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Abstract

This dissertation deals with a well known problem - the fact that consumer

cameras are unable to capture the whole range of color luminance variations

the human eye is able to perceive. Many widespread techniques, especially

those related to High Dynamic Range, deal with this issue, focusing mainly

on still images. Our focus in this work, however, is to study possibilities

of the improvement of videos taken from mobile devices by the consumer

through the application or extension of these techniques.
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1

Introduction

1.1 Historical Background

A Dictionary Definition:

Photography

noun

- the art or process of producing images by the action of radiant energy and especially

light on a sensitive surface.

The drive to create depictions resembling the world we live in has been present in

human minds from ancient history. It was more recently, however, that the creation of

mobile devices that allow us to use light in order to create images resembling the real

world came to be. Cameras have now been a part of human daily lives for at least a

century and through this time they have endured many changes. One such change laid

in the replacement of chemical films as a medium to measure incoming light for digital

censors, thus giving birth to what we call “digital cameras” (see Fig. 1.1).

Several advantages in the use of digital cameras have brought them to a dominance

in the photography scenario for all but a few niche markets. Some of these include

the ease with which device memory is used to store digital images, as in contrast to

previous film technology. In fact, digital photography allows the users of modern digital

cameras to take a very large number of photographs without need for care of a physical

medium or post-processing. Although these circumstances, coupled with the explosive

growth of digital technologies in the past decades, have only served to consolidate the

1



1. INTRODUCTION

Figure 1.1: In the image above, on the left - chemical photographic film is shown. On

the right is a more modern electronic sensor, as present in digital cameras.

leading position of digital cameras in the consumers’ hands, several improvements are

still possible for these devices.

One important drawback of modern digital censors used in cameras is their limited

dynamic range. Dynamic range is the ratio between the greatest and smallest values of

luminance the camera can understand. Anything beyond the largest value or below the

smallest is mapped to the maximum and minimum values, respectively. Unfortunately,

the dynamic range of these sensors is many times less than that of the human eyes.

What this means is that when viewing certain scenes that contain both bright and dark

areas our eyes are able to distinguish all the available details, unlike the cameras’ sensors

(see Fig. 1.2). Although it is possible to choose which part of the luminance spectrum

the camera will “see” by regulating exposure (the amount of time during which the

sensor is exposed to light) and sensitivity (that is, how acute is the sensor’s response to a

certain quantity of incoming light), it is sometimes impossible to completely capture the

luminance variations of a given scene. Because of this, standard photographs taken with

digital cameras are sometimes referred to as low-dynamic-range (LDR) or standard-

dynamic-range (SDR) photographs.

Many techniques have been developed to deal with this issue. One particularly

prominent method is the so called High Dynamic Range Imaging, or HDRI, introduced

by Debevec and Malik (2). This method consists of taking several pictures of a scene

with different exposures, this results in several representations of the same scene, ideally

each of which captures a part of the luminance spectrum very well while missing some

information in other such segments. These images are then analyzed using previously

2



1.1 Historical Background

Figure 1.2: A picture showing how the camera’s limited dynamic range can sometimes

lead to loss of important information on the scene. In this case, the guitar player is

completely obscured due to the camera adjusting to a strong background lighting (taken

by Luciano Harper).

acquired knowledge of the camera’s sensor’s response function to obtain a radiance map,

which represents the captured scene more accurately than LDR images. The resulting

images are called High Dynamic Range images, or simply HDR images. Unfortunately,

current viewing devices, such as computer monitors, televisions, projectors and the

like are also unable to reproduce the whole gamut of luminance the human eyes can

perceive. While HDR viewing devices do exist, they are currently in a development

phase and generally not available to the public (3). The solution is thus to artificially

reduce the dynamic range of the HDR images back to the usual format supported by

regular viewing devices. Such a reduction is done in a clever way so as to make the best

possible use of the available dynamic range in viewing devices. This set of techniques

is called Tone Mapping, for which several differently motivated methods exist. We will

discuss HDRI in more detail in Chapter 2. An example of a set of differently exposed

images followed by a resulting tone-mapped HDR output can be seen in Fig. 1.3.

Another interesting method for the creation of more pleasant images from a set

of differently lit captures is a technique called Exposure Fusion (EF) (1). This clever

algorithm is a very efficient procedure that produces results similar to those of tone-

mapped HDR images through a per-pixel averaging process. While images resulting

from the use of EF do not necessarily describe the viewed scene in a realistic fashion

3



1. INTRODUCTION

Figure 1.3: An example of the creation of an HDR image from several differently exposed

LDR images. The HDR image must then be tone-mapped for a viewable result. Images

from Photomatrix.

(the result can have lighting conditions that do not reflect the reality of the scene), this

alternative to HDR has many advantages. These include the algorithm’s simplicity, its

quick processing time (even slow implementations will only take a few seconds to process

a set of images), its robustness and the quality of the results. An image depicting the

results of EF applied to a set of differently exposed photographs is shown in Fig. 1.4.

In this work, however, we are not interested in the application of HDR or EF to still

images. Instead, we wish to study ways of applying these techniques to the creation of

videos by users. This adds several new levels of complexity to the problem. There are

three main concerns that are particularly troublesome.
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1.1 Historical Background

Figure 1.4: This image shows the result of using Exposure Fusion to combine several

LDR images into another, albeit more pleasant, LDR image. (Image by Seb Przd).

The first is the acquisition of the images. In fact, in order to obtain the material

necessary to create a video with improved dynamic range qualities, it would seem

necessary to have a video stream that would involve series of differently exposed images.

While it is usually possible to change exposure settings on consumer cameras manually

in order to create the input images for HDRI or EF, this would not be possible for

video, where the capture rate would be way beyond anything that could be controlled

manually. In order to obtain the input videos, a Nokia N900 camera-phone with the

Fcam API (4) was used. The acquisition step will be briefly seen in Chapter 3, as it is

not the focus of this work.

The other two problems mainly involve movement. Unlike still image processing,

video may involve both camera movement on the part of the film-taker and object

movement on the scene, for example, people walking. Camera movement proved to be

a lesser concern, as methods exist to compensate for this issue. In our case, method (5)

was used and provided good results for the vast majority of the cases. This step will

be further discussed in chapters 3 and 5, when details of each method are discussed.

5



1. INTRODUCTION

Object movement, however, proved to be much more challenging for all techniques

involved. For HDR video, the lack of appropriate information about an area of the

image is a problem that might generate large unwanted color artifacts. This problem

was attacked in our work (6) and then further improved in (7). These and other results

are discussed in Chapter 3. For EF, object movement is bound to generate “ghosting”

artifacts, that is, the averaging process will even objects out through frames creating

what usually seems to be a semi-transparent silhouette. In our work (8) a novel method

is introduced to deal with ghosting in EF video. Our results and other considerations

will be discussed in Chapter 5.

6



2

High Dynamic Range—an

Overview

2.1 HDR—an overview

This section will explain how HDR works. It will touch the most common reconstruction

technique (several exposures), and introduce the camera response curve reconstruction,

finding radiance values and tone mapping.

As mentioned in Chapter 1, ordinary consumer cameras are unable to capture the

whole dynamic range of scenes visible to the human eye. A new technique was proposed

in (2) that allowed the creation of a High Dynamic Range image from the combination

of a set of regular Low Dynamic Range photographs. The main focus of (2) is the

process of discovering a camera’s response function.

2.1.1 Recovering the Camera Response Function

Given certain assumptions about the captured images, for instance that they are taken

close enough apart so that any changes in the lighting conditions on the scene can

be overlooked, we know a digital camera’s sensor will map the luminous radiation Ei

coming from a certain direction as a pixel value Zi on the ith pixel in the resulting

image (the order of i can be given in any reasonable way). These radiance values, are of

course affected by the exposure time ∆tj used to take the photograph. In this way, the

value registered by the sensor for each pixel is considered to be given by the product

Ei∆tj . Thus, the camera response function mentioned above could be defined as f :

7



2. HIGH DYNAMIC RANGE—AN OVERVIEW

Zij = f(Ei∆tj) (2.1)

It is natural to assume that f would be a monotone non-decreasing function, af-

ter all, a greater amount of energy read by the sensor should not produce a lesser

response. However, small variations could be mapped to the same values and too large

or small incoming energies are clipped to the minimum and maximum response values,

respectively. We will consider, at first, an abstraction of the realistic camera response

functions which has infinite precision, thus making the first point irrelevant, i.e., differ-

ent inputs will be mapped to distinct values. Proceeding to consider only the irradiance

values that are not over or under-exposed and knowing that strictly increasing functions

are invertible, we can derive the following equations:

f−1(Zij) = Ei∆tj (2.2)

Taking the natural logarithm of both sides, we arrive at:

ln[f−1(Zij)] = ln[Ei] + ln[∆tj ] (2.3)

We proceed by defining g = ln[f−1]. Thus:

g(Zij) = ln[Ei] + ln[∆tj ] (2.4)

Given a set of input LDR images, we already know Zij and ∆tj , and we would

like to discover the actual radiance values of Ei, which contain the information present

on the image and are outside the boundaries of the camera’s otherwise Low Dynamic

Range, and the function that maps them into pixel values, g.

Returning to the real version of these functions, with limited precision, considering

the domain of g to be pixel values, a finite set, one only has to find a finite number of

values of g(z) to fully understand this function. The authors proceed to finding the best

possible values of g and Ei to satisfy the previous equations using numerical methods.

These steps will not be repeated in this work, but can be found in the original paper

(2). The step of recovering a camera’s response function is central to HDR. Following

it we arrive at a certain discrete function which will allow us to quickly map pixel

values to approximate luminance amounts, assuming the exposure times are known for

each photograph given to the algorithm and enough information is given as an input

8



2.2 Creating HDR images

to warrant a good approximation of g. It is important to notice that once the response

curve of the camera is built, it can be used to recover radiance values for any image

taken with this camera using the same sensitivity settings, not just the ones used in

the steps described above, as this curve is a parameter of the camera itself (however,

it changes in a non-trivial way with sensor gain).

In Fig. 2.1, the response curve for the Nokia N900 camera-phone can be seen.

These values were calculated using the pfstools package from Max Plank Institut (more

information at their website). The second curve appearing on the graph is the weight

given to each exposure

Figure 2.1: This image shows the response curve of a Nokia N900 cellphone. The hor-

izontal axis represents a log-scale of radiosity values, the vertical scale represents pixel

values. The bell curve shows the weights given to each pixel value during the process, with

lesser weights being given to pixels with poor exposures (the ones closer to minimum and

maximum values). This last step is explained below.

2.2 Creating HDR images

In Fig. 2.2, a schematic of a logarithmic scale of luminous dynamic range can be seen.

While we now possess the camera’s response curve, each LDR photograph taken can

only encompass a small part of the scale. Our goal thus becomes to capture as much of

9
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2. HIGH DYNAMIC RANGE—AN OVERVIEW

the scale present on the scene as possible using several pictures with varying exposure

times and then reconstruct the scene together from this information.

Figure 2.2: This image shows a log-scale axis with Illuminance values, measured in

Candelas/Meter2.

In this way, by taking several images of the same scene, we will have a certain pixel

correspondence. Considering that the scene’s dynamic range exceeds the possibilities of

the camera’s sensors, this will mean that some pixels will be under or over-exposed, i.e.,

not quite accurately mapped to the minimum and maximum values possible. Once a

pixel is mapped to such a value, we are no longer able to accurately gauge its radiance

value, as it might be any number above a certain threshold (which will depend on

the camera’s sensitivity and exposure time for that shot). In contrast, the same pixel

might appear with a non maximal/minimal value in one of the other images. In this

way, we can simply take this new value and calculate the intensity of light coming from

this pixel’s direction with a simple correspondence to the curve shown in Fig. 2.2. In

order to obtain the best results, the values taken from each image in the input frames

is averaged using a previously selected weighting system, one that will give greater

importance to pixels in the more “well behaved” parts of the response curve, that is,

the spots closer to the central pixel values. Specifically, from Equation 2.4, we can see

that:

ln[Ei] = g(Zij)− ln[∆tj ] (2.5)

and using all available information on a given pixel from the inputs we arrive at:

ln[Ei] =

∑P
j=1w(Zij)(g(Zij)− ln[∆tj ])∑P

j=1w(Zij)
(2.6)

10



2.2 Creating HDR images

where w(Zij) is a certain weighting function on the set of possible pixel values. In

the original paper by Debevec (2), a simple “hat” function is used. In our work, a

bell curve is preferred, as shown in Figure 2.1. For a more thorough analysis of HDR

Imaging, we refer the reader to (9).

The result of these operations is that a file is created, where pixels are associated

numbers whose values lie in a certain domain of radiance values. These are not in

direct correspondence to any set of pixel values, and they are impossible to show on a

regular visualization device, such as a computer monitor, cellphone, projector or printer

because these displaying devices also have a limited dynamic range. Some options exist

to make use of the newly made images: they can be visualized in novel HDR display

devices, as seen in (3), or the luminance values can be mapped in a way to fit the

regular display device’s possibilities. We will focus our attention on the second option.

This process is known as tone-mapping. The result of a tone mapped HDR image can

be seen in Fig. 2.3

Several methods for tone-mapping exist, mainly part of two categories: global and

local. Global techniques rely on a single operator applied to all the image’s pixels,

which are then mapped to a more suitable set. For instance, given a HDR image with

radiance values ranging from 0 to N , we wish to map these values to a smaller range

0 to n of available on our display device, where N >> n. One simple possibility is

mapping the values as:

Lnew = n
L

L+ 1
(2.7)

Which maps the set [0, N ] into [0, n]. Unfortunately, while Global tone-mapping

methods are usually cheap and easy to implement, they tend to sometimes produce

excessively smooth images, resulting in a loss of contrast.

An alternative to global methods are local methods, that is, analyzing a pixel’s

surroundings in order to achieve a non-uniform mapping which better preserves contrast

between regions. Several more complex methods of this kind exist, generating a great

variety of results. The particularly interesting method (10) will be briefly mentioned

in Chapter 3.

11



2. HIGH DYNAMIC RANGE—AN OVERVIEW

Figure 2.3: A picture showing an example of HDR imaging. Note that none of the input

images contain all the details present in the final image, even though it has been tone-

mapped to fit the display device’s limited dynamic range. Image borrowed from pfstools.

12
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3

Towards Mobile HDR

In this chapter, the results presented in works (6) and (7) will be discussed in further

detail.

3.1 Introduction

Since the development of the technique in the late 90’s, High Dynamic Range Imaging

from pictures with different exposures has never ceased to be a hot topic in Computa-

tional Photography. In the beginning, software developed by pioneer researchers (like

HDRShop and Photosphere) were released, and soon the feature became available in

commercial imaging products such as Photoshop.

Throughout the past decade, several improvements were made in the technique,

but the user still had to take several photographs and process them with computer

software. Very recently, however, cameras with built-in HDR began to appear. The

Pentax K-7, released in 2009, is said to be the first camera featuring HDRI. A more

notable example is the iPhone 4 platform, which offers an HDR mode in the camera

app since the release of the iOS 4.1 this year.

In the realm of HDR video, cameras with HDR sensors, like the RED Epic and

the ARRI Alexa, are being widely used these days in film production. However, such

devices are not easily available for the general consumer. An alternative is to use

cameras that can capture sequences of frames with different exposures and apply a

technique similar to the one used for still images. Fortunately, these cameras are more

affordable, but methods for HDR video are still scarce.

13



3. TOWARDS MOBILE HDR

In this work we present an HDR video reconstruction method for hand-held cam-

eras, including those installed in some mobile phones. Being based on histograms, the

method is more adequate for devices with lower computational power. To the best

of our knowledge, previous methods make use of (computationally expensive) optical

flow techniques to find correspondences between frames in the photometric calibration

phase of the algorithm. These methods assume that the exposure is constant for differ-

ent frames, therefore and due to this restriction they consider only a subset of all the

original captures at one time. In this case the temporal resolution suffers considerably.

Our method, in turn, does not reduce the video frame rate.

In the next section, some basic works on HDR Imaging are discussed, especially

those that provide more details and background to our approach, which is described in

Section 3.3. In Section 3.4 we describe the mobile device implementation. Results are

discussed in Section 3.5. Final comments and future directions are shown in Section 3.6.

3.2 Previous Work

The problem of High Dynamic Range image reconstruction for still images is virtually

solved (11). Furthermore, many different solutions appeared since the classical work

by Debevec and Malik (2). HDR video reconstruction is a natural extension of the

image related problem. Therefore, approaches tend to be built upon methods for still

images. As it is out of the scope of this text to review all existing approaches, we refer

the reader to (9), which is a nice review of the subject.

HDR video reconstruction is a more challenging task because from the hardware side

it requires a programmable camera and from the software side the data is dynamic.

The earlier reference in this case is (12), where classical vision methods for motion

estimation (namely, optical flow) are used to deal with the motion between frames.

For a review of methods we refer to (13), where components of the HDR pipeline are

presented and discussed with the main focus on video.

Our approach for HDR video is based on histograms. It is efficient, simple and

robust to noise. We will discuss the method in Section 3.3. The recovery of the camera

response function from images is described with details in (14) and (15). The HDR

reconstruction algorithm is a modified version of (16). The histogram-based image

14



3.3 HDR Video

registration technique is brought from (5), and the Radiance Map reconstruction with

ghost removal is made in a similar way to what is described in (17).

Regarding handheld devices, the problem of HDR reconstruction from misaligned

and (possibly) blurred long-exposed photographs is treated in (18). The authors of (4)

provide a camera application with HDR mode. In fact they made available a full API

for experiments with the low level aspects of the camera hardware. We have used their

platform in this work, the video capture being made with a Nokia N900 smartphone.

3.3 HDR Video

The pipeline for HDR Photography from LDR images has two phases: first, photometric

calibration must be performed and the radiance map reconstructed to generate the HDR

picture, then the dynamic range of the result should be reduced to allow the image to

be shown in LDR displays.

In order to recover the camera response function and properly map radiance values,

algorithms for HDR rely on pixel correspondences between frames to relate differently

exposed values of the same point in the scene. When it comes to video, this is obviously

a difficult task.

The solution is to apply some sort of motion estimation. Classical vision methods

for motion estimation (such as optical flow), assume that the exposure is constant.

However, to obtain HDR video, a sequence where consecutive frames have different

exposures should be captured.

To get around this problem, we devised a method where motion estimation is based

on histograms. Another advantage of using histograms is that it is less computation-

ally expensive than methods based on optical flow techniques. This is particularly

interesting for devices with less capable processors.

Our method has three steps: first, the camera response function is estimated using

an histogram-based technique; second, multiresolution alignment of threshold images

based on histogram cuts is performed; third, the radiance map is reconstructed observ-

ing the variances of radiance values for each pixel. The algorithm is detailed in the

following sections.
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3.3.1 Photometric Calibration

The input of our algorithm is a sequence of triples1 of images {F i}, where F i =

{F i1, F i2, F i3}. In our first work (6), exposures were calculated only at the beginning

of the capture process, and then kept constant throughout the process. In (7), the

method was improved by setting the exposure time for F i1 as being the optimal value

calculated by the camera’s auto-exposure feature, while the other two photographs in

the set are made with one stop above and below this time, respectively. In this way,

F i2 and F i3 have exposures that are, respectively, twice and a half of the exposure of F i1,

for all i.

Algorithms for photometric calibration require a correspondence between pixels of

different frames in F i to be known. We are assuming that exposure changes preserve

monotonicity of pixel values. Intuitively, the n brightest pixels in a frame with exposure

e1 correspond approximately to the n brightest pixels in a subsequent frame with

exposure e2, even though their actual values are not the same. Let {pi} and {qi} be

the sets of pixels from two consecutive frames (say, P and Q), of the same size, sorted

according to the luminance value of the pixel. The radiance mapping MP,Q, between

P and Q, is defined simply by MP,Q(pi) = qi, ∀i.
Finally, the actual pixel value to radiance value mapping can be recovered by apply-

ing any of the algorithms available in the literature. For this particular implementation

we have used the parametric approach described in (15).

3.3.2 Histogram-Based Registration

Aiming not to reduce the HDR-reconstructed video frame rate when compared to the

captured video, we generate an HDR frame for each frame in F i. Therefore, once i is

fixed, for each j = 1, 2, 3, the remaining F ik should be aligned with F ij . We perform a

multi-resolution alignment that is described with details in (5).

Roughly speaking, the method is as follows: first, an image pyramid is constructed

for each grayscale image exposure. Then, for each level of the pyramid a corresponding

median threshold bitmap (MTB) image is constructed. An MTB image has 0’s where

the input pixel values are less than or equal to the median value and 1’s where these

values are greater. The overall offset for alignment is computed starting with the lowest

1We chose 3, but any reasonably small number larger than 1 could be used.
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resolution MTB pair, testing for an offset in the range {−1, 0, 1} in the horizontal and

vertical directions. At the next resolution level this offset is multiplied by 2 and the

result is tested with its pair shifted in the range {−1, 0, 1} in the mentioned directions.

This continues up to the highest resolution, leading to the final alignment offset.

3.3.3 Radiance Map Reconstruction

The image alignment phase is necessary to deal with camera motion. However, there

can also be movement in the scene, and such movement causes ghosting effects during

the reconstruction of an HDR frame. We deal with this issue by analyzing the variation

of radiance values over the corresponding (aligned) pixels of the images in F i.

More precisely, for each F i we reconstruct four HDR images, one for each F ij and

one considering all the images in the triple. We call them F̂ ij , for j = 1, 2, 3, 4, in the

mentioned order. Consider we are reconstructing the HDR frame for F̂ i1. Let us pick

some pixel p in F̂ i1 and call r1 its radiance value. Let rj be the radiance values of the

three corresponding pixels across images F̂ ij , j = 2, 3, 4. We define σ”2 as the variance

of the set {rj}j=1,2,3. For the final F̂ i1, the radiance value for the pixel p will be set

to a convex combination between r1 and r4 depending on the magnitude of σ: if the

variance is high, some movement must be happening in this pixel across frames, so we

weight the value of the radiance towards r1; and vice versa if the variance is low. This

procedure is repeated for F̂ i2 and F̂ i3.

3.4 Mobile Device Implementation

As discussed in (19), the lack of a fully programmable, portable camera is a problem

for Computational Photography researchers. In this sense, the development of the

FCam API (4) turns out to be a great step towards a new generation of mobile devices.

With the FCam API, it is possible to have full control of the camera parameters,

such as shutter speed, gain and focus. We may even change its algorithms, such as

autoexposure, demosaicking and autofocus. In this work, we used a Nokia N900 running

Maemo 5 (Open Source Linux distribution). We developed a HDR video application

which allows the motion of both objects on the scene and the camera.
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3.4.1 Capturing HDR Video

The major challenge concerning the capture and processing of HDR frames on a mobile

device is to maintain a fine balance between frame rate, memory usage and processing

power. On one hand, there is a goal to capture at least 25 frames per second to

produce good quality video, and this rapidly consumes the device’s memory. On the

other hand, the application should process and save all the captured frames, and this

stage is a little slower than the first, due to limited processing power and the fact that

writing a file on disk requires more time than capturing a photo and saving it in the

application memory. Although it is possible to use the method described in Section 3.3

with as many different exposures as desired, the current implementation only uses three

different exposure settings. This provides good results without harming this balance.

We limit our application to capture only short videos due to these memory limitations.

It is a reasonable restriction: mobile devices usually are not designed to capture long

duration videos.

The capture stage works as follows: while the user looks through the viewfinder

(without recording), the application performs an autoexposure algorithm, corrects the

white balance and displays a preview of the scene using the current settings. When the

capture starts, the autoexposure algorithm is executed in the background, providing

the optimal camera settings for a good exposure during the video capture process.

The first shot uses the optimal computed exposure, the second and the third shots use

twice and half of this value, respectively. This process is repeated until the video is

fully recorded and the frames are sent to the processing stage. All shots use the same

gain (which guarantees that they will have the same camera response function, as it

varies non-linearly with sensor sensitivity).

3.4.2 Processing HDR video

The processing of the captured frames is done after all the frames were captured. This

is a way to guarantee that there is no slowdown during the capture process. Since

this stage is done independently of the first, virtually any HDR method could be used

here. We chose the method described in Section 3.3 because of its flexibility due to

histogram analysis (instead of direct pixel-to-pixel correspondence). This stage could

be performed on the mobile device, on another computer, or even on a cloud.
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Our current implementation performs this step on a desktop computer for testing

purposes; however, it would be possible to perform the full process on the camera itself

(instead of only the captures). This stage of implementation is straightforward, since

the same code can run on both machines.

3.5 Results and Discussion

As was mentioned in Section 3.4, in the current implementation stage the algorithm

being used on the Nokia N900 returns a sequence of images with varying exposure

times. We then proceed by transferring the results to a desktop computer in order

to process the data. This is done by applying the algorithm described in Section 3.3

to the images. After this step, we have a set of HDR images, which correspond to

each frame of the captured video. In order to be able to visualize our results on regular

LDR devices, a tone-mapping algorithm is also necessary. This step is done by using the

pfstmo library, from Max Plank Institut1. After testing several tone-mapping methods,

we have decided to use an implementation of the method (10) present in the library,

due to both its speed and the quality of the results obtained. The final resulting tone-

mapped output, along with a sequence of three differently exposed frames generated

by our program can be seen on Figures 3.1 and 3.2.

Figure 3.1 shows the results obtained in an outdoor scene, with predominant cam-

era movement. Notice that the background (resp., the building interior) is only well-

exposed on the second (resp., third) captured frame. Both areas of the image are well

shown in the three tone-mapped results. Figure 3.3 shows another result.

Figure 3.2 shows the results obtained capturing an indoor scene, with object and

camera movement. Notice the movement between the captured frames.

3.6 Conclusions and Future Work

In its current form, the algorithm works as follows: firstly, the Nokia N900 with an

FCam API is used to capture a sequence of frames with varying exposures. These

frames are used on a desktop computer to generate a series of HDR images, which are

then converted to regular LDR images through a tone-mapping algorithm.

1Available at http://www.mpi-inf.mpg.de/resources/tmo/
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Figure 3.1: (Top) Captured frames. From left to right: optimally-, sub- and super-

exposed shots. (Bottom) Corresponding results with tone-mapping.

Figure 3.2: (Top) Captured frames. From left to right: sub-, normal- and super-exposed

shots, according to initial calibration on a brighter scene. (Bottom) Corresponding results

with tone-mapping.

20



3.6 Conclusions and Future Work

Figure 3.3: Another set of results. The HDR image is presented in a red frame. Notice

the details in the sky, clothes and vegetation, missing from the original images.

An improvement might come from other means of pixel correspondence for object

movement on the scene, such as optical flow, to further enhance the quality of the

results. Also, other Tone Enhancement techniques could be used to improve the quality

of the captured videos.

A more difficult challenge for future works involves finding a better way to deal

with the device’s small memory, in order to increase the amount of frames that can be

captured. A possible partial solution lies in creating a low priority thread that would

save images to the device’s hard disk while the program is still running.

Finally, we believe that the use of a fully programmable camera brings many more

possibilities besides the ones that have been explored here. Many ideas involving user-

aided capture and processing, or the retrieval of geometric proprieties of objects through

intelligent capture processes, can be achieved by having access to low level hardware

parameters, as was done in this work.
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4

Alternative Methods - Exposure

Fusion

In this chapter we will discuss Exposure Fusion, a technique first presented in (1).

Unlike the introductory chapter, more technical details will be presented here, followed

by our own work involving improved video using this algorithm in Chapter 5.

Unlike HDR, EF is not physically-based. The authors are not concerned with

capturing the real details of the presented scene, but rather want to simply obtain

an image that possesses the desirable qualities of a tone-mapped HDR image. This

process is achieved without ever actually calculating any sort of camera parameters

or estimating the camera response, but uses only a clever per-pixel averaging process.

The main advantages of Exposure Fusion over HDRI involve its speed and simplicity.

The algorithm is also very robust under difficult circumstances, which is particularly

interesting from the point of view of improving videos - as a low capture framerate

means that each inbound image has very low redundancy in regards to the other frames.

A comparison of HDRI and EF for a still scene can be seen in Fig. 4.1.

4.1 Exposure Fusion Pixel Weighting System

Exposure Fusion’s method can be understood by imagining the incoming images with

different exposures as a stack, which is vertically averaged on a per-pixel basis, using a

weight map for each image based on certain criteria. These criteria are as follows:
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Figure 4.1: A comparisson between tone-mapped HDRI (left) and Exposure Fusion

(right) created using commercial software, taken from Digital Photography School.

1. Contrast: A high-pass Laplacian filter is applied to the grayscale version of the

images. This gives greater values to high-frequency pixels, such as those on bor-

ders and textures. This weight, C, helps preserve the sharpness of the images.

It is interesting to notice that higher exposed images might be inherently more

blurred than their low-exposed counterparts from some amount of camera move-

ment occurring during the exposure, and the Contrast measure also helps reduce

theis effect.

2. Saturation: Longer exposure times usually result in desaturated colors, which are

less pleasant to the viewer and can make the image lose vividness. A saturation

measure S is introduced as the standard deviation of each pixel on the R, G and

B channels.

3. Well-exposedness: In order to avoid over and under exposed pixels, a well-

exposedness parameter E is introduced. It is based on the proximity of the

pixel’s R, G and B values to 0.5 on a 0 to 1 scale when graded by an exponential

curve: exp(− (i−0.5)2
2σ2 ), where σ is an empiric constant, normally 0.2. The results

for each color are then multiplied to yield the final weight map.

An example can be seen below in Fig. 4.2. In addition to the weight maps, the

authors propose exponent parameters to better control each weight map, i.e.,

Wij,k = (Cij,k)
ωC × (Sij,k)

ωS × (Eij,k)
ωE (4.1)
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4.2 Additional Considerations

The parameters ωC , ωS and ωE are usually set to 1, effectively going unused. In

some applications, however, giving a greater or lesser power to some of the weights may

prove useful.

Once the weight values are computed, the images are fused. This is an averaging

process, where a linear combination of the corresponding pixels on each input image

is created using the weight maps. These maps are normalized beforehand, so that the

linear combination is convex, that is:

W ′ij,k =
Wij,k∑N

k′=1Wij,k′
(4.2)

With the fusion correspondingly being:

Rij =

N∑
k=1

W ′ij,kIij,k (4.3)

Where Ik is the k-th image in the input sequence.

4.2 Additional Considerations

Unfortunately, simply doing a convex linear combination of the images does not render

good results. Quick variations on the weight maps result in undesirable seams on the

output. To solve this problem, the technique explained above is applied to a Laplacian

Pyramid decomposition of the input images. This means the fusion occurs on each

separate resolution level and afterwards these levels are blended together. The result of

this operation is a smooth and pleasant image, as seen in Fig. 4.2. Further discussion

on this matter can be seen in the original work (1).

Last but not least, EF can also be efficiently used to fuse images with very different

lighting, capturing the best parts of each lighting situation. While HDRI requires that

illumination on the scene remains rather constant, changing only linearly due to the

varying exposure times, EF can be used, for example, to combine images with and

without flash. An example can be seen in Fig. 4.3.

An important detail is that the input images must be well aligned. This step is

usually performed by a registration algorithm applied beforehand. Should the inbound

images be misaligned due to, for instance, camera movement during the capture, pixels

combined during the fusion process might correspond to different points on the scene,
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generating an undesirable effect. In this work, the same registration algorithm was used

as in Chapter 3, (5). This simple algorithm once again allows us to eliminate errors due

to camera movement—something quite common in mobile video captures. A greater

challenge, however, is object movement on the scene during the capture process of the

input images. Moving objects from one frame to the next are averaged by the fusion

process, which results in ghosting artifacts. An example of heavy ghosting can be seen

in Fig. 4.4. This issue is especially crucial for video processing, as object movement on

the scene is greatly present in most videos.
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Figure 4.2: (Top Left) Four images with varying exposures used as input.

(Top Right) Resulting Exposure-Fused image.

(Center Left) Final weight map for the third image in the stack, obtained from the product

of the three weight maps below.

(Center Right) Weight map for the Contrast parameter for the third image in the stack.

(Bottom Left) Same for the Saturation parameter.

(Bottom Right) Same for the Well-exposedness parameter.
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Figure 4.3: An example of a regular photograph (left) fused with a photograph taken

with flash (right). Notice how the over-exposed glare on the painting’s glass is removed by

the algorithm using the Well-exposedness parameter. Image borrowed from (1).
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Figure 4.4: An example of ghosting caused by object movement on the scene. The moving

man in the input images (left) is averaged through the fusion process and has a transparent

appearance in the final image (right).
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5

Exposure Fusion Video

While HDR videos have been somewhat explored, Exposure Fusion has seldom been

applied to video processing. It is, however, a promising prospect for the creation of

improved quality material.

In this section, we will present the results published in (8). As was explained in

the last section, ghosting is a major issue with exposure fusion, when used to create

scenes involving moving objects. This is particularly important when considering the

creation of improved mobile videos, as these are usually expected to contain all kinds of

movement. We present a novel method that deals with the elimination of such artifacts

by using several carefully selected filters and performing a local analysis. In order to

tackle the variations brought by the changing exposure times between frames, features

that are known to stay reasonably constant in this case—edges, saliences and textures

are used, as detected by a high-pass filter. This method was inspired by our past work

dealing with HDR video on mobile devices (7) and a deghosting method for HDR that

involved the use of pixel regions as an estimator (20).

5.1 First Attempts

This section will discuss a first attempt at creating a novel deghosting method to deal

with some of the issues that surfaced in the creation of Exposure Fusion based video.

The method is based on pixel regions and is outlined below.

As seen in (1), applying the EF algorithm to a set of images involves a sum of pixels

weighted with certain coefficients. The proposed method involves the addition of yet
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another coefficient that is used separately from the other three. This value is called the

deghosting coefficient and is intended to remove areas that encompass moving objects

from the final result, with the exception of frames where the objects are in the same

position as those in the frame being taken as reference, thus removing ghosts.

As in the original method, the deghosting coefficient is a floating point number

assigned to each pixel in the stack of images used to create an improved video frame.

This coefficient is obtained using only the grayscale values of the original images’ pixels

(in the future using the Luma part of the images in the YUV colour space may be more

desirable, as the currently used Nokia N900 camera-phone saves its images in this space

automatically).

First of all, a gaussian low-pass filter is applied to all of the used images in order

to filter out undesirable noise. Following, in order to obtain the coefficient of a certain

pixel (i, j), a 3 × 3 region centred on this pixel is taken on both images. The size

of these regions was obtained through trial and error and seems to work better than

larger areas, that appear to capture too much information and are unable to reliably

discover movement occurrences. This size could however be larger, depending on the

application. In the future, machine learning can be utilized in order to figure out what

kind of mask will work best with a certain scene.

The obtained 3 × 3 matrices are then divided by the sum of all their elements,

in order to obtain more even masks with overall element sum being 1. This makes

the patches taken from the images more even, as they usually come from different

exposures.

Next, one image whose movement we want to preserve must be chosen. For instance,

given images 1 through N as an input, if we wish to obtain the Exposure Fusion video

frame related to image number 1, we will assign a deghosting weight to pixel (i, j)

for images 2 through N based on the difference between the first and the subsequent

patches taken. The coefficient is taken as:

K(i, j) = 1− |(
N∑
i=2

P1Pi)
0.1|

The exponent coefficient was obtained from manual testing and gives a good balance

between object movement detection and small differences due to the normal distinction

of the differently exposed images.
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The resulting coefficient can be seen below as an example. Here the numerical

values are shown as grayscale.

Figure 5.1: Simple calculation of absolute difference between pixel regions.

Unfortunately, the deghosting parameter also detects the normal variations due to

the difference of exposure between the frames. This detection is especially strong in

regions that are poorly exposed. The result of this detection is that image backgrounds

are taken with very different weights in the Exposure Fusion process, which causes the

resulting video to have flickering background lighting.

While not completely solving the problem, several measures were taken to dra-

matically reduce this undesirable effect. Particularly, using the previously calculated

exposure parameter, a cut-off has been placed that sets to zero the deghosting parame-

ter values for pixels that are already poorly exposed. The reasoning behind this is that

poorly exposed regions will already not be considered by the algorithm from (1), and

thus need not receive any further consideration.

Another cut-off is placed on pixels that have small deghosting coefficient values.

This is done because pixels where actual movement took place usually have larger

deghosting coefficient values, which in turn means that the smaller values belong to

background pixels and are due to the expected differences between the images.

An image of the resulting coefficient values making use of the thresholds introduced

above can be seen below in Fig. 5.2. This is an altered version of the image above. A

few constant factors are used in the created method in order to set the cut-offs and are

currently selected manually, based on testing.

Finally, the image sequence is rebuilt, making use of the deghosting coefficients

created in the earlier steps during the making of a frame, to filter out the moving
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Figure 5.2: Previously seen coefficients after processing.

objects from all frames except the one currently being created. The resulting images

have reduced ghosting effects, which sometimes leads to great improvements in the

images’ visual pleasantness.

Figure 5.3: A favorable result of the algorithm.

Unfortunately, this approach proved to be less than optimal due to the heavy influ-

ence of the non-movement pixels remaining after the threshold filtering.

5.2 Deghosting Method

Following the initial attempts at Exposure Fusion Video deghosting, a second path was

taken to ameliorate the resulting videos.

As before, the original images’ pixel color variations were found too steep due to

the implicit exposure variation to generate reliable results. Because of this, the process

outlined below is applied to the result of a regular High-Pass Laplacian filter applied to

each image, described as a function HP (Ik). The use of a High-Pass filter eliminates

regions not containing high-frequencies, which means that luminance variations due to

varying exposures are greatly reduced (see Fig. 5.4).
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Figure 5.4: Input images shown on the left side, the (amplified x5) result of a High-Pass

Laplacian Filter on the right.

Thus, to find the Ghosting parameter of pixel (i, j), G(i, j), we analyze the regions

A and B as given by (i− l : i+ l, i− l : i+ l) in each image.

The process is then repeated for each pixel using a different input. The initial images

I1, I2 are now subject to a Low-Pass Gaussian filter, given by LP (Ik). Following, we

take HP (LP (Ik)) as our inputs and proceed to analyze their pixel regions. This method

is then repeated with additional Low-Pass filter steps. The pixel areas are evaluated

according to the following formula: G(i, j)i = 1−
∑2l

n=1

∑2l
n=1 |A−B|n,m, that is, the

simple absolute diference between these regions.

The resulting obtained Ghosting coefficients are multiplied to obtain the final pixel

Ghosting parameter value. This process attenuates the contribution of capture noise

and irrelevant weaker high-frequencies, which disappear after consecutive Low-Pass

applications, resulting in less erroneous detections of non-movement high-frequency

variations and a strengthened Ghosting parameter for pixels that involve true object

movement (See Fig. 5.5).

Finally, the ghosting parameter is used in the same way as the three initially pro-

posed coefficients and allows us to reduce the contribution of pixels from I2 that show

moving objects in relation to I1.

This process is then repeated for consecutive pairs of images Ik, Ik+1, k = 1, ..., n − 1

to form the final video. The whole process is outlined in Fig. 5.6. More information is

available at the author’s website, http://www.impa.br/ achapiro/deghost, where a video

is also presented.
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Figure 5.5: On the left - resuls of the local analysis for several Low-Pass applications.

On the right, the final deghosting parameter.

5.2.1 Acquisition and Registration of Input Images

In order to obtain the video frames used in this work, a Nokia N900 running Maemo

5 and the FCam API was used, with the same configuration as the one presented

in Chapter 3. We proceed to perform a multi-resolution alignment based on image

pyramids. This step is necessary, as background pixel correspondence is crucial for this

work. Both are explained in detail in our previous work (7).

5.3 Results and Future Work

Testing of the algorithm showed good results when applied to regular situations, re-

moving most of the ghosting artifacts and resulting in improved video quality. Some

issues arise with quick movement relative to the camera’s capture rate, where sometimes

ghosting is not properly treated.

Future work may include improvements to the algorithm’s robustness to quick object

and camera movement as well as improvements of the filter-based deghosting technique

through the use of multi-resolution to aid in the location of shifting objects. One idea

consists of comparing the patches in the vicinity of the target pixel for similarities

with the original pixel’s neighborhood. This means that given images as an input,

when we build the pixel (i, j) on the fused image, instead of analyzing the regions

surrounding the pixels (i, j) on the initial images, we would also analyze the neighboring

pixel’s surroundings. Should a region with greater similarities be found, i.e. a smaller

ghosting coefficient, we could consider that this pixel would be a better bet for the

fusion algorithm and perform EF corresponding it to the (i, j) pixel in the original
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Figure 5.6: Video Creation Pipeline: (top-left) Inputs, (top-right) Ghosting Coefficients

after High-Pass filtering (bottom-right) Deghosted result (bottom-left) Comparison.

image. This procedure would then approximate a rough optical flow technique, when

done in multiresolution.

Another interesting line for future works would involve the application of the EF

algorithm several times, with the new input being the output of the last application.

This would further reduce the strobing effect in the background and perhaps introduce

details from different light settings into the current frame, while also not overloading

the deghosting algorithm with too many input frames that are very distinct from each

other.
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6

Conclusions

As a conclusion to this work, we must state that both High Dynamic Range Imaging

and Exposure Fusion are powerful techniques and their use to video processing can

bring very pleasant results. These areas are, however not quite well explored at the

moment.

In Chapter 3, our works (6) and (7) are explained in greater detail. These results

show that it is possible to create HDR video using a handheld device. More importantly,

they present the possibility of creating HDR video on a per frame basis, that is—

creating HDR video with an output of the same size as the input, relative to the

amount of frames. While some problems still persist, namely that the low amount of

information creates either blurry object movement or the possibility of numerical errors

during radiance value recovery, HDR video can be a viable addition to future cameras,

and specifically cell-phones, such as the one on which this work was implemented.

Our novel deghosting method for Exposure Fusion video presented in (8) and ex-

plained in Chapter 5 is another interesting option for mobile devices. Since Exposure

Fusion is a much cheaper method than HDR, it might be particularly well suited for

camera-phones. In fact, as demonstrated in (21), Exposure Fusion can already be ap-

proximated on the Nokia N900 cellphone using an FCam API in real time, which would

suggest that Exposure Fusion video could also be built on the same platform with rea-

sonable timing for daily usage. The low framerate of captured videos ( 25 frames per

second) on the Nokia N900 caused additional problems for our method, as movement

between adjacent frames becomes greater. Using a higher framerate (such as that of

a consumer video camera) would make faster movements less likely to cause ghosting
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even after applying our method. An immediate solution might involve the use of the

larger Frakencamera prototype presented in (4), which was unfortunately unavailable

during the crafting of this work.

A more generalistic idea for future works involves the attempt of using the capa-

bilities of the camera-phone to the fullest extent, trying to retrieve and combine as

much of the information related to the scene as possible. Specifically, a combination

of the pixel’s radiance values retrieved using HDR techniques, diverse pixel parameters

obtained from EF and perhaps other luminous or even geometrical informations can be

used to attempt to re-create the scene in a more complete sense, which in turn could

be later used for more advanced visualizations.
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