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Abstract. Mauduit and Sárközy introduced and studied certain nu-
merical parameters associated to finite binary sequences EN ∈ {−1, 1}N

in order to measure their ‘level of randomness’. Those parameters, the
normality measure N (EN ), the well-distribution measure W (EN ), and
the correlation measure Ck(EN ) of order k, focus on different combinato-
rial aspects of EN . In their work, amongst others, Mauduit and Sárközy
(i) investigated the relationship among those parameters and their min-
imal possible value, (ii) estimated N (EN ), W (EN ), and Ck(EN ) for
certain explicitly constructed sequences EN suggested to have a ‘pseu-
dorandom nature’, and (iii) investigated the value of those parameters
for genuinely random sequences EN .

In this paper, we continue the work in the direction of (iii) above
and determine the order of magnitude of N (EN ), W (EN ), and Ck(EN )
for typical EN . We prove that, for most EN ∈ {−1, 1}N , both W (EN )

and N (EN ) are of order
√

N , while Ck(EN ) is of order
q

N log
`

N
k

´
for

any given 2 ≤ k ≤ N/4.
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1. Introduction and statement of results

1.1. Measures of pseudorandomness for finite binary sequences. In
a series of papers, Mauduit and Sárközy studied finite pseudorandom binary
sequences EN = (e1, . . . , eN ) ∈ {−1, 1}N . In particular, they investigated
in [11] the ‘measures of pseudorandomness’ to be defined shortly. The read-
ers interested in detailed discussions concerning the definitions below and
further related literature are referred to [10] and [11].

Let k ∈ N, M ∈ N, X ∈ {−1, 1}k, a ∈ Z, b ∈ N, b > 0, and D =
(d1, . . . , dk) ∈ Nk with 0 ≤ d1 < · · · < dk < N be given. Below, we
write cardS for the cardinality of a set S, and if S is a set of numbers, then
we write

∑
S for the sum

∑
s∈S s. We let

T (EN ,M, X) = card{n : 0 ≤ n < M, n + k ≤ N, and

(en+1, en+2, . . . , en+k) = X}, (1)

U(EN ,M, a, b) =
∑

{ea+jb : 1 ≤ j ≤ M, 1 ≤ a + jb ≤ N for all j}, (2)

and

V (EN ,M,D) =
∑

{en+d1en+d2 . . . en+dk
: 1 ≤ n ≤ M, n + dk ≤ N}. (3)

In words, T (EN ,M,X) is the number of occurrences of the pattern X in EN ,
counting only those occurrences whose first symbol is among the first M
elements of EN . The quantity U(EN ,M, a, b) is the ‘discrepancy’ of EN

on an M -element arithmetic progression contained in {1, . . . , N}. Finally,
V (EN ,M, D) is the ‘correlation’ among k length M segments of EN ‘rela-
tively positioned’ according to D = (d1, . . . , dk).
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The normality measure of EN is defined as

N (EN ) = max
k

max
X

max
M

∣∣∣∣T (EN ,M, X)− M

2k

∣∣∣∣ , (4)

where the maxima are taken over all k ≤ log2 N , X ∈ {−1, 1}k, and 0 <
M ≤ N + 1− k. The well-distribution measure of EN is defined as

W (EN ) = max{|U(EN ,M, a, b)| :
a, b, and M such that 1 ≤ a + b < a + Mb ≤ N}. (5)

Finally, the correlation measure of order k of EN is defined as

Ck(EN ) = max{|V (EN ,M,D)| : M and D such that M + dk ≤ N}. (6)

1.2. Typical values of W (EN ), Ck(EN ), and N (EN ). In [4], Cassaigne,
Mauduit, and Sárközy studied, amongst others, the values of W (EN ) and
Ck(EN ) for random binary sequences EN , with all the 2N sequences in
{−1, 1}N equiprobable, and the minimum possible values for W (EN ) and
Ck(EN ). They proved the following theorems. (Below and elsewhere in this
paper, we write log for the natural logarithm.)
Theorem A. For all ε > 0, there are numbers N0 = N0(ε) and δ = δ(ε) > 0
such that for N ≥ N0 we have

δ
√

N < W (EN ) < 6
√

N log N (7)

with probability at least 1− ε.
Theorem B. For every integer k ≥ 2 and real ε > 0, there are num-
bers N0 = N0(ε, k) and δ = δ(ε, k) > 0 such that for all N ≥ N0 we have

δ
√

N < Ck(EN ) < 5
√

kN log N (8)

with probability at least 1− ε.
As it turns out, an improvement of the upper bound in Theorem A may

be deduced from a proof of a closely related result of Erdős and Spencer.
Indeed, an argument in [7, Chapter 8] tells us that one may drop the loga-
rithmic factor in (7), at the expense of increasing the multiplicative constant.

In this paper, we give stronger versions of Theorems A and B.

Theorem 1. For any given ε > 0 there exist N0 and δ > 0 such that
if N ≥ N0, then

δ
√

N < W (EN ) <
1
δ

√
N (9)

with probability at least 1− ε.

Theorem 1 above is essentially proved in Erdős and Spencer [7, Chapter 8].
However, we give our alternative proof for this result because an idea in this
proof is also used in the proofs of Theorems 4, 5, and 6 below.

We next state a result that establishes the typical order of magnitude
of Ck(EN ) for a wide range of k, including values of k proportional to N .
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Theorem 2. Let 0 < ε0 ≤ 1/16 be fixed and let ε1 = ε1(N) = (log log N)/ log N .
There is a constant N0 = N0(ε0) such that if N ≥ N0, then, with probability
at least 1− ε0, we have

2
5

√
N log

(
N

k

)
< Ck(EN ) <

√
(2 + ε1)N log

(
N

(
N

k

))

<

√
(3 + ε0)N log

(
N

k

)
<

7
4

√
N log

(
N

k

)
(10)

for every integer k with 2 ≤ k ≤ N/4.

Our next result tells us that Ck(EN ) is concentrated around its mean E(Ck)
in the case in which k is small.

Theorem 3. For any fixed constant ε > 0 and any integer function k =
k(N) with 2 ≤ k ≤ log N − log log N , there is a constant N0 for which the
following holds. If N ≥ N0, then the probability that

1− ε <
Ck(EN )
E(Ck)

< 1 + ε (11)

holds is at least 1− ε.

We suspect that the upper bound on k in Theorem 3 may be weakened.
We now turn to the normality measure N (EN ).

Theorem 4. For any given ε > 0 there exist N0 and δ > 0 such that
if N ≥ N0, then

δ
√

N < N (EN ) <
1
δ

√
N (12)

with probability at least 1− ε.

We shall show that the lower bounds in Theorems 1 and 4 (i.e., the lower
bounds in (9) and (12)) are in a sense best possible. In Section 3 we prove
the following two results.

Theorem 5. For any δ > 0, there is c(δ) > 0 and N0 = N0(δ) such that,
for any N ≥ N0, we have

P(W (EN ) < δ
√

N) > c(δ). (13)

Theorem 6. For any δ > 0, there is c(δ) > 0 and N0 = N0(δ) such that,
for any N ≥ N0, we have

P(N (EN ) < δ
√

N) > c(δ). (14)

In Section 4, we make some simple remarks to show that the upper bounds
in (9) and (12) are in a sense best possible. Those remarks and Theorems 5
and 6 tells us that W (EN )/

√
N and N (EN )/

√
N do not converge in distri-

bution as N →∞ to a distribution that is concentrated at a point.
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1.3. Minimal values of W (EN ), Ck(EN ), and N (EN ). The minimal pos-
sible values of W (EN ), Ck(EN ), and N (EN ) have also been investigated in
the literature, see, e.g., [1, 4, 9, 15]. We include this brief section for the
convenience of the reader. It follows from the classical results of Roth [15]
and Matoušek and Spencer [9] that the order of magnitude of

min
{
W (EN ) : EN ∈ {−1, 1}N

}
(15)

is N1/4. For any fixed even k ≥ 2, the order of magnitude of minEN
Ck(EN ),

where the minimum is again taken over all EN ∈ {−1, 1}N , has been estab-
lished up to a polylogarithmic factor recently:√

1
2

⌊
N

k + 1

⌋
< min

EN

Ck(EN ) ≤ 7
4

√
kN log N, (16)

where we suppose N ≥ N0(k) for the upper bound. The lower bound in (16)
is proved in [1], whereas the upper bound in (16) follows from Theorem 2
above. It is easy to see that, for any odd k, we have minEN

Ck(EN ) = 1.
Some further results giving lower bounds for Ck(EN ) are given in [1].

Turning to the normality measure N (EN ), we mention that the best
bounds that we know of for the minimal value of N (EN ) (EN ∈ {−1, 1}N )
are as follows:(

1
2

+ o(1)
)

log2 N ≤ min
EN

N (EN ) ≤ 3N1/3(log N)2/3 (17)

for all large enough N . The upper bound in (17) is proved in [1] construc-
tively, where a suitable, explicit algebraic construction based on finite fields
is given. It is interesting to compare the upper bounds in (17) and (12) in
Theorem 4. The lower bound in (17) may be proved simply (see the remarks
at the end of Section 2.4). It would be interesting to close the rather wide
gap in (17). The following problem was already raised in [1].

Problem 7. Is there an absolute constant α > 0 for which we have

min
EN

N (EN ) > Nα (18)

for all large enough N?

The authors believe that the answer to Problem 7 is positive.

2. Estimates for W (EN ), Ck(EN ), and N (EN ) for random
sequences EN

We shall prove Theorems 1–4 in this section. Recall that these results
concern random elements EN from the uniform space {−1, 1}N . In this
section, unless stated otherwise, EN will always stand for such a random
sequence.
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2.1. Estimates for the binomial distribution. We give in this section
some standard facts about the binomial distribution.

We start with the following form of the de Moivre–Laplace theorem (see,
e.g., [3, Chapter I, Theorem 6]). Let Bi(n, p) denote the binomial distri-
bution with parameters n and p. Moreover, write S(n, p) for the sum of n
independent Bernoulli random variables with mean p. We first consider the
symmetric case p = 1/2.

Fact 8. (i) For any ` = `(n) ∈ Z with ` = o(n2/3), we have

P
(
S(n, 1/2) =

⌊n

2

⌋
+ `
)

=
1
2n

(
n

bn/2c+ `

)
=

√
2

πn
e−2`2/n(1 + o(1)), (19)

(ii) For any c = c(n) > 0 with c = o(n1/6), we have

P
(
S(n, 1/2) ≥

⌊n

2

⌋
+ c

√
n
)

=
∑

`≥c
√

n

1
2n

(
n

bn/2c+ `

)

=

(√
2
π

+ o(1)

)(∫ ∞

c
e−2x2

dx

)
. (20)

In particular, if we further have that c →∞, then

P
(
S(n, 1/2) ≥

⌊n

2

⌋
+ c

√
n
)

=
e−2c2

2c
√

2π
(1 + o(1)). (21)

(iii) The estimates (20) and (21) hold for the lower tail

P
(
S(n, 1/2) ≤

⌊n

2

⌋
− c

√
n
)

as well.

In what follows, we shall often be concerned with sums of ±1 independent
random variables. We let

S±(n) =
∑

1≤i≤n

Xi (22)

where Xi (1 ≤ i ≤ n) are independent random variables with mean 0, that
is,

P(Xi = −1) = P(Xi = +1) = 1/2.

Clearly, (S±(n)+n)/2 is binomially distributed with parameters n and 1/2.
Let us now state a well known estimate for large deviations of S±(n) (see,
e.g., [2, Appendix A]).

Fact 9. Let Xi (1 ≤ i ≤ n) be independent ±1 random variables with
mean 0. Let S±(n) =

∑
1≤i≤n Xi. For any real number a > 0, we have

P(S±(n) > a) < e−a2/2n. (23)
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We now prove a lower estimate for the symmetric binomial distribution.
As usual, we let {x} = x− bxc.

Fact 10. Let n and ` be integers with

−
⌊n

2

⌋
≤ ` ≤

⌈n

2

⌉
. (24)

If n is sufficiently large, then

P
(
S(n, 1/2) =

⌊n

2

⌋
+ `
)

=
1
2n

(
n

bn/2c+ `

)
≥ 2−4(`+{n/2})2/n−n

(
n

bn/2c

)
= (1 + o(1))2−4(`+{n/2})2/n

√
2

πn
. (25)

Proof. We shall in fact prove the following statement, which implies Fact 10:
(†) if 0 ≤ ` ≤ n/2 and n is large enough, then(

n

bn/2c − `

)
≥ 2−4(`+{n/2})2/n

(
n

bn/2c

)
. (26)

We remark that if n is even, or else if n is odd and ` ≤ 0, then (†) is
equivalent to what is claimed in Fact 10. If n is odd and ` > 0, then (†) is
slightly stronger, because in this case we have(

n

bn/2c+ `

)
=
(

n

dn/2e − `

)
=
(

n

bn/2c − ` + 1

)
≥ 2−4(`−1+{n/2})2/n

(
n

bn/2c

)
≥ 2−4(`+{n/2})2/n

(
n

bn/2c

)
, (27)

where we used (26) in the first inequality in (27).
We shall now prove (†). Let

a(`) = 24(`+{n/2})2/n

(
n

bn/2c − `

)
(28)

for all 0 ≤ ` ≤ n/2. It is easy to check that

a(0), a(bn/2c) ≥
(

n

bn/2c

)
(29)

for all large enough n. Therefore, it suffices to show that

min{a(`) : 0 ≤ ` ≤ n/2}
is achieved either at ` = 0 or at ` = bn/2c. In particular, if we show that a(`)
is unimodal, we are done. Let

b(`) =
a(` + 1)

a(`)
= 24(2`+1+2{n/2})/n bn/2c − `

dn/2e+ ` + 1
(30)

for all 0 ≤ ` ≤ n/2− 1. Observe that, for all large enough n, we have

b(0) = 24/n bn/2c
dn/2e+ 1

> 1 (31)
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and

b(bn/2c − 1) =
1
n

24(1−1/n) < 1. (32)

We now show that b(`) is itself unimodal. Let

c(`) =
b(` + 1)

b(`)
= 28/n

(
bn/2c − `− 1
bn/2c − `

)(
dn/2e+ ` + 1
dn/2e+ ` + 2

)
= 28/n

(
1− n + 1

(bn/2c − `) (dn/2e+ ` + 2)

)
(33)

for all 0 ≤ ` ≤ n/2− 2. Note that c(0) > 1 for sufficiently large n and c(`)
is decreasing. Therefore, b(`) is unimodal, ‘starts’ with b(0) > 1, and ‘ends’
with b(bn/2c− 1) < 1. Therefore we conclude that a(`) is indeed unimodal,
as required. �

In Section 2.4, we shall need results similar to Fact 9 for the tail of Bi(n, p)
for arbitrary 0 < p < 1. We shall use the following estimates (see [8,
Theorem 2.1]).

Fact 11. Let X have binomial distribution Bi(n, p) and set λ = E(X) = pn.
Then, for any t ≥ 0, we have

P
(
X ≥ E(X) + t

)
≤ exp

(
− t2

2(λ + t/3)

)
(34)

and

P
(
X ≤ E(X)− t

)
≤ exp

(
− t2

2λ

)
. (35)

2.2. The well-distribution measure W . Our aim in this section is to
prove Theorem 1. Let EN = (e1, . . . , eN ) ∈ {−1, 1}N be drawn uniformly
at random; we wish to estimate

W (EN ) = max
a,b,M

∑
1≤j≤M

ea+jb, (36)

where the maximum is taken over all integers a, b, and M with 1 ≤ a + b <
a + bM ≤ N .

We start with the lower bound in (9). Observe that Fact 8 tells us that,
for any fixed C > 0, we have

lim
N→∞

P

∣∣∣∣ ∑
1≤j≤N

ej

∣∣∣∣ ≥ C
√

N

 = 2

√
2
π

∫ ∞

C/2
e−2x2

dx > 0. (37)

The lower bound for W (EN ) for a typical EN follows from (37) and the fact
that

2

√
2
π

∫ ∞

C/2
e−2x2

dx → 1
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as C → 0. Indeed, the facts above show that, for any ε > 0, there is δ > 0 so
that the lower bound in (9) holds with probability at least 1− ε. It remains
to prove the upper bound for W (EN ) for typical sequences EN .

Let K be an integer. The arithmetic progressions of the form 1 ≤ a+ b <
a + 2b < · · · < a + Tb ≤ K, where −b + 1 ≤ a ≤ 0 and T is the largest
integer satisfying a+Tb ≤ K, will be called complete arithmetic progressions
in [1,K]∩Z. Our first auxiliary lemma gives an estimate, as a function of K,
for the maximal value of the ‘discrepancy’

S
(K)
a,b =

∣∣∣∣ ∑
1≤a+jb≤K

ea+jb

∣∣∣∣ (38)

over complete arithmetic progressions in [1,K], for typical sequences

(e1, . . . , eK) ∈ {−1, 1}K .

Lemma 12. Let K be a positive integer and C a positive real number. Let
(e1, . . . , eK) be drawn uniformly at random from {−1, 1}K . The probability
that there are integers a and b with −b + 1 ≤ a ≤ 0 such that

S
(K)
a,b =

∣∣∣∣ ∑
1≤a+jb≤K

ea+jb

∣∣∣∣ > C
√

K (39)

is O
(
e−C2/4

)
, as long as, say, C ≥ 2.

Proof. For any given integers a and b with −b + 1 ≤ a ≤ 0, the complete
arithmetic progression 1 ≤ a+b < a+2b < · · · ≤ K in [1,K] has either bK/bc
or dK/be terms. Fix a large constant C, and observe that (23) in Fact 9
tells us that, if b ≤ K, then the probability that we have

S
(K)
a,b =

∣∣∣∣ ∑
1≤a+jb≤K

ea+jb

∣∣∣∣ > C
√

K

is less than 2e−bC2/4.
Now, given b, there are b arithmetic progressions as above, and the possi-

ble values for b are 1, . . . ,K − 1. Therefore, the probability that there are a

and b for which S
(K)
a,b is larger than C

√
K is

O

( ∑
1≤b<K

be−bC2/4

)
= O

(
e−C2/4

)
, (40)

where we used that C ≥ 2 and hence the terms in the sum in (40) drop
geometrically. �

Let us now consider intervals of integers of the form

Bm,r = (m2r, (m + 1)2r] ∩ Z, (41)

where m and r are non-negative integers. Clearly, |Bm,r| = 2r. We refer to
the Bm,r as blocks. Put

k = 1 + blog2 Nc, (42)
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and observe that all blocks Bm,r contained in [1, N ] have r < k.
Lemma 12 above tells us that, given a block Bm,r, the probability that

the discrepancy on some complete arithmetic progression contained in Bm,r

is greater than C(k− r)
√

2r is O(e−C2(k−r)2/4); that is, the probability that
we have

max
a,b

∣∣∣∑{ea+jb : a + jb ∈ Bm,r}
∣∣∣ > C(k − r)

√
2r (43)

is O(e−C2(k−r)2/4). On the other hand, for any r, we have at most N/2r ≤
2k−r blocks Bm,r contained in [1, N ]. Therefore, if C is large enough, the
probability that (43) holds for some block Bm,r ⊂ [1, N ] is

O

( ∑
0≤r<k

2k−re−C2(k−r)2/4

)
= O

(
e−C2/4

)
, (44)

which tends to 0 as C → ∞. Therefore, to complete our proof, we may
suppose that (43) does not hold for any Bm,r, that is, we may suppose that

(*) for all m and r with Bm,r ⊂ [1, N ], we have

max
a,b

∣∣∣∑{ea+jb : a + jb ∈ Bm,r}
∣∣∣ ≤ C(k − r)

√
2r.

If we are able to deduce from (*) that W (EN ) = O(
√

N), then we shall be
done. Let us now state and prove the following combinatorial observation.

Fact 13. Given any integers 1 ≤ p < q ≤ N , it is possible to write the
integer interval Ip,q = [p, q] ∩ Z as the disjoint union of blocks Bm,r so that,
for any r, we use at most two blocks of the form Bm,r.

Proof. To see this, first consider the smallest f for which [p, q] ⊂ [1, 2f )
(that is, f = dlog2(q + 1)e), and then consider the ‘dyadic’ ruler in the
interval [1, 2f ): the level 0 mark in our ruler is 1; the level 1 mark is 2f−1;
the set of level 2 marks is {2f−2, 2f−1 + 2f−2}; the set of level 3 marks is

{2f−3, 2f−2 + 2f−3, 2f−1 + 2f−3, 2f−1 + 2f−2 + 2f−3};

and so on. Let L be the mark of smallest level contained in [p, q]. One may
then use the binary expansion of q−L to obtain a decomposition of (L, q]∩Z
into blocks, using, for each r, at most one block of the form Bm,r. Similarly,
one may use the binary expansion of L−p+1 to obtain such a decomposition
of [p, L] ∩ Z. �

We now use (*) and Fact 13 above to prove that W (EN ) = O(
√

N).
Given a, b, and M with 1 ≤ a+b < a+Mb ≤ N , we write [a+b, a+Mb]∩Z
as a disjoint union of blocks such that, for each r, we make use of at most
two blocks of the form Bm,r. Let B be the collection of blocks Bm,r that we
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have used in our partition of [a + b, a + Mb] ∩ Z. We have∣∣∣∣ ∑
1≤j≤M

ea+jb

∣∣∣∣ ≤ ∑
Bm,r∈B

∣∣∣∑ {ea+jb : a + jb ∈ Bm,r}
∣∣∣

≤
∑

0≤r<k

2× C(k − r)
√

2r

= 2C2k/2
∑

1≤`≤k

`2−`/2 = O(2k/2) = O(
√

N).

This completes the proof of Theorem 1.

2.3. The correlation measure Ck. In this section we prove Theorems 2
and 3.

2.3.1. Proof of Theorem 2. We shall first prove the upper estimate for Ck(EN )
for typical sequences EN . Indeed, we prove the following lemma.

Lemma 14. Let ε = ε(N) = (log log N)/ log N . With probability tending
to 1 as N →∞, we have

Ck(EN ) <

√
(2 + ε)N log

(
N

(
N

k

))
(45)

for every integer k with 2 ≤ k ≤ N/4.

Proof. We first consider a fixed integer k with 2 ≤ k ≤ N/4. Fix a se-
quence D = (d1, . . . , dk) with 0 ≤ d1 < · · · < dk < N . Since EN = (ei)1≤i≤N

is drawn uniformly at random from {−1, 1}N , the sequence

(e1+d1e1+d2 . . . e1+dk
, e2+d1e2+d2 . . . e2+dk

, . . . , eN−dk+d1eN−dk+d2 . . . eN )

is a random element of the uniform space {−1, 1}N−dk . Recall (6), and let
an integer M with M + dk ≤ N be fixed. Clearly, V (EN ,M,D) has the
same distribution as S±(M). We now use (23) with

a =

√
(2 + ε)N log

(
N

(
N

k

))
,

where ε = (log log N)/ log N is as in the statement of our lemma, to deduce
that

|V (EN ,M, D)| >

√
(2 + ε)N log

(
N

(
N

k

))
(46)

holds with probability less than

exp
{
− 1

2M
(2 + ε)N log

(
N

(
N

k

))}
≤
{

N

(
N

k

)}−(1+ε/2)

. (47)

Summing over all possible choices of M and D, we get an extra factor

of N
(
N
k

)
, which gives an upper bound of

{
N
(
N
k

)}−ε/2
for the probability
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of the event that (46) should hold for some M and D. We shall now sum
these bounds over 2 ≤ k ≤ N/4. For estimating this sum, we observe that

1
1− 1/3δ

≤ 1
δ

(48)

for all 0 < δ ≤ δ0, where δ0 > 0 is some suitably small absolute constant,
and (

N

k − 1

)/(
N

k

)
≤ 1

3
(49)

for 2 < k ≤ N/4. Using (48) and (49), we see that the probability that (46)
holds for some M , D, and k with k in the range 2 ≤ k ≤ N/4 is at most

∑
2≤k≤N/4

{
N

(
N

k

)}−ε/2

≤
{

N

(
N

2

)}−ε/2∑
`≥0

(
1
3

)`ε/2

≤ 2
ε

{
N

(
N

2

)}−ε/2

= O

(
1

(log log N)
√

log N

)
= o(1), (50)

and our result follows. �

The proof of Theorem 2 will be complete if we prove the following result.

Lemma 15. With probability tending to 1 as N →∞, we have

Ck(EN ) >
2
5

√
N log

(
N

k

)
(51)

for every integer k with 2 ≤ k ≤ N/4.

We start with an auxiliary result.

Fact 16. Let m = bN/3c. For every sufficiently large N , the following hold.

(i) If 2 ≤ k ≤ log m, then√
N log

(
N/3
k

)
≥ 0.99

√
N log

(
N

k

)
. (52)

(ii) If log m < k ≤ N/4, then√
N log

(
N/3
k

)
≥

√
1− 10−10

3
N log

(
N

k

)
. (53)

We include the proof of Fact 16 for completeness. The reader may prefer
to go directly to the proof of Lemma 15, given below.

Proof of Fact 16. Throughout this proof, we suppose that N is larger than
a suitably large absolute constant.
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Let us start with the proof of (i). Suppose 2 ≤ k ≤ log m. Using
that (a/b)b ≤

(
a
b

)
≤ (ea/b)b, we have(

N/3
k

)
≥
(

N

3k

)k

≥
(

1
3e

)k (eN

k

)k

≥
(

1
3e

)k (N

k

)
. (54)

Therefore,

log
(

N/3
k

)
≥

(
1− k log(3e)

log
(
N
k

) ) log
(

N

k

)
≥
(

1− 1 + log 3
log(N/k)

)
log
(

N

k

)
≥
(

1− 3
log N

)
log
(

N

k

)
. (55)

Inequality (52) follows from (55), and (i) is proved.
Let us now turn to (ii). Suppose log m < k ≤ N/4. Since

(N/3
k

)
≥(bN/3c

k

)
=
(
m
k

)
, it clearly suffices to prove that(

m

k

)
≥
(

N

k

)(1−10−10)/3

(56)

for all large enough N . If k < m/2, then m− k > m/2 > k. Moreover,(
m

k

)
=
(

m

m− k

)
(57)

and (
N

m− k

)(1−10−10)/3

≥
(

N

k

)(1−10−10)/3

. (58)

Therefore, it suffices to consider k with

1
2

⌊
N

3

⌋
=

1
2
m ≤ k ≤ N

4
. (59)

Now, the left-hand side of (56) is decreasing in the range (59), while the
right-hand side is increasing in that range. Therefore, it suffices to verify (56)
at k = bN/4c.

To check (56) for k = bN/4c, we may use the fact that if r = r(n) is an
integer function of n with limn→∞ r(n)/n = x, then(

n

r

)
= 2(H(x)+o(1))n, (60)

where o(1) → 0 as n →∞, and

H(x) = −x log2 x− (1− x) log2(1− x) (61)

for all 0 ≤ x ≤ 1 (H(0) = H(1) = 0). Of course, this is an immediate
consequence of Stirling’s formula

n! =
√

2πn
(n

e

)n
(

1 + O

(
1
n

))
. (62)
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We now note that
1
3
H

(
3
4

)
=

1
3
H

(
1
4

)
>

1− 10−10

3
H

(
1
4

)
, (63)

and hence (56) does indeed follow for k = bN/4c as long as N is large
enough. This completes the proof of Fact 16. �

We now give the proof of the main result in this section.

Proof of Lemma 15. Set m = bN/3c, and recall that we write S(m, 1/2) for
a random variable with binomial distribution Bi(m, 1/2). Fix 2 ≤ k ≤ N/4.
We are interested in the largest integer r for which

P
(

S(m, 1/2) ≥ 1
2
(m + r)

)
≥ k2(log N)

(
m + 1
k − 1

)−1

(64)

holds. Indeed, we let

r(m) = rk(m) = max {r ∈ N : inequality (64) holds} . (65)

We need the following lower bounds for r(m).

Fact 17. For every sufficiently large N , the following hold.
(i) If 2 ≤ k ≤ log m, then

r(m) ≥ 0.99

√
2m log

(
m + 1
k − 1

)
. (66)

(ii) If log m < k ≤ N/4, then

r(m) ≥ (1− 10−10)

√
m

log 2
log
(

m + 1
k − 1

)
. (67)

(iii) If 2 ≤ k ≤ N/4, then

r(m) ≥ 2
5

√
N log

(
N

k

)
. (68)

Proof. In this proof, we may and shall suppose that N is larger than a
suitably large absolute constant for the inequalities below to hold.

We start observing that we have

k2(log N)
(

m + 1
k − 1

)−1

=
(

m + 1
k − 1

)−1+o(1)

(69)

uniformly in k in the range 2 ≤ k ≤ N/4; that is, for all η > 0 there is N0

such that if N ≥ N0, then, for all 2 ≤ k ≤ N/4, we have

k2 log N ≤
(

m + 1
k − 1

)η

. (70)

To check this assertion, note that if 2 ≤ k ≤ (log N)2, then the left-hand
side of (70) is polylogarithmic in N , whereas

(
m+1
k−1

)
≥ N/3. On the other
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hand, if (log N)2 < k ≤ N/4, then the left-hand side of (70) is O(N2 log N),
whereas

(
m+1
k−1

)
≥
(
(m + 1)/(k − 1)

)k−1 ≥ (4/3 + o(1))k−1 ≥ (5/4)(log N)2−1,
which is superpolynomial in N . Therefore, (69) does hold.

We now turn to the proof of (i). Suppose 2 ≤ k ≤ log m. Set

r =

⌈
0.99

√
2m log

(
m + 1
k − 1

)⌉
. (71)

We shall show that (64) holds for the value of r given in (71). Let

c =
r + 1
2
√

m
= (1 + o(1))0.99

√
1
2

log
(

m + 1
k − 1

)
. (72)

We now use (21) in Fact 8(ii) to deduce that

P
(

S(m, 1/2) ≥ 1
2
(m + r)

)
≥ P

(
S(m, 1/2) ≥

⌊m

2

⌋
+ c

√
m
)

=
e−2c2

2c
√

2π
(1 + o(1)) ≥ 1

100

(
m + 1
k − 1

)−0.99(
log
(

m + 1
k − 1

))−1/2

, (73)

which is clearly larger than

k2(log N)
(

m + 1
k − 1

)−1

(74)

for large enough N (see (69)). This completes the proof of (64), and hence (i)
follows. We now turn to (ii). Suppose log m < k ≤ N/4. Set

r =

⌈
(1− 10−10)

√
m

log 2
log
(

m + 1
k − 1

)⌉
. (75)

We shall show that (64) holds for the value of r given in (75). Let

` =
⌈

r + 1
2

⌉
= (1 + o(1))

1− 10−10

2
√

log 2

√
m log

(
m + 1
k − 1

)
. (76)

We now use (25) in Fact 10 to deduce that

P
(
S(m, 1/2) ≥ 1

2
(m + r)

)
≥ P

(
S(m, 1/2) ≥

⌊m

2

⌋
+ `
)

≥ (1 + o(1))2−4(d(r+1)/2e+1/2)2/m

√
2

πm

≥ (1 + o(1))2−r2/m2−(6r+9)/m

√
2

πm

≥ (1 + o(1))
(

m + 1
k − 1

)−1+10−10

≥ k2(log N)
(

m + 1
k − 1

)−1

for all large enough N , where, again, we used (69) for the last inequality.
This completes the proof of (64), and (ii) follows.



16 ALON, KOHAYAKAWA, MAUDUIT, MOREIRA, AND RÖDL

We now turn to (iii). Suppose first that 2 ≤ k ≤ log m, so that (66) holds.

Using that
(
m+1
k−1

)
≥
(N/3
k−1

)
≥
(N/3

k

)1/2
in this range of k and Fact 16(i), we

deduce that

r(m) ≥ 0.99

√
2
⌊

N

3

⌋
log
(

m + 1
k − 1

)

≥ (1 + o(1))
0.99√

3

√
N log

(
N/3
k

)
≥ 2

5

√
N log

(
N

k

)
. (77)

Suppose now that log m < k ≤ N/4, so that (67) holds. Using that
(
m+1
k−1

)
≥(N/3

k

)1−o(1)
in this range of k and Fact 16(ii), we deduce that

r(m) ≥ 1− 10−10

√
log 2

√⌊
N

3

⌋
log
(

m + 1
k − 1

)

≥ (1 + o(1))
1− 10−10

√
3 log 2

√
N log

(
N/3
k

)
≥ 2

5

√
N log

(
N

k

)
. (78)

Inequality (68) follows from (77) and (78), and (iii) is proved. �

To prove Lemma 15, we shall show that, with probability ≤ 2/k2 log N ,
we have

Ck(EN ) ≤ rk(m), (79)
and then we shall sum over all 2 ≤ k ≤ N/4. This gives that (79) holds for
some k with 2 ≤ k ≤ N/4 with probability O(1/ log N) = o(1). Therefore,
(79) fails for all 2 ≤ k ≤ N/4 with probability 1− o(1), and Lemma 15 will
be proved.

Let 2 ≤ k ≤ N/4 be fixed. Our strategy to estimate the probability
that (79) should hold will be as follows. Recall EN = (e1, . . . , eN ) and
let u = (e1, . . . , em). Let Dk be the set of (k − 1)-tuples D = (d1, . . . , dk−1)
with m ≤ d1 < · · · < dk−1 ≤ 2m. For each D ∈ Dk, let

vD = (e1+d1e1+d2 . . . e1+dk−1
, . . . , em+d1em+d2 . . . em+dk−1

), (80)

and let A(D) be the event that

|〈u, vD〉| > r(m) = rk(m) (81)

holds. It suffices to show that some A(D) (D ∈ Dk) holds with probability
at least 1− 2/k2 log N . For convenience, let X = X(EN ) be the number of
events A(D) (D ∈ Dk) that hold for EN . Let

p = p(m) = P
(

S(m, 1/2) ≥ 1
2
(m + r(m))

)
. (82)

Because of (65), we have

E(X) = p|Dk| = p

(
m + 1
k − 1

)
≥ k2 log N. (83)
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We have now arrived at the key claim: the events A(D) (D ∈ Dk) are
pairwise independent.

Claim 18. For all distinct D and D′ ∈ Dk, we have

P(A(D) ∩A(D′)) = p2. (84)

We postpone the proof of Claim 18. To complete the proof of Lemma 15,
we make use of the following result, which gives a lower bound for the
probability of a union of pairwise independent events. We shall in fact
state a stronger lemma, which has as hypothesis that the events should be
asymptotically negatively correlated. Versions of this lemma may be found
in [5] and [6]. More recently, Petrov used this result to generalize the Borel–
Cantelli lemma [13, 14]

Lemma 19. Let A1, . . . , AM be events in a probability space, each with
probability at least p. Let ε ≥ 0 be given, and suppose that

P(Ai ∩Aj) ≤ p2(1 + ε) (85)

for all i 6= j. Then

P
(⋃

1≤j≤M
Aj

)
≥ Mp

1 + (M − 1)p(1 + ε)

= 1− 1− p + (M − 1)pε

1 + (M − 1)p(1 + ε)
> 1− ε− 2

Mp
. (86)

The proof of Lemma 19 is given below. We conclude the proof of Lemma 15
combining Claim 18 and Lemma 19. It suffices to notice that we have M =(
m+1
k−1

)
pairwise independent events A(D) (that is, ε = 0), and pM ≥ k2 log N

(see (83)). Inequality (86) then tells us that, with probability greater
than 1−2/k2 log N , the event A(D) happens for some D ∈ Dk. We conclude
that (79) occurs with probability at most 2/k2 log N , and hence, as observed
above, summing over all 2 ≤ k ≤ N/4, Lemma 15 follows. �

We shall now prove Claim 18 and Lemma 19.

Proof of Claim 18. Let us consider the events A(D) and A(D′) for two dis-
tinct D, D′ ∈ Dk. Let D = (d1, . . . , dk−1) and D′ = (d′1, . . . , d

′
k−1), and

recall that

m ≤ d1 < · · · < dk−1 ≤ 2m, m ≤ d′1 < · · · < d′k−1 ≤ 2m,

and that

vD = (e1+d1e1+d2 . . . e1+dk−1
, . . . , em+d1em+d2 . . . em+dk−1

),

vD′ = (e1+d′1
e1+d′2

. . . e1+d′k−1
, . . . , em+d′1

em+d′2
. . . em+d′k−1

).

Let vD
i = ei+d1 . . . ei+dk−1

and vD′
i = ei+d′1

. . . ei+d′k−1
(1 ≤ i ≤ m) be the

components of vD and vD′ . For convenience, let us write ω ∈U Ω if ω is a
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uniformly distributed random element of Ω. We shall prove more than (84);
we shall prove that

(e1v
D
1 , . . . , emvD

m, e1v
D′
1 , . . . , emvD′

m ) ∈U {−1, 1}2m. (87)

Clearly, this proves Claim 18, because 〈u, vD〉 =
∑

1≤i≤m eiv
D
i and 〈u, vD〉 =∑

1≤i≤m eiv
D′
i .

To check (87), we make the following observation: we have

(x1, . . . , xm, y1, . . . , ym) ∈U {−1, 1}2m (88)

if and only if

(x1, . . . , xm, x1y1, . . . , xmym) ∈U {−1, 1}2m. (89)

This observation follows immediately from the fact that the map that takes
the vector in (88) to the vector in (89) is a bijection (it is in fact an involu-
tion).

We apply the observation above to

xi = eiv
D
i and yi = eiv

D′
i (1 ≤ i ≤ m) (90)

to obtain that (87) holds if and only if

(x1, . . . , xm, x1y1, . . . , xmym)

= (e1v
D
1 , . . . , emvD

m, vD
1 vD′

1 , . . . , vD
mvD′

m ) ∈U {−1, 1}2m. (91)

However, (91) does hold. Indeed, since D 6= D′, a moment’s thought shows
that

(vD
1 vD′

1 , . . . , vD
mvD′

m ) ∈U {−1, 1}m. (92)

(To see (92), note that the value of vD
i vD′

i (1 ≤ i ≤ m) is determined by
the ej with

j ∈ i + D4D′ = i + (D \D′) ∪ (D′ \D) (93)
alone, and the family of sets i+D4D′ (1 ≤ i ≤ m) form a “hypertree”. We
shall not elaborate on this simple argument.) Fact (92) and the fact that
the ei (1 ≤ i ≤ m) are not involved in (92) at all imply (91), and hence (87)
does hold. This completes the proof of Claim 18. �

Proof of Lemma 19. Let f =
∑

1≤j≤M χj , where χj denotes the character-
istic function of the event Aj . We have∫

f dP =
∑

1≤j≤M

P(Aj) ≥ Mp, (94)

and∫
f2 dP =

∫ ( ∑
1≤j≤M

χj + 2
∑

1≤i<j≤M

χiχj

)
dP

≤
∫

f dP + M(M − 1)p2(1 + ε). (95)
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Let X =
⋃

1≤j≤M Aj . By the Cauchy–Schwarz inequality, we have(∫
X

1 dP
)(∫

X
f2 dP

)
≥
(∫

X
f dP

)2
,

which, together with (95), gives

P(X)
(∫

f dP + M(M − 1)p2(1 + ε)
)
≥
(∫

X
f dP

)2
.

Therefore

P(X) ≥
(∫

X
f dP

)2/(∫
f dP + M(M − 1)p2(1 + ε)

)
≥ M2p2

Mp + M(M − 1)p2(1 + ε)
=

Mp

1 + (M − 1)p(1 + ε)
, (96)

and the lemma follows. �

2.3.2. Proof of Theorem 3. Theorem 3 follows simply from some well known
results concerning concentration of measure. Let ε and k = k(N) as in the
statement of that theorem be given. We now observe that if EN = (ej)1≤j≤N

and E′
N = (e′j)1≤j≤N ∈ {−1, 1}N differ in exactly one coordinate, then

|V (EN ,M, D)− V (E′
N ,M, D)| ≤ 2k (97)

for any M and D. Indeed, suppose e′j0 = −ej0 and ej = e′j for all j 6=
j0. Note that ej0 is involved in at most k summands in the definition
of V (EN ,M,D) (see (3)), and hence changing its value to −ej0 will change
V (EN ,M, D) by at most 2k. Therefore,

|Ck(EN )− Ck(E′
N )| ≤ 2k (98)

as well. We may now use, for instance, Lemma 1.2 from [12] to deduce that,
for any t > 0, we have

P
(
|Ck(EN )− E(Ck)| ≥ t

)
≤ 2 exp

(
−t2/2k2N

)
. (99)

It now suffices to check that if

k ≤ log N − log log N, (100)

then, taking t = εE(Ck), we have that the right-hand side of (99) is o(1).
Theorem 2 tells us that, if N is large enough, then, say,

E(Ck) ≥
1
5

√
N log

(
N

k

)
. (101)

Condition (100) on k and (101) easily imply that

t2

2k2N
=

ε2E(Ck)2

2k2N
→∞ (102)

as N →∞, and this completes the proof of Theorem 3.
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2.4. The normality measure N . Recall that the normality measure of
EN = (e1, . . . , eN ) ∈ {−1, 1}N is defined as

N (EN ) = max
k

max
X

max
M

∣∣∣∣T (EN ,M, X)− M

2k

∣∣∣∣ , (103)

where the maxima are taken over all k ≤ log2 N , X ∈ {−1, 1}k, and 0 <
M ≤ N + 1 − k, and T (EN ,M, X) is the number of occurrences of the
pattern X in EN , counting only those occurrences starting with some ej

with j ≤ M (see (1)). Our aim in this section is to prove Theorem 4.

Proof of Theorem 4. We start with the lower bound in (12). We take k = 1
in (103); in fact, we consider T (EN , N, (1)), the number of occurrences of 1
in EN . Fact 8 tells us that

lim
N→∞

P
(∣∣∣∣T (EN , N, (1))− N

2

∣∣∣∣ ≥ C
√

N

)
= 2

√
2
π

∫ ∞

C
e−2x2

dx > 0. (104)

Since

2

√
2
π

∫ ∞

C
e−2x2

dx → 1

as C → 0, the lower bound in Theorem 4 follows. Indeed, the facts above
show that, for any ε > 0, there is δ > 0 so that the lower bound in (12)
holds with probability at least 1 − ε. It remains to prove the upper bound
for N (EN ) for typical sequences EN .

The basic lemma that we shall use is Lemma 20 below. Recall that we refer
to the sets Bm,r as blocks (recall (41)). For an integer k ≥ 1, X ∈ {−1, 1}k,
and Bm,r a block with

max Bm,r = (m + 1)2r ≤ N − k + 1, (105)

we shall write T (EN , Bm,r, X) for the number of occurrences of the pat-
tern X in EN , counting only those occurrences starting in Bm,r, that is,

T (EN , Bm,r, X) = card{n ∈ Bm,r : E
(n)
N = X}, (106)

where
E

(n)
N = (en, en+1, . . . , en+k−1), (107)

and, as usual, EN = (e1, . . . , eN ).

Lemma 20. Let m and r be fixed non-negative integers with Bm,r ⊂ [1, N ].
For all D > 0, the probability that there is X ∈ {−1, 1}k with k ≤ log2 N
satisfying (105) such that∣∣∣T (EN , Bm,r, X)− 2r−k

∣∣∣ > D
√

2r (108)

is at most

O
(
e−2D2/9

)
+ 2(log2 N)2N exp

(
− 3D

4 log2 N
2r/2

)
. (109)
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We postpone the proof of Lemma 20 and continue with the proof of The-
orem 4. Let us apply Lemma 20 with

D = C(K − r) (110)

for all blocks Bm,r ⊂ [1, N ], where

K = 1 + blog2 Nc, (111)

and C is a large constant. There are at most N/2r < 2K−r blocks Bm,r

contained in [1, N ] and any such block is such that r < K. Let us call a
block Bm,r large if

r ≥ 4 log2 log2 N (112)

and small otherwise. We claim that, with the value of D given in (110) with
a large enough constant C, inequality (108) holds for some large block Bm,r

and some X ∈ {−1, 1}k (k ≤ log2 N) with probability O
(
e−2C2/9

)
.

To prove our claim, for convenience, let
∑′

r indicate sum over all r < K
satisfying (112). Adding up (109) over all large blocks Bm,r ⊂ [1, N ], we get∑′

r
2K−rO

(
e−2C2(K−r)2/9

)
+
∑′

r
2K−r+1(log2 N)2N exp

(
−3C(K − r)

4 log2 N
2r/2

)
≤

∑
1≤`≤K

2`O
(
e−2C2`2/9

)
+ (log2 N)2N2

∑′

r
exp

(
− 3C

4 log2 N
2r/2

)
= O

(
e−2C2/9

)
+ O

(
1
N

)
= O

(
e−2C2/9

)
, (113)

as long as C is a large enough constant and N is large enough with respect
to C, proving our claim.

Since the bound in (113) tends to 0 as C →∞, we may and shall suppose
henceforth that

(**) for all integers m, r, and k ≤ log2 N with Bm,r ⊂ [1, N ] satisfy-

ing (105) and (112), and every X ∈ {−1, 1}k, we have∣∣∣T (EN , Bm,r, X)− 2r−k
∣∣∣ ≤ C(K − r)

√
2r.

Now fix k ≤ log2 N and fix M with 1 ≤ M ≤ N − k +1. Observe that we
may write [1,M ] as a disjoint union of blocks Bm,r (r ≤ log2 M < K) with
at most one block of the form Bm,r for each r. Indeed, such a decomposition
of [1,M ] may be read out from the binary expansion of M . Let us write I
for the set of the pairs (m, r) for which Bm,r occurs in this decomposition
of [1,M ]. Furthermore, let I = I+ ∪ I− be the partition of I with

I+ = {(m, r) ∈ I : r satisfies (112)}. (114)
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For later reference, observe that

|I−| < 4 log2 log2 N. (115)

Observe also that if (m, r) ∈ I−, then∣∣∣T (EN , Bm,r, X)− 2r−k
∣∣∣ ≤ 2r < (log2 N)4 (116)

for any X ∈ {−1, 1}k. Using (**), (115), and (116), we see that, for any X ∈
{−1, 1}k, we have∣∣∣T (EN ,M,X)−M2−k

∣∣∣ ≤ ∑
(m,r)∈I

∣∣∣T (EN , Bm,r, X)− 2r−k
∣∣∣

=
∑

(m,r)∈I+

∣∣∣T (EN , Bm,r, X)− 2r−k
∣∣∣+ ∑

(m,r)∈I−

∣∣∣T (EN , Bm,r, X)− 2r−k
∣∣∣

≤
∑

0≤r<K

C(K − r)2r/2 + |I−|(log2 N)4 (117)

≤ C2K/2
∑

1≤`≤K

`2−`/2 + 4(log2 log2 N)(log2 N)4

= O(2K/2) = O(
√

N),

as required. It now remains to prove Lemma 20. �

Proof of Lemma 20. Let non-negative integers m and r with Bm,r ⊂ [1, N ]
be fixed, and let D be a positive real. Because of the form of the upper
bound in (109), we may suppose that D ≥ D0 for some conveniently large
absolute constant D0. Indeed, if we prove an upper bound of the form (109)
for D ≥ D0, then we may simply adjust the absolute constant in the big O
term to take into account the case in which D < D0 (making (109) greater
than 1, say).

Let us now fix k ≤ log2 N for which (105) holds, and let X ∈ {−1, 1}k be
given. We shall first show that the probability that (108) happens for this
fixed X is suitably small.

Let us decompose Bm,r in arithmetic progressions with difference k: for
0 ≤ s < k, let

Is = {j ∈ Bm,r : j ≡ s (mod k)}, (118)

so that Bm,r =
⋃

0≤s<k Is is a partition of Bm,r. Let

T (EN , Is, X) = card{n : n ∈ Is and E
(n)
N = X}, (119)

and observe that, clearly, T (EN , Bm,r, X) =
∑

0≤s<k T (EN , Is, X). In par-
ticular, if ∣∣∣T (EN , Is, X)− |Is|2−k

∣∣∣ ≤ 1
k
D
√

2r (120)

for all 0 ≤ s < k, then (108) fails. Let us fix 0 ≤ s < k, and let us estimate
the probability that (120) should fail.
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Clearly, T (EN , Is, X) has binomial distribution Bi(|Is|, 2−k). Therefore,
using Fact 11, we see that the probability that (120) should fail is at most

2 exp
(
− t2

2(λ + t/3)

)
, (121)

where t = (D/k)2r/2 and λ = |Is|2−k ≤ 2r−k. If λ ≥ t/3, then (121) is at
most

2 exp
(
− t2

4λ

)
≤ 2 exp

(
−D22r/k2

2r−k+2

)
= 2e−D22k−2/k2

. (122)

If, on the other hand, λ < t/3, then (121) is at most

2 exp
(
−3

4
t

)
= 2 exp

(
−3D

4k
2r/2

)
≤ 2 exp

(
− 3D

4 log2 N
2r/2

)
. (123)

Below, rather crudely, we bound (121) by the sum of (122) and (123).
Indeed, we add up (122) and (123) over all choices of s (0 ≤ s < k)
and X ∈ {−1, 1}k, and get that the probability that (108) should hold
for some X ∈ {−1, 1}k (k ≤ log2 N) is

2k2k

(
e−D22k−2/k2

+ exp
(
− 3D

4 log2 N
2r/2

))
. (124)

We now sum (124) over all 1 ≤ k ≤ blog2 Nc = K−1. We add up the terms
in (124) separately.

We have

2
∑

1≤k<K

k2ke−D22k−2/k2
= 4e−D2/2 + 24e−D2/4 + 3× 24e−2D2/9S, (125)

where S is dominated by the sum of a convergent geometric series as long
as D is large enough. Therefore, the sum in (125) is

O
(
e−2D2/9

)
. (126)

Moreover,

2
∑

1≤k<K

k2k exp
(
− 3D

4 log2 N
2r/2

)
≤ 2(log2 N)2N exp

(
− 3D

4 log2 N
2r/2

)
.

(127)
Lemma 20 follows from (125)–(127). �

3. Small W (EN ) and N (EN )

3.1. The probability of having W (EN ) small. Our aim in this section
is to prove Theorem 5, which tells us that, given any δ > 0, the probability
of the event W (EN ) ≤ δ

√
N is bounded away from 0.

The proof of Theorem 5 is given in Section 3.1.2, but a key ‘positive
correlation’ result is first proved in Section 3.1.1. To be a little more precise,
Claim 26, needed in the proof of Theorem 5, is proved by invoking a general
correlation result given in Corollary 22 in Section 3.1.1.
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3.1.1. Preliminary lemmas. We start with some preliminary results concern-
ing distributions on the integers, that is, vectors (pn)n∈Z with

∑
n∈Z pn = 1

and pn ≥ 0 for all n. Let us say that the distribution (pn)n∈Z is symmetric
if pn = p−n for all n and monotone if pn ≥ pn+1 for all n ≥ 0.

Let (pn) = (pn)n∈Z and (qn) = (qn)n∈Z be two distributions. We shall say
that (pn) is more concentrated than (qn) if, for all k ≥ 0, we have∑

|n|≤k

pn ≥
∑
|n|≤k

qn. (128)

We shall write (pn) ≥ (qn) to indicate that (pn) is more concentrated
than (qn).

If P = (pn)n∈Z and Q = (qn)n∈Z are two distributions, we write P + Q
for the distribution (sn)n∈Z given by the convolution of (pn) and (qn), that
is, sn =

∑
k∈Z pkqn−k. Clearly,

(‡) if X is an integer-valued random variable with distribution P and Y
is an integer-valued random variable with distribution Q, then X+Y
has distribution P + Q.

In what follows, we shall have integer-valued random variables that have
parity, that is, they will take even values or odd values only. For such
random variables, we need to change the notion of monotonicity introduced
above. We shall say that the distribution (pn) of a random variable that has
parity is monotone if pn ≥ pn+2 for all n ≥ 0. The notions of symmetry and
concentration do not need to be changed.

Lemma 21. (i) Let P = (pn)n∈Z, Q = (qn)n∈Z, and R = (rn)n∈Z be
monotone and symmetric distributions with Q ≥ R. Then P +Q and P +R
are monotone and symmetric and, moreover, P + Q ≥ P + R.

(ii) Suppose now that P , Q, and R have parity, are monotone and sym-
metric, and Q ≥ R. Then P + Q and P + R have parity, are monotone and
symmetric, and P + Q ≥ P + R.

Proof. We shall consider (i) first. Let P + Q = (sn)n∈Z. Then, using
that P and Q are symmetric, for any n we have s−n =

∑
k∈Z pkq−n−k =∑

k∈Z p−kqn+k =
∑

k∈Z pkqn−k = sn, and hence (sn) is symmetric. Now
let n ∈ Z be fixed. We have

sn = p0qn +
∞∑

k=1

(pkqn−k + p−kqn+k)

= p0qn +
∞∑

k=1

pk(qn−k + qn+k) =
∞∑

k=0

(pk − pk+1)
k∑

j=−k

qn+j . (129)

Since P is monotone, we have pk−pk+1 ≥ 0 for all k ≥ 0; since Q is monotone
and symmetric, we have qn−k ≥ qn+1+k for all n ≥ 0 and all k ≥ 0, which
is equivalent to

∑k
j=−k qn+j ≥

∑k
j=−k qn+1+j . It follows that, for all n ≥ 0,
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we have

sn =
∞∑

k=0

(pk−pk+1)
k∑

j=−k

qn+j ≥
∞∑

k=0

(pk−pk+1)
k∑

j=−k

qn+1+j = sn+1, (130)

and hence (sn) is also monotone.
Now recall that R = (rn) and let P +R = (s̃n)n∈Z. Observe that, for all `

and k, the sum
∑`

n=−`

∑k
j=−k qn+j may be written as a linear combination

of terms of the form
∑m

i=−m qi, with non-negative coefficients (this may be
checked by induction on min{`, k}). This observation and the fact that Q ≥
R let us deduce from (129) that

∑̀
n=−`

sn =
∞∑

k=0

(pk − pk+1)
∑̀

n=−`

k∑
j=−k

qn+j

≥
∞∑

k=0

(pk − pk+1)
∑̀

n=−`

k∑
j=−k

rn+j =
∑̀

n=−`

s̃n, (131)

and hence P + Q ≥ P + R, as required.
We now turn to (ii) (we shall be somewhat sketchy now). Suppose that P ,

Q, and R have parity, are monotone and symmetric, and Q ≥ R. The fact
that P +Q and P +R have parity follows easily from (‡). The symmetry of
the distributions P + Q and P + R follows easily from the symmetry of P ,
Q, and R, as in (i). It remains to consider monotonicity and concentration.

We need the following variants of (129). Suppose first that P is a dis-
tribution supported on the even integers. If n has the parity of Q (that is,
Q is supported on the integers with the same parity as n), then

sn =
∞∑

k=0

(p2k − p2k+2)
k∑

j=−k

qn+2j . (132)

If n does not have the parity of Qn, then sn = 0. Now suppose that P
is a distribution supported on the odd integers. If n has the parity of Q,
then sn = 0. On the other hand, if n does not have the parity of Q, then

sn =
∞∑

k=1

(p2k−1 − p2k+1)
k∑

j=1

(qn−(2j−1) + qn+(2j−1)). (133)

The monotonicity of P + Q follows from (132) and (133), as in (i), and, of
course, the monotonicity of P + R follows similarly. The fact that P + Q ≥
P + R follows from (132) and (133), as in (i) above. �

We shall now discuss a consequence of Lemma 21 that will be needed
later. Let

A1, B1, . . . , Ak, Bk, C (134)
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be pairwise disjoint subsets of [n] = {1, . . . , n}. Let (ei)i∈[n] ∈ {−1, 1}n be
given, and write Âj , B̂j , and Ĉ for the sum of the ei over the respective sets;
e.g.,

Âj =
∑
i∈Aj

ei (135)

for all 1 ≤ j ≤ k. In what follows, we suppose that (ei)i∈[n] ∈ {−1, 1}n is
chosen uniformly at random. Note that, then, the random variables Âj have
parity |Aj | mod 2, and have distributions that are symmetric and monotone,
and similarly for B̂j and Ĉ. We are interested in the following consequence
of Lemma 21.

Corollary 22. For all r, s1, . . . , sk ≥ 0, we have

P(|Â1 + · · ·+ Âk + Ĉ| ≤ r
∣∣ |Âj + B̂j | ≤ sj all 1 ≤ j ≤ k)

≥ P(|Â1 + · · ·+ Âk + Ĉ| ≤ r). (136)

Proof. Let P (j) = (p(j)
n ) be the distribution of Âj conditioned on |Âj +B̂j | ≤

sj . Let P̃ (j) be the (unconditional) distribution of Âj .

Claim 23. The distributions P (j) and P̃ (j) have parity |Aj | mod 2 and are
symmetric and monotone. Moreover, P (j) ≥ P̃ (j).

Let us postpone the proof of Claim 23. To prove (136), it suffices to apply
Lemma 21 to conclude that

P (1) + · · ·+ P (k) + Q ≥ P̃ (1) + · · ·+ P̃ (k) + Q, (137)

where Q is the distribution of Ĉ. �

We now prove Claim 23.

Proof of Claim 23. Let A = Aj and B = Bj . We shall first prove that P (j) ≥
P̃ (j). We start by observing that

P(|Â + B̂| ≤ k
∣∣ Â = `) (` ≡ |A| mod 2, |`| ≤ |A|) (138)

is monotone decreasing in |`|. Here and in what follows we shall tacitly
suppose that ` ‘has the right parity’ (that is, ` ≡ |A| mod 2) and |`| ≤ |A|.
To see that (138) is decreasing in ` ≡ |A| mod 2, it suffices to note that
the quantity in (138) is equal to

∑−`+k
n=−`−k P(B̂ = n) and to recall that the

distribution of B̂ is monotone.
We now show that

P(|Â + B̂| ≤ k
∣∣ |Â| ≤ r) ≥ P(|Â + B̂| ≤ k). (139)
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To prove (139), we first notice that the left-hand side of (139) is

P(|Â + B̂| ≤ k
∣∣ |Â| ≤ r) = P(|Â + B̂| ≤ k and |Â| ≤ r)/P(|Â| ≤ r)

= P(|Â| ≤ r)−1
r∑

`=−r

P(|Â + B̂| ≤ k and Â = `)

=
r∑

`=−r

P(|Â + B̂| ≤ k
∣∣ Â = `)

P(Â = `)

P(|Â| ≤ r)
, (140)

and the right-hand side of (139) is

P(|Â + B̂| ≤ k) =
∑
`∈Z

P(|Â + B̂| ≤ k
∣∣ Â = `)P(Â = `). (141)

From (140) and (141) we see that the left-hand side of (139) is a weighted
average of the P(|Â + B̂| ≤ k

∣∣ Â = `) with −r ≤ ` ≤ r with weights P(Â =
`)/P(|Â| ≤ r), whereas the right-hand side of (139) is a weighted average of
the P(|Â + B̂| ≤ k

∣∣ Â = `) over all ` with weights P(|Â| = `).
Now notice that the fact that (138) is monotone decreasing in |`| implies

that, for all `2 ∈ Z\ [−r, r] and all `1 ∈ [−r, r]∩Z with `1 ≡ `2 ≡ |A| mod 2,
we have

P(|Â + B̂| ≤ k
∣∣ |Â| = `2) ≤ P(|Â + B̂| ≤ k

∣∣ |Â| = `1). (142)

Inequality (139) follows from (140), (141), and (142).
Inequality (139) is equivalent to

P(|Â + B̂| ≤ k and |Â| ≤ r)/P(|Â| ≤ r) ≥ P(|Â + B̂| ≤ k). (143)

It follows from (143) that

P(|Â| ≤ r
∣∣ |Â + B̂| ≤ k)

= P(|Â + B̂| ≤ k and |Â| ≤ r)/P(|Â + B̂| ≤ k) ≥ P(|Â| ≤ r), (144)

and hence P (j) ≥ P̃ (j) does indeed hold.
It remains to show that the distribution of Â conditioned on |Â + B̂| ≤ r

is symmetric and monotone. The fact that this distribution is symmetric
is immediate. To see that this distribution is monotone, note that P(|Â| =
` + 2) ≤ P(|Â| = `) for all ` ≥ 0 and recall that P(|Â + B̂| ≤ r

∣∣ |Â| =
`+2) ≤ P(|Â+ B̂| ≤ r

∣∣ |Â| = `) for all ` ≥ 0 (recall that (138) is decreasing
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in |`| ≡ |A| mod 2). It follows that

P(|Â| = ` + 2
∣∣ |Â + B̂| ≤ r)

= P(|Â + B̂| ≤ r
∣∣ |Â| = ` + 2)

P(|Â| = ` + 2)

P(|Â + B̂| ≤ r)

≤ P(|Â + B̂| ≤ r
∣∣ |Â| = `)

P(|Â| = `)

P(|Â + B̂| ≤ r)

= P(|Â| = `
∣∣ |Â + B̂| ≤ r), (145)

as required. �

3.1.2. Proof of Theorem 5. We are now ready to prove Theorem 5. The
reader may find it useful to recall the proof of Theorem 1, given in Sec-
tion 2.2. For convenience, let us fix the following notation: given EN =
(e1, . . . , eN ) ∈ {−1, 1}N and Q ⊂ [1, N ] ∩ Z, we let

U(EN ;Q) =
∑
q∈Q

eq. (146)

In what follows, Q will usually be an arithmetic progression.
Let us now start the proof of Theorem 5 proper. Let δ > 0 be given.

To define the constant c(δ) > 0 as promised in Theorem 5, we define some
auxiliary constants. Let us first fix a constant C(δ) ≥ 2 for which we have

40e−C(δ)2/4 ≤ 1
3
. (147)

Let `(δ) be the smallest integer for which we have

2C(δ)
∑

`>`(δ)

`2−`/2 ≤ 1
2
δ. (148)

We now let b(δ) be the smallest integer such that

2`(δ)+2
∑

b>b(δ)

be−
√

b/4 ≤ 1
3

(149)

and
8

b(δ)1/4
≤ 1

2
δ. (150)

Unfortunately, it will still take a little while for us to deliver c(δ) (see (163)).
We consider the case N = 2k (the case 2k−1 < N ≤ 2k is similar). As

in Section 2.2, for all 0 ≤ r ≤ k and 0 ≤ m < 2k−r, we consider the
blocks Bm,r = (m2r, (m+1)2r]∩Z ⊂ [1, N ] defined in (41). In what follows,
we shall always have the relation

` = k − r. (151)
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(Later on in this proof we shall focus on “large blocks”, for which k and r
differ by a constant that depends only on δ, and hence it will be convenient
to consider the “gap” ` = k − r.) We also set

r0 = k − `(δ) and T = T (δ) = b(δ)!. (152)

Let us now consider the partition

[1, N ] ∩ Z =
⋃

0≤m<2`(δ)

Bm,r0 (153)

of [1, N ] ∩ Z. For all 0 ≤ m < 2`(δ) and all 0 ≤ a < T , let

P (m,a) = {x ∈ Bm,r0 : x ≡ a (mod T )}. (154)

The progressions P (m,a) then partition Bm,r0 :

Bm,r0 =
⋃

0≤a<T

P (m,a). (155)

Also, putting together (153) and (155), we have a partition of [1, N ]∩Z into
the progressions P (m,a):

[1, N ] ∩ Z =
⋃
m

⋃
a

P (m,a), (156)

where
0 ≤ m < 2`(δ) and 0 ≤ a < T = T (δ). (157)

Clearly, the number of P (m,a) is 2`(δ)T (δ). Given m and a as in (157), we
define G(m, a) to be the event

G(m,a) =
{
|U(EN ;P (m,a))| ≤ δ

2`(δ)+1T (δ)

√
N

}
(158)

and let
G =

⋂
m,a

G(m,a), (159)

where m and a range over all values in (157). (As the reader may have al-
ready guessed, the event in (159) is a “good” event, and hence the notation.)
Let

η̃m(δ) = min
0≤a<T

P(G(m,a)). (160)

Note first that the right-hand side of (160) is independent of m and hence
we may simply write η̃(δ) for η̃m(δ). A simple but crucial observation is
that η̃(δ) is bounded away from 0 (as N →∞), as is

η(δ) = η̃(δ)2
`(δ)T (δ). (161)

Note that
P(G) ≥ η(δ). (162)

We finally set

c = c(δ) =
1
4

lim inf
N→∞

η(δ) > 0. (163)
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We claim that the choice of c = c(δ) in (163) will do in Theorem 5. More
precisely, we make the following claim.

Claim 24. We have

P(W (EN ) ≤ δ
√

N) ≥ 1
3
η(δ). (164)

We verify Claim 24 in the remainder of this proof. Let us say that a
block Bm,r is large if |Bm,r| = 2r ≥ 2r0 . Following the convention in (151)
and recalling the definition of r0 (see (152)), we see that Bm,r is large if and
only if ` = k − r ≤ `(δ). We shall also say that Bm,r is small if it is not
large, that is, if |Bm,r| = 2r < 2r0 , or, equivalently, if ` = k − r > `(δ).

Let us now define two “bad” events F1 and F2. To define F1, we adapt a
definition used in Section 2.2; an arithmetic progression contained in Bm,r

will be called complete if it cannot be extended within Bm,r keeping the
same common difference. We shall say that F1 occurs if for some small
block Bm,r and some complete arithmetic progression Q contained in Bm,r

we have
|U(EN ;Q)| > C(δ)(k − r)

√
2r. (165)

We shall say that F2 occurs if for some large block Bm,r and some complete
arithmetic progression Q contained in Bm,r with difference b > b(δ) we have

|U(EN ;Q)| > 2−`/2b−1/4
√

N. (166)

With the definitions of F1 and F2 at hand, we may state two auxiliary
results that will complete the proof of Theorem 5.

Claim 25. If EN ∈ G \ (F1 ∪ F2), then

W (EN ) ≤ δ
√

N. (167)

Claim 26. We have

P(G \ (F1 ∪ F2)) ≥
1
3
η(δ). (168)

Clearly, Claims 25 and 26 imply Claim 24 and hence our proof is reduced
to verifying those two claims.

Proof of Claim 25. Fix EN ∈ G \ (F1 ∪ F2) and fix an arithmetic progres-
sion Q ⊂ [1, N ] ∩ Z; say,

Q = {a + jb : 1 ≤ j ≤ M}. (169)

We wish to show that |U(EN ;Q)| ≤ δ
√

N . Let us decompose [a + b, a +
Mb]∩Z into blocks Bm,r as in Fact 13, that is, using at most two blocks Bm,r

with the same r for any r:

[a + b, a + Mb] ∩ Z =
⋃
B

Bm,r, (170)

where B in (170) simply denotes the family of blocks used in our special
decomposition. Put

BS = {Bm,r ∈ B : Bm,r is small} (171)
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and
BL = {Bm,r ∈ B : Bm,r is large}. (172)

Intersecting the progression Q with the Bm,r ∈ B, we obtain complete arith-
metic progressions

Qm,r = Q ∩Bm,r (173)
partitioning Q, that is, such that Q =

⋃
Qm,r. We have

|U(EN ;Q)| ≤ Σ1 + Σ2, (174)

where
Σ1 =

∣∣∣ ∑
Bm,r∈BS

U(EN ;Qm,r)
∣∣∣ (175)

and
Σ2 =

∣∣∣ ∑
Bm,r∈BL

U(EN ;Qm,r)
∣∣∣. (176)

We claim that
Σi ≤

1
2
δ
√

N (177)

for both i = 1 and 2. Let us verify (177) for i = 1 first. Since EN /∈ F1, we
know that (165) fails for all small blocks Bm,r; in particular, for all Bm,r ∈
BS, we have

|U(EN ;Qm,r)| ≤ C(δ)(k − r)
√

2r. (178)
Therefore, we have

Σ1 ≤
∑

Bm,r∈BS

C(δ)(k − r)
√

2r ≤ 2
∑

0≤r<r0

C(δ)(k − r)
√

2r−k
√

2k

≤ 2
∑

`>`(δ)

C(δ)`2−`/2
√

N ≤ 1
2
δ
√

N, (179)

where in (179) above we used the inequality in (148) and the convention
in (151).

We now prove (177) for i = 2. We shall consider two cases.

Case 1. b > b(δ)

Since EN /∈ F2, for any Bm,r ∈ BL, we have, in this case,

|U(EN ;Qm,r)| ≤ 2−`/2b−1/4
√

N (180)

(see (166)). Therefore, recalling (150) and (151), we have

Σ2 ≤
∑

Bm,r∈BL

2−`/2b−1/4
√

N ≤ 2
∑

r0≤r≤k

2−`/2b−1/4
√

N

= 2
∑

0≤`≤`(δ)

2−`/2b−1/4
√

N ≤ 8
b1/4

√
N ≤ 1

2
δ
√

N, (181)

and the proof of (177) for i = 2 is complete in this case.

Case 2. b ≤ b(δ)
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Set QL =
⋃

Qm,r, with the union ranging over all pairs (m, r) with Bm,r ∈
BL. Since b ≤ b(δ), we have that b divides T = T (δ) = b(δ)!. It therefore
follows that we have a partition

QL =
⋃

(m,a)∈I

P (m,a) (182)

of QL into some P (m,a), where I is some index set. Then

Σ2 ≤
∑

(m,a)∈I

|U(EN ;P (m,a))|, (183)

and, using that EN ∈ G and recalling that there are 2`(δ)T (δ) progres-
sions P (m,a) in total (see (156) and (157)), we have

Σ2 ≤
∑

(m,a)∈I

δ

2`(δ)+1T (δ)

√
N ≤ 1

2
δ
√

N, (184)

which verifies (177) for i = 2 in this case.
Claim 25 follows from (174) and (177) for i = 1 and 2. �

Proof of Claim 26. We aim at bounding P(G \(F1∪F2)) from below. Let us
first bound P(F1) and P(F2) from above. We first consider F1. Calculations
similar to the ones leading to (*) in the proof of Lemma 12 show that

P(F1) ≤ 40e−C(δ)2/4 ≤ 1
3
. (185)

Now consider F2. Fix Bm,r and Q as in the definition of F2. Using Fact 9,
we obtain that

P(|U(EN ;Q)| > 2−`/2b−1/4
√

N) < 2 exp
(
−2−`b−1/2N/2|Q|

)
≤ 2 exp

(
−2−`b−1/2N/4(2r/b)

)
= 2e−

√
b/4. (186)

Summing the bound in (186) over all choices of Bm,r and Q and using (149),
we have

P(F2) ≤ 2
∑

0≤`≤`(δ)

2`
∑

b(δ)<b≤2r

be−
√

b/4 ≤ 2`(δ)+2
∑

b>b(δ)

be−
√

b/4 ≤ 1
3
. (187)

Unfortunately, the bounds in (185) and (187) are not quite enough to com-
plete the proof, as G is an event of rather small probability—indeed, those
bounds do not even guarantee that G \ (F1∪F2) 6= ∅. We thus refine our ar-
gument, and give upper estimates for the conditional probabilities P(F1 | G)
and P(F2 | G). To obtain those estimates, we make use of Corollary 22.

Note that, to obtain the estimates (185) and (187), we used the so called
union bound: P(A) ≤

∑
λ∈Λ P(Aλ) if A ⊂

⋃
λ∈Λ Aλ. Of course, we may

also consider this bound conditioning on G: P(A | G) ≤
∑

λ∈Λ P(Aλ | G). If
we repeat the arguments given above for (185) and (187), but conditioning
on G, we have to bound probabilities of the form P(|U(EN ;Q)| > t | G)
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(for instance, see (186) and (187)). However, a little meditation reveals that
Corollary 22 implies that, for any t, we have

P(|U(EN ;Q)| > t | G) ≤ P(|U(EN ;Q)| > t). (188)

In particular, the inequalities used to obtain the bounds for P(F1) and P(F2)
above would equally hold for P(F1 | G) and P(F2 | G). Therefore, we have

P(F1 | G) ≤ 1
3

and P(F2 | G) ≤ 1
3
, (189)

and hence

P(F1 ∪ F2 | G) ≤ 2
3
. (190)

Thus
P(G \ (F1 ∪ F2))

P(G)
= P(G \ (F1 ∪ F2) | G) ≥ 1

3
, (191)

whence, by (162),

P(G \ (F1 ∪ F2)) ≥
1
3

P(G) ≥ 1
3
η(δ), (192)

as required. �

As observed before, Claims 25 and 26 imply Claim 24, and the proof of
Theorem 5 is complete.

3.2. The probability of having N (EN ) small. Our aim in this section
is to prove Theorem 6, which gives a lower estimate for the probability
that N (EN ) should be small. Our argument here will be based on the
arguments used in the proof of Theorem 4, but an additional idea will be
crucial. In what follows, we shall be sketchy in parts.

Let us start with some variants of some results given in Section 2.4. The
following is a simple variant of Lemma 20.

Lemma 27. Let m and r be fixed non-negative integers with Bm,r ⊂ [1, N ].
For all D > 0, the probability that there is X ∈ {−1, 1}k with k ≤ log2 N
and k ≤ r satisfying (105) such that∣∣∣T (EN , Bm,r, X)− 2r−k

∣∣∣ > D2−k/4
√

2r (193)

is at most

O
(
e−D2/18

)
+ 2(log2 N)2N exp

(
− 3D

4 log2 N
2r/4

)
. (194)

Remark 28. If k > r, then 2r−k < 1, and hence, using the above estimate
for k = r, we get that the probability that∣∣∣T (EN , Bm,r, X)− 2r−k

∣∣∣ > D2r/4 + 1 (195)

for some X ∈ {−1, 1}k is at most as given in (194).
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Again, for simplicity, we shall assume that N = 2K . In this proof, a
block Bm,r is large if

r ≥ 8 log2 log2 N (196)

and is small otherwise. As in the proof of Theorem 4, we may and shall
assume that

(***) for all integers m, r, and k ≤ log2 N with Bm,r ⊂ [1, N ] and r ≥
8 log2 log2 N satisfying (105) and every X ∈ {−1, 1}k, we have the
following: if k ≤ r, then∣∣∣T (EN , Bm,r, X)− 2r−k

∣∣∣ ≤ C2−k/4(K − r)
√

2r,

and if k > r, then

|T (EN , Bm,r, X)− 2r−k| ≤ C(K − r)2r/4 + 1.

To see that (***) does hold with probability approaching 1 as C → ∞,
we follow the argument given in the proof of Theorem 4 (see (113)), but
using Lemma 27 and Remark 28 instead of Lemma 20. In the proof of
Theorem 4, the relevant probability was shown to be O

(
e−2C2/9

)
; repeating

the same calculations with the bounds in Lemma 27 and Remark 28, one
obtains O

(
e−C2/18

)
.

We now point out another fact that may be read out from calculations
we have already seen. Making use of (***) instead of (**), the calculations
in (117) show that, for any ` ≥ 1, the contribution of blocks of cardinality ≤
2K−` to the discrepancy |T (EN ,M, X)−M2−k| is

O
(
C2K/2`2−`/2

)
+ O

(
(log2 log2 N)(log2 N)8

)
. (197)

This observation shows that

(‡) the contribution of the blocks Bm,r with r ≤ K − `0 to the estimate

in (117) is, say, ≤ (δ/2)
√

N if `0 = `0(δ) is some large enough
constant that depends only on δ.

Having cleared some of the pre-requisites, we start the proof of Theorem 6.

Proof of Theorem 6. Let δ > 0 be given. We let k0 = k0(δ) be a suitably
large integer constant that depends only on δ, for the inequalities below
to hold. We wish to show that (14) holds for some suitably small positive
constant c(δ).

Fix k ≤ log2 N and M with 1 ≤ M ≤ N − k + 1. As before, write [1,M ]
as a disjoint union of blocks Bm,r (r ≤ log2 M ≤ K) with at most one block
of the form Bm,r for each r. Let us write I for the set of the pairs (m, r)
for which Bm,r occurs in this decomposition of [1,M ]. Furthermore, let I =
I+ ∪ I− be the partition of I with

I+ = {(m, r) ∈ I : r satisfies (196)}. (198)
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For later reference, observe that

|I−| < 8 log2 log2 N. (199)

Observe also that if (m, r) ∈ I−, then∣∣∣T (EN , Bm,r, X)− 2r−k
∣∣∣ ≤ 2r < (log2 N)8 (200)

for any X ∈ {−1, 1}k.
Let us now fix X ∈ {−1, 1}k. We wish to estimate |T (EN ,M, X)−M2−k|.

As in (117), we start with∣∣∣T (EN ,M,X)−M2−k
∣∣∣ ≤ ∑

(m,r)∈I

∣∣∣T (EN , Bm,r, X)− 2r−k
∣∣∣

=
∑

(m,r)∈I+

∣∣∣T (EN , Bm,r, X)− 2r−k
∣∣∣+ ∑

(m,r)∈I−

∣∣∣T (EN , Bm,r, X)− 2r−k
∣∣∣ .

(201)

Because of (199) and (200), the last sum in (201) is o(
√

N), and hence
we may ignore it. We thus focus on the sum over the pairs (m, r) ∈ I+,
that is, we consider the contribution of the large blocks Bm,r (i.e., blocks
with r ≥ 8 log2 log2 N).

Case 1. k ≥ k0 = k0(δ)

We shall be able to dispose of this case by invoking some observations that
we have already discussed. Let us start by observing that∑

(m,r)∈I+

∣∣∣T (EN , Bm,r, X)− 2r−k
∣∣∣

=
∑

1

∣∣∣T (EN , Bm,r, X)− 2r−k
∣∣∣

+
∑

2

∣∣∣T (EN , Bm,r, X)− 2r−k
∣∣∣ , (202)

where
∑

1 indicates sum over all pairs (m, r) ∈ I+ with r < k and
∑

2
indicates sum over all pairs (m, r) ∈ I+ with r ≥ k. Making use of (***),
one may check that calculations very similar to the ones in (117) show that
the last but one sum in (202) is O(C2K/4) = o(

√
N) and the last sum

is ≤ (δ/2)
√

N , as long as k0 = k0(δ) is large enough. The proof is therefore
complete in this case.

Case 2. k < k0 = k0(δ)

This case will require considerable more work. Let

r0 = K − k0 (203)
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and observe that∑
(m,r)∈I+

∣∣∣T (EN , Bm,r, X)− 2r−k
∣∣∣

=
∑

1

∣∣∣T (EN , Bm,r, X)− 2r−k
∣∣∣

+
∑

2

∣∣∣T (EN , Bm,r, X)− 2r−k
∣∣∣ , (204)

where
∑

1 indicates sum over all pairs (m, r) ∈ I+ with r < r0 and
∑

2
indicates sum over all pairs (m, r) ∈ I+ with r ≥ r0.

The estimate of the first sum on the right-hand side of (204) is based
on (‡): since in that sum we are considering blocks Bm,r with r < r0,
according to (‡), that sum is ≤ (δ/2)

√
N , as long as k0 is large enough.

In view of the above discussion, we are left with estimating the last sum
in (204). The key fact that we shall use is the following, which deals with
blocks Bm,r0 and sequences X of length k0.

Claim 29. There is a constant c′(δ) > 0 for which the following holds.
Let E be the event that, for all m with Bm,r0 ⊂ [1, N ] and max Bm,r0 =
(m + 1)2r0 ≤ N − k0 + 1 and every X ∈ {−1, 1}k0, we have∣∣∣T (EN , Bm,r0 , X)− 2r0−k0

∣∣∣ = O
(
δ2−5k0/2

√
N
)

. (205)

Then P(E) ≥ c′(δ).

We leave the proof of Claim 29 for later and complete the proof of Theo-
rem 6. Suppose EN is such that (205) does hold for all Bm,r0 and all X of
length k0 as specified in the definition of the event E . Observe that, then,
for all Y ∈ {−1, 1}k with k ≤ k0, we have∣∣∣T (EN , Bm,r0 , Y )− 2r0−k

∣∣∣ = O
(
δ2−3k0/2

√
N
)

. (206)

Indeed, given a sequence Y of length k ≤ k0, it suffices to consider all 2k0−k ≤
2k0 extensions of Y to sequences X of length k0, with Y a prefix of X, and
then apply (205). We therefore assume that (206) does hold for all Y of
length k ≤ k0.

Recall that we have to estimate the last sum in (204), where X is a fixed
sequence of length k < k0. Note that that sum is at most∑

m∈J

∣∣∣T (EN , Bm,r0 , X)− 2r0−k
∣∣∣ , (207)

where the sum ranges over some set J ⊂ [0, 2k0). Clearly, from (206) applied
to Y = X, we see that the sum in (207) is O(δ2−k0/2

√
N) ≤ (δ/3)

√
N , as

long as k0 = k0(δ) is large enough, and this completes the proof of this case.

To complete the proof of Theorem 6, we need to prove Claim 29. �
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Proof of Claim 29. We shall be somewhat brief in parts of this proof. Let δ >
0 be given. We may suppose that δ is sufficiently small. In this proof, for sim-
plicity, we write k for k0 = k0(δ), which is supposed to be a sufficiently large
constant for the inequalities below to hold. Recall we assume that N = 2K .
We now let M = 2K−7k and consider the distribution of

s(EM ) =
(

T (EM ,M,X)−M2−k

√
M

)
X∈{−1,1}k

∈ R2k
, (208)

with EM chosen from {−1, 1}M uniformly at random. (We remark that it
would be more natural to have

T (EM ,M − k + 1, X)− (M − k + 1)2−k

√
M − k + 1

(209)

as the entries of s(EM ), but, for simplicity, we shall use the definition given
in (208), and we shall ignore the additive error term, of order O(k/

√
M),

introduced by using M instead of M − k + 1 in (208).)
Let us say that EM ∈ {−1, 1}M is good if

|T (EM , Bm,r, X)− 2r−`| ≤ k(K − 7k − r)2−`/4
√

2r (210)

for all m and r with Bm,r ⊂ [M − ` + 1] and r ≥ 8 log log M and all X ∈
{−1, 1}` with ` ≤ r and ` ≤ log2 M . Let G ⊂ {−1, 1}M be the set of good
sequences, and let us write Gc for the complement of G. We now state the
following claim.

Claim 30. We have
P(Gc) = O(e−k2/18). (211)

Claim 30 above follows from calculations similar to the ones that let us
assume (***) (see also the proof of Theorem 4).

In what follows, we wish to ignore the sequences EM in Gc. The next
claim tells us that the sequences in Gc do not influence the expectation
of s(EM ) too much.

Claim 31. For any X ∈ {−1, 1}k,

E(|T (EM ,M,X)−M2−k|χGc) = O(
√

Me−k2/18), (212)

where χGc is the characteristic function of Gc.

Proof. Fix X ∈ {−1, 1}k and let Y = Y (EM ) = |T (EM ,M, X) − M2−k|.
Note first that Fact 11 tells us that

P(Y ≥ M2−k) ≤ 2e−M/2k+2
. (213)

Since we always have Y ≤ M , we conclude from (213) that, setting A =
{EM : Y (EM ) ≥ M/2k}. we have

E(Y χA) = O(Me−M/2k+2
) = O(

√
Me−k2/18). (214)
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We shall make use of (214) in a short while. Let V (EM ) be given by

V (EM ) =

{
Y (EM ) if Y > k

√
M/2k

0 otherwise.
(215)

Then we have

Y χGc ≤ k

√
M

2k
χGc + V, (216)

whence, recalling (211), we deduce that

E(Y χGc) ≤ k

√
M

2k
P(χGc) + E(V ) = k

√
M

2k
O(e−k2/18) + E(V ). (217)

Now let R = k−1
√

M/2k. Using (214), we see that

E(V ) ≤ O(
√

Me−k2/18) +
∑

1≤r≤R

P

(
Y ≥ rk

√
M

2k

)
(r + 1)k

√
M

2k
. (218)

From Fact 11, we obtain

P

(
Y ≥ rk

√
M

2k

)
≤ 2e−r2k2/4. (219)

Putting together (218) and (219), we get

E(V ) ≤ O(
√

Me−k2/18) + 2k

√
M

2k

∑
1≤r≤R

(r + 1)e−r2k2/4

= O(
√

Me−k2/18) + O

(
k

√
M

2k
e−k2/4

)
(220)

= O(
√

Me−k2/18),

as required. �

Note that the vector s(EM ) has entries with expectation 0. Combined
with Claim 31, this implies that, for any X ∈ {−1, 1}k, the expected value
of

T (EM ,M, X)−M2−k

√
M

(221)

conditioned on EM ∈ G is O(e−k2/18) = oδ→0(δ/64k). In this proof, we
write oδ→0(x) for any term y such that y/x → 0 as δ → 0.

For EM ∈ G, we have

s(EM ) =
(

T (EM ,M, X)−M2−k

√
M

)
X∈{−1,1}k

∈ [−k2−k/4, k2−k/4)2
k ⊂ [−1, 1)2

k
. (222)

Let us partition [−1, 1)2
k

in b = (2 × 64k/δ)2
k

blocks of side length δ/64k

(that is, blocks of the form
∏

1≤j≤2k [xj , xj +δ/64k); we may assume without
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loss of generality that 64k/δ is an integer). Let these blocks be Ci (1 ≤ i ≤ b).
For each i, let Pi ∈ Ci be the average of the points s(EM ) that belong to Ci

and are such that EM ∈ G; if s−1(Ci) ∩ G = ∅, let Pi be the centre of Ci. If

qi = P(P ∈ Ci

∣∣ P ∈ G), (223)

then E =
∑

i qiPi is the expectation of s(EM ) conditional on EM ∈ G.
Recall that all entries of E are oδ→0(δ/64k).

Let

J =

{
1 ≤ j ≤ b : qj ≥

δ

k64k

(
δ

64k

)2k
}

. (224)

Then ∑
j /∈J

qjPj (225)

has all entries that are O(δ/k64k) = oδ→0(δ/64k). Let

Ẽ =
∑
j∈J

q̃jPj , (226)

where q̃j = qj/
∑

i∈J qi. Then all the entries of Ẽ are oδ→0(δ/64k), because
all the entries of E are oδ→0(δ/64k) and

E =
(∑

i∈J

qi

)
Ẽ +

∑
j /∈J

qjPj . (227)

Clearly, Ẽ may be written as a convex combination of the Pj ∈ R2k
(j ∈ J).

Therefore, there are points Qj = Pij (0 ≤ j ≤ 2k and ij ∈ J for all j) and

real numbers tj ≥ 0 with
∑2k

j=0 tj = 1 such that Ẽ =
∑2k

j=0 tjPij .
We next approximate the tj by rationals mj/64k in such a way that

∣∣∣mj

64k
− tj

∣∣∣ ≤ 1
64k

and
2k∑

j=0

mj = 64k. (228)

(We can take mj = b64ktjc if
∑

i<j mi ≥ 64k
∑

i<j ti) and mj = d64ktje
otherwise.)

We now partition [N ] into the 2k blocks Bm,r0 = Bm,K−k (0 ≤ m < 2k)
and partition each of these blocks into 64k segments of length M = 2K−7k.
We consider EN ∈ {−1, 1}N satisfying certain conditions. We first require
that EN should be such that, in each of these segments of length M , we
have a good sequence (a sequence in G). Moreover, we require that, in each
of the 2k blocks Bm,r0 of length 2r0 = 2K−k, the sequence EN should be
composed by 64k consecutive segments of length M in such a way that in
the first m0 segments we have s(EM ) ∈ Ci0 , in the next m1 segments we
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have s(EM ) ∈ Ci1 , etc. The probability that all these requirements are met
is at least

c(δ) =

(
1
2k

(
δ

64k

)2k+1
)64k×2k

. (229)

In each of the 2k blocks Bm,r0 = Bm,K−k, we have

T (EN , Bm,r0 , X)− |Bm,r0 |2−k =
2k∑
i=0

mi

(
T (E(i)

M ,M, X(i))−M2−k
)

=
2k∑

j=0

mj

(
Qj + O

(
δ

64k

))√
M

= O

 δ

64k

2k∑
j=0

mj

√
M

+
2k∑

j=0

mjQj

√
M

= O
(
δ
√

M
)

+
2k∑

j=0

mjQj

√
M

= O
(
δ
√

M
)

+
2k∑

j=0

(
64ktj + O(1)

)
Qj

√
M (230)

= O
(
δ
√

M
)

+ O(2k
√

M) +
2k∑

j=0

64ktjQj

√
M

= O
(
2k
√

M
)

+ O

(
64k δ

64k

√
M

)
= O

(
2k
√

M
)

= O
(
2k2−7k/2

√
N
)

= O
(
2−5k/2

√
N
)

,

as required. �

Remark 32. We may prove upper bounds for c(δ) in Theorems 5 and 6 as
follows. Partition [N ] into k intervals, each of length N/k. In each such

interval, the probability that the sum exceeds (1/2)
√

N/k in absolute value
is ≥ 1/2, whence it follows that the probability that this event occurs in none

of these intervals is ≤ 1/2k. Taking δ = 1/2
√

k, we obtain c(δ) ≤ (1/2)1/4δ2
.

4. Concluding remarks

The upper bounds in Theorems 1 and 4 are best possible in the following
sense. Let us consider W (EN ). We claim that, for any C > 0, there is ε0 > 0
such that

P
(
W (EN ) < C

√
N
)
≤ 1− ε0 (231)

for all large enough N . Therefore, the fact that the constant 1/δ in the
upper bound in Theorem 1 depends on ε cannot be avoided.
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Inequality (231) follows simply from Fact 8. Indeed, that result tells us
that, for any fixed C > 0, we have

lim
N→∞

P

∣∣∣∣ ∑
1≤j≤N

ej

∣∣∣∣ ≥ C
√

N

 = 2

√
2
π

∫ ∞

C/2
e−2x2

dx > 0, (232)

and this clearly gives (231) for any C for a suitably small but positive ε0.
One may prove similar facts concerning the upper bound in Theorem 4 by

considering T (EN , N, (1)), the number of occurrences of 1 in EN . Indeed,
it suffices to observe that, for any fixed C > 0, we have

lim
N→∞

P
(∣∣∣∣T (EN , N, (1))− N

2

∣∣∣∣ ≥ C
√

N

)
= 2

√
2
π

∫ ∞

C
e−2x2

dx > 0 (233)

(we omit the details).

Problem 33. Investigate the existence of the limiting distributions of{
W (EN )√

N

}
N≥1

and
{
N (EN )√

N

}
N≥1

and  Ck(EN )√
N log

(
N
k

)


N≥1

.

Investigate these distributions.

It is most likely that all three sequences in Problem 33 have limiting
distributions. Note that Theorem 3 tell us that {Ck(EN )/E(Ck)}N≥1 has a
limiting distribution that is concentrated at a point, as long as

k = k(N) ≤ log N − log log N (234)

(the condition in (234) may probably be weakened).
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[5] K. L. Chung and P. Erdős, On the application of the Borel-Cantelli lemma, Trans.
Amer. Math. Soc. 72 (1952), 179–186. MR 13:567b 2.3.1
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[7] P. Erdős and J. Spencer, Probabilistic methods in combinatorics, Academic Press
[A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974,
Probability and Mathematical Statistics, Vol. 17. MR 52 #2895 1.2, 1.2
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Institut de Mathématiques de Luminy, CNRS-UPR9016, 163 av. de Luminy,
case 907, F-13288, Marseille Cedex 9, France

E-mail address: mauduit@iml.univ-mrs.fr

IMPA, Estrada Dona Castorina 110, 22460–320 Rio de Janeiro, RJ, Brazil
E-mail address: gugu@impa.br

Department of Mathematics and Computer Science, Emory University, At-
lanta, GA 30322, USA

E-mail address: rodl@mathcs.emory.edu


	1. Introduction and statement of results
	1.1. Measures of pseudorandomness for finite binary sequences
	1.2. Typical values of W(EN), Ck(EN), and N(EN)
	1.3. Minimal values of W(EN), Ck(EN), and N(EN)

	2. Estimates for W(EN), Ck(EN), and N(EN) for random sequences EN
	2.1. Estimates for the binomial distribution
	2.2. The well-distribution measure W
	2.3. The correlation measure Ck
	2.4. The normality measure N

	3. Small W(EN) and N(EN)
	3.1. The probability of having W(EN) small
	3.2. The probability of having N(EN) small

	4. Concluding remarks
	References

