havingv,, = wy, we define theiconcatenatiorby:
vxy =V, .y Uy Wiy e o Wet } (3.20)

Now, if v and+’ given by @3.13 and .19 intersect theirselves however not
necessarily in their endpoints we define theixtapositiony o 4" as being the
unique path described as follows: It starta@tgoes alongy until it first hits -,
and then, from that point on, it goes alofguntil its final pointw,,,.

We say that two pathgand~’ given as in 8.13 and @.19 given arecompat-
ible if

v C Pyandy’ C Ps (3.21)

h(vg) = h(wg) andh(v,,) = h(w,) (3.22)
h(v*"h(y) > 0forall 0 < k < m and

(Y*)h(y) = <k<m (3.23)
h(yNh(+) > 0forall0 <1 < m/

(v) = m and7, (') = m’/, whereh = h(vy) = h(7'). (3.24)

Condition @.22 states that botlh and~’ start and finish at the same height, and
it implies thath(+) = k(7). Condition 3.23 requires that as one goes forward
along the paths, the variation does not change signs, nge#man the paths will
always lie above or beneath their initial height. Finallyndition@3.24) guarantees
that~ and~’ only hit the final height at their respective end pointsandw,,,..

The point in defining the notion of compatible paths is thaemévery and+’
are compatible it is possible to find a pathZh havingy and+’ as its projections
into P, andP; respectively. This is the content of the following lemma:

Lemma 3.4. Lety and+’ given as in(3.13 and(3.19 be two compatible paths.
There is a pathy x v/ C Z3 starting atv, x wy and ending at,,, x w,, satisfying:

Ty X ) =y andms(y x 7)) =7, (3.25)

Remark3.5. Usually there can be more than one path conneating w, and
U X v, and satisfying 3.25. So whenever we write x +' we are referring to
one of those paths arbitrarily selected.
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Proof of Lemm&.4: Leth = |h(~)| = |h(7)|. We will use induction inh. We
also restrict ourselves to the cdge,) = h(wg) = 0 andh(v,,) = h(w,) = h >
0. The proof of any other case is similar.

We first consideh = 1. Letyy = {vo, ..., U1} andvyy = {wo, ..., w1}
the horizontal parts of the pathsand+’ (note that they can be a single point if
n = 1orm’ = 1). We can thus define:

YH X Wy = {UQ X Wo, V1 X Woy vy Ump—1 X wo} and (326)

Um—1 X ’}/}{ = {’Um,1 X Wey, Um—1 X W1y ..., Unp-1 X wmr,l}. (327)

The paths above are well defined, siride,;) = h(w;) = 0 for anyv; and w;,
appearing at the right hand side of those equations. Sireenting point of
vi X wy IS equal to the starting point @f,,_; x ~}; we can define

Y X Vg = (Y X wo) * (Um—1 X V). (3.28)

It is then straightforward to check that (v x v};) = vu and thatrs(yy xvy) =
vy and thatyy x 4, starts atvy x wy and ends at,, 1 X w,,_1. If we now
let vv = {vm_1,vn} and~i, = {w,—1,w,,} be the vertical parts of and~’
respectively, and define

W X YW = {Un-1 X Wiy 1, U X Wyt } (3.29)

thenmy (v x 71,) = v andms(yy X () = 74,. Finally let us set

Y Xy = (yu X vy) * (v X 1) (3.30)

which is a path starting at, x w,, ending at,,, x w,,» and satisfying3.25. This
finishes the proof foh = 1.

Now let us consider the cage= hq + 1 whereh, > 1 is fixed. Assuming that
the lemma holds for any pair of compatible paths having haighgreater than
ng > 1 we are going to show that the lemma holds4aand~’ finishing thus the
proof.

We begin by splitting the pathgsand~’ into several up and down-excursions
having variatiom,. For that let, = ¢{, = 0 and define inductively for at > 1:

ton—1 = inf{j > to,_2; h(vj) = ho}

(3.31)
tgn = lnf{j > t2n—1; h(Uj) = 0},
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with the convention thaif () = co. Let f be defined so th&f — 1 is the number
of finite elements in the sequentgty,ts,.... Thenf represents the number of
excursions from height zero to heigh¢. Similarly we definet;,, ., t,, and f’,
the analogous indices for the path We will assume thaf > 1 andf’ > 1. The
other cases are simpler to deal with.

Then we have the following sequences:

to <ty < - <typandty <t <--- <thy (3.32)
and the paths:

vy ={vy, v, forj=0,...,2f =2

' . , (3.33)
fyj:{wt;,...,wt;+l}f0r]:()’_”’Qf -9

Note that, ifj is even, theny; and~; are paths with variation equal g, with
the starting point having height equal to zero and the engoigt having height
equal toh,.

Let us also define the following paths:

n= (30 A 0) and

RSN (3.34)
(= (M2r—2A0).

We also define the pathg and(’ as the analogues gfand( fo the pathy’. In
words,n can be described as the set of sites that would be travesseu ovie
travels alongy, after visiting height zero for the last time. Note thedonnects a
site lying at height zero to a site lying at heidhtwithout ever touching these two
heights in between. The pathsy’ and(’ can be described in a similar fashion.

Having already defined the paths, ..., 7272 and~yg, ..., 75, let us now
define:

, - ) (3.35)
Top—1 = CAL and yop =\ (% * Y1)

Thus we can write

Y= Yok Y1k K Yap_2 % Yap—1 * Y25  and

. . (3.36)
YO= Yo kYR kYoo k Yap—1 kYo,
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Roughly speaking, this equation express the decompositipiiand similarly
for 4') as follows: Go up along until hitting heighth,. Then go down back to
height zero. Repeat it fof — 1 times and then go up again until hitting heigit
At that point the pathy,; , has just been traversed from bottom to top. Now go
along its reversay,, , stopping at the step just after reaching height zero. This
corresponds to,y_;. Then follow~ from this point on until hitting its last site
U -

Note thaty, and~ are two compatible paths of variatig so, by the induction
hypothesis there is a path

Yo X Yo (3.37)

starting atvy x w, and ending ab;, x w, and such that (v x 7)) = 7 and
m3(v0 X 75) = 74 Also, for each) < j < 2f — 2 odd,~; andy’ are compatible
paths of height,. Similarly for each0 < j < 2f — 2 even,v; andn’ also
constitute a pair of compatible paths. So, we can pick thiespatx »’ for j even
and~; x 7/ for j odd. All those paths have their projections i equal to;
and their projections int®; equal ton’ or y’. Also the ending point of each one
of them is the starting point of the following one. So we cafirge

yxn = (o)) x (v2 X ) x ok (yap-e X 1)) (3.38)
and it follows thatry (v x ') = v andms(y x ') = 7.
Following an analogous procedure we can pick the paths’; for j even and
¢ xvjforjodd (L <j <2f —2)and then define:
Xy = (Cx ) *(CxAh) % (C X Yypy) (3.39)
Note that this path starts af,, , x w,; and ends at;,,_, x wy, Also they
satisfy thatry (¢ x 7') = ¢ or¢ andns(¢ x v') = 7.
Noting also thaty,;; and~;,, , are compatible paths with variation equal to
ho — 1 starting atvy,, , andw,§2f_2 respectively and that,; and~,,, are compat-
ible paths of variatiork,, we can then pick

Yof—1 X Yapr—1 andygy X ”Yéf/ (3.40)
and concatenate then in order to have a path starting af>w,, , _ and finishing
atv,, x w,, and having:

4P ((72#1 X Yop_1) * (Y25 X '72f’)) C 251 U2 and

/ , , / (3.41)
s ((y2r-1 X Yopr—1) * (Yar * 72f/)) C Yoy Uapre
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Finally let us define:

v X" = (0 X 70) * (v X 0) 5 (CX ) % (a1 X Yap 1) * (Y2 X 2p)- (3.42)

which is a path inZ? starting atv, x wg, ending atv,, x w,, and satisfying
(3.25. O

WhenA;(2n,n; j, h) NB;(n, 2n; j, h) happens we denote k§y(j, ) a bottom-
to-top w;-open crossing iMk;(n, 2n; j, h) and by(;(j, h) a left-to-rightw;-open
crossing inR;(2n, n; j, h) both being arbitrarily selected among the existing pos-
sible crossings (for instancgg could be taken to be the left-most crossing gnd
the lowest one). We writ&;(j, 1)), and((;(j, h)), in order to refer to the starting
points of those paths. Now suppose thét, I, h) andT'(j, ', i) are good blocks
that are neighbors in the graph We will use Lemma3.4in order to construct
paths traversing the union of those blocks while connectis(@, 1)), < (£3(1, h)),
to (&(5', 1)), x (&3(I', 1)), and, in addition, having its projections infQ) (for
1 = 2,3) always contained in the union of the paths(; corresponding to the
events of those blocks to be good.

Lemma 3.6. Suppose thak (5, 1, h) andI'(j', ', 1) are good neighboring blocks
in the graphA. Then there is a path = {vg, v1, ..., v, } C Z3 satisfying:

1.y C T4, R)UT(, T, 1);

2. o = (&2(7, h))g x (&3(1, h))g @ndwn, = (§2(5", h))g x (&3(I', B))o;
3. m(y) C (i, h) U&(J, h) UG, h) U &3 h);

4. m5(y) C Gl h) U (L, h) UGl ) U Es(ll) 1Y),

In particular by the items and4 we have that every site inis simultaneously
wy andws-open.

Proof. Sincel'(j,1, h) andl'(j, ', k') are neighboring boxes we have thgt-j|+

|l —1U'| + |h — K| = 1. Then split the proof into six cases (each one corresponding
one of the indices changingl units) and use Lemm®&.4in each of those cases.
We only prove the casels — h = +1 andj’ — j = =41, the remaining cases

I — [ = £1 are analogous.
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1. W' — h =1 (the basic strategy is depicted in Fig3:)

For convenience letus fik = 0, j = j/ = 0andl = I’ = 0. Since
£(0,0) and&;(0,0) are respectively bottom-to-top crossingsiof(n, 2n)
and R3(n,2n) they are compatible. By Lemm&4 we can pick a path
§ = &(0,0) x £(0,0) C Z* starting at(£,(0, 0)), x (£3(0,0)), and having
m(€) = &(0,0) for i = 2,3. In particular¢ is contained in(0,0,0) U

1(0,0,1).

Now, fori = 2,3 let 3;(0,1) = &(0,0) o m 0 £(0,1) be the path
in P; defined the following way: First start at the final point&f0,0),
then go down along its reversgl0, 0) until hitting ¢;(0,1). After hitting
¢;(0,1) go along this path in the appropriate sense in order to hip#ib
¢:(0,1). Note that eitheg; (0, 1) or its reversal should be taken in order to hit
¢;(0,1). Finally, after hittingg; (0, 1) take its reversaj; (0, 1) until getting to

its starting point&;(0,1)),.

Remark3.7. The arrow is placed on the top ¢f(0, 1) in order to indicate
that one should goes along eitligi0, 1) or ¢;(0, 1) depending on which one
of these paths will lead t§,(0, 1). We prefer not to give a formal definition

and trust that this description is enough for making the tanson clear.

Note thatf,(0,1) and 5(0, 1) are top-to-bottom crossings @t;(n;0,1)
and R3(n; 0, 1) then they are compatible paths and by LenBrawe can
pick a path3 = 3,(0, 1) x 35(0,1) € ['(0, 1) connecting the ending point of
¢ to the site(é,(0, 1)), x (£3(0, 1)), and havingr;(5) C &;(0,0)U¢(0,1) U
&(0,1)fori=2,3.

Let us definey = £ x 5. Then this path starts &,(0,0)), x (£(0,0)),
finishes at¢,(0, 1)), % (£3(0, 1)),. The properties, 3 and4 in the statement
are satisfied since they hold for batland 5.

2. ' — h = —1. By the previous case if we interchange the roles @ind
h’ we can pick a path satisfying the properties and4, however starting

at (&(4", ') > (&s(I', 1)), and finishing atéa(j, b))y < (€3(l, 7))y The
reversal of this path satisfy all the required properties.

3. j/ — j = 1 (the basic strategy is depicted in Figi&:&)
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A

Figure 3.2: The paths2(0,0) and&s(0,0) are the blue ones connectingo b
ande to f respectively. The paths(1,0) is the blue one starting &t passing
through ¢ and ending at/, and 53(1,0) is defined similarly. The path =
(&2 X &3) * (B2 x B3) is contained in the union cff(j, [,o)u (1, 1).

In order to simplify the notation we fix = 0. Letas = £>(0,0) 0 (3(0,0) o
(£2(1,0) An) C P, be the following path: Start &€,(0,0)), and go along
&2(0,0) until it hits ¢,(0,0). After hitting (»(0,0) go along this path until
hitting £,(1,0). Finally go alongés(1,0) up to heightn. Note thatas is
bottom-to-top crossing of the rectangkg(2n, n; 0, 0).

Define nowas = £3(0,0) A n. Thenas is the bottom-to-top crossing of the
rectangleRs(n; 0, 0) that starts afé;(0,0)),, goes alongs(0,0) up to the
time it first hits heighta.

Sincea, andas are crossings of blocks with same hight they are compat-
ible. We can apply Lemma3.4in order to pick a patlhy = a» x a3 that
starts at&»(0,0)), x (£3(0,0)),, goes up to height and that has projections
mo(a) = ap C &2(0,0) U (2(0,0) U&a(1,0) andms(a) = as C €3(0,0). In
particulara is contained ii*(0,0,0) UT'(1,0,0).

Let us now defined; = &5(0,0) A n which is the path starting at the end-
ing point of £5(0,0) A n and going along its reversgi(0,0) until it hits
(£5(0,0))0. We also defings, = &,(1,0) A n to be the top-to-bottom cross-
ing of Ry(n,n;1,0) that starts at the ending point &f(0, 1) A n and goes
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alongé,(0, 1) all the way down to the sit&, (0, 1)),.

Note thatg, and/; are compatible and so, once more, Lem3ndenables
us to select a path = 5, x (33 connecting the ending point ofto the site
(&2(1,0)), x (&(1,0)), and havingry(5) = f2 C &(1,0) andms(3) =
fs C £3(0,0) U (3(0,0) U&s(1,0). In particulars  T'(0,0,0) UT(1,0,0).
Then the concatenation= « * 3 is a path satisfying the propertiédo 4
above.

4. § —j=-1

Interchange the roles gfand;’, use the previous case and then reverse the
obtained path.

\

Figure 3.3: The pathas is the blue one starting at, passing througty and
¢, and finishing atl. The pathas starts atf and goes up until hitting height
n, B3 is simply its reversal.3; is the path connecting to e. The pathy =
(ary X ai3) * (B2 x B3) is contained i (0,1, k) UT (1,1, h).

Corollary 3.8. For each path of good blocks

5/ - {f‘(]07 lO) hO)a sy f(]ma lma hm)} C A

there exists a path of sites= {vy, ...,v,} C Z? satisfying:
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1. v is contained il J", T'(ji, li, hs);
2. h(vg) = nhy andh(v,) = nhy,;

3. all sites inmy () andms(y) are wy, andws-open respectively.

Proof. We apply Lemma3.6 to each paifl'(j;, l;, h;) and T (jiy1, lit1, hit1) that

are neighboring sites i in order to find a sequence of pathscontained in

% C LGl hi) U T (g, Uy, iy ); Starting at(€(ji, 7)) x (€s(l, i), and
finishing at(&2(Jiv1, hit1))g % (&3(li1, hit1)), that have the projections int®,
andP; beingw, andws-open respectively. Since the ending point of each of the
~; IS the starting point of each of we can concatenate them all obtaining a path
v = *...* v, having the desired properties. O

Corollary 3.9. If B(clogk, k) occurs and all sites inr (R(clog k, k:)) are w, -
open then there is a-open pathy = {vg,v;,...,v,} C R(clogk, k) such that
h(ve) = 0 andh(v,,) = kn.

Proof. Recall thatB(clog k, k) is the event that there is a path

;5/ - {f(j07 lOa h0)7 ey f‘(jma lma hm)} C A

crossingR(clog k, k) from bottom-to-top. In particula,y = 0 andh,, = kn
By the previous corollary, there is a path= {vy, ..., v,.} with h(vy) = 0 and
h(v.) = kn having both its projections int®, and P; beingw, andws-open
respectively. In addition all sites i are contained irf%(c log k, k), and since alll
sites inmy (R(c log k, k;)) arew; open it guarantees that the projectiomainto
P; is also composed ab;-open sites. It follows that is w-open finishing the
proof. O

3.2.3 Proof of the polynomial decay rate

We are now in the position to proof that the tail probability the radius of the
open cluster at the origin decays at most in a polynomialifattdeast two of the
components of the vectgr are chosen to be high. Recall that the constants
andé are held fixed as in Lemm& 3. We remark that the terrian appearing in
inequality 3.43 is playing the role of. in inequality (L.4). This change is due to
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the fact that: has been previously fixed for denoting the side lenghs of tixe$®
in the renormalized block lattice.

Theorem 3.10.Suppose that,, ps > p.(Z*) and thatp; # 1. Then there exists
constantsy = a(p) > 0 ando’ = &'(p) > 0 such that for all integek > 1,

P, ({0 «» 0B® (kn)}, |C| < 00) > o/ (p)k ). (3.43)
Proof. By the choices ofi, c andy and by Lemma.3we have that
P, (Blclogh,k)) > 6
for all positive integers > 1. We define the following events:
C, = {all sites(x,0,0) € P, such that) < y < n[clog k| arew,-oper}

C; = {all sites(0, y,0) € Ps; such that) < x < n|[clog k| arews-oper}
D, = {all sites in m; (R(clog k, k:)) arewl-open}
&1 = {there is ax-circuit of w;-closed sites surrounding the originfh }

where, ax-circuit is defined to be a-path that starts and finishes at the same site
without intersecting itself before it finishes.

The event that all sites @, lying at/..-distancel from =, (R(clogk, k)) are
wi-closed is contained ifi;. Furthermore it is independent ®f,. Thus we have
that

]Ppl (Dl N 51) > p12n2(clogk+1)<1 _p1)4n(clogk+1) (3_44)

Now, if D; x B(clog k, k) happens then by CorollaB:9there is as-open path
starting at a (random) sit in 7, and finishing at a site, in 9B3 (kn). Then,
in order to have the origin connected@®?(kn) it is enough to guarantee that
it is connected tay. This can be accomplished by simply requiring further that
Cy x C3 occurs. Infact, ifD; x Cy x C3 happens then all sites in (é(clog k, k;))
arew-open. Thus we have that:

Dy x (Blclogh, k)N (G x C5))  {w € {04 OB* (kn)}}

It is well known that for a site percolation process in theaguattice (and
hence orP;) the open cluster at the origin is finite if and only if therastx a
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closedx-circuit surrounding the origin. So, by Lemn2a3 we have that, on the
event&, for P, almost all configurations there is no percolation. Then:

Py ({0 <+ 0B? (kn), |C| < 0 }) >
P, xP, xP, ((D1 N&) % (B(c log k, k) N (Cy % c3>)) —  (3.45)
P, (D, NE) B, x P, ((B(c logk, k) N (Ca x cg))) .
By the Harris-FKG inequality and by equatio®.43 we have that
Py, x Py, (B(clogk, k) 1(Cy x Cy) ) >

P,, x P,, (B(clog k, k;)) Pps (C3) By, (Cs) > (3.46)

n(clog k+1 n(clog k+2
5p2( g+)p3( gh+2)

Now if we plug equations3.46) and (3.44) into equation 3.45 we get:

Py ({0 +» 0B (kn), |C| < x0}) >

5 p12n2(clogk+1)(1 . p1)4n(clogk+1) p;z(clogk-i—l) pg(clog k+2) _
o/(p)k*a(p),
where the constants anda depend orp. 0J

We conclude this section providing a quick remark about the:

Proof of the second statement in Theore@d All the work has been done. In
fact, from equation3.43, we have that for alk > 2 that

Py ({0 + 0B® (k),|C| < 0}) >
Py ({0 <+ 0B® (kn), |C| < 00}) >
o/ (p)k =

which is equation.4) with £ playing the role ofa. O
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More about the supercritical phase

The existence of a supercritical phase was settled in Chap#ss a by-product,
in Corollary2.12 we have shown that if all the componentspoére larger than
[p'.(Z?)]'/3 then there is percolation. Assume that we now decrease otfesof
components op while we increase another one, sayandp, respectively. In-
tuitively, as we decrease we create new closed columns thus removing all the
sites on those columns that were open before. On the othel; reoreasing»;
we will sprinkle more open sites all ov&?. It turns out that, as long as stays
larger tharp.(Z?), can be increaseg, quickly enough in order to still guarantee
the existence of percolation. In fact, Theor&m yields more than that: As long
asp, andps; remain supercritical, it will always be possible to fixlarge enough
so that there will still be percolation.

The aim of this section is to present the proof of Theoterh We use two
lemmas that are based on Lem@\d and ideas similar to those of the proof of
Theorem?2.9.

Recall thatR, (n, n; j, [) are squares of sidecontained irf°; and consider the
setPl(") ={Ri(n,n;j,l); j € Z,l € Z} that can be seen as a graph by adding an
edge betweeR, (n, n; j,1) andRy(n,n; j', ') if, and only if, | j' — j| +|I' =] = 1.

Let for the moment,, C 771(") be a fixe-directed path of rectangles and consider
G = {PulGi 1, h) € Ay (TG L 1)) € 0 }-

The following lemma shows that we can chooséarge enough so that the
probability of finding infinite paths of good boxes i is positive. We use the
fact that ifn is large, then a block ify,, is good with high probability and that the

43
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event that a block iy, is good does only depend on the state of blocks within
a fixed (graph)-distance of this block ip,. Those ideas have been used before
in the proof of Theoren®.9, so the reader can skip the proof if he accepts the
statement as being true.

Lemma 4.1. Letp,, ps > p.(Z?). Then there i = n(p,, p3) for which:

Py.3 ({3 an infinite path of good blocks starting fraiy (0,0, 0) in %}) >0,
(4.1)
wherePy 3 = P,, x P,,.

Proof. Consider the set of indices= {(j,1) € Z*; Ry(n,n;j,1) € y,} andl =
{(4,1,h) € Z% A,(j,1,h) € T,,}. ThenI can be regarded as2adirected path in
7? andI can regarded as its lift i®. Consider the processX (j, [, k)Y ke

where X (5,1, K) = 15 (1) is goody N0 l€tu denote its law on{0, 1}, The

event{fn(j, [,h)is good} only depends on the, andws processes restricted to
the projectionsr, (fn(j’, l, h’)) andrs (fn(j’, l, h’)) of rectangled’,, (5, ', /')
satisfying|;’ — j|+|I'— 1| +|h' — h| < 1. Moreover, since the pathis 2-directed,

it follows that there is a positive integér large enough such that the projections
of each rectangl@n( J, 1, h) into P, andP; overlap with at most the projection of
M other rectangles in,,. Then it follows that the process is a M-dependent
percolation process with

W X(G R =1}) =P, x B, ({fn(j, I h)is good}) .

Applying once morel[SS97 Theorem 0.0] there is a € (0,1) such that
if w({X(45,l,h)=1}) > uthenp ({0 <+ o0}) > 0. By Lemma3.2we can
chose a positive integer large enough (and depending pn and ps) so that
P,, x Py, ({fn(j, l,h)is good}) > u. So for that choice of: it follows that

Py 5 ({3 an infinite path of good blocks starting froi (0, 0, 0) in %}) =
p ({0 <> o00}) > 0.
]

From now on let us fix: as in the statement of the previous lemma. The
next lemma proves that the probability of finding an infinit®pen path starting
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somewhere in the blodk, (0, 0, 0) is positive if we keep., andp; fixed and sep,

to be large enough. Before stating this result and provimgeigive an idea of the
proof. First we choosg; high enough in order to guarantee that the event that are
infinite 2-directed paths of);-open blocks irfP] have positive probability under
IP,,. Then conditioning on the realization of this path, we cdasthe percolation
processes of good blocks on the lift of the resulting paths,inThis process will

be supercritical so the (conditional) probability of fingian infinite path of good
blocks inA,, is positive (almost surely). Finally we use Coroll&@)8in order to
relate such a path of good blocks to an infinite patlv-afpen sites.

Lemma 4.2. Suppose that,, p3 > p.(Z?). Then there is = ¢(p,, p3) > 0 such
that, ifp; > 1 — ¢, than:

P, ({3 a infinitew-open path starting af,, (0, 0, 0)}) > 0. (4.2)
Proof. Define the proces&: = {Xi(j, 1)} ; ez Where

X1 (]7 h) = 1{aII sites in Ry (n,n;j,l) arew;-openy

Due to the independence of the processn each rectangle we have that the law
of X, as a process is the same as the Bernoulli percol&t}i)(lz)n Sincen has
been fixed before, we can choosean 0 so that whenevep, > 1 — e then
P > [pL(Z*)]"/3. Fix such a > 0 andp; > 1 — .

Let . A; = {3 an infinite2-directed path of open rectanglesfi }. If follows
from Propositior2.5that

P,, {A1}) = L ({ 3 an infinite2-directed path starting &}) > 0. (4.3)
For eachv; € A, lety, = v,(w;) be the lowes?-directed path of open rectangles
in P and lety,, = 3, (w1) C A, be its lift.

Then writingP for P,, x P,, x P,,, E for the expectation with respect &y
P, 5 for P, x P, and{fn(o, 0,0) < oo} for the event

{3 a infinitew-open path starting dt, (0, 0, 0)} ,
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we have that:

P, ({fn(o, 0,0) ¢ oo}) -

2[p (o< {foan o <} 7)) >
E[14P ({we {1:(0,0,0) & coin 3, } | ’J—“l) ()] 2

E :1A1[P>273 ({3 an infinite path of good blocks starting froi (0, 0, 0) in %})] :

where the last inequality follows from CorollaB/8. By Lemma4.1 the term
into the brackets in the right hand side is positivedgre A;. This finishes the
proof. O

Using the two previous lemmas we are now in the position teg@tbeorem
1.4

Proof of Theoreni.4. We can without any loss of generality fix, ps > p.(Z?)
and takee as given by the last lemma. Consider for eack {1,2,3}, the
increasing even3; = {m (fn(0,0,0)> IS wi-open}. If By x By x B3 hap-
pens then all sites i, (0,0, 0) arew-open. Then{0 « oo} is contained in
{w € {T,(0,0,0) < oo}} N By x By x B3. Using the Harris-FKG inequality and
the last lemma we have that:

Pp ({0 4> o0}) >
P, ({fn(o, 0,0) ¢ oo}) [ BB} >o.

i=1,2,3

This finishes the proof. O



Chapter 5

The number of infinite clusters

Define the random variabl®:= the number of infinite clusters. By standard er-
godicity argumentsV is constant almost surely. More than that we show that this
constant can only assume the valled or co almost surely. For that we use
a procedure similar to that of Newman and SchulmarN8§14 and [NS814.
However their methods do not apply directly to the mea&tyelue to fact that
this measure fails to satisfy the so-calliégite energy conditionintroduced in
those papers. Thus a non-trivial extension is needed. Weheskct that for a
translation-invariant measure g, 1}%* all infinite clusters have a well defined
density (seeBK89]) and that the percolation processgsatisfy the finite energy
condition. The question whethéf € {0, 1} is still open. We conjecture that it
should be the case at least when the componengsasé high and conclude by
giving an informal argument of why this should be so.

5.1 Translation-invariance, ergodicity and density

Let = {0, 1}Zd, and.F be the sigma-field generated by theinder subsetsf ().
For eachv € Z4, letT, : Z¢ — 74 be the translation by, i.e., T, (w) = w + v for
eachw € Z<. We also lefT}, act in theconfigurationspacev by defining for each
w € Q, T,w the configuration given by7,w), = w,_,. For a random variable
X defined on(2 we define(7,, X ) as the random variable satisfyifig X (w) =
X (T_,w). The random variabl& is said to be invariant undér, if 7,X =
X. An eventA € F is calledinvariant underT, if 14 is invariant under this

47
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transformation, or equivalently ' A = A.

A measurg, on F is invariant undefl’, if (7, *A) = u(A) for eachA € F.
An invariant measurg defined on the Borel sigma-field ¢6, 1}% is said to be
ergodicwith respect tor,, if all invariant events4 have measur@ or 1. This
is equivalent to say that all invariant random variableSliare p-almost surely
constant.

An invariant measurg as above is said to bmixingfor the transformatiof,
if for all pair of events4 andB in F,

lim u(ANT,"B) = u(A)u(B). (5.1)

n—oo

Intuitively the condition of being mixing for the transfoationT,, means that, as
we iterate this transformation, the initial conditions geire and more irrelevant.
In a probabilistic point of view this means that the evefif¥(w) € B} and
{w € A} are asymptotically independent. It is an standard factgodic theory
that every mixing transformation is ergodic. Moreover osgally checks that an
invariant measure is ergodic by verifying the mixing cormht(5.1).

We say that a subset C Z? have density if for any sequence of rectangles
Ry C Ry C ... with U;>; R; = Z4 the limit

Y |AN R,
1m

exists and is equal to.

If we fix a configurationw € € then it is clear that each one of its finite
components have zero density. It has been proved by BurtdiKeane BK89,
Theorem 1] that ifi; is a translation-invariant probability af then all the open
clusters have a well defined density.

Let us fix nowy a translation invariant measure that is ergodic with resjpec
T,. Suppose thalv > 1, u-almost surely. Then we can create a ranked density
vector, by inserting at each coordinate the value of theitleoisone of the infinite
clusters in a non-increasing way. More specifically define:

p:{(pl,...,pN), if N < oo (5.2)

(p17p27"')7 IfN:OO7

wherep; > p;. are the densities of the infinite clusters. Sipge invariant under
T, we have thap is almost surely constant.
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Remarks.1

e Ifthere is more than one cluster with the same density theifi not depend
on the order their density will appear.

Of course there can be infinite clusters having zero denBitg.next proposi-
tion says that those clusters cannot exisY ik oo.

Proposition 5.2. Suppose thaj: is a translation-invariant ergodic probability
measure orf) for which0 < N < oo almost surely and lep be the ranked
density vector given bys(2). Then all entries op are strictly positive constants,
p-almost surely.

Proof. As mentioned before, by ergodicity, it follows that eachrgiwif p is con-
stant. Suppose, in order to find a contradiction, that theesmiindext for which
pr = 0. By the definition ofp it follows thatp, = O forall £ < j < N.

Let, for each; € {1,..., N}, C; stand for the cluster corresponding to the
j-th entry of p. DefineC’ = Uj.V:ij. ThenC’ is a non-empty random infinite
subset ofZ? having distribution invariant under lattice translatioivs particular,
p({0 € C'}) = u({v € C'}) forall v € Z4.

Let Ry C Ry, C --- be any increasing sequence of rectangles such that
U R; = Z°. Then, since the densities indeed exist, we have that:

> lpeen = (N —k+1)p, =0.

'UERn

li !
1m
n—00 |Rn|

Integrating the left-hand side with respectitousing the Bounded Convergence
Theorem and translation-invariance we have thg@0 < C’}) = 0, so that,
pn({C" = 0}) = 1, a contradiction. O

Corollary 5.3. Under the hypothesis of the last proposition, if the probabof
finding an infinite cluster of density zero is positive, thikaré exists infinitely
many of them almost surely.

5.2 The number of clusters is eithei), 1, or co

In this section we prove Theoretb. We start defining the notion of finite energy.
For a sitev € Z4, let Q™ = {0,1}2"\{*}, Denote byw*) a configuration if2).
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We say that a probability meastPehavefinite energyif for a sitev € Z<:
0<P ({w(v) = 1}’w\Zd\{v} = w(”)) < 1, with probability one. (5.3)

In words, this condition means that, the conditional exgtan of the random
variablew(v) given thes-field generated by the configurations outside thessite
is bounded away frorfiand1. Note that the finite energy condition holds trivially
for the Bernoulli percolation processes (if the densitis not equal to zero or
one). For the Ising model, verifying this condition is rel@to verifying that the
energy shift due to a single spin flip is finite. Intuitiveliymeans that if an event
have positive probability, then modifying the state of tlite s will not change
the probability of this event to zero. Thus after performiogal modifications in
the configurations of an event of positive probability wél sibtain an event of
positive probability as we explain below.

A measurable transformation: (2 — € is said to bdocal if there is a finite
setV C Z? such thatp(w)(v) = w(v) for all v € ZN\{V}. If P has finite
energy, then for any event havingP(.A) > 0 and any local transformatiop,
P(4(A)) > 0 (see NS81a Proposition 9]) for a proof). This fact is easy to verify
in the Bernoulli case.

For ergodic probability measures having finite energy th@mpthat N €
{0,1, 00} is based on this fact. The idea is the following: assume thas a
finite number strictly greater then one. Take a box large gh@o that the prob-
ability of intersecting all the infinite clusters is posgéivThen perform the local
modification that consists in opening all sites in that boxisTtransformation
connects all the clusters in a unique one. This implies tiaptobability of hav-
ing a unique cluster is also positive. However this is in cadittion to the fact
that V is constant almost surely.

As stated above, more than that is known to hold for prolghiieasures
having finite energy: it has been shown BK89] that there can be at most one
infinite component.

From now on we fixd = 3 and the measui®, with p; # 0,1 for all .. For this
measure, it is not the case that ahyis ergodic regardless of the chosen vector
In fact if we takev = (1,0, 0) then we have that the evefww(kv) = 0 for all k& €
7} is invariant undeff,, however it has probability equal to— p; ¢ {0, 1}.

On the other hand, whem = (z,y, z) have at least two nonzero coordinates
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then it is the case thafk, is mixing. In order to see that, led and B be two
cylinders inF and suppose that ¢ Z¢ and B ¢ Z? are finite sets of sites
such that the state of the sitesdAnand B determines the occurrence dfandB
respectively. Then there existsia (depending om and B) such thatr; (7' B) N
mi(A) =0 foralli = 1,2,3 and for alln > ny. So, for all such indices > ny,
we have thafw(w); w € A} and{w(w); w € B} are independent sets of random
variables, which implies the mixing condition. It is a standlfact that in order
to verify that a systeniu, 7..) satisfy the mixing condition it is enough to check
equation §.1) for each pair of cylinder sets. This follows from the facatlany
set inF can beapproximateddy a cylinder in the sense that the measure of the
symmetric difference between them can be taken to be aibjtsmall (see, for
instance Bil78] for a proof).

For the vector = (1,1, 1) we denote simplyl’ = T.. Sincee = (1,1,1)
has all its three components different from zero, we haveRpas ergodic with
respect tdl'. In particular, it follows thal’ N = N for all w € 2, so thatV is a
random variable that is invariant with respect/t@nd thenV is constant almost
surely.

However for this measure it is not true that we can performallowdifications.
To see that, notice that on the event that all neighbors obtigen are open the
origin itself is open with probability one. In particulargping the state of the
origin to zero would yield an event of probability zero. Thmsplies that the
finite energy condition does not hold. Also the proof of Newmna&ad Schulman
sketched above does not hold: If we want to have all the sftagen box to be
open then we need to modify the state of vertices in all tharoak intersecting
this box. We could do that in order to glue components togettwsvever it could
be that case that other infinite components would appeavrkése. This shows
that their proof do not apply directly. However instead ging to preserve the
number of cluster we could try to modify the configurationsgarving the density
of the clusters. This proof uses the same ideas as those imkainvpreparation
by Hilario and TeixeiraliT].

Proof of Theoreni.5 Suppose that < N < oo andletp = (py, ..., py) be the
ranked density vector defined i6.2) andC (1), ...C(N) be the infinite clusters
corresponding to each of the entriespof
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From proposition.2 we have that all the entries @f are strictly positive.
Thus we can take a positivg such that for all > n, the probability that33(n)
intersects all the cluster§(1),...,C(N) is positive. So, fixingn > ny and
denoting byA the event inf2; x €, x 3 given by

A = {w € {B*(n) intersects all the clusters(1),...,C(N)}}

we have thaP,, x P,, x P,,(A) > 0.
Define the mapping : Q; x Q5 x Q3 — Q; x Q5 x Q3 by setting

P(wr, w2, w3) = (P1(w1), Pa(wa), P3(ws)),

where,
1, ifve Bn)
w;i(v), ifvé B*n).

On the event (w;,wy, w3) € ¢(A)} the vectorp have an entry with value at
leastp; + ...+ py > p1. This follows from the fact that the evesdtis increasing
and the also from the fact that for any configuration in thisi§declaring all sites
in B?(n) = m; (B?(n)) to bew;-open we will get a configuration in for which all
the box B} will be w-open. Then we will have all the clustefq1),...C(n)
merged in a single>-cluster. SincéP,, x P,, x P,,(A) > 0 and this measure
satisfy the finite energy conditio,, x P,, x P,,(¢(.A)) > 0. This implies that
the vectorp have a component equal g+ . . . + py with positive probability. A
contradiction with the fact that its first component shoutdconstant equal tp;
almost surely.

¢ilwi)(v) = {

0
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