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Abstract

We propose an extension of Newton’s Method for unconstrained multi-
objective optimization (multicriteria optimization). The method does not
scalarize the original vector optimization problem, i.e. we do not make use
of any of the classical techniques that transform a multiobjective problem
into a family of standard optimization problems. Neither ordering infor-
mation nor weighting factors for the different objective functions need to
be known. The objective functions are assumed to be twice continuously
differentiable. Under these hypotheses, the method, as in the classical
case, is locally superlinear convergent to optimal points. Again as in the
scalar case, if the second derivatives are Lipschitz continuous, the rate
of convergence is quadratic. This is the first time that a method for an
optimization problem with an objective function with a partially ordered
vector space as a codomain is considered and convergence results of this
order are provided.

Our convergence analysis uses a Kantorovich-like technique. As a
byproduct, existence of optima is obtained under semi-local assumptions.

Keywords: Multicriteria optimization, multi-objective programming, Pareto
points, Newton’s method.

1 Introduction

In multicriteria optimization, several objective functions have to be minimized
simultaneously. Usually, no single point will minimize all given objective func-
tions at once, and so the concept of optimality has to be replaced by the con-
cept of Pareto-optimality or efficiency. A point is called Pareto-optimal or
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efficient, if there does not exist a different point with the same or smaller ob-
jective function values, such that there is a decrease in at least one objective
function value. Applications for this type of problem can be found in engineer-
ing [14, 28] (especially truss optimization [8, 29, 40], design [27, 20, 38], space
exploration [34, 41]), statistics [5], management science [15, 2, 22, 35, 42, 1],
environmental analysis [31, 16, 17], cancer treatment planning [25], etc.

One of the main solution strategies for multicriteria optimization problems
is the scalarization approach, first introduced by Geoffrion [21]. Here, one
or several parameterized single-objective (i. e., classical) optimization prob-
lems are solved, resulting in a corresponding number of Pareto-optimal points.
The disadvantage of this approach is that the choice of the parameters is not
known in advance, leaving the modeler and the decision-maker with the bur-
den of choosing them. Only recently, adaptive scalarization techniques, where
scalarization parameters are chosen automatically during the course of the al-
gorithm such that a certain quality of approximation is maintained have been
proposed [6, 23, 13, 18]. Still other techniques, working only in the bicriteria
case, can be viewed as choosing a fixed grid in a particular parameter space [7, 8]

Multicriteria optimization algorithms that do not scalarize have recently
been developed (see, e. g., [4, 3] for an overview on the subject). Some of these
techniques are extensions of scalar optimization algorithms (notably the steepest
descent algorithm [19, 37, 11, 12] with at most linear convergence), while others
borrow heavily from ideas developed in heuristic optimization [30, 33]. For the
latter, no convergence proofs are known, and empirical results show that con-
vergence generally is, as in the scalar case, quite slow [43]. Other parameter-free
multicriteria optimization techniques use an ordering of the different criteria,
i. e., an ordering of importance of the components of the objective function vec-
tor. In this case, the ordering has to be prespecified. Moreover, the correspond-
ing optimization process is usually augmented by an interactive procedure [32],
adding an additional burden to the task of the decision maker.

In this paper, we propose a parameter-free optimization method for com-
puting a point satisfying a certain (natural) first-order necessary condition for
multicriteria optimization. Neither ordering information nor weighting factors
for the different objective functions is assumed to be known. The rate of con-
vergence is at least superlinear for twice continuously differentiable functions
and quadratic in case the second derivatives are Lipschitz continuous. In this
respect, Newton’s method for the scalar case is exactly mimicked.

The outline of this paper is as follows. Section 2 establishes the problem
considered and the necessary notation. Section 3 introduces a first-order opti-
mality condition for multiobjective optimization and derives a direction search
program based on this. Such program is equivalent to an optimization problem
with linear objective and convex quadratic constraints. In Section 3, we estab-
lish the algorithm under consideration, Sections 5 and 6 contain the convergence
results: superlinear convergence is discussed in Section 5, while quadratic con-
vergence is discussed in Section 6. Numerical results presented in Section 7
show the applicability of our method.
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2 Notation
sec:notation

Denote by R the set of real numbers, by R+ the set of non-negative real numbers,
and by R++ the set of strictly positive real numbers. Assume that U ⊂ R

n is
an open set and

F : U −→ R
m

is a given function. The problem is to find an efficient point or Pareto optimum
of F , i. e., a point x∗ ∈ U such that

6 ∃ y ∈ U, F (y) ≤ F (x∗) and F (y) 6= F (x∗),

where the inequality sign ≤ between vectors is to be understood in a com-
ponentwise sense. In effect, we are employing the partial order induced by
R

m
+ = R+ ×· · ·×R+ (the non-negative orthant or Paretian cone of R

m) defined
by

F (y) ≤ F (z) ⇐⇒ F (z) − F (y) ∈ R
m
+ ,

and we are searching for minimal points induced by such partial order. A point
x∗ is weakly efficient or weak Pareto optimum if

6 ∃ y ∈ U, F (y) < F (x∗),

where the vector strict inequality F (y) < F (x∗) is to be understood componen-
twise too. This relation is induced by R

m
++, the interior of the Paretian cone

(F (y) < F (z) if, and only if, F (z) − F (y) ∈ R
m
++).

A point x∗ ∈ U is locally efficient (respectively locally weakly efficient)
if there is a neighborhood V ⊆ U of x∗ such that the point x∗ is efficient
(respectively weakly efficient) for F restricted to V .

Locally efficient points are also called local Pareto optimal, and locally weakly
efficient points are also called local weak Pareto optimal. Note that if U is convex
and F is R

m
+ -convex (i. e., if F is componentwise-convex), then each local Pareto

optimal point is globally Pareto optimal. Clearly, every locally efficient point is
locally weakly efficient.

Throughout the paper, unless explicitly mentioned, we will assume that

F ∈ C2(U, Rm),

i. e., F is twice continuously differentiable on U . For x ∈ U , denote by DF (x) ∈
R

m×n the Jacobian of the function F at x, by ∇Fj(x) ∈ R
n the gradient of the

function Fj at x and by ∇2Fj(x) ∈ R
n×n the Hessian of Fj at x. The range, or

image space, of a matrix M ∈ R
m×n will be denoted by R(M) and I ∈ R

n×n

will denote the unit matrix. For two matrices A, B ∈ R
n×n, B ≤ A (B < A)

will mean A − B positive semidefinite (definite). Unless explicitly mentioned,
we will also assume that

∇2Fj(x) > 0, ∀ x ∈ U, j = 1, . . . , m,

which means that ∇2Fj(x) is positive definite for all x ∈ U and j = 1, . . . , m.
Under this assumption, F is R

m-convex on each convex subset of U .
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In what follows, the Euclidean norm in R
n will be denoted by ‖·‖, and B[x, r]

denotes the ball of radius r with center x ∈ R
n. We will use the same notation

‖ · ‖ for the induced operator norms on the corresponding matrix spaces.

3 The Newton Method
sec:direction

We start by introducing a necessary (but in general not sufficient) condition for
Pareto optimality. We say that a point x̄ ∈ U is critical (or stationary) for F if

R(DF (x̄)) ∩ (−R
m
++) = ∅. (1) station

This notion of criticality has already been used in [19] to define a parameter-
free steepest descent algorithm for multiobjective optimization. Clearly, if x̄ is
critical for F , then for all s ∈ R

n there exists j0 = j0(s) ∈ {1, . . . , m} such that

∇Fj0 (x̄)T s ≥ 0. (2) nondescent

Note that if x ∈ U is noncritical, then there exists s ∈ R
m such that

∇Fj(x)T s < 0 for all j = 1, . . . , m. As F is continuously differentiable,

lim
t→0

Fj(x + ts) − Fj(x)

t
= ∇Fj(x)T s < 0, j = 1, 2, · · · , m.

So s is a descent direction for F at x, i. e., there exists t0 > 0 such that

F (x + ts) < F (x) for all t ∈ (0, t0]. (3) descent_direc

Finally, observe that for m = 1 (scalar optimization), (1) reduces to the classical
“gradient-equal-zero” condition.

Efficiency and criticality are related as follows.

t1 Theorem 1. Assume that F ∈ C1(U, Rm).

1. If x̄ is locally weak Pareto-optimal, then x̄ is a critical point for F .

2. If U is convex, F is R
m-convex and x̄ ∈ U is critical for F , then x̄ is weak

Pareto-optimal.

3. If U is convex, F ∈ C2(U, Rm), ∇2Fj(x) > 0 for all j ∈ {1, . . . , m} and
all x ∈ U , and if x̄ ∈ U is critical for F, then x̄ is Pareto-optimal.

Proof. Assume that x̄ is weakly efficient. If x̄ is non-stationary, then (1) does not
hold and so there exist t0 > 0 and s ∈ R

n for which (3) holds, in contradiction
with the weak efficiency of x̄. So item 1 is true.

To prove item 2, take any x ∈ U . Since x̄ is critical, (2) holds for s = x − x̄
and some j0. Using now the convexity of Fj0 , we have

Fj0 (x) ≥ Fj0 (x̄) + ∇Fj0 (x̄)T (x − x̄) ≥ Fj0(x̄) (4) aux1
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and so, x̄ is weakly efficient for F .
To prove item 3, take again any x ∈ U . Since we are assuming that x̄ is

critical, by the same reasoning of item 2, there exists some j0 for which (4)
holds. Note that Fj0 is strictly convex. Therefore, if x 6= x̄, the first inequality
in (4) is strict and so x̄ is efficient.

Note that even when F is R
m
+ -convex (as in item 2), criticality does not

imply Pareto optimality. Consider, for instance, the case n = 1, m = 2, U = R

and F (t) = (1, t). In this example, every t ∈ R is critical but there are no Pareto
optima for F . Only under some assumption of strict convexity, as in item 3,
the set of Pareto optima coincides with the set of stationary points.

We now proceed by defining he Newton direction for the multiobjective
problem under consideration. As in the classical one-criterion case, the Newton
direction will be a solution to a suitably defined problem involving quadratic
approximations of the objective functions Fj . Moreover, again as in the scalar
case, in a critical point, the Newton step will be 0 ∈ R

n.
For x ∈ U , we define s(x), the Newton direction at x, as the optimal solution

of






min max
j=1,...,m

∇Fj(x)T s +
1

2
sT∇2Fj(x)s.

s.t. s ∈ R
n

(5) eq:prob.newton

First of all, observe that problem (5) has always a unique minimizer, since the
functions ∇Fj(x)T s + 1

2
sT∇2Fj(x)s are strongly convex for j = 1, . . . , m. Also

note that for m = 1, the direction s(x) is the “classical” Newton direction for
scalar optimization.

The optimal value of problem (5) will be denoted by θ(x). Hence,

θ(x) = inf
s∈Rn

max
j=1,...,m

∇Fj(x)T s +
1

2
sT∇2Fj(x)s, (6) eq:def.medida

and

s(x) = arg min
s∈Rn

max
j=1,...,m

∇Fj(x)T s +
1

2
sT∇2Fj(x)s. (7) eq:def.step

Here, we are approximating

max
j=1,...,m

Fj(x + s) − Fj(x)

by the maximum of the local quadratic models at x of each Fj . Although (5)
is a non-smooth problem, it can be framed as a convex quadratic optimization
problem and so, it can be effectively solved. Indeed, (5) is equivalent to







min g(t, s) = t
s.t. ∇Fj(x)T s + 1

2
sT∇2Fj(x)s − t ≤ 0 (1 ≤ j ≤ m)

(t, s) ∈ R × R
n

(8) prob_equiv

The Lagrangian of this problem is

L((t, s), λ) = t +

m
∑

j=1

λj

(

∇Fj(x)T s +
1

2
sT∇2Fj(x)s − t

)

. (9) lagr
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Direct calculation of the Karush-Kuhn-Tucker conditions yields

m
∑

j=1

λj = 1, (10) lag_t

m
∑

j=1

λj

(

∇Fj(x) + ∇2Fj(x)s

)

= 0, (11) lag_s

∇Fj(x)T s +
1

2
sT∇2Fj(x)s ≤ t (1 ≤ j ≤ m), (12) prim_feas

λj ≥ 0 (1 ≤ j ≤ m), (13) dual_feas

λj

(

∇Fj(x)T s +
1

2
sT∇2Fj(x)s − t

)

= 0 (1 ≤ j ≤ m). (14) complement

Problem (8) has a unique solution, (θ(x), s(x)). As this is a convex problem
and has a Slater point (e.g., (1, 0)), there exists a KKT multiplier λ = λ(x),
which, together with s = s(x) and t = θ(x), satisfies conditions (10)–(14). In
particular, from (11) we obtain

s(x) = −
[

m
∑

j=1

λj(x)∇2Fj(x)

]−1 m
∑

j=1

λj(x)∇Fj(x). (15) Newton_dir

So the Newton direction defined in this paper is a Newton direction for a stan-
dard scalar optimization problem, implicitly induced by weighting the given
objective functions by the (non-negative) a priori unknown KKT multipliers.
As a consequence, the standard weighting factors [21], well known in multi-
objective programming, do show up in our approach, albeit a posteriori and
implicitly. In particular, it is not necessary to fix such weights in advance; ev-
ery point x ∈ U defines such weights by way of the KKT multipliers in the
corresponding direction search program.

Existence of the KKT multipliers for the convex problem (8) implies that
there is no duality gap, and so

θ(x) = supλ≥0 infs∈Rn L((t, s), λ)

= sup λ≥0
P

λj=1

infs∈Rn

∑m

j=1
λj

(

∇Fj(x)T s + 1

2
sT∇2Fj(x)s

)

.
(16) no_gap1,5

Let us now study some properties of function θ and analyze its relation with
s(x) and stationarity of x.

bas1 Lemma 2. Under our general assumptions, we have:

1. For any x ∈ U , θ(x) ≤ 0.

2. The following conditions are equivalent.
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(a) The point x is noncritical.

(b) θ(x) < 0,

(c) s(x) 6= 0,

3. The function θ : U → R, given by (6), is continuous.

Proof. Note that, by (6), θ(x) ≤ maxj=1,...,m ∇Fj(x)T 0 + 1

2
0T∇2Fj(x)0 = 0, so

item 1 holds.
Let us now prove the equivalences of item 2. First, assume that (a) holds;

that is to say, R(DF (x)) ∩ (−R
m
++) 6= ∅, which in turn means that there exists

s̃ ∈ R
n such that ∇Fj(x)T s̃ < 0 for all j = 1, . . . , m. So, using (6), for all t > 0,

we have

θ(x) ≤ max
j=1,...,m

∇Fj(x)T ts̃ +
1

2
ts̃T∇2Fj(x)ts̃

= t max
j=1,...,m

∇Fj(x)T s̃ +
t

2
s̃T∇2Fj(x)s̃.

Therefore, for t > 0 small enough the right hand side of the above inequality is
negative and (b) holds.

To prove that (b) implies (c), recall that θ(x) is the optimal value of problem
(5) and so, being negative, the solution of that problem cannot be s(x) = 0.

Finally, let us see that (c) implies (a). Since all ∇2Fj(x) are positive definite
matrices, by virtue of (6)-(7), for all j ∈ {1, . . . , m}, we have that

∇Fj(x)T s(x) < ∇Fj(x)T s(x) +
1

2
s(x)T∇2Fj(x)T s(x) = θ(x) ≤ 0,

where the last inequality is a consequence of item 1. Hence, DF (x)s(x) ∈
(−R

m
++), and x is noncritical, i.e., (a) holds.

We now prove item 3. It suffices to show continuity of θ in a fixed but
arbitrary compact set W ⊂ U . First observe that, in view of item 1, for any
y ∈ U , we have

s(y)∇2Fj(x)T s(y) ≤ −∇Fj(y)T s(y), for all j = 1, . . . , m. (17) desig1

Since F is twice continuously differentiable and all Hessians are positive definite
everywhere, its’ eigenvalues are uniformly bounded away from zero on W , so
there exists K and λ̂ > 0, such that

K = max
y∈W, j=1,...,m

‖∇Fj(y)‖

and
λ̂ = min

x∈W,‖u‖=1
uT∇2Fj(x)u (1 ≤ j ≤ m).

So, combining (17) with the two above equations and using Cauchy-Schwartz
inequality, we conclude that

λ̂‖s(y)‖2 ≤ ‖∇Fj(y)‖‖s(y)‖ ≤ K‖s(y)‖,

7



for all y ∈ W and all j ∈ {1, . . . , m}. Therefore

‖s(y)‖ ≤ 1

λ̂
K for all y ∈ W, (18) newton_bound

i. e., s(y), the Newton directions are uniformly bounded on W .
For x ∈ W and j ∈ {1, . . . , m}, define

ϕx,j : W → R,
z 7→ ∇Fj(z)T s(x) + 1

2
s(x)T∇2Fj(z)s(x).

The family {ϕx,j}x∈W,j=1,...,m is equicontinuous. Therefore, the family

{Φx = max
j=1,...,m

ϕx,j}x∈W

is also equicontinuous.
Take ε > 0; there exists δ > 0 such that

∀y, z ∈ W, ‖y − z‖ < δ =⇒ |Φx(y) − Φx(z)| < ε ∀ x ∈ W.

Hence, for ‖y − z‖ < δ,

θ(z) ≤ ∇Fj(z)T s(y) +
1

2
s(y)T∇2Fj(z)s(y)

= Φy(z)

≤ Φy(y) + |Φy(z) − Φy(y)|
< θ(y) + ε,

i. e., θ(z) − θ(y) < ε. Interchanging the roles of z and y, we conclude that
|θ(z) − θ(y)| < ε.

For the scalar case (m = 1) F : U → R, at a non-stationary point x ∈ U ,
the classical Armijo-rule for the Newton search direction s(x) is

F (x + ts(x)) ≤ F (x) + β t s(x)T∇F (x),

with β ∈ (0, 1). To accept a full Newton step close to a local optimum where
∇2F > 0, one must choose β ∈ (0, 1/2), see [10]. Note that in this setting
(m = 1),

θ(x) =
1

2
s(x)T∇F (x).

So, we can rewrite the Armijo rule as

F (x + ts(x)) ≤ F (x) + σ t θ(x),

with the choice σ = 2β ∈ (0, 1) allowing full Newton steps to be accepted
close to a local optimum where ∇2F > 0. The above inequality, interpreted
componentwise, will be our criterion for accepting a step in the multiobjective
Newton direction.
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cor:stepdefined Corollary 3. If x ∈ U is a noncritical point for F , then for any 0 < σ < 1
there exists t̄ ∈ (0, 1] such that

x + ts(x) ∈ U and Fj(x + ts(x)) ≤ Fj(x) + σtθ(x)

hold for all t ∈ [0, t̄] and j ∈ {1, . . . , m}.
Proof. Since U is an open set and x ∈ U , there exists 0 < t1 ≤ 1 such that
x + ts(x) ∈ U for t ∈ [0, t1]. Therefore, for t ∈ [0, t1]

Fj(x + ts(x)) = Fj(x) + t∇Fj(x)T s(x) + oj(t), j = 1, . . . , m

where limt→0+ oj(t)/t = 0. As ∇Fj(x)T s(x) ≤ θ(x), we conclude that for
t ∈ [0, t1], j = 1, . . . , m

Fj(x + ts(x)) ≤ Fj(x) + tθ(x) + oj(t)

= Fj(x) + tσθ(x) + t

[

(1 − σ)θ(x) +
oj(t)

t

]

Now observe that, since x is noncritical, θ(x) < 0 (Lemma 2, item 2) and so,
for t ∈ [0, t1] small enough, the last term at the right hand side of the above
equations in non-positive.

Now we sketch the Newton Algorithm for Multicriteria. At each step, at a
nonstationary point, we minimize the maximum of all local models as in (5) to
obtain the Newton step (7), which is a descent direction. After that, the step
length is determined by means of an Armijo-like rule (see Corollary 3) coupled
with a backtracking procedure. Under suitable local assumptions, full Newton
steps are always accepted and the generated sequence converges superlinear (or
quadratically) to a local solution.

Formally, the algorithm for finding a Pareto point is the following.

Newton Algorithm for Multicriteria

1. (Initialization) Choose x0 ∈ U , 0 < σ < 1, set k := 0 and define J =
{1/2n |n = 0, 1, 2, . . .}.

2. (Main loop)

(a) Solve the direction search program (5) to obtain s(xk) and θ(xk) as
in (7) and (6).

(b) If θ(xk) = 0, then stop. Else, proceed to the line search, step 2. (c).

(c) (Line Search) Choose tk as the largest t ∈ J such that

xk + ts(xk) ∈ U,

Fj(xk + ts(xk)) ≤ Fj(xk) + σtθ(xk), j = 1, . . . , m.

(d) (Update) Define
xk+1 = xk + tks(xk)

and set k := k + 1. Go to step 2. (a).
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Welldefinedness of the algorithm follows directly from Corollary 3. Note that
this is an R

m-decreasing method, i. e., the objective values always keep on going
downhill in the componentwise partial order. Indeed, for xk nonstationary for
F , due to item 2 of Lemma 2, we have that θ(xk) < 0, so from (c)-(d) of the
main loop we see that F (xk+1) < F (xk).

4 Auxiliary Technical Results
sec:auxil-thechn-results

In order to analyze convergence properties of the Newton Method for Multiob-
jective Optimization, we need some technical results, which are presented in the
sequel.

A basic feature of the Newton Method for scalar minimization and equations
is to use respectively quadratic and linear approximations. In the next lemma
we give estimations on the error of approximating F , ∇Fj by its quadratic and
respectively linear local models. Its proof is provided for the sake of complete-
ness.

lm:error Lemma 4. Suppose that V ⊂ U is a convex set. Let ε > 0 and δ > 0 be such
that for any x, y ∈ V , with ‖y − x‖ < δ, then

‖∇2Fj(y) −∇2Fj(x)‖ < ε, (j = 1, . . . , m) (19) hyp_lem3

follows.
Under this assumption, for any x, y ∈ V such that ‖y − x‖ < δ we have that

∥

∥∇Fj(y) −
[

∇Fj(x) + ∇2Fj(x)(y − x)
]∥

∥ < ε‖y − x‖, (20) res1

and
∣

∣

∣

∣

Fj(y) −
[

Fj(x) + ∇Fj(x)T (y − x) +
1

2
(y − x)T∇2Fj(x)(y − x)

]∣

∣

∣

∣

<
ε

2
‖y − x‖2

(21) res2

hold for j = 1, . . . , m.
If ∇2Fj is Lipschitz continuous on V with constant L for j = 1, . . . , m, then

∥

∥∇Fj(y) −
[

∇Fj(x) + ∇2Fj(x)(y − x)
]∥

∥ <
L

2
‖y − x‖2 (22) res3

holds for j = 1, . . . , m.

Proof. Since D∇Fj(·) = ∇2Fj(·), we have

∇Fj(y)−∇Fj(x)−∇2Fj(x)(y−x) =

∫ 1

0

[∇2Fj(x+t(y−x))−∇2Fj(x)]T (y−x)dt.

Therefore, since ‖x + t(y − x) − x‖ < tδ for 0 < t < 1,

‖∇Fj(y) −∇Fj(x) −∇2Fj(x)(y − x)‖ ≤
∫ 1

0

‖∇2Fj(x + t(y − x)) −∇2Fj(x)‖‖y − x‖dt

< ε‖y − x‖, (23) partial_res1
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that is to say (20) is true. Note that, under the Lipschitz continuity assumption,
the integrand in (23) is bounded by tL‖y − x‖2 and so (22) is true.

Now we prove (21). We know that there exists ζ ∈ (0, 1) such that

Fj(y)− Fj(x) −∇Fj(x)T (y − x) =
1

2
(y − x)T∇2Fj(x + ζ(y − x))(y − x). (24) aux

Subtracting (y − x)T∇2Fj(x)(y − x) on both sides of (24), using Cauchy-
Schwartz inequality and the fact that ‖x + ζ(y − x) − x‖ < δ, we get

|Fj(y) − Fj(x) −∇Fj(x)T (y − x) − (y − x)T∇2Fj(x)(y − x)| <
ε

2
‖y − x‖2,

and the proof is complete.

The following auxiliary results provide estimates on the length of the Newton
direction s(x) and on θ(x), the optimal value of the direction search program
(5).

theta.s Lemma 5. Take x ∈ U and let a, b ∈ R be such that 0 < a ≤ b. If

aI ≤ ∇2Fj(x) ≤ bI, j = 1, · · · , m,

then
a

2
‖s(x)‖2 ≤ |θ(x)| ≤ b

2
‖s(x)‖2.

Proof. Recall that λj(x) is the Lagrange multiplier for constraint j of prob-
lem (8) (j = 1, . . . , m), fulfilling (10)–(15), and define

H :=

m
∑

j=1

λj(x)∇2Fj(x), v :=

m
∑

j=1

λj(x)∇Fj(x). (25) matrixH

From the assumptions and (15), we have

aI ≤ H ≤ bI, s(x) = −H−1v,

and

θ(x) = vT s(x) +
1

2
s(x)T Hs(x)

= (−Hs(x))T s(x) +
1

2
s(x)T Hs(x)

= −1

2
s(x)T Hs(x) (26) equal

Combining (25) and (26), the conclusion follows, since, by item 1 of Lemma 2,
θ(x) ≤ 0.

11



thetax2 Lemma 6. Take x ∈ U , 0 < a. If

aI ≤ ∇2Fj(x), j = 1, · · · , m

then

|θ(x)| ≤ 1

2a

∥

∥

∥

∥

∥

∥

m
∑

j=1

λj∇Fj(x)

∥

∥

∥

∥

∥

∥

2

for all λj ≥ 0 (j = 1, . . . , m), with
∑m

j=1
λj = 1.

Proof. Let λj ≥ 0 (j = 1, . . . , m) with
∑m

j=1
λj = 1 be given. Define w :=

∑m

j=1
λj∇Fj(x). Then, by (16),

θ(x) ≥ inf
s

m
∑

j=1

λj

(

∇Fj(x)T s +
1

2
sT∇2Fj(x)s

)

(27)

= inf
s



wT s +

m
∑

j=1

λj

1

2
sT∇2Fj(x)s





≥ inf
s

(

wT s +
1

2
a‖s‖2

)

= −‖w‖2

2a
, (28) theta_grad

because s 7→ wT s + 1

2
a‖s‖2 is a strongly convex function, so its minimum is

achieved at the unique point where its gradient vanishes, i. e., at s such that
w + as = 0. The conclusion follows from (28), since, by item 1 of Lemma 2,
θ(x) ≤ 0.

5 Superlinear Convergence
sec:convergence

The main theoretical results of this paper are presented in this section. First
we give sufficient conditions for local superlinear convergence.

th:basic Theorem 7. Denote by {xk}k a sequence generated by the algorithm proposed
in Section 3. Suppose that V ⊂ U , 0 < σ < 1, a, b, r, δ, ε > 0 and

(a) aI ≤ ∇2Fj(x) ≤ bI for all x ∈ V , j = 1, . . . , m,

(b) ‖∇2Fj(x) −∇2F (y)‖ ≤ ε for all x, y ∈ V with ‖x − y‖ < δ,

(c) ε/a ≤ 1 − σ,

(d) B[x0, r] ⊂ V ,

(e) ‖s(x0)‖ ≤ min {δ, r (1 − ε/a)}.

Then, for all k, we have that:

12



1. ‖xk − x0‖ ≤ ‖s(x0)‖
1 − (ε/a)

k

1 − ε/a

2. ‖s(xk)‖ ≤ ‖s(x0)‖ (ε/a)
k

3. tk = 1

4. ‖s(xk+1)‖ ≤ ‖s(xk)‖(ε/a).

Moreover, the sequence {xk}k converges to some locally Pareto-optimal point
x̄ ∈ R

n with

‖x̄ − x0‖ ≤ ‖s(x0)‖
1 − ε/a

≤ r. (29) eq:item4

The convergence rate of {xk}k is superlinear.

Proof. First we show that if items 1 and 2 hold for some k, then items 3 and 4
also hold for that k.

From the triangle inequality, item 1 and item 2, we have

‖(xk + s(xk)) − x0‖ ≤ ‖s(x0)‖
1 − (ε/a)k+1

1 − ε/a
(30) provis0

Hence, from assumptions (e) and (c), we get

xk, xk + s(xk) ∈ B[x0, r] and ‖(xk + s(xk)) − xk‖ ≤ δ. (31) provis

Using now assumption (b) and Lemma 4 we conclude that, for j = 1, · · · , m,

Fj(xk + s(xk)) ≤ Fj(xk) + ∇Fj(xk)T s(xk) +
1

2
s(xk)T∇2Fj(xk)s(xk)

+
ε

2
‖s(xk)‖2

≤ Fj(xk) + θ(xk) +
ε

2
‖s(xk)‖2

= Fj(xk) + σθ(xk) + (1 − σ)θ(xk) +
ε

2
‖s(xk)‖2

Since, from Lemma 2, θ(xk) ≤ 0, using assumption (a) and Lemma 5 we obtain

(1 − σ)θ(xk) +
ε

2
‖s(xk)‖2 ≤ (ε − a(1 − σ))

‖s(xk)‖2

2
≤ 0,

where the last equality follows from assumption (c). Combining the above
inequalities we conclude that the Armijo-like rule (condition (c) of the iterative
step of the method) holds with no need of a single backtracking, i. e., item 3
holds:

tk = 1.

Therefore, from (31) we get

xk+1 = xk + s(xk), xk, xk+1 ∈ B[x0, r], ‖xk+1 − xk‖ ≤ δ. (32) provis_induct
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Now define

ṽk+1 =
m
∑

j=1

λj(xk)∇Fj(xk+1). (33) def:vk

Using (10), (13) and Lemma 6, we have

|θ(xk+1)| ≤
1

2a
‖ṽk+1‖2. (34) eq:usefull

To estimate ‖ṽk+1‖, define for x ∈ U

Gk(x) :=
m
∑

j=1

λj(xk)Fj(x), (35) def:Gk

where λj(xk) are the KKT multipliers from (5) for x = xk. Observe that

ṽk+1 = ∇Gk(xk+1) = ∇Gk(xk + s(xk)).

Direct calculation yields

∇Gk(x) =

m
∑

j=1

λj(xk)∇Fj(x) and ∇2Gk(x) =

m
∑

j=1

λj(xk)∇2Fj(x),

so, according to (15),

s(xk) = −
[

∇2Gk(xk)
]−1 ∇Gk(xk). (36) eq:s.and.Gk

Note that by assumption (b),

‖∇2Gk(y) −∇2Gk(x)‖ ≤ ε ∀ x, y ∈ V, ‖y − x‖ ≤ δ,

which allows us to apply Lemma 4. With this, the estimate

‖∇Gk(xk + s(xk)) −
[

∇Gk(xk) + ∇2Gk(xk)s(xk)
]

‖ ≤ ε‖s(xk)‖. (37) eq:Gkestimate

follows. Since (36) is equivalent to ∇Gk(xk) + ∇2Gk(xk)s(xk) = 0, from (37)
we arrive at

‖ṽk+1‖ = ‖∇Gk(xk+1)‖ ≤ ε‖s(xk)‖, (38) eq:whatisgoingonhere

The combination of (38) with (34) leads us to

|θ(xk+1)| ≤
(ε‖s(xk)‖)2

2a
,

and so, from assumption (a) and an application of Lemma 5, we arrive at

a

2
‖s(xk+1)‖2 ≤ (ε‖s(xk)‖)2

2a
.

Therefore,

‖s(xk+1)‖ ≤ ‖s(xk)‖ ε

a
,
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and item 4 also holds.
Now we will prove by induction that items 1 and 2 hold for all k. For k = 0,

using assumption (c), we see that they hold trivially. If item 1 and 2 hold for
some k, then, as we already saw, items 3 and 4 also hold for such k and this
implies that xk+1 = xk + s(xk), so item 1 for k + 1 is true, by virtue of (30).
Item 2 for k + 1 follows from item 4, which, as we have already seen, is true
under our inductive hypotheses.

As items 1 and 2 hold for all k, items 3 and 4 also hold for all k. In
particular, (32) holds for all k. So, for all k and j with k > j,

‖xk − xj‖ ≤
k
∑

i=j+1

‖xi − xi−1‖ =
k
∑

i=j+1

‖s(xi−1)‖.

Whence, from item 2,

‖xk − xj‖ ≤
k−1
∑

i=j

‖s(xi)‖ ≤ ‖s(x0)‖
k−1
∑

i=j

(ε/a)i.

From assumption (c), ε/a ∈ (0, 1). Thus, {xk} is a Cauchy sequence, and there
exists x̄ ∈ R

n, such that
lim

k→∞
xk = x̄. (39) limit

Moreover, {‖s(xk)‖} converges to 0, so, from assumption (a) and Lemma 5,
θ(xk) → 0 for k → ∞. Therefore, combining (39) with the continuity of θ
(item 3 of Lemma 2), we see that θ(x̄) = 0. So, from item 2 of Lemma 2, x̄
is stationary for F and, in view of item 3 of Theorem 1, we conclude that x̄ is
locally Pareto-optimal.

To prove superlinear convergence, define

rk = ‖s(x0)‖
(ε/a)k

1 − ε/a
, δk = ‖s(x0)‖(ε/a)k, k = 0, 1, . . .

Using the triangle inequality, item 1, assumptions (e) and (d), we conclude that

B[xk, rk] ⊂ B[x0, r] ⊂ V. (40) auxiliar

Take any τ > 0 and define

ε̂ := min

{

a
τ

1 + 2τ
, ε

}

.

For k large enough

‖∇2Fj(x) −∇2Fj(y)‖ ≤ ε̂ ∀ x, y ∈ B[xk, rk], ‖x − y‖ ≤ δk. (41) auxb

Hence, assumptions (a)–(e) are satisfied for ε̂, r̂ = rk, δ̂ = δk and x̂0 = xk.
Indeed, (a) and (c) follow from the fact that (a) and (c) hold for ε, a and σ; (b)

and (d) are just (41) and (40) and (e) follows from the definitions of δ̂, r̂ and ε̂.
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Observe that, from item 1 with j, x̂0 and ε̂ instead of k, x0 and ε, respectively,
we get

‖xj − xk‖ ≤ ‖s(xk)‖1 − (ε̂/a)k

1 − ε̂/a
.

So, letting j → ∞, we have

‖x̄ − xk‖ ≤ ‖s(xk)‖ 1

1 − ε̂/a
.

So

‖x̄ − xk+1‖ ≤ ‖s(xk+1)‖
1

1 − ε̂/a
≤ ‖s(xk)‖ ε̂/a

1 − ε̂/a
, (42) bound

where the last inequality follows from item 4, with ε̂ instead of ε.
Using the triangle inequality, the definition of xk+1 and (42), we get

‖x̄ − xk‖ ≥ ‖xk+1 − xk‖ − ‖x̄ − xk+1‖

≥ ‖s(xk)‖ − ‖s(xk)‖ ε̂/a

1 − ε̂/a

= ‖s(xk)‖1 − 2ε̂/a

1 − ε̂/a
(43) triang

In view of the definition of ε̂, we have 1 − 2ε̂/a > 0, and from (43) and (42) we
arrive at

‖x̄ − xk+1‖ ≤ ‖x̄ − xk‖
ε̂/a

1 − 2ε̂/a

which, combined with the definition of ε̂ yields

‖x̄ − xk+1‖ ≤ τ‖x̄ − xk‖.

As τ > 0 is arbitrary, we conclude that {xk} converges q-superlinear to x̄.

Some comments are in order. Theorem 7 makes no assumption on the ex-
istence of Pareto optima for F . Instead, it shows that under some regularity
conditions there exists at least a locally efficient point in a vicinity of the starting
point, i. e. in a B[x0, r]. Moreover, it shows that the whole sequence remains in
that vicinity and converges superlinearly to that solution. Note also that, under
these regularity assumptions, in general the limit point is not an isolated local
optimum.

In standard local analysis of classical Newton’s Method, close enough to a
solution, all starting points produce sequences which remain in a vicinity of this
solution and converge to it. In opposition to the scalar case, in Multicriteria
Newton’s Method, just some of these features are preserved: close enough to a
solution, all starting points generate sequences which remain in a neighborhood
of this optimum and converge to some Pareto optimal solution in that vicinity.

Now observe that, under our general assumptions (continuity and positive
definiteness of all Hessians everywhere in U , etc.), if we know that there ex-
ists a locally Pareto optimal point x̂, then, by item 1 of Theorem 1, x̂ is
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critical for F , so, in view of item 2 of Lemma 2, θ(x̂) = 0. On the other
hand, if V is a compact vicinity of x̂, we have aI ≤ ∇2Fj(x) ≤ bI for all j ∈
{1, . . . , m} and all x ∈ V (here, 0 < a = minj=1,...,m, x∈V, ‖u‖=1 uT∇2F (x)u ≤
maxj=1,...,m, x∈V, ‖u‖=1 uT∇2F (x)u = b). Since θ is continuous (Lemma 2,
item 3) and θ(x̂) = 0, there exists r > 0 such that |θ(x)| is small enough for
all x ∈ B[x̂, r], so that, by virtue of Lemma 5, ‖s(x)‖ will also be small in that
ball. In other words, assumptions (a)-(e) will hold in this situation. Therefore,
we have the following result.

cor9 Corollary 8. If x̂ is a locally Pareto-optimal point for F , then there exists
r > 0 such that, for any x0 ∈ B[x̂, r] ⊂ U , the algorithm generates a sequence
which converges superlinearly to some locally efficient point x̄.

Suppose that F has a compact level set Γz = {x ∈ U : F (x) ≤ z}, with
z ∈ R

m. If x0 ∈ Γz, then, as {F (xk)} is R
m-decreasing, the whole sequence

{xk} will remain in this compact level set. Furthermore, boundedness of the
sequence {F (xk)} combined with step 2. (c) of the algorithm enforces

lim
k→∞

tkθ(xk) = 0.

Let x̄ be the limit of a subsequence of {xk}. A uniform version of Corollary 3
around x̄ shows that the corresponding subsequence of {θ(xk)} must converge
to 0. So, in view of Lemma 2, x̄ is a local optimum. Now, using Corollary 8, we
conclude that the whole sequence converges to an optimum. We therefore have
the following corollary.

cor10 Corollary 9. If x0 ∈ U is taken in a compact level set of F , then the algo-
rithm generates from x0 a sequence which converges superlinear to some locally
efficient point x̄.

6 Quadratic Convergence
subsec:quadratic

The additional assumption of Lipschitz continuity of the Hessians ∇2Fj (j =
1, ldots, m) guarantees a q-quadratic converge rate of the algorithm, as we will
now prove.

th:quadratic Theorem 10. Suppose that, in addition to all assumptions of Theorem 7, we
have that ∇2Fj is Lipschitz continuous on V with Lipschitz constant L (j =
1, . . . , m).

Take ζ ∈ (0, 1/2). Then, there exists k0 such that for all k ≥ k0 it holds that
τk := (L/a)‖s(xk)‖ < ζ and

‖x̄ − xk+1‖ ≤ L

a

(1 − τk)

(1 − 2τk)2
‖x̄ − xk‖2 ≤ L

a

(1 − ζ)

(1 − 2ζ)2
‖x̄ − xk‖2 (44) quad_conclusion

where x̄ is the Pareto-optimal limit of {xk}.
The sequence {xk}k converges q-quadratically to x̄.
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Proof. Due to item 2 of Theorem 7, it is clear that τk = (L/a)‖s(xk)‖ < ζ,
for k large enough, say k ≥ k0. We follow the proof of Theorem 7 by defining
vectors ṽk+1 as in (33) and functions Gk as in (35). As all ∇2Fj are Lipschitz
continuous, ∇2Gk is also Lipschitz continuous. Therefore, using Lemma 4, we
can refine (38) by way of (37) to

‖ṽk+1‖ ≤ L‖s(xk)‖2,

and (34) leads to

|θ(xk+1)| ≤
1

2a
L2‖s(xk)‖4.

Hence, from Lemma 5, we get the inequality

(a/2)‖s(xk+1)‖2 ≤ 1

2a
L2‖s(xk)‖4,

which, in turn, gives us

‖s(xk+1)‖ ≤ L

a
‖s(xk)‖2. (45) quad_Newt

Let i ≥ k ≥ k0. Then, from the triangle inequality and the fact that we are
taking full Newton steps, we get

‖xi − xk+1‖ ≤
i
∑

j=k+2

‖xj − xj−1‖ =

i
∑

j=k+2

‖s(xj−1)‖.

So, letting i → ∞ and using the convergence result of Theorem 7, we obtain

‖x̄ − xk+1‖ ≤
∞
∑

j=k+1

‖s(xj)‖. (46) provis_bound

Whence, combining (45) and (46) and using that τk := (L/a)‖s(xk)‖ < 1/2, we
get

‖x̄ − xk+1‖ ≤ (L/a)‖s(xk)‖2 + (L/a)3‖s(xk)‖4 + (L/a)7‖s(xk)‖8 + . . .

= (L/a)‖s(xk)‖2(1 + τ2
k + τ6

k + . . . )

≤ (L/a)‖s(xk)‖2

∞
∑

j=0

τ j
k

= (L/a)‖s(xk)‖2 1

1 − τk

. (47) provis_Newt2

Hence, from the triangle inequality, we get

‖x̄ − xk‖ ≥ ‖xk+1 − xk‖ − ‖x̄ − xk+1‖

≥ ‖s(xk)‖ − ‖s(xk)‖2 L/a

1 − τk

= ‖s(xk)‖1 − 2τk

1 − τk

, (48) triang_ineq
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where the last equality is a consequence of the definition of τk. Now, from (47)
and (48) we obtain

‖x̄ − xk+1‖ ≤ (L/a)

[

‖x̄ − xk‖
1 − τk

1 − 2τk

]2
1

1 − τk

= ‖x̄ − xk‖2 (L/a)(1 − τk)

(1 − 2τk)2
.

The last inequality of (44) follows trivially.

Under the Lipschitz assumption on all Hessians, we have the following q-
quadratic versions of Corollaries 8 and 9.

Corollary 11. If all ∇2Fj are Lipschitz continuous and x̂ is Pareto optimal,
then there exists an r > 0 such that, for all x0 ∈ B[x, r] ⊂ U , the algorithm
generates a sequence which converges quadratically to some efficient point x̄.

Corollary 12. If x0 ∈ U is taken in a compact level set of F on which all ∇2Fj

are Lipschitz continuous, then the algorithm generates from x0 a sequence which
converges q-quadratically to some Pareto optimal point x̄.

7 Numerical Results
sec:numerical

A Matlab prototype implementation of the method described in the last sec-
tions was tested on various problems from the literature. All tests where exe-
cuted within Matlab V7.2.0 (R2006a). The implementation uses the stopping
criterion

θ(xk) > −δ

for some prespecified parameter δ > 0 in order to stop at the point xk. Box
constraints of the form L ≤ x ≤ U for the original multiobjective problem at
hand are handled by augmenting the direction search program (8) that is being
solved in each step of our implementation by an additional box constraint of
the form

L − x ≤ s ≤ U − x.

Note that values of Li = −∞ or Si = +∞ can be used in our implementation.
For all test cases considered, we used the value of δ = 5×eps for the stopping

criterion. Here, eps denotes the machine precision given. For the line search,
σ = 0.1 was used. The maximum number of iterations was set to 500.

Table 1 specifies the main characteristics of the problems investigated. We
use a three-letter abbreviation of author names to indicate the origin of a prob-
lem instance, followed by a number to indicate the number of the problem in
the corresponding reference (i. e. ”JOS1” for problem no. 1 from Jin, Olhofer,
and Sendhoff [26], ”ZDT6” for problem no. 6 from Zitzler, Deb, and Thiele [43],
etc.). Many problems from the literature (i.e. JOS1, JOS4, ZDT1–ZDT6) are
constructed in such a way that the dimension n of the variable space can be
chosen by the user. We have done so and considered various choices of n in our
experiments; the corresponding problem names are augmented by letters a–h
(i.e. ”JOS1a” to ”JOS1h”), see Table 1 for details. Moreover, we vary lower
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and upper bounds to investigate the effect of different starting points on the
number of iterations and function evaluations (problem instances DD1a–DD1d
and JOS1e–JOSh).

Note that all cases except the last three problem types, LTDZ, TR1, and FDS,
are bicriteria problems, i. e. m = 2 holds. The latter three problems are three-
criteria. We do not consider problem no. 5 from [43] (ZDT5), since this problem
is a discrete multiobjective optimization problem. While we have F ∈ C∞ in
the interior of the box constraints for each problem considered, only the prob-
lems JOS1a–JOS1h, ZDT1a, ZDT1b, and FDS are convex, so we are mainly
concerned with the amount of work (iterations, function evaluations) it takes in
finding local Pareto points by using our local search method.

All problems where solved 200 times using starting points from a uniform
random distribution between a lower bound U ∈ R

n and an upper bound L ∈
R

n as specified in Table 1, column 3 and 4. These bounds also define the
box constraints for each problem considered. Average number of iterations
and average number of function evaluations are reported in the two right-most
columns of Table 1.

We proceed by discussing our findings some further by taking a detailed look
at some of the test problems and the corresponding results.

Problem JOS1 is a simple convex quadratic test problem used by various
authors to benchmark algorithms. As it can be seen, this problem, solved for
various dimensions n, poses no challenges to the method proposed here, and
the number of function evaluations shows that the simple Armijo-like step size
rule employed here is successful either immediately or after one backtracking
step. The same holds for the nonquadratic problems JOS4, ZDT1–ZDT4, and
TR1. Extending the feasible region (see JOS1e–JOSh and DD1a–DD1d) seems
to indicate, quite naturally, that the method is robust with respect to the choice
of the starting point for convex problems, but not necessarily so for nonconvex
problems.

Problem Hil is a non-convex, albeit smooth multicriteria problem. As it can
be seen from Figure 2, our method is able to generate a rough outline of the set
of efficient points (cmp. [24]), but, as it has to be expected, it also gets stuck in
locally efficient points. Similar results hold for the other nonconvex problems
considered.

Likewise, Figure 3 shows clearly that, given a reasonable number of starting
points, the method is able to identify the set of local, nonglobal Pareto points
as well as the set of global Pareto points for problem PNR.

On the other hand, it is clear that our method does not perform well on
problems SD and ZDT6 as on the other problems considered. Here, either the
simple linesearch of Armijo-type employed fails due to the strong curvature of
the problems under consideration [39, 43], or the nonconvexity of the problem
leads to nonconvex direction search programs (8), and the local optimization
routine employed to solve such programs cannot cope.

Results for a three-criteria problem, problem LTDZ, are visualized in Fig-
ure 4. Note that for this problem, the image of the set of efficient points is on
the boundary of a convex set in R

3, albeit the problem in itself is not convex.
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Name n UT LT Source iter feval
Deb 2 [1/10, 1] [1, 1] [9] 5.49 32.13
Hil 2 [0, . . . , 0] [5, . . . , 5] [24] 3.34 8.27
DD1a 5 −[1, . . . , 1] [1, . . . , 1] [8] 3.51 7.63
DD1b 5 −[5, . . . , 5] [5, . . . , 5] [8] 11.12 16.33
DD1c 5 −10[1, . . . , 1] 10[1, . . . , 1] [8] 71.78 77.77
DD1d 5 −20[1, . . . , 1] 20[1, . . . , 1] [8] 202.645 206.28
KW2 2 [−3,−3] [3, 3] [29] 8.06 13.05
JOS1a 50 −[2, . . . , 2] [2, . . . , 2] [26, Ex. 1] 2.01 3.01
JOS1b 100 −[2, . . . , 2] [2, . . . , 2] [26, Ex. 1] 2.00 3.00
JOS1c 200 −[2, . . . , 2] [2, . . . , 2] [26, Ex. 1] 2.00 3.00
JOS1d 500 −[2, . . . , 2] [2, . . . , 2] [26, Ex. 1] 2.00 3.00
JOS1e 100 −[10, . . . , 10] [10, . . . , 10] [26, Ex. 1] 2.26 3.26
JOS1f 100 −[50, . . . , 50] [50, . . . , 50] [26, Ex. 1] 2.44 3.44
JOS1g 100 −100[1, . . . , 1] 100[1, . . . , 1] [26, Ex. 1] 2.21 3.21
JOS1h 200 −100[1, . . . , 1] 100[1, . . . , 1] [26, Ex. 1] 2.25 3.25
JOS4a 50 [1, . . . , 1]/100 [1, . . . , 1] [26, Ex. 4] 2.00 2.00
JOS4b 100 [1, . . . , 1]/100 [1, . . . , 1] [26, Ex. 4] 2.00 2.00
JOS4c 200 [1, . . . , 1]/100 [1, . . . , 1] [26, Ex. 4] 2.00 2.00
PNR 2 −[2, . . . , 2] [2, . . . , 2] [36] 4.11 5.95

SD 4 [1,
√

2,
√

2, 1] [3, . . . , 3] [39] 28.08 277.85
ZDT1a 100 [1, . . . , 1]/100 [1, . . . , 1] [43, Ex. 1] 2.00 2.00
ZDT1b 200 [1, . . . , 1]/100 [1, . . . , 1] [43, Ex. 1] 2.00 2.00
ZDT2a 50 [0, . . . , 0] [1, . . . , 1] [43, Ex. 2] 2.00 2.00
ZDT2b 100 [0, . . . , 0] [1, . . . , 1] [43, Ex. 2] 2.00 2.00
ZDT3a 50 [1, . . . , 1]/100 [1, . . . , 1] [43, Ex. 3] 2.18 2.56
ZDT3b 100 [1, . . . , 1]/100 [1, . . . , 1] [43, Ex. 3] 2.21 2.57
ZDT4a 50 −[0.01, 5, . . . , 5] [1, 5, . . . , 5] [43, Ex. 4] 2.07 2.50
ZDT4b 100 −[0.01, 5, . . . , 5] [1, 5, . . . , 5] [43, Ex. 4] 2.06 2.48
ZDT6a 3 [0, 0, 0] [1, 1, 1] [43, Ex. 6] 10.36 97.86
ZDT6b 10 [0, . . . , 0] [1, . . . , 1] [43, Ex. 6] 7.36 68.46
LTDZ 3 [0, 0, 0] [1, 1, 1] [30] 2.46 3.23
TR1 3 [0, 0, 0] [1, 1, 1] [40] 2.83 2.83
FDSa 5 [−2, . . . , 2] [2, . . . , 2] (49)-(51) 8.39 17.04
FDSb 10 [−2, . . . , 2] [2, . . . , 2] (49)-(51) 14.67 26.49
FDSc 50 [−2, . . . , 2] [2, . . . , 2] (49)-(51) 44.54 42.31
FSDc 100 [−2, . . . , 2] [2, . . . , 2] (49)-(51) 424.88 433.15
FDSd 200 [−2, . . . , 2] [2, . . . , 2] (49)-(51) 381.20 382.50

Figure 1: Main data for the problem instances considered as well as averagetbl:problems

number of iterations (iter) and average number of function evaluations (feval).
The last five problems considered are three-criteria problems. Note that the
number of gradient and Hessian evaluations is equal to the number of iterations.
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Figure 2: Value space of Problem No. 2 for 150 random starting points. Circledfig:prob2

points indicate local efficient points that are not globally efficient.
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Figure 3: Value space of Problem PNR for 150 random starting points. Circledfig:prob6

points indicate local efficient points that are not globally efficient.
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Figure 4: Delaunay triangulation of the approximation of the set of efficientfig:probltdz

points in value space for Problem LTDZ, as generated by Newton’s Method. 200
random starting points have been used to generate a pointwise approximation
to the set of efficient points, from which the Delaunay triangulation as shown
has been constructed.
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Finally, the algorithm was tested on problem FDS, a problem of variable
dimension n defined by

F1(x) :=
1

n2

n
∑

k=1

k(xk − k)4, (49) eq:crit1

F2(x) := exp

(

n
∑

k=1

xk/n

)

+ ‖x‖2
2, (50)

F3(x) :=
1

n(n + 1)

n
∑

k=1

k(n − k + 1)e−xk . (51) eq:crit3

These objectives have been designed as a convex problem with three criteria
whose numerical difficulty is sharply increasing in the dimension n. A visu-
alization of the image of the set of efficient points, together with a Delaunay
triangulation of the corresponding image points in R

3 can be found in Figure 5.
As it can be seen in Table 1, the implementation works well if the dimension
of the problem is not too high. However, for problem FDSc resp. FDSd, 166
resp. 126 of the 200 starting points considered resulted in an iteration history
that reached the maximum number of iterations allowed.

8 Conclusions

With respect to theoretical results obtained, Newton’s method for multiobjec-
tive optimization behaves exactly as its counterpart for single-criterion optimiza-
tion: if all functions involved are twice continuous differentiable and strictly con-
vex, the sequence provided by the method converges superlinearly to a solution
of the given problem, and full Armijo-steps will be chosen in a neighbourhood
of such solution. Moreover, quadratic convergence holds in case the second
derivatives are Lipschitz-continuous.

Finally, we note that the numerical performance of the Newton method for
multicriteria optimization presented here mimics the performance of Newton’s
method for the standard single-criterion case: problems whose objective func-
tions display a weak or moderate amount of curvature pose no challenge to the
method at hand, and in such cases the method is fairly robust with respect
to the dimension of the problem and the starting point chosen. Moreover, the
numerical results presented indicate that the method works also well in the non-
convex case, although, of course, no guarantee can be given that the computed
Pareto points are locally optimal instead of globally optimal. Our implementa-
tion, however, experiences difficulties when employed on problems exhibiting a
a high degree of curvature. This doubtlessly so due to the rather simple line-
search mechanism employed here. This, as well as an adaptation of Newton’s
method for constrained multiobjective problems is subject of further research.
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Figure 5: Delaunay triangulation of the approximation of the set of efficientfig:problfds

points in value space for Problem FDS, as generated by Newton’s Method. 200
random starting points have been used to generate a pointwise approximation
to the set of efficient points, from which the Delaunay triangulation as shown
has been constructed.
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