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Normality and Modulability Indices.
Part I: Convex Cones in Normed Spaces
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Abstract. This paper proposes and compares several ways of measuring the degree of normality
of a convex cone contained in a normed space. The dual concept of modulability is also considered.
Other notions like solidity and sharpness are also analyzed from a quantitative point of view.
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1 Introduction

In recent years we have devoted a great deal of effort into describing the angular structure of closed convex
cones in finite dimensional vector spaces [21, 22, 24]. We have addressed also the issue of measuring the
degree of solidity and the degree of pointedness of a closed convex cone [19, 20, 23|. Finite dimensionality
of the underlying vector space was a crucial hypothesis.

The situation is more complex in an infinite dimensional setting. Most of our results simply don’t extend
in a trivial manner to the context of a Hilbert space. The discussion is even more involved if one works in a
general normed space, say (X, | - ||). The intrinsic geometry of the closed unit ball

Bx={zeX:|z| <1}

has an important impact on the way we measure and perceive properties like pointedness, solidity, repro-
ducibility, normality, and so on.

To proceed further with the exposition we need to lay down some notation and explain the basic termi-
nology that is being employed. The unit sphere in X is indicated with the symbol Sx. The main object of
our attention is the set

—_

E(X) = nontrivial closed convex cones in X

which we equip with the truncated Pompeiu-Hausdorff metric [37]
Q(Kl, Kz) = haus(K1 n Bx, KQ n Bx).

Here

haus(Cy, Cy) = max{ sup dist[z, Cs], sup dist[z, Cl]} (1)
z€C1 z€C>
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stands for the classical Pompeiu-Hausdorff distance between two bounded closed nonempty sets C, Cs3, and
dist[z, C] refers to the distance from z to the set C'. By a convex cone we understand a nonempty set K
satisfying K + K C K and Ry K C K. Saying that a convex cone K is nontrivial simply means that K is
different from {0} and different from the whole space X.

We are concerned also with duality issues. The topological dual space X* is equipped with the norm

[yll« = sup (y,),
el <1

where the bilinear form (-, -) : X* x X — R stands for the duality product between X and X*. The notation
B« refers to the closed unit ball in X*.

Table 1 indicates the main properties of convex cones that we want to explore: pointedness, normality,
sharpness, reproducibility, modulability, and solidity. The emphasis of our work lies on the quantitative
aspect, that is to say, we introduce and study various coefficients that measure to which extent a certain
property is present in a given convex cone.

| “Primal” concept | coefficient(s) | “Dual” concept | coefficient(s) |
pointedness - almost reproducibility -
normality o, B, V, Pnor modulability t, Pmod
sharpness T, Psh solidity ©, Psol

Table 1. Six properties for convex cones in normed spaces

Our research program is too vast to be treated in a single paper. An important portion is left for the
Part II of our work [25], specially the results that are valid only in a Hilbert space setting.

2 Beyond Reproducibility

2.1 From Reproducibility to Modulability

For closed convex cones in Banach spaces there is no difference between reproducibility and modulability.
In order to better explain the motivation behind the introduction of the concept of modulability, we lift the
discussion to the more abstract setting of a general normed space.

Recall that a convex cone K in a normed space (X, || - ||) is said to be reproducing (or generating) if the
linear subspace

span(K) =K — K

spanned by K is the whole space X. Reproducibility is a purely algebraic concept, the norm || - || playing
no role in it. Sometimes it is helpful to view K as the set of “nonnegative” elements of the space X. What
reproducibility says is that every vector z in X can be decomposed in the form

r=u—v with wu,ve€K,

i.e., as difference of two nonnegative elements. Of course, such a decomposition of z is not unique.
Defining and computing a “best” decomposition is a fundamental problem of the theory of convex cones.
We will not elaborate here on this classical issue (cf. [7, 15]). Suffice it to say that a convenient decomposition



of z is one for which ||u|| and ||v|| are are not too large while compared to ||z||. It is natural to ask whether
it is possible to choose u,v € K so that the £2-norm

(e, o)l = Vlul? + o] (2)

doesn’t exceed a certain multiple of ||z||. Such multiple should depend on the cone K but not on the
particular = that we want to decompose.

Definition 1. A convex cone K in a normed space X is said to be modulable if there is a constant
v > 0 such that
(3)

any z € X is expressible in the formz =u —v
with u,v € K satisfying v ||(u,v)| < |||

Such a scalar v is called a modulability constant for K.

The choice of the £2-norm in the product space X x X is not essential. We could have used instead an
equivalent norm, for instance the £*°-norm

1w, )l oe = max{ [full, [|v]|}. (4)

Needless to say, a modulable convex cone is necessarily reproducing. What is more striking is the following
converse result.

Theorem 1. If K is a reproducing closed convex cone K in a Banach space X, then K is modulable.

Theorem 1 is mentioned without proof in the book by Krasnosel’ski and Zabreiko [29, Section 33.1]. A
more elaborate formulation and a proof of this result can be found in the book by Kusraev and Kutateladze
[31, Section 3.1]. Most soviet authors refer to modulability as the “non-oblateness property”, but the later
terminology has the inconvenience of using a negative prefix. For the same reason we are not using the
expression “non-flattening property” adopted by a few authors (cf. [26]). Theorem 1 can be found also in
Ando [1] and in the classical book by Peressini [35]. The later author refers to a modulable convex cone as
being a “strict b-cone”.

Theorem 1 is no longer true if the normed space X fails to be complete. In Section 2.3 we will present
an interesting example of a closed convex cone which is reproducing but not modulable. Of course, such a
cone lives in a non-complete normed space. For the time being we ask the reader to keep always in mind the
following sentence:

While dealing with closed convexr cones in Banach spaces,
modulability and reproducibility are the same concept.

The next proposition sheds additional light on modulability. The notation Nx(z) stands for the filter of
neighborhoods of a point z € X.

Proposition 1. For a convex cone K in a normed space X, the following conditions are equivalent:
(a) K is modulable.
(b) 0 €int{u—v: u,v e K, ||(u,v)|| <1}
(¢) 0€int[K N Bx — K N Bx].
(d) 0eint[KNV — KNV] for all V e Nx(0).



(e) O €int[K NV, — KN V3| for all V1, V5 € Nx(0).
Furthermore, a scalar v > 0 is a modulability constant for K if and only if
’YBX C{u_v: u,vEK, “(uvv)” Sl} (5)

Proof. Some portions of this theorem are probably known. We divide the proof in several parts:
(e) = (d) = (c). Take both neighborhoods Vi, V5 equal to V', and then choose V as the unit ball Bx.
(¢) = (e). Let V1, V5 € Nx(0). In view of (c), there are positive numbers r and €1, &2 such that

rBxy C KNBx - KNBx
¢gBx C V; fori=1,2.

By letting ¢ = min{eq,e2}, one gets

erBx C 6(K NBx —KnN Bx)
= KneBx —KnNeBx
C KﬁVl—KﬁVz,

showing in this way that K N'V; — K NV, contains 0 in its interior.
(b) < (c). This is due to the fact that the ¢2-norm (2) is equivalent to the ¢>-norm (4).
(a) = (b). Let v > 0 be a modulability constant for K. We shall prove that the inclusion (5) holds true.
Take z € yBx. By (3), there is a decomposition (u,v) € K x K of = satistying v||(u,v)|| < ||z||. Hence,
x =u — v with u,v € K such that ||(u,v)|| < 1. So, 2 belongs to the right-hand side of (5) as desired.
(b) = (a). Let v > 0 be as in (5). We shall prove that 7 serves as modulability constant for K. For any
nonzero vector € X one can write

el ™o =u' =

with v/, v" € K such that ||(v/,v")|| < 1. This means that z is expressible in the form

e = (lz]l/7)v = (llzll/7)v’
—

u v

with (u,v) € K x K satisfying 7[|(u, v)|| = [l] [|(w',v")I| < [l]. a

2.1.1 The Use of Absolutely Convex Hulls

In the sequel we use the notation aco(C') to indicate the absolutely convex hull of a subset C' of X. By
construction,

aco(C) = co[C'U —C]
corresponds to the smallest symmetric convex set containing C'.
Theorem 2. A convex cone K in a normed space X is modulable if and only if the set
K*® = aco[K N Bx] (6)

is a neighborhood of the origin.



Proof. This result is in the same spirit as Proposition 1. For putting everything in the right perspective we
start by mentioning that any ¢P-norm

(s, )llp = [l + ol (1<p<oo)
is equivalent to the £2-norm (2), so the condition (b) in Proposition 1 amounts to saying that
V}’(K)Z{u_v: u»UEKv ”(uvv)Hpsl}

is a neighborhood of 0. It turns out that V,(K) can be written as function of the set K N Bx. The particular
choice p = oo yields of course
Vo(K)= KN Bx — K N By,

an expression already encountered in Proposition 1(c). The case p € [1, 00[ can also be worked out, but this
time one gets a more involved expression, namely

V)= |J Aa(EnBx)-pKNBx)}.
aP+3P<1
@3>0
The case p =1 is of special relevance because
Vi(K) = U {a(KNBx) - B(KNBx)}
at+p<1

@,3>0

corresponds exactly to the absolutely convex hull of K N Bx. This completes the proof of the theorem. [

Before continuing our discussion on modulability, we pause for a moment and say a few words on the
absolutely convex hull of a set like K N Bx. First of all, observe that (6) can be written in the equivalent
form

K® =co[(KU—K)N Bx].

Such representation of K* facilitates sometimes the computation of this set. The following lemma shows
that K N Bx and K N Sx have the same absolutely convex hull. Such result is probably known, but we
record it for the sake of completeness.

Lemma 1. For a nontrivial convex cone K in a normed space X, one has
K® =aco[KNSx]=co[(KU—-K)NSx]. (7)
Proof. The second equality in (7) is clear, so we concentrate on the first one. It is enough to prove that
K NBx Caco[K N Sx]

because a simple logic argument leads then to the desired conclusion. Take x in K N Bx. Notice that
0 € aco [K N Sx], so there is no loss of generality in assuming that « # 0. In such a case, one can write

z=au+ (1l —a)(—v)

with w = v = ||z|| 7'z belonging to K N Sx and a = (1 + ||z||)/2 belonging to ]0,1]. This shows that
x € aco[K N Sx]. O



We mention in passing that K*® behaves in a Lipschitz-continuous manner with respect to changes in the
argument K. In the next lemma we use the classical Pompeiu-Hausdorff distance. The term haus(Cj, Cs)
introduced in (1) is finite and well defined as long as the sets C, C5 are nonempty and bounded. However,
the function haus(-, ) is a true metric only if the sets C7, Cs are further required to be closed.

Lemma 2. Let Ky, K5 be nontrivial closed convex cones in a normed space X. Then,
haus(K7, K3) < o(K1, K3).

Proof. Take any « € K¢ and write it in the form z = au — (1 — a)v with « € [0,1] and u,v € K; N Bx. For
each € > 0 one can find a pair ue,v. € K3 N Bx such that

lu —ue| < distlu, K3 N Bx]+e, (8)
lv—wv.|| < distjv,K3N Bx]+e. (9)

Observe that z. = au. — (1 — a)v. belongs to K3 and
[z = zell = [lo(u — ue) + (1 = a)(ve = 0)[| < vflu = uel[ + (1 = @) [Jve — v]].

Given (8)-(9), one obtains

dist[z, K3] < ||z — .|| < { sup dist[z, Ko N BX]} + €.
2€K1NBx

By letting first ¢ — 0 and taking then the supremum with respect to @ € K7, one arrives at

sup dist[z, K3] < sup dist[z, K2 N Bx].
zEK? z€K1NSx

This is half of the proof. The other half is obtained by exchanging the roles of K; and K. O

2.2 Measuring the Degree of Modulability of a Convex Cone
Theorem 2 suggests introducing the number
w(K)=sup{r >0: rBx C K*} (10)
as a tool for measuring the degree of modulability of K. Clearly one has
0<u(K)<1

for every nontrivial convex cone K in any normed space X. Let us examine more carefully the definition of
the function p and see what the term (10) is actually telling us about the structure of K. For warming up
nothing is better than considering a simple example in a finite dimensional context.

Example 1. By way of illustration we work out the case of an elliptic cone

E(A) =11 e X VETAL <t}



in the Euclidean space X = R"™ x R. Here A denotes a positive definite symmetric matrix of size n x n. In
order to form the convex hull of the set [£(A) U —E(A)] N Bx we draw a segment joining the points (&, )
and (&, —t). We do this for all (&,t) such that

VETAE = t, (11)

€N* + % = 1. (12)

A geometric argument shows that the largest ball By contained in [E(A) U —E(A)] N Bx has a positive
radius r given by

r=inf [(0,0) = (&,0)1,

where the infimum is taken with respect to (£,t) € X satistying the constraints (11)-(12). By getting rid of
the variable t one arrives at

I+ A)K

2 . 2
e = inf l€]I* = [sup
ez0 €112

CET(I+A)e=1

One has proven in this way that
1

WE(A)) = NES WD)

with Apax(A) denoting the largest eigenvalue of A. For the Lorentz or “ice-cream” cone

L={(&t) e X: Jigll <t}

(13)

one gets in particular p(L£) = v/2/2.

It is too early to draw a general conclusion from Example 1, but formula (13) strongly suggests that p
has something to do with the concept of radius of solidity introduced and studied in [19, Section 4]. We will
come back to this point in due course.

Needless to say, computing p(K) for a given convex cone K in an arbitrary normed space X is not always
as easy as in Example 1. When it comes to practical computations, perhaps the simplest way of estimating
u(K) is by solving first the problem which consists in finding the least ¢!-norm element in

Dig(z)={(u,v) e X x X : u,v € K,u—v =z},
the set of all decompositions of a given = € X. The details are explained in the next proposition.

Proposition 2. A convex cone K in a normed space X is modulable if and only if
((K)= sup inf U,V 14
()= swp it w0l (14

is a finite number. Furthermore, one has the relation

MK = 2 (15)

with the usual convention 1/oo =0 being in force.



Proof. A quick sketch of the proof will do. The term (14) corresponds to the smallest real ¢ > 0 such that

inf u, v S T \V’:L' c X
(u,v)EDK (z) ||( )”1 C” “

The reciprocal 1/¢(K) is then the largest constant v > 0 such that

any « € X is expressible in the form z = u — v
{ with u,v € K satisfying 7| (u, v)||1 < ||z (16)
If one looks back again at the proof of Proposition 1, one sees that (16) is equivalent to
vBx C{u—v: u,v € K, ||(u,v)]1 <1}.
The link between ((K) and pu(K) is now clear. O

We have used the ¢!-norm in the definition of ((K) because in such a way one gets a direct and simple
relation with the coefficient p(K). Let us illustrate the use of formula (15) with the help of an illuminating
example.

Example 2. Consider the vector space B([a,b],R) of bounded functions  : [a,b] — R equipped with the
uniform (or Chebyshev) norm ||z|| = sup,<,< [(t)]. The set

K ={u e B([a,b],R) : u(t) > 0Vt € [a,b]}

is a reproducing closed convex in the Banach space (B([a,b],R),|| - ||). Hence, it is modulable. In order to
evaluate p(K') we proceed as follows. First, observe that any « € B([a,b], R) can be decomposed as difference

z(t) = max{0,z(t)} — max{0,—z(t)} vt € [a, b]

2 (1) = ()

of two functions z4,2_ € K such that ||z4| < |z, ||z—| < ||=|. Hence,

inf [(u,0)[1 <[z, 2]y < fleg ][ + [z < 2|z
(u,v)€D K (x)

By taking the supremum with respect to z € Bx one gets the estimate ((K) < 2. We now show that this
estimate is optimal. Consider any function & : [a,b] — R such that
inf Z(t)=-1 and sup Z(t) =1. 17
 dnf &(t) Sup (t) (17)
Such a function Z is clearly in Sx. We claim that

[(w,v)1 22 V(u,v) € D(Z).

Although it is not necessary, for shortening the proof we will ask the extrema in (17) to be attained. Suppose
that & attains its infimum at ¢, € [a,b] and its supremum at t* € [a,b]. If (u,v) € Dg(Z), then one has in
particular

= 1,

u(t') — v(t*) = @(t
&t 1.

u(ts) — v(ts)

)
)
Given that u,v are nonnegative functions, one gets u(t*) > 1 and v(t.) > 1. Hence, |u|| > 1,|lv|| > 1, and
the proof of our claim is complete. In conclusion, ((K) = 2 and formula (15) yields p(K) =1/2.

*
*



As explained in the next proposition, evaluating p(K) is also a matter of estimating the least-norm
element in the boundary of K*°.

Proposition 3. Let K be a convexr cone in a normed space X. Then,

K) = inf . 18
p(K) = _int o] (18)

Proof. Suppose that K* contains the origin in its interior, otherwise both sides in (18) are equal to 0. The
next reasoning applies to any bounded convex set C' containing the origin in its interior, but, of course, we
have the particular case C' = K*® in mind. First of all, we claim that

inf = dist[0, X\ (. 19
nt el = dist[0, X\C] (19)

Since C' and its complement X \C' have the same boundary, it follows that

inf |lz||= inf |z||= inf |z|.
xebd(C) cebd(X\C) wecl(X\C)
wdint(X\C)

But the constraint = ¢ int(X\C) in the last infimum is superfluous because the norm of a point in the
interior of X\C' can always be reduced a bit further. Hence,

inf = inf = dist[0, cl(X\C)] = dist[0, X\C].
Lt el = _nf el = dist[0,el(X\O)] = dist[0, X\C]

This takes care of our claim. Now, since the implications
dist[0, X\C]>r = rBxCc(C = dist[0,X\C]>r
holds for any scalar > 0, one readily gets
sup{r > 0:rBx C C} = dist[0, X\C].
This and (19) yield the announced formula. O

In the next proposition we characterize the coefficient p(K) in terms of the support function of K*°.
Recall that the support function W7, of a nonempty set C' C X is defined as

y € X" — Ve (y) = sup(y, z).
zeC
The representation formulas stated in Proposition 4 require K to satisfy a certain “qualification condition”.
Checking this technical hypothesis is sometimes a bit bothersome, but unfortunately this is something not
to be neglegted.

Proposition 4. Let K be nontrivial convex cone in a normed space X. Suppose that K is “qualified”

in the sense that
K*® and cl(K*®) have the same interior. (20)

Then, one can write
w(K)=max{r >0: rBx C cl(K*)} (21)



and also

wK) = b mad@ins, (1), P knpy (W)} (22)
= jnf max{Ting, (1), V2 xns, (1)} (23)

Proof. If K* and cl(K*) have the same interior, then both sets have also the same boundary. In such a
case, formula (18) can be written in the form

K) =
/J“( ) Tebd[cl(lf‘)] “ ||

If one applies the proof technique of Proposition 3 to the set C = cl(K*®), one gets

= >0:rB I(K*)}. 24
dnt el = sup{r > 02 rBy (k7)) (24)

Since the interval {r > 0: rBx C K*} is compact, the supremum in (24) is attained. This completes the
proof of (21). We now take care of formula (22). For any r > 0 and any bounded closed convex set C C X
containing the origin 0 € X, one has

rBx CC <<= Vi, (y) <Ve(y) VyeX©
= 7yl <Vely) Vye X

<~ r < inf Ui(y).
llyll-=1

In view of (21), one gets

pE) = Inf W W)-

But standard calculus rules on support functions yield
‘I’Zl(K-)(y) = Vke(y) = max{\IJ}me (y), VY By ()},

completing in this way the proof of (22). Formula (23) is proven analogously but now one uses the represen-
tation (7) of K*. O

Remark 1. There are two easy ways of ensuring the qualification hypothesis (20). The first way is asking
K to be modulable. Indeed, the modulability of K implies that K*® has nonempty interior, and this in
turn implies (20). The second way of ensuring the qualification hypothesis is asking K* to be closed. This
happens, for instance, if K is a closed convex cone in a reflexive Banach space. Indeed, it is easy to check
that in a reflexive Banach space the convex hull of the union of two bounded closed convex sets is convex
and weakly closed, hence closed.

Corollary 1. Let K be a qualified nontrivial convex cone tn a normed space X. Then,

H(l(K)) = p(K).

In particular, cl(K) is modulable if and only if K is modulable.

10



Proof. It follows from the representation formula (23) and the fact that

Usenp = Yascnpr) = Ysenacp)
for any convex cone P C X. O

The qualification assumption is essential in Corollary 1. The following example shows that, in general,
the concept of modulability is not blind with respect to topological closure.

Example 3. Let (3(R) denote the Hilbert space of real sequences {zy };>1 such that ;- 7 < co. In this
space consider the convex cone K given by

re€K < dn>1suchthataz; >0,...,2, >0and x, =0for all k > n+ 1.

Its closure

c(K)={ze€ly(R): 2, >0Vk >1}
is clearly modulable, but K itself is not.

2.3 Reproducibility without Modulability

As promised before, we now display a nice example of a closed convex cone which is reproducing but not
modulable.

Example 4. Denote by BV([a,b],R) the vector space of functions « : [a,b] — R of bounded variation.
This space is not complete while equipped with the uniform norm ||z|| = sup,<,<, |z(t)|- According to a
classical result in analysis, functions of bounded variation on a compact interval are exactly those which can
be written as difference of two nondecreasing functions on that interval. It follows that the closed convex
cone

K ={z € BY([a,b],R) : = is nondecreasing} (25)

is reproducing. We claim that (25) is not modulable. We shall construct a sequence {z }x>1 of unit vectors
in BV([a, b],R) such that

inf u,v oo as k — oo B
e N O "

In view of Proposition 2, the existence of such sequence would imply the non-modulability of K. For
notational simplicity we work out only the particular case a = 0,b = 1. For each k > 1, consider the function

t €10,1] — x(t) = cos(2knt).

Observe that the z;’s are of bounded variation and have unit length with respect to the uniform norm.
Checking (26) is quite cumbersome but it can be done with a bit of patience. The key observation is that the
trigonometric function xy(-) oscillates more and more as k increases. Consider a given k and an arbitrary
pair u,v : [0,1] — R of nondecreasing functions such that

u(t) —v(t) = zp(t) Vte[0,1].

Let t; = i/(2k), with i € {1,2,...,2k — 1}, be the points at which z4(-) changes the type of monotonicity.
On the interval [0, 1] the function z(-) is decreasing and

v(ty) = u(ty) — 2p(ty) = w(t1) + 1 > w(0) + 1.

11



On [t1, t2] the function x(-) is increasing and
u(tz) = v(te) + zp(ta) = v(tz) +1 > v(ty) +1 > u(0) + 2.
By repeating the same argument one gets
v(tz) > u(0) + 3,
u(ty) > u(0) + 4,
and so on. One ends up with u(1) > «(0) 4+ 2k. This inequality yields
[, )1 = [lull = k.

Since the pair (u,v) was an arbitrary decomposition of xj, we conclude that (26) holds.

2.4 Properties of u(-) as Function on =Z(X)
2.4.1 Nonexpansiveness

The classical Pompeiu-Hausdorff distance (1) admits a support function characterization when it is applied
to convex sets.

Lemma 3. If C1,C5 are bounded closed convexr nonempty sets in a normed space X, then

haus(Cy,C) = sup |¥E (y) — ¥, (v)]-

llyll.=1
Proof. See for instance [4, Corollary 3.2.8] or [8, Theorem 2.18]. O
The next proposition is obtained straightforwardly by combining Lemma 3 and Proposition 4.
Proposition 5. Let K1, Ko be nontrivial closed conver cones in a normed space X. The inequality
(K1) = p(K2)| < o(Ky, K2) (27)
holds in case K1,Ks are both qualified (or in case both are non-modulable).

Proof. If K, K5 are both non-modulable, then pu(K;) = pu(K3) = 0 and (27) holds trivially. If K, Ko are
both qualified, then the proof of (27) relies on the representation formula (22). Lemma 3 yields

Ui nsy () < Ui,y (¥) + |yl haus(K; N By, K> N By)

—
o(K1,K2)

for every y € X*. Similarly,

AN

U konpy (W) + ylls o(— K1, —K3)
= ‘I’iszBx (y) + ||y||* o(K1, K3).

\IJiKlﬂBX (y)

One gets in this way

max{\Il’;(me(y), ‘I’*—Klme (y)} < maX{‘I’}szx (y), ‘I’*—szBx (W)} + llyll« o(K1, Ka).

By passing to the infimum with respect to y € Sx+«, one arrives at
w(Ky) < u(Kz) + o( Ky, K2).

For completing the proof it suffices now to exchange the roles of K; and Ks. O

12



Corollary 2. Let X be a reflexive Banach space. Then,
|n(K1) — p(K2)| < o(K1, Kz) VK, Ky € B(X),
t.e., w:(E(X),0) = R is a nonexpansive function.

It is not clear whether Corollary 2 remains true if X is not a reflexive Banach space. In any case,
constructing a counterexample is not a trivial matter. We mention that (27) is valid in a general normed
space for many configurations concerning the pair K7, Ky € Z(X). If there is a trouble at all with (27), then
one cone must be modulable and the other cone must be non-modulable and not-qualified. We skip this
technical point and go on with the discussion of other properties concerning the modulability coefficient.

2.4.2 Other Properties

We need to introduce a particular class of normed spaces. We don’t know if this class has been considered
already in the literature.

Definition 2. A normed space X s gentle if a closed set M satisfying
int(Bx) C co(M) C Bx (28)
contains necessarily the unit sphere Sx.

The above definition is a bit technical, so it is helpful to recall the known concept of dentability. One
says that z € C is a denting point of C' if for all € > 0 the closed convex hull of

{zelC:|z—z|>c¢c}
leaves z aside. Several equivalent characterizations of dentability can be found in [5] and [33].

Proposition 6. Let X be a vector space equipped with a norm such that every unit vector of X s a
denting point of Bx. Then, X ts gentle.

Proof. Let M be a closed set satisfying (28). In particular, one has clco(M) = By, where the notation
cleo(M) refers to the closure of the convex hull of M. We must prove that Sx C M. Suppose on the contrary
that z ¢ M for some unit vector z € X. Since M is closed, we can find a small € > 0 such that

{reBx:|z—=z| >} DM

Hence,

clco{z € Bx : ||z — z|| > ¢} D Bx. (29)
Notice that z € By, but z doesn’t belong to the set on the left-hand side of (29) because z is a denting point
of Bx. This contradiction confirms that Sx C M. O

Corollary 3. Any locally uniformly rotund Banach space is gentle. In particular, any Hilbert space
is gentle.

Proof. That a Banach space, say X, is locally uniformly rotund means that
|l — 2| — 0 whenever z,x, € X and 2|z|* + 2|z, |* — ||z + z.||* — 0.

It is known (cf. [5, 32, 40]) that in a locally uniformly rotund Banach space every unit vector is a denting
point of the closed unit ball. O
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Remark 2. Consider the space ¢o(R) of bounded real sequences {xj}r>1 equipped with its usual norm
llz]| = supy>; |=zx|. This is a typical example of normed space that is not gentle. To see this we suggest
examining the closed set

M={zcly(R):|z| <1, 22 4 (x5 — 1)? > 1/9}.

Notice that M doesn’t contain the unit sphere because it leaves the unit vector (0, 1,0,0,...) aside. However,
the convex hull of M contains the open unit ball. Indeed, any 2 € ¢ (R) of length less than 1 can be written
in the form

r=o (11$27x37 c ) + /6 (_171'2»1'31 e ')7

-~

ir??\d in M
where o = (1 +1)/2 and 8 = (1 — x1)/2 are nonnegative coefficients adding up to 1. Another example of
normed space that is not gentle is the space ¢1(R) of absolutely summable real sequences {zj }x>1 equipped
with the norm ||z|| = >, |zx|. As set M one takes this time

M= {x e (R): ] <1, (z1 — (1/2)) + (22 — (1/2))% > 1/9} ,
M doesn’t contain the unit sphere because it leaves the unit vector (1/2,1/2,0,0,...) aside. Let = € ¢;(R)

be a vector of length less than 1. If ;1 = 0 or 3 = 0, then z is already in M, otherwise we write  as convex
combination

|71 <|w1|+|w2|

x 1|+ |z
w1,0,w3,w4,...) + |2 ( ,| 1] + |z
|931|

L2, X3,L4y-- -
|z1] + |2 |2 )
of two vectors from M. In short, co(M) contains the open unit ball.

We now come back to the main stream of our exposition. Gentleness of X is an essential assumption for
the validity of the property (e) in Theorem 3.

Theorem 3. Let X be a normed space. Then, the function p : Z(X) — R enjoys the following
properties:

(a) K1 C Ky implies p(K1) < p(Kz).
(b) wW(T(K))=puK) for all K € E(X) and all invertible linear isometry T : X — X,
(¢) p(K) =0 if and only if K is not modulable.
(d) KU—-K =X implies u(K) =1.
If the normed space X is gentle, then one can add the next property to the list:
(e) p(K)=1 implies KU—-K = X.

Proof. (a) K1 C K implies K7 C K3, so the monotonicity of u(-) is obvious.

(b) Take K € E(X) and an invertible linear isometry T : X — X. Recall that a linear map 7': X — X is
called an isometry if | Tz|| = ||z|| for all x € X. To start with, observe that T'(K') belongs to Z(X). Since T
is assumed to be invertible, one can write

Dry(#) = {(4,9) e X x X : 4,0 € T(K), i —0 =&}
{(Tu,Tv) € X x X : (u,v) € Dg(x)}

14



with = T71(Z). Hence,

((T(K)) = sup inf u,v)||1 = sup inf Tu,Tv = ((K).
( ( )) IZ<1 (ﬂ,’f))GDT(jg)(:i?) ||( )Hl ”:;EH‘EI (u,v)EDK () ”( )”1 ( )

It suffices now to apply Proposition 2.

(¢) It follows from Theorem 2 and the very definition of u(-).

(d) If K U—K = X, then K®* = Bx. The later equality implies that u(K) = 1.

(e) Suppose that the normed space X is gentle. Take any K € Z(X) such that u(K) = 1. Notice that the
inclusion rBx C co[(K U —K) N Bx] holds for any = €]0, 1[. Hence,

int(Bx) C co[(K U—-K)N Bx].
From here and the fact that (K U —K) N Bx is a closed set contained in By, we deduce that
Sx C (KU—-K)N By.
Due to a simple homogeneity argument, the later inclusion implies that K U — K = X. O

The next example shows that the property (e) in Theorem 3 may fail if X is not gentle.

Example 5. In the space X = ¢ (R) equipped with its usual norm, consider the closed convex cone
K={z€l,R): |zr| <z Vk > 2}.
Clearly KNSy ={z € lx(R) : 21 =1, |z| < 1Vk > 2}. Any x € Bx can be represented in the form

v =a(l,xyx3,...) + B(-1,2x2,23,...)

v
in KNeESx in —KNESx

with @ = (1 +21)/2 and 8 = (1 — #1)/2 being nonnegative coefficients adding up to 1. This proves the
inclusion Bx C K* and yields u(K) = 1. On the other hand, K U —K # (. (R) because the bounded
sequence (0,1,1,...) is neither in K nor in —K.

2.5 The Radius of Modulability

For closed convex cones in reflexive Banach spaces there are also other ways of quantifying modulability. As
an alternative to the coefficient p(K) one might consider

pmod(K) = Qelél(fX) Q(K7Q)7 (30)

Q not modulable

a number called the radius of modulability of K. The interpretation of the above minimization problem is
clear: we are looking for the non-modulable element of Z(X) lying at shortest distance from K.
What motivates the use of (30) as tool for quantifying modulability is the following topological result.

Proposition 7. Let X be a reflexive Banach space. Then,
Mod(X) = {K € E(X) : K is modulable}

is an open set in the metric space (£(X), o).
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Proof. Combine Corollary 2 and Theorem 3(c). O
The link between the functions p(-) and pmed(-) is explained in the next corollary.
Corollary 4. Let X be a reflexive Banach space. Then,

(a) pmoa : (E(X),0) — R is the largest nonexpansive map that vanishes exactly over the mon-
modulable elements of E(X).

(b) H‘(K) < pmod(K) fOT' al K € E(X)

Proof. Notice that pyed(-) is the distance function to a closed set, namely Z(X)\Mod(X). This fact yields
immediately the following two properties:

|pmod(K1) - pmod(KZ)l S Q(KLKZ) VKviZ S E(X)7 (31)
Pmod(K) =0 iff K € Z(X) is not modulable. (32)

Now, let p : Z(X) — R be another function satisfying the properties (31)-(32). For any K € Z(X), one has
p(K) < p(Q)+o(K,Q) VQ € E(X).

By taking the infimum with respect to @ in Z(X)\Mod(X) one arrives at p(K) < pmod(K). This proves the
pointwise maximality of pyeq(-). The part (b) follows from (a) and Corollary 2. O

3 Solidity

3.1 Modulability versus Solidity

According to a famous result often attributed to M. A. Krasnosel’skii [28], every solid closed convex cone in
a Banach space is reproducing. Also observed by Krasnosel’skii is the fact that in an infinite dimensional
context, reproducibility doesn’t imply solidity.

In this section we elaborate a bit more on this theme. More specifically, we compare the expression p(K)
and the Frobenius solidity coefficient

o(K)=sup{r: ||z]|=1, >0, z4+rBx C K}. (33)

The expression (33) has been extensively studied and used by numerous authors [9, 10, 11, 12, 20], specially
in a finite dimensional setting. In this paper we place ourselves in the context of an arbitrary normed space.
Directly from its definition, one can see that Frobenius solidity coefficient satisfies

0<p(K) <1

for every nontrivial convex cone K in any normed space X.
Recall that a convex cone K in a normed space X is said to be solid if int(K) is nonempty. The motivation
behind the introduction of (33) is the fact that for a nontrivial convex cone K C X one has

Kissolid <= ¢(K)>0.

The next proposition provides a lower bound for (K) in terms of the coefficient ¢(K).
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Proposition 8. Let K be a nontrivial convex cone in a normed space X. Then,

p(K)
———— < wu(K). 34
o < ) (34)
Proof. If K is not solid, then ¢(K) = 0 and (34) holds trivially. Suppose then that K is solid, i.e., one can
find a vector z € X and a positive scalar 7 such that z +rByxy C K. There is no loss of generality in taking
z of unit length. Observe that any nonzero vector « € X can be decomposed as difference

S]]

-~
u v

of two vectors u, v lying in K. Incidentally, this proves that every solid convex cone in a normed space is
reproducing. For obtaining (34) we estimate the £!-norm of the decomposition (u,v). By using the triangle

inequality on (X, || - ||) one gets
)
z—
[l]

@{(HTH(H?«)}

(1+7) tall

We have shown in this way that ((K) < 1+ (1/r). We now take r as large as possible. By letting r — ¢(K)
one arrives at

ol + el = B+ o+

]

IN

1
C(K)Sl‘Fm-

Proposition 2 does the rest of the job. O

Is the lower bound (34) optimal or, on the contrary, is there room for improvement? A first answer is
this: if we don’t have any additional information on the structure of the normed space X, then the lower
bound (34) is the best one can get.

Example 6. Consider the normed space X and the convex cone K introduced in Example 2. Consider the
vector z € X defined by z(t) =1 for all ¢ € [a,b]. This vector has unit length and z + Bx is contained in K.
Hence ¢(K) = 1. On the other hand, we know already that u(K) = 1/2. So, for this example, the relation
(34) is in fact an equality.

And what happens if the structure of X is somewhat special? Imagine, for instance, that the norm of X
derives from an inner product. Is this information of any use? Before answering this question, we start by
introducing the following technical definition.

Definition 3. A normed space X s called polite if for all z € Sx, r €]0,1[ and x € rSx there are
scalars v > 0 and o > 0 such that

[z 4z = 1, (35)
ez + v2) — 2|l

|

<
—_
w
(=2}
—~
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Regardless of whether X is polite or not, a scalar v > 0 satistying (35) always exists. However, the
condition (36) is harder to achieve because it forces the ball Bx to posses some kind of “rotundity”

Lemma 4. Suppose that X is a pre-Hilbert space, t.e., the norm of X derives from an inner product.
Then, X is polite.

Proof. Let (-,-) denote the inner product yielding the norm of X. We take 7 as the positive root of the
quadratic function

teER—G(t) = [o+tz* -1
t2 + 2t(z, 2) +r? — 1.
One gets of course v = 8 — (z,z) with 8 = /1 — 72 + (z,z)2. We now look for the roots of the quadratic

function
teR—(t) = |tz +yz) - 2] —?
= t?-2t(x+yz,2)+1—12
t2 — 28t +1—r2.
Both roots a = 8 & (x, z) are positive and solve the equation (36). |
We are ready to state:

Theorem 4. Let K be a nontrivial convex cone in a polite normed space X. Then,

oK) < p(K). (37)

Proof. Suppose that o(K) > 0, otherwise the result is trivial. Cousider a unit vector z € X and a scalar
7 €]0, 1] such that z +7Bx C K. Pick up r» < ¥ and a vector x € rSx. All we need to do is proving that

xz € co[(KNBx)U(—K N Bx)]. (38)
We start by writing
6 ol

i.e., we express x as a convex combination of z + vz and x — 6z. We choose v > 0 and § > 0 so that
o +vzll =1, |lo—oz] = 1.
In order to complete the proof of (38) we must check that
r+yz€K and z—6z€ —K. (39)

It is here where the politeness assumption enters into the picture. The politeness of the normed space X
ensures the existence of a scalar & > 0 such that

oz +vz) € z+1rSx.

But z+rSx C z+rBx C z+ 7Bx. Hence, a(z + vz) € K. By dividing by « one gets the first condition
in (39). We apply the politeness assumption again but this time with respect to —z € rSx. We deduce the
existence of a scalar o > 0 such that

o (—z+6z) € z+rSx.

A similar argument as before yields —x + 6z € K, that is, the second condition in (39). O
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Remark 3. The space X = B([a,b], R) equipped with the uniform norm |[|z|| = sup,<,<;, |(t)| is not polite.
If this space were polite, then we should have obtained the estimate (37) for the convex cone of nonnegative
functions, contradicting what we have learned from Example 6.

3.2 The Set of Solid Cones is Open

That solid cones form an open set in the metric space (£(X), ¢) was established in [18, Corollary 5.2], but
this was done only in a finite dimensional context. We now extend such a result to a general normed space
X by using a proof which is more elaborate and entirely different.

We start by introducing the gap distance

6(Kq1,Ks) = max{ sup dist[z, K3], sup dist[a:,Kl]}
€K NBx @€ K,NBx
= max{ sup dist[z, K3], sup dist[w,Kl]} (40)
€K 1NSx w€K2NSx

between two elements K, Ky in Z(X). The function §(-, ) satisfies all the axioms of a metric except for the
triangular inequality (cf.[6]). Anyway, it is good to know that ¢ and 6 induce the same topology on Z(X).
Not only that, ¢ and 6 are equivalent® in the sense described below.

Lemma 5. Let X be a normed space X. Then,
6(K1, Ky) < o(K1, Ka) < 26(K1, K»)
for all K1, K5 € E(X).

Proof. The first inequality is obvious. The second one is a particular case of a more general result by
Attouch and Wets [2, Proposition 1.4] on truncated distances between convex sets. We give an independent
(and shorter) proof of the second inequality in order to see why the coefficient 2 is showing up. We claim
that

dist[z, K N Bx| < 2dist[z, K] V& € Bx. (41)

Let z € Bx. For any £ > 0, there is a point z. € K satisfying
|z — z|| < dist[z, K] +¢. (42)

If such z. can be found in the unit ball Bx, then one gets not just (41), but also the sharper estimate
dist[z, K N Bx] < dist[z, K] and, a posteriori, the equality dist[z, K N Bx] = dist[z, K]. By-the-way, this
special situation is occurring in a Hilbert space setting because the projection on a closed convex cone is a
norm-reducing operation. If z. is not in By, then the normalized vector #. = z./||z.|| belongs to K N Bx
and

dist[z, K N Bx| < ||z — .|| < ||z — || + ||z — &:]|- (43)
But
. 1
lee — &l = (1 r ”> [zell = llzell = 1 < flze]l = flzl| < [lze — . (44)
Now it is a matter of combining (42), (43), (44), and letting then ¢ — 0. O

3The coefficient 2 appearing in Lemma 5 is not necessarily the best possible constant. Finding the best constant would
require a deeper analysis of the geometry of the normed space X. If X is a Hilbert space, then g and ¢ are not just equivalent,
but they are in fact identical.
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We continue with two technical lemmas.

Lemma 6. Let QQ be a nonempty convex set in a normed space X. If u € Q, then
distlu+ A(y — ), Q] = Adist[y, Q)
for ally € X and all X > 1.

Proof. Ab absurdo, suppose that dist[v, Q] < A\ with v = v+ ANy — u) and 6 = dist[y, Q]. In such a case,
there exists w € @ such that ||jv — w|| < Ad. Observe that the vector

Z—)\w b\ u

belongs to ) because it is a convex combination of two points lying in ). Note also that

o=yl = [y = 3w-(1-3
zy—y)\w )\u

in contradiction with the definition of 6. O

= St Aly =)~ wl = § o —wl <6,

Lemma 7. Let K and Q be nontrivial closed convex cones in a normed space X. Let r be a positive
scalar and © € X a unit vector such that x ¢ int(Q) and ¢+ rBx C K. Then,

r

6(K > .

(K.Q) 147
Proof. Since z ¢ int((Q)), there exists a sequence {z"},>1 such that ||z"™ —z| < 1/n and 2™ ¢ @ for all
n € N. Let 0, = dist[z",Q]. Note that 6,, > 0 for all n because @ is closed. For each k € N, pick up
u®™ € @Q such that

1
—. 45
. (45)
We remark, parenthetically, that we do not assume the existence of a vector in ) which realizes the distance
from 2™ to Q. For n,k € N with n > 1/r, define

||xn _ uk,n” < 071 +

_ 1
A = 1+ & )
* 6, + L
,Un,k — un,k 4 /\n,k(xn _ un,k).
A direct application of Lemma 6 yields
k r— 5
dist[v™", Q] > |1+ 2| 6,. 46
Q2 [ ] (16)

Note that L
ot = all < [l =]+l =l < Qi = 1)l = ]|+

Given (45) and the definition of A, i, one gets

[+ 1 1
||’Un’k . l’” < ()\n,k — 1) (971 + E) + ; =,
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that is to say, v"** € 2 + rBx C K. On the other hand, dist[v""* Q] > 0 because the rightmost expression
in (46) is positive. Since @ is a cone, we conclude that v™* = 0. Notice that

n,k

nk _ Y
ot = W S Kn Sx,
1 r—1 0
dist —n,k — dist n,k > (1 n n
1S [’U ,Q] —”,Un,k“ 15 ['U 1Q] = |: + 9n T %:| ”’U"’k” )

and
||U”vk|| < ||v”’k — w” + | <7+ 1.

By combining these three conditions and the characterization (40) of é, one ends up with

r—1 6
§(K,Q) > dist[o™*, Q] > |1+ —2 | —
(K,Q) > dist[v ,Q]_[ +9n+%]7"+1

for all k,n € N such that n > 1/r. By letting first k — oo, one gets

1 1 1
rT—= 0 O, +r— = r—=
6(K,Q) > |1 Ll = no> o
( ’Q)_[—i_ 0, ]'r-l—l r+1 - r+1
By letting now n — oo one arrives at the desired conclusion. |

We now are ready to establish a robustness result for the concept of solidity. Recall that ¢(K) stands
for the Frobenius solidity coefficient of K.

Theorem 5. Let K and @ be nontrivial closed convex cones tn a normed space X. Suppose that K
is solid. If
p(K)

6(K,Q) < ma

(47)
then Q is solid as well.

Proof. Pick up » > 0 and = € Sx such that © + rBx C K. Such a pair (z,r) exists because K is assumed
to be solid. Since the inequality (47) is strict, one can take r close enough to ¢(K) so that

r

6(K,Q) < T

(48)

We must prove that int(Q) is nonempty. In fact, int(Q) contains the vector & because otherwise Lemma 7
would contradict (48). O

Two important conclusions can be drawn from Theorem 5.

Corollary 5. Let X be a normed space. Then,
Sol(X) ={K € E(X) : K is solid}

is an open set in the metric space (2(X), 0).
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Proof. Each K belonging to Sol(X) is the center of a “gap” ball

P(K) }
1+ p(K)

that is fully contained in Sol(X). In view of Lemma 5, the ball

{Q EE(X):6(K,Q) <

{ecz: o) < 200

is also contained in Sol(X). O

Corollary 6. Let X be a normed space. Define the radius of solidity of K € E(X) as the number

w(K)= inf K, Q).
Psol (K) odnf o(K, Q)

Q nofs‘olid,
Then, pso : (E(X),0) — R is the largest nonexpansive map that vanishes exactly over the nonsolid
elements of 2(X). Furthermore,

P(K)

m S psol(K) S pmod(K) VK c E(X) (49)

Proof. The first part can be proven as in Corollary 4. The first inequality in (49) is contained implicitly in
the proof of Corollary 5, while the second one is a consequence of the inclusion Sol(X) C Mod(X). O

4 Beyond Pointedness

4.1 From Pointedness to Normality

A convex cone K in a normed space is said to be pointed if K doesn’t contain a line, i.e., K N —K = {0}.
Pointedness is fundamental concept of the theory of convex cones.

When one works in an infinite dimensional context, pointedness needs sometimes to be changed by a
stronger assumption. Two alternative concepts emerge as natural substitutes: normality and sharpness.
The precise definition of normality slightly differs from one author to another. The definition that we adopt
reads as follows.

Definition 4. A convex cone K in a normed space X is called normal if there is a constant f > 0
such that
B (ull + lloll) < flu+ol - for all u,ve K.

One refers to B as a normality constant for K. The term “abnormal” is used to indicate the absence
of normality.

Normality is a useful assumption precluding pathological situations. A normal convex cone in an infinite
dimensional normed space is not just pointed, but it is a bit more than that. For the sake of completeness
we state below several equivalent characterization of normality. Recall that a convex cone K induces in
the underlying space a pre-order (i.e., a reflexive and transitive relation) by writing 27 <y 3 whenever
9 —x1 € K.
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Proposition 9. For a convex cone K tn a normed space X, the following statements are equivalent:
(a) K is normal.
(b) (Bx + K)N(Bx — K) is a bounded set.
(¢) (V+EK)N(V = K) is bounded for all bounded V C X.
(d) (Vi + K)n(Va — K) is bounded for all bounded V1,V, C X.
(e) there is a scalar o > 0 such that x1 <gx x <g z2 implies ||z|| < amax{||z1], ||z=2]}
(f ) there is a scalar v > 0 such that 0 <g u <y v implies v||u| < ||v||.

Proof. See [1, Lemma 2|, [38, Chapter 5.3|, [35, Chapter 2.1], and [17, Chapter 1]. O

4.2 Measuring the Degree of Normality of a Convex Cone

According to Definition 4, a convex cone K in a normed space X is normal if and only if the coefficient

[lu+ ol

wwek |l + [
(u,0)7#(0.0)

BK) = (50)

is different from 0. The term [(K) is a natural candidate for measuring the degree of normality of K, but
there are also other possibilities. As alternative to (50) we propose considering the expression

v(K)=sup{r >0: rK, C Bx} (51)

with K, = (Bx + K) N (Bx — K). Needless to say, definition (51) is directly inspired by Proposition 9(b).
Notice incidentally that
0<v(K)<1

for every nontrivial convex cone K in any normed space X.
The following two examples are given for the sake of comparison.

Example 7. Consider the vector space C([a,b],R) of continuous functions z : [a,b] — R equipped with the
uniform norm ||z|| = max.<¢<p |z(t)|. The closed convex cone

K ={ueC([a,b],R) : u(t) > 0Vt € [a,b]}

is normal. In fact, we claim that 8(K) = 1/2. To see this, take any pair of vectors u,v € K with (u,v) # (0, 0).
Let ¢1,t2 € [a,b] be such that u(t;) = ||ul| and v(t2) = ||v||. Then,

lu 4[| > u(ty) + v(ty) = [ul,
lu+ vl = uftz) + v(tz) = o]

One gets |lu+v|| > (1/2)(||u|| + [|lv]|). Thus, B(K) > 1/2. Finally, observe that the bound 1/2 is attained by
choosing u, v in a suitable way, for instance




Computing the coefficient v(K) is also easy. We claim that v(K) = 1. For obtaining this estimate, we shall

prove the inclusion
(BX +K) n (BX — K) C Bx.

If v € (Bx + K)N(Bx — K), then it is possible to write

2(t) = w(t)+u(t), (52)
w(t) = z(t) —o(t), (53)

with u,v € K and w, z € Bx. It follows that —1 < w(t) < x(t) < z(¢) < 1, from where one gets z € Bx.

Example 8. We now equip the vector space C([a,b],R) with the L!- norm |z| = f(f |z(t)|dt. We consider
the same cone K as in Example 7. This time one gets S(K) = 1 because

lu+ || = |ju| + ||| Vu,v € K.
The computation of v(K) is a bit harder. We claim that v(K) = 1/2. First we show that
(Bx + K)N(Bx — K) C 2Bx. (54)
We take a vector « € (Bx + K) N (Bx — K) and decompose it as in (52)-(53). Let
T ={t €la,b]: z(t) >0}, Ty =[a,b\T}.
Observe that

ja(t)] = (1)
ja(t)] = —(t)

A(t) = |2(t)]  VteT,
—w(t) = |w(t)]  Vte Ty

ININA

Hence,

||x||=/Tl |x(t)|dt+/Tz e < [ 1=l [ ol

This shows that ||z| < ||z]| + ||w|| < 2 and completes the proof of (54). We now show that the coefficient
2 on the right-hand side of (54) is the smallest possible. Consider an arbitrary ¢ €]a, b[. We pick up a pair
z,w : [a,b] — R of continuous functions such that

z(t) >0 Vtela,c , z(t) =0 Vte b,
w(t) <0 Vtelebl w(t)=0 Vtela,d,

/:z(t)dtzl , /wa(t)dt:—l,

Now, we take # = z + w. Since z,w € Bx, z € K, w € —K, one has v € (Bx + K)N (Bx — K) and
b c b
||w||:/ |w(t)|dt:/ z(t)dt—/ w(t) dt = 2.
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Remark 4. Two important lessons can be drawn from Examples 7 and 8. On the one hand side, the values
of B(K) and v(K) depend not just on K but also on the intrinsic geometry of the unit ball By, i.e., the
choice of the norm || - || plays an important role in the way one measures the degree of normality of a convex
cone. On the other hand, S(K) < v(K) in Example 7 and 8(K) > v(K) in Example 8, so one cannot always
predict which one of these coefficients will be larger.

Sometimes it is convenient to represent v(K) in a slightly different form. The following lemma will be
useful in the sequel.

Lemma 8. Let K be a convex cone in a normed space X. Then,

v(K) = max{r>0:r K, C By} (55)

= sup -
[lyll«=1 \IJKh (y)

—1
inf U3
[||y||*=1 Ky (y)]

with Ky = cl(Bx + K) Ncl(Bx — K) being a closed convex set containing the ball Bx.

Proof. We claim that the equivalence
rKy C By <= rK,CBx

holds for any > 0. The implication = is obvious because K, C K}. For proving the reverse implication,
suppose that r K, C Bx and take z € rK}. For any ¢ > 0, one can write

© € r[Bx+ K +eBx],
r € ’I"[BX - K+ €Bx].

Hence, z € r(1+¢)K,. This yields in turn « € (14¢)Bx. By passing to the intersection with respect to e > 0,
one ends up with z € Bx. Observe that the maximum in (55) is attained because {r > 0: r K; C Bx} is
a compact interval. Formula (56) is obtained from (55) and the fact that

rKy C Bx = r \Il}‘(h(y) <|lyll« Vye X"

— < inf !
r< I " .
llvll-=1 W, (y)

Division by \Il’;(h(y) causes no troubles because the support function \Il’;(h() never vanishes over the unit
sphere Sx« (recall that K} contains the ball By ). O

Remark 5. The closure operation appearing in the definition of K} is superfluous when X is a reflexive
Banach space and the convex cone K is closed. In such a particular setting, K; = K, and the first part of
Lemma 8 reduces to saying that the supremum in (51) is attained.

Corollary 7. Let K be a conver cone in a normed space X. Then,
v(cl(K)) = v(K).
In particular, cl(K) is normal if and only if K is normal.

Proof. Combine the representation formula (55) and the general equality [cl(K)]; = K}. The second part
of the corollary is known [38, Section 5.3.1]. O
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4.3 Duality Between Normality and Modulability

The link between normality and modulability is well understood. The situation is summarized in the next
proposition. As usual, the notation

Kt={yeX*:(y,z) >0Vz € K}
stands for the dual cone of K.
Proposition 10. For a closed convex cone K in a reflexive Banach* space X, one has:
(a) K is modulable if and only if K+ is normal.
(b) K is normal if and only if K+ is modulable.

It is not simple to single out the first historically documented evidence for this nice result. Anyway, an
appropriate reference for Proposition 10 is Grosberg and Krein [15]; see also Ando [1], Kist [27], Krein [30],
Schaefer [38, Chapter 5.3], and Weston [42]. A quantitative version of Proposition 10 reads as follows:

Theorem 6. For a closed convexr cone K in a reflexive Banach space X, one has
W(K) = v(K*) and v(K) = p(K*). (57)
Proof. The proof of this theorem relies on the use of the polarity operator
Crpol(C)={ye X" :V,(y) <1}

Let us prove first the inequality
WE) < v(KT). (58)

Suppose that K is modulable, otherwise we are done. Consider a positive r such that
rBx C K°. (59)
This inclusion is reversed by taking the polar set on each side, i.e.,
pol(K*®) C pol(rBx).

But pol(rBx) = (1/r)Bx~+. On the other hand, by applying standard calculus rules for computing polar
sets in a reflexive Banach space, one gets

pol(K*®) = pol(co[(KNBx)U(—KNBx)|)
= pol(K N Bx)Npol(—K N By)
= (Bx-—K")Nn(Bx-+K™)
= (K™1)..

In short, starting from (59) one arrives at r(K 1), C Bx~. Besides trivial details that we are omitting, this
is in essence the proof of (58). The inequality

v(K) < p(KT)

4Whenever dualization is concerned, we automatically assume that X is a reflexive Banach space. This simplificatory
assumption is not always needed, but it greatly helps the smooth flow of the presentation.
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can be proven by following a similar pattern. Assume that K is normal, otherwise there is nothing to prove.
We start with the relation » K, C Bx, we divide on both sides by r, and then we pass to the polars. The
key observation now is that

pol(K,) = pol[(Bx + K)N(Bx — K)]
co[pol(Bx + K) Upol(Bx — K)]
co[(~Kt*NBx-)U(KtNBy.)]
(KT)*.
Finally, that X is a reflexive Banach space implies that the dual cone of KT can be identified with K (cf.
[3, Theorem 2.4.3]). So, one obtains

V(ET) < p((K)T) = p(K),
PET) < v((KT)T) = v(K),

completing in this way the proof of (57). O

Theorem 6 is not entirely new. In fact, a similar result has been established by Ng [34], see also [14,
Lemma 2.1]. We have included the proof of Theorem 6 only for the sake of completeness.

5 Normality versus Sharpness

What does sharpness mean? We reserve this term to a property that can be seen as dual to solidity.

Definition 5. A convex cone K in a normed space X is said to be sharp if there is a nonzero vector
y € X* such that ||z|| < {y,z) for all z € K.

This notion of sharpness can be found in numerous references but sometimes under a different name, see
for instance [17] and [29]. It is clear that sharpness implies normality but the reverse implication is not true.

Proposition 11. For a nontrivial closed conver cone K in a reflexive Banach space X, one has:
(a) K is sharp if and only if K+ is solid.
(b) K is solid if and only if KT is sharp.

The above duality result is formulated in a slightly different wording by Han [16, Theorem 2.4]. Reflexivity
of the Banach space X is required to make sure that the dual of Kt can be identified with K. Reflexivity
is an essential assumption for the “if” part of Proposition 11(b). Indeed, Qiu [36] constructed an example
of a non-solid closed convex cone K in a non-reflexive Banach space X whose dual K7 is sharp.

In what follows we refer to the set

(c,y) ={w e X: claf| < (y,2)} (60)
as the revolution-like cone with parameters ¢ € Ry and y € Sx«. If X is a pre-Hilbert space, then
rev(6,y) = ®(cosb,y)

is a genuine revolution cone: the ray R,y corresponds to the axis of revolution and 6 € [0,7/2] is the angle
of revolution (or half-aperture angle according to Goffin’s terminology [13]).

The closed convex cone (60) is sharp if and only if the parameter c is different from 0. In fact, one has
the following result.
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Proposition 12. For a convexr cone K in a normed space X, the following conditions are equivalent:
(a) K is sharp.
(b) there are ¢ >0 and y € Sx+ such that K C ®(c,y).

Proof. 1t is straightforward. O

Inspired by Proposition 12(b), it is natural to introduce

T(K) = sup c (61)
(c,y)ER4L X Sx*
KC®(e,y)

and consider this coefficient as a tool for measuring the degree of sharpness of K. The term (61) can be
represented in manifold ways. One clearly has

7(K) = sup sup ¢
lyll.=1 20

= sup inf (y,z)
Iyll =1 w€KNSx

= sup inf v, ). )
lyll.=1 weclco(Kﬂsx)< ) )

The next theorem is obtained by trying to exchange the order of the supremum and the infimum in the
expression (62).

Theorem 7. Let K be a nontrivial closed convex cone in a reflexive Banach space X. Then,
7(K) = dist[0, co(K N Sx)]. (63)
In particular, K is sharp if and only if the closed convezx hull of K N Sx doesn’t contain the origin.

Proof. By homogeneity, one can write (62) in the equivalent form

T(K) = su inf ,T).
( ) yGBE)(* Ieclco(l(ﬂsls()<y >

For exchanging the order of the supremum and the infimum we invoke the following three facts: firstly, By«
is a weakly compact convex set in X*; secondly, clco(K N Sx) is a closed convex set in X; and, thirdly, the
bilinear form (y, z) is continuous with respect to the variable € X, and weakly continuous with respect to
the variable y € X*. Under these circumstances it is possible to apply Sion’s minimax theorem [39] and get

T(K) = inf su ,T) = inf z||.
( ) zE€clco(KNSx) yGBE* <y > zecleco(KNSx) ” ||
For obtaining (63) it suffices to observe that the closure operation can be dropped in the above line. O

It is worthwhile to note that 7(K') behaves in a Lipschitz-continuous manner with respect to perturbations
in the argument K. Indeed, one has:
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Proposition 13. Let X be a normed space. Then,
|[7(K1) — 7(K2)| < V(Ky, Ko) VK1, K> € E(X) (64)
with 9(K1, K3) denoting the Pompeiu-Hausdorff distance between the traces K1 N Sx and Ko N Sx.
Proof. By combining Lemma 3 and formula (62), one readily gets
|7(K71) — 7(K2)| < haus(cleco(K; N Sy ), clco(K2 N Sx))
for all K3, K5 € E(X). For arriving at (64) we just need now to exploit the general inequality
haus(cleo(Ch), cleo(C2)) < haus(Cy, Cq), (65)

which holds for any pair C7, s of nonempty closed bounded sets in a general normed space X. We omit
the proof of (65) because this inequality can be found in the specialized literature concerning the Pompeiu-
Hausdorff metric. O

With the help of Proposition 13 one gets the following topological result.
Proposition 14. Let X be a normed space. Then,
Sh(X)={K € E(X) : K is sharp}
is an open set in the metric space (2(X), 0).
Proof. By proceeding as in Lemma 5, one can show that ¢ is majorized by 26, with 6 as in (40). Hence,
|T(K1) —7(K2)| < 26(K:1,K2) VK, Ko € E(X). (66)

Since 6 is majorized by g, it follows that 7(-) is Lipschitz continuous as function on the metric space (2(X), 0).
This proves the announced result. O

Corollary 8. Let X be a normed space. Define the radius of sharpness of K € Z(X) as the number

w(K)=  inf K, Q).
psh(K) oonf o(K, Q)

Q not sharp

Then, psh @ (E(X),0) — R is the largest nonexpansive map that vanishes exactly over the nonsharp
elements of 2(X). In particular, 7(K) <2 pgh(K) for all K € E(X).

The next theorem corresponds to a quantitative version of Proposition 11.

Theorem 8. For a nontrivial closed convex cone K in a reflexive Banach space X, one has
T(K)=9(K") and ¢(K)=7(K"). (67)
Proof. Since K is a closed convex cone in a reflexive Banach space, for all (¢,y) € Ry x Sx+, one has

KC®(c,y) & clz|| <{y,z) Ve e K
< y+CB)(* C K+.

This yields the first relation in (67). The second relation is obtained by a simple duality argument. O
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Several conclusions can be drawn from Theorem 8. We just mention three of them.

Corollary 9. Let X be a reflexive Banach space. Then,
(K1) — p(K2)| < 26(K1, Ka) VK1, K> € E(X) (68)
Proof. Take K, K3 in Z(X). Similarly as in (66), one can write
Im(K) = (K3 < 26, (K, KS)

with é,(-, ) measuring gap distances between elements of Z(X*). It suffices then to combine (67) and the
Walkup-Wets Isometry Theorem [41] which asserts that &, (K", KJ7) = §(Ky, K2). O

Corollary 10. Let K be a nontrivial closed convex cone in a reflextve Banach space X. Then,

7(K)
< v(K).
1+7(K) — v(K)
Proof. Combine (67) with Proposition 8 and Theorem 6. O

Corollary 11. Let K be a nontrivial closed convex cone in a reflexive Banach space X whose dual
is polite. Then,
T(K) < v(K).

Proof. Combine (67) with Theorems 4 and 6. O
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