
THE EDDY VISCOSITY FOR GRAVITY WAVES PROPAGATING
OVER TURBULENT SURFACES

JOSSELIN GARNIER† AND ANDRÉ NACHBIN‡

Abstract. This paper analyses (one-dimensional) nonlinear wave propagation over a disordered
fluid body having a small viscosity. The lower boundary is disordered and modelled by a random
process. As a pulse shaped nonlinear wave propagates over this turbulent boundary, the velocity
and wave elevation are viewed as random fields. Starting from first principles the eddy viscosity is
characterized and shown to depend on different scales. This is captured as the leading order pseudo-
differential operator resulting from the asymptotic analysis of stochastic differential equations. A
discussion is provided showing that mean-field theory would have not captured the correct attenuation
rate for the large scale object. Numerical results are provided illustrating the accuracy of the eddy
viscosity expression.
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1. Introduction. In this paper we address the (one-dimensional) propagation
of nonlinear (free surface) waves over a disordered fluid body having a small viscos-
ity. The lower boundary is a disordered surface modelled by a random process. As
a pulse shaped nonlinear wave propagates over this turbulent boundary, the velocity
and wave elevation are viewed as random fields. We assume that the typical ampli-
tude of the fluctuations of the (lower) turbulent boundary is small compared to the
average thickness of the fluid layer, and that the propagation distance is large. We
carry out an asymptotic analysis based on these assumptions. Our goal in this study
is to provide a tractable mathematical model that can accurately predict properties of
large-scale motion (the wave) in turbulent flows. Keeping this in mind, and starting
from first principles, we characterize the flow’s eddy viscosity due to the presence of
a turbulent boundary. This is done by applying an asymptotic stochastic analysis to
the Lagrangian formulation of the problem. Namely we start with a one-dimensional,
viscous shallow water system which is transformed into a Lagrangian frame by using
the Riemann invariants of the underlying inviscid, constant coefficient system. Ap-
plying a limit theorem for stochastic differential equations we characterize the flow
along the wavefront by a viscous Burgers equation, where its effective viscosity auto-
matically incorporates the turbulent (eddy) viscosity. Hence from first principles we
construct effective equations that accurately capture, along the large-scale, the effect
of the unpredictable fine-scale turbulent features of the flow, for this specific class of
problems. A preliminary communication reporting on the eddy viscosity has been
published in the Physical Review Letters [14].

It is important to note that we are not performing a mean-field theory. Our
asymptotic analysis provides the leading order stochastic dynamics through which a
Burgers-type equation can be characterized. Actually the Burgers’ diffusive-like term
is more general than an effective viscosity, but it reduces to such a term when the
turbulent surface’s correlation length is much smaller than the pulse width. The gen-
eral form of the diffusive like term is described through a pseudo-differential operator.
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It is clearly seen through the Fourier representation of this operator that the eddy
viscosity, in the more general setting, is scale dependent. This is along the direction
pointed out by some recent work such as for example Germano et al. [15] and Hughes
et al. [16].

We also remark that no a priori hypothesis is made on the turbulent viscosity,
as for example a stress-strain relation to be satisfied. A nice discussion on all these
modelling issues is given in Pope’s book [28]. In particular in chapter 10 Pope describes
turbulent-viscosity models and their underlying hypothesis, while in chapter 12 PDF
(probability density function) methods are introduced. The turbulent-viscosity models
provide strategies for defining, or estimating, the associated eddy viscosity of the flow.
We point out that in our study the eddy viscosity arises from the scaling adopted in
the analysis of the randomly driven pulse propagation. Moreover, through the limit
theorem provided by the probabilistic modelling adopted, we identify a stochastic
partial differential equation (SPDE) governing the dynamics. This is conceptually
different from the PDF methods in [28] where stochastic differential equations (SDEs),
say the Langevin model, are used to model random features of the velocity field
through the momentum balance equations. Nevertheless we found it interesting to
report how a SDE arises (also) from first principles in this simpler one-dimensional
model.

The fact that our flow is one-dimensional is a simplification that, as mentioned
above (c.f. also Pope, section, 1.2 [28]), allows for a theoretical study of “tractable
mathematical models that can accurately predict properties of turbulent flows”. As
mentioned in the same section “The large-scale motions are strongly influenced by the
geometry of the flow (i.e., by boundary conditions), and they control the transport and
mixing. The behaviour of the small-scale motions, on the other hand, is determined
almost entirely by the rate at which they receive energy from the large-scales, and by
the viscosity. Hence these small-scale motions have a universal character, independent
of the flow geometry”. This is the spirit of our analysis. The large-scale motion,
represented by the pulse shaped wave is strongly influenced by the geometry of the
turbulent boundary. Starting from the governing fluid equations we predict a universal
character (namely the eddy viscosity) which is independent of the particular small
scale features of the turbulent boundary’s geometry. We hope that our findings in
this particular wave scenario will stimulate further connections and further research
from experts in the field.

We give a brief background on the mathematical theory that has been developed
and which is along the lines of our study. The propagation of a linear pulse through
a random medium has been extensively studied (see for instance the review [3]).
In particular the O’Doherty-Anstey theory predicts that if the pulse is observed in
a Lagrangian frame that moves with a random velocity, then the pulse appears to
retain its shape up to a slow spreading and attenuation [26]. A rather convincing
heuristic explanation of this phenomenon is given in [7]. The mathematical treatment
of this issue is addressed in [7, 6, 8, 18, 19, 4] and migrated to shallow water waves in
[25]. An extension to dispersive water waves is provided in [11, 13, 21, 22]. We have
recently extended this theory to inviscid nonlinear waves in [12].

The paper is organized as follows. In Section 2 we introduce the nonlinear shallow
water wave model with a random depth together with the corresponding Riemann
invariants. In Section 3 we derive the effective viscous Burgers equation governing
the evolution of the front pulse. We discuss the properties of this effective equation
in Section 4 and identify the eddy viscosity term.

2



2. Shallow water waves with random depth. We develop an asymptotic
probabilistic theory for the viscous shallow water equations in the regime of long waves
propagating over a rapidly varying disordered (random) topography. This choice is
based on our long experience in this problem [2, 11, 12, 13, 14, 21, 22, 23, 24, 25].
Nevertheless we believe it also applies to other convection-diffusion problems, where
waves interact with a turbulent surface (or layer) under time scales such that the wave
feels this surface as frozen in time.

The dimensionless shallow water equations are given by [9]

∂η

∂t
+

∂(1 + εh + αη)u

∂x
= 0,(2.1)

∂u

∂t
+

∂η

∂x
+ αu

∂u

∂x
= µ

∂2u

∂x2
,(2.2)

where η is the free surface elevation, u is the horizontal velocity component and the
reference shallow water speed is one. The fluid body is given by H(x, t) = 1+εh(x)+
αη(x, t). The parameter α is the ratio of the typical wave amplitude over the mean
depth. It governs the strength of the nonlinearity. The viscosity is given by µ. These
two parameters are assumed to be small. The parameter ε is the order of magnitude
of the fluctuations of the depth, which are described by the stationary zero-mean
random process h(x). The parameter ε is assumed to be small. We shall see that a
suitable scaling between ε, α, and µ to exhibit the interplay between these effects is

α = ε2α0, µ = ε2µ0,(2.3)

where α0 (resp. µ0) is the normalized nonlinear (resp. viscosity) parameter which is
a nonnegative number of order 1. As will be shown below, under this scaling (regime)
the eddy viscosity is fully characterized from first principles. Nonlinearity is not as
weak as indicated by the scaling (2.3), because we deal with propagation distances
and times of order ε−2. As a consequence the cumulative nonlinear effects are of order
one and the solution is considered all the way up to the shock formation time. In
fact scaling (2.3) has been chosen so that the nonlinear, viscosity and random effects
become of order 1 for propagation distances of order ε−2. Another problem of interest
is to investigate other regimes where a similar analysis can be performed.

The random process h is assumed to be stationary, to possess derivatives, to
satisfy the moment conditions E[h(0)] = 0, E[h(0)2] < ∞, and E[(∂xh(0))2] < ∞.
The autocorrelation function

φ0(x) = E[h(y)h(y + x)](2.4)

is also assumed to decay fast enough so that it belongs to L1/2, i.e. φ0 decays at
infinity fast enough to ensure the convergence of the integral

∫∞

−∞
|φ0(x)|1/2dx. In

particular this implies ergodicity for the process h. We define the correlation length
of the medium as

lc =

∫∞

0
|φ0(x)|dx

φ0(0)
.(2.5)

It represents the typical variation length scale of the random surface, namely the
topography.

In the sequel we will rewrite our system in a way that a Lagrangian formulation
follows directly. Then an asymptotic probabilistic theory (namely a limit theorem) for
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ordinary differential equations (ODEs) is applied, characterizing the eddy viscosity
and the underlying stochastic dynamical model.

We start by introducing the “deterministic” local propagation speed

c =
√

1 + αη,(2.6)

which does not include the term εh, but it is nevertheless random through the term
αη. We can reformulate the above equations in terms of c and u to obtain

∂c

∂t
+

α

2
c
∂u

∂x
+ αu

∂c

∂x
+

αε

2c

∂hu

∂x
= 0,(2.7)

∂u

∂t
+ αu

∂u

∂x
+

2c

α

∂c

∂x
= µ

∂2u

∂x2
.(2.8)

We define the Riemann invariants

A(x, t) =
αu − 2c + 2

α
, B(x, t) =

αu + 2c − 2

α
.(2.9)

If the viscosity parameter is vanishing (µ = 0) and the bottom is flat (ε = 0), then
we get back the standard left- and right-going modes (A and B, respectively) of
the hyperbolic system. In presence of nonlinearity, viscosity, and randomness the
Riemann invariants satisfy

∂A

∂t
+ (−1 + α

3A + B

4
)
∂A

∂x
=

ε

2

∂h(A + B)

∂x

1

1 + α(B − A)/4
+

µ

2

∂2(A + B)

∂x2
,(2.10)

∂B

∂t
+ (1 + α

A + 3B

4
)
∂B

∂x
= −ε

2

∂h(A + B)

∂x

1

1 + α(B − A)/4
+

µ

2

∂2(A + B)

∂x2
.(2.11)

Note that in absence of random perturbations ε = 0 and viscosity µ = 0, the two
Riemann invariants are constant along different characteristics. Taking into account
the fact that α = α0ε

2 and µ = ε2µ0, we can rewrite the evolution equations for A
and B in the following way, up to terms of order ε3:

∂

∂x

(

A
B

)

= Q(x)
∂

∂t

(

A
B

)

− ε
h′

2

(

1 1
1 1

)(

A
B

)

+ε2 α0

4

(

3A + B 0
0 A + 3B

)

∂

∂t

(

A
B

)

+ε2 µ0

2

(

1 1
1 1

)

∂2

∂t2

(

A
B

)

+ O(ε3),(2.12)

where h′ stands for the spatial derivative of h and

Q(x) =
1

1 + εh

(

1 + εh
2 εh

2

−εh
2 −1 − εh

2

)

.(2.13)

The system is completed by the initial condition corresponding to a right-going wave
incoming from the homogeneous half-space x < 0

A(x, t) = 0, B(x, t) = f(t − x), t < 0,(2.14)

where the function f is compactly supported in (0,∞).

4



3. Derivation of the effective equation for the front pulse. In this section
we perform a series of transformations to rewrite the evolution equations of the modes
by centering along the characteristic of the right-going mode. We shall then obtain a
upper-triangular system that can be integrated more easily. In a second step we shall
apply a limit theorem to this system to establish an effective nonlinear equation for
the front pulse.

The random topography affects the propagation of the Riemann invariants by
perturbing their characteristics, so that the matrix Q in Eq. (2.12) is not the identity
matrix. Two main effects can be distinguished: the diagonal terms describe random
corrections to the local speed, while the off-diagonal parts describe random coupling.
Our first goal is to center the propagation equations along the randomly perturbed
characteristics. This can be done by computing the eigenvalues and eigenvectors of
the matrix Q. The eigenvalues of the matrix Q(x) are ±γ(x) with γ(x) = (1+εh)−1/2.
The two eigenvectors form a basis so we introduce the matrix U

U =
1

2

(

(1 + εh)1/4 + (1 + εh)−1/4 (1 + εh)1/4 − (1 + εh)−1/4

(1 + εh)1/4 − (1 + εh)−1/4 (1 + εh)1/4 + (1 + εh)−1/4

)

(3.1)

which is such that

UQU−1 = γ(x)

(

1 0
0 −1

)

.

The propagation equation in this frame exhibits a propagation matrix that is diagonal
with x-dependent entries. We push the simplification forward by considering a new
spatial variable which is related to the travel time along the characteristics:

z(x) =

∫ x

0

γ(x′)dx′.(3.2)

We now introduce the modified modes
(

A1

B1

)

(z, t) = U

(

A
B

)

(x(z), t) exp

(

ε
h(x(z))

2

)

.(3.3)

Note that h′(x(z))
γ(x(z)) = d

dzh(x(z)). We still denote this quantity by h′. Finally we

consider the reference frame that moves with the right-going mode B1

τ = t − z,(3.4)

so that the equation for (A1, B1) reads

∂

∂z

(

A1

B1

)

=

(

2 0
0 0

)

∂

∂τ

(

A1

B1

)

− ε
h′

4

(

0 1
1 0

)(

A1

B1

)

+ε2 α0

4

(

3A1 + B1 0
0 A1 + 3B1

)

∂

∂τ

(

A1

B1

)

+ε2 µ0

2

(

1 1
1 1

)

∂2

∂τ2

(

A1

B1

)

+ O(ε3).(3.5)

Note that the random medium introduces a coupling between the two modes through
the term proportional to h′ as a consequence of multiple scattering. But these two
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modes also exchange energy through the nonlinearity and viscosity terms. This equa-
tion is very similar to Eq. (2.12), but the propagation matrix Q(x) has been simplified
into a matrix with a single non-vanishing (constant) entry. As mentioned earlier, this
is the upper-triangular system that can be more easily integrated in an ODE like fash-
ion, along the deterministic characteristics. This will give rise to an ODE, randomly
forced by the turbulent surface. The equation for B1 can be integrated as

B1(z, τ) =

∫ z

0

SB(y, τ)dy + f(τ),(3.6)

SB(y, τ) = −ε
h′(y)

4
A1(y, τ) + ε2 α0

4
(A1 + 3B1)

∂B1

∂τ
(y, τ)

+ε2 µ0

2

∂2(A1 + B1)

∂τ2
+ O(ε3).(3.7)

In this paper we consider large propagation distance z of order ε−2. We shall show
that A1 is of order ε, so that SB is of order ε2, and the integral in Eq. (3.6) will turn
out to be of order 1.

The equation for A1 can be integrated as

A1(z, τ) = −1

2

∫ τ

−∞

SA(z +
τ − s

2
, s)ds,(3.8)

SA(z, s) = −ε
h′(z)

4
B1(z, s) + ε2 α0

4
(3A1 + B1)

∂A1

∂τ
(z, s)

+ε2 µ0

2

∂2(A1 + B1)

∂τ2
+ O(ε3).(3.9)

The integral in Eq. (3.8) seems to have an infinite support (−∞, τ). However, we are
interested in the front pulse which means that we only consider local times τ lying in
some interval [−T, T ] with a fixed T of order 1. On the other hand, the contribution of
the negative axis can be bounded as we now discuss. Two cases can be distinguished.

Inviscid case µ0 = 0. The initial conditions (2.14) impose that A1 and B1 are
zero for τ < 0 and z = 0. The transport equations (3.5) then show that A1 and B1

are zero for τ < 0 whatever z ≥ 0. Thus the integral with respect to s in Eq. (3.8)
actually goes from 0 to τ . Furthermore Eq. (3.9) shows that SA is of order ε. This
allows us to claim that

sup
z∈[0,L/ε2],τ∈[−T,T ]

|A1(z, τ)| ≤ Kε and sup
z∈[0,L/ε2],τ∈[−T,T ]

|∂A1

∂τ
(z, τ)| ≤ Kε.(3.10)

Viscous case µ0 > 0. The viscous term in Eq. (3.5) is responsible for an instan-
taneous pulse spreading. We cannot claim anymore that the integral with respect
to s in Eq. (3.8) starts from 0. However we can a priori control the contribution of
the negative axis by using estimates of the heat kernel. The viscosity parameter is
of order ε2, so for propagation distances of order ε−2 the diffusion induced by the
viscosity into the negative axis τ < 0 is at most of order 1, and we get the following
estimate for τ ≤ 0:

sup
z∈[0,L/ε2]

(A2
1 + B2

1)(z, τ) ≤ CL exp

(

− 2τ2

µ0L

)

.

Substituting this estimate into Eqs. (3.8-3.9) establishes that the inequalities (3.10)
still hold true.
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We can now substitute the integral representation of A1 into the one of B1

B1(z, τ) = f(τ) − ε2

32

∫ z

0

h′(y)

∫ τ

−∞

h′(y +
τ − s

2
)B1(y +

τ − s

2
, s)dsdy

+ε2 3α0

4

∫ z

0

B1
∂B1

∂τ
(y, τ)dy + ε2 µ0

2

∫ z

0

∂2B1

∂τ2
(y, τ)dy + O(ε3(1 + z)).(3.11)

Note that we have eliminated the terms ε2A1∂τB1, ε2A1∂τA1, ε2B1∂τA1, as they are
of order ε3 and are negligible for propagation distance of order ε−2. We introduce the
re-scaled right-going mode

Bε
1(z, τ) = B1(

z

ε2
, τ)

which satisfies

Bε
1(z, τ) = f(τ) − 1

32

∫ z

0

h′(
y

ε2
)

∫ τ

−∞

h′(
y

ε2
+

τ − s

2
)Bε

1(y + ε2 τ − s

2
, s)dsdy

+
3α0

4

∫ z

0

Bε
1

∂Bε
1

∂τ
(y, τ)dy +

µ0

2

∫ z

0

∂2Bε
1

∂τ2
(y, τ)dy + O(ε).(3.12)

In a formal way, we can write this equation in the form

Bε
1(z) = f +

∫ z

0

F (
y

ε2
)Bε

1(y)dy +

∫ z

0

G(Bε
1(y))dy,(3.13)

where F (y) is a linear random operator acting on functions b(τ) as

[F (y)b](τ) = − 1

32
h′(y)

∫ τ

−∞

h′(y +
τ − s

2
)b(s)ds.

F (y) is random and it possesses nice ergodic properties inherited through h′. Thus
an averaging over the fast-varying component of Eq. (3.13) can be applied. The
averaging principle is valid in the deterministic case under very general assumptions
if the limit F̃ of the average value of F over the interval [0, y0] exists when y0 goes
to infinity [5]. It turns out that this result is also valid in the random case where
y−1
0

∫ y0

0 F (y)dy converges to F̃ in probability only. The rigorous way makes use of
an extended version of Khasminskii’s limit theorem for randomly forced ODEs[17].
We show in the Appendix that, in the limit ε → 0, we get that Bε

1 converges to B̃1

solution of

B̃1(z) = f +

∫ z

0

F̃ B̃1(y)dy +

∫ z

0

G(B̃1(y))dy,

where F̃ = E[F (y)], that is to say

[F̃ b](τ) = − 1

32

∫ τ

−∞

E[h′(y)h′(y +
τ − s

2
)]b(s)ds.

This is the precise point where the stochastic modeling comes into the play by in-
terpreting the disordered boundary component as a microscale random process. The
integral equation satisfied by the limiting pulse front B̃1 reads explicitly as

B̃1(z, τ) = f(τ)− 1

16

∫ z

0

ΛB̃1(y, τ)dy+
3α0

4

∫ z

0

B̃1
∂B̃1

∂τ
(y, τ)dy+

µ0

2

∫ z

0

∂2B̃1

∂τ2
(y, τ)dy,

(3.14)
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where the linear operator Λ is a convolution operator

ΛB(τ) =
1

2

∫ ∞

0

φ1(
s

2
)B(τ − s)ds =

[

1

2
φ1

( ·
2

)

1[0,∞)(·)
]

∗ B(τ),(3.15)

φ1(y) = E[h′(z)h′(z + y)], and ∗ is the standard convolution product. In the Fourier
domain

∫ ∞

−∞

ΛB(τ)eiωτdτ = b1(2ω)

∫ ∞

−∞

B(τ)eiωτ dτ,(3.16)

where b1 is the Fourier transform of the positive lag part of the autocorrelation func-
tion of the random stationary process h′

b1(ω) =

∫ ∞

0

φ1(τ)eiωτ dτ.(3.17)

We will now show how to express b1 in terms of the autocorrelation function of the
random stationary process h. Let us denote

b0(ω) =

∫ ∞

0

φ0(y)eiωydy,(3.18)

where φ0 is the autocorrelation function of h. We will show that

φ1(x) = −φ′′
0(x),(3.19)

b1(ω) = −iωφ0(0) + ω2b0(ω),(3.20)

which establishes the desired relationship. On the one hand, we have ∂2
yφ0(y) =

E[h(z)h′′(z + y)]. On the other hand, φ0 is independent of z by stationarity of the
random process h, so 0 = ∂z∂yφ0(y) = E[h(z)h′′(z + y)] + E[h′(z)h′(z + y)]. As a
result we obtain (3.19). Furthermore, by integrating by parts, we get

b1(ω) = −
∫ ∞

0

φ′′
0 (y)eiωydy =

[

φ′
0(y)eiωy

]∞

0
+ iω

∫ ∞

0

φ′′
0 (y)eiωydy.

Since φ0 is even and differentiable, we have φ′
0(0) = 0. As a result the first term of

the right-hand side vanishes. Integrating once again by parts

b1(ω) = iω
[

φ0(y)eiωy
]∞

0
+ ω2

∫ ∞

0

φ0(y)eiωydy,

which yields (3.20).
The physical interpretation of results will be readily available below and in the

next section. Accordingly Λ can be decomposed into the sum of a transport operator
corresponding to the term −iωφ0(0) in Eq. (3.20), and a pseudo-differential operator
corresponding to ω2b0(ω). In terms of the true mode B, we have to take care of the
change of variable x 7→ z(x). In the macroscopic scales

z(
x

ε2
) =

x

ε2
− ε

2

∫ x

ε2

0

h(x′)dx′ +
3ε2

8

∫ x

ε2

0

h(x′)2dx′ + O(ε).(3.21)

Applying the central limit theorem for the second term of the r.h.s., and the law of
large numbers for the third term, we get the convergence result

z(
x

ε2
) − x

ε2

ε→0−→ 1√
2

√

b0(0)Wx +
3

8
φ0(0)x,(3.22)
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where Wx is a standard Brownian motion.
We can then summarize the calculations above by stating the following propo-

sition.
Proposition 3.1. The front pulse Bε(x, τ) := B(x/ε2, τ + x/ε2) converges to B̃

given by

B̃(x, τ) = B̃0

(

x, τ −
√

b0(0)√
2

Wx − φ0(0)

2
x

)

.(3.23)

B̃0 is the solution to the deterministic equation

∂B̃0

∂x
= LB̃0 +

3α0

4
B̃0

∂B̃0

∂τ
,(3.24)

B̃0(0, τ) = f(τ),(3.25)

where the operator L can be written explicitly in the Fourier domain as

∫ ∞

−∞

LB(τ)eiωτ dτ = −
(

µ0ω
2

2
+

b0(2ω)ω2

4

)
∫ ∞

−∞

B(τ)eiωτ dτ.

L results from the action of the kinematic viscosity µ0 and the effective pseudo-
viscosity originating from the random forcing. The physical description for this oper-
ator is given in detail in the next section.

4. Characterization of the eddy viscosity. In this section we analyze the
main properties of the effective equation for the front pulse. The important func-
tion affecting the dynamics is the Fourier transform b0(ω) of the positive lag part
of the autocorrelation function of the random fluctuations of the bottom. We have
proved that B(x/ε2, x/ε2 + τ) converges to B̃ given by (3.23-3.24). The Brownian
motion Wx represents the random time shift imposed by the random propagation
speed. The effect of the random speed is described through a simple example in the
next section. L is a pseudo-differential operator that models the deterministic pulse
deformation. Note that the effective equation for the front pulse depends on the ran-
domness (through the function b0), on the kinematic viscosity (through µ0), and on
nonlinearity (through the parameter α0).

The first qualitative property satisfied by the pseudo-differential operator L is
that it preserves the hyperbolic nature of the original equation. Indeed, in the time
domain, we can write

LB(τ) =

[

1

8
φ0

(τ

2

)

1[0,∞)(τ)

]

∗
[

∂2B

∂τ2
(τ)

]

=
1

8

∫ ∞

0

φ0

(s

2

) ∂2B

∂τ2
(τ − s)ds

The indicator function 1[0,∞) is essential to interpret correctly the convolution. If τ0

is a time such that B is vanishing for τ < τ0, then LB is also vanishing for τ < τ0.
This means that the effective viscosity (to be explicitly highlighted in the following)
cannot diffuse the wave in the forward direction (ahead the front), but only in the
backward direction (behind the front). This in turn implies that the reduction of the
pseudo-differential operator L to a second-order diffusion operator should be handled
with precaution.

The pseudo-spectral operator L can be divided into two parts

L = Lr + Li,(4.1)

9



∫ ∞

−∞

LrB(τ)eiωτ dτ = − [br(2ω) + 2µ0]ω
2

4

∫ ∞

−∞

B(τ)eiωτ dτ,(4.2)

∫ ∞

−∞

LiB(τ)eiωτ dτ = − ibi(2ω)ω2

4

∫ ∞

−∞

B(τ)eiωτ dτ,(4.3)

where br and bi are respectively the real and imaginary part of b0

br(ω) =

∫ ∞

0

E[h(0)h(x)] cos(ωx)dx, bi(ω) =

∫ ∞

0

E[h(0)h(x)] sin(ωx)dx.

By the Wiener-Khintchine theorem [20], br is proportional to the power spectral
density of the random stationary process h. As a result, br is nonnegative which
shows that Lr can be interpreted as an effective diffusion operator. More precisely,
for small frequencies, Lr behaves like a second-order diffusion. Indeed, if ωlc � 1,
then br(ω) ' µ1 where µ1 :=

∫∞

0
φ0(x)dx, and

Lr ' µ1 + 2µ0

4

∂2

∂τ2
.

On the other hand br decays to zero for high-frequencies, so that Lr can be reduced
to the kinematic viscosity term. The proof of the decay of br is based on Fourier
theory: φ0 is assumed to belong to L1/2 and it is bounded by the variance φ0(0), so it
belongs to L1. As a result the Fourier theory ensures that br(ω) converges to 0 as ω
goes to infinity. Actually the decay can be estimated more precisely. Indeed we have
assumed that E[h′2(0)] < ∞, which is equal to −φ′′

0 (0). By use of the inverse Fourier
transform this shows that

∫

ω2br(ω)dω < ∞. Thus ω2br(ω) should decay fast enough
as ω goes to infinity to ensure the convergence of this integral. This property that
the limiting behavior of the eddy viscosity is similar to the kinematic viscosity is due
to our scaling choices. There might be other regimes where the turbulent component
does not vanish.

Li is an effective dispersion operator, since it preserves the energy. It behaves like
a third-order dispersion for small frequencies. Indeed, if ωlc � 1, then bi(ω) ' ωβ1

where β1 :=
∫∞

0
xφ0(x)dx, and

Li ' −β1

2

∂3

∂τ3
.

It is interesting to determine which operator, Lr or Li, is the most important one. By
scaling arguments, we get that ω3β1 is of the order of (ωlc)µ0l

2
c which is smaller than

µ0ω
2 if ωlc � 1. As a result, the effective dispersion for small-frequencies is usually

smaller than the effective diffusion. Furthermore, we usually have β1 > 0. This is the
case, for instance, for a Gaussian autocorrelation function φ0(x) = exp(−x2/x2

c): we
then have lc = xc

√
π/2, µ0 = lc, and β1 = x2

c/2 = 2l2c/π. The fact that β1 > 0 shows
that the dispersion is reduced compared to the original one: the third-order dispersion
coefficient, that is equal to β0/6 in absence of randomness, takes the value β0/6 −
β1/2 in presence of random topography. Note, however, that special configurations
can be encountered that do not belong to the general case described above. One
interesting case deserves an aparte. Let us consider for a while that the process
m is the derivative of a smooth stationary zero-mean random process ν, such as
a Gaussian random process with Gaussian autocorrelation function. We then have
φ0(u) = −∂2

uE[ν(0)ν(u)], and µ0 = 0 while β1 = −E[ν(0)2] < 0. This shows that,

10



in this very particular case, the dominant operator is the dispersion operator, and it
enhances the original dispersion.

Finally, similarly as br, bi decays to zero for high-frequencies, so that Li has no
effect on the high-frequency components.

Let us address the case where the power spectral density of the process h can be
considered as constant over the spectral range of f : b0(ω) ≡ µ1. This arises if the
typical wavelength of the pulse f is larger than the correlation radius of the medium.
In such a case the early steps of the effective evolution equation is that of the viscous
Burgers equation

∂B̃0

∂x
= µ

∂2B̃0

∂τ2
+

3α0

4
B̃0

∂B̃0

∂τ
,(4.4)

where µ = µ0/2 + µ1/4. In this case we have an eddy viscosity [28] which arises from
the combination of the kinematic viscosity together with the apparent viscosity. To
leading order both components of the eddy viscosity removes energy from the coherent
wavefront in a diffusive like manner. We can think of two Gaussian filters: one due
to the physical viscosity (say G0) and the other due to the apparent viscosity (say
G1). The energy filtered by G0 is lost forever and can not be recovered. As discussed
in a recent letter [14] the energy filtered through G1 corresponds to a conversion of
coherent energy transported by the front pulse into incoherent energy contained in the
small incoherent wave fluctuations following the front pulse. The energy filtered by
G1 can be recovered along the coherent wavefront by a time-reversal recompression
using a time-reversal mirror [14]. This surprising result shows that, although the
kinematic and apparent viscosity appear with the same form in Eq. (4.4), they are of
very different nature.

However Eq. (4.4) may eventually fail describing the wavefront propagation. In-
deed new frequencies are generated by the nonlinear term, that may fall in the tail
of the function b0, and one must consider the complete equation with the pseudo-
differential operator L. Note that we cannot consider the true white noise case,
because a white noise does not fulfill the smoothness requirement that is necessary
to ensure the convergence result. We have skipped some technical details, but the
assumptions E[h(0)2] < ∞ and E[h′(0)2] < ∞ are important for the proof of the
convergence result and they are not fulfilled by the white noise whose variance is
infinity. Nevertheless, qualitatively speaking, white noise disorder would affect the
entire spectrum of the pulse as opposed to the case discussed here.

In conclusion, regarding the material presented in this section. The important
difference for the viscous case is that a shock can no longer form. Hence fluctuations
enhance diffusivity rather than postpone the shock formation time as in [12]. There
are also technical differences. In particular the a priori estimates [12] were based on
hyperbolic arguments (i.e. in the inviscid case no wave can go beyond the front).
Here, in the viscous case, they are based on estimates of the heat kernel.

5. Comparisons with other approaches in the linear regime. The deriva-
tion of the effective equation for the front pulse is based on an integral representation
of the front pulse and the application of the Khaminskii’s limit theorem. Our ap-
proach gives more precise results than a mean-field theory, as we discuss now in the
linear framework. Indeed, if α0 = 0, then the effective dynamics described in Proposi-
tion 3.1 can be rewritten in terms of a stochastic partial differential equation (SPDE)
for the front pulse that takes into account the deterministic pulse spreading as well

11
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Fig. 5.1. Averaging over solutions: in dashed line a typical profile centered at the origin; in
dotted lines realizations over the solution space; in solid line the mean field profile.

as the random time shift:

dB̃ = LB̃dx −
√

b0(0)√
2

∂B̃

∂τ
◦ dWx − φ0(0)

2

∂B̃

∂τ
dx.(5.1)

Mathematically speaking the stochastic integral is a Stratonovich integral [1]. In the
standard Ito form, this SPDE reads

dB̃ = LB̃dx +
b0(0)

4

∂2B̃

∂τ2
dx −

√

b0(0)√
2

∂B̃

∂τ
dWx − φ0(0)

2

∂B̃

∂τ
dx.(5.2)

Consider now the mean field B̃mf(x, τ) = E[B̃(x, τ)]. Taking the expectation of the
SPDE (5.2) establishes the effective equation for the mean field

∂B̃mf

∂x
= LmfB̃mf −

φ0(0)

2

∂B̃mf

∂τ
,(5.3)

where the effective viscosity is described by the pseudo-differential operator

Lmf = L +
b0(0)

4

∂2

∂τ2
.

Accordingly, a correct mean field approach would lead to the effective equation (5.3)
which clearly overestimates the effective viscosity, because the random time shift is
averaged out and leads to enhanced apparent diffusion and attenuation.

A very simple example of this fact is shown through figure 5.1. Consider a trans-
port model in which we have travelling waves (say Gaussian wave profiles) propagating
with a random speed. Let the speed have a Gaussian distribution. In figure 5.1 (at
the left) we present 40 realizations and (to the right) 200 realizations of the solution
space. Note that the mean field (average) profile is converging to a highly attenuated
Gaussian profile. In this simple example there is no attenuation whatsoever.

The effective equation for the front pulse that we have obtained is in agreement
with previous results obtained by several authors in absence of nonlinearity and vis-
cosity [7, 6, 8, 27, 25]. In this linear framework, the usual approach consists in taking
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a Fourier transform with respect to time, which reduces the partial differential equa-
tion (PDE) to a set of ordinary differential equations driven by random coefficients.
The solution to each equation can be split into a right- and left-going mode. The
joint statistical distribution of the right-going modes for all frequencies can be ob-
tained by use of an approximation-diffusion theorem. The application of an inverse
Fourier transform gives an integral representation of the front pulse. The result ob-
tained by this approach exhibits a random time shift and a deterministic spreading
of the front pulse, which is in agreement with the result of Proposition 3.1 in the case
α0 = µ0 = 0. The Fourier approach can still be applied in presence of viscosity, but
it turns out to be more tricky in presence of nonlinearity. Our approach makes use of
a more complicated approach from the PDE point of view, but it allows us to get the
effective dynamics of the front pulse in presence of a weak nonlinearity.

6. Numerical experiments. In this section we present the results of full nu-
merical simulations of the shallow water equations

∂η

∂t
+

∂(1 + h + η)u

∂x
= 0,(6.1)

∂u

∂t
+

∂η

∂x
+ u

∂u

∂x
= µ

∂2u

∂x2
,(6.2)

with a random topography h(x). The initial conditions for the wave elevation and
velocity field are η(t, x = 0) = f(t) and u(t, x = 0) = f(t). These initial conditions
for a small-amplitude f give rise to an almost pure right-going wave given by A(t, x =
0) ' 0 and B(t, x = 0) ' 2f(t). In the following we are interested in the transmitted
front pulse for the wave elevation η ' B/2.

The random bottom h(x) is modeled as the realization of a stepwise constant
process which takes uniformly distributed random values between −σ and σ over
elementary intervals with length lc. In the case where lc is smaller than the typical
wavelength of the input pulse, the white noise approximation can be applied and then

b0(ω) ≡ lcσ
2

6
.

Note that the stepwise constant model used for the turbulent surface in our simulations
is beyond the class of models that satisfy the hypothesis set for the derivation of
the results. We made this choice because we believe that the validity of the main
statements does not depend on the technical assumptions used to prove the results in
this paper.

The numerical simulations are performed with the semi-Lagrangian finite differ-
ence scheme used in [12]. We carry out numerical experiments which illustrate that
the solution of the shallow water equations (2.1-2.2) is accurately described by the
effective equation (3.24) in the regime of small parameters considered in this paper.

We first consider an initial Gaussian pulse and show the pulse shaping in presence
of random topography and very weak nonlinearity (figure 6.1). In the experiments
the kinematic viscosity is vanishing, so we can observe the effect of the eddy viscosity.
The theoretical prediction, based on the ODA theory, is found to be in very good
agreement with the results of the numerical simulations.

Second we consider an initial Gaussian pulse in presence of random topography
and nonlinearity. We compare in Figure 6.2a the theoretical prediction given by the
solution to the effective Burgers equation (4.4) with the numerical simulation, which
shows good quantitative agreement. To enhance the role of the eddy viscosity, we
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Fig. 6.1. Transmitted pulse shape in presence of stochastic forcing. The initial pulse is a
Gaussian f(t) = α exp(−t2/0.08) (dotted line). Here µ = 0, α = 0.001, lc = 0.1, L = 59, σ = 0.2
(picture a), and σ = 0.4 (picture b). The dashed lines represent the numerical solutions shifted for
better comparison. The solid lines represent the theoretical front pulses.
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Fig. 6.2. Picture a: Transmitted pulse shape in presence of stochastic forcing. The initial pulse
is a Gaussian f(t) = α exp(−t2/0.08) (dotted line). Here µ = 0, α = 0.004, lc = 0.1, L = 59,
and σ = 0.4. The dashed line represents the numerical solution and the solid line represents the
theoretical solution. Picture b: Theoretical transmitted pulse shape in presence (solid line) or in
absence (dashed line) of stochastic forcing, where a shock has formed.

report in figure 6.2b the theoretical pulse shapes in presence or in absence of the
random topography. Note that even though α seems to be small, we have chosen the
nonlinear parameter and the propagation distance so that the experiment corresponds
precisely to the shock propagation distance. The regularizing effect of the noise-
induced viscosity is obvious. Note that the theoretical solution to the inviscid Burgers
equation is computed by the characteristic method, while the theoretical solution to
the viscous Burgers equation (4.4) is computed by the Cole-Hopf transformation [9].

Finally, we consider a different initial profile, namely the derivative of a Gaussian
which has a broader spectrum, and plot the result in figure 6.3. This experiment is
carried out to confirm that the results can be applied to any type of initial conditions,
and not only the usual Gaussian profiles.

7. Conclusion. In this paper we have addressed the propagation of nonlinear
water waves over a disordered one-dimensional topography. In the presence of properly
scaled stochastic forcing the solution is regularized leading to a viscous shock profile
which depends on the degree of nonlinearity and on the power spectral density of the
random fluctuations of the bottom. We have actually shown that the transmitted
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Fig. 6.3. Transmitted pulse shape in presence of stochastic forcing. The initial pulse is the
derivative of a Gaussian f(t) = −10αt exp(−t2/0.08) (dotted line). Here α = 0.004, lc = 0.1,
σ = 0.4, and L = 59.

wave is governed by an effective viscous Burgers equation. In deriving this effective
equation we were able to characterize, from first principles, the eddy viscosity due
to the interaction of a long wave with a turbulent surface. We hope that the results
obtained in the specific case of this paper stimulate further investigations.

Appendix A. Technical comments in applying Khasminskii’s theorem.
Khasminskii’s limit theorem is for ordinary differential equations. Typically Fluid
Dynamics equations are partial differential equations. In absence of nonlinearity,
an efficient and rapid proof consists in taking the Fourier transform in time, which
reduces the system to an uncoupled system of ODEs, and the direct application of
Khasminskii’s theorem gives the desired result. In presence of nonlinearity, however,
this strategy cannot be applied, but a proof can be obtained by the introduction of a
corrector. This proof requires the technical assumption that the random function h′

is bounded and strongly mixing

sup
A∈F

y

−∞
,B∈F∞

y+τ

|P(B|A) − P(B)| ≤ Φ(τ)

where Fz
y is the sigma-algebra (or information) generated by {h′(τ), y ≤ τ ≤ z}, and

the mixing function Φ decays fast enough so that
∫

Φ(τ)1/2dτ < ∞.
We denote, for any bounded function b(τ),

[F (y)b](τ) =

∫ τ

−∞

h′(y)h′(y +
τ − s

3
)b(s)ds,

[F̃ b](τ) =

∫ τ

−∞

φ1(
τ − s

2
)b(s)ds,

where φ1(τ) = E[h′(y)h′(y + τ)].
First step: If y ≤ ξ and τ ≥ 0, then

|E
[

h′(ξ)h′(ξ + τ) − φ1(τ)|Fy
−∞

]

| ≤ 2‖h′‖2
∞Φ1/2(τ)Φ1/2(ξ − y).

This mixing Lemma is essentially proved in [10]. For consistency, we give it here. On
the one hand, h′(ξ)h′(ξ + τ) is F∞

ξ -adapted, so the mixing hypothesis implies

|E
[

h′(ξ)h′(ξ + τ) − φ1(τ)|Fy
−∞

]

| ≤ 2‖h′‖2
∞Φ(ξ − y).
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On the other hand, we have

|E[h′(ξ + τ)|Fξ
−∞]| ≤ ‖h′‖∞Φ(τ)

and

φ1(τ) ≤ ‖h′‖2
∞Φ(τ)

so that

|E
[

h′(ξ)h′(ξ + τ) − φ1(τ)|Fy
−∞

]

| ≤ 2‖h′‖2
∞Φ(τ).

Combining the two estimates gives the result.
Second step: For y0 < y, we define the corrector

[F1(y0, y)b](τ) = −
∫ τ

−∞

ds

∫ L/ε2

y

dξE

[

h′(ξ)h′(ξ +
τ − s

2
) − φ1(

τ − s

2
)|Fy0

−∞

]

b(s).

Then [F1(y0, y)b](τ) is bounded uniformly in y0, y ∈ [0, L/ε2] and τ and it satisfies

E

[

[F (
y0

ε2
,

y

ε2
)b](τ)|Fy0/ε2

−∞

]

= [F̃ b](τ) + ε2 ∂

∂y
[F1(

y0

ε2
,

y

ε2
)b](τ).

The bounded properties of the corrector follows from the mixing lemma:

|[F1(y0, y)b](τ)| ≤ 2

∫ τ

−∞

ds

∫ L/ε2

y

dξ‖h′‖2
∞Φ1/2(

τ − s

2
)Φ1/2(ξ − y0)

≤ 2‖h′‖2
∞

∫ ∞

0

Φ1/2(s)ds

∫ ∞

y−y0

Φ1/2(ξ)dξ ≤ 2‖h′‖2
∞

[
∫ ∞

0

Φ1/2(s)ds

]2

.

Third step: Let

Xε(z, τ) =

∫ z

0

[F (
y

ε2
)b − F̃ b](τ)dy.(A.1)

Then, uniformly in z ∈ [0, L] and τ ,

E[Xε(z, τ)2] ≤ Cε2.(A.2)

We first carry out the following calculation

E[Xε(z, τ)2] = 2

∫ z

0

dy

∫ y

0

dy0E

[

[F (
y

ε2
)b − F̃ b](τ)[F (

y0

ε2
)b − F̃ b](τ)

]

= 2

∫ z

0

dy0

∫ z

y0

dyE

[

E

[

[F (
y

ε2
)b − F̃ b](τ)|Fy0/ε2

−∞

]

[F (
y0

ε2
)b − F̃ b](τ)

]

= 2ε2

∫ z

0

dy0E

[(

[F1(
y0

ε2
,

z

ε2
)b](τ) − [F1(

y0

ε2
,
y0

ε2
)b](τ)

)

[F (
y0

ε2
)b − F̃ b](τ)

]

.

Using the fact that F1 is bounded we get the desired result. This proof can be readily
extended to the case where b is a function of τ and y independent of ε.

Step 4: We can now consider the convergence of Bε
1 defined by (3.13). We write

that

Bε
1 − B̃1 =

∫ z

0

F (
y

ε2
)[Bε

1 − B̃1]dy +

∫ z

0

[F (
y

ε2
) − F̃ ]B̃1dy +

∫ z

0

G(Bε
1) − G(B̃1)dy.
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The second term of the r.h.s. is of the form (A.1), so that it can be bounded as in
(A.2). We finally use the fact that G is locally Lipschitz and Gronwall Lemma to get
the final convergence result.
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