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Abstract. The Lyapunov exponents of locally constant GL(2, C)-cocycles

over Bernoulli shifts depend continuously on the cocycle and on the invari-
ant probability. The Oseledets decomposition also depends continuously on

the cocycle, in measure.
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1. Introduction

Let A1, . . . , Am be invertible 2-by-2 matrices and p1, . . . , pm be (strictly) positive
numbers with p1 + · · ·+ pm = 1. Consider

Ln = Ln−1 · · ·L1L0, n ≥ 1,

where the Lj are independent random variables with identical probability distribu-
tions, given by

probability({Lj = Ai}) = pi for all j ≥ 0 and i = 1, . . . ,m.

It is a classical fact, going back to Furstenberg, Kesten [14], that there exist numbers
λ+ and λ− such that

lim
n→∞

1
n

log ‖Ln‖ = λ+ and lim
n→∞

1
n

log ‖(Ln)−1‖−1 = λ− (1)

almost surely. The results in this paper imply that these extremal Lyapunov expo-
nents always vary continuously with the choice of the matrices and the probability
weights:

Theorem A. The extremal Lyapunov exponents λ+ and λ− depend continuously
on (A1, . . . , Am, p1, . . . , pm) at all points.

This conclusion holds in much more generality. Indeed, we may take the prob-
ability distribution of the random variables Lj to be any probability measure ν
on GL(2,C) with compact support. Let λ+(ν) and λ−(ν), respectively, denote the
values of the (almost certain) limits in (1). Then we have:

Theorem B. For every ε > 0 there exists δ > 0 and a weak∗ neighborhood V of ν
in the space of probability measures on GL(2,C) such that |λ±(ν)−λ±(ν′)| < ε for
every probability measure ν′ ∈ V whose support is contained in the δ-neighborhood
of the support of ν.

The situation in Theorem A corresponds to the special case when the measures
have finite supports:

ν = p1δA1 + · · ·+ pmδAm and ν′ = p′1δA′1 + · · ·+ p′mδA′m .

Clearly, the support of ν′ is Hausdorff close to the support of ν if A′i is close to Ai,
pi for all i. In this regard, recall that we assume that all pi > 0: the conclusion of
Theorem A may fail if this condition is removed, as we will recall in Remark 7.5.

2. Continuity of Lyapunov exponents

In this section we put the previous results in a broader context and give a con-
venient translation of Theorem B to the theory of linear cocycles.

2.1. Linear cocycles. Let π : V → M be a finite-dimensional (real or complex)
vector bundle and F : V → V be a linear cocycle over some measurable trans-
formation f : M → M . By this we mean that π ◦ F = f ◦ π and the actions
Fx : Vx → Vf(x) on the fibers are linear isomorphisms. Take V to be endowed
with some measurable Riemannian metric, that is, an Hermitian product on each
fiber depending measurably on the base point. Let µ be an f -invariant probability
measure on M such that

log ‖(Fx)±1‖ ∈ L1(µ).
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It follows from the sub-additive ergodic theorem (Kingman [24]) that the numbers

λ+(F, x) = lim
n→∞

1
n

log ‖Fnx ‖ and λ−(F, x) = lim
n→∞

1
n

log ‖(Fnx )−1‖−1

are well-defined µ-almost everywhere.
The theorem of Oseledets [30] provides a more detailed statement. Namely, at

µ-almost every point x ∈M , there exist numbers

λ̂1(F, x) > · · · > λ̂k(x)(F, x)

and a filtration

Vx = V 1
x > V 2

x > · · · > V k(x)
x > {0} = V k(x)+1

x (2)

such that Fx(V jx ) = V jf(x) and

lim
n→∞

1
n

log ‖Fnx (v)‖ = λ̂j(F, x) for all v ∈ V jx \ V j+1
x .

When f is invertible one can say more: there exists a splitting

Vx = E1
x ⊕ E2

x ⊕ · · · ⊕ Ek(x)
x (3)

such that Fx(Ejx) = Ejf(x) and

lim
n→±∞

1
n

log ‖Fnx (v)‖ = λ̂j(F, x) for all v ∈ Ejx \ {0}.

The number k(x) ≥ 1 and the Lyapunov exponents λ̂j(F, ·) are measurable functions
of the point x, with

λ̂1(F, x) = λ+(F, x) and λ̂k(x)(F, x) = λ−(F, x),

and they are constant on the orbits of f . In particular, they are constant µ-almost
everywhere if µ is ergodic.

2.2. Continuity problem. Next, let λ1(F, x) ≥ · · · ≥ λd(F, x) be the list of all
Lyapunov exponents, where each is counted according to its multiplicity mj(x) =
dimV jx − dimV j+1

x (= dimEjx in the invertible case). Of course, d = dimension of
V. The average Lyapunov exponents of F are defined by

λi(F, µ) =
∫
λi(F, ·) dµ, for i = 1, . . . , d.

The results in this paper are motivated by the following basic question:

Problem 2.1. What are the continuity points of

(F, µ) 7→ (λ1(F, µ), . . . , λd(F, µ)) ?

It is well known that the sum of the k largest Lyapunov exponents

(F, µ) 7→ λ1(F, µ) + · · ·+ λk(F, µ) (4)

(any 1 ≤ k < d) is upper semi-continuous, relative to the L∞-norm in the space
of cocycles and the pointwise topology in the space of probabilities (the smallest
topology that makes µ 7→

∫
ψ dµ continuous for every bounded measurable function

ψ). Indeed, this is an easy consequence of the identity

λ1(F, µ) + · · ·+ λk(F, µ) = inf
n≥1

1
n

∫
log ‖Λk(Fnx )‖ dµ(x) (5)
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where Λk denotes the kth exterior power. Similarly, the sum of the k smallest Lya-
punov exponents is always lower semi-continuous. However, Lyapunov exponents
are, usually, discontinuous functions of the data. A number of results, both positive
and negative, will be recalled in a while.

2.3. Continuity theorem. Let X be a polish space, that is, a separable com-
pletely metrizable topological space. Let p be a probability measure on X and
A : X → GL(2,C) be a measurable function such that

log ‖A±1‖ are bounded. (6)

Let f : M →M be the shift map on M and µ = pZ. Consider the linear cocycle

F : M × C2 →M × C2, F (x, v) = (f(x), Ax0(v)),

where x0 ∈ X denotes the zeroth coordinate of x ∈ M . In the spaces of cocycles
and probability measures on X we consider the distances defined by, respectively,

d(A,B) = sup
x∈X
‖Ax −Bx‖ d(p, q) = sup

|φ|≤1

|
∫
φd(p− q)| (7)

where the second sup is over all measurable functions φ : X → R with sup |φ| ≤ 1.
In the space of pairs (A, p) we consider the topology determined by the bases of
neighborhoods

V (A, p, γ,Z) = {(B, q) : d(A,B) < γ, q(Z) = 1, d(p, q) < γ} (8)

where γ > 0 and Z is any measurable subset of X with p(Z) = 1.

Theorem C. The extremal Lyapunov exponents λ±(A, p) = λ±(F, µ) depend con-
tinuously on (A, p) at all points.

We prove Theorem C in Sections 3 and 4, and we deduce Theorem B from it
in Section 6. Theorem C can also be deduced from Theorem B: if d(A,B) and
d(p, q) are small then ν′ = B∗q is close to ν = A∗p in the weak∗ topology, and the
support of ν′ is contained in a small neighborhood of the support of ν; moreover,
λ±(A, p) = λ±(ν) and λ±(B, q) = λ±(ν′). In this way one even gets a more general
version of Theorem C, where X can be any measurable space.

Our arguments also show that the Oseledets decomposition depends continuously
on the cocycle in measure. Given B : X → GL(2,C), let EsB,x and EuB,x be the
Oseledets subspaces of the corresponding cocycle at a point x ∈ M (when they
exist).

Theorem D. Suppose λ−(A, p) < λ+(A, p). For any sequence Ak : X → GL(2,C)
such that d(Ak, A)→ 0, and for any ε > 0, we have

µ
(
{x ∈M : ∠(EuA,x, E

u
Ak,x) < ε and ∠(EsA,x, E

s
Ak,x) < ε}

)
→ 1.

A few words are in order on our choice of the topology (8). As we are going to
see, the proof of Theorem C splits into two cases, depending on whether the cocycle
is almost irreducible (Section 3.1) or diagonal (Section 3.2). In the irreducible case,
continuity of the Lyapunov exponents was known before ([15, 18], see also [3]) and
only requires the weak∗ topology. In a nutshell, this is because in the irreducible
case

λ+(A, p) =
∫

log
‖A(x)(v)‖
‖v‖

dµ(x) dη(v) (9)
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for every stationary measure η (Furstenberg’s formula); then one only has to note
that the set of stationary measures varies semi-continuously with the data. The
main point in the proof Theorem C is to handle the diagonal case, where (9) breaks
down. That is where we need the full strength of (8).

Restricted to the space of pairs (A, p) where A is continuous (and bounded), it
suffices to consider the neater bases of neighborhoods

V (A, p, ε) = {(B, q) : d(A,B) < ε, supp q ⊂ supp p, d(p, q) < ε}. (10)

However, this will not be used in the present paper.

2.4. Previous results. The problem of dependence of Lyapunov exponents on
the linear cocycle or the base dynamics has been addressed by several authors. In
a pioneer work, Ruelle [36] proved real-analytic dependence of the largest expo-
nent on the cocycle, for linear cocycles admitting an invariant convex cone field.
Short afterwards, Furstenberg, Kifer [15, 22] and Hennion [18] proved continuity of
the largest exponent of i.i.d. random matrices, under a condition of almost irre-
ducibility. Some reducible cases were treated by Kifer and Slud [22, 23], who also
observed that discontinuities may occur when the probability vector degenerates
([22], cf. Remark 7.5 below).

For i.i.d. random matrices satisfying strong irreducibility and the contraction
property, Le Page [31, 32] proved local Hölder continuous, and even smooth, de-
pendence of the largest exponent on the cocycle; the assumptions ensure that the
largest exponent is simple (multiplicity 1), by work of Guivarc’h, Raugi [17] and
Gol’dsheid, Margulis [16]. For i.i.d. random matrices over Bernoulli and Markov
shifts, Peres [33] showed that simple exponents are locally real-analytic functions
of the transition data.

A construction of Halperin quoted by Simon, Taylor [37] shows that for every
α > 0 one can find random Schrödinger cocycles(

E − Vn −1
1 0

)
(the Vn are i.i.d. random variables) near which the exponents fail to be α-Hölder
continuous. Thus, the previously mentioned results of Le Page can not be improved.
Johnson [20] found examples of discontinuous dependence of the exponent on the
energy E, for Schrödinger cocycles over quasi-periodic flows. Recently, Bourgain,
Jitomirskaya [11, 12] proved continuous dependence of the exponents on the energy
E, for one-dimensional quasi-periodic Schrödinger cocycles: Vn = V (fn(θ)) where
V : S1 → R is real-analytic and f is an irrational circle rotation.

Going back to linear cocycles, the answer to the continuity problem is bound
to depend on the class of cocycles under consideration, including its topology.
Knill [25, 26] considered L∞ cocycles with values in SL(2,R) and proved that,
as long as the base dynamics is aperiodic, discontinuities always exist: the set of
cocycles with non-zero exponents is never open. This was refined to the continuous
case by Bochi [5, 6]: an SL(2,R)-cocycle is a continuity point in the C0 topology if
and only if it is uniformly hyperbolic or else the exponents vanish. This statement
was inspired by Mañé’s surprising announcement in [29]. Indeed, and most strik-
ingly, the theorem of Mañé-Bochi [6, 29] remains true restricted to the subset of C0

derivative cocycles, that is, of the form F = Df for some C1 area preserving dif-
feomorphism f . Moreover, this has been extended to cocycles and diffeomorphisms
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in arbitrary dimension, by Bochi, Viana [7, 8]. Let us also note that linear cocycles
whose exponents are all equal form an Lp-residual subset, for any p ∈ [1,∞), by
Arnold, Cong [2], Arbieto, Bochi [1]. Consequently, they are precisely the continuity
points for the Lyapunov exponents relative to the Lp topology.

These results show that discontinuity of Lyapunov exponents is quite common
among cocycles with low regularity. Locally constant cocycles, as we deal with
here, sit at the opposite end of the regularity spectrum, and the results in the
present paper show that in this context continuity does hold at every point. For
cocycles with intermediate regularities the continuity problem is very much open.
However, our construction in Section 7.1 shows that for any r ∈ (0,∞) there exist
locally constant cocycles over Bernoulli shifts that are points of discontinuity for
the Lyapunov exponents in the space of all r-Hölder cocycles. We will return to
this topic in the final section.

Recently, Avila, Viana [3] studied the continuity of the Lyapunov exponents in
the very broad context of smooth cocycles. The continuity criterium in [3, Section 5]
was the starting point for the proof of our Theorem C.

This paper is organized as follows. In Section 3 we reduce Theorem C to a key
result on stationary measures of nearby cocycles. The latter is proved in Sections 4
and 5. In Section 6 we deduce Theorems B and D. Finally, in Section 7 we describe
an example of discontinuity of Lyapunov exponents for Hölder cocycles, and we
close with a short list of open problems and conjectures.

Acknowledgements. We are grateful to Artur Avila, Jairo Bochi, and Jiagang Yang
for several useful conversations. Lemma 6.1 is due to Artur Avila.

3. Proof of Theorem C

We start with a simple observation. Let P(X ) be the space of probability mea-
sures on X and let G(X ) and S(X ) denote the spaces of bounded measurable
functions from X to GL(2,C) and SL(2,C), respectively. Given any A ∈ G(X) let
B ∈ S(X ) and c : X → C be such that Ax = cxBx for every x ∈ X . Although
cx = (detAx)1/2 and Bx are determined up to sign only, choices can be made con-
sistently in a neighborhood, so that B and c depend continuously on A. It is also
easy to see that the Lyapunov exponents are related by

λ±(A, p) = λ±(B, p) +
∫

log |cx| dp(x)

Thus, since the last term depends continuously on (A, p) relative to the topology
defined by (8), continuity of the Lyapunov exponents on S(X )×P(X ) yields conti-
nuity on the whole G(X)×P(X ). So, we may suppose from the start that A ∈ S(X ).
Observe also that in this case one has

λ+(A, p) + λ−(A, p) = 0.

From here on the proof has two main steps. First, we reduce the problem to the
case when the matrices are simultaneously diagonalizable:

Proposition 3.1. If (A, p) ∈ S(X)×P(X ) is a point of discontinuity for λ+ then
there is P ∈ SL(2,C) and θ : X → C \ {0} such that

PAxP
−1 =

(
θx 0
0 θ−1

x

)



CONTINUITY OF LYAPUNOV EXPONENTS 7

for all x ∈ Z, where Z ⊂ X is a full p-measure set. In particular, AxAy = AyAx
for all x, y ∈ Z.

Then we rule out the diagonal case as well:

Proposition 3.2. Let (A, p) ∈ S(X)×P(X ) be such that A is as in the conclusion
of Proposition 3.1. Then (A, p) is a point of continuity for λ+.

The proofs of these two propositions are given in the next couple of sections. In
view of the previous observations, they contain the proof of Theorem C.

3.1. Reducing to the diagonal case. The proof of Proposition 3.1 is a simpli-
fied version of ideas of Avila, Viana [3], partly inspired by Bonatti, Gomez-Mont,
Viana [10]. For the sake of completeness, and also because our setting is not strictly
contained in [3], we give the full arguments. The definitions and preliminary results
apply to functions A with values in GL(d,C), for any d ≥ 2.

The local stable set W s
loc(x) of x ∈ M is the set of all y = (yn)n∈Z such that

xn = yn for all n ≥ 0. The local unstable set Wu
loc(x) is defined similarly, considering

n < 0 instead. The projective cocycle associated to A : X → GL(d,C) is defined by

FA : M × P(Cd)→M × P(Cd), (x, [v]) 7→ (f(x), [A(x)v])

where A(x) = Ax0 for every x ∈M .

3.1.1. Invariant u-states. LetM(p) denote the set of probability measures in M ×
P(Cd) that project down to µ. A disintegration of m ∈ M(p) is a measurable
function assigning to each point x ∈M a probability mx with mx

(
{x}×P(Cd)

)
= 1

and such that

m(E) =
∫
mx(E) dµ(x), for every measurable E ⊂M × P(Cd).

A disintegration always exists in this setting; moreover, it is essentially unique. See
Rokhlin [34] and [9, Appendix C.6].

A probability m ∈ M(p) is a u-state if some disintegration x 7→ mx is constant
on every local unstable set, restricted to a full µ-measure subset of M . Then the
same is true for every disintegration, by essential uniqueness; moreover, one can
choose the disintegration so that it is constant on local unstable sets on the whole
M . If m is an invariant probability then we say that m is an invariant u-state. The
definition of invariant s-states is analogous, considering local stable sets instead,
and the same observations apply.

An su-state is a probability which is both a u-state and an s-state.

Lemma 3.3. A probability m ∈ M(p) is an invariant su-state if and only if m =
µ×η for some probability measure η on P(Cd) invariant under the action of Ax for
p-almost every x ∈ X .

Proof. The “if” part is not used in this paper, so we leave the proof to the reader.
To prove the ”only if” part notice that, by assumption, m admits disintegrations
x 7→ mu

x, constant on local unstable sets, and x 7→ ms
x, constant on local stable

sets. By essential uniqueness, there exists a full µ-measure set X ⊂ M such that
mu

x = ms
x for all x ∈ X. The assumption on µ implies that µ = µu × µs where

µu is a probability on the set positive one-sided sequences (xn)n≥0 and µs is a
probability on the set negative one-sided sequences (xn)n<0. Fix x̄ ∈M such that
Wu
loc(x̄) intersects X on a full µu-measure set. Then let η = mu

x̄. The local stable
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sets through the points of X ∩Wu
loc(x) fill-in a full µ-measure subset of M . Thus,

η = ms
x at µ-almost every point and so the constant family x 7→ mx = η is a

disintegration of m. This means that m = µ × η. Finally, the fact that µ and
m are invariant gives A(x)∗mx = mf(x) at µ-almost every point and that implies
(Ax)∗η = η for p-almost every x ∈ X , as claimed. �

Lemma 3.4. If λ±(A, p) = 0 then every FA-invariant measure m in M(p) is an
su-state.

Proof. This is a direct consequence of Ledrappier [27, Theorem 1]. Indeed, let Bs
be the σ-algebra of measurable subsets of M which are unions of entire local stable
sets. Clearly, f and FA are Bs-measurable. Hence, Ledrappier’s theorem gives
that the disintegration of any FA-invariant probability m ∈M(p) is Bs-measurable
modulo zero µ-measure sets. This is the same as saying that m is an s-state.
Analogously, one proves that m is a u-state. �

Let us consider the function φA : M × P(Cd)→ R defined by

φA(x, [v]) = log
‖A(x)v‖
‖v‖

. (11)

Lemma 3.5. For every A : X → GL(d,C) and every FA-invariant probability
measure m ∈M(p),

λ−(A, p) ≤
∫
φA dm ≤ λ+(A, p).

Proof. For every (x, [v]) ∈M × P(Cd) and n ≥ 1,
n−1∑
j=0

φA(F jA(x, [v])) ≤ log ‖An(x)‖ .

Integrating with respect to any probability m ∈M(p),

1
n

∫ n−1∑
j=0

φA ◦ F jA dm ≤
1
n

∫
log ‖An(x)‖ dµ(x).

The right hand side converges to λ+(A, p) and, assuming m is invariant, the left
hand side coincides with

∫
φA dm. This gives the upper bound in the statement.

The lower bound is analogous. �

Now let A take values in SL(2,C). We want to show that the upper bound in
Lemma 3.5 is attained at some u-state and the lower bound is attained at some
s-state. When λ±(A, p) = 0 this is a trivial consequence of Lemma 3.4. So, it is no
restriction to suppose that λ+(A, p) > 0 > λ−(A, p).

Let Eux ⊕ Esx be the Oseledets splitting of FA, defined at µ-almost every x.
Consider the probabilities mu and ms defined on M × P(C2) by

m∗(B) = µ
(
{x : (x, E∗x) ∈ B}

)
=
∫
δ(x,E∗x)(B) dµ(x) (12)

for ∗ ∈ {s, u} and any measurable subset B. It is clear that mu and ms are invariant
under FA and project down to µ. Moreover, their disintegrations are given by

x 7→ δ(x,E∗x) for ∗ ∈ {s, u}.
Since Eux depends only on {Axn

: n < 0} and Esx depends only on {Axn
: n ≥ 0},

we get that mu is a u-state and ms is an s-state.
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Lemma 3.6. Every FA-invariant probability measure m ∈M(p) is a convex com-
bination m = αmu + βms, for some α, β ≥ 0 with α+ β = 1.

Proof. Given κ > 0, define Xκ to be the set of all (x, [v]) ∈ M × P(C2) such that
the Oseledets splitting Eux ⊕ Esx is defined at x and [v] splits v = vu + vs with
κ−1‖vs‖ ≤ ‖vu‖ ≤ κ‖vs‖. Since the two Lyapunov exponents are distinct, any
point of Xκ returns at most finitely many times to Xκ. So, by Poincaré recurrence,
m(Xκ) = 0 for every κ. This means that m gives full weight to {(x, Eux), (x, Esx) :
x ∈M} and so it is a convex combination of mu and ms. �

Lemma 3.7. λ+(A, p) =
∫
φA dm

u and λ−(A, p) =
∫
φA dm

s.

Proof. Let vux be a unit vector in the Oseledets subspace Eux . Then

λ+(A,x) = lim
n→∞

1
n

log ‖An(x)vux‖ = lim
n→∞

1
n

n−1∑
j=0

log ‖A(f j(x))vufj(x)‖

= lim
n→∞

1
n

n−1∑
j=0

φA(f j(x), Eufj(x)) = φ̃A(x, Eux)

for µ-almost every x, where φ̃A is the Birkhoff average of φA for FA. Hence,

λ+(A, p) =
∫
φ̃A(x, Eux) dµ(x) =

∫
φ̃A dm

u =
∫
φA dm

u.

Analogously, λ−(A, p) =
∫
φAdm

s. This completes the proof. �

Remark 3.8. It follows from Lemma 3.6 that mu is the unique invariant measure
m such that λ+(A, p) =

∫
φA dm.

3.1.2. Stationary measures. Given (B, q) in S(X)×P(X ), a probability η on P(C2)
is called (B, q)-stationary if

η =
∫

(Bx)∗η dq(x). (13)

The next lemma asserts that the stationary measures are the projections to P(C2)
of the u-states of the corresponding cocycle. We are going to denote Mu = X Z+

and Ms = X Z− . Notice that qZ = µs × µu where µ∗ is a measure on M∗, for
∗ ∈ {s, u}.
Lemma 3.9. If m is an invariant u-state for (B, q) then its projection η to P(C2) is
a (B, q)-stationary measure. Conversely, given any (B, q)-stationary η there exists
an invariant u-state that projects to η.

Proof. Let x 7→ mx be a disintegration of m constant along unstable leaves. For
any measurable set I ⊂ P(C2),

η(I) = m(M × I) =
∫
mx(M × I) dµ(x) =

∫
mf(x)(M × I) dµ(x)

because µ is f -invariant. Since m is FB-invariant, the expression on the right hand
side may be rewritten as∫

B(x)∗mx(M × I) dµ(x)

=
∫
Ms

( ∫
Mu

B(x)∗mx(M × I) dµu(xu)
)
dµs(xs).
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Since the disintegration is constant on local unstable sets and B(xs,xu) depends
only on xs (we write B(xs) instead), this last expression coincides with∫

Σs

B(xs)∗
( ∫

Σu

mxu(M × I) dµu(xu)
)
dµs(xs)

=
∫

Σs

B(xs)∗η(I) dµs(xs) =
∫
B(x)∗η(I) dµ(x) =

∫
(Bx)∗η(I) dq(x).

Thus, η =
∫

(Bx)∗η dq(x) as claimed.
Conversely, given any (B, q)-stationary measure η, consider the sequence of func-

tions
mn : x 7→ mn

x = Bn(f−n(x))∗η
with values in the space of probabilities on P(C2). It is clear from the definition that
each mn is measurable with respect to the σ-algebra Fn of subsets of M generated
by the cylinders

[−n : ∆−n, . . . ,∆−1] = {x ∈M : xi ∈ ∆i for i = −n, . . . ,−1},
where the ∆i are measurable subsets of X . These σ-algebras Fn form a non-
decreasing sequence. We claim that (mn,Fn) is a martingale, that is,∫

C

mn+1 dµ =
∫
C

mn dµ for every C ∈ Fn and every n ≥ 1. (14)

To prove this, it suffices to treat the case when C is a cylinder [−n : ∆−n, . . . ,∆−1].
Then, for any n ≥ 1,∫

C

An+1(f−n−1(x))∗η dµ(x) =
∫
C

An(f−n(x))∗A(f−n−1(x))∗η dµ(x)

=
∫
C

An(f−n(x))∗
[ ∫
X

(Ay)∗η dp(y)
]
dµ(x)

=
∫
C

An(f−n(x))∗η dµ

because η is stationary. This proves the claim (14). Then, by the martingale
convergence theorem (see [13, Chapter 5]), there exists a function x 7→ mx such
that mn

x converges µ-almost everywhere to mx in the weak∗ topology. Let m be
the probability measure defined on M × P(C2) by

m(E) =
∫
mx

(
E ∩ ({x} × P(C2))

)
dµ(x)

for any measurable set E. By construction, the disintegration x 7→ mx is constant
on every {xs} × Mu. This means that m is a u-state. Also by construction,
mf(x) = A(x)∗mx for µ-almost every x ∈ M . This proves that the u-state m is
invariant. Moreover, by (14) and the assumption that η is stationary,

mn(M × I) = m1(M × I) =
∫
M

(Ax)∗η(I) dp(x) = η(I)

for every n ≥ 1 and any measurable set I ⊂ P(C2). This means that mn projects
to η for every n ≥ 1. Then so does the limit m. This completes the proof of the
lemma. �

We are also going to show that the projection of mu to the projective space
P(C2) completely determines the Lyapunov exponents:
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Lemma 3.10. Let m be a u-state realizing λ+(A, p) and let η be its projection to
P(C2). Then

λ+(A, p) =
∫ ∫

log φA(x, v) dη([v]) dp(x)

Proof. Suppose first that λ+(A, p) = 0. By Lemmas 3.4 and 3.3, every FA-invariant
probability m that projects down to µ realizes the largest exponent and is a product
measure m = µ×η. Thus, in this case, the lemma follows immediately from Fubini’s
Theorem. If λ+(A, p) > 0, then mu is the unique u-state that realizes λ+. Then a
straightforward calculation,

λ+(A, p) =
∫
M

log ‖A(x)Eux‖dµ =
∫
Ms

∫
Mu

log ‖A(xs)Euxu‖dµ(xu) dµs

=
∫
X

∫
Mu

log ‖AyEuxu‖dµ(xu) dp(y)

=
∫
X

∫
Mu

∫
P(C2)

log
‖Ayv‖
‖v‖

dδEu
xu
dµ(xu) dp(y)

=
∫
X

∫
P(C2)

log
‖Ayv‖
‖v‖

dη([v]) dp(y),

concludes the proof of the lemma. �

Lemma 3.11. If (Ak, pk)k converges to (A, p) and ηk is a sequence of (Ak, pk)-
stationary measure converging to η then η is an (A, p)-stationary measure.

Proof. We have to show that

lim
k

∫
(Akx)∗ηk dpk =

∫
(Ax)∗η dp

in the weak∗ sense. Let φ : P(C2)→ R be a continuous function. Then

|
∫ ∫

φ(Akxv) dηk dpk −
∫ ∫

φ(Axv) dη dp| ≤ ak + bk + ck

where

ak = |
∫ ∫

φ(Akxv) dηk dpk −
∫ ∫

φ(Axv) dηk dpk|

bk = |
∫ ∫

φ(Axv) dηk dpk −
∫ ∫

φ(Axv) dη dpk|

ck = |
∫ ∫

φ(Axv) dη dpk −
∫ ∫

φ(Axv) dη dp|

It is clear that (ak)k converges to zero, because ‖Akx −Ax‖ converges uniformly to
zero and φ is uniformly continuous. To prove that bk converges to zero we argue as
follows. Given ε > 0, fix δ > 0 such that |φ(v) − φ(w)| < ε/3 for all v, w ∈ P(C2)
such that d(v, w) < δ. Since the image of A is contained in a compact subset of
SL(2,C), there are B1, . . . , Bn ∈ SL(2,C) such that their δ-neighborhoods cover
A(X ). The assumption that (ηk)k converges to η in the weak∗ topology implies
that there exists k0 ∈ N such that

|
∫
φ(Biv) dηk −

∫
φ(Biv) dη| < ε/3
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for all k > k0 and for all i = 1, . . . , n. Then we can use the triangle inequality to
conclude that

|
∫
φ(Axv) dηk −

∫
φ(Axv) dη| ≤ ε

for all k > k0. Integrating with respect to pk we conclude that bk ≤ ε for all k > k0.
This proves that bk converges to 0. Finally, it is clear that ak converges to zero,
because our assumptions imply that (pk)k converges strongly to p. The proof of
the lemma is complete. �

3.1.3. Proof of Proposition 3.1. Notice that λ+ is non-negative and, as observed in
(4)–(5),

(A, p) 7→ λ+(A, p) = inf
n

1
n

∫
log ‖An(x)‖ dµ(x) (15)

is upper-semicontinuous for the topology defined by (8). So, if (A, p) ∈ S(X )×P(X )
is a discontinuity point for the largest Lyapunov exponent then λ+(A, p) > 0 and
there is a sequence (Ak, pk)k converging to (A, p) as k →∞ such that

lim
k
λ+(Ak, pk) < λ+(A, p).

As we have seen, for each k there exists some (Ak, pk)-stationary measure ηk satis-
fying ∫

X

∫
P(C2)

log ‖Akxv‖ dηk(v)dpk(x) = λ+(Ak, pk).

Up to restricting to a subsequence, we may assume that (ηk)k converges in the weak∗

topology to some probability measure η on P(C2). Then η is an (A, p)-stationary
measure, by Lemma 3.11. Using Lemma 3.10 we see that∫

X

∫
P(C2)

log ‖Axv‖ dη(v)dp(x) = lim
k

∫
X

∫
P(C2)

log ‖Akxv‖ dηk(v)dpk(x)

< λ+(A, p) =
∫
X

∫
P(C2)

log ‖Axv‖ dηu(v)dp(x)

where ηu is the projection of mu. In particular, by Lemma 3.9, there exists an
invariant u-state m 6= mu. It follows, using Lemma 3.6, that

m = αmu + βms with α+ β = 1 and β 6= 0.

This implies that ms is a u-state, because it is a linear combination of m and mu.
Hence ms is an su-state. In view of Lemma 3.3 this means that the Oseledets
subspace Esx is constant on a full µ-measure set. Let F s ∈ P(C2) denote this
constant. Analogously, using that (A, p) is a discontinuity point for the smallest
Lyapunov exponent, we find Fu ∈ P(C2) such that Eux = Fu for µ-almost every x.
It is clear that Fu and F s are both invariant under Ax, for p-almost every x ∈ X ,
because µ = pZ. This means that there exists Z ⊂ X with p(Z) = 1 such that
the linear operators defined by the Ay, y ∈ Z have a common eigenbasis, which
is precisely the first claim in the proposition. The last claim (commutativity) is a
trivial consequence. This completes the proof of Proposition 3.1.
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3.2. Handling the diagonal case. Here we prove Proposition 3.2. Let (A, p) ∈
S(X) × P(X ) and Z be as in the conclusion of Proposition 3.1 and consider any
p ∈ P(X ). Since conjugacies preserve the Lyapunov exponents, we may suppose
P = id and

Ax =
(
θx 0
0 θ−1

x

)
for all x ∈ Z. (16)

Notice that the Lyapunov exponents of (A, p) are

±
∫
Z

log |θx| dp(x). (17)

If they vanish then (A, p) is automatically a continuity point, and so there is nothing
to prove. Otherwise, it is no restriction to suppose∫

Z
log |θx| > 0. (18)

Let Vε be the ε-neighborhood of the horizontal direction in P(C2) and Z be as
given in Proposition 3.1. The key step in the proof of Theorem C is the following

Proposition 3.12. Given ε > 0 and δ > 0 there exists γ > 0 such that if (B, q) ∈
V (A, p, γ,Z) and there is no one-dimensional subspace invariant under all Bx for
x in a full q-measure then η(V cε ) ≤ δ for any (B, q)-stationary measure η.

The proof of Proposition 3.12 will be given in Section 4. Right now, let us
conclude the proof of Proposition 3.2.

Let (B, q) ∈ S(X ) × P(X ) be close to (A, p) in the sense of (8). First, suppose
there exists some one-dimensional subspace r ⊂ C2 invariant under all the Bx, x in
a q-full measure. Then r must be close to either the vertical axis or the horizontal
axis: that is because (18) implies |θx| 6= 1 for some q-positive measure subset.
Then the Lyapunov exponent of (B, q) along r is close to one of the exponents (17).
Since the other exponent is symmetric, this proves that the Lyapunov exponents
of (B, q) are close to the Lyapunov exponents of (A, p). Now assume B does not
admit any invariant one-dimensional subspace. Let M > 0 such that M−1‖v‖ <
‖Bxv‖ < M‖v‖ for p-almost every x ∈ X , all v ∈ C2 and d(A,B) < 1. Let
0 � ε � δ � ρ � 1. Let m be any u-state realizing the largest Lyapunov
exponent of (B, q), and η its projection on P (C2). By Proposition 3.12,∫

P(C2)

log
‖Bxv‖
‖v‖

dη([v]) =
∫
V c

ε

log
‖Bxv‖
‖v‖

dη([v]) +
∫
Vε

log
‖Bxv‖
‖v‖

dη([v])

≥ −δ logM + η(Vε)(log |θx| − δ)
for q-almost every x ∈ X . Together with Lemma 3.10, this implies

λ+(B, q) > η(Vε)λ+(A, p)− δ(logM + η(Vε)) > λ+(A, p)− ρ.
Upper semi-continuity gives λ+(B, q) ≤ λ+(A, p) + ρ. Thus, we have shown that
(A, p) is indeed a continuity point for the Lyapunov exponents.

This reduces the proof of Proposition 3.2 and Theorem C to proving Proposi-
tion 3.12.

4. Proof of the Key Proposition

Here we give a suitable reformulation of Proposition 3.12 and reduce its proof to
two technical estimates, Propositions 4.8 and 4.10, whose proof will be presented
in the next section.
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4.1. Preliminary observations. As a first step we note that under the assump-
tions of the proposition all stationary measures are non-atomic.

Lemma 4.1. There exists γ > 0 such that if (B, q) ∈ V (A, p, γ,Z) and there is no
one-dimensional subspace of R2 invariant under Bx for every x in a full q-measure,
then every (B, q)-stationary measure is non-atomic.

Proof. By assumption, A is diagonal and the Lyapunov exponents do not vanish.
So, we may take γ > 0 so that if (B, q) ∈ V (A, p, γ,Z) then Bx is hyperbolic and
its eigenspaces are close to the horizontal and vertical directions, for every x in
some set L ⊂ X with q(L) > 0. Then any finite set of one-dimensional subspaces
invariant under any Bx, x ∈ L has at most two elements. Moreover, they must
coincide with the eigenspaces of Bx and, consequently, are actually fixed under Bx.
Since we assume there is no one-dimensional subspace fixed by Bx for µ-almost
every x, it follows that there is no finite set of one-dimensional subspaces invariant
under Bx for µ-almost every x.

Now let us suppose η has some atom. Let z1, . . . , zN be the atoms with the
largest mass, say, η({zi}) = a for i = 1, . . . , N . Since η is a stationary measure,

η
(
{B−1

x (z1), . . . , B−1
x (zN )}

)
= η

(
{z1, . . . , zN}

)
= Na

for q-almost every x ∈ X . Moreover, in view of the previous paragraph, we have
{B−1

x (z1), . . . , B−1
x (zN )} 6= {z1, . . . , zN} for a positive q-measure subset of points

x. This implies that there exists z 6= zi for i = 1, . . . , N such that η({z}) = a. That
contradicts the choice of the zi and so the lemma is proved. �

Let φ : P(C2) → C2 ∪ {∞}, φ([z1, z2]) = z1/z2 be the standard identification
between the complex projective space and the Riemann sphere. Then the projective
action of a linear map

B =
(
a b
c d

)
corresponds to a Möbius transformation on the sphere

B̂ : C ∪ {∞} → C ∪ {∞} B̂(z) =
az + b

cz + d
,

in the sense that φ ◦ B = B̂ ◦ φ. It follows that a measure ξ in projective space
is (B, q)-stationary if and only if the measure η = φ∗ξ on the sphere satisfies
η =

∫
(B̂x)∗η dq(x). Then the measure η is also said to be (B, q)-stationary. Clearly,

η is non-atomic if and only if ξ is.
This means that the key Proposition 3.12 may be restated as

Proposition 4.2. Given ε > 0 and δ > 0 there exist γ > 0 such that if (B, q) ∈
V (A, p, γ,Z) and q({x ∈ X : B̂x(z) = z}) < 1 for all z ∈ C ∪ {∞} then

η(B(0, ε−1)) ≤ δ

for any (B, q)-stationary probability measure η on C ∪ {∞}.

The proof of this proposition will appear in the next section. Let us briefly com-
ment on the statement and the overall strategy of the proof. As mentioned before,
the set Stat(A, p) of stationary measures varies in a semi-continuous fashion with
the data: if (B, q) is close to (A, p) then every (B, q)-stationary measure is close to
Stat(A, p). This is not sufficient for our purposes because in the diagonal case there
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are several stationary measures, not all of which realize the largest Lyapunov ex-
ponent. Indeed, the assumption that both the vertical direction and the horizontal
direction are invariant under almost every Ax implies that both associated Dirac
masses on the Riemann sphere, δ0 and δ∞, are (A, p)-stationary measures, and so
Stat(A, p) the whole line segment between these two Dirac masses.

To establish continuity of the Lyapunov exponents we need to prove the much
finer fact that stationary measures of nearby (irreducible) cocycles are close to
the one element of Stat(A, p), namely δ∞, that realizes the Lyapunov exponent
λ+(A, p). That is the meaning of the key proposition. The reason we may restrict
ourselves to irreducible cocycles is because in the reducible case continuity follows
from a different, and much easier argument, as we have seen.

The crucial property that singles out δ∞ among all (A, p)-stationary measures
is the fact that it is an attractor for the random walk defined by (A, p) on P(C2).
Indeed, the random trajectory An(x)ξ of any ξ ∈ P(C2)\{0} converges to∞ almost
surely. Consequently, the forward iterates of any probability η with η({0}) = 0
under the dynamics

fA : η 7→
∫

(Ax)∗η dp(x) (19)

induced by A in the space of the probability measures of P(C2) converge to δ∞.
The heart of the proof is, thus, a robustness theorem for certain random walks.

We prove that the attractor persists for all nearby irreducible cocycles: if (B, q)
is close enough to (A, p) and there is no one-dimensional subspace invariant under
q-almost every Bx, then fB possesses an attractor that is strongly concentrated
near ∞, and draws the forward iterates of every Dirac mass. In particular, every
fixed point η of the operator fB must be strongly concentrated near∞, as claimed.

While the details are fairly lengthy, the main ideas in the proof are very natu-
ral, so that applications of this approach to much more general situations can be
expected. In particular, there is some promising progress in the setting of Hölder
continuous (not locally constant) two-dimensional cocycles over hyperbolic systems.

4.2. Auxiliary statements. Recall, from (16) and (18), that

Ax =
(
θx 0
0 θ−1

x

)
with

∫
log |θx|dp(x) > 0 (20)

for every x ∈ Z. By definition, q(Z) = 1 for all (B, q) ∈ V (A, p, γ,Z). Thus, up to
restricting all cocycles to a full measure subset, which does not affect the Lyapunov
exponents, we may assume that Z = X . We do so in all that follows. Let B, q,
and η be as in the statement.

Lemma 4.3. There are β, σ ∈ (0, 1), k ∈ N, positive numbers (σx)x∈X , and inte-
gers (sx)x∈X such that

(a) 0 < ‖A‖−1/4 ≤ σx ≤ β|θx| for all x ∈ X
(b) σx = σsx for all x ∈ X
(c)

∫
log σx dp(x) > 4/k.

Proof. Fix k ∈ N large enough so that
∫

log |θx| dp(x) > 7/k. Define log β = log σ =
−1/k. For each x ∈ X , define

rx =
[
k log |θx|

]
, sx =

{
rx − 1 if rx 6= 1
rx − 2 if rx = 1 log σx = −sx

k
.
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Properties (a) and (b) follow immediately. Moreover,∫
log σx dp(x) ≥

∫ (
log |θx| − 3/k

)
dp(x) > 4/k

as claimed in (c). The proof is complete. �

Let σ, β, σx, and sx, be as in Lemma 4.3. We partition X = X− ∪ X+, where
X− is the subset of x ∈ X with sx < 0 (i.e. σx > 1) and X+ is the subset of x ∈ X
with sx > 0 (i.e. σx < 1). For each x ∈ X , let

Dx =
(
σx 0
0 σ−1

x

)
and D̂x(z) = σ2

xz. (21)

Consider also

Dsp =
(
στ 0
0 σ−τ

)
and D̂sp(z) = σ2τz, (22)

where τ is the smallest integer such that στ ≤ ‖A‖−1/4. Given any K ⊂ X , let K
be the cocycle defined by

Kx =
(
kx 0
0 k−1

x

)
where kx =

{
σx if x ∈ K
στ if x ∈ X \ K. (23)

Lemma 4.4. There exist α > 0 and α̃ > 0 such that, given any measurable set
K ⊂ X with p(K) ≥ 1− α,∫

log kx dp(x) ≥ 2/k and p
(
{x : kx > 1}

)
≥ α̃.

Proof. Taking α = (−k log στ )−1, we have∫
log kx dp ≥

∫
log σx dp+

∫
X\K

(
log στ − log σx

)
dp

≥ 4/k + 2 log στp(X \ K) ≥ 2/k.

This proves the first claim. The second one is a direct consequence, with α̃ =
2/(k sup kx). �

For z0 ∈ C and r ≥ 0, we denote B(z0, r) = {z ∈ C : |z − z0| ≤ r}. Given B,
C ∈ S(X) and Y ⊂ X we say that r ≥ 0 is (B,Y)-centered with respect to C if

B̂−1
x (B(0, r)) ⊂ Ĉ−1

x (B(0, r)) for every x ∈ Y. (24)

When Y = X we just say that r is B-centered with respect to C. Given B,
C ∈ S(X ), q ∈ P(X ), and a (B, q)-stationary measure η, we say that r ≥ 0 is
(B, q, η)-targeted with respect to C if∫

η
(
B̂−1
x (B(0, r))

)
dq(x) ≤

∫
η
(
Ĉ−1
x (B(0, r))

)
dq(x) (25)

Remark 4.5. If r ≥ 0 is B-centered (respectively, (B, q, η)-targeted) with respect
to D then it is also B-centered (respectively, (B, q, η)-targeted) with respect to the
cocycle K defined in (23). That is because D̂−1

x (B(0, r)) ⊂ D̂−1
sp (B(0, r)) for any

x ∈ X .

The following simple facts will be useful in what follows:

Lemma 4.6. Given ρ > 0 there is γ > 0 such every r ∈ [ρ, ρ−1] is B-centered with
respect to D for every B ∈ S(X) with d(A,B) < γ.
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Proof. By assumption, ± log |θx|, x ∈ X is bounded. Write

B−1
x =

(
ax bx
cx dx

)
.

The condition d(A,B) < γ implies that |ax − θ−1
x |, |bx|, |cx|, |dx − θx| are all less

than c1γ for some constant c1 independent of x and γ. Given ρ > 0, assume first
that γ ≤ ρ2. Then, for any |z| ∈ [ρ, ρ−1],

|B̂−1
x (z)| ≤ |axz|+ |bx|

|dx| − |cxz|
≤
|ax|+ c1

√
γ

|dx| − c1
√
γ
|z| ≤ |θ

−1
x |
|θx|

1 + c2
√
γ

1− c2
√
γ
|z|

where c2 is also independent of x and γ. Thus, there exists γ0 > 0, independent of
x ∈ X such that, if d(A,B) < γ ≤ γ0 then

|B̂−1
x (z)| ≤ (β|θx|)−2|z| ≤ σ−2

x |z| = |D̂−1
x (z)|

for every x ∈ X and |z| ∈ [ρ, ρ−1]. This gives that every r ∈ [ρ, ρ−1] is B-centered
with respect to D, as claimed. �

Lemma 4.7. There are γ > 0 and c > 0 such that if d(A,B) < γ and x ∈ X0 is
such that B̂x has a fixed point in B(0, ρ), for some ρ < c−1, then every r ∈ [cρ, 1]
is (B, {x})-centered with respect to D.

Proof. First, take γ > 0 such that d(A,B) < γ implies that B̂−1
x is a λx-contraction

with
‖A‖−1

2
= λ ≤ λx ≤ (1 + ρ0)−2

and D̂−1
x (z) = Λxz with λx ≤ βΛx. Then choose c > 0 large enough so that

λ−1 < c(β−1 − 1− c−1). It follows that

|B̂−1
x (z)| ≤ [c−1 + λx(1 + c−1)]r ≤ Λxr

whenever |z| ≤ r and r ∈ [cρ, 1]. In other words,

B̂−1
x (B(0, r)) ⊂ D̂−1

x (B(0, r)) for all r ∈ [cρ, 1],

as claimed. This proves the lemma. �

The proof of Proposition 4.2 relies on a couple of technical results, Proposi-
tions 4.8 and 4.10, that we state in the sequel and whose proofs will appear in Sec-
tion 5. The first proposition gives a bound on the mass of the stationary measure
away from the vertical (and the horizontal) direction. Fix α > 0 as in Lemma 4.4,
once and for all.

Proposition 4.8. Given ε > 0 and δ > 0 there exists γ > 0 such that if d(A,B) < γ
and d(p, q) < γ then

η
(
B(0, ε−1) \B(0, r0)

)
≤ δ

for any (B, q)-stationary measure η and any r0 ∈ (0, 1) such that every r ∈ [r0, ε
−1]

is (B,K)-centered with respect to D for some measurable set K with p(K) ≥ 1− α.

What we actually use is the following consequence:

Corollary 4.9. Given ε > 0 and δ > 0 there exist γ > 0 such that if d(A,B) < γ
and d(p, q) < γ then either η

(
B(0, ε−1)

)
≤ δ or there exists r0 ∈ (0, 1) such that

η
(
B(0, ε−1) \B(0, r0)

)
≤ δ

and p({x ∈ X : B̂−1
x (B(0, r0)) 6⊂D̂−1

x (B(0, r0))}) ≥ α.
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Proof. Let r1 ≥ 0 be the infimum of all r ∈ (0, 1) such that

η
(
B(0, ε−1) \B(0, r)

)
< δ.

If r1 = 0 then η
(
B(0, ε−1) \ {0}

)
≤ δ. Since η has no atoms, by Lemma 4.1, it

follows that η(B(0, ε−1)) ≤ δ. This proves the corollary in this case. Now, suppose
r1 > 0. Then, η(B(0, ε−1) \B(0, r1)) ≥ δ, and so, by Proposition 4.8,

A1 = {x ∈ X : B̂−1
x (B(0, r1)) 6⊂D̂−1

x (B(0, r1))}

has p(A1) > α. Let 1 > r2 > r3 > . . . be a decreasing sequence converging to r1,
and

Ak = {x ∈ X : B̂−1
x (B(0, rk))6⊂D̂−1

x (B(0, rk))},
for k = 2, 3, . . . . Notice that lim infk Ak ⊃ A1 and so, by the Lemma of Fatou,
lim infk p(Ak) ≥ p(A1) > α. In particular, there is N ≥ 2 such that p(AN )) ≥ α.
The proof is complete, taking r0 = rN . �

Our second technical proposition will allow us to bound the mass of the station-
ary measure close to the vertical direction:

Proposition 4.10. There are γ > 0 and N ≥ 1 such that if d(A,B) < γ and
r0 ∈ [0, 1] and x ∈ X are such that B̂−1

x (B(0, r0))6⊂D̂−1
x (B(0, r0)), then

D ∩ B̂−1
x (D) = ∅, where D =

{
D̂−Nx (B(0, r0)) if x ∈ X−
D̂N
x (B(0, r0)) if x ∈ X+.

In particular, B(0, σ2Nτr0) ∩ B̂−1
x (B(0, σ2Nτr0)) = ∅.

4.3. Proof of Proposition 4.2. The assumption λ+(A, p) > 0 implies that there
exist α0 > 0 and ρ0 > 0 such that

X0 = {x ∈ X : |θx| > 1 + ρ0}

has p(X0) ≥ α0. Let c > 0 and N ≥ 1 be fixed as in Lemma 4.7 and Proposi-
tion 4.10, respectively. Denote β0 = 2α0/(1 + 8c2σ−4τN ). For each z ∈ C and
ρ ∈ [0, 1), define

Γ(z, ρ) = {x ∈ X0 : B̂x has some fixed point in B(z, ρ)}.

In particular, Γ(z, 0) is the set of x ∈ X0 such that z is fixed under B̂x. Observe
also that Γ(z, 0) = ∩ρ>0Γ(z, ρ).

Lemma 4.11. Given ρ > 0 there exist γ > 0 and λ0 ∈ (0, 1) such that if d(A,B) <
γ then B̂−1

x (B(0, r)) ⊂ B(0, λ0r) for every 1 > r ≥ cρ and every x ∈ Γ(0, ρ). In
particular, there is κ ≥ 1 such that B̂−κx (B(0, r)) ⊂ B(0, σ2τr) for 1 > r ≥ cρσ−2τ

and x ∈ Γ(0, ρ).

Proof. Take γ > 0 small enough to ensure that every B̂−1
x , x ∈ X0 is a contraction

on the ball B(0, 1), with uniform contraction rate λ ∈ (0, 1). Then, consider λ0 =
λ(1 + c−1) + c−1. Fix x ∈ X0 and let z0 ∈ B(0, 1) be the unique fixed point of B̂−1

x .
For any z with |z| = r ≥ cρ,

|B̂−1
x (z)| ≤ ρ+ λ|z − z0| ≤ ρ+ λ(r + ρ) ≤ [c−1 + λ(1 + c−1)]r ≤ λ0r.

This proves the first claim in the statement. To get the second statement, just take
κ ≥ 1 to be the smallest positive integer such that λκ0 ≤ σ2τ . �
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We distinguish two cases in the proof of the proposition. First, we take the
cocycle to be “reducible”, in the sense that the Bx have a common invariant line,
for a subset of values of x ∈ X0 with sizable mass. More precisely, we suppose that

p(Γ(z0, 0)) ≥ β0 for some z0 ∈ B(0, 1). (26)

It is no restriction to suppose that z0 = 0, as we will see in a while, so let us do
that for the time being. Then, (26) implies that q(Γ(0, 0)) ≥ β0/2 for every q in
a neighborhood of p. Suppose, by contradiction, that η

(
B(0, ε−1)

)
> δ. Then, by

Corollary 4.9, there exists r0 ∈ (0, 1) such that

η
(
B(0, ε−1) \B(0, r0)

)
≤ δ and p(Y ) ≥ α, (27)

where Y = {x ∈ X : B̂−1
x (B(0, r0))6⊂D̂−1

x (B(0, r0))}. The latter implies that
q(Y ) ≥ α/2 for every q sufficiently close to p. Lemma 4.11 implies that

q(Γ(0, 0))η
(
B(0, r0) \B(0, λ0r0)

)
=
∫

Γ(0,0)

η
(
B(0, r0)

)
− η
(
B(0, λ0r0)

)
dq(x)

≤
∫

Γ(0,0)

(
η(B(0, r0))− η(B̂−1

x (B(0, r0)))
)
dq(x)

Since η is stationary, the last expression coincides with∫
X\Γ(0,0)

(
η(B̂−1

x (B(0, r0)))− η(B(0, r0))
)
dq(x),

which is, clearly, bounded above by η
(
B(0, ε−1)\B(0, r0)

)
. In this way, using (27),

we find that

q(Γ(0, 0))η
(
B(0, r0) \B(0, λ0r0)

)
≤ η

(
B(0, ε−1) \B(0, r0)

)
≤ δ.

Recall that q(Γ(0, 0)) ≥ β0/2. Then, using (27) once more,

η
(
B(0, ε−1) \B(0, λ0r0)

)
≤ δ + 2δβ−1

0 .

Arguing by induction we get that

η
(
B(0, ε−1) \B(0, λj0r0)

)
≤ δ(1 + 2β−1

0 )j for every j ≥ 0.

In particular, this holds for j = κN . Hence, cf. Lemma 4.11,

η
(
B(0, ε−1) \B(0, σ2τNr0)

)
≤ δ(1 + 2β−1

0 )κN . (28)

Denote B0 = B(0, σ2τNr0). From Proposition 4.10 we get that B0 and its pre-image
under B̂x are disjoint for every x ∈ Y . So, (28) implies

η
(
B̂−1
x (B0)

)
≤ δ(1 + 2β−1

0 )κN for every x ∈ Y . (29)

Since η is stationary,

q(Y )η(B0) =
∫
X\Y

η
(
B̂−1
x (B0) \ B0

)
dq(x) +

∫
Y

η
(
B̂−1
x (B0)

)
dq(x)

≤
∫
X\Y

η
(
B(0, ε−1) \ B0

)
dq(x) +

∫
Y

η
(
B̂−1
x (B0)

)
dq(x)

Recall that q(Y ) ≥ α/2. Hence, using (28) and (29),

η(B0) ≤ 4δα−1(1 + 2β−1
0 )κN . (30)



20 CARLOS BOCKER-NETO AND MARCELO VIANA

Adding (28) and (30) we conclude that

η(B(0, ε−1)) ≤ c̃δ, c̃ = (1 + 4α−1)(1 + 2β−1
0 )κN . (31)

So far we have been assuming that the fixed point sits at z0 = 0. Let us now
explain how this assumption can be removed. Notice that for every x ∈ X0 the
matrix Ax is diagonal, its larger eigenvalue is far from the unit circle, and the
corresponding eigenvector is horizontal. Thus, an attracting fixed point z0 ∈ B(0, 1)
as in (26) must be close to zero (in other words, the direction it represents is close
to horizontal) if the cocycle B is close to A. Define

H =
(
a0 −b0
b0 a0

)
,

where (a0, b0) ≈ (1, 0) be a unit vector in the direction represented by z0, and
then consider the cocycle C defined by Cx = H BxH

−1. Clearly, B̂−1
x (z0) = z0

translates to Ĉ−1
x (0) = z0. Moreover, if η is (B, q)-stationary then H∗η is (C, q)-

stationary. Thus, we can use the arguments in the previous paragraph to conclude
that

H∗η(B(0, 2ε−1)) ≤ c̃δ.
Finally, H(B(0, ε−1)) ⊂ B(0, 2ε−1) because H is close to the identity, and so it
follows that

η(B(0, ε−1)) ≤ c̃δ (32)

also in this case. One can easily dispose of the factor c̃. So, the proof of Proposi-
tion 4.2 in the reducible case is complete.

Now, we assume that the cocycle is “irreducible”, in the sense that p(Γ(z, 0)) <
β0 for all z ∈ B(0, 1). We need the following lemma:

Lemma 4.12. There exists γ > 0 such that if d(A,B) < γ and p(Γ(z, 0)) < β0 for
all z ∈ B(0, 1) then for each (small) ς > 0 there exist z0 ∈ B(0, 1) and ρ0 > 0 such
that

(a) p(Γ(z, ρ0)) ≤ p(Γ(z0, ρ0)) + ς for all z ∈ B(0, 1);
(b) β0/4 ≤ p(Γ(z0, ρ0)) ≤ β0;
(c) p(X0 \ Γ(z0, cσ

−2τNρ0)) ≥ β0/2.

Proof. Let % = inf{r > 0 : p(Γ(z, r)) > β0 for some z ∈ B(0, 1)}. We claim that
% > 0. Indeed, suppose that for each n ∈ N there exists zn ∈ B(0, 1) such that
p(Γ(zn, 1/n)) > β0. We may suppose that (zn)n converges to some z̃ ∈ B(0, 1).
Then p(Γ(z̃, r)) > β0 for any r > 0, and so p(Γ(z̃, 0)) ≥ β0. The latter contradicts
the hypothesis, and so our claim is proved. Now, define ρ0 = 9%/10 and let

S = sup{p(Γ(z, ρ0)) : z ∈ B(0, 1)}.

Notice that S ≤ β0, because ρ0 < %. We claim that S > β0/4. Indeed, by the
definition of %, one may find z ∈ B(0, 1) such that p(Γ(z, 11%/10)) > β0. It is easy
to check that Γ(z, 11%/10) may be covered with not more than four sets p(Γ(z′, ρ0)),
z′ ∈ B(0, 1). Then, p(Γ(z′, ρ0)) > β0/4 for some choice of z′, and that proves the
claim. Now, given any small ς > 0, take z0 ∈ B(0, 1) such that p(Γ(z0, ρ0))+ ς > S.
Properties (a) and (b) follow immediately from the previous considerations. We
are left to prove (c). Clearly, one can find G ⊂ C with #G ≤ 4c2σ−4τN such that
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{Γ(z, ρ0) : z ∈ G} covers Γ(z0, cσ
−2τNρ0)). Consequently, since the supremum

S ≤ β0.
µ
(
X0 \ Γ(z0, cσ

−2τNρ0))
)
≥ p(X0)−

∑
z∈G

µ(Γ(z, ρ0))

≥ α0 − 4c2σ−4τNβ0,

Now notice that β0 was defined in such a way that this last expression is equal to
β0/2. This completes the proof of the lemma. �

Let z0 and ρ0 > 0 be as given by Lemma 4.12, for some sufficiently small ς > 0.
For the same reasons as in the reducible case, it is no restriction to suppose that
z0 = 0. Define X1 = X0 \ Γ(0, cσ−2τNρ0). By parts (c) and (d) of Lemma 4.12,

p(Γ(0, ρ0)) ≥ β0/4 and p(X1) ≥ β0/2. (33)

Suppose, by contradiction, that η
(
B(0, ε−1)

)
> δ. Then take r0 ∈ (0, 1) as in

Corollary 4.9:
η
(
B(0, ε−1) \B(0, r0)

)
≤ δ and p(Y0) ≥ α, (34)

where Y0 = {x ∈ X : B̂−1
x (B(0, r0)) 6⊂D̂−1

x (B(0, r0))}. Let r1 = max{r0, cσ
−2τNρ0}

and
Y1 = {x ∈ X : B̂−1

x (B(0, r1)) 6⊂D̂−1
x (B(0, r1))}.

Lemma 4.12 and (34) imply

η
(
B(0, ε−1) \B(0, r1)

)
≤ δ and p(Y1) ≥ β1 (35)

where β1 = min{α, β0/2}. Indeed, the first claim in (35) is a direct consequence of
(34). For the second claim there are two cases. If r1 = r0 then Y1 = Y0 and so (34)
yields p(Y1) ≥ α. If r1 = cσ−2τNρ0 we may use Lemma 4.12(c), together with the
observation that

Y c1 = {x ∈ X : B̂−1
x (B(0, r1)) ⊂ D̂−1

x (B(0, r1))} ⊂ Γ(0, r1),

to conclude that p(Y1) ≥ β0/2. This establishes (35). It follows that

q(Γ(0, ρ)) > β0/8 and q(Y1) > β1/2,

as long as d(p, q) is sufficiently small. Lemma 4.11 implies that

q(Γ(0, ρ0))η
(
B(0, r1) \B(0, λ0r1)

)
=
∫

Γ(0,ρ0)

(
η(B(0, r1))− η(B(0, λ0r1))

)
dq(x)

=
∫

Γ(0,ρ0)

(
η(B(0, r1))− η(B̂−1

x (B(0, r1)))
)
dq(x)

Since η is stationary, the last expression coincides with∫
X\Γ(0,ρ0)

(
η(B̂−1

x (B(0, r1)))− η(B(0, r1))
)
dq(x),

which is, clearly, bounded above by η
(
B(0, ε−1) \ B(0, r1)

)
. Using (35), it follows

that
q(Γ(0, ρ))η

(
B(0, r1) \B(0, λ0r1)

)
≤ δ.

Then, using (35) once more,

η
(
B(0, ε−1) \B(0, λ0r1)

)
≤ δ(1 + 8β−1

0 ) (36)
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Arguing by induction we get that

η
(
B(0, ε−1) \B(0, λj0r1)

)
≤ δ(1 + 8β−1

0 )j for every j ≥ 0

(the cases j = 0 and j = 1 are given by (35) and (36), respectively). In particular,
this holds for j = κN . Hence, cf. Lemma 4.11,

η
(
B(0, ε−1) \B(0, σ2τNr1)

)
≤ δ(1 + 8β−1

0 )κN . (37)

Denote B1 = B(0, σ2τNr1). From Proposition 4.10 we get that B1 and its pre-image
under B̂x are disjoint for every x ∈ Y1. So, (37) implies

η
(
B̂−1
x (B1)

)
≤ δ(1 + 8β−1

0 )κN for every x ∈ Y1. (38)

Since η is stationary,

q(Y1)η(B1) =
∫
X\Y1

η
(
B̂−1
x (B1) \ B1

)
dq(x) +

∫
Y1

η
(
B̂−1
x (B1)

)
dq(x)

≤
∫
X\Y1

η
(
B(0, ε−1) \ B1

)
dq(x) +

∫
Y1

η
(
B̂−1
x (B1)

)
dq(x)

Combining q(Y1) ≥ β1/2 with (37) and (38), we find that

η(B1) ≤ 4δβ−1
1 (1 + 8β−1

0 )κN . (39)

Adding (37) and (39) we conclude that

η(B(0, ε−1)) ≤ c̃δ, c̃ = (1 + 4β−1
1 )(1 + 8β−1

0 )κN . (40)

That completes the proof in the irreducible case, under the assumption that z0 = 0.
This assumption can be removed in just the same way as before in the reducible
case, and so our argument is complete.

5. Main estimates

All we have to do to finish the proof of Proposition 4.2 is to prove Propositions 4.8
and 4.10.

5.1. Mass away from the vertical. In this section we prepare the proof of Propo-
sition 4.8. Let σ < 1 be as in Lemma 4.3. For each K ⊂ X consider the associated
cocycle K, as defined in (23). Clearly,

K̂x(B(0, rσ2j)) = B(0, rσ2j+2sx) (41)

for every r > 0, x ∈ X , and j ∈ Z. Define

Ij(r) = B(0, rσ2j−2) \B(0, rσ2j) (42)

for j ∈ Z and

Lx(r) =

{
B(0, r) \ K̂x

−1
(B(0, r)) for x ∈ X−

K̂x
−1

(B(0, r)) \B(0, r) for x ∈ X+

(43)

where X = X−∪X+ denotes the partition associated to the cocycle K, that is, such
that kx > 1 for x ∈ X− and kx < 1 for x ∈ X+. Notice that X \ K ⊂ X+ because
kx = στ for all x ∈ X \ K.

Lemma 5.1. If r > 0 is (B, q, η)-targeted with respect to K then
(1)

∫
X− η(Lx(r)) dq(x) ≤

∫
X+

η(Lx(r)) dq(x)

(2)
∫
X−

∑−sx

j=1 η(Ij(r)) dq(x) ≤
∫
X+

∑0
j=−sx+1 η(Ij(r)) dq(x).
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More generally, given n ≥ 0, if rσ2t is (B, q, η)-targeted with respect to K for
t = 0, . . . , n, then∫

X−

t−sx∑
j=t+1

η(Ij(r)) dq(x) ≤
∫
X+

t∑
j=t−sx+1

η(Ij(r)) dq(x) for t = 0, . . . , n.

Proof. Denote J = B(0, r). Using that r is (B, q, η)-centered and η is (B, q)-
stationary∫ (

η(J)− η(K̂x
−1

(J))
)
dq(x) ≤

∫ (
η(J)− η(B̂−1

x (J))
)
dq(x) = 0.

By the definition (43), the left hand side coincides with∫
X−

η(Lx(r)) dq(x)−
∫
X+

η(Lx(r)) dq(x).

This proves the first claim. The second one is a direct consequence: just note that,
by (41),

Lx(r) =

{
B(0, r) \B(0, rσ−2sx) =

⊔−sx

j=1 Ij(r) for x ∈ X−
B(0, rσ−2sx) \B(0, r) =

⊔0
j=−sx+1 Ij(r) for x ∈ X+.

The last claim follows, noticing Ij(rσ2t) = Ij+t(r) for all j and r. �

Let α and γ be the constants in Lemma 4.4.

Corollary 5.2. If p(K) ≥ 1 − α and r > 0 is (B, q, η)-targeted with respect to K
then

η(I1(r)) ≤ α̃−1
0∑

j=−n++1

η(Ij(r)), where n+ = sup
x∈X+

|sx|.

Proof. Lemma 4.4 gives that p(X−) ≥ α̃. Part (2) of Lemma 5.1 implies

p(X−)η(I1(r)) ≤ p(X+)
0∑

j=−nx+1

η(Ij(r))

The conclusion of the corollary follows, immediately. �

Remark 5.3. If r is B-centered then the conclusions of Lemma 5.1 and Corol-
lary 5.2 hold for every (B, q)-stationary measure η.

Lemma 5.4. There exists γ > 0 such that if d(A,B) < γ and r ∈ [0, 1] and x ∈ X
are such that B̂−1

x (B(0, r)) ∩B(0, r) 6= ∅, then

B̂−1
x (B(0, r)) ∪B(0, r) ⊂ D̂−1

sp (B(0, r)).

Proof. Take γ > 0 such that if d(A,B) < γ then the diameter of B̂−1
x (B(0, r)) is

less than 3‖A‖2r, for every r ∈ [0, 1] and x ∈ X . Then, B̂−1
x (B(0, r)) ∩B(0, r) 6= ∅

implies
B̂−1
x (B(0, r)) ∪B(0, r) ⊂ B(0, 4‖A‖2r) ⊂ D̂−1

sp (B(0, r)).
This proves the claim. �

We also need the following calculus result. In the application, for proving Propo-
sition 4.8, we will take nx = |sx| and aj = η(Ij(r)).
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Lemma 5.5. Let (nx)x∈X be a bounded family of positive integers and (aj)j∈Z be
a sequence of non-negative real numbers. Assume that

(a) 0 < S ≤
∫
X− nx dq(x)−

∫
X+

nx dq(x) and

(b)
∫
X−

∑t+nx

j=t+1 aj dq(x) ≤
∫
X+

∑t
j=t−nx+1 aj dq(x) for t = 0, . . . , n.

Denote n− = sup{nx : x ∈ X−} and n+ = sup{nx : x ∈ X+}. Then
n∑
j=1

aj ≤
(n− + n+

S

) 0∑
j=−n++1

aj .

Proof. Begin by noting that

n∑
t=0

t+nx∑
j=t+1

aj =
nx∑
l=1

n+l∑
j=l

aj ≥ nx

 n∑
j=1

aj −
nx∑
j=1

aj

 (44)

and that
n∑
t=0

t∑
j=t−nx+1

aj =
0∑

l=−nx+1

n+l∑
j=l

aj ≤ nx

 n∑
j=1

aj +
0∑

j=−nx+1

aj

 (45)

So, adding the inequalities (b) over all t = 0, . . . , n and using (44)-(45),∫
X−

nx

 n∑
j=1

aj −
nx∑
j=1

aj

 dq(x) ≤
∫
X+

nx

 n∑
j=1

aj +
0∑

j=−nx+1

aj

 dq(x)

or, equivalently,

S

n∑
j=1

aj ≤
∫
X−

ni

nx∑
j=1

aj dq(x) +
∫
X+

nx

0∑
j=−nx+1

aj dq(x)

This implies, using the inequality (b) once more,

S

n∑
j=1

aj ≤ n−
∫
X−

nx∑
j=1

aj dq(x) + n+

∫
X+

0∑
j=−nx+1

aj dq(x)

≤ (n− + n+)
∫
X+

0∑
j=−nx+1

aj dq(x).

This last expression is bounded above by (n− + n+)
∑0
j=−n++1 aj . In this way we

get the conclusion of the lemma. �

Define αs =
∑sn+

j=(s−1)n++1 aj for each s ≥ 0. In the same setting as Lemma 5.5,
we obtain

Corollary 5.6. Let n = s0n+ for some integer s0 ≥ 1. There is s ∈ {1, . . . , s0}
such that

αs ≤
(n− + n+

s0S

)
α0.

Proof. The conclusion of Lemma 5.5 may be rewritten
s0∑
s=1

αj =
n∑
j=1

aj ≤
(n− + n+

S

) 0∑
j=−n++1

aj =
(n− + n+

S

)
α0 .
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This implies that min1≤s≤s0 αj ≤ (n− + n+)α0/(s0S), as claimed. �

5.2. Proof of Proposition 4.8. The claim will follow from applying Lemma 5.5
and Corollary 5.6 to appropriate data. As before, let K be the cocycle and X =
X+∪X− be the partition associated to a given set K ⊂ X . We break the presentation
of the proof into three steps:
Step 1: Define S(p) =

∫
X− nx dp(x)−

∫
X+

nx dp(x), where

nx =
| log kx|
| log σ|

=
{
|sx| if x ∈ K
τ if x ∈ X \ K.

Let r0 ≥ 0 be such that every r ∈ [r0, ε
−1] is (B,K)-centered with respect to D.

Take K to have been chose such that p(K) ≥ 1− α. Then, by Lemma 4.4,

S(p) =
∫
X
− log kx

log σ
dp(x) =

∫
X

log kx
| log σ|

dp(x) >
2

k| log σ|
> 0.

Consequently, there exist γ > 0 and S > 0 such that S(q) > S for every q with
d(p, q) < γ. This corresponds to condition (a) in Lemma 5.5. Given ε > 0 and
δ > 0, let n = s0n+ = s0τ for some integer

s0 ≥ (
n− + n+

S
)2δ−1.

Fix also R > σ−2nε−1. By Lemma 4.6, there exists γ > 0 such that if d(A,B) < γ
then every r ∈ [(Rσ−2)−1, Rσ−2] is B-centered with respect to D. This applies
to yσ2j for every j = 0, 1, . . . , n and any y ∈ [R,Rσ−2], because yσ2j > ε−1 >
(Rσ−2)−1. Fix y ∈ [R,Rσ−2] and define aj(y) = η(Ij(y)) for j ∈ Z. Then
Lemma 5.1 gives∫

X−

t+nx∑
j=t+1

aj(y) dq(x) ≤
∫
X+

t∑
j=t−nx+1

aj(y) dq(x)

for all t = 0, . . . , n. This corresponds to condition (b) in Lemma 5.5. Thus, we are
in a position to apply Corollary 5.6: we conclude that there exists s ∈ {1, . . . , s0}
such that

αs(y) ≤
(n− + n+

s0S

)
α0(y) ≤

( S

n− + n+

)
δα0(y) ≤

( S

n− + n+

)
δ (46)

Notice that, by definition,

αs(y) = η
(
B(0, yσ2(s−1)n+) \B(0, yσ2sn+)

)
.

Step 2: Fix r1 ≥ 1 such that every r ∈ [r1σ
−2, 1] is (B, q, η)-targeted with respect

to K and either r1 ≤ r0 or r1 is not (B, q, η)-targeted. We are going to estimate
η(B(0, ε−1)) \ B(0, r1), with the aid of Lemma 5.5. Condition (a) in the lemma is
just the same as before. Concerning condition (b), notice that y ∈ [R,Rσ−2] above
may always be chosen so that r1 = zσ2n̄ for some n̄ ∈ N, where z = yσ2sn+ . Then
zσ2t is (B, q, η)-targeted for every t = 0, 1, . . . , n̄ − 1, due to our choice of r1, and
so Lemma 5.1 gives∫

X−

t+nx∑
j=t+1

aj(z) dq(x) ≤
∫
X+

t∑
j=t−nx+1

aj(z) dq(x)
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for all t = 0, . . . , n̄− 1. Thus, applying Lemma 5.5,
n̄∑
j=1

aj(z) ≤
(n− + n+

S

) 0∑
j=−n++1

aj(z).

The left hand side coincides with (recall that z ≥ Rσ2n > ε−1)

η
(
B(0, z) \B(0, zσ2ñ−2)

)
≥ η

(
B(0, ε−1) \B(0, r1σ

−2)
)
.

The sum on the right hand side coincides with

η
(
B(0, zσ−2n+) \B(0, z)

)
= α0(z) = αs(y).

Consequently,

η
(
B(0, ε−1) \B(0, r1σ

−2)
)
≤
(n− + n+

S

)
αs(y). (47)

The relations (46) and (47) yield

η
(
B(0, ε−1) \B(0, r1σ

−2)
)
≤ δ. (48)

Moreover, Corollary 5.2 gives that

η
(
I1(r1σ

−2)
)
≤ α̃−1

0∑
j=−n++1

aj(r1σ
−2)

≤ α̃−1η
(
B(0, ε−1) \B(0, r1σ

−2)
)
≤ α̃−1δ

(49)

Combining (48) and (49) we obtain

η
(
B(0, ε−1) \B(0, r1)

)
≤ (1 + α̃−1)δ. (50)

Step 3: If r1 ≤ r0 then (50) implies the conclusion of the proposition (the factor on
the right hand side can be avoided replacing δ by a convenient multiple throughout
the argument). Otherwise, r1 is not (B, q, η)-targeted with respect to K, and so
we must have

η(B̂−1
x B(0, r1)) > η(K̂−1

x B(0, r1)) (51)

for some x ∈ X . Notice that x must belong to X \ K, since

η(B̂−1
y B(0, r1)) ≤ η(D̂−1

y B(0, r1)) = η(K̂−1
y B(0, r1))

for every y ∈ K, because r1 is (B,K)-centered. Then (51) becomes

η(B̂−1
x B(0, r1)) > η(D̂−1

sp B(0, r1)).

It follows, using Lemma 5.4, that B(0, r1) and B̂−1
x (B(0, r1)) are disjoint. By (50),

this implies that
η
(
B̂−1
x (B(0, r1))

)
≤ (1 + α̃−1)δ.

Moreover, η(B(0, r1)) ≤ η(D̂−1
sp B(0, r1)) ≤ η(B̂−1

x B(0, r1)) and so the previous
relation implies that

η(B(0, r1)) ≤ (1 + α̃−1)δ.

Using (50) once more, we conclude that η(B(0, ε−1)) ≤ 2(1 + α̃−1)δ. This implies
the conclusion of the proposition (as before, the factor on the right hand side can
be avoided replacing δ by a convenient multiple throughout the argument), and so
the proof of the proposition is complete.
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5.3. Mass close to the vertical. Next, we are going to prepare the proof of
Proposition 4.10. A Möbius transformation h is a γ0-deformation of f(z) = λz if
h(z) = (az + b)/(cz + d) for some choice of the coefficients satisfying

max
{∣∣ |a|
|λ|
− 1
∣∣, ∣∣b∣∣, ∣∣c∣∣, ∣∣|d| − 1

∣∣} < γ0.

Lemma 5.7. Given β0, σ0 ∈ (0, 1) there are γ0 > 0 and N0 ∈ N such that for any
f(z) = λz and g(z) = Λz with |λ| ≤ β0|Λ| and |Λ| ≤ σ0, and for any γ0-deformation
f̃ of f , we have

f̃(gN0(B(0, r))) ∩ gN0(B(0, r)) = ∅.
for any r ∈ [0, 1] such that f̃(B(0, r))6⊂g(B(0, r)).

Proof. Fix N0 ∈ N such that

|Λ|N0−1 ≤ σN0−1
0 ≤ 1− β0

100
(52)

and γ0 > 0 given by

γ0 =
1− β0

100
<

1
100

(53)

Write f̃(z) = (az + b)/(cz + d). If f̃(0) = 0 then b = 0 and (53) gives

|f̃(z)| ≤ |az|
|d| − |c|

≤ 1 + γ0

1− 2γ0
|λz| ≤ β−1

0 |λz| ≤ |Λz|

whenever |z| ≤ 1. This means that f̃(B(0, r)) ⊂ g(B(0, r)) for all r ≤ 1, in which
case we have nothing to do. So, let us suppose that b 6= 0. Take

r0 =
10|b|

|Λ|(1− β0)
.

Then |f̃(z)| ≤ |Λz| for every |z| ∈ [r0, 1]. Indeed,

|f̃(z)| ≤ |az|+ |b|
|d| − |c|

≤ |λ|(1 + γ0) + |Λ|(1− |β0|)/10
1− 2γ0

|z|

and, in view of (53), the right hand side is bounded by

β0(1 + γ0) + 10γ0

1− 2γ0
|Λz| ≤ β0 + 20γ0

1− 2γ0
|Λz| ≤ |Λz|.

This gives that f̃(B(0, r)) ⊂ g(B(0, r)) for every r ∈ [r0, 1]. Now consider r ∈ [0, r0].
By (52),

|Λ|N0r ≤ |Λ|N0r0 ≤
|Λ|(1− β0)

100
10|b|

|Λ|(1− β0)
≤ |b|

10
≤ |b|

5|d|
and that means that

gN0(B(0, r)) ⊂ B
(
0,
|b|

5|d|
)
. (54)

The relation (53) also leads to

|f̃ ′(z)| ≤ |ad|+ |bc|
(|d| − |cz|)2

≤ |λ|(1 + γ0)2 + (γ0|λ|)2

(1− 2γ0)2

for all |z| ≤ 1. Hence, using (53) once more,

|f̃ ′(z)| ≤ 1 + 4γ0

1− 4γ0
|λ| ≤ β−1

0 |λ| ≤ |Λ| ≤ 1
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That implies

f̃
(
B
(
0,
|b|

5|d|
))
⊂ B

( b
d
,
|b|

5|d|
)

(55)

From (54) and (55) we get that gN0(B(0, r))∩ f̃(gN0(B(0, r))) = ∅ for all r ∈ [0, r0].
This completes the proof of the lemma. �

Lemma 5.8. Given β0, σ0 ∈ (0, 1) there exist γ0 > 0 and N0 ∈ N such that for
any f(z) = λz and g(z) = Λz with |λ| ≤ β0|Λ| and |λ| ≤ σ0, and for any g̃ whose
inverse is a γ0-deformation of g, we have

fN0(B(0, r)) ∩ g̃−1(fN0(B(0, r))) = ∅

for any r ∈ [0, 1] such that g̃−1(B(0, r)) 6⊂f−1(B(0, r)).

Proof. Fix N0 ≥ 1 such that

|λ|N0 ≤ σN0
0 ≤ 1− β0

100
. (56)

Fix γ0 > 0 such that

γ0 =
1− β0

100
<

1
100

. (57)

Write g̃(z) = (az + b)/(cz + d). Suppose that b = 0. The assumption that g̃−1 is a
γ0-deformation of g−1, together with (57), gives

|g̃−1(z)| ≤ |dz|
|a| − |c|

≤ 1 + γ0

1− 2γ0
|Λ−1z| ≤ β0|Λ−1z| ≤ |λ−1z|

whenever |z| ≤ 1. This means that g̃−1(B(0, r)) ⊂ f−1(B(0, r)) for every r ≤ 1, in
which case there is nothing to do. Now, let us suppose that b 6= 0. Take

r0 =
10|b||λ|
(1− β0)

.

Then |g̃−1(z)| ≤ |λ−1z| for every |z| ∈ [r0, 1]. Indeed,

|g̃1(z)| ≤ |dz|+ |b|
|a| − |c|

≤ |Λ
−1|(1 + γ0) + |(1− |β0|)/(10|λ|)

1− 2γ0
|z|

and, in view of (57), the right hand side is bounded by

β0(1 + γ0) + 10γ0

1− 2γ0
|λ−1z| ≤ β0 + 20γ0

1− 2γ0
|λ−1z| ≤ |λ−1z|.

This means that g̃−1(B(0, r)) ⊂ f−1(B(0, r)) for every r ∈ [r0, 1]. Now consider
r ∈ [0, r0]. By (56)

|λ|N0r ≤ |λ|N0r0 ≤
(1− β0)

100
10|b||λ|
(1− β0)

≤ |bλ|
10
≤ |bλ|

5|a|
and that means that

fN0(B(0, r)) ⊂ B
(
0,
|bλ|
5|a|

)
⊂ B

(
0,
|b|

5|a|
)
. (58)

Recalling that |λ| ≤ min{1, |Λ|}, the relation (57) also gives

|(g̃−1)′(z)| ≤ |ad|+ |bc|
(|a| − |c|)2

≤ |Λ
−1|(1 + γ0)2 + γ2

0

(1− 2γ0)2
≤ 2|λ−1|
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for all |z| ≤ 1. This implies

g̃−1
(
B
(
0,
|bλ|
5|a|

))
⊂ B

( b
a
,

2|b|
5|a|

)
. (59)

From (58) and (59) we get that fN0(B(0, r)) ∩ g̃−1(fN0(B(0, r))) = ∅ for every
r ∈ [0, r0]. This completes the proof of the lemma. �

5.4. Proof of Proposition 4.10. If d(A,B) < γ then every B̂−1
x is a (Cγ)-

deformation of f = Â−1
x , where the constant C = supx∈X |θx| depends only on

A. Indeed,

Bx =
(
ax bx
cx dx

)
with |ax − θx|, |bx|, |cx|, |dx − θ−1

x | < γ

yields

B̂−1
x =

dxz − bx
−cxz + ax

=
dxθ
−1
x z − bxθ−1

x

−cxθ−1
x z + axθ

−1
x

with |dxθ−1
x − θ−2

x |, |bxθ−1
x |, |cxθ−1

x |, |axθ−1
x − 1| < γ|θx|−1 ≤ Cγ|θx|−2. Take

f = Â−1
x and g = D̂−1

x for each x ∈ X−.

Observe that f(z) = |θx|−2|z| and g(z) = σ−2
x |z|. Since σx ≤ β|θx| and σx ≥ σ−1

(see Lemma 4.3), we may apply Lemma 5.7 with β0 = β2 and σ0 = σ2. Using
also the observation in the previous paragraph, we get that there exist γ− > 0 and
N− ∈ N such that

B̂−1
x (D̂−N−x (B(0, r))) ∩ D̂−N−x (B(0, r)) = ∅ for x ∈ X−

if d(A,B) < γ− and r ∈ [0, 1] is such that B̂−1
x (B(0, r)) 6⊂D̂−1

x (B(0, r)). Now take

f = D̂x and g = Âx for each x ∈ X+.

Then f(z) = σ2
x|z| and g(z) = |θx|2|z| and so we are in the setting of Lemma 5.8,

with β0 = β2 and σ0 = σ2. In this way we find γ+ > 0 and N+ ∈ N such that

B̂−1
x (D̂N+

x (B(0, r))) ∩ D̂N+
x (B(0, r)) = ∅ for x ∈ X+

if d(A,B) < γ+ and r ∈ [0, 1] is such that B̂−1
x (B(0, r)) 6⊂D̂−1

x (B(0, r)). To complete
the proof of the proposition, just take γ = min{γ−, γ+} and N = max{N−, N+}.

6. Consequences of Theorem C

In this section we deduce Theorem B and Theorem D.

6.1. Proof of Theorem B. The main step is the following lemma. Let λ be the
Lebesgue measure on the unit interval I, and let ‖η‖ denote the total variation of
a signed measure η.

Lemma 6.1 (Avila). Let X be a metric space such that every bounded closed
subset is compact, and let ν be any Borel probability measure in X whose support
Z = supp ν is bounded.

For every ε > 0 there is δ > 0 and a weak∗ neighborhood V of ν such that every
probability µ ∈ V whose support is contained in Bδ(Z) may be written as φ∗q = µ
for some probability q on Z × I satisfying ‖q − (ν × λ)‖ < ε and some measurable
map φ : Z × I → X such that d(φ(x, t), x) < ε for all x ∈ Z.
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Proof. We claim that for any δ > 0 there exists a cover Q of Bδ(Z) by disjoint
measurable sets Qi, i = 1, . . . , n with ν(Qi) > 0 and ν(∂Qi) = 0 and diamQi <
12δ. This can be seen as follows. For each x ∈ Z take rx ∈ (δ, 2δ) such that
ν(∂B(x, rx)) = 0. Then {B(x, rx) : x ∈ Z} is a cover of the closure of Bδ(Z),
a bounded closed set. Let {V1, V2, . . . , Vk} be a finite subcover. By construction,
diamVi < 4δ and ν(Vi) > 0 and ν(∂Vi) = 0 for every i. Consider the partition P
of ∪ki=1Vi into the sets V ∗1 ∩ · · · ∩V ∗k , where each V ∗i is either Vi or its complement.
Define

Q1 = V1 ∪ {P ∈ P : ν(P ) = 0 and P ⊂ Vi with Vi ∩ V1 6= ∅}.

Then define Q2 ⊂ X as follows. If V2 ⊂ Q1 then Q2 = ∅; otherwise, notice that
ν(V2 \Q1) > 0, and then take

Q2 = V2 ∪ {P ∈ P : ν(P ) = 0 and P ⊂ Vi with Vi ∩ V2 6= ∅} \Q1

More generally, for every 2 ≤ l ≤ k, assume that Q1, . . . , Ql−1 have been defined
and then let Ql = ∅ if Vl ⊂ ∪l−1

i=1Qi and

Ql = Vl ∪ {P ∈ P : ν(P ) = 0 and P ⊂ Vi with Vi ∩ Vl 6= ∅} \ ∪l−1
i=1Qi

if ν(Vl \ ∪l−1
i=1Qi) > 0. Those of these sets Qi that are non-empty form a cover Q

as in our claim.
Proceeding with the proof of the lemma, take δ = ε/12 and assume that the

neighborhood V is small enough that
n∑
i=1

|µ(Qi)− ν(Qi)| < ε for every µ ∈ V.

Let Zi = supp ν ∩ Qi for each i = 1, . . . , n. Clearly, ν(Zi) = ν(Qi). Let q be the
measure on Z × I that coincides with

µ(Qi)
ν(Qi)

(ν × λ)

restricted to each Zi × I. For each i, let ai,j , j ∈ J(i) be the atoms of µ contained
in Qi (the set J(i) may be empty). Moreover, let Ii,j , j ∈ J(i) be disjoint subsets
of I such that

λ(Ii,j) =
pi,j
µ(Qi)

for all j ∈ J(i),

where pi,j = ν(ai,j). Denote Ii = I \ ∪j∈J(i)Ii,j . Then

q
(
Zi × Ii

)
= µ(Qi)−

∑
j∈J(i)

pi,j = µ
(
Qi \ {ai,j : j ∈ J(i)}).

The assumption implies that X is a polish space, that is, a complete separable met-
ric space. Since all Borel non-atomic probabilities on polish spaces are isomorphic
(see Ito [19, § 2.4]), the previous equality ensures that there exists an invertible
measurable map

φi : Zi × Ii → Qi \ {ai,j : j ∈ J(i)}
mapping the restriction of q to the restriction of µ. By setting φ ≡ ai,j on each
Zi × Ii,j we extend φi to a measurable map Zi × I → Qi that still sends the
restriction of q to the restriction of µ. Gluing all these extensions we obtain a
measurable map φ : Z × I → X such that φ∗q = µ. By construction, φ(x, t) ∈ Qi



CONTINUITY OF LYAPUNOV EXPONENTS 31

for every x ∈ Zi and t ∈ I. This implies that d(φ(x, t), x) ≤ diamQi < ε for all
(x, t) ∈ Z × I. Finally,

‖q − (ν × λ)‖ =
n∑
i=1

∥∥(µ(Qi)
ν(Qi)

− 1
)
(ν × λ) | (Zi × I)

∥∥
=

n∑
i=1

|µ(Qi)− ν(Qi)| < ε.

The proof of the lemma is complete. �

Now, given ρ > 0, let ν be a probability measure in GL(2,C) with compact
support. Consider X = supp ν × I, p = ν × λ and A : X → GL(2,C) given by
A(x, t) = x. From Theorem C, there is ε > 0 such that |λ±(A, p) − λ±(B, q)| < ρ
for all (B, q) such that d(p, q) < ε and d(A,B) < ε. On the other hand, Lemma 6.1
implies that there exist a weak∗ neighborhood V and δ such that if ν′ ∈ V and
supp ν′ ⊂ Bδ(supp ν) then there exist B : X → GL(2,C) and a probability measure
q on X such that d(p, q) < ε, d(A,B) < ε and ν′ = B∗q. Noting that λ±(ν) =
λ±(A, p) and λ±(ν′) = λ±(B, q), we obtain Theorem B.

6.2. Proof of Theorem D. Recall that we denote M = X Z.

Lemma 6.2. Let (µk)k be a sequence of probabilities on M converging to µ in the
weak∗ topology. Let (mk)k be a sequence of probabilities on M × P(C2) projecting
down to (µk)k. Then there exists a subsequence of (mk)k converging, in the weak∗

topology, to some probability m that projects down to µ.
In particular, the spaceM(p) of probabilities measures on M×P(C2) that project

down to µ is compact for the weak∗ topology.

Proof. Since M and M×P(C2) are polish spaces, we may apply Prohorov’s theorem
(see Billingsley [4, § 6]) in either of these spaces: a sequence of probabilities (ξk)k
has weak∗-converging subsequences if and only if for each ε > 0 there is a compact
set Kε such that ξk(Kε) > 1 − ε for any k ≥ 1. By assumption, (µk)k converges
to µ in the weak∗ topology. Thus, given any ε > 0, there is some compact set
Kε ⊂ M such that µk(Kε) > 1 − ε, for any k ≥ 1. Then K̂ε = Kε × P(C2) is
compact and mk(K̂ε) = µk(Kε) > 1 − ε for any k ≥ 1. This ensures that (mk)k
has weak∗-converging subsequences, as claimed. Considering the special case when
the sequence (µk)k is constant equal to µ, one gets the last part of the lemma. �

Lemma 6.3. Let Ak : X → GL(2,C), k ≥ 1 be such that d(Ak, A) → 0, and let
FAk : M × P(C2) → M × P(C2), k ≥ 1 be the associated projective cocycles. Let
(mk)k be a sequence of probability measures on M × P(C2) such that mk projects
down to µ for all k. If (mk)k converges to m, then ((FAk)∗mk)k converges to
(FA)∗m, in the weak∗ topology.

Proof. Let ϕ : M × P(C2) → R be any uniformly continuous bounded function.
By the theorem of Lusin, given any ε > 0 there is some compact set K ⊂ M such
that µ(K) > 1 − ε and A : M → SL(2,C) is continuous restricted to K. Then
ϕ ◦ FA : K × P(C2)→ R is continuous and so, by the extension theorem of Tietze,
it admits some continuous extension ϕ̃ : M × P(C2)→ R to the whole space, with
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‖ϕ̃‖ ≤ ‖ϕ‖. We have

|
∫
ϕd(FAk)∗mk −

∫
ϕd(FA)∗m| = |

∫
ϕ ◦ FAk dmk −

∫
ϕ ◦ FA dm|

≤ |
∫
ϕ ◦ FAk dmk −

∫
ϕ ◦ FA dmk|+ |

∫
ϕ ◦ FA dmk −

∫
ϕ ◦ FA dm|

The first term on the right hand side converges to zero when k → ∞, because
ϕ ◦ FAk converges uniformly to ϕ ◦ FA. The last term admits the following bound:

|
∫
ϕ ◦ FA dmk −

∫
ϕ ◦ FA dm|

≤ |
∫
ϕ̃ dmk −

∫
ϕ̃ dm|+ 2‖ϕ‖(mk +m)(Kc × P(C2))

≤ |
∫
ϕ̃ dmk −

∫
ϕ̃ dm|+ 4‖ϕ‖µ(Kc)

The first term on the right hand side converges to zero when k → ∞, because ϕ̃
is continuous, and the second term is bounded by 4‖ϕ‖ε. Since ε > 0 is arbitrary,
this proves that ∫

ϕd(FAk)∗mk →
∫
ϕd(FA)∗m as k →∞,

for any uniformly continuous bounded function ϕ. So (see Theorem 2.1 in Billings-
ley [4]), the sequence (FAk)∗mk converges weakly∗ to (FA)∗m, as claimed. �

Corollary 6.4. Suppose that λ+(A, p) > 0 and let mu be the u-state defined by
(12). Let (Ak)k be such that d(Ak, A) → 0 as k → ∞. For each k ≥ 1, let mu

k be
an invariant u-state for (Ak, p) realizing λ+(Ak, p). Then (mu

k)k converges to mu

in the weak∗ topology.

Proof. In view of the compactness Lemma 6.2, we only have to show that every
accumulation point m of the sequence (mu

k)k coincides with mu. Restricting to a
subsequence if necessary, we may suppose that m is the limit of (mu

k)k, not just an
accumulation point. We claim that m is an F -invariant probability. By definition,
every mu

k projects down to µ. Then, we may use Lemma 6.3 to conclude that
(FAk)∗mu

k converges to (FA)∗m as k → ∞. Since each mu
k is assumed to be FAk -

invariant, this proves that (FA)∗m = m, as claimed. The assumption implies that
(φAk)k converges to φA, uniformly on M × P(C2). Consequently,∫

φA dm = lim
∫
φAk dmu

k .

In addition, using Theorem C:

lim
∫
φAk dmu

k = limλ+(Ak, p) = λ+(A, p) =
∫
φA dm

u

This proves that m realizes λ+(A, p). From Remark 3.8 we conclude that m = mu.
This completes the proof of the corollary. �

Let us deduce Theorem D. We only have to show that

µ({x ∈M : ∠(EuA,x, E
u
Ak,x) < ε})→ 1 when k →∞,

as the statement about stable spaces EsA is analogous. By Theorem C, the assump-
tion λ+(A, p) > 0 implies λ+(Ak, p) > 0 for every large k. Let mu and mu

k , k ≥ 1 be
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u-states for A and Ak, k ≥ 1 defined as in (12). By Corollary 6.4, (mu
k)k converges

to mu in the weak∗ topology. The map ψ : M → P(C2), ψ(x) = EuA,x is measurable
map and its graph has full mu-measure. By the theorem of Lusin, given any ε > 0
we may find a compact set K ⊂M such that the restriction ψK to K is continuous
and the mu-measure of its graph is bigger than 1 − ε. Given δ > 0, let V be an
open neighborhood of the graph of ψK such that

V ∩
(
K × P(C2)

)
⊂ Vδ := {(x, ξ) ∈ K × P(C2) : ∠(ξ, ψ(x)) < δ}.

By the definition of mu
k ,

mu
k(Vδ) = µ({x ∈ K : d(EuAk,x

, EuA,x) < δ}).

By weak∗ convergence, lim inf mu
k(V ) ≥ mu(V ) ≥ 1 − ε. On the other hand,

mu
k(K × P(C2)) = µ(K) ≥ 1− ε for every k. Thus,

mu
k

(
Vδ
)
≥ mu

k

(
V ∩

(
K × P(C2)

))
≥ 1− 3ε

for every large k. Hence, µ({x ∈M : d(EuAk,x
, EuA,x) < δ}) ≥ 1− 3ε for every large

k. Since δ and ε are arbitrary, this proves Theorem D.

7. Concluding remarks

We are going to describe a construction of points of discontinuity of the Lyapunov
exponents as functions of the cocycle, relative to some Hölder topology. This builds
on and refines [5, 6, 8, 29], where it is shown that Lyapunov exponents are often
discontinuous relative to the C0 topology. In the final section we list a few related
open problems.

7.1. An example of discontinuity. Let M = Σ2 be the shift with 2 symbols,
endowed with the metric d(x,y) = 2−N(x,y), where

N(x,y) = sup{n ≥ 0 : xn = yn whenever |n| < N}.

For any r ∈ (0,∞), the Cr norm in the space of r-Hölder continuous functions
L : M → L(Cd,Cd) is defined by

‖L‖r = sup
x∈M

‖L(x)‖+ sup
x6=y

‖L(x)− L(y)‖
d(x,y)r

.

Consider on M the Bernoulli measure associated to any probability vector (p1, p2)
with positive entries and p1 6= p2. Given any σ > 1, consider the (locally constant)
cocycle A : M → SL(2,R) defined by

A(x) =
(
σ 0
0 σ−1

)
if x0 = 1

and

A(x) =
(
σ−1 0

0 σ

)
if x0 = 2.

Theorem 7.1. For any r > 0 such that 22r < σ there exist B : M → SL(2,R)
with vanishing Lyapunov exponents and such that ‖A − B‖r is arbitrarily close to
zero.
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Since the Lyapunov exponents λ±(A) = ±|p1−p2| log σ of A : M → SL(2,R) are
non-zero, it follows that A is a point of discontinuity for the Lyapunov exponents
relative to the Cr topology.

The proof of Theorem 7.1 is an adaptation of ideas of Knill [25] and Bochi [5, 6].
Here is an outline. Notice that the unperturbed cocycle A preserves both the
horizontal line bundle Hx = {x} ×R(1, 0) and the vertical line bundle Vx = {x} ×
R(0, 1). Then, the Oseledets subspaces must coincide with Hx and Vx almost
everywhere. We choose cylinders Zn ⊂ M whose first n iterates f i(Zn), 0 ≤ i ≤
n−1 are pairwise disjoint. Then we construct cocycles Bn by modifying A on some
of these iterates so that

Bnn(x)Hx = Vfn(x) and Bnn(x)Vx = Hfn(x) for all x ∈ Zn.

We deduce that the Lyapunov exponents of Bn vanish. Moreover, by construction,
each Bn is constant on every atom of some finite partition of M into cylinders. In
particular, Bn is Hölder continuous for every r > 0. From the construction we also
get that

‖Bn −A‖r ≤ const
(
22r/σ

)n/2
(60)

decays to zero as n → ∞. This is how we get the claims in the theorem. Now let
us fill-in the details of the proof.

Let n = 2k+1 for some k ≥ 1 and Zn = [0; 2, . . . , 2, 1, . . . , 1, 1] where the symbol
2 appears k times and the symbol 1 appears k + 1 times. Notice that the f i(Zn),
0 ≤ i ≤ 2k are pairwise disjoint. Let

εn = σ−k and δn = arctan εn. (61)

Define R : M → SL(2,R) by

R(x) = rotation of angle δn if x ∈ fk(Zn)

R(x) =
(

1 0
εn 1

)
if x ∈ Zn ∪ f2k(Zn)

R(x) = id in all other cases.

and then take Bn = ARn.

Lemma 7.2. Bnn(x)Hx = Vfn(x) and Bnn(x)Vx = Hfn(x) for all x ∈ Zn.

Proof. Notice that for any x ∈ Zn,

Bkn(x)Hx = R(εn, 1) and Bkn(x)Vx = Vfk(x)

Bk+1
n (x)Hx = Vfk+1(x) and Bk+1

n (x)Vx = R(−εn, 1)

B2k
n (x)Hx = Vf2k(x) and B2k

n (x)Vx = R(−1, εn).

The claim follows by iterating one more time. �

Lemma 7.3. There exists C > 0 such that ‖Bn −A‖r ≤ C
(
22r/σ

)k for every n.

Proof. Let Ln = A−Bn. Clearly, sup ‖L‖ ≤ sup ‖A‖ ‖ id−Rn‖ and this is bounded
by σεn. Now let us estimate the second term in the definition (60). If x and y are
not in the same cylinder [0; a] then d(x,y) = 1, and so

‖Ln(x)− Ln(y)‖
d(x,y)r

≤ 2 sup ‖Ln‖ ≤ 2σεn. (62)
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From now on we suppose x and y belong to the same cylinder. Then, since A is
constant on cylinders,

‖Ln(x)− Ln(y)‖
d(x,y)r

=
‖A(x)(Rn(x)−Rn(y))‖

d(x,y)r
≤ σ ‖Rn(x)−Rn(y)‖

d(x,y)r
.

If neither x nor y belong to Zn∪fk(Zn)∪f2k(Zn) then Rn(x) and Rn(y) are both
equal to id, and so the expression on the right vanishes. If x and y belong to the
same f i(Zn) then Rn(x) = Rn(y) and so, once more, the expression on the right
vanishes. We are left to consider the case when one of the points belongs to some
f i(Zn) and the other one does not. Then d(x,y) ≥ 2−2k and so, using once more
that ‖ id−Rn‖ ≤ εn at every point,

‖Ln(x)− Ln(y)‖
d(x,y)r

≤ σ ‖Rn(x)−Rn(y)‖
d(x,y)r

≤ 2σεn22kr.

Noting that this bound is worst than (62), we conclude that

‖Ln‖r ≤ σεn + 2σεn22kr ≤ 3σ
(
22r/σ

)k
Now it suffices to take C = 3σ. �

Now we want to prove that λ±(Bn) = 0 for every n. Let µn be the normalized
restriction of µ to Zn and fn : Zn → Zn be the first return map (defined on a full
measure subset). Indeed,

Zn =
⊔
b∈B

[0;w, b, w] (up to a zero measure subset)

where w = (1, . . . , 1, 2, . . . , 2, 2) and the union is over the set B of all finite words
b = (b1, . . . , bs) not having w as a sub-word. Moreover,

fn | [0;w, b, w] = fn+s | [0;w, b, w] for each b ∈ B.

Thus, (fn, µn) is a Bernoulli shift with an infinite alphabet B and probability vector
given by pb = µn([0;w, b, w]). Let B̂n : Zn → SL(2,R) be the cocycle induced by
B over fn, that is,

B̂n | [0;w, b, w] = Bn+s
n | [0;w, b, w] for each b ∈ B.

It is a well known basic fact (see [38, Proposition 2.9], for instance) that the Lya-
punov spectrum of the induced cocycle is obtained multiplying the Lyapunov spec-
trum of the original cocycle by the average return time. In our setting this means

λ±(B̂n) =
1

µ(Zn)
λ±(Bn).

Therefore, it suffices to prove that λ±(B̂n) = 0 for every n.
Indeed, suppose the Lyapunov exponents of B̂n are non-zero and let Eux ⊕Esx be

the Oseledets splitting (defined almost everywhere in Zn). Consider the probability
measures mu and ms for the cocycle B̂n defined as in (12). The key observation
is that, as a consequence of Lemma 7.2, the cocycle B̂n permutes the vertical and
horizontal subbundles:

B̂n(x)Hx = Vfn(x) and B̂n(x)Vx = Hfn(x) for all x ∈ Zn. (63)

Let m be the measure defined on M × P(R2) by

mn(X) =
1
2

(µn ({x ∈ Zn : Vx ∈ X}) + µn ({x ∈ Zn : Hx ∈ X}) .
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That is, mn projects down to µn and its disintegration is given by x 7→ (δHx+δVx)/2.
It is clear from (63) that mn is B̂n-invariant.

Lemma 7.4. The probability measure mn is ergodic.

Proof. Suppose there is an invariant set X ⊂M × P(R2) with mn(X ) ∈ (0, 1). Let
X0 be the set of x ∈ Zn whose fiber X ∩ ({x} × P(R2)) contains neither Hx nor
Vx. In view of (63), X0 is an fn-invariant set and so its µn-measure is either 0 or
1. Since mn(X ) > 0, we must have µn(X0) = 0. The same kind of argument shows
that µn(X2) = 0, where X2 is the set of x ∈ Zn whose fiber contains both Hx and
Vx. Now let XH be the set of x ∈ Zn whose fiber contains Hx but not Vx, and
let XV be the set of x ∈ Zn whose fiber contains Vx but not Hx. The previous
observations show that XH ∪XV has full µn-measure and it follows from (63) that

fn(XH) = XV and fn(XV ) = XH .

Thus, µn(XH) = 1/2 = µn(XV ) and f2
n(XH) = XH and f2

n(XV ) = XV . This
is a contradiction because fn is Bernoulli and, in particular, the second iterate is
ergodic. �

By Lemma 3.6, the invariant measure mn is a linear combination of mu and ms.
Then, in view of Lemma 7.4, mn must coincide with either ms and mu. This is a
contradiction, because the conditional probabilities of mn are supported on exactly
two points on each fiber, whereas the conditional probabilities of either mu and ms

are Dirac masses on a single point. This contradiction proves that the Lyapunov
exponents of B̂n do vanish for every n, and that concludes the proof of Theorem 7.1.

The same kind of argument shows that, in general, one can expect continuity to
hold when some of the probabilities pi vanishes:

Remark 7.5. (Kifer [22]) Take d = 2, a probability vector p = (p1, p2) with non-
negative coefficients, and a cocycle A = (A1, A2) defined by

A1 =
(
σ 0
0 σ−1

)
and A2 =

(
0 −1
1 0

)
,

where σ > 1. By the same arguments as we used before, λ±(A, p) = 0 for every
p ∈ Λ2. In this regard, observe that the cocycle induced by A over the cylinder [0; 2]
exchanges the vertical and horizontal directions, just as in (63). Now, it is clear
that λ±(A, (1, 0)) = ± log σ. Thus, the Lyapunov exponents are discontinuous at
(A, (1, 0)).

7.2. Open problems.

Problem 7.6. Does continuity extend to
(a) unbounded cocycles satisfying an integrability condition ?
(b) locally constant cocycles over Bernoulli shifts ?
(c) locally constant cocycles over Markov shifts ?
(d) locally constant cocycles in any dimension d ?
(e) Hölder continuous cocycles satisfying the fiber bunched condition ?

In (a) we have in mind the condition log ‖A±1‖ ∈ L1(µ). Since it involves both
the cocycle and the probability measure, in this case the topology should be defined
in the space of pairs (A, p). By locally constant in (b) and (c) we mean that A(x)
depends on a bounded number of coordinates of x. We have treated the case when
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A(x) depends only on the zeroth coordinate of x. In (d) it suffices to consider the
largest Lyapunov exponent: then, using exterior powers in a well-known way (see
Peres [33], for instance), one would get continuity for all Lyapunov exponents. An
interesting special case to look at are symplectic cocycles, that is, such that every
A(x) preserves some given symplectic form. See [3] for the definition of the fiber
bunching condition in (e). By Theorem 7.1 we can not expect continuity to hold
for general Hölder cocycles. On the other hand, the hypotheses of the theorem is
incompatible with fiber bunching.

Problem 7.7. Can we say more about the regularity of the Lyapunov exponents
as functions of the cocycle: Hölder continuity ? Lipschitz continuity? Differentia-
bility?

Partial answers and related results were obtained by Le Page [32] and Peres [33].
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sures on groups (Oberwolfach, 1981), volume 928 of Lecture Notes in Math., pages 258–303.

Springer, 1982.
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142, 1989.
[33] Y. Peres. Analytic dependence of Lyapunov exponents on transition probabilities. In Lya-

punov exponents (Oberwolfach, 1990), volume 1486 of Lecture Notes in Math., pages 64–80.
Springer, 1991.

[34] V. A. Rokhlin. On the fundamental ideas of measure theory. A. M. S. Transl., 10:1–52, 1952.

Transl. from Mat. Sbornik 25 (1949), 107–150.
[35] D. Rudolph. Fundamentals of measurable dynamics. Oxford Science Publications. The

Clarendon Press Oxford University Press, 1990. Ergodic theory on Lebesgue spaces.

[36] D. Ruelle. Analyticity properties of the characteristic exponents of random matrix products.
Adv. in Math., 32:68–80, 1979.

[37] B. Simon and M. Taylor. Harmonic analysis on SL(2,R) and smoothness of the density of

states in the one-dimensional Anderson model. Comm. Math. Phys., 101:1–19, 1985.
[38] M. Viana. Lyapunov exponents of Teichmüller flows. In Partially hyperbolic dynamics, lam-

inations, and Teichmüller flow, volume 51 of Fields Inst. Commun., pages 139–201. Amer.

Math. Soc., 2007.

IMPA, Est. D. Castorina 110, 22460-320 Rio de Janeiro, RJ, Brazil

E-mail address: bocker@impa.br, viana@impa.br


