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Abstract

The solution of several problems inComputer Visionbenefits from analyzing col-
lections of images, instead of a single image, of a scene that has variant and in-
variant elements that give important additional clues to interpret scene structure.
If the acquisition is done specially for some vision task, then acquisition parame-
ters can be set up so as to simplify the interpretation task. In particular, changes
in scene illumination can significantly increase information about scene structure
in a collection of images.

In this work, the concept ofactive illumination, that is, controlled illumination
that interferes on the scene at acquisition time, is explored to solve some Com-
puter Vision tasks. For instance, a minimal structured light pattern is proposed to
solve stereo correspondence problem, while intensity modulation is used to help in
foreground/background segmentation task as well as in image tone enhancement.

iii



iv ABSTRACT



Resumo

A soluç̃ao de v́arios problemas deVisão Computacionalpode se beneficiar da
ańalise de uma coleção de imagens, ao invés de utilizar umáunica imagem, de
uma cena que possui elementos variáveis e invariantes capazes de fornecer dicas
adicionais importantes para interpretar a estrutura de uma cena. Se a aquisição das
imagens for feita especialmente para uma determinada tarefa, então os par̂ametros
de aquisiç̃ao podem ser escolhidos de forma a facilitar a interpretação dos da-
dos para a dada tarefa. Em particular, variações nas condiç̃oes de iluminaç̃ao de
uma cena podem aumentar significativamente a quantidade de informação de uma
coleç̃ao de imagens sobre a estrutura da cena.

Neste trabalho, o conceito deiluminaç̃ao ativa, isto é, iluminaç̃ao controlada
que interfere na cena em tempo de aquisição, é explorado para resolver algu-
mas tarefas de Visão Computacional. Por exemplo, um padrão minimal de luz
estruturadáe proposto para a solução do problema de correspondência est́ereo;
enquanto que a modulação da intensidade da luźe usada para auxiliar a tarefa
de segmentação figura/fundo, bem como para melhorar a representação tonal da
imagem.
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Chapter 1

Introduction

Computer Graphics(CG) studies methods for creating and structuring graphics
data as well as methods for turning these data into images.Computer Vision(CV)
studies the inverse problem: given an input image or a collection of input images,
obtain information about the world and turn it into graphics data. CG problems are
usually stated as direct problems while in CV they are naturally stated as inverse
problems. There are several ways to control input data acquisition acquisition in
order to ease CV tasks. The knowledge and control on how images are acquired
in many cases determines the approaches to be used to solve the CV problem at
hand.

A single image of a scene can suffer from lack of information to infer world
structure. Many CV systems benefit from analyzing a collection of images to in-
crease information about the world and obtain important clues about scene struc-
ture, such as object movement, changes in camera view point, changes in shading,
etc. Also CG image processing can benefit from collection of images to synthe-
size new images, as was widely explored in [ADA∗04]. By using collections of
images it is possible to identify invariant elements in the set of images; the detec-
tion of varying elements together with the knowledge of what caused the variation
(camera movement, object movement, changes in lighting, changes in focus, etc.)
is helpful to analyze data.

A significant application that benefits from analyzing collection of images
in many different ways is 3D Photography, a problem that, to be solved, com-
bines techniques from computer vision, image processing, geometric modeling
and computer graphics into an unified framework. The reconstruction of three-
dimensional objects from images, illustrated in Figure 1.1, can be used in a vast
number of important application fields, ranging from Archeology, Cultural Her-
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2 CHAPTER 1. INTRODUCTION

itage, Art and Education, to Electronic Commerce and Industrial Design.

The development of commodity hardware and consumer electronics makes
it possible to build low-cost acquisition systems that are increasingly effective.
Some applications demand precision in the acquisition of a scene’s radiance prop-
erties that up-to-date off-the-shelf sensors can’t provide. For instance, to visualize
an object with illumination conditions different from the illumination of the ambi-
ent where the object was captured, the object capture has to satisfy some requisites
that are beyond most sensors capabilities [Len03, Goe04].

In particular,active illuminationis a powerful tool to increase image infor-
mation at acquisition time. By active illumination we mean a controllable light
source that can be modulated or moved in order to augment scene structure in-
formation in a sequence of images, either by controlling shading or by directly
projecting information onto the scene. Examples of active illumination in action
are shown in Figures 1.1, 1.2 and 1.3.

(a) (b) (c)

Figure 1.1: Images (a) and (b) are images acquired by a photographic digital
camera that observes the scene illuminated by projected coded patterns. Stripe
boundaries (c) and depth at boundary points can be recovered using structured
light principles.

This thesis focuses on controlling illumination to increase image information
at acquisition time, that is, to acquire additional information not present in a single
shot, by changing scene illumination. By exploring the illumination control we
go through different areas of recent research inComputer Vision, like shape ac-
quisition from structured light, active image segmentation and tone enhancement.
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1.1 Problem Statement

Digital photographic images are projections of a real scene through a lens sys-
tem onto a photosensitive sensor. At acquisition time, image information can be
increased by marking the scene with controlled illumination, this is the principle
of active illumination. The standard active illumination setup uses a pair cam-
era/projector where the camera produces images of a scene illuminated by the
projector in a desired fashion.

(a) (b) (c)

Figure 1.2: Images (a) and (b) have been differently illuminated by varying the
camera flash intensity between shots, (c) is the difference thresholded image that
can be used to segment objects from non-illuminated backgrounds.

We are particularly interested in exploring the potential of camera/projector
pairs. A digital camera can be seen as a non-linear photosensitive black box that
acquires digital images, while a projector is another non-linear black box that
emits digital images. Their non-linear behavior is a consequence of several tech-
nical issues ranging from techniques limitations to market demands to produce
beautiful images.

In order for these black boxes to become measurement tools it is mandatory
to characterize their non-linear behavior, that is, to perform a calibration step. In
some cases, absolute color calibration relating devices to global world references
is needed. However, in our case, we will be concerned with the relative cali-
bration of a camera/projector pair, since we only want to guarantee a consistent
communication between them.

We explore scene illumination to extract more information of a given scene.
The digital projector is our standard active light source. It can project struc-
tured light onto the scene in order to recover geometric information (Figure 1.1),
and modulate light intensity to help solving background/foreground segmentation
(Figure 1.2), or improve tonal information (Figure 1.3).
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(a) (b) (c)

Figure 1.3: Images (a) and (b) are two subsequent video input fields. In this
experiment a video camera synchronized with a digital projector acquire images
with modulated projected light intensity. In (c) it is shown the tonal-enhanced
foreground produced from processing together both (a) and (b) frames.

1.2 Chapters Overview

The main reasoning that guides this work is active illumination. Active illumi-
nation will be used in different applications with different setups ranging from
fine tunned setups of lab environments to cheap home-made setups. Traditionally
active illumination is used in 3D photography for depth acquisition. In this work
active illumination is used also to solve other problems in Computer Vision. The
main overall concepts found in literature that will be useful to the entire work are
introduced in Chapter 2.

Photometric calibration enhance the setup performance, and it is mandatory
if the setup is to be used as a measurement tool. Calibration will be discussed in
Chapter 3, where a basic setup is calibrated. The difference between projected and
observed colors is clearly observed in calibration results as well as the non-linear
projector intensity behavior. After setup description and calibration we turn into
applications.

Coded structured light is a technique applied to recover depth maps from im-
ages. In Chapter 4 we propose the design of a minimal coding for structured light
with respect to the restrictions imposed on the scene to be scanned. To achieve this
minimal coding we revisit the usage of color in code design, we show that using
complementary slides we achieve a robust decoding, in addition several reflective
restrictions on the object can be removed. The classification of structured light
coding strategies proposed in [JPB04] is simplified. We also show an applica-
tion of the proposed code that permits to acquire depth maps together with scene
colors at 30Hz using NTSC off-the-shelf hardware. As a consequence of acquisi-
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tion of geometry and texture from the same data the texture-geometry registration
problem is avoided.

In Chapter 5 the problem of foreground segmentation using active illumination
and graph-cut optimization is discussed. The key idea is that light source position-
ing and intensity modulation can be designed to affect objects that are closer to the
camera and let the background unchanged. Following this reasoning, a scene is lit
with two different intensities of a controllable light source that we call segmen-
tation light source. By capturing a pair of images with such illumination, we are
able to produce a mask that distinguishes between foreground objects and scene
background. The initial segmentation is optimized by graph-cut optimization.

The quality of the masks produced by the method is, in general, quite good.
Some difficult cases may arise when the objects are highly specular, translucent or
have very low reflectance. Because of its characteristics, the camera parameters
settings chosen according to the situation in hand can strongly influence on the
quality of the output mask.

In Chapter 6 the concept of relative tone values will be introduced. The fact
that relative tones can be recovered, by varying illumination intensity, without
knowledge about the camera response function is presented. In our approach, we
illuminate the scene with an uncalibrated projector and capture two images of the
scene under different illumination conditions. The output of our system is a seg-
mentation mask, together with an image with enhanced tonal information for the
foreground pixels. The segmentation and the visualization algorithms are imple-
mented in real-time, and can be used to produce range-enhanced video sequences.

The system is implemented using two different setups. The first uses the same
acquisition device built for the stereo correspondence application and is composed
of a NTSC camera synchronized with a DLP projector. The second is a home
made cheap version of the system that uses a web cam synchronized with a CRT
monitor playing the role of the light source.

Although our implementation has been done in real time for video, the same
idea could be used in digital cameras by programming flashes. There are many
recent works [PAH∗04, ED04] that explore the use of programmable flash to en-
hance image quality, but they do not introduce tone-enhancement concepts.

Conclusions and future work will be discussed in Chapter 7.
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1.3 Main Contributions

We list below the main original contribution of this thesis, some of which have
already been published:

• Relative photometric calibration of an active pair camera-projector.

• Proposal of (b,s)-BCSL (Figure 1.1), a minimal structured light coding for
active stereo correspondence [SCV02, VSVC05].

• Light intensity modulation for active segmentation using graph-cuts (Figure
1.2).

• The concept of relative tones as a tool to tone enhance LDR images without
HDR recovery (Figure 1.3) [SVCV05].



Chapter 2

Imaging Devices

Image capture devices measure the flux of photons that were emitted from a light
source and interacted with the observed scene. Tasks in Computer Vision are
heavily dependent on such devices. For that reason, we are interested in how light
sources and the scene behave with respect to visible energy flux that reaches the
imaging device. In this chapter we review the most relevant characteristics of
light sources, imaging emitters, scene reflectivity properties and imaging capture
devices.

2.1 Digital Image

The basic elements of a digital image are the pixel coordinates and the color in-
formation at each pixel. Pixel coordinates are related to image spatial resolution
while color resolution is determined by how color information is captured and
stored. If the instrument used to capture the image is a camera, we obtain a pho-
tographic image, that is, a projection of a real scene that passed through a lens
system to reach a photosensitive sensor. A photographic image can be modeled
as a functionf : U ⊆ R2 → C representing light intensity information at each
measurement pointp ∈ U . The measured intensity values depend upon physical
properties of the scene being viewed and on the light sources distribution as well
as on photosensitive sensor characteristics.

In order to digitize the image signal that reaches the sensor asamplingopera-
tion is carried on.Samplingis the task of converting the continuous incoming light
into a discrete representation. The scene is sampled at a finite number of points,
where the intensity functionf takes on values in a discrete subset of the color

7
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spaceC. Color space discretization is also calledquantization. Thecolor resolu-
tion of an image is usually expressed by the number of bits used to store the color
information. Image sensors are physical implementations of signal discretization
operators [GV97].

To visualize the image, areconstructionoperation recovers the original signal
from samples. Ideally, the reconstruction operation should recover the original
signal from the discretized information; however, the result of reconstruction fre-
quently is only an approximation of the original signal. Imaging devices, such
as digital projectors, monitors and printers, reconstruct the discrete image to be
viewed by the observer. It should be noted that the observer’s visual system also
plays a role in the reconstruction process.

2.1.1 Modeling Light and Color

The physics of light is usually described by two different models,Quantum Optics
describes photons behavior, andWave Optics, models light as an eletromagnectic
wave [Goe04]. The most relevant light characteristics that will be useful to us are
well described by the eletromagnectic model;Geometric Opticsis an approxima-
tion of wave optics. We will adopt the eletromagnectic approach and geometric
optics when it is convenient.

Light sources radiate photons within a range of wavelengths. The energy of
each photon is related to its wave frequency by thePlanck’sconstanth, that is,
E = hf . Once the frequency is determined, the associated wavelengthλ is also
known through the relationc = λf . The emitted light can be characterized by
its spectral distributionthat associates to each wavelength a measurement of the
associated radiant energy, as illustred in Figure 2.1(a). A source of radiation that
emits photons all with the same wavelength is calledmonochromatic[GV97].

A photosensitive sensor is characterized by itsspectral response functions(λ).
If a sensor is exposed to light with spectral distributionC(λ), the resulting men-
surable value is given by

w =
∫

λ
C(λ)s(λ)dλ

The human eye has three types of photosensors with specific spectral response
curves. Light sensors and emitters try to mimic the original signal with respect to
human perception. The standard solution adopted by industry is to use red, green
and blue filters asprimary colors to sample and reconstruct the emitted light,
illustred in Figure 2.1(b). The interval of wavelengths perceived by the human
eye is between the range of 380 nm to 780 nm, known as thevisible spectrum.
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(a) original signal (b) filters

(c) sampled signal (d) reconstructed signal

Figure 2.1: The original spectral distribution of an emitted light is shown in (a),
the spectral response function of the three filters used to sample the signal are
shown in (b), the sampled values are in (c) and the reconstructed signal is shown
in (d).

The spectrum of emitted light together with sensor response curves defines the
color perceived by an human observer or an imaging system.

Emitters work by superimposing different primary light sources characterized
by their spectral emitting functionP (λ). Usually, these primary lights are pro-
duced by passing white light, with spectral distributionCW (λ), through red, green
and blue filters. The filters are characterized by their spectral distributionFi(λ),
wherei indexes the different filters. Thus, the spectral emitting function is given
by Pi(λ) = Fi(λ)CW (λ). The signal is also weighted by its emitted intensity
valueh. The reconstructed signal in trichromatic base is then given by the addi-
tive color formation principle:

Cr(λ) =
3∑

i=1

hiPi(λ)

2.1.2 Measuring Light

The intensity value registered by a sensor is a function of the incident energy
reaching it. It corresponds to the integration of the eletromagnectic energy flux
both in time and in a region of space that depends upon the shape of the object
of interest, the optics of the imaging device and the characteristics of the light
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sources.
Radiometryis the field that study electromagnetic energy flux measurements.

The human visual system is only responsive to energy in a certain range of the
electromagnetic spectrum, that is thevisible spectrum. If the wavelength is in
the visible spectrum, the radiometric quantities are also described inphotometric
terms. Photometric terms are simply radiometric terms weighted by the human
visual system spectral response function [Gla94].

In the literature, the description of visible spectrum can come in radiometric
quantities as well as in photometric quantities. This can be a source of confusion
and a table relating both quantities is given below:

Quantity Radiometric Photometric
Description Quantity [Unity] Quantity [Unity]
Q: basic quantity of Radiant Energy Luminous Energy
energy transported [Joule] J = kg.m2

s2 [talbot]
by the wave
Energy per unity of time Radiant Flux Luminous Flux
Φ := dQ

dt
[Watt] W = J

s
[lumens] lm = talbot

s

Flux per solid angle (ω) Radiant Intensity Luminous Intensity
I := dΦ

dω
W
sr

[candelas] cd = lm
sr

Flux per area Irradiance/ Radiosity Illuminance/ Luminosity
u := dΦ

dA
W
m2 [lux] lx = lm

m2

Flux through a small area Radiance Luminance
from a certain direction W

m2.sr
[nit] nit = cd

m2

L := d2Φ
cosθ.dA.dω

Table 2.1: Radiometric quantities and their photometric counterparts [Goe04].

Most radiometric quantities can be measured in practice with lab instruments.
If one intends to use digital cameras as measurement instruments its non-linear
response to light intensity must be characterized.

2.2 Image Emitting Devices

Imaging emitters are a special type of light source capable to modulate light in-
tensity spatially in order to reconstruct the digital image desired. In this work we
adopt digital projectors to project information onto the scene. Digital projectors
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will be modeled with the intention to understand its behavior and their technologic
peculiarities will be observed.

2.2.1 Light Sources

Usual light sources contain various elements that shape its radiation pattern; dif-
fusors, mirrors and lenses can be used to characterize, change direction and focus
the emitted light. According to their emission, light sources can be classified into
point and area light sources.

A point light sourceis characterized by the fact that all light is emitted from
a single point in space. For anuniform point light sourcelight is emitted equally
in all directions. Aspot lightis a uniform point light source that emits light only
within a cone of directions. Fortextured point light sourcesthe intensity can vary
freely with the emission direction. This model is useful in rendering but rare in
real world. Finally, anarea light sourcein contrast to point light source emit light
from a region in space and is responsible for the presence ofsoft shadowsin the
scene consisting ofumbraandpenumbraregions [Goe04].

2.2.2 Digital Image Projectors

In the rendering context image projectors can be conveniently modeled as a tex-
tured spot light source. This model does not take into account the effects resultant
of the presence of projector lenses. In this work, images of a real scene with
projected patterns will be observed by the camera, so we need a more complete
model, capable of a better description of real digital projectors behavior.

Real digital projectors usually are composed of a single lamp whose rays pass
through an array of light intensity modulators in order to form an image. After
that, light passes through a lens system to be focused at some plane of focus. If we
consider that, after being modulated, each point in space is an independent spot
light source, then a reasonable model of a general digital projector is to consider
an array of spot light sources that passes through a single lens system. Each spot
light source from the projector array will be referred as aprojector pixel. With this
model it is possible to simulate the plane of focus and the out-of-focus regions, as
well as neighborhood spot light interaction.

The projector lamp is described by its spectral distributionCl(λ). For each
projector pixel, a given digital intensity valueρ is to be projected. The actual
emitted intensity value is given by the projectorcharacteristic emitting function
h(ρ), dependent on the projector technology and other factors. To produce colored
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images, color filters with spectral distributionFi(λ) are used, wherei indexes
color channels. The resultantspectral emitting functionper channel isPi(λ) =
Fi(λ)Cl(λ). The actual emitted signal at each channel of a projector pixel is then:

Ci(λ, ρ) = h(ρ)Pi(λ)

Below, the two most common digital projectors technologies are described in
more detail.

LCD vs. DLP technology

LCD (Liquid Crystal Display) projectors, illustrated in Figure 2.2 (a), usually
contain three separate LCD glass panels, one each for red, green, and blue com-
ponents of the image signal. As light passes through the LCD panels, individual
pixels can be opened to allow light to pass or closed to block the light. This ac-
tivity modulates the light and produces the image that is projected onto the screen
[Powa].

(a) (b)

Figure 2.2: A LCD projector technology (a) compared to a DLP technology (b).

The DLP (Digital Light Processing) chip, Figure 2.2 (b), is a reflective surface
made up of one tiny mirror for each pixel. Light from the projector’s lamp is
directed onto the surface of the DLP chip. The mirrors wobble back and forth,
directing light either into the lens path to turn the pixel on, or away from the lens
path to turn it off.

In DLP projectors, usually there is only one DLP chip (some have three chips,
one per channel); in order to define color, there is a color wheel that filters incom-
ing light. This wheel spins between the lamp and the DLP chip and alternates the
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color of the light hitting the chip from red to green to blue. The mirrors tilt away
from or into the lens path based upon how much of each color is required for each
pixel. This activity modulates the light and produces the image that is projected
onto the screen [Powa].

The use of a spinning color wheel to modulate the image has the potential to
produce a unique visible artifact on the screen referred as the ”rainbow effect”,
which is simply colors separating out in distinct red, green, and blue. Basically, at
any given instant in time, the image on the screen is either red, or green, or blue.
The technology relies upon human eyes not being able to detect the rapid color
changes, what is not always true, especially with respect to frame rate variations.

Consumers can decide on the preferred technology by analyzing its effects in
practice. LCD usually delivers a somewhat sharper image than DLP at any given
resolution. LCD projectors produce a visible pixelation, clearly reduced on DLPs.
DLP technology can produce higher contrast video with deeper black levels than
what is usually obtained with an LCD projector. Leading-edge LCD projectors
are rated at 1000:1 contrast. Meanwhile, the latest DLP products are rated as high
as 3000:1 [Powa].

There are also other technologies used in digital projectors, but DLP and LCD
are the most commonly available and cheaper. We will restrict our discussion to
them.

2.3 Scene Reflective Properties

The interaction of light and matter is a complex physical process. For graphics
purposes, materials can be characterized by their reflective properties. When light
reaches an object surface it is partially reflected back to the ambient. The surface
reflectanceis the fraction of the incident flux that is reflected, and it is a function
of wavelength, position, time, incident and exitant directions and polarization. In
almost all physical materials, surface scattering is linear, that is, energy arriving
from each direction contributes independently to the reflection.

By assuming that some materials won’t be present in the scene of interest some
useful simplifications can be made to characterize the reflective function. Polar-
ization can be reasonably ignored. Different wavelengths can be assumed to be
decoupled, that is, the energy at wavelengthλ1 is independent of the energy atλ2.
This excludesfluorescent materials, where energy is absorbed at one wavelength
and reradiated at another. It can also be assumed that there is no time-dependent
behavior, what excludesphosphorescent materials. Complex phenomena such as
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subsurface scattering, where light is reflected also inside the surface generating
multiple scattering events per incident ray, will be also ignored. Considering the
above simplifications, the reflectance becomes, to each wavelength, a function of
position and incident and exitant directions.

Without subsurface light transport, all light arriving at an object’s surface is
either reflected or absorbed at the incidence point. This behavior is usually de-
scribed by thebidirectional reflectance distribution function(BRDF) that incor-
porates the simplifications above. The BRDF functionfλ(p, ωi, ωo) is the ratio of
the reflected radiance leaving the surface at a pointp in directionωo to the irradi-
ance arriving at the same pointp from a directionωi. Other models incorporate
the behaviors not described by BRDFs [Gla94, Goe04].

Further simplifications are much more restrictive in terms of real objects. For
instance, reflectance ofhomogeneous materialsis independent of position; for
isotropic materialsincoming and outgoing directions can be rotated around the
surface normal without change, and fordiffuse materialsreflectance is indepen-
dent of direction. Perfectly homogeneous materials as well as perfectly diffuse
materials rarely occurs in real world.

If one have in hand the BRDF of the desired material, the rendering of a vir-
tual object with such aspect is a direct problem treated in Computer Graphics. The
acquisition of BRDFs of given real materials is measured in practice with lab in-
struments. Recently, digital cameras have been used as such instruments [Len03],
and the problem is stated as a typical inverse problem heavily dependent on the
quality of data acquisition.

Note that if scene, camera and light source are static, then for each camera
pixel the surface position and incoming and outgoing directions are well defined.
In this case additive behavior of light is preserved by surface reflectance; this
property will be useful in Chapter 4.

2.4 Imaging Capture Devices

A digital camera is a device containing a sensor consisting of a grid of photosensi-
tive pixels that convert incident radiance into digital values. A digital photography
is acquired by exposing the camera sensor to light during a certain period of time,
calledexposure time. During exposure time, the sensor keeps collecting charge.
At the end, the total electric charge collected is converted into digital brightness
values. In Figure 2.3 the effect of varying exposure time while keeping all other
camera parameters fixed is illustrated.
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(a) overexposed sky (b) underexposed hill

Figure 2.3: This images illustrate the resultant acquired images when exposure
time is changed. In (a) the sensor has been exposed longer than in (b).

The fundamental information stored in a digital image is the pixelexposure,
that is, the integral of the incident radiance on the exposure time. A reasonable
assumption is that incident radiance is constant during exposure time, specially
when small exposure times are used. Thus exposure is given by the product of
incident radiance by total exposure time. The incident radiance valuewij is a
function of the scene’s radiance, optical parameters of the system and the angle
between the light ray and system’s optical axis. The most obvious way to control
exposure is by varying exposure time, that is, by varying the total time that the sen-
sor keeps collecting photons; but other camera parameters can also be controlled
to alter exposure in different ways:

• controlling lens aperture;

• changing film/sensor sensitivity (ISO);

• using neutral density filters;

• modulating intensity of light source;

To vary time (as illustred in Figure 2.3) and lens aperture is easy and all pro-
fessional and semi-professional cameras have these facilities. The disadvantages
are related to limitations in applications since long exposures can produce mo-
tion blur while lens aperture affects the depth of focus, which can be a problem if
the scene has many planes of interest. Film and sensor sensitivity can be altered
but the level of noise and graininess are also affected. Density filters are common
photographic accessories but its usage depends on an implementation in hardware,
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or to be manually changed, which may not be practical. The use of controllable
light source is tricky since intensity change depends on the distance of objects to
the light source, that is, fails to change constantly on the scene and, in addition,
produces shadows.

The photographic industry has been studying acquisition, storage and visu-
alization of images for chemical emulsions since the beginning of the history of
photography. Many concepts concerning image quality and accuracy were estab-
lished since then [Ada80, Ada81, Ada83]. Technical information about photo-
graphic material is available for reference in data sheets provided by manufactur-
ers. The standard information provided is storage, processing and reproduction
information, as well as its technical curves, shown in Figure 2.4.

Figure 2.4: FujiChrome Provia 400F Professional [RHP III] data sheet, from Fu-
jiFilm.



2.4. IMAGING CAPTURE DEVICES 17

Film technical curves guide the characterization of emulsions and are the tech-
nical base to chose an emulsion adequate for each scene and illumination situa-
tion. To characterize emulsion light intensity response, the useful curve is the
characteristic response curve. Spectral response curvesconsiders problems di-
rectly related to color reproduction. TheMTF curvedescribe the spatial frequency
resolution power of the sensible area.

The classical characterization of emulsions can also guide the study of digi-
tal sensors, although this information is usually not provided by digital sensors
manufacturers. We turn now to the understanding of their role in digital image
formation.

2.4.1 Tonal Range and Tonal Resolution

Considering light intensity, the behavior of an imaging sensor is described by its
characteristic response functionf . The distinct values registered by the sensor are
the imagetones.

In the classical photographic process, the film’s photosensitive emulsion is
exposed to light during exposure time. The film is then processed to transform
the emulsion’s latent image intodensityvalues. The concept of density is central
in photography and relates the incoming and outcoming light; for films it is a
transmission ratioDT = − log10 T and for photo papersDR = log10 1/R is the
reflection ratio, with both T and R in the interval[0, 1] [Ada81]. The characteristic
curve of a film is the curve that relates exposure and density. In Figure 2.5 the
characteristic curves of different film emulsions are compared. Observe that the
film sensitivity to light (ISO) is different for each emulsion.

Figure 2.5: Film characteristic response curves compared.
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In digital photography, the film emulsions are replaced by photosensitive sen-
sors. The sensor behavior depends on its technology. Usually the stored electrical
charge is highly linearly proportional to radiance values. In this case, if the sensor
is capable to store a total number ofd electrons, then the maximum number of
distinct digital brightness values, that is, itstonal resolution, will potentially be
equal tod. In practice, the digitization process influences on final image tonal
resolution. Another important concept is that oftonal range, that is the difference
between the maximum and the minimum exposure values registered by the sensor.

The leading sensors technologies are CCDs (Charge-Coupled Device) and
CMOS (Complementary Metal Oxide Semiconductor) sensors. The main dif-
ference between them is that in CCDs every pixel charge is transfered through
a very limited number of output nodes to be converted to voltage, as shown in
Figure 2.6 (a). Differently, in CMOS sensors each pixel has its own charge-to-
voltage conversion, shown in Figure 2.6 (b). This difference implies in several
other differences ranging from noise level to manufacturing costs and sensor size
[Lit].

(a) (b)

Figure 2.6: (a) CCD sensor and (b) CMOS sensor, from [Lit].

CMOS sensors sensitivity to light is decreased in low light conditions because
part of each pixel photosensitive area is covered with circuitry that filters out noise
and performs other functions. The percentage of a pixel devoted to collecting
light is called the pixelsfill factor. Most CCDs have a near 100% fill factor while
CMOS usually have much less. To compensate for lower fill-factors, micro-lenses
can be added to each pixel to gather light from the insensitive portions of the pixel
and focus it down to the photosensitive area.

Although the sensor’s natural behavior is linear, due to perceptive reasons the
final brightness value stored in the image is non-linearly related to radiance. This
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non-linear behavior is characterized by the camera response curve. Only some
scientific cameras keep the sensor natural linear behavior to produce the final im-
age.

The functionf : [Emin, Emax] → [0, M ] actually maps sensor exposure to
brightness values, whereEmin andEmax are respectively the minimum and the
maximum exposure values measurable by the sensor, andM is the maximum
digitized value. The functionf is in the core of the image formation process.
In most cases,f is non-linear and the application off−1 is required to make
meaningful comparisons between brightness values of differently exposed images.

Another important concept is that ofdynamic range, it is the ratio of the high-
est to the lowest in a set of values; in the image context these values are light
intensity values. The fact that the range is dynamic is due to the possibility to
control exposure by varying camera parameters, thus changing the maximum and
the minimum radiance values related to the same exposure range.

In photography, dynamic range – also referred as film or photopaperlatitude–
is given in terms of stops, which is alog2 scale. Films produce a density range of
about 7 stops (that is, 128:1, or two orders of magnitude in base 10). Photographic
paper has a much lower dynamic range, equivalent to 4 or 5 stops (approximately
20:1). Several techniques are adopted in the printing process to overcome this gap.
The design of photographic materials has evolved to the goal of optimal response
for human viewing under a variety viewing conditions, and is well known that
contrast plays a huge role in achieving good images.

Sensors convert an analog signal into a digital signal, so its characteristics
define the signal discretization step. The dynamic range defines the range of tones
that can be stored by the chosen media. Digital sensors and displays, independent
of their accuracy, represent a discrete interval of the continuous infinite range of
real luminances, so tonal resolution is influenced by the number of bitsn used to
describe it.

There is a subtle difference between tone resolution and the tonal range of ra-
diances spanned in an image. Tonal range is related to the total size of the interval
that can be perceived by a sensor, while the tone resolution is related to the sample
frequency, that is, on how many tones are represented given a fixed interval. Tonal
range can be changed without alteringn while changingn not necessarily changes
the total range; both changes have influence on the final resolution. Intuitively the
total range is the maximum contrast reproduced by the media, while the resolution
influences on the tonal smoothness reproduction.
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2.4.2 Color Reproduction

As mentioned before, light sensors and emitters try to mimic the scene’s light
signal concerning human perception; it is the human perception that is important
concerning colors reproduction. Inspired on the trichromatic base of the human
eye, the standard solution adopted by industry is to use red, green and blue filters,
referred as RGB base, to sample the input light signal and also to reproduce the
signal using light based image emitters. Printers work on a different principle, a
discussion about them is out of the scope of this work.

Photographic color films usually have three layers of emulsion, each with a
different spectral curve, sensitive to red, green and blue light respectively. The
RGB spectral response of the film is characterized by spectral sensitivity and spec-
tral dye density curves (see Figure 2.4).

Electronic sensors are by nature, sensitive to the entire visible spectrum and
also to infrared wavelengths. In order to sample the input signal in RGB tristimu-
lus base, colored filters are attached to the sensors. To each sensor pixel only one
filter is attached, this implies the adoption of solutions like the usage of a Bayer
pattern as shown in Figure 2.7. In the Bayer pattern, the green channel is sampled
twice more than the red and green channels. this design choice is also based on
human perception.

Figure 2.7: Bayer pattern (from http://www.dpreview.com/learn/ by Vincent
Bockeart).

Other solutions can also be adopted. The most common alternative is to use
three sensors, one for each channel; recently, a new sensor technology was pro-
posed that mimics the behavior of a color film and captures RGB values in the
same sample point. Both solutions are not cheap, and most consumer cameras use
Bayer patterns to sample light in the RGB base.
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2.4.3 Spatial resolution

The total size of the sensor, the size of an individual pixel and their spatial dis-
tribution determine the image spatial resolution and the resolution power of the
sensor. The spatial resolution power is related to the image sampling process. A
tool of fundamental importance in the study of spatial resolution and accuracy
issues is the sampling theorem [GV97]:

Theorem 1 (The Shannon-Whittaker sampling theorem)Letg be a band-limited
signal andΩ the smallest frequency such thatsup ĝ ⊂ [−Ω, Ω], whereĝ is the
Fourier transform ofg. Theng can be exactly recovered from the uniform sample
sequence{g(m∆t) : m ∈ Z} if ∆t < 1/(2Ω).

In other words, if the signal is bandlimited to a frequency band going from 0
to ω cycles per second, it is completely determined by samples taken at uniform
intervals at most1/(2Ω) seconds apart. Thus we must sample the signal at least
two times every full cycle [GV97]. The sampling rate1/(2Ω) is known as the
Nyquist limit. Any component of a sampled signal with a frequency above this
limit is subject toaliasing, that is, a high frequency that will be sampled as a low
frequency.

The number of sensor’s pixels defines the image grid, that is, its spatial res-
olution in classical terms; but their physical size and spatial distribution also in-
fluences on the resolution power of the imaging device. Since the pixel spacingδ
is uniform, the sensor Nyquist frequency is given by1/(2δ). Note that the adop-
tion of Bayer pattern alters thisδ value altering sensor Nyquist frequency for each
color channel.

Modulation Transfer Function

Between light and sensor there is the camera lens system, which has its own reso-
lution that influences on the final camera resolution. Lenses, including eye, are not
perfect optical systems. As a result when light passes through it undergo a certain
degree of degradation. The Modulation Transfer Function (MTF) (see Figures 2.8
and 2.4) shows how well a spatial frequency information is transfered from ob-
ject to image. It is the Fourier transform of the point spread function (PSF) that
gives the scattering response to an infinitesimal line of light and is instrumental in
determining the resolution power of a film emulsion or a lens system.

Lens and film manufacturers provide the MTF curves of their lenses and film
emulsions. It is useful for a photographer to interpret these curves, see Figure 2.9,
in order to chose which is better for his requirements.
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Figure 2.8: Images taken from http://www.normankoren.com/Tutorials/MTF.html
illustrates the effects of MTF on the input target. The blue curve below the target
is the film MTF, expressed in percentage; the red curve shows the density of the
bar pattern.

Figure 2.9: MTF of different lenses compared

In summary, image spatial resolution power is determined by imaging system
lenses and sensor’s pixels physical spacing. Usually, if the chosen lens is high
quality, pixel dimension and spacing is the critical information to be considered
to evaluate spatial resolution power.

2.4.4 Noise, Aberrations and Artifacts

Many distortions on measurement can be caused by electric phenomena like dark
current, thermal noise, charge overflowing to neighboring sensors, etc. Dark cur-
rent means that a pixel may exhibit non-zero measurements even when there is no
incoming photon. The longer the exposure time is, the more dark current noise is



2.4. IMAGING CAPTURE DEVICES 23

accumulated. Cooling the sensor can be of great help since noise can double with
every increase in temperature of about 6 Kelvin [Goe04]. Bright spots can create
large currents and the charge overflows to neighboring pixels leading to blooming
artifacts.

Concerning pixel size, small pixels respond to fewer photons and can hold
fewer electrons. Thus, although they allow for finer spacing, they suffer from in-
creased noise, that is, poorer signal-to-noise ratio (SNR), reduced exposure range
(fewer f-stops), and reduced sensitivity (lower ISO speed). Large pixels have good
SNR, ISO speed and exposure range, but suffer from aliasing.

Concerning sensors total size, a well known issue for large format photog-
raphy lovers, small sensors are affected by lens diffraction, which limits image
resolution at small apertures – starting around f/16 for the 35mm format. At large
apertures – f/4 and above– resolution is limited by aberrations; these limits are
proportional to the format size. Large sensors are costly. For reference, sensor
diagonal measurements are 43.3 mm for full frame 35mm film; up to 11 mm for
compact digital cameras, and 22 mm and over for digital SLRs. Large format
cameras are famous for they image resolution power.

Digital image post-processing can introduce artifacts. For instance, a side ef-
fect of Bayer pattern adoption is that the reconstruction of RGB values for each
pixel uses information of neighboring pixels, the spatial measurement displace-
ment can then introduce chromatic artifacts.

In this thesis the post-processing is reduced as much as allowed by the camera
manufacturers. This is done intending to preserve as much as possible the original
sensor measurement.
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Chapter 3

Active Setup

An active setup is composed by a controllable light source that influences on scene
illumination and a camera device. The most commonly used active setup is a pair
camera/projector. Technical properties of devices are chosen according to the
requirements of the scene of interest. In this work the focus is on objects with
dimensions comparable with a vase or a person. In most cases the acquisition is
done in a controlled ambient, which means that background and ambient light can
be controlled.

Digital cameras and projectors devices act like non-linear black-boxes that
convert light signal into digital images and vice-versa. For these devices to be-
come measurement instruments their non-linear behavior must be characterized.

The characterization of device behavior is a calibration process. To calibrate a
device is basically to compare its behavior to some global reference values. In the
case of geometric calibration, for example, the calibration is performed to find the
device spatial coordinates relatively to a world coordinate system. Analogously,
color calibration is usually performed using test targets as global reference values,
the task is to classify the device behavior according to these global references.

In some cases global references are more than what is needed, and it is enough
to situate the device behavior relatively to some other device. This is the case of
projector geometric calibration for active stereo applications: what matters is the
projector position relatively to the camera position; its world coordinates are less
important.

In this chapter the devices calibration process and the obtained results of cali-
bration of an specific setup is discussed.

25
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3.1 Camera Calibration

Geometric Calibration: Camera geometric position in space can be derived from
images by observing the projective deformations of geometric calibration targets
and exploring principles of projective geometry. The knowledge of devices geo-
metric position is fundamental in some applications like depth information recov-
ery from photographs, 3D scanning, etc. In this work devices geometric position
are not required for the studied applications.

Photometric Calibration: Considering devices photometric behavior, it has
been already mentioned that, given a sensor’sspectral response functions(λ), if
a sensor is exposed to light with spectral distributionC(λ), the actual incoming
value to be registered by the sensor is given by

w =
∫

λ
C(λ)s(λ)dλ.

It is also known that sensors pixelsij respond to exposure values

Eij = wij∆t,

where∆t is the exposure time. Consequently, the actual digitized valuedij is
a function of the valueswij. Thus, a full sensor photometric calibration should
characterize the response function

dij = f(wij∆t)

as well as the RGB filters spectral functionss(λ).
Note that the signalCij(λ) cannot be recovered unless the calibration is done

to each monochromatic wavelengthλ ands(λ) is known. In addition, it is possible
that different input signalsCij(λ) at pixelij produces equal responseswij, that is,
the signals are sensor’smetamericsignals.

Noise: Sensor noise also influences on the image formation process. In this
work we referred to technical references of the adopted devices to choose param-
eters that minimize sensors noise. In Figure 3.1 the behavior of noise respect to
the chosen ISO sensitivity for different camera models is illustrated.

In this thesis no noise reduction post-processing is applied.
Spatial Resolution Power: To complete the characterization of a camera de-

vice, its spatial resolution power should be considered. This issue is related to the
characterization os its MTF curve. In Figure 3.2 the image of a test target used to
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Figure 3.1: Some cameras noise compared. Indicated ISO sensitivity is on the
horizontal axis of this graph, standard deviation of luminosity (normalized image)
on the vertical axis. Image from the site http://www.dpreview.com.

analyze the camera resolution power is shown. It can be observed that the finest
spatial frequencies are not well reproduced in the acquired image.

In this work issues related to spatial resolution power are not required for the
desired applications and we leave the discussion to a future work. We turn now to
the discussion of camera photometric calibration.

3.1.1 Intensity Response Function

Intensity response calibration is responsible for the characterization of the re-
sponse functionf . As thedij values are non-linearly related to scene radiance
valueswij, it is mandatory to recover the characteristic sensor response function
f in order to linearize data and perform meaningful comparisons between dif-
ferently exposeddij values. Asf is reasonably assumed to be monotonically
increasing, thus its inversef−1 is well defined. The recovery off from ob-
served data has been extensively studied in recent years. Most methods are based
on the usage of a collection of differently exposed images of a scene as input.
[DM97, GN03a, GN04, GHS01]

A collection ofN differently exposed pictures of a scene acquired with known
variable exposure times∆tk gives a set ofdk

ij values for each pixelij, wherek
is the index on exposure times. Althoughf is modeled as a continuous function,
what can be observed are its discrete values registered by the sensor. The discrete
response function̂f associated tof includes in its modeling important sensors
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(a) (b)

Figure 3.2: (a) Camera spatial resolution power test target. (b) A detail of the
same image. The camera used in this test was a Canon EOS 350D and the image
is from the site http://www.dpreview.com.

characteristics such as noise.
Considering sensor’s noiseηij, the actual value to be digitized is given by

zk
ij = Ek

ij + ηij = wij∆tk + ηij. As the digitization function is discrete, ifzk
ij ∈

[Im−1, Im), where[Im−1, Im) is an irradiance interval, thendk
ij = f̂(zk

ij) = m.

The discrete response function̂f is then:

f̂(z) =


0 if z ∈ [0, I0),
m if z ∈ [Im−1, Im),
2n if z ∈ [I2n−1,∞)

wherem = 0, ..., 2n, with n the number of bits used to store the information
(in practice, the maximum is not required to be equal to2n, but here we will
consider this for notation simplicity). The monotonically increasing hypothesis
imposes that0 < I0 < ... < Im < ... < I2n−1 < ∞. Thus an inverse mapping can
be defined bŷf−1(m) = Im.

If f̂(zk
ij) = m thenζij = Im − zk

ij is the quantization error at pixelij, thus:

f̂−1(m) = zk
ij + ζij

= wij∆tk + ζij

f̂−1(m)− ζij = wij∆tk

wij = f̂−1(m)−ζij

∆tk

If enough different irradiance values are measured – that is, at least one mean-
ingful digital value is available for each mapped irradiance interval – thenf̂−1
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mapping can be recovered for the discretem values. To obtainf in all its continu-
ous domain some assumptions must be imposed on the function such as continuity
or smoothness restrictions. In some cases parameterized models are used but it can
be too restrictive and some real-world curves may not match the model.

At this point, a question can be posed:What is the essential information nec-
essary and sufficient to obtain cameras characteristic response functions from
images?

In [GN03a] the authors define the intensity mapping functionτ : [0, 1] →
[0, 1] as the function that correlates the measured brightness values of two differ-
ently exposed images. This function is defined at several discrete points by the
accumulated histogramsH of the images, given byτ(d) = H−1

2 (H1(d)) 1, and
expresses the concept that them brighter pixels in the first image will be them
brighter pixels in the second image for allm 2. Then the following theorem is
derived:

Theorem 2 (Intensity Mapping [GN03a]) The histogramh1 of one image, the
histogramh2 of a second image (of the same scene) is necessary and sufficient to
determine the intensity mapping functionτ .

The referred functionτ is given by the relation between two corresponding
tones in a pair of images:

Let
d1

ij = f(wij∆t1)
d2

ij = f(wij∆t2)
(3.1)

then
d1

ij = f
(

f−1(d2
ij)

∆t2
∆t1

)
= f(γf−1(d2

ij))
(3.2)

whereγ = ∆t1
∆t2

that is
d1

ij = f(γf−1(d2
ij))

= τ(d2
ij)

(3.3)

The answer to the posed question is thatτ , together with the exposure times
ratio are necessary and sufficient to recoverf . Here the conclusions were derived

1Supposing that all possible tones are represented in the input image, the respective accumu-
lated histogramH is monotonically increasing, thus theH−1 inverse mapping is well defined.

2H and τ are considered as continuous functions although in practice they are observed at
discrete points and their extension to continuous functions deserves some discussion.
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from an ideal camera sensor without noise. But note thatτ is obtained observ-
ing the accumulated histograms, that are less sensitive to noise than the nominal
values.

Response curvef from observed data

Different approaches can be used to recover thef function from observed data.
In what follows some methods will be described. Each of these methods has its
advantages and drawbacks.

In [DM97], the continuousf is recovered direct from the observed data by
finding a smoothg(dk

ij) = lnf−1(dk
ij) = lnwij + ln∆tk using an optimization

process. Only a subset of correspondent image pixels from a set of differently ex-
posed images are used. The selection of a subset of pixels is needed otherwise the
formulated optimization problem would be too large with a lot of redundant in-
formation. Then,f−1 is applied to recover the actual scene irradiance by applying

wij =
f−1(dk

ij)

∆tk
.

In [GN03a], the images accumulated histograms are used to obtain the inten-
sity mapping functionτ . Then, a continuousf−1 is obtained assuming that it is
a sixth order polynomial, and solving the system given by equationf−1(τ(d)) =
γf−1(d) on the coefficients of the polynomial. Two additional restrictions are
imposed: that no response is observed if there is no light, that is,f−1(0) = 0,
assuming also thatf : [0, 1] → [0, 1], f−1(1) = 1 is fixed, which means that the
maximum light intensity leads to the maximum response. Note that there is no
guarantee that the obtainedf is monotonically increasing.

The usage of accumulated histograms has some advantages: all the informa-
tion present in the image is used instead of a subset of pixels, the images need not
to be perfectly registered since spatial information is not present on histograms,
and they are less sentive to noise. Note that, if an histogram approach is used,
the spatial registration between image pixels is not necessary to findf , but pixel
correspondences cannot be neglected when reconstructing the Radiance Map.

The same authors, in [GN04], study the space of camera response curves. It is
observed that, although the spaceWRF := {f |f(0) = 0, f(1) = 1 andf is mono-
tonically increasing} of normalized response functions is of infinite-dimension,
only a reduced subset of them arise in practice. Based on this observation it is
created a low-parameter empirical model to the curves, derived from a database
of real-world camera and film response curves.

In [RBS99] the discrete version of the problem is solved by an iterative op-
timization process, an advantage is thatf̂ do not need to be assumed to have a



3.1. CAMERA CALIBRATION 31

shape described by some previously defined class of continuous functions. The
irradiance valueswij and the function̂f are optimized at alternated iterations. As
a first step, the quantization errorζk

ij = Im − zk
ij = Im − wij∆tk is minimized

with respect to the unknownw using

O(I, w) =
∑

(i,j),k

σ(m)(Im − wij∆tk)
2 (3.4)

The functionσ(m) is a weighting function chosen based on the confidence on
the observed data. In the original paperσ(m) = exp (−4 (m−2n−1)2

(2n−1)2
).

By setting the gradient∇O(w) to zero, the optimumw∗
ij at pixelij is given by

w∗
ij =

∑
k σ(m)∆tkIm∑

k σ(m)∆t2k
(3.5)

In the initial stepf is supposed to be linear, and theIm values are calculated
usingf . The second step iteratef given thewij. Again the objective function 3.4
is minimized, now with respect to the unknownI. The solution is given by:

I∗m =

∑
((i,j),k)∈Ωm

wij∆tk

#(Ωm)
(3.6)

whereΩm = {((i, j), k) : dk
ij = m} is the index set and#(Ωm) is its cardinal-

ity. A complete iteration of the method is given by calculating 3.5 and 3.6, then
scaling of the result. The process is repeated until some convergence criterion is
reached.

We observe that, as originally formulated, there is no guarantee that the values
Im obtained in 3.6 are monotonically increasing. Especially in the presence of
noise this assumption can be violated. IfI∗m are not increasing, then the neww∗

ij

can be corrupted, and the method does not converge to the desired radiance map.
The correct formulation of the objective function should include the increasing
restrictions:

O(I, w) =
∑

(i,j),k
σ(m)(Im − wij∆tk)

2

s.a 0 < I0 < · · · < Im < · · · < I2n−1 < ∞
(3.7)

This new objective function is not easily solved to the unknownI as the origi-
nal one. In the next section the iterative optimization method is applied to recover
the f response function of the cameras used in the proposed experiments. The
approaches used to deal with the increasing restrictions will then be discussed.



32 CHAPTER 3. ACTIVE SETUP

Another observation is that although theIm values were modeled as the ex-
treme of radiance intervals, the calculatedI∗m are an average of their correspondent
radiance values.

3.1.2 Spectral Calibration

The RGB values recorded for a color patch depends not only on light source spec-
tral distribution and scenes reflective properties but also on spectral response of
the filters attached to camera sensors. To interpret meaningfully the RGB values
each spectral distribution should be characterized separately.

An absolute spectral response calibration is the complete characterization of
RGB filters spectral behavior, that is, to recovers(λ). It would be possible to char-
acterizes(λ) if measurements at each monochromatic wavelengthλ were done
separately, but that is not possible with commonly available light sources.

To the graphical arts and printing industry, color values have to be comparable
in order to achieve consistent colors throughout the processing flow. What is done
in practice is to adopt a color management systems (CMS) to ensure that colors
remain the same regardless of the device or medium used. The role of a CMS is to
provide a profile for the specific device of interest that allows to convert between
its color space and standard color spaces. Usually standard color charts are used
to characterize the device color space, in this case, a photograph of the given
chart is taken and based on the registered RGB values the device color space is
inferred. The core information of a device profile is in most cases a large lookup
table which allows to encode a wide range of transformations, usually non-linear,
between different color spaces [Goe04].

Another issue related to color calibration is the compensation of light source
spectral distribution. If scene illumination is different from white, what occurs
with the most common illuminants like incandescent and fluorescent lighting, then
the measured values will be biased by the illuminant spectral distribution.

The human eye has a chromatic adaptation mechanism that preserves approx-
imately the colors of the scene despite the differences caused by illuminants. Dig-
ital imaging systems can not account for these shifts in color balance, and the
measured values should be transformed to compensate for illuminant chromatic
distortions.

Many different algorithms can perform color balancing. A common approach
usually referred aswhite balanceis a normalize-to-white approach. There are sev-
eral versions of white balance algorithm, but the basic concept is to set at white
(WR, WG, WB) a point or a region that should be white in the real scene. One ver-
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sion of the white balance algorithm sets values(max(R), max(G), max(B)), the
maximum values of the chosen white region, at a reference white(WR, WG, WB).
The colors in the image are then transformed using:

(R′, G′, B′) = (
WR

max(R)
R,

WG

max(G)
G,

WB

max(B)
B)

In the case of this thesis, the interest is on a relative correlation between a
projector color space and a camera color space, thus no color charts are used.
The calibration is done based on projected color information. Regarding white
balance, we chose to minimize the post-processing of acquired data, thus white
balancing is not performed. We also assume that in calibration phase, ambient
light is not present. In the case of applications where this assumption is not valid,
the adoption of white balance may be reconsidered.

3.2 Projector Calibration

All measurements of projected colors are to be done through the camera. Thus
projector calibration becomes an indirect problem dependent on camera calibra-
tion. The camera calibration errors are then propagated to projector calibration.

Geometric Calibration: Light source geometric position can be recovered rel-
ative to camera position. If the light source is not included in the camera scene
composition, the use of mirrors or reflective spheres to localize its position in the
ambient is useful [Len03]. Projector geometric calibration can benefit from pro-
jective principles. A calibration pattern can be projected allowing the recovery of
projector position by observing projective deformations on the pattern []. In this
work we are not concerned with geometric calibration.

Photometric Calibration: The actual value emitted by the light source relative
to the projected nominal valueρ is given by its characteristic emitting function
h(ρ), that is reasonably assumed to be monotonically increasing. It is also known
that to project light in RGB basis, the projector has color filters with characteris-
tic spectral emitting functionP (λ). Thus, a full projector photometric calibration
should characterize the emitting functionh(ρ) as well as the RGB filters spec-
tral emitting functionP (λ). The characterization ofP (λ) for each wavelength
requires specific measurement instruments and cannot be done by using common
photographic cameras.

Spatial Resolution Power and Noise: To complete the projector behavior char-
acterization, issues related to spatial resolution power and noise should also be
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analyzed. To illustrate the issue two projector technologies, a DLP and an LCD
projectors, are compared in Figure 3.3. It is possible to observe the spatial inten-
sity variation as well as noise in the cropped detail.

(a) DLP full image (b) DLP primary col-
ors

(c) DLP detail

(d) LCD full image (e) LCD primary
colors

(f) LCD detail

Figure 3.3: DLP vs. LCD spatial resolution and noise behavior.

In this work the discussion on spatial resolution and level of noise is left as a
future work. Instead, we analyze the average of regions uniformly illuminated by
the projector to perform projector photometric calibration. Recall that, in the case
of this work, projector calibration is always dependent on the camera characteris-
tics. We turn now to the discussion of projectors photometric calibration.

3.2.1 Intensity Emitting Function

The actual projected intensityh(ρ) is a monotonically increasing function of the
projected nominal valueρ. The non-linear relation ofρ to the observed camera
value is given byd(h(ρ)) = f(w(h(ρ))∆t). The valuew(h(ρ)) that reaches
the camera sensor is a result of the projector lamp spectral distribution passing
through both camera and projector color filters and is described by:

w(h(ρ)) =
∫
λ Ch(ρ)(λ)s(λ)dλ (3.8)

whereCh(ρ)(λ) = h(ρ)P (λ) for spectral emitting functionP (λ), thus
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w(h(ρ)) =
∫
λ h(ρ)P (λ)s(λ)dλ (3.9)

It is reasonable to assume thath(ρ) is not dependent onλ. By observing
the projectors technologies we know that a single light source with fixed spectral
distribution passes through RGB pre-defined color filters, this implies that the
intensity modulation proportioned byρ should act like a neutral density filter and
alters the whole signal in the same way, consequently:

w(h(ρ)) = h(ρ)
∫
λ P (λ)s(λ)dλ (3.10)

For an RGB based system the camera has three spectral response curvessq(λ),
whereq = R,G orB, as well as projector has three spectral emitting curvesPr(λ)
wherer = R,G or B. This gives rise to nineSq

r (λ) combined spectral curves that
characterize the pair camera/projector, in addition, as the spectral functions are
fixed, nine constant factors arise:

κq
r =

∫
λ
Pq(λ)sr(λ)dλ =

∫
λ
Sq

r (λ)dλ

For an ideal camera/projector pairκq
r = 0 if q 6= r. Assuming that ambient

light is set to zero, the projector become the only scene illuminant. It is reasonable
to assume thath is the same for all the three channels by observing the projectors
technologies described in previous Chapter. For each emitted intensityh(ρ), there
is a correspondentw(h(ρ)) value, both have three channels of information, that
is, the system that relates the actual projected intensity to the intensity values that
reaches the sensor is linear and given by: wR

wG

wB


︸ ︷︷ ︸

w

=

 κR
R κR

G κR
B

κG
R κG

G κG
B

κB
R κB

G κB
B


︸ ︷︷ ︸

K

 h(ρR)
h(ρG)
h(ρB)


︸ ︷︷ ︸

h(ρ)

The matrixK characterizes the spectral behavior of the pair camera/projector,
and it will be referred as thespectral characteristic matrix. It is expected that
K is near diagonal, that is,κq

r ≈ 0 if q 6= r, and all its entries are nonnega-
tive, in addition, its diagonal entries should be strictly positive. For ideal pairs
camera/projectorK is the identity.

Ambient light can be added to the model by summing up its contribution:

w = Kh(ρ) + c (3.11)
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Emitting curve f from observed data

It is easy to see that ifK is known, then thecharacteristic emitting functionh(ρ)
is recovered from observations by solving the systemw(h(ρ)) = Kh(ρ). The
problem is thatK is also unknown, and the complete calibration process should
recover the emitting functionh(ρ) as well as the spectral characteristic matrixK.
In addition,h is not necessarily linear, thus the problem on the unknownsK and
h is non-linear.

The solution can be iteratively approximated by minimizing error solving a
non-linear least squares problems given byerr = Kh(ρ)−w. An initial solution
to the problem can be produced solving its linear version, that is,w = Kρ.

3.3 Calibration in Practice

The calibration of an active setup involve the camera calibration and the light
source calibration, in our case, a projector. In applications different set-ups were
used, in what follows our photographic setup will be described and calibrated.
This set-up uses a photographic camera and two types of digital projectors.Setup
a: Camera plus LCD projector (illustred in Figure 3.4).Setup b: Camera plus
DLP projector.

Figure 3.4: Our photographic setup.

A diffuse white screen was used to project images during the calibration pro-
cess.

3.3.1 Camera Calibration

The digital camera used in our calibration tests is a Canon EOS D350. In the
experiments we vary image exposure by controlling acquisition time or by con-
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trolling illumination, while all other parameters were kept fixed. The camera pa-
rameters were set to:

• lens aperture = 22F,

• ISO speed = 200,

• focal distance = 41 mm,

• image size =3456× 2304 pixels - RAW.

All other parameters were turned off to minimize image processing.
Images were captured in RAW 12 bits proprietary camera format and con-

verted to TIF 16 bits image by theDigital Photo Professional 1.6software at-
tempting to turn off all unnecessary additional processing.

The camera characteristic response curve was obtained applying the iterative
optimization method described in previous section. The input images were ac-
quired by varying exposure time, three of them are shown in Figure 3.5.

(a) ∆t = 1/30sec (b) ∆t = 1/8sec (c) ∆t = 1/2sec

Figure 3.5: Input scene.

In Figure 3.6 the computedf function is plotted. The difference between
graphics (a),(b) and (c) is that in (a) the input TIF images with 16 bits of precision
were used to run the method; in (b) the input images were reduced to 12 bits of
precision that is the native sensor precision; in (c) the precision is reduced once
again to 8 bits.

Note that when the TIF images with 16 bits of precision were used, many
zeros were obtained asIm values (Figure 3.6 (a)) by the iterative method. This
is because when the TIF 16 bits was created out of the original RAW many bins
remain empty, that is,Ωm = ∅. This problem is solved turning back to 12 bits and
working with this channel depth resolution. Note also that the producedf aren’t
monotonically increasing, in addition, a high frequency can be observed on the
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(a) 16 bits (b) 12 bits

(c) 8 bits

Figure 3.6: Outputf . Reducing the number of bits that encodes each color chan-
nel.

outputf with 16 bits and 12 bits due to noise on the input images (Figure 3.6 (a)
and (b)). The effect of noise is reduced when we reduce bits depth.

Based on these results we chose to work in 10 bits of precision, since it is
reasonable to assume that 2 bits of our 12 bits of information is noise, given the
conditions of our experiments. Figure 3.7 shows in (a) the producedf when the
original algorithm was applied; in (b) itslog 2 values were plotted.

As expected, using the original formulation of the algorithm the obtained func-
tion is not monotonically increasing. Specially where the input data is poor the
obtainedf function is likely to be non-monotonically increasing. The heuristic
adopted to guarantee that the function is monotonically increasing is very simple,
it is based on linear interpolation, we simply ignore the values were some descent
is observed and recalculate the values by linear interpolation considering the first
non descent occurrence. Figure 3.7 (c) shows the final monotonically increasing
f obtained from (a). To apply the linear interpolation we work onlog 2 of the data
that is more reasonably assumed to be well interpolated by linear parts.
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(a) 10 bits (b) 10 bits - log2

(c) monotonically increasingf

Figure 3.7: Outputf 10 bits of pixel depth.

3.3.2 Projector Calibration

Not only different cameras register different brightness values for the same input
exposure, projectors emission characteristics also depends on projector technol-
ogy, model and time of use. The projectors used in our experiments were a LCD
Mitsubishi SL4SU and a DLP InFocus LP70. We now analyze our projectors by
calibrating them respect to the previously calibrated camera.

The camera parameters were fixed after photometering the white screen with
a constant gray pattern being projected. The screen plane was initially focused
using the camera auto-focus facility and then the auto-focus was turned off and
kept fixed during the experiment. The camera characteristic functionf−1 was
applied to the nominal camera values to obtain the linearizedw values.

To recover the characteristic emitting functionh(ρ) at some specific valuesρ,
and the spectral characteristic matrixK, Projected intensity was modulated for
the primary colors and the values registered by the camera observed. In Figure
3.8 the projected green values for the DLP projector are shown.
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(a) ρ = 64 (b) ρ = 128 (c) ρ = 192 (d) ρ = 255

Figure 3.8: Green values observed by the camera related to modulatedρ intensity
of projected green. DLP projector.

To solve the systemw = Kh(ρ), samples of the projected patterns were used.
Green, Red, Blue and Gray full screen were subsequentially projected withρ val-
ues equal to 64, 128, 192 and 256; additionally a Black screen was also projected.
The non-linear system was then solved for both projectors to findK andh(ρ) for
the projectedρ. Without loss of generality we defineh(64) = 1. For our DLP
projector we obtain:

KDLP =

 0.0712 0.0607 0.0137
0.0032 0.1789 0.0401
0.0051 0.0987 0.2627


h(0) = 0.04, h(64) = 1, h(128) = 4.11, h(192) = 11.39, h(256) = 14.40
For the LCD projector we get:

KLCD =

 0.1664 0.0456 0.0249
0.0093 0.2071 0.0415
0.0100 0.0337 0.3589


h(0) = 0.05, h(64) = 1, h(128) = 3.26, h(192) = 6.80, h(256) = 9.96
The non-linearity ofh is clear. The fact that DLPs projectors produce higher

contrast then LCDs is confirmed by the obtainedh values. Another interesting ob-
servation is that for our DLP projectorκR

R = 0.0712 andκG
R = 0.0607, this means

that the response of camera Red channel is similar when projector projects Red
or Green information, that is, if pure Green is projected, the camera red channel
register an undesired high response. We turn back to this problem in Chapter 4.

The camera linearized values are:w = Kh(ρ), whereρ is the nominal pro-
jected color. AsK is near diagonal its inverse can be used to isolate the non-linear
emitting function:h(ρ) = K−1w. Thus a valueρ for which h(ρ) is known can
be used to obtain the nominal projectedρ. Then a linear transformation can be
applied to simulate any other projector illumination.



3.3. CALIBRATION IN PRACTICE 41

Intensity decay with distance

In this experiment we verify the intensity decay with the increase of the screen
distance. The purpose here is to define a working volume in the sense that the
projector light source affects scene illumination within the defined volume. In
Figure 3.9 the camera response to a uniformly projected magenta region is ob-
served.

(a) DLP projector (b) LCD projector

Figure 3.9: Camera nominallog 2 values decay with distance, in cm, of a projected
uniform Magenta region. Maximum, minimum and average values were plotted.

As we are observing a projected Magenta, the Green channel would be ex-
pected to be equal to zero, but the effects of channel contamination given by ma-
trix K can be clearly observed. By observing the maximum and minimum values
it is evident the increasing noise with distance, this is expected since scene lumi-
nance decay. The conclusion that we can derive from this data is that for each 2
meters increased in screen distance, we observe a reduction of 2 bit of nominal
information. This can be used to define thresholds in application of Chapters 5
and 6.
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Chapter 4

Stereo Correspondence

Shape acquisition is one of the fundamental tasks in 3D photography. An object
can be thought of as made up of a collection of surfaces which in turn have geo-
metric properties such as curvature and features as well as photometric properties
such as color, texture and material reflectance. In the last two decades the prob-
lem of accurately capturing an object’s geometry was extensively studied, while
the acquisition of high-quality textures, an equally important problem, only in
recent years has become subject of research.

The recovery of an object’s 3D shape is an inverse problem usually subdivided
in several subproblems:depth acquisition, alignment of views, mesh reconstruc-
tion, etc.

The depth acquisitionis the recovery of a depth map given an image or a
set of images of a scene; it is heavily dependent on the hardware set-up chosen
to acquire the images. Thealignment of viewsis the problem of given a set of
depth maps acquired from distinct points of view, construct a cloud of points that
consistently represents the object; it is dependent on the knowledge of camera
positions and on initial solutions. Texture information can help in this step. The
mesh reconstructionis responsible for given a cloud of points construct a mesh
that describes the object. This step can be substituted by the direct visualization
of a cloud of points.

This chapter focus ondepth acquisitiontechniques. The reasoning that al-
low depth recovery is based on the observation of how depth influences on the
image formation. Observing how a controlled light source produces shadows we
get shape from shading algorithms, observing the behavior of image focus we get
depth from focus, observing images from different points of view we get stereo
techniques. A classification of shape acquisition methods is given in Figure 4.1.

43
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Figure 4.1: Shape acquisition methods.

We will concentrate on approaches that allows using off-the-shelf hardware, re-
ducing significantly the cost of the scanner.

The highlighted branch in figure 4.1 shows the classification of acquisition
techniques based on optical sensors, that is, what is being measured is the light
intensity after its interaction with the scene to be measured. To choose among
these techniques one has to consider their advantages and limitations depending
on the application, such as resolution, accuracy, hardware and software to be used,
etc.

One of the basic principles that allows obtaining depth maps from images
is stereo vision, that is, if two known cameras observe the same scene pointX
then its position can be recovered by intersecting the rays corresponding to the
projection in each image as illustrated in Figure 4.2. This processes is called
stereo triangulation.

Figure 4.2: Stereo Triangulation principle

The so calledpassive stereomethods try to recover depth using two images
acquired from different points of view, the main challenge of these methods to
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recover 3D shape lies in the difficulty of automatically matching points in the two
images. In order to avoid this problem, thepassive stereomethods can be replaced
by active stereotechniques, where one of the cameras is replaced by a calibrated
and well defined light source, that mark the scene with some known pattern. The
active approach helps to solve the stereo correspondence problem, which is a dif-
ficult task in passive methods. Active stereo methods is a typical technique that
benefits from controlled illumination and we will focus our attention on this tech-
nique in the present chapter.

Recently an hybrid approach has been proposed that employs a pair of cali-
brated cameras and a projector that do not need to be calibrated with the system
[].

In summary, the basic steps in recovering depth maps employing stereo vision
techniques are the following:

• System geometric calibration;

• Establishing correspondences between points in the stereo pair;

• Construction of the depth map using stereo triangulation.

Limitations of techniques based on optical sensors includes that it acquires
only visible portions of the surface and it is sensible to surface’s reflectance prop-
erties.

4.1 Active Stereo

Shape from structured light is an active stereo vision technique used in estab-
lishing correspondences for stereo triangulation. Measurement of depth values is
carried out with a system that resembles a two-camera stereo system, except that
a projection unit is used instead of the second camera. A very simple technique to
achieve depth information with the help of structured light is to scan a scene with
a projected laser plane and detect the location of the reflected stripe in the camera
image. Assuming that the projected laser can be seen by the camera, and both are
calibrated, the depth information is then computed by stereo triangulation using
the known correspondences.

For instance, laser-based systems direct a laser beam (contained in a known
plane) to the scene and detect the beam position in the image. By intersecting
the ray corresponding to each point with the known plane, one can compute the
position of the points as shown in Figure 4.3.
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Figure 4.3: Laser beam projected on an object and its captured image.

In order to get dense range information, the laser plane has to be moved in
the scene (or, equivalently, the object has to be rotated). Structured light meth-
ods improve the speed of the capturing process by projecting a slide containing
multiple stripes onto the scene, as depicted in Figure 4.4. To distinguish between
different stripes, they must be coded appropriately, in such a way that the projector
coordinates are determined without ambiguity.

Coded Structured Light(CSL) techniques consists of illuminating the object
with one or more slides with patterns coded according to certain schemes. There
are many ways to code structured light. Early research on CSL methods was done
in the 80’s [JM82, KA87, PA90, JM90]. The idea of this work was to create
empirically light patterns to capture the geometry of scanned 3D objects. In the
80’s, pioneer tests with light coding were proposed and the main concepts were
conceived. At the time, the methods were limited by restrictions imposed by ex-

(a) ganesh statue (b) schematic view of a scanner device

Figure 4.4: Example of structured light projected on a statue and an illustration of
the scanner device.
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isting hardware and software. During the 90’s theoretical results in coding were
obtained and improvements in processing and error analysis were achieved. Im-
plementation of CSL methods to be applied in dynamic scenes have been the main
recent contribution.

4.1.1 Coding Principles

The goal of a structured light code is to encode the projector coordinates using
slide patterns and transmit them throughout the scene - where they suffer inter-
ference from the object’s surface - that will be observed by a camera responsible
for redigitizing the transmitted signal. The main task to decode the position of a
projector coordinate is to recover the projected code from a sequence of images.

An widely adopted idea used to encode projector position is to sequentially
project a black and white pattern corresponding to the binary digits of a code; in
1982, [JM82] proposed a binary temporal coding, while in 1984 [SF84] proposed
to replace it by a more robust Gray binary code illustred in Figure 4.5. Binary
codes produce2n coded stripes when a sequence ofn slides are projected and
the spatial scan resolution increases as the number of slides increases. The main
problem of binary temporal code is the large number of slides that have to be
projected to achieve the desired resolution and its restriction to static scenes.

Figure 4.5: Temporal coding (Gray Code)

Note the natural analogy between CSL and a digital communication system.
At each pixel of the camera image, a noisy transmission is received and needs to
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be decoded. The transmission channel is the object’s surface and the transmitted
message is the encoded position of the projector coordinate. Considering this
analogy, two main issues are to be studied: limitations of the transmission channel,
related to materials properties; and projector coordinates coding scheme that leads
to restrictions on the class of objects suitable to be robustly scanned.

The desire to acquire dynamic scenes and to reduce the number of projected
slides leads to codes conveyed by a single slide. The only way to code position in
a single slide is by increasing the number of distinct projected patterns, in such a
way that there are enough patterns to achieve the desired resolution. A possible
way to do so is to use the neighborhood of a pixel, known as spatial coding, or to
modulate the projected light as a function of projector position (to be discussed in
subsequent sections).

(a) grid pattern (b) M-array code

Figure 4.6: Examples of spatial codes (from [Powb]).

In figure 4.6 we show some schemes for spatial coding. Spatial coding im-
poses limitations on object discontinuities: the code array/window cannot include
discontinuity regions in order to be decoded. But these are local restrictions, while
for grid patterns the restriction is global. The main challenge is to recover pro-
jected patterns deformed by the object’s surface.

In order to code a pixel in a single slide without neighborhood information one
can modulate light intensity as a function of the projector pixel. This approach is
sensitive to noise and surface properties can interfere in the signal in such a way
that decoding is not robust. To alleviate this problem an additional white pattern
can be projected and the difference of projected intensities is used to recover code;
this method was proposed in [CH85].

The usage of color was introduced in the late 80’s due to technological ad-
vances in capturing color images. The basic improvement was the possibility to
use 3 channels in codes rather than one, but light source color is altered by the
object’s color, thus restricting the usage of this kind of code to neutral colored



4.1. ACTIVE STEREO 49

scenes.

(a) horizontal codeword (b) wavelength modulation (c) cardeal neighbors

Figure 4.7: Examples of color based codes (from [Powb]).

Colored codes are shown in figure 4.7. Vertical slits are coded by its sequence
of colors in [KA87] – figure 4.7(a)– , while modulation of wavelength in a rainbow
pattern – figure 4.7(b) – was proposed in [JM90]. In the 90’s, the great improve-
ment in hardware and software permitted a more accurate and extensive research
in coding light.

Several works were published in this decade attempting to explore the main
ideas of coding in their full potential. New codes, improving the known ones,
were proposed. Also, existing codes were re-implemented and had their results
enhanced. Some of the representative works are [BMS98, Paj95, VP96, Mon94].
An excellent survey on coding techniques can be found in [JPB04], in their work
the authors derive an exhaustive classification of coding schemes proposed in lit-
erature.

The application of CSL methods to dynamic scenes is dependent on the adopted
coding scheme. Several patterns proposed in literature are coded in more then one
slide, in the presence of movement the transmitted codeword can loose it’s struc-
ture, this can also happens with some spatially coded schemes, leading to errors
in decoding.

Recent work on structured light implements face detection for video [ZSCS04].
In general, the pattern of light projected defines the capturing features. The
method proposed in [PGG] uses a self-adaptive, one-shot pattern for real-time
3D capture at 20fps. Most of the proposed algorithms cannot perform in real-time
without some kind of hardware acceleration. In this context, a recent trend is to
take advantage of programmable GPUs, [RM03]. Another option is to use mul-
tiple fixed cameras and scene analysis as the basis for visual hull and photo hull
methods [MBR∗00].

The current configuration of our system is similar to the one proposed in
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[OHS01], [SM02], however, our implementation for video is more efficient due
to the (6,2(2))-BCSL color code, that allows to robustly obtain a 3D video stream
with texture and depth information at 30fps [VSVC05]. The data processing mod-
ule extracts depth information from structured light code. The visualization mod-
ule renders 3D video using the geometry induced by the color code used.

Texture recovery is usually done as a separate acquisition step, after acquisi-
tion the geometry and texture needs to be registered to each other. Acquiring both
at the same time the registration problem is avoided.

4.1.2 Taxonomy

As we saw in previous sections, the three ways to code projected light are the use
of chromatic, spatial or temporal modulation in the illumination intensity pattern.
A taxonomy of CSL proposed in [OHS01] considering differences between pat-
terns and the restrictions that they impose on the scene to be scanned. Chromatic
modulation imposes restrictions on the allowable colors in the scene. When spa-
tial coding is used, local continuity of the scene is necessary for recovering the
transmitted code. Conversely, temporal coding restricts motion of the scene.

To encode information we have to decide how to describe the information in
terms of the signal to be transmitted. The nature of the signal will define possible
letters of an alphabetwhile the rule for concatenating letters definescodewords.
The main tools to design the code are the number of distinct symbols (basic sig-
nals) available, the size of the codeword made by these symbols and, in the case
of spatial coding, the structure of the neighborhood used to define a codeword.

In light coding the levels of intensity modulation and the number of channels
considered (usually 1 or 3 channels) forms the alphabet letters, while codewords
can be formed by temporal or spatial concatenation of letters. Accurate trans-
mission of this alphabet requires that the material properties of objects present on
the scene do not distort intensities or chroma too much, while the correct trans-
mission of the codeword structure depends on scene’s properties, that is, spatial
concatenation of codewords can be lost if discontinuities are present on surface on
which one is projecting the code, while robust decoding of temporal concatenation
restricts scene’s movement.

This reasoning leads to a simplea priori classification of codes, that is, based
on decision made in designing the code since it imposes restrictions on the scene
to be scanned, in contrast to the usuala posterioriclassification of coding, like
the complete classification proposed in [JPB04]. Our classification is based on
the following observations of the proposed code design:
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• available alphabet symbols→ restricts scene’s reflectivity

– levels of light intensity modulation

– number of channels used

• rules for letters concatenation: codeword structure

– temporal→ restricts scene’s changes in time

– spatial→ restricts scene’s depth discontinuities

Comparing our classification to the one given in [JPB04], we associate their
scene applicabilityas a consequence of the usage of temporal coding, theirpixel
depthis related to the choice of the alphabet for coding (number of channels used
and levels of intensity modulation), and finally thecoding strategyis a conse-
quence of the numbers of codeword generated by the codeword schema. Strictly
temporal coding (as Gray code) is then applicable on static scenes but imposes no
spatial nor reflectance restrictions on scanned objects; the codeword produced is
binary and produces2s words wheres is the number of projected slides. Spatio-
temporal coding, as proposed in [OHS01], attempt to reduce the number of pro-
jected slides using weak spatial restrictions.

We classify CSL methods by observing the code design since it is the code de-
sign that imposes restrictions on the scene (or transmission channel) to be scanned.
That is, if we use spatial coding, the scene has to preserve the spatial structure;
otherwise, there will be loss of information. In the scene this can be translated
as local continuity. The main characteristics of code design are the number of
distinct symbols (basic signals), the size of the word made by symbols and, in
the case of spatial coding, the geometry used. The following table classifies some
codes proposed in literature.

We observe that code spatial structure of coding will be lost if discontinuities
are present on projected surface area. Also, it is necessary to recover accurately
intensity modulations, which requires that the surface does not distort intensities
or chroma too much. Finally, the size of the codeword imposes that movement is
not allowed while the codeword is not completed.

An improvement in spatial coding is proposed in [OHS01], where a CSL
scheme is based on stripe boundaries. The codes are associated with pairs of
stripes, instead of with the stripes themselves as in traditional methods. Boundary
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method num. slides intensity neighborhood resolution
(codeword modulation/channel (character’s (alphabet

size) (no. of characters) region) size)
Gray n binary(2) single pixel 2n

Code (fig.4.5) monochromatic per line
colored n binary(2)/ single pixel 23×n

Gray (fig.4.8) RGB per line
rainbow 2 28/ single pixel (28)3

pattern RGB per line
(fig.4.7(b))

dot matrix 1 3 (R, G or B) 35

(fig.4.7(c))
coded window 1 binary 4 pixels 46

fig.4.6(c) 2× 3 window

Table 4.1: Main characteristics of the code design of some codes proposed in
literature.

coding has several advantages: it gives higher spatial precision and requires less
slides (that is, features better temporal coherence).

In order to allow the greatest possible variations in scene reflectance, the
scheme of [OHS01] is based on black and white stripes. This option leads to an
undesirable problem: ”ghost” boundaries (i.e., black-to-black and white-to-white
transitions) must be allowed.

Recently, [LBS02] proposed using dynamic programming techniques to com-
pute an optimal surface given a projected pattern and the observed image. The
camera and projector correspondence is obtained up to one pixel resolution and a
post-processing step is carried out to achieve sub-pixel accuracy.

The concept of using a colored boundary code is present in [LBS02] but the
option to use a one-shot code implies in considering a subsequence of consecutive
stripes to guarantee uniqueness of codewords with the desired resolution. Increas-
ing the size of the basis used in coding complicates the decoding step. The price
of adopting a one-shot code is that requirements on spatial coherence cannot be
minimized, and some information will be lost due to discontinuities in the scene.
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4.2 Minimal Code Design

When designing a CSL we have two conflicting objectives: one is to generate
enough distinct codewords to encode projector coordinates without ambiguity,
what is achieved augmenting spatial and temporal neighborhood or increasing the
number of alphabet symbols; the other is to reduce the restrictions imposed on
the scene to be scanned. We are then challenged to find a minimal code in terms
of restrictions while getting a maximal possible number of distinct codewords.
What is minimal in this sense? The answer is: a temporal neighborhoods = 2,
a spatial neighborhood that considers only one neighbor, that is achieved coding
boundaries, and finally using a binary light intensity modulation that guarantees a
robust recovery of the transmitted information. The coding proposed in [OHS01]
is one step in this direction except for the fact that their temporal neighborhood
is s = 4. Our proposal, to be described in the following sections, is the usage of
the 3 color channels in coding then reducing tos = 2 and achieving a minimal
configuration.

4.2.1 Minimal Robust Alphabet

In this section we discuss the definition of a minimal robust alphabet for light cod-
ing. Our proposal is to use binary intensity exploring all the three color channels.
In the following discussion we assume to have an ideal pair camera/projector, that
is, the spectral characteristic matrixK is the identity. The generalization to real
active pairs is postponed to the following section.

Binary Intensity Modulation

We will firstly consider a monochromatic image. The emitted intensityρ of a
projector light beam is scattered from the object surface and read by the camera
sensor. AsK is the identity,w = u + rh(ρ). The digitized intensity is then
given bydij = f−1(uij + rijh(ρ)ij) whereu is the ambient light contribution
andr is the local intensity reflectance factor, mainly determined by local surface
properties [Mal84]. In the following we assume that pixels are not under nor
overexposed.

Parametersu andr can be robustly estimated if we fix projector, sensor and
object in relative positions, and produce sequential projected patterns varyingρ.
The usage of binary levels for theρ values has many advantages on the signal
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recovery phase, in practice this is achieved projecting complementary slides, that
is, if ρij = 0 on first slide thenρij = 1 on second:

Iij =

{
uij whenρij = 0
uij + rij whenρij = 1

The non zero valueh(0) can be incorporated to the ambient light compo-
nent. The maximum value at pixel(i, j) comparing the values of complemen-
tary slides, given bymax(Iij, I

′
ij), is equivalent to the maximum intensity coming

from the projector, that is,ρ = 1; while the minimum value per pixel, given by
max(Iij, I

′
ij), is related to the ambient light contribution, that is,ρ = 0.

From the signal transmission point of view the usage of complementary slides
introduces redundancy on the transmitted message that is replicated in both slides.
This is a good procedure since it reduces the probability of errors on the received
message.

Using Three Channels for Coding

Instead of think in colors as traditionally, we will consider that a color is the vi-
sual result of three monochromatic signals projected together as separated wave-
lengths. As we prefer to work only with binary levels for each channel, we are
restricted to project the primary colors R, G and B, their corresponding comple-
mentary colors C, M and Y, as well as black (K) and white (W). By processing
each channel separately and extending the concept of complementary slides to
each channel, we are able to recover the color of the projected light as well as
ambient contribution and objects colors.

The set of basic signals (R,G,B,W,C,M,Y,K) is minimal and robust for decod-
ing. We avoid projecting black (0 in all channels) since it may be confused with
shadowed areas; for symmetry reasons, we do not use white, either. Thus, the
number of different colors adopted as an alphabet isb = 6, if black and white are
used for coding, thenb = 8, whereb is the base length of the code.

The traditional use of color in coding restricts the object surface reflectivity,
because projected color is changed by the color of objects surface in an unknown
way. By projecting complementary slides, however, the reflectivity restrictions
are eliminated [SCV02].

To give an example of this reasoning we show the usage of a colored Gray
code, where each channel of a colored slide corresponds to one slide of the black
and white Gray pattern. This approach divides by three the number of slides
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required to achieve the same resolution required by classic Gray pattern. We have
tested this code in our virtual environment and the results are shown in figure 4.8.

(a) slide1 (b) slide1-neg (c) slide2 (d) slide2-neg (e) decoding

Figure 4.8: Two slides showing colored Gray code (a,c) and their respective neg-
atives (b,d) projected on bunny. The number of recovered stripes after decoding
is represented in (e) as gray levels.

The colored Gray code is, as the traditional Gray code, strictly temporal, it
imposes no spatial restrictions on the object to be scanned and if complementary
slides are projected color restriction are eliminated; it produces23s codewords
wheres is the number of projected slides.

4.2.2 Codeword design - (6,2)-BCSL

Considering that we have already chosen the alphabet of a maximum ofb = 6
primary colors, we have to define a way to concatenate this basic signals to form
a codeword. If a strictly temporal concatenation is adopted using a number ofs
slides we get a total ofbs different codewords. Adopting a boundary coding, that
is a minimal spatial neighborhood to be considered, we increase the number of
different codewords to[b(b− 1)]s (we assume that two successive stripes may not
have the same color, to avoid ghost boundaries). We call this general boundary-
coded scheme a(b, s)-BCSL.

Schemes havings = 1 are purely spatial codings, imposing no restrictions on
object movement. Fors > 1, we have spatio-temporal codings. Among these,
the cases = 2 reduces the need for time coherence to a minimum, namely that
objects in the scene move slowly enough so that the displacement between the two
captures is smaller than the width of the projected stripe. Usingb = 6 ands = 2,
leads to 900 coded boundaries, we will call this the (6,2)-BCSL.

Coding

The problem of generating a sequence ofb-colored stripes for each of thes slides
can be modeled as a the problem of finding an eulerian path in a suitable graphG.
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G hasbs vertices, each corresponding to a possible assignment of theb colors at a
given position for each of thes slides. For instance, ifb = 3 ands = 2, G has 9
vertices, each labeled by a 2-digit number in baseb, as shown in figure 4.9(a). For
example, vertex01 corresponds to projecting color 0 in the first slide and color 1
in the second, at a given stripe position.

(a) graph (3,2) (b) neighborhood

Figure 4.9: (3,2)-BCSL Encoding.

The edges ofG correspond to the possible transitions for two consecutive
stripe positions. The forbidden transitions are those that repeat the same color
at the same slide, in order to disallow ghost boundaries. For instance, in 4.9(a),
there isn’t an edge connecting vertex 01 to vertex 02, since that would mean that
two consecutive stripes in the first slide would use color 0. On the other hand,
there is an edge connecting vertex 20 to vertex 01. This situation is illustrated in
figure 4.10: at the same border position, we go from color 2 to color 0 in the first
slide and from color 0 to color 1 in the second.

For the(3, 2) case, the neighborhood structure is shown in figure4.9(b), with
each vertex having 4 possible neighbors. For the general(b, s) scheme, there
are(b − 1)s possible neighbors for each vertex, leading to a regular graph where
each of thebs vertices has degree(b − 1)s. It is more appropriate, however, to
think of G as a directed graph where each vertex has(b − 1)s incoming arcs and
(b − 1)s outgoing arcs, since the same pair of vertices correspond to two distinct
transitions, one for each ordering.

Possible color stripe schemes correspond to paths with no repeated edges
(meaning that each multi-slide transition occurs only once) in the directed graph
G. The maximum number of stripes is achieved by an eulerian path, i.e., a path
that visits once each edge ofG. This path certainly exists since every vertex inG
has even degree andG is connected (forb ≥ 3) ([D.B96]).

In fact, there is a very large number of different Eulerian paths inG, and an
optimization problem can be formulated to search for the best path according to
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(a) Boundary code (b) (3,2)-BCSL

Figure 4.10: (a)Example of boundary code for dashed edge in Figure 4.9(a).
(b)(3,2)-BCSL using R, G, B as base. The outlined boundary has code20|01

some desired criteria. Horn et al. [EN99] formulated the problem of designing op-
timal signals for digital communication, they consider more important to encode
with very distinct codewords points which are spatially distant, than to encode
neighbor points with similar codewords, using this as a criterion to evaluate the
path quality. We could also adopt an image processing perspective, using infor-
mation about the photometric properties of the scene to be scanned as the criteria
to generate an adaptive best code.

In some cases there is no need to use the complete Eulerian path, since it
suffices to use a path of length equal to the maximum resolution handled by the
cameras or projectors used and the path can be truncated. Figure 4.10 shows a
particular (3,2)-BCSL correspondent to an Eulerian path in the graph.

Decoding

Once a codeword is identified in the captured images, that is, the colors on both
sides of a projected boundary are known, we employ a decoding table to obtain
the position of the projected boundary on the pattern.

The decoding table allows computing in constant time the projector coordi-
nates of a given stripe boundary. This decoding table is shown in Table 4.2 for
the(3, 2) case. Each row of the table corresponds to a nodev of G represented in
baseb. Each column corresponds to an edge connecting the node to its neighbor,
ordered according to the pattern shown in figure 4.9(b). Each one of the neighbors
can be conveniently expressed by means of arithmetic operations modulo-b, ex-
ploiting the regularity of the adjacency relationships, as shown in detail in [Hsi01]
and in [SCV02].

Each entry of the table gives the position of the transition from the vertex
associated with the row to the neighbor associated with the column in the path.
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G nodes d(0) d(1) d(2) d(3)
V(00) 0 3 6 9
V(01) 14 17 19 11
V(02) 28 34 22 24
V(10) 26 29 18 21
V(11) 1 31 33 35
V(12) 15 4 8 13
V(20) 16 23 32 12
V(21) 27 5 7 25
V(22) 2 10 20 30

Table 4.2: Decoding table for (3,2)-BCSL.

For example, the arc that begins at vertex 11 and ends at vertex 02, which is
neighbord(2) of 11 (see fig. 4.9), is the 33rd arc on path, and the 33rd stripe
transition in the pattern.

4.3 Receiving and Cleaning the Transmitted Code

In previous sections the basic signals to be used and the rule to concatenate them
forming codewords have been defined. Images corresponding to the codes were
constructed to be projected onto the scene. Although the code is defined bys
slides, complementary slides needed for the robust detection of the transmitted
message doubles the number of projected patterns leading to the projection of a
(b, 2s)-BCSL pattern. We refer to the two coded projected slides asP1 andP2,
their respective complementary slides areP ′

1 andP ′
2. The images captured are

referred respectively as(I1, I
′
1, I2, I

′
2).

To recover the projector coordinates we need to identify the transmitted basic
signals, then consult the decoding table to obtain the desired projector coordinates.
The identification of the basic signals is an image processing step, in our case our
goal is to find the stripe boundaries and recover the color projected in each side of
the boundary on both coded slides.

4.3.1 Boundary Detection

The boundary detection technique is based on pairs of complementary color stripes.
Since complementary colors are projected at the same position, the boundaries
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are given by the locations with zero-crossings of at least one color channel of
the difference imageDij = Iij − I ′ij. In order to reduce false detections, the
zero-crossings should be examinated only in the direction perpendicular to the di-
rection of projection and have high slope, i.e., high local intensity variation. In
our case, for a fixed rowj the set of stripe boundariesT is the set of subpixel
locations(i, j) for which

Dij = 0 and |D(i−δ)j −D(i+δ)j| ≥ ts,

for at least one color channel, whereδ is the considered neighborhood in pixels
andts is the slope threshold. Theδ parameter is usually small and depends on the
width of projected stripes as well as on how accurate is the reproduction of the
projected boundary in the image (see Figure 4.11).

(a) SlideI1 (b) SlideI ′1 (c) Signal crossing of
an specific row

(d) Boundaries
detected

Figure 4.11: Boundary from complementary patterns.

Shadow regions are also detected by analyzing the difference imageD, we
consider that a point is in shadow if the absolute value in the three channels of the
difference image are all bellow a threshold, as shown in Figure 4.12(e). For these
areas, the stripe pattern is not processed and no range values are obtained.

Figure 4.12(a) we show a Ganesh statue, which has a detailed geometry and
homogeneous surface properties. We used three different(b, 2(s)) codes withs
fixed equal 2 and an increasing resolution, the stripe width is 18 pixels for the
(3,2(2)) code, 10 pixels for the (4,2(2)) code and 5 pixels for the (6,2(2)) code.
The(b, 2(s)) slides were generated with600×480 pixels. Figures 4.12(b), (c) and
(d) show the recovered colors for the (3,2(2)), (4,2(2)) and (6,2(2)) codes, respec-
tively, and Figures 4.12(f), (g) and (h) show the corresponding stripe boundaries.
Figure 4.12(e) shows the mask for background and shadow areas.
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(a) original (b) (3, 2(2)) code (c) (4, 2(2)) code (d) (6, 2(2)) code

(e) detected shadows (f) (3, 2(2)) edges (g) (4, 2(2)) edges (h) (6, 2(2)) edges

Figure 4.12: Ganesh statue – Augmenting geometry resolution

4.3.2 Colors and Texture Recovery

In this section we work on the linearized camera values since values of two images
will be compared with the intention to define original projected colors as well as
objects texture. The projected colors imageC is recovered by verifying the sign
of the difference imageD in each color channel [SCV02]:

Cij =

{
0 whenDij > 0
1 otherwise

The obtained imageC is illustred in Figure 4.12(b),(c), (d) and in Figure 4.13.
The proposed projected colors recovery assumes that the characteristic spectral
matrixK is the identity. As we have seen in Chapter 3 this is not the case for real
projectors. For a robust color detection projector calibration must be considered.
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In theory the concept of complementary light colors means that if they are
summed up the resulting signal is white light. Thus, in the case of primary colors,
the complementary of Red= [100] is Cyan= [011]. The considerations about
projector calibration are crucial in texture recovery.

For ideal projector/camera pairs the recovery of objects texture is obtained by
combining the information of the three channels of the input images to generate
two new images:

W = (max(IR, I ′R), max(IG, I ′G), max(IB, I ′B)),

K = (min(IR, I ′R), min(IG, I ′G), min(IB, I ′B))

whereW is equivalent to the projection of white light,P = [1 1 1], whileK is
the ambient light ,P = [0 0 0]. The projected pair of complementary slides can be
interpreted as white light decomposed in time, since summing the complementary
pair we get the triple[1 1 1] at projector pixels. Thus, the object’s texture is ideally
given byW −K.

The considerations above are not valid for pixels at stripe boundaries not even
in the ideal case. In these pixels, colors are recovered by interpolating neighbor-
hood information at both sides of the boundary.

(a) SlideI1 (b) SlideI ′1 (c) Projected colors (d) Texture

Figure 4.13: Matrioska – Recovering colors.

Figure 4.13 is a Matrioska doll, it has a simple shape and a highly reflective
complex painted texture on its surface. Figures 4.13(a) and (b) show one of the
slide pairs, (c) shows the stripe codes and (d) shows the recovered texture. Fig-
ures 4.11,4.12 and 4.13 were generated using setup consisting of a FujiPix 2400Z
digital camera and a Sony VPL-CS10 LCD projector. The acquired images have
a resolution of1024× 768 in JPEG format.
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For real camera/projector pairs, channels color contamination can invalidate
the above procedure if calibration is not considered. In that respect, color fidelity
can be improved by a color correction pre-processing step considering projector-
camera calibration.

4.4 Video Implementation

The proposed coded structured light scheme was implemented for video to work
in real time [VVSC04, VSVC05]. The proposed setup produces one texture im-
age per frame while each frame is correlated to the previous one to obtain depth
maps. Thus both texture and geometry are reconstructed at 30Hz using NTSC
(Fig. 4.15). Crucial steps that influences on depth map accuracy are the calibra-
tion of the system, poorly calibrated cameras or projectors cause error propagation
in depth measurements.

Figure 4.14: The sequence of color pattern frames and the captured images as a
result of their projection onto a scene.

The camera/projector synchronization guarantees that one projected frame
will correspond to one captured frame, illustred in Figure 4.14. PatternsPt, Pt+1

are coded with their corresponding complementsPt
′, Pt+1

′ as fields in a single
frame. Each640× 480 video frame in NTSC standard is composed by two inter-
laced640× 240 fields. Each field is exposed/captured in1/59.54s. The projector
used in this set-up was the DLP InFocus LP70. The DLP projector was the only
possible choice due to the long latency in switching colors for LCD projectors.
Ambient light is minimized during acquisition.
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Figure 4.15: Input video frames and the texture and geometry output streams. The
output rate is also 30Hz.

The input images are processed as described in the previous section. The
quality of color detection is enhanced by the camera/projector color calibration.
As only one projector intensityρ is used, the calibration can be simplified to a
linear problem whereh(ρ) is a constant implicit on the characteristic spectral
matrixK.

To avoid errors in decoding, only pixels having at least two channels with
absolute difference greater than a thresholdtc are used. Pixels not satisfying this
condition or having white value[1 1 1] are set to black[0 0 0] and thus invalidated.
This is necessary since as we saw, for the DLP projector the contamination of
channels is critical leading to systematic errors in decoding. Another criterion
used to invalidate a detected boundary, is if the leftcl = C(i−δ)j and rightcr =
C(i+δ)j detected colors do not have two distinct valid colors. For analog video,δ =
3− 6 pixels are adequate for masking-off the noisy region around the boundary.

To use the code in dynamic scenes, boundaries are tracked between frames
to compensate possible movements. To find the correlated boundary in time, all
stripe boundaries detected in framet need to be correlated to the boundaries de-
tected in framet+1. To do so, we look for the nearest point in subsequent frames
which combined gives a valid (6,2)-BCSL code assuming the space-time coher-
ence on the decoded data (Fig. 4.16). Each frame is decoded using the tuple
which gives more valid stripe positions. This tuple can be easily predicted from
the previous one. Note that the decoding color order depends on the last projected
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pattern sequence.

Figure 4.16: Decoding stripe transitions using (6,2)-BCSL.

The boundary correlation is processed in a7× 7 neighborhood of a boundary
pixel. This is sufficient even for reasonably fast motion. The reason is that, while
objects move, the stripe remains stationary. Since high discontinuities in depth
are unlikely to occur in most scene regions, the boundaries are likely to be near
each other.

With the boundaries and their estimated projector coordinates in hand, the real
3D points in camera reference system are obtained using the camera and projector
geometric calibration.

Texture is retrieved by simply adding both input complementary fields. The
influence of scene motion is perceived as an image blurring. Assuming that the
motion is small compared to framerate we do not adopt any deblurring strategy.
Analog video corrupts colors around stripe boundaries what results in a bad recon-
struction of colors in that regions, this is also observed in the presence of boundary
movement.

Video results are available athttp://www.impa.br/˜mbvieira/video4d .



Chapter 5

Image Segmentation

Image segmentation is an important problem in Computer Vision. A special case
of the general segmentation problem is the foreground - background image seg-
mentation, in which a binary classification is applied to an image that has a per-
ceptual background/foreground separation.

Figure 5.1: Ambiguity: the decision on whether the central circle is background
or foreground depends on the interpretation.

Given a single image, some additional knowledge has to be given to the sys-
tem as an initial clue of what is background or foreground. Figure 5.1 shows the
intrinsic ambiguity in determining the foreground for a general image. Other ex-
amples of ambiguity are scenes with more then two distinct planes of information,
where the classification of each plane as background or foreground is a matter of
interpretation.

In practice, the information is usually disambiguated either by user interaction
or by the acquisition of additional information about the scene such as previous
calibration of the background, defocusing, analysis of movement and other tech-
niques most of them benefiting from analyzing a collection of images. In this

65
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Chapter the active illumination approach is applied to help in the solution of the
foreground - background segmentation problem.

5.1 Foreground - Background Segmentation

There are two main branches of research in foreground - background segmenta-
tion: one assumes that image acquisition can be controlled to produce images that
are automatically segmented, while the other analyzes a given image without any
assumption about image formation. In the first approach the clues to be analyzed
are decided a priori and determine acquisition prerequisites; the segmentation is
then automatic. In the latter the initial clues for solving the problem are inserted
by the user a posteriori and no knowledge on acquisition conditions is assumed.
One example of a priori information used for foreground segmentation widely
used in practice is chroma key [SB96].

Recently much work has been done in proposing segmentation methods where
clues are inserted a posteriori intending to minimize user intervention. In most
cases the user has to indicate coarsely the foreground and the background pixels
[RKB04, WBC∗05] as initial restrictions for a minimization process.

Image Segmentation via graph cut minimization

The image segmentation problem is a special case of a pixel labeling problem. It
can be modeled as an optimization problem, which consists of computing the best
image segmentation among all possible image segmentations satisfying a set of
predefined restrictions.

In pixel labeling problems the goal is to find a labelingf : P 7→ L, mapping
a set of pixelsP to a set of labelsL, that minimizes some energy function. This
energy function typically has the form

E(f) =
∑
p∈P

Dp(fp) +
∑

p,q∈N
Vp,q(fp, fq),

whereN ∈ P × P is a neighborhood system onP. Dp(fp) is a function
based on the observed data that measures the cost of assigning lablefp to p and
Vp,q(fp, fq) is an spatial smoothness term that measures the cost of assigning labels
fp andfq to adjacent pixelsp andq.

Energy functions likeE are, in general, very difficult to minimize, as they are
non convex functions in large dimensional spaces. When these energy functions
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have special characteristics, it is possible to find their exact minimum using dy-
namic programming. Nevertheless, in the general case, it is usually necessary to
rely on general minimization techniques.

Many approaches found in the literature model the problem of image segmen-
tation as an energy minimization problem. Recently, Graph-Cut Minimization
became widely used in image segmentation [ADA∗04, RKB04, BVZ01].

An interesting property of a graph cutC is that it can be related to a labeling
f , mapping the set of verticesV − {s, t} of a graphG to the set{0, 1}, where
f(v) = 0, if v ∈ S, andf(v) = 1, if v ∈ T . This labeling defines abinary
partitioningof the vertices of the graph.

The optimality of graph cut minimization methods, considering labeling prob-
lems, depends on the number of labels and the exact form of the smoothness term
V . In [GPS89]is proved that the method yields global minimum solutions for
binary labeling problem. In [IG98] it is proved that, for labeling problems with
arbitrary number of labels, if the smoothness term is restricted to a convex func-
tion, it is possible to compute global minima.

In most image segmentation applications, it is desirable to preserve boundary
discontinuities. This is not possible by using a convex function as the smooth-
ness penalty term in the energy function. In general, the minimization for energy
functions that preserve discontinuities by graph cut minimization can only pro-
duce approximate solutions. In [BVZ01] a graph cut based algorithm is proposed
that is able to compute a local minimum for discontinuity preserving energy func-
tions. The authors also proved that the obtained local minimum lies within a small
multiplicative factor(equal to 2) of the global minimum.

The early proposals that used graph cut optimization as a method for energy
minimization required the construction of a specific graph for each particular
problem. In [KZ04] is introduced a general scheme for graph cut minimization of
energy functions that belong to the class of regular functions.

5.2 Active Segmentation

Active illumination can be combined with graph-cut optimization to perform the
segmentation of foreground regions. We call thisactive segmentation, meaning
the use of a light sources to illuminate only the objects to be segmented leaving
the background essentially unchanged. Thus, the light source works as a sub-
stitute to the user, acting on the scene to indicate object and background seed
elements automatically. This pre-segmentation provides the color distribution of
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each region, that can be used in a graph-cut optimization step to obtain the final
segmentation.

In recent works, camera flash was explored to enhance image quality. [ED04],
[PAH∗04] have proposed the use of bilateral filter to decompose a flash/non-flash
pair of images and then recombine them appropriately; both authors have to deal
with shadows produced by the flash. Multiple images with flash positioned in
different locations among them is used to extract object borders in [RTF∗04] and
a non-photorealistic rendering is then applied to the images. Our work differs
from these previous works since it explores a light source, specially positioned to
illuminate only the objects to be segmented, that stays in a fixed position between
shots.

5.2.1 Active illumination with Graph-Cut Optimization

By modulating segmentation light intensity in subsequent images (by projecting
intensityρi) we getIρi

(illustrated in Figure 5.2). We assume that the ambient light
does not change between two shots and that all camera parameters are fixed. Since
we are not actively illuminating the background pixelsp with the segmentation
light source, we haveIλ2(p) ≈ Iλ1(p).

Figure 5.2: (left) and (center) are the input images differently illuminated by vary-
ing the camera flash intensity between shots, (right) is the difference thresholded
image.

The luminance difference is used to build a likelihood function for background
membership. The higher the difference, the lower the likelihood that the pixel
belongs to the background. Thus, pixels for which the luminance difference is
greater than a given threshold are likely to belong to the object and are used to
define the initial seed to the optimization method.

The initial seed gives important clues about the regions that are likely to belong
to the background and foreground regions. Based on these clues, it is possible to
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compute the desired segmentation by minimizing an energy function. If the energy
function is chosen in such a way that some regularity properties hold, then it is
possible to minimize it efficiently by graph cut optimization methods.

As in [BVZ98] and [BJ01], a discontinuity preserving energy function is adopted.
It is defined in terms of a set of pixelsP, a set of pairs of neighboring pixels in
a neighborhood systemN and a binary vectorA = (A1, A2, .., A|p|), whereAp is
the assignment of pixelp either to 0 (background) or 1 (foreground).

The energy function has the form of the following cost function:

E(A) = λ
∑
p∈P

Rp(Ap) +
∑

{p,q}∈N
B{p,q} · δ(Ap, Aq) (5.1)

This energy function is defined in terms of aregional term, that measures the
fitness of a region to the background or foreground of the scene, and aboundary
term, which penalizes discontinuities in the label assignment while preserving
those that are associated to features of the image. The first term is aregional
term that measures how the intensities of the pixels of the image fit into intensity
models (for example, obtained by a histogram) of the background and foreground.
The second term is aboundary term, which penalizes discontinuities in the label
assignment while preserving those that are associated to features of the image.
CoefficientB{p,q} > 0 can be interpreted as a penalty for spatial discontinuity of
the labels assigned to neighboring pixelsp andq. B{p,q} should be large when
pixels p andq are similar, and close to zero whenp andq are very different, so
that feature discontinuities are preserved. Theλ ≥ 0 constant is used to specify
the relative importance of the regional term versus the boundary properties term.

The proposed energy function is then minimized by a graph cut optimization
algorithm that follows the scheme proposed in [KZ04]. The regions determined
by the active illumination thresholding are used as seeds to the graph cut opti-
mization. However, their labels can be modified as the process is executed. Note
that we work in theLabcolor space.

5.3 The objective function

The objective function is based on probability distributions of color values in three
regions: background, object and boundary. They are defined assuming the follow-
ing:

• Most actively illuminated pixels belongs to the foreground objects. The
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influence of active illumination on the background can lead to wrong overall
segmentation;

• The actively illuminated regions capture the object features, that is, they
contain all color information necessary to distinguish foreground objects
from the background;

• Regions corresponding to moving objects in the scene represent a small
fraction of the scene;

• Color differences in Lab space are sufficient to define relevant object - back-
ground boundaries.

Figure 5.3: Input images differently illuminated.

The challenge is to define probability distributions that approximate the real
distribution of the expected segmentation regions. For the background region,
we employa priori distributions of the luminance differenceLI2 − LI1 . Color
histograms from the seed regions are used to build a color distribution function
for the foreground region.

These distributions, together with a boundary likelihood function based on
distances in Lab space, are the basis of the cost function to be proposed.

5.3.1 Composing the cost functions

The goal is to find the labelsX = {xp, p ∈ I1}, wherexp is 0 if p is background
or 1 if p is foreground, that minimize an objective functionE(X). Inspired in
Information Theory, the regional term of the energy function is defined as:
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C(xp) =

{
− log(pO(p)), if xp is 1 (foreground)
− log(pB(p)), if xp is 0 (background)

(5.2)

The boundary term, for neighboring pixelsp, q is−|xp−xq| log pR(p, q). Thus
the final objective function is

E(X, σL, σC) =
∑

p ∈ I1

C(xp)−
∑

p,q ∈ I1

|xp − xq| · log pR(p, q), (5.3)

where pointsq are those in the 8-connected neighborhood ofp.
We turn now to the definition of pB(p), pO(p) and pR(p, q). We start by dis-

cussing how to infer foreground sites from the input data. With the above as-
sumptions, high values of the luminance difference|LI2(p) − LI1(p)| indicate
foreground pixelsp, whereLI1(p) andLI2(p) are the luminance channels of the
transformed imagesI1 andI2. However, it cannot be stated that low values of
that difference indicate background pixels since there may be parts of foreground
objects that are not actively illuminated (like shadow areas). Thus, the luminance
difference does not characterize completely foreground and background elements.

Luminance difference for background pixels can be modeled by a gaussian
distribution, with density

pB(p) =
1√

2πσL

exp(
−|LI2(p)− LI1(p)|2

2σ2
L

), (5.4)

whereσL is the standard deviation of the luminance differences.
High pB(p) values do not necessarily indicate thatp is background but pixels

with small pB(p) values are likely to belong to the foreground. The set of fore-
ground pixels are then defined asO = {p | pB(p) < t}, wheret is a small
threshold. We fixt = 0.05 since the parameterσL can be adjusted.

The color histogram of the foreground pixels determine the object probability
function. For simplicity, we use a 3D histogram for the Lab components with
uniform partition. LetnbL, nba andnbb be the number of predefined bins for each
lab component. All pointsp ∈ O, with normalized color componentsL1(p), a1(p)
andb1(p), are assigned to a bink with coordinates

(bL1(p) ∗ nbL)c , ba1(p) ∗ nbac , bb1(p) ∗ nbbc)

The object distribution function is then defined as

pO(p) =
nk

nO

(5.5)
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Figure 5.4: Images of background probabilities. Darker pixels have smaller prob-
abilities (left)σL = 15 (center)σL = 25 (right) σL = 35.

wherenk is the number of pixels assigned to the bink andnO is the number of
pixels in the object regionO.

To construct the histogram information only one image is considered and it
will depend on each situation. In our experimentsL1(p), a1(p) andb1(p) are the
color components from the image correspondent to the lowest projectedρ value.
Another consideration is that it may be difficult to determine the number of bins
for each component. The bins that distinguish relevant color groups when the
partition is uniform. If the number of bins is too small, wide ranges are mapped
in few bins. If there are too many bins, frequencies tend to be small everywhere.
In our experiments, the object pixels are sufficient to populate a histogram with
nL=32,na=64 andnb=64 bins.

Figure 5.5: Image of object probabilities. Darker pixels have smaller probabilities
(left) σL = 15 (center)σL = 25 (right) σL = 35.

Finally, the likelihood function for neighboring boundary pixels is given by

pR(p, q) = 1 − exp(
−(||Lab(p)− Lab(q)||)2

2σ2
C

), (5.6)

whereLab(p) denotes the color at point p andσC is the standard deviation of the
L2-norm of the color difference. the effect of this term is that, if the colors of
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pixelsp andq are close in the Lab space, their connection is unlikely to cross a
foreground-background border.

Figure 5.6: Image of boundary probabilities taking the maximum value of a 8-
connected neighborhood. Darker pixels have smaller probabilities (left)σC = 5
(center)σC = 15 (right) σC = 25.

According to [KZ04], an energy function of the formE(x1, x2, · · · , xn) =∑
p Ep(xp)+

∑
p6=q Ep,q(xp, xq), where eachxp is a 0-1 variable, can be minimized

by means of a minimum graph-cut when it is regular, that is, satisfies the inequality

Ep,q(0, 0) + Ep,q(1, 1) ≤ Ep,q(0, 1) + Ep,q(1, 0).

In our case, we haveEp,q(0, 0) = Ep,q(1, 1) = Ep,q(0, 1) = Ep,q(1, 0) = 0
whenxp = xq. On the other hand, ifxp 6= xq, thenEp,q(0, 1) = Ep,q(1, 0) = 0
and Ep,q(0, 1) = Ep,q(1, 0) = − log(pR(p, q) ≥ 0, since0 ≤ pR(p, q) ≤ 1.
Hence, the proposed energy function is regular.

5.4 Method and Results

The main steps of our active segmentation method are illustrated in Fig. 5.7.
Two input images are acquired. We apply a low-pass filter to the input images in
order to reduce noise. Next, the input colors are transformed into the Lab color
system. This perception-based color space is desirable for two reasons: we need
to cluster regions with small perceived color variations and we want to explore
the orthogonality between luminance and chromaticity information in Lab space.
Our goal is to have perceptually homogeneous regions, with the segmentation
boundaries preferably located where high Lab color differences occur.

Active illumination is explored to attribute weights to the pixels that are used
in the energy minimization by graph cuts. For the optimization step, a graph where
the nodes are the pixels and the edges form a 8-connected neighborhood is created.
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Figure 5.7: The proposed active foreground extraction method.

The object and background color distributions are used to compute the cost of
assigning object or background label to each node. The boundary distribution is
used to compute the cost of having an object - background transition for each
edge.

Initially, all points belonging to the estimated object region are labeled as fore-
ground. All other points are labeled as background. The min-cut/max-flow algo-
rithm [BVZ01] is used to find the global minimum

X̂ = arg minX E(X, σL, σC) (5.7)

Only some object regions can be determined before the optimization step.
Usually, seeds for both the foreground and the background are used, which implies
that histograms for both classes are available. The seed pixels are not allowed to
have their label changed. In our case, there is no guarantee that the estimated ob-
ject region is correct. Furthermore, thea priori background distribution (Eq. 5.4)
is not fully precise. Equation 5.7 is then defined in such a way that the original
labels may be changed during optimization.

A modified version of the energy minimization software available at [BVZ01]
was used in our implementation. Basically, the constraint that the original seeds
must be kept was removed. The result is an image mask for foreground pixels.

The parameterσL determines the number of pixels in the initial object region.
Lower values result in more pixels as shown in Fig. 5.4. Depending on the object
material, it is remarkable that even small variations of the illumination can be de-
tected by luminance differences. On the other hand, objects with highly specular,
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Figure 5.8: Segmentation results of the images in Fig. 5.3 for several values ofσL

with σC = 10. Compare with Fig. 5.4. (left)σL = 15 (center)σL = 25 (right)
σL = 35.

transparent or with complex structure materials are hard to be detected. This is the
case of the hair in the images of Fig. 5.3. The object membership probabilities in
the hair region (Fig. 5.5) show how the number of initial pixels affects the color
distribution.

Fig. 5.8 shows the segmentation results for several values ofσL ∈ [15, 20].
It is harder to segment the hair asσL assumes higher values. This happens when
the pixels with high probability of this region are not enough to populate the his-
togram.

Figure 5.9: Segmentation results for the images in Fig. 5.3 for several values of
σC with σL = 20. Compare with Fig. 5.6. (left)σC = 5 (center)σC = 15 (right)
σC = 25.

ParameterσC controls how the image borders constrain the expansion or con-
traction of the object clusters during optimization. If its value is low, the difference
of probability between the highest and lowest gradient values is high. As a result,
the segmentation tends to be more fragmented and well aligned with high color
variation areas. If the value ofσC is high, the probabilities tend to vary more
slowly, resulting in a smoother segmentation.

Segmentation results varyingσC are shown in Fig. 5.9. Note that small back-
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ground regions appear like holes inside the hair whenσC = 5. Higher values of
σC tend to classify these holes as foreground. As explained above, high values of
σC smooth the segmented clusters.

Figure 5.10: (left) Boundary probabilities withσC = 5 and segmentation results
for values of (center)σL = 25, σC = 10, (right) σL = 15, σC = 5.

In Figure 5.10 the segmentation result related to the input images shown in
Figure 5.2 are presented. Observe the difference in the segmentation continuity
when we vary the system parameters. In Figure 5.11 another example of input
images and its segmentation is illustrated.

Figure 5.11: Input images and the final segmentation mask.



Chapter 6

Tonal Range and Tonal Resolution

In Chapter 2 the camera characteristic response functionf , that characterizes sen-
sors behavior respect to pixel exposure values was presented. In Chapter 3,f was
recovered from a collection of differently exposed images. Thenf−1 was used to
linearize data captured by the camera, as well as to recover real scenes radiance
values.

In this Chapter, image tonal range and resolution is discussed. The distinction
between tonal range and tonal resolution is subtle and it is important to the un-
derstanding of some simple operations that can be done to enhance images tonal
quality without using the powerful tools of HDR concept. The main question an-
swered in this chapter is:What can be done in terms of tonal enhancement of an
image without knowledge about the camera characteristicf function and image
radiance values?

We start with a brief review on the recent HDR images research. Then the con-
cept of relative tones is introduced and applied to obtain real-time tone enhanced
video sequences.

6.1 HDRI reconstruction: absolute tones

The research onHigh Dynamic Range Images(HDRI) is looking forward to over-
come sensors tonal range limitations. The goal is to achieve better representation
and visualization of images, as well as to recover the scenes actual radiance val-
ues. We will refer to the scenes radiance values asabsolute tones, since they are
related to a physical real quantity. The usual images acquired by cameras with
limited dynamic range are theLow Dynamic Range Images(LDRI).

77
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An important observation when studying HDRI is that the input lightC(λ) is
read in an interval around a reference value and the outputC is discrete. What
is being questioned is thatC discretization should not be imposed by sensors nor
displays limitations, but it should be adapted to the scene’s luminance range. In-
stead of being driven by the device representation, the discretization should adapt
to scenes tonal information.

6.1.1 HDRI Acquisition

Algorithms that recover HDRI by software usually combine collections of LDRIs.
As discussed in Chapter 3, sensors characteristic response curve is recovered from
the input images and then applied to obtain radiance values, as illustred in Figure
6.1.

To generate the collection of differently exposed images, several exposure
camera parameters can be controlled. In the reconstruction phase the knowledge
on which parameter has been changed should be considered since they affect im-
age formation in different ways, e. g. introducing motion blur, defocus, etc.

To correctly reconstruct the radiance values, pixels correspondence between
images is crucial. The correspondence depends on scenes features and temporal
behavior as well as on which camera parameter is being changed to vary exposure.
The pixel correspondence problem is usually stated as an optimization problem.
It can be badly defined and hard to solve. A fast, robust, and completely auto-
matic method for translational alignment of hand-held photographs is presented
in [War03].

Thef recovery was discussed in Chapter 3. Withf in hand, the actual scene
radiance values is obtained applying its inversef−1 to the set of correspondent
brightness valuesdk

ij observed in the differently exposed images, wherek is an
index on the differently exposed images andij are pixel coordinates. Different
weights can be given according to the confidence ondk

ij. If the pixel is almost
over or underexposure, a lower weight is given to it, augmenting the influence
of the middle of thef curve, where sensors (and films) are well behaved. It is
required that at least one meaningful digital value is available for each pixel, that
is, at least one pixel value in a set of correspondent pixel has a good confidence
on the measured data.

In case one has an HDR sensor, the knowledge of its characteristic function
is necessary to recover thew values (we recall thatw are the radiance values),
but the correlation step is often unnecessary since only one exposure is enough to
register the whole range of intensities present in the scene (at least it is what is ex-
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(a) HDRI recovery (b) Linear TMO (c) Histogram TMO

Figure 6.1: In (a) differently exposed LDR pictures from the same scene are pro-
cessed to compose a HDR Radiance Map of the input images. A TMO is then
applied to visualize the HDR image; figure (b) is visualized using linear TMO
and figure (c) using histogram adjustment TMO.

pected from such devices). Scenes of high latitude range can be also synthetically
generated by physically-based renderers like RADIANCE [War94].

6.1.2 HDRI Visualization

Usually HDR data is to be visualized on low dynamic range displays. The reduc-
tion of the range of image radiances to display brightness in a visual meaningful
way is known as the tone mapping problem. Tone Mapping Operators (TMO)
have been firstly proposed to solve the problem of visualization of synthetic im-
ages generated by physically based renderers before HDR from photographs be-
came popular [LRP97].

In [DCWP02] the tone mapping research is reviewed and TMOs are classified
in three main classes:spatially uniform time independent, spatially uniform time
dependentandspatially varying time independentoperators. Another survey in
TMO research is [MNP97]. Recently, specific TMOs for HDR video visualization
has been proposed. Below, some simple TMOs are described as well as the main
reasoning that guides their intuition.

• Linear Mapping: the simplest way to reduce the range of an HDRI is by
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using linear tone mapping, obtained as follows:

d = (w−wmin)
Rw

Rd + dmin (6.1)

whereRw = (wmax − wmin)
andRd = (dmax − dmin).

• Histogram Adjustment: in [LRP97] is proposed the histogram adjustment
heuristic, it is inspired on the fact that in typical scenes luminance levels
occur in clusters rather than being uniformly distributed throughout the dy-
namic range. The algorithm proposed is:

d = P (w)Rd + dmin (6.2)

where

P (Bw) =
[
∑

bi<w
h(bi)]

[
∑

bi<wmax
h(bi)]

= H(w)
H(wmax)

(6.3)

• Imaging system simulation: techniques adopted in photographic printing
process are a source of inspiration to create TMOs. A possible approach
is the application of an specific film characteristic curve intending to sim-
ulate its look. More complex systems can also be simulated considering
film development and enlargement techniques used in photographic labora-
tory and they are a source of inspiration to create TMOs, for instance, see
[RSSF02, GM03, TR93].

• Human eye simulation: the behavior of human vision is not the same for
all illumination conditions, specially in very dim scenes or when there are
abrupt illumination changes in time varying scenes. The reality of visu-
alized images is achieved only if human vision behavior is modeled. In
[LRP97] the histogram adjustment algorithm is extended in many ways to
model human vision. Also in [THG99] this approach is explored.

In Figure 6.1 the difference of image visualisation depending on the chosen
TMO is illustred; after reconstruct the church HDR image, linear TMO was ap-
plied to visualize (b) and histogram adjustment was used to visualize (c). Compar-
ison between TMOs is mainly perceptual, see [DMMS02]. In [Mac01] perception
based image quality metrics are presented.
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The Tone Mapping problem can be thought in image color domain as the prob-
lem of adjusting the range of image luminances to display luminances maintain-
ing color chrominances. Thus it is a quantization problem in radiance domain and
TMOs available in literature can be interpreted from this point of view. The uni-
form quantization algorithm is comparable to linear TMO, the populosity quan-
tization is similar to histogram adjustment. Reasoning like that, a family of new
TMOs derived from quantization algorithms can be proposed. The main differ-
ence between color quantization and tone mapping is that human eye is more
sensitive to spatial changes in luminances than in color. This explains the focus of
several TMOs in working on spatial domain, like in human eye perception simu-
lation and in dodging-and-burning [RSSF02].

Another branch of research in HDRI visualisation is on HDR displays that are
able to represent all tones encoded in an HDR file format [SHS∗04].

6.1.3 HDRI Encoding

HDR data requires accurate tonal representation. Since the digital format can only
encode discrete quantities, quantization is inevitable, the key point is to control the
error of a high range of values. By simply using more bits to encode pixel values
the number of possibly represented tones augment, however, such option can be
highly inefficient.

The two approaches used to efficiently represent radiance data are floating
point encoding and Log encoding. In floating point encoding a valuev is repre-
sented using exponential notation asx · 2y, with x being the mantissa andy the
exponent. In Log encoding a valuev is represented asa · ( b

a
)v, with a andb being

the minimum and maximum values of the output range. The Log encoding repre-
sentation is naturally correlated to the notation of stops and density values widely
used in photography.

The error introduced by encoding in the two cases is different. It is easy to see
that adjacent values in the Log encoding differ by( b

a
)N , whereN is the number

of quantization steps of the discretization. Therefore, the quantization error is
constant throughout the whole range. This is in contrast with the floating point
encoding, which does not have equal step sizes.

A very comprehensive analysis of image encodings for HDR Images is avail-
able athttp://www.anyhere.com/gward/hdrenc/hdr_encodings.html . The
main HDRI available formats are: the Radiance RGBE, SGI LogLuv, ILM’s
OpenEXR and the scRGB encoding.
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6.2 Partial reconstruction: relative tones

As we have seen, the camera characteristicf function is the tool that correlates
radiance values to camera brightness values, and it is necessary to recover ab-
solute radiance values from captured images. Here we introduce the conceptual
difference between absolute and relative tone values.

We remind that image histograms are necessary and sufficient to recover the
intensity mapping functionτ , as shown in Chapter 3, useful to reconstruct the
radiance map. The image histogram comparison expresses the concept that them
brighter pixels in the first image will be them brighter pixels in the second image
for all m discrete values assumed by the image.

We observe that a simple summation of two images preserves the information
present on the histogram of the original images. The sum operation potentially
doubles the number of distinct tones in the resulting image, consequently it re-
quires one bit more to be stored. In Figure 6.2 we show an example of LDRI
histograms, and the combined information present in the image sum.

Figure 6.2: Example of two different exposed images with correspondent his-
tograms, and the summation image with the combined histogram. To be visual-
ized, the image sum was linearly tone mapped.

We then pose the following question:what can be recovered from the sum of
the images, if one does not know neither the exposures nor the response curve?
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Surprisingly, the answer is: many things!
Of particular interest to our discussion is the following theorem [GN03b]:

Theorem 3 (Simple Summation)The sum of a set of images of a scene taken at
different exposures includes all the information in the individual exposures.

This means that, if one knows the exposure times used to obtain the images and
the response curve of the camera, the radiance values and the individual images
can be recovered from the image sum. In [GN03b], the authors use this result to
optimize the camera acquisition parameters.

We then define therelative tonesm as the values present in the summation
image, whileabsolute tonesw are the real correspondent radiances. The relative
m values are unique indices to real radiance values. Thus, with the response
function f and the exposure camera parameters in hand a look-up table can be
generated mappingq to w values, i.e.,Ff,∆t : [0, 2] → [Emin, Emax]. In Figure
6.3 we illustrate the relation between the quantization levelsm and the absolute
tone valuesw. We observe that, assuming thatf is monotonically increasing, this
mappingF is 1-1.

Figure 6.3: Absolute vs. Relative tone values.

Absolute tones are directly related to physical quantities while relative tones
preserve absolute order but do not preserve magnitude.

Usually, TMOs are described in terms of absolute tones. However, since there
is a 1-1 mapping between relative and absolute tone values, we conclude that
TMOs to be applied directly to the relative tones can be proposed.
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6.2.1 Active range-enhancement

When generating differently exposed images, instead of varying the exposure
time, alternative ways to vary pixel exposure can be explored. By controlling light
intensity, while keeping all other camera parameters fixed, the pixel irradiancewij

is altered and hence its correspondent exposure value. This is not usually done,
once the illumination intensity varies irregularly throughout the scene. However,
the concept of relative tone values introduced here makes possible the use of ac-
tive illumination in recovering relative tones to enhance tonal resolution on the
actively illuminated area.

Changing light intensity the tonal partial ordering on actively illuminated areas
is preserved once reflectance is proportional to incident radiance. Thus, relative
tones are naturally recovered by simple summation in those regions.

The fact that illumination mostly affects the foreground pixels can be ex-
plored to perform foreground-background segmentation. The algorithm discussed
in Chapter 5 can be used to produce a segmentation maskM , where 1 is assigned
to the foreground pixels and 0 to the background, defining the actively illuminated
regions.

Using active illumination, the foreground objects not only can be extracted but
also can be tone-enhanced using relative tones concept. Note that the background
cannot be tone-enhanced since there is no exposure variation in these regions.
The summation image is given byS(dij) = L(dij) + L(dij), with S(dij) ∈ [0, 2].
As exposure values are different in two subsequent images tonal resolution is en-
hanced by simple summation.

To visualize the foreground tones Larson’s histogram adjustment is applied,
TMOsv : [0, 2] → [0, 1], to the actively illuminated region. Chromaticities of
both images are linearly combined to attenuate problems in over or under-exposed
pixels.

The final image is obtained by a simple image composition:

Cij = MijFij + (1−Mij)Bij

WhereFij are the tone-enhanced foreground pixels andBij the background pixels
that remain unchanged. A low-pass filter is applied to imageM to avoid the
perception of discontinuities in transition of segmented regions.

All discussion above assumes that one knows the pixel correspondence in dif-
ferently exposed images. This is trivial for static scenes captured by cameras
mounted on a tripod. For moving scenes, pixel correspondence has to be solved
before applying the method outlined above.
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6.3 Real-time Tone-Enhanced Video

For video implementation, a set-up composed by a video camera synchronized
with a projector is used. A video signal, where each field has constant gray color
valuesρ1 andρ2 with ρ1 6= ρ2 is projected onto the scene. This signal is connected
to the cameragen-lock pin, which guarantees projection/capture synchronization.
Each light exposure lasts for1/59.54s using the NTSC standard. The fieldsI1

andI2 of each captured frame represent the same object illuminated differently.
This is sufficient for actively segment and tone-enhance the image pair.

Figure 6.4: Two consecutive input fields result in one frame.

Input video images are in the Yuv color space. Thus, the processing is per-
formed using the luminance defined asL(pij) = Y (dij), where Y is the video
luminance channel. In this scheme, the tone-enhancement can be applied to any
two consecutive fields. This produces an output video stream with the same input
framerate, as shown in Fig. 6.4.

We assume that the framerate is high compared to the object’s movement, thus,
the effects of moving objects are small between a pair of fields. In the segmenta-
tion step, graph-cuts optimization is not applied, only the initial seed is used. To
minimize undesirable effects of shadow regions, the projector is positioned very
close to the camera. This implies that background should be far enough to not
be affected by active illumination. The working volume can be determined by
analyzing the projector intensity decay with distance (see Chapter 3).

Figures 6.5, 6.6 and 6.7 shows two consecutive video fields with different il-
lumination, and their respective resulting tone enhancemed foreground. The pro-
jected gray values used wereρ1 = 0.35 andρ2 = 1. The luminance threshold
Lmin used is 0.08. One can notice that our method has some trouble segment-
ing low-reflectance objects, such as hair. However, the resulting tone-enhanced
images are still quite satisfactory.

A home made cheap version of the system was also implemented, it is com-
posed by a web-cam synchronized with a CRT monitor playing the role of active
illuminant. Some results are available athttp://www.impa.br/˜asla/ahdr .
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(a) (b) (c)

Figure 6.5: Images (a) and (b) are the video input fields, while in (c) it is shown
the tonal-enhanced foreground.

(a) (b) (c)

Figure 6.6: Images (a) and (b) are the video input fields, while in (c) it is shown
the tonal-enhanced foreground.

(a) (b) (c)

Figure 6.7: Images (a) and (b) are the video input fields, while in (c) it is shown
the tonal-enhanced foreground.



Chapter 7

Conclusion

This work was guided by the concept of active illumination, that was applied in
several different contexts. The first problem that we have tackled was coded struc-
tured light methods for 3D photography purposes. We revisited the usage of color
in code design and proposed a new minimal coding scheme. We also simplified
the classification of structured light coding strategies proposed in [JPB04].

In this context, spatial variation of projected light is required, and hence, digi-
tal projectors are conveniently adopted as the active light source. The basic setup
for structured light is a camera synchronized with a digital projector.

The proposed coding scheme was implemented for video and it is capable
of acquiring depth maps together with scene colors at 30Hz using NTSC-based
hardware. As a consequence of acquisition of both geometry and texture from the
same data, the texture-geometry registration problem is avoided.

During the implementation of the video setup we observed that the hardware
used to project slides and capture images has a direct influence on measurement
accuracy. In a more subtle way, scene illumination conditions and the object’s
surface features also play an important role.

A crucial step that influences on depth map accuracy is the calibration of
the system: poorly calibrated cameras or projectors cause error propagation in
depth measurements. Unappropriate camera models (for instance, using a pin-
hole model when lens distortion is relevant) can also generate systematic errors.

We also concluded that the camera/projector photometric calibration is of
great importance and that, if not applied, it may lead to decoding failures. We
then studied more deeply the photometric calibration problem and proposed a
procedure to calibrate the projector relatively to the camera used in the setup.
There is still a lot to learn about projectors’ photometric calibration, but we were
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able to formalize the problem, proposing a non-linear model to determine both the
projectorspectral characteristic matrixand itscharacteristic emitting function.

Once the active setup was disponible and working for the depth recovery ap-
plication, we started to explore other applications of the same setup. In partic-
ular, we propose to use active intensity variation for two different applications:
background/foreground segmentation and, using the introduced concept of rela-
tive tones, image tone-enhancement.

The segmentation method is based on active illumination and employs graph-
cut optimization to enhance the inition foreground mask obtained exploring the
active illumination.

The key idea exploited in our method is that light variations can be designed
to affect objects that are closer to the camera. In this way, a scene is lit with
two different intensities of an additional light source that we callsegmentation
light source. By capturing a pair of images with such illumination, we are able to
distinguish between objects in the foreground and the scene background.

Several light sources and different illumination schemes can be used to mark
the foreground. The proposed method is fully automatic and does not require user
intervention to label the image. Moreover, the energy function has only two pa-
rameters that must be specified: the standard-deviations of the normal background
and boundary distributions. These parameters can be tuned only once for a wide
variety of images with similar light setup.

The main technical contributions of this work are the concept of foreground
/ background segmentation by active lighting and the design of a suitable energy
function to be used in the graph-cut minimization.

The quality of the masks produced by our method is, in general, quite good.
Some difficult cases may arise when the objects are highly specular, translucent
or have very low reflectance. Because of its characteristics, this method is well
suited for applications in which the user can control the scene illumination; for
example, in studio situations and/or using a flash/no-flash setup.

This method can be naturally extended to active segmentation of video se-
quences. All that it is required for this purpose is a synchronized camera/projector
system.

Joining HDR images concepts with active light intensity variation we got aou
third application: the image tone-enhancement. The additional information result-
ing from capturing two images of the same scene was used to extend the dynamic
range and the tonal resolution of the final image. This technique is made possible
by the concept of relative tone values introduced in this work. We remark that
relative tones is a key concept in HDR theory and has many other applications,
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which we intend to exploit in future work.
The synchronized camera and projector setup already implemented was then

adopted to produce tonal-enhanced video. This system has many advantages,
such as good cost performance, compatibility and various options of distribution
channels. The data processing of our system can be easily incorporated into the
pipeline of a video production environment.

Although our implementation has been done in real time for video, the same
idea could be used in digital cameras, by exploiting flash - no flash photogra-
phy. There are many recent works [PAH∗04, ED04] that explore the use of pro-
grammable flash to enhance image quality, but they do not use HDR concepts.
Our work gives a contribution to this new area of computational photography.

For both applications, segmentation and tone-enhancement, spatial variation
of the active light source was not assumed. Therefore, although a digital projec-
tor can be used, much simpler controlled light sources can replace the projector
in the implementation of the proposed methods. We have implemented the pro-
posed segmentation using intensity variable flashes and a home made setup using
a monitor as light source for tone enhancement.

The main limitation of using active light in different contexts is that the active
light should be the main light source present in the scene or, at least, strong enough
to be distinguished from other light sources. This is a very important consideration
when planning scene illumination as well as the active light positioning.

7.1 Future Work

As future work we point ou some natural extensions to the proposed applications
as well as deeper exploitation of projector calibration potentials:

• Model and calibration of radial decay of projector intensity.

• Better decoding and texture recovery by exploring projector calibration to
enhance the coded structured-light results.

• Graph-cut segmentation for video, benefiting from temporal coherence of
subsequent frames; better if working in real time.

• Tone-enhanced matting; better if working in real time.



90 CHAPTER 7. CONCLUSION



Bibliography

[Ada80] ADAMS A.: The Camera, The Ansel Adams Photography series.
Little, Brown and Company, 1980.

[Ada81] ADAMS A.: The Negative, The Ansel Adams Photography series.
Little, Brown and Company, 1981.

[Ada83] ADAMS A.: The Print, The Ansel Adams Photography series. Little,
Brown and Company, 1983.

[ADA ∗04] AGRAWALA A., DONCHEVA M., AGRAWALA M., DRUCKER S.,
COLBURN A., CURLESS B., SALESIN D., COHEN M.: Interac-
tive digital photomontage. InComputer Graphics Proceedings ACM
SIGGRAPH(2004), pp. 294–302.

[BJ01] BOYKOV Y., JOLLY M.: Interactive graph cuts for optimal boundary
and region segmentation of objects in n-d images. InProceedings of
ICCV (2001).

[BMS98] BATLLE J., MOUADDIB E., SALVI J.: Recent progress in coded
structured light as a technique to solve the correspondence problem:
A survey.Pattern Recognition 31, 7 (1998), 963–982.

[BVZ98] BOYKOV Y., VEKSLER O., ZABIH R.: Markov random fields with
efficient approximation. InIEEE Conference on Computer Vision
and Pattern Recognition(1998), pp. 648–655.

[BVZ01] BOYKOV Y., VEKSLER O., ZABIH R.: Fast approximate energy
minimization via graph cuts.IEEE Transactions on PAMI 23(2001),
1222–1239.

91



92 BIBLIOGRAPHY

[CH85] CARRIHILL B., HUMMEL R.: Experiments with the intensity ratio
depth sensor.Comput. Vision Graphics Image Process 32(1985),
337–358.

[D.B96] D.B.WEST: Introduction to graph theory. Prentice Hall, 1996.

[DCWP02] DEVLIN K., CHALMERS A., WILKIE A., PURGATHOFERW.: Star:
Tone reproduction and physically based spectral rendering. InState
of the Art Reports, Eurographics 2002(September 2002), pp. 101–
123.

[DM97] DEBEVEC P., MALIK J.: Recovering high dynamic range radi-
ance maps from photographs. InProc. ACM SIGGRAPH ’97(1997),
pp. 369–378.

[DMMS02] DRAGO F., MARTENS W., MYSZKOWSKI K., SEIDEL H.: Percep-
tual evaluation of tone mapping operators with regard to similarity
and preference. InTech. Repport MPI-I-2202-4-002(2002), p. ?

[ED04] EISEMANN E., DURAND F.: Flash photography enhancement via in-
trinsic relighting.Computer Graphics Proceedings ACM SIGGRAPH
(2004), ?

[EN99] E.HORN, N.KIRYATI : Toward optimal structured light patterns.Im-
age and Vision Computing 17, 2 (1999), 87–97.

[GHS01] GOESELE M., HEIDRICH W., SEIDEL H.: Color calibrated high
dynamic range imaging with ICC profiles. InProc. of the 9th Color
Imaging Conference Color Science and Engineering: Systems, Tech-
nologies, Applications, Scottsdale(November 2001), pp. 286–290.

[Gla94] GLASSNERA.: Principles of Digital Image Synthesis. Morgan Kauf-
mann Publishers Inc., 1994.

[GM03] GEIGEL J., MUSGRAVE F.: A model for simulating the photo-
graphic development process on digital images. InComp. Graph.
Proc. (2003), pp. 135–142.

[GN03a] GROSSBERGM., NAYAR S.: Determining the camera response from
images: What is knowable?IEEE Trans.PAMI 25, 11 (Nov. 2003),
1455–1467.



BIBLIOGRAPHY 93

[GN03b] GROSSBERGM., NAYAR S.: High dynamic range from multiple
images: Which exposures to combine? In? (2003), pp. ?–?

[GN04] GROSSBERGM., NAYAR S.: Modeling the space of camera response
functions.IEEE Trans.PAMI 26, 10 (Oct. 2004), 1272–1282.

[Goe04] GOESELE M.: New acquisition Techniques for Real Objects and
Light Sources in Computer Graphics. Verlag, 2004.

[GPS89] GREIG D., PORTEOUSB., SEHEULT A.: Exact maximum a poste-
riori estimation for binary images.J. Royal Statistical Soc.(1989),
271–279.

[GV97] GOMES J., VELHO L.: Image Processing for Computer Graphics.
Springer, 1997.

[Hsi01] HSIEH Y. C.: Decoding structured light patterns for three-
dimensional imaging systems.Pattern Recognition 34, 2 (2001),
343–349.

[IG98] ISHIKAWA H., GEIGER D.: Oclusions, discontinuities, and epipolar
lines in stereo. InFifth European Conference on Computer Vision,
(ECCV’98)(Freiburg, Germany, 2-6 June 1998).

[JM82] J.L.POSADAMER, M.D.ALTSCHULER: Surface measurement by
space-encoded projected beam systems.Comput. Graphics Image
Process 18(1982), 1–17.

[JM90] J.TAJIMA , M.IWAKAWA : 3-d data acquisition by rainbow range
finder. InProc. Int. Conf. on Pattern Recognition(1990), pp. 309–
313.

[JPB04] J.SALVI , PAGES J., BATLLE J.: Pattern codification strategies in
structured light systems.Pattern Recognition 37(2004), 827–849.

[KA87] K.L.B OYER, A.C.KAK : Color-encoded structured light for rapid
active ranging.IEEE Trans. Pattern Anal. Mach. Intell. 9, 1 (1987),
14–28.

[KZ04] K OLMOGOROV V., ZABIH R.: What energy functions can be mini-
mized via graph cuts?Proc. IEEE Transactions on Pattern Analysis
and Machine Inteligence 26(2004), 147–159.



94 BIBLIOGRAPHY

[LBS02] L.ZHANG, B.CURLESS, S.M.SEITZ: Rapid shape acquisition us-
ing color structured light and multi-pass dynamic programming. In
Proc. Symp. on 3D Data Processing Visualization and Transmission
(3DPVT)(2002).

[Len03] LENSCHH.: Efficient, Image-Based Appearance Acquisition of Real
World Objects. MPI PhD Thesis, 2003.

[Lit] L ITWILLER D.: Ccd vs. cmos: Facts and fiction.
http://www.dalsa.com.

[LRP97] LARSON G., RUSHMEIER H., PIATKO C.: A visibility matching
tone reproduction operator for high dynamic range scenes.IEEE
Trans. on Vis. and Comp. Graph. 3, 4 (1997), 291–306.

[Mac01] MACNAMARA A.: Visual perception in realistic image synthesis.
Computer Graphics Forum 20, 4 (2001), 221–224.

[Mal84] MALZ R. W.: Handbook of computer vision and applications vol.
1, cap 20 3D sensors for high-performance surface measurement in
reverse engineering. 1984.

[MBR∗00] MATUSIK W., BUEHLER C., RASKAR R., GORTLER S. J.,
MCM ILLAN L.: Image based visual hulls. InProc. SIGGRAPH
2000(2000).

[MNP97] MATKOVIC K., NEUMANN L., PURGATHOFER W.: A Survey of
Tone Mapping Techniques. Tech. Rep. TR-186-2-97-12, Institute of
Computer Graphics and Algorithms, Vienna University of Technol-
ogy, Favoritenstrasse 9-11/186, A-1040 Vienna, Austria, apr 1997.
human contact: technical-report@cg.tuwien.ac.at.

[Mon94] MONKS T.: Measuring the shape of time-varying objects. PhD the-
sis, Department of Eletronics and Computer Science, University of
Southampton, 1994.

[OHS01] O.HALL -HOLT, S.RUSINKIEWICZ: Stripe boundary codes for real-
time structured-light range scanning of moving objects. InProc.
ICCV (2001), pp. 13–19.



BIBLIOGRAPHY 95

[PA90] P.VUYLSTEKE, A.OOSTERLINCK: Range image acquisition with a
single binary-encoded light pattern.IEEE Trans. PAMI 12, 2 (1990),
148–164.

[PAH∗04] PETSCHNIGG G., AGRAWALA M., HOPPEH., SZELISKI R., CO-
HEN M., , TOYAMA K.: Digital photography with flash and no-flash
image pairs. Computer Graphics Proceedings ACM SIGGRAPH
(2004), 664–672.

[Paj95] PAJDLA T.: BCRF - Binary Illumination Coded Range Finder: Reim-
plementation. Tech. Rep. KUL/ESAT/MI2/9502, Katholieke Univer-
siteit Leuven, Belgium, 1995.

[PGG] P.KONINCKX T., GRIESSERA., GOOL L. V.: Real-time range scan-
ning of deformable surfaces by adaptively coded structured light. In
In Fourth International Conference on 3-D Digital Imaging and Mod-
eling - 3DIM03, p. 293300.

[Powa] POWELL E.:. http://www.ProjectorCentral.com.

[Powb] POWELL E.: Coded structured light course.
http://eia.udg.es/ qsalvi/iitap/curs2001/tema3structuredlight/sld001.htm.

[RBS99] ROBERTSONM., BORMAN S., STEVENSONR.: Dynamic range im-
provement through multiple exposures. InProceedings of the IEEE
International Conference on Image Processing(Kobe, Japan, Oct.
1999), vol. 3, IEEE, pp. 159–163.

[RKB04] ROTHER C., KOLMOGOROV V., BLAKE A.: Grabcut - interactive
foreground extraction using iterated graph cuts. InComputer Graph-
ics Proceedings ACM SIGGRAPH(2004), pp. 309–314.

[RM03] R.YANG, M.POLLEFEYS: Multi-resolution real-time stereo on com-
modity graphics hardware. InProc. CVPR(2003).

[RSSF02] REINHARD E., STARK M., SHIRLEY P., FERWERDA J.: Photo-
graphic tone reproduction for digital images. InProc. ACM SIG-
GRAPH ’02(2002), pp. ?–?

[RTF∗04] RASKAR R., TAN K., FERIS R., YU J., TURK M.: Non-
photorealistic camera: Depth edge detection and stylized rendering



96 BIBLIOGRAPHY

using multi-flash imaging.Computer Graphics Proceedings ACM
SIGGRAPH(2004), 679–688.

[SB96] SMITH A., BLINN J.: Blue screen matting.Computer Graphics
Proceedings ACM SIGGRAPH(1996), 259–268.
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