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Dicritical holomorphic flows on Stein manifolds
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Abstract. We study holomorphic flows on Stein manifolds. We prove that a
holomorphic flow with isolated singularities and a dicritical singularity of the

form
∑n

j=1 λjzj
∂

∂zj
+ . . . , λj ∈ Q+, ∀ j ∈ {1, . . . , n} on a Stein manifold Mn,

n ≥ 2 with
∨
H2(Mn, Z) = 0, is globally analytically linearizable; in particular

M is biholomorphic to Cn. A complete stability result for periodic orbits is
also obtained.
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1. Introduction. The study of holomorphic flows on Stein surfaces using tech-
niques of Holomorphic Foliations with singularities was introduced by M. Suzuki
[16]. Using techniques also from Potential Theory and Complex Analytic Spaces,
Suzuki proves that for a non-trivial complete holomorphic vector field X on a
Stein manifold M of dimension n ≥ 2 there is an invariant subset σ ⊂ M of zero
logarithmic capacity such that on M\σ all orbits of X are isomorphic to exactly
one of the following Riemann surfaces: C∗ = C − {0} or C. We shall refer to this
saying that the generic orbit of X is (isomorphic to) C∗ or C. Also according to
Suzuki we have: (S.i) if the generic orbit is C∗ then there exists a meromorphic
function, defined on the full space, which gives the periods of the C∗-orbits; and
(S.ii) orbits isomorphic to C∗ are closed on M\ sing(F) where sing(F) ⊂ M de-
notes the codimension ≥ 2 analytic subset of M which is the set of singularities
of the one-dimensional holomorphic foliation F induced by X on M . Therefore,
as a consequence of the classical Remmert-Stein theorem [6], (S.iii) the closure of
an orbit isomorphic to C∗ is an analytic curve in M ; and finally (S.iv) if M has
dimension two then it is proven by Suzuki that a holomorphic complete vector
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field X on M with generic orbit C∗ always admits a (non-constant) meromorphic
first integral on M . Regarding the study of singularities of complete holomorphic
vector field we have the land-mark work of J. Rebelo et al (see [11], [12] and [4]).

The general motivation for this paper is to study the classification of the pairs
(M,X) where M is a Stein surface and X is a complete holomorphic vector field
on M having a suitable isolated singularity. Given a vector field X with isolated
singularities on a manifoldM we denote by F(X) the one-dimensional holomorphic
foliation on M whose leaves are the nonsingular orbits of X and with singular
set sing(F(X)) = sing(X). A singularity P ∈ sing(X) is dicritical if for some
neighborhood P ∈ V there are infinitely many orbits of X

∣∣
V

accumulating only at
P . The closure of such a local leaf is an invariant analytic curve called a separatrix
of X through P . We prove the following global linearization theorem:

Theorem 1.1. Let X be a complete holomorphic vector field with isolated singu-
larities on a Stein manifold M of dimension n ≥ 3. Assume that X has isolated
singularities and some dicritical singularity with first jet of the form X(λ1,...,λn) =∑n

j=1 λjzj
∂

∂zj
, where λj ∈ Q+ , ∀ j. If sing(X) is finite and

∨
H2(M,Z) = 0 then

X is holomorphically conjugate to X(λ1,...,λn). In particular, M is biholomorphic
to Cn.

Motivated by the proof of Theorem 1.1 we obtain the following complete sta-
bility lemma for periodic orbits of holomorphic flows:

Theorem 1.2. Let X be a complete holomorphic vector field with isolated singular-
ities on the affine space Cn, n ≥ 2. If for some p ∈ Cn the corresponding orbit is
periodic (isomorphic to C∗) and has finite holonomy group then the generic orbit
of X is isomorphic to C∗.

In the situation of Theorem 1.2, as it follows from (S.i), (S.ii) and (S.iii) above,
the generic orbit of X is contained in an analytic curve and X admits a meromor-
phic first integral F : Cn ��� C.

Sketch of the proof of Theorem 1.1. The very basic underlying idea is to compare
the global dynamics of the vector field X with that of the linear model X(λ1,...,λn)
using the very special properties of a dicritical holomorphic flow on a Stein man-
ifold. This idea is already present in [15] though the n ≥ 3 dimensional case is
much more delicate from the technical point of view. Special difficulties arise from
the fact that in general it is not possible to extend a holomorphic or meromorphic
differential form on an analytic curve to the ambient Stein manifold if the dimen-
sion is greater than 2. More precisely, we study the basin of attraction B(X) of the
given dicritical singularity and prove this basin is the whole manifold, since the
vector fields X and X(λ1,...,λn) are analytically conjugated in the corresponding
basins of attraction, this will imply the global linearization of X as well as the
analytic equivalence M ∼= Cn. The basic argumentation relies on the fact that an
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orbit of X with non-trivial homology must be contained in an analytic curve in
M and this will imply that ∂B(X) is analytic and then empty.

2. Proof of the linearization theorem. In this section we consider the following
framework. X is a complete holomorphic vector field with isolated singularities

on a Stein manifold M with
∨
H2(Mn,Z) = 0, P0 ∈ sing(X) is a singularity where

the first jet of X is of the form j1(X;P0) = X(λ1,...,λn) =
∑n

j=1 λjzj
∂

∂zj
, where

λj ∈ Q+ , ∀ j. We assume that P0 is dicritical.

The first step toward the proof of Theorem 1.1 is the following lemma:

Lemma 2.1. The generic orbit of X is holomorphic to C∗.

Proof. Denote by C({λ1, . . . , λn}) ⊂ R2 the convex hull of the set {λ1, ..., λn}.
Then we have 0 /∈ C({λ1, . . . , λn}) ⊂ R2 and therefore P0 is a singularity in the
Poincaré domain for X ([1]). Since P0 is also dicritical, by the Poincaré-Dulac nor-
mal form theorem ([1]) X is actually analytically linearizable (analytically conju-
gate to X(λ1,...,λn)) in a neighborhood of P0 and in particular in this neighborhood
its flow is periodic. This implies that:

(i) We have an attraction basin BP0(X) of the singularity P0 which is an open
neighborhood of P0 in Mn.

(ii) Every orbit of X in BP0(X) is diffeomorphic to C∗.

(iii) The flow of X is periodic on BP0(X).

Since X has an open set of orbits diffeomorphic to C∗, the generic orbit is diffeo-
morphic to C∗. Indeed, by the Identity Principle we obtain from (iii) above that
the flow of X is periodic on Mn and therefore every orbit is diffeomorphic to C∗.
Also, flow conjugation gives a biholomorphism taking X

∣∣
B(P0;X) onto X(λ1,...,λn)

on the basin B(0;X(λ1,...,λn)) ⊂ Cn which is Cn. �

The proof of Theorem 1.1 is based on the following key proposition:

Proposition 2.2. Assume that sing(X) is finite. Then the boundary ∂BP0(X) is a
finite union of analytic curves, each curve consists of a non-singular orbit L0 of
X and a single non-dicritical singularity of X at which L0 accumulates .

Proposition 2.2 will be proved in several steps. The first is:

Lemma 2.3. ∂BP0(X) contains no closed leaf.

Proof. Suppose by contradiction that L0 ⊂ ∂BP0(X) is a closed leaf. Then L0 ⊂
Mn is an analytic curve isomorphic to C∗.

Claim 2.4. The holonomy group of L0 is a finite (cyclic) group.
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Proof of Claim 2.4. Let q ∈ L0 and Σq ⊂ M be a transverse (n − 1)-disc to L0
at q = Σq ∩ L0 . Denote by hq : (Σq, q) → (Σq, q) local holonomy diffeomorphism
corresponding to the only non-trivial loop in L0 ∼= C∗ . The germ hq corresponds
to a germ in the group Diff(Cn−1, 0) in a natural way. Since L0 ⊂ ∂BP0(X) we
have that q = L0 ∩ Σq ∈ ∂BP0(X) ∩ Σq = ∂(BP0(X) ∩ Σq) so that q is a point of
the boundary ∂A of an open subset ∅ 	= A ⊂ Σq such that if y ∈ A then the orbit
Ly ⊂ BP0(X).

Since in BP0(X) the vector field X is conjugate to the linear model X(λ1,...,λn)

we conclude that X
∣∣
BP0 (X) admits a primitive meromorphic first integral say

F : BP0(X) → C
n−1

. In particular we have for the holonomy map F
∣∣
Σq∩BP0 (X) ◦

hq = F
∣∣
Σq∩BP0 (X), i.e., F ◦ hq = F in A. Finally, we recall that A is hq invari-

ant because BP0(X) is invariant by X. By classical arguments and the Identity
Principle this implies that hq is a finite order map which can be put in the form
hq(y1, . . . , yn−1) = (ξ1y1, . . . , ξn−1yn−1) with ξj a root of 1, ∀ j, in suitable coor-
dinates (y1, . . . , yn−1) ∈ (Σq, q). This proves the claim. �
Claim 2.5. There is a holomorphic one-form α in M such that

∮
γ0
α
∣∣
L0

= 1 for a
suitable non-trivial cycle γ0 ∈ π1(L0; q).

Proof of Claim 2.5. The flow ϕ : C × M → M of X is a periodic say of pe-
riod τ ∈ C\{0}. For simplicity we can assume that τ = 2π

√−1. We introduce
therefore an action ψ : C∗ × M → M by setting ψ(u, p) = ϕ(log u, p) for any
chosen branch of log u (ψ is well-defined due to the periodicity or ϕ). Since all
orbits of X are isomorphic to C∗, we conclude that for any point p ∈ M\ sing(X)
the map ψp : C∗ → Lp ⊂ M is a biholomorphism. Denote now by Ω the one-

form Ω(u) =
du

u
on C∗ in natural affine coordinates u ∈ C∗ ⊂ C. For each

p ∈ M\ sing(X) put αp := (ψ−1
p )∗(Ω). Then αp i a (closed) holomorphic one-form

in Lp . We claim that if Lp1 = Lp2 then αp1 = αp2 . Indeed, by construction we
have

(
ψpj

)∗(
αpj

)
= Ω, j = 1, 2. Thus, it suffices to show that

(
ψ−1

p2
◦ψp1

)∗Ω = Ω.
Indeed, this is the case because if we write p2 = ψp1(λ) = ψ(λ, p1) for some λ ∈ C∗,
then

(
ψ−1

p2
◦ ψp1

)
(u) = u · λ−1 and therefore(

ψ−1
p2

◦ ψp1

)∗
Ω = (u · λ−1)∗

(
du

u

)
=
du

u
− dλ

λ
=
du

u
= Ω.

Thus, we can construct a holomorphic one-form αL on each leaf L of F(X) on
M\ sing(X), by the local trivialization of F(X) in M\ sing(X). We obtain a well-
defined one-form α on M\ sing(X) with the property that α|L = αL , ∀L ∈ F(X).
A classical result of Hartogs assures that α is holomorphic in M\ sing(X) because
it is holomorphic along the leaves F(X) and also in the transverse directions.
Finally, since cod sing(X) ≥ 2, classical Hartogs type extension results ([5]) imply
that α admits a unique holomorphic extension to M . This proves the claim. �
Claim 2.6. The restriction α|L is exact for every leaf L ⊂ BP0(X).
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Proof of Claim 2.6. Indeed, if L ⊂ BP0(X) then L = L ∪ {P0} is an analytic
subvariety of M isomorphic to C∗ ∪ {0} = C and therefore simply-connected.
Moreover, α is defined and holomorphic in M and therefore in a neighborhood of
L. Thus α

∣∣
L

is exact for every leaf L ⊂ BP0(X).

In particular we must have
∮

γL
α|L = 0 for every closed cycle γ ⊂ L if L ⊂ BP0(X).

On the other hand for the given cycle γ0 ∈ π1(L0, q) the corresponding holonomy
map is hγ0 = hq : (Σq, q) → (Σq, q) which we have proven to of finite order.
This implies that some suitable power γ�

0 of γ0 has closed lifting γ̃y to the leaves
Ly ∈ F(X) with y ∈ Σq\{q} close enough to q. Thus, for y ∈ Σq close enough

to q we have | ∫
γ̃y
α − ∫

γ�
0
α| < 1

2
and

∫
γ�
0
α = �

∫
γ0
α = �

∫
γ0
α|L0 = �. Therefore∫

γ̃y
α 	= 0, but

∫
γ̃y
α =

∫
γ̃y
α|Ly so that γ̃y ⊂ Ly is a closed loop with

∫
γ̃y
α|Ly 	= 0.

Since we can take y ∈ Σq close enough to q and in A = BP0(X) ∩ Σq we get a
contradiction with what we obtained above. This contradiction proves Lemma 2.3.

�
Proof of Proposition 2.2. Since the leaves of F(X) are closed outside sing(X)
we conclude from Lemma 2.3 that each leaf L ⊂ ∂BP0(X) must accumulate on
some singularity P of X, this singularity is necessarily non-dicritical because L is
also accumulated by leaves L′ in BP0(X) and such a leaf cannot accumulate two
singularities of X and therefore cannot accumulate on P .

Claim 2.7. ∂BP0(X) contains no isolated point.

Proof of Claim 2.7. Indeed, if P ∈ ∂BP0(X) is an isolated point then necessarily
P ∈ sing(X) and also since BP0(X) is diffeomorphic to R2n, we have M ≈ R2n ∪
{∞} = S2n which is compact, contradiction. �
Summarizing the above discussion we have proved Proposition 2.2. �

The last step before the proof of Theorem 1.1 is:

Lemma 2.8. M = BP0(X) ∪ ∂BP0(X).

Proof. Put U = M−∂BP0(X) and V = BP0(X). By Proposition 2.2 the boundary
∂BP0(X) is a thin set, it is a finite union of analytic curves in a complex manifold
of dimension n ≥ 3. Therefore U is connected and we have V ⊂ U with ∂V =
∂U = ∂BP0(X). Therefore, U = V and M = BP0(x) ∪ ∂BP0(X). �

Proof of Theorem 1.1. The case n = 2 is proved in [15] (that is the only case where

we need
∨
H2(Mn,Z) = 0). Assume therefore n ≥ 3. By Lemma 2.8 the flow gives a

conjugation Ψ: M\∂BP0(X) → Cn between X and X(λ1,...,λn) . The map Ψ writes
in coordinate functions as Ψ = (Ψ1, . . . ,Ψn) where each Ψj : M\∂BP0(X) → C
is holomorphic. Since ∂BP0(X) has codimension n − 1 ≥ 2, the classical Hartogs
Extension Theorem gives a holomorphic extension of each Ψj , and therefore of Ψ,
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to a holomorphic map Ψ̃: M → Cn. Observe that Ψ̃ is also a local biholomorphism.
Indeed, the singular set of Ψ̃ is given by {Det Jac Ψ̃ = 0} which is either empty
or has codimension one. Finally, since Ψ∗X = Xλj ,...,λn on M\∂BP0(X) by the
Identity Principle we also have Ψ∗X = X(λ1,...,λn) on M . Therefore Ψ takes orbits
of X in M onto orbits of X(λ1,...,λn) in Cn. In particular, Ψ(∂BP0(X)) is a finite
union of orbits and singularities of X in Cn. However, every orbit of X(λ1,...,λn)
is contained in the attraction basin B0(X(λ1,...,λn)) of the origin and therefore
(since Ψ(BP0(X)) = B0(X(λ1,...,λn))) we conclude that any orbit in ∂BP0(X)
should be contained in BP0(X), absurd. This implies that ∂BP0(X) contains only
singularities of X and this case we have already excluded above. Hence ∂BP0(X) =
∅ and indeed M = BP0(X) and Ψ defines a conjugation between X on M and
X(λ1,...,λn) on Cn. This ends the proof of Theorem 1.1. �

3. Stability for periodic orbits. The proof of Theorem 1.2 requires the following
lemma:

Lemma 3.1. A periodic orbit of a complete holomorphic vector field X on Cn is
contained in an analytic curve which is a (complete) intersection of (n−1) principal
analytic subsets of codimension one.

Proof. Denote by ϕ : C × Cn → Cn the flow of X and write ϕ = (ϕ1, . . . , ϕn) in
coordinate functions. Let p ∈ Cn be a non-singular point whose orbit Lp is periodic,
Lp

∼= C∗, say of period τ ∈ C\{0}. We define the set ∆j := {z ∈ Cn : ϕj
τ (z) = zj}

for j ∈ {1, . . . , n}. Then Lp ⊆
n⋂

j=1
∆j and we have:

Claim 3.2.
n⋂

j=1
∆j is an analytic subset of Cn of dimension ≥ 1 and it is of

codimension ≥ 1 except if ϕ is periodic of period τ .

Proof of Claim 3.2. We define πj : Cn → C as the projection πj(z) = zj and
fj : Cn → C by fj(z) = ϕi

τ (z) − πj(z). Then fj is an entire function and ∆j =
f−1

j (0) so that each ∆j is an analytic subset of dimension ≥ n−1 of Cn. Moreover
clearly ϕ is periodic of period τ on Cn if and only if ∆j = Cn, ∀ j ∈ {1, . . . , n}.
Suppose that ϕ is not periodic of period τ and let j0 ∈ {1, . . . , n} be such that
∆j0 � Cn. Then ∆ ⊂ ∆j0 has codimension ≥ 1. �

�

Lemma 3.3. Let p ∈ Cn be a non-singular point whose orbit Lp is closed and
periodic. There is a holomorphic one-form Ω in Cn such that Ω

∣∣
Lp

= α writes as

α(z) =
dz

z
in some suitable coordinate z ∈ C∗.
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Proof. If n = 2 then we refer to the analogous result proven in [15]. Assume

therefore that n ≥ 3. We have Lp ⊂
n⋂

j=1
∆j as above. In order to fix the ideas we

assume that n = 3. We have three cases to consider:

1st case: dim

(
3⋂

j=1
∆j

)
= 1.

In this case, since each ∆j ∈ C3 is a principal analytic subset (of codimension
≤ 1) we can suppose that ∆1 	= ∆2 and ∆1 � C3, ∆2 � C3 but ∆3 ⊂ ∆1 ∩ ∆2 .
So that Lp is an irreducible component of the set ∆1 ∩ ∆2.

Since ∆1 	= ∆2, the restriction g2 = f2
∣∣
∆1

does not vanish identically and actually
Lp is an irreducible component of {q ∈ ∆1 : g2(q) = 0}. Now, ∆1 is a Stein analytic
subspace of C3 and g2 : ∆1 → C is holomorphic, g2 	≡ 0, therefore by classical
Cartan’s Extension Theorem ([7]) we have a holomorphic extension α1 to ∆1 of

a one-form α defined on LP by α(z) =
dz

z
on a suitable coordinate z : LP → C∗

(notice that, since LP is closed in Cn, LP is an analytic curve in ∆1 and therefore
we can suppose that LP = g−1

2 (0)). The one-form α1 on ∆1 = {q ∈ C3 : f1(q) = 0}
also extends to a holomorphic one-form Ω on C3 by the same theorem of Cartan.

This proves the lemma in this first case.

2nd case: dim

(
3⋂

j=1
∆j

)
= 3.

In this case ∆1 = ∆2 = ∆3 = C3 and the flow ϕ of X is periodic of period τ on
C3. In this situation we can replace ϕ by a holomorphic C∗-action ψ : C∗×C3 → C3

with the same orbits. Now by arguments of [16] and [13] (C∗ is a reductive Lie
group), we know that all the orbits of ϕ are contained in analytic curves in C3 and
we can define a one-form Ω on C3 representing the Lie Algebra of C∗.

3rd case: dim

(
3⋂

j=1
∆j

)
= 2.

We can assume that ∆3 � C3 but ∆1 = ∆2 = C3.

Claim 3.4. ∆3 is invariant by X.

Proof of Claim 3.4. Let q ∈ ∆3 and take q̃ = ϕs(q) for some s ∈ C. We have to
show that q̃ ∈ ∆3, that is, f3(q̃) = 0, which is equivalent to ϕ3

τ (q̃) = q̃3 if we write
q̃ = (q̃1, q̃2, q̃3) ∈ C3. Now, ϕ3

τ (q̃) = ϕ3
τ (ϕs(q)) = ϕ3

s(ϕτ (q)) by the flow condition.
Since q ∈ ∆3 we have ϕτ (q) = q so that ϕ3

τ (q̃) = ϕ3
s(q). By choice q̃ = ϕs(q) so

that q̃3 = ϕ3
s(q) and therefore ϕ3

τ (q̃) = q̃3 �
Since ∆3 is invariant by X we have an induced holomorphic action ϕ̃ = ϕ

∣∣
∆3×C

:
∆3 × C → ∆3 and Lp is an orbit of ϕ̃ of period τ and closed in ∆3.
Also we can, repeating for ϕ̃ arguments already used for ϕ, consider only two cases:
(3.i): ϕ̃ is periodic of period τ on ∆3 .
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In this case ϕ̃ is associated to a C∗-action ψ̃ on ∆3 and we can construct
a holomorphic one-form Ω̃ on ∆3 corresponding to the Lie Algebra of C∗. The
one-form Ω̃ extends to a holomorphic one-form Ω on C3.

(3.ii): ϕ̃ is not periodic on ∆3 and LP is given by an analytic equation {f̃3 = 0}
for some holomorphic function f3 : ∆3 → C, f̃3 	≡ 0. Again, by Cartan’s Theorem,

the one-form Ω̃ is obtained on ∆3 by extension of α(z) =
dz

z
on LP

∼= C∗, and by

its turn Ω̃ extends to C3. �

Proof of Theorem 1.2. If n = 2 the result is proven in [15]. Assume therefore n ≥ 3.
By Lemma 3.3 there is a holomorphic one-form Ω on Cn such that α = Ω

∣∣
LP

writes
as α(z) = dz in a coordinate z : LP → C∗. Now there is a loop γ : S1 → LP such
that ∫

γ

Ω =
∫

γ

Ω
∣∣
LP

=
∮

Lp

α =
∮

S1
dz/z = 2π

√−1, i.e.,
1

2π
√−1

∫
γ

Ω = 1.

Since by hypothesis the holonomy of the leaf LP is finite, say of order k, there is
a transverse (n − 1)-disc Σ ⊂ Cn, Σ ∼= Dn−1 = {z ∈ Cn−1 : |z| < 1}, such that
Σ ∩ LP = {P} (notice that LP is closed so that and the holonomy group we can
assume #(Σ ∩ LP ) = 1).

Hol(F , LP ,Σ) of the leaf LP of the foliation F induced by ϕ is (conjugate to) a
finite subgroup of Diff(Cn−1, 0) of order k. In particular the k-th power [γk] ∈
π1(LP , P ) has a closed holonomy lifting [γ̃t

y] ∈ π1(Ly; y) to each leaf Ly of F
through y ∈ Σ.

We have
∫

γ̃k
y

Ω =
∫

γ̃k
y

Ω
∣∣
Ly

=
∮

γ̃k
y

Ω
∣∣
Ly

.

Since
∮

γk

Ω = k

∮
γ

Ω = 2πk
√−1 if q ∈ Σ is close enough to P then also

∫
γ̃k

y

Ω 	= 0

and therefore Ω
∣∣
Ly

is a (closed) holomorphic one-form on the Riemann surface Ly

whose line integral along the closed path γ̃k
y ∈ π1(Ly, y) is not zero. This implies

that Ly is not simply-connected and therefore necessarily Ly is isomorphic to C∗.
We also claim that Ly is closed analytic in Cn. Indeed, otherwise since a periodic
orbit is closed in Cn\(F), Ly accumulates a single singularity say Q of F . In
particular Ly = Ly ∪ {Q} is a subvariety of Cn isomorphic to C and is simply-
connected. Since Ω is defined in the space Cn it also admits a restriction to LP

and therefore necessarily
∫

γ̃k
y

Ω = 0 yielding a contradiction in the above notation.
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This shows that there is an invariant open subset W containing LP and no singu-
larity of F such that every orbit (leaf) in W is isomorphic to C∗ and is a closed
analytic subset of Cn. This implies that the generic orbit of ϕ is isomorphic to C∗.

�
As a straightforward corollary of the proof of Theorem 1.2 we obtain:

Corollary 3.5. Let X be a complete holomorphic vector field with isolated singular-
ities on Cn, n ≥ 2. Given a closed orbit LP ⊂ Cn (for some P ∈ Cn) isomorphic
to C∗ and of finite holonomy there is an invariant open neighborhood W of LP

in Cn such that W contains no singularity of X and each orbit in W is closed
isomorphic to C∗ and of finite holonomy group. In other words the set

H = {P ∈ Cn : LP is closed isomorphic to C∗ and has finite holonomy group}
is an invariant open subset of Cn \ sing(X).

4. Some questions and conjectures. We give a general construction:

Example 4.1. Let D ⊂ Cn be a bounded domain and, (n ≥ 1), and denote by
Aut(D) the (topological) group of automorphisms of D endowed with the compact
open topology. A classical result of H. Cartan ([8]) states that Aut(D) is a real
Lie group whose Lie algebra Aut(D) consists of all complete holomorphic vector
fields X : D → Cn. In particular we can have D ⊂ Cn bounded and Stein. This
shows that there is a large collection of Stein manifolds equipped with holomorphic
flows and our main result shows that the existence of a non-degenerate dicritical
singularity is actually a strong restriction on both, the complete vector field and
the ambient Stein manifold.

4.1. Conjectures. We think that (1) and (2) below are true:

(1) On a Stein surface M2 with
∨
H

2

(M,Z) = 0 a complete holomorphic vector field
without singularities and generic orbit C∗ has all orbits isomorphic to C∗.

As a consequence of the work of Nishino ([9], [10]), Saito ([14]) and Suzuki
([17]) the above conjecture is true for complete holomorphic vector fields on C2.

(2) A complete holomorphic vector field X on C2 with isolated singularities and

having a singularity at the origin of the form X(x, y) = nx
∂

∂x
−my ∂

∂y
, n,m ∈ N;

is analytically linearizable on C2. The same holds if we replace C2 by a Stein

surface M2 with
∨
H

2

(M,Z) = 0.

This is proved in [3] for complete polynomial vector fields.

4.2. Questions. Our study motivates the following questions.
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(1) Given a holomorphic flow ϕ on C2, is it possible to have an exceptional minimal
subset? Can an orbit diffeomorphic to C accumulate on a non-closed orbit also
diffeomorphic to C?

(2) Is is true that a periodic flow on a Stein manifold Mn, n ≥ 2, always admits
a meromorphic first integral M ��� C

n−1
?
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César Camacho, IMPA-Estrada D. Castorina, 110 Jardim Botânico, Rio de Janeiro -
RJ, CEP. 22460-320, BRAZIL
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