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Abstract. A discontinuous Galerkin (DG) discretization of Dirichlet problem for second order
elliptic equations with discontinuous coefficients in the 2-D is considered. For this discretization,
a Neumann-Neumann (N-N) algorithm is designed and analyzed as an additive Schwarz method
(ASM). The coarse spaces is defined usinga special partition of unity. The method is almost optimal
under the natural assumption on the triangulation. Its rate of convergence is independent of jumps
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1. Introduction. In this paper, discontinuous Galerkin approximation of ellip-
tic problems with discontinuous coefficients is considered. The problem is considered
in a polygonal region Ω which is a union of disjoint polygonal subregions Ωi. The
discontinuities of the coefficients occur across ∂Ωi. The problem is approximated by
a conforming finite element method (FEM) on matching triangulation in each Ωi and
nonmatching one across ∂Ωi. This kind of triangulation and composite discretization
are motivated first of all by the regularity of the solution of the problem being dis-
cussed. Discrete problems are formulated using DG methods, symmetric and with
interior penalty terms on the ∂Ωi; see [1, 2, 4]. A goal of this paper is to design
and analyze Neumann-Neumann (N-N) algorithms for the resulting discrete problem;
see [6, 9] and also [10]. The first step, the problem is reduced to the Schur comple-
ment problem with respect to unknowns on ∂Ωi, for i = 1, . . . , N . For that discrete
harmonic functions defined in a special way are used. The method is designed and
analyzed for the Schur complement problem using the general theory of ASMs; see
[6, 10]. The local problems are defined on Ωi and faces of ∂Ωj which are common to
Ωi. The coarse space is defined using a special partitioning of unity with respect to
Ωi and introducing master and slave sides of substructures. A side Fij = ∂Ωi∩∂Ωj is
master when ρi ≥ ρj , otherwise it is slave, so if Fij ⊂ ∂Ωi is master then Fji ⊂ ∂Ωj ,
Fij = Fji, is slave. The hi− and hj− triangulations on Fij and Fji, respectively,
are built in a way that hi ≥ hj if ρi ≥ ρj where hi and hj are the parameters of
these triangulations. It is proved that the algorithm is almost optimal and its rate of
convergence is independent of hi and hj , the number of subdomains Ωi and the jumps
of coefficients. The algorithm is well suited for parallel computations and it can be
straitforwardly extended to the problems in 3−D cases.

DG methods are becoming more and more popular for approximation of PDEs;
see [1, 2] and literature therein. There are also several papers devoted to algorithms
for solving the resulting discrete problem, in particular domain decomposition meth-
ods. We first mention [7] and [8] where composite discretization similar to those
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discussed in this paper are considered. In these papers overlapping Schwarz and
Neumann-Dirichlet methods were proposed and analyzed for DG discretization of el-
liptic problems with continuous coefficients. In [4] for the considered discrete problem,
a multilevel ASM is designed and analized but it is not optimal. In [3] a two-level
ASM is proposed and analyzed for DG discretization of fourth order problems. For our
knowledge N-N algorithms for DG discretization of elliptic problems with continuous
and discontinuous coefficients have not been analyzed in literature.

The paper is organized as follows. In Section 2 the differential problem and its DG
discretization are formulated. In Section 3 the Schur complement problem is derived
using descrite harmonic function in a special way. Sections 4 and 5 are devoted to
designing a N-N algorithm while Section 6 is devoted to the proof of the main result,
Theorem 5.2. In Section 7 auxiliary results are proved for the used coarse space.

2. Differential and discrete problems.

2.1. Differential problem. Find u∗ ∈ H1
0 (Ω) such that

a(u∗, v) = f(v), v ∈ H1
0 (Ω)(2.1)

where

a(u, v) =
N∑

i=1

∫
Ωi

ρi∇u∇vdx, f(v) =
∫

Ω

fvdx.

We assume that Ω̄ = ∪N
i=1Ω̄i and the substructures Ωi are disjoint shaped regular

polygonal subregions of diameter Hi and form a geometrical conforming partition of
Ω, i.e. ∀i 6= j the intersection ∂Ωi ∩ ∂Ωj is empty or is a common vertex or face of
∂Ωi and ∂Ωj . We assume that f ∈ L2(Ω) and the coefficients ρi are constants larger
than a positive constant ρ0 what guarantee that the problem is well posed in H1

0 (Ω).

2.2. Discrete problem. Let us introduce the shape regular triangulation in
each Ωi with triangular elements and hi as the mesh parameter. The resulting trian-
gulation on Ω is in general nonmatching across ∂Ωi. Let Xi(Ωi) be a finite element
(FE) space of piecewise linear continuous functions Ωi. Note that we do not assume
that functions in Xi(Ωi) vanish on ∂Ωi ∩ ∂Ω; see Remark 5.4 for others variations.
Define

Xh(Ω) = X1(Ω1)× · · · ×XN (ΩN ).

A discrete problem obtained by DG method, see [1, 2, 4], is of the form:
Find u∗h ∈ Xh(Ω) such that

ah(u∗h, v) = f(v), v ∈ Xh(Ω)(2.2)

where

ah(u, v) ≡
N∑

i=1

ai(u, v) + sa(u, v) + sp(u, v).(2.3)

Here for u = {ui}N
i=1 ∈ Xh(Ω) and v = {vi}N

i=1 ∈ Xh(Ω)

ai(u, v) ≡
∫

Ωi

ρi∇ui∇vidx,(2.4)
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sa(u, v) ≡
N∑

i=1

∑
Fij⊂∂Ωi

1
lij

∫
Fij

ρij

2
(
∂ui

∂n
+

∂uj

∂n
)(vj − vi)ds(2.5)

where Fij = ∂Ωi ∩ ∂Ωj is the common face of ∂Ωi and ∂Ωj and let lij = 2. We
also include Fi0 = ∂Ωi ∩ ∂Ω whenever it has positive measure and let li0 = 1. The
index lij says how many subdomains shares Fij . The ∂

∂n denotes the normal outward
derivative on ∂Ωi and ρij = 2ρiρj/(ρi + ρj) the harmonic average of ρi and ρj when
j 6= 0 and ρi0 = ρi. To make the notation even more compact, when j = 0 we take
uj = 0 and vj = 0, and ∂uj

∂n = ∂ui

∂n and ∂vj

∂n = ∂vi

∂n . We note that when ρij is given by
harmonic average, min{ρi, ρj} ≤ ρij ≤ max{ρi, ρj}, and also ρij ≤ 2ρi and ρij ≤ 2ρj

The bilinear form sa(., .) also can be written as

sa(u, v) ≡
N∑

i=1

ρij

lij

∑
Fij⊂∂Ωi

{
∫

Fij

∂ui

∂n
(vj − vi)ds +

∫
Fij

∂vi

∂n
(uj − ui)ds}(2.6)

where the term 1
4 (∂uj

∂n , uj − ui)L2(Fij) on Fij ⊂ ∂Ωj has been added (Fji = Fij) to
1
4 (−∂uj

∂n , vi − vj)L2(Fji) and replacing ∂
∂n to ∂Ωi by − ∂

∂n to ∂Ωj . In a similar way we
proceed with the term 1

4 (∂vj

∂n , uj − ui)L2(Fji). The penalty term is given as

sp(u, v) ≡
N∑

i=1

∑
Fij⊂∂Ωi

∫
Fij

δ

lij

ρij

hi
(uj − ui)(vj − vi)ds(2.7)

where δ is a penalty positive parameter. It is known that there is δ0 = O(1) > 0 such
that for δ ≥ δ0 the problem (2.2) has a unique solution. An error bound of the method
is optimal for ρi = 1, see [1, 2], but is not for discontinuous coefficients, see [4]. In the
later case the error is O(h3/2) only in the H1− broken norm if the solution of (2.1)
u∗ ∈ H3/2+ε(Ω), with ε > 0. On the other hand we cannot expect more regularity
of u∗ in the case of discontinuous coefficients in a general case. In the discretization
of sa(., .) and sp(., .), see (2.6) and (2.7), we use the harmonic average of ρi and ρj ,
ρij = 2ρiρj/(ρi + ρj) instead of ρi and ρj . In the case of jump on the coefficients
across interfaces, it is a natural way of using it.

We introduce the so-called broken norm in Xh(Ω) with weights given by ρi and
ρij . For u = {ui} ∈ Xh(Ω) define

‖ u ‖2
1,h≡

N∑
i=1

{ρi ‖ ∇ui ‖2
L2(Ωi)

+
∑

Fij⊂∂Ωi

δ

lij

ρij

hi

∫
Fij

(ui − uj)2ds}.(2.8)

Lemma 2.1. There exists δ0 > 0 such that for δ ≥ δ0 and u ∈ Xh(Ω)

γ ‖ u ‖2
1,h≤ ah(u, u) ≤ M ‖ u ‖2

1,h(2.9)

where γ and M are positive constants independent of the ρi, hi and Hi.
For the proof see, for example [4].

3. Schur complement problem. In this section we derive a Schur complement
problem for the problem (2.2). We first introduce some auxiliary notations.

Let u = {ui} ∈ Xh(Ω) be given. We can represent ui as

ui = Hiui + Piui(3.1)
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where Hiui is the discrete harmonic part of ui in the sense of ai(., .), see (2.4), i.e.

ai(Hiui, vi) = 0 vi ∈
o

Xi(Ωi)(3.2)

Hiui = ui on ∂Ωi,(3.3)

while Piui is the projection of ui on
o

Xi (Ωi) in the sense of ai(., .), i.e.

ai(Piui, vi) = ai(ui, vi), vi ∈
o

Xi(Ωi).(3.4)

Here
o

Xi (Ωi) is a subspace of Xi(Ωi) of functions which vanish on ∂Ωi, and Hiui

is the classical discrete harmonic part of ui. Let us denote
o

Xh (Ω) ≡ {
o

Xi(Ωi)}N
i=1

to be a subspace of Xh(Ω) and consider the global projections Hu ≡ {Hiui}N
i=1 and

Pu ≡ {Piui}N
i=1 : Xh(Ω) →

o

Xh (Ω) in the sense of
∑N

i=1 ai(., .). A function u ∈ Xh(Ω)
can therefore be decomposed as

u = Hu + Pu.(3.5)

The function u ∈ Xh(Ω) can also be represented as

u = Ĥu + P̂ u(3.6)

where P̂ u = {P̂iui}N
i=1 : Xh(Ω) →

o

Xh(Ω) is the projection in the sense of ah(., .), the

original bilinear form of (2.2), see (2.3). Since P̂iui ∈
o

Xi(Ωi) and vi ∈
o

Xi(Ωi), we
have

ai(P̂iu, vi) = ah(u, vi).

The discrete solution of (2.2) can be decomposed as u∗h = Ĥu∗h + P̂ u∗h. To find
P̂ u∗h we need to solve the following set of usual discrete Dirichlet problems:

Find P̂iu
∗
h ∈

o

Xi(Ω) such that

ai(P̂iu
∗
h, vi) = f(vi), vi ∈

o

Xi(Ωi)(3.7)

for i = 1, · · · , N . Note that these problems are local and independent, so they can be
solved in parallel. This is a precomputational step.

We now formulate the problem for Ĥu∗h. Let Ĥiu be the discrete harmonic part
of u in the sense of âi(., .), where Ĥiu ∈ Xi(Ωi) is the solution of

âi(Ĥiu, vi) = 0 vi ∈
o

Xi(Ωi),(3.8)

ui on ∂Ωi and uj on Fji ⊂ ∂Ωj are given(3.9)

where uj are given on Fji = ∂Ωi ∩ ∂Ωj and

âi(ui, vi) ≡ ρi(∇ui,∇vi)L2(Ωi) +
∑

Fij⊂∂Ωi

ρij

lij
(
∂vi

∂n
, uj − ui)L2(Fij).(3.10)
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Note that (3.8) - (3.9) has a unique solution. To see this, let us rewrite (3.8) in the
form

ρi(∇Ĥiu,∇ϕk
i )L2(Ωi) = −

∑
Fij⊂∂Ωi

ρij

lij
(
∂ϕk

i

∂n
, uj − ui)L2(Fij)(3.11)

where ϕk
i are nodal basis functions of

o

Xi (Ωi) associated with interior nodal points
xk of the hi-triangulation of Ωi. Note that ∂ϕk

i

∂n does not vanish on ∂Ωi when xk is
an interior node close to ∂Ωi. We see that Ĥiu is a special extension into Ωi of u
given on ∂Ωi and on the Fji and therefore it depends on the values of uj given on
Fji = ∂Ωi∩∂Ωj , and on F0i we already had assumed uj = 0 for j = 0. Note that Ĥiu
is the discrete harmonic except on nodal points close to ∂Ωi. We will call sometimes
Ĥiu as discrete harmonic in special sense, i.e. in the sense of âi(., .) or Ĥi. We set
that Ĥu = {Ĥiu}N

i=1 ∈ Xh(Ω).
Note that (3.8) is obtained from

ah(Ĥu, v) = 0(3.12)

for u ∈ Xh(Ω) and when taking v = {vi}N
i=1 ∈

o

Xh(Ω). It is easy to see that Ĥu =
{Ĥiu}N

i=1 and P̂ u = {P̂iui}N
i=1 are orthogonal in the sense of ah(., .), i.e.

ah(Ĥu, P̂ v) = 0, u, v ∈ Xh(Ω).(3.13)

In addition,

HĤu = Hu, ĤHu = Ĥu(3.14)

since Ĥu and Hu do not change the values of u on all the nodes on boundaries of the
subdomais Ωi also denoted by

Γ = (∪i∂Ωihi).(3.15)

We note that definition of Γ includes the nodes on both side of ∪i∂Ωi.
We are now in the position to derive a Schur complement problem for (2.2). Let

us apply the decomposition (3.6) into (2.2). We get

ah(Ĥu∗h + P̂ u∗h, Ĥvh + P̂ vh) = f(Ĥvh + P̂ vh)

or

ah(Ĥu∗h, Ĥvh) + 2ah(Ĥu∗h, P̂ vh) + ah(P̂ u∗h, P̂ vh) = f(Ĥvh) + f(P̂ vh).

Using (3.7) and (3.12) we have

ah(Ĥu∗h, Ĥvh) = f(Ĥvh), vh ∈ Xh(Ω).(3.16)

This problem is the Schur complement problem for (2.2). We denote the space Vh(Γ)
or in short notation V as the set of all functions vh in Xh(Ω) such P̂ vh = 0, i.e. the
space of discrete harmonic functions in the sense of the Ĥi. We rewrite the Schur
complement problem as:
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Find u∗h ∈ Vh(Γ) such that

s(u∗h, vh) = g(vh), vh ∈ Vh(Γ)(3.17)

where here and below u∗h ≡ Ĥu∗h, and

s(uh, vh) = ah(Ĥuh, Ĥvh), g(vh) = f(Ĥvh).(3.18)

This problem has a unique solution.

4. Technical tools. A goal is to design and analyze a Neumann-Neumann (N-N)
method for solving (3.17). This will be done in next section. We now introduce some
notations and facts used for that. Let u = {ui}N

i=1 ∈ Xh(Ω) and v = {vi}N
i=1 ∈ Xh(Ω).

Let

di(ui, vi) ≡ ρi(∇ui,∇vi)L2(Ωi) +
∑

Fij⊂∂Ωi

δ

lij

ρij

hi
(uj − ui, vj − vi)L2(Fij)(4.1)

and

dh(u, v) =
N∑

i=1

di(u, v).(4.2)

Note that for u, v ∈
o

Xh(Ω)

di(u, v) = ai(u, v) = ρi(∇ui,∇vi)L2(Ωi)(4.3)

and for u ∈ Xh(Ω)

C0dh(u, u) ≤ ah(u, u) ≤ C1dh(u, u)(4.4)

in view of Lemma 2.1, where C0 and C1 are positive constants independent of hi, Hi

and ρi. The next lemma shows the equivalence between discrete harmonic functions
in the sense H and in the sense Ĥ, and therefore we can take advantage of all the
discrete Sobolev results known for H discrete harmonic extensions.

Lemma 4.1. For u ∈ Xh(Ω)

dh(Hu,Hu) ≤ dh(Ĥu, Ĥu) ≤ Cdh(Hu,Hu)(4.5)

where Hu = {Hiui}N
i=1 and Ĥu = {Ĥiu}N

i=1 are defined by (3.2) - (3.3) and (3.8) -
(3.9) respectively, where C is a positive constant independent of hi, u, ρi and Hi.

Proof. We note that P and H are projections in the sense of dh(., .) while P̂ and
Ĥ are projections in the sense of ah(., .). Therefore, the LHS of (4.5) follows from
properties of minimum energy of discrete harmonic extensions in the dh(., .) sense. To
prove RHS of (4.5) note that

dh(Ĥu, Ĥu) = dh(Ĥu,HĤu + P Ĥu) = dh(Ĥu,Hu)) + dh(Ĥu, P Ĥu)(4.6)

in viev of (3.14). The first term is estimated as

dh(Ĥu,Hu) ≤ εdh(Ĥu, Ĥu) +
1
4ε

dh(Hu,Hu),(4.7)
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with arbitrary ε > 0. To estimate the second term of RHS of (4.6) note that for

v ≡ P Ĥu ∈
o

X(Ω) and using (3.11), we get

dh(Ĥu, v) =
N∑

i=1

ρi(∇Ĥiui,∇vi)L2(Ωi)(4.8)

= −
N∑

i=1

∑
Fij⊂∂Ωi

ρij

lij
(
∂vi

∂n
, uj − ui)L2(Fij).

The terms of RHS of (4.8) are estimated as

|ρij(
∂vi

∂n
, uj − ui)L2(Fij)| ≤ ρij ‖

∂vi

∂n
‖L2(Fij)‖ ui − uj ‖L2(Fij)

≤ C
ρij

h
1/2
i

‖ ∇vi ‖L2(Ωi)‖ ui − uj ‖L2(Fij)

≤ C{ερij ‖ ∇vi ‖2
L2(Ωi)

+
ρij

4εhi
‖ ui − uj ‖2

L2(Fij)
}

≤ C{2ερi ‖ ∇vi ‖2
L2(Ωi)

+
ρij

4εhi
‖ ui − uj ‖2

L2(Fij)
},

where we have used that ρij ≤ 2ρi. Substituting this into (4.8), we get

dh(Ĥu, v) ≤ C
N∑

i=1

{2ερi ‖ ∇PiĤiui ‖2
L2(Ωi)

+
ρij

4hiε

∑
Fij⊂∂Ωi

‖ ui − uj ‖2
L2(Fij)

},

(4.9)
and using

‖ ∇PiĤiui ‖L2(Ωi)≤‖ ∇Ĥiui ‖L2(Ωi),

we obtain

dh(Ĥu, v) ≤ C{εdh(Ĥu, Ĥu) +
1
4ε

dh(Hu,Hu)},(4.10)

and then

dh(Ĥu, Ĥu) ≤ C{εdh(Ĥu, Ĥu) +
1
4ε

dh(Hu,Hu)}.

Choosing now ε sufficiently small, the RHS of (4.5) follows.

5. Neumann-Neumann method. We design and analyze Neumann-Neumann
(N-N) methods for solving (3.17); see [6, 9]. For that we follow the general framework
of ASM; see [10], and stated in the next lemma. The operators Ii and T , the bilinear
forms bi and the spaces Vi are defined on the next subsections while the space V and
bilinear form ah are the same as above.

Lemma 5.1. Suppose the following three assumptions hold:
i) There exists a constant C0 such that for all u ∈ V there exists a decomposition

u =
∑N

i=0 Iiui, ui ∈ Vi with

N∑
i=0

bi(ui, ui) ≤ C2
0ah(u, u).
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ii) There exist constants εi,j , i, j = 1, . . . , N such that

ah(Iiui, Ijuj) ≤ εi,jah(Iiui, Iiuj)1/2ah(Ijuj , Ijuj)1/2, ∀ui ∈ Vi ∀uj ∈ Vj .

iii) There exists a constant ω such that

ah(Iiu, Iiu) ≤ ωbi(u, u) ∀u ∈ Vi, i = 0, . . . , N.

Then, T is invertible and

C2
0ah(u, u) ≤ ah(Tu, u) ≤ (ρ(ε) + 1)ωah(u, u), ∀u ∈ V.

Here, ρ(ε) is the spectral radius of the matrix ε = {ε}N
i,j=1.

5.1. Local spaces Vi. Let us denote Vi(Γi), in short notation Vi, as the vector
space defined by the nodal values on ∂Ωi and by nodal values on the neighboring
faces of Ωi, i.e. on Fji ⊂ ∂Ωj , where Fij = Fji = ∂Ωi ∩ ∂Ωj . We denote such nodes
by Γi. We note that we do include the nodal values of ∂Fji (which are vertices of
Ωj) as degrees of freedom of Vi. We denote by u ∈ Vi, if u = {u(i)

l }l∈#(i), where #(i)
is the index set composed of i and the j indices where Fij is a face of ∂Ωi, where the
function u

(i)
i is u restricted to ∂Ωi and the function u

(i)
j is u restricted to Fji. To

simplify notation we also use u = {ul} ∈ Vi to refer to a function defined on Γi, and
u = {ui} ∈ V to refer to a function defined on all Γ.

Let us define the regular zero extension operator Ĩi : Vi → V as follows: Given
u ∈ Vi, let Ĩiu be equal to u on nodes Γi and zero on Γ\Γi. Then we associate with
each Ωk, k = 1, · · · , N , the discrete harmonic function uk inside each Ωk in the sense
of Ĥk, see (3.8) and (3.9).

5.2. Master and slave sides. We first classify faces Fij = ∂Ωi ∩∂Ωj , common
to Ωi and Ωj , as master and slave. The face Fij is master if hi ≥ hj and denoted by
γij and slave if hi < hj and denoted by δij . Here hi and hj are parameters of the
hi- and hj- triangulation of Fij ⊂ ∂Ωi and Fji ⊂ ∂Ωj , Fij = Fji, respectively. We
consider in the analysis Fi0 as the master side.

ASSUMPTION M: hi ≥ hj if and only if ρi ≥ ρj

5.3. Weighted prolongation operators Ii. We associate with each Ωi, i =
1, · · · , N , the weighting diagonal matrices D(i) = {D(i)

l }l∈#(i) on Γi as follows:
• On ∂Ωi (l = i)

D
(i)
i =

 1 x ∈ γijhi ⊂ ∂Ωi,
0 x ∈ δijhi ⊂ ∂Ωi,
1 x ∈ νi ⊂ ∂Ωi

(5.1)

where γijhi
and δijhi

are the sets of nodal points of γij ⊂ ∂Ωi and δij ⊂ ∂Ωi,
respectively; νi is the set of vertices of Ωi.

• On ∂Ωj (l = j, Fij = Fji = ∂Ωi ∩ ∂Ωj)

D
(i)
j =

 0, x ∈ γjihj
⊂ ∂Ωj , γji = δij , δij ⊂ ∂Ωi,

1, x ∈ δjihj
⊂ ∂Ωi,

0, x ∈ (∂γjihj
∪ ∂δjihj

)
(5.2)

where for Fi0 ∈ ∂Ω we set D
(i)
j = 0.
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The extension operators Ii : Vi → V , i = 1, . . . , N are defined as

Ii = ĨiD
(i).(5.3)

5.4. Coarse space and subspace decomposition. Note that
N∑

i=1

IiĨ
T
i = IΓ(5.4)

is a partition of unity on every node of Γ, where IΓ is the identity operator on Γ. The
coarse space V0 ⊂ V and its coarse basis functions Θ(i) are introduced as follows:

V0 = Span{Θ(i)}N
i=1,(5.5)

where Θ(i) = IiΦ(i) where Φ(i) ∈ Vi is defined as follows: If the substructure Ωi does
not share a face with the boundary of Ω, i.e. when ∂Ωi ∩ ∂Ω has measure zero, then
we define Φ(i) to be equal to one at every node of Γi. Such substructure we denote
by NI substructure. If not, Ωi is a NB-substructure and we define Φ(i) equal to one
on the faces Fij and Fji that do not touch ∂Ω, the linear function decreasing from
one to zero on the faces Fij and Fji touching ∂Ω, and equal to zero on Fi0. Because
of the linearity, the function Φ(i) matches across Fij and Fji.

Let us denote I0 = IΓ, i.e. the identity operator on Γ. Hence, V can be decom-
posed as

V =
N∑

i=0

IiVi.(5.6)

We now define bilinear form b0 as

b0(u, v) = (1 + log
H

h
)−1dh(Hu,Hv), u, v ∈ V0.(5.7)

Remark 5.1. Other choices of coarse problems can be considered. We can replace
the bilinear form (5.7) to

b0(u, v) = (1 + log
H

h
)−1ah(Ĥu, Ĥv), u, v ∈ V0(5.8)

and the analysis will follow straightforwardly from the analysis for (5.7) and using
(4.4) and (4.5).

In the case when Ωi are triangles, we can replace the space V0 by conforming
continuous piecewise linear functions on the coarse triangulation associated to Γ, i.e.
the functions are linear and matching on Fij and Fji and continuous at the vertices
of the substructures, and vanishing on ∂Ω. Theorem 5.2, see below, is valid for this
variant of method when the coefficient ρi are quasimonotonic, see [5]. In the proof
u0 ∈ V0 is defined by values at common vertices xk of the substructures which are
equal to an algebraic average values of ui over faces of Ωi with xk as common vertex.

5.5. Local bilinear forms. For i = 1, · · · , N , and for u = {ul} ∈ Vi and
v = {vl} ∈ Vi define

bi(u, v) =
∫

Ωi

ρi∇Hiui∇Hividx +
ρi

H2
i

∫
Ωi

(Hiui)(Hivi)dx +(5.9)

+
∑

Fij⊂∂Ωi

δ
ρij

hij

∫
Fij

(uj − ui)(vj − vi)ds,
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where hij = 2hihj/(hi+hj) is the harmonic average of hi and hj . For a face Fi0, we let
hij = hi, and again ρij = ρi and vj = uj = 0, vi − vj = vi and ui − uj = 0. Note that
bi(., .) differs from di(., .) by the L2(Ωi) term and also by the factor multiplying the
penalty term, where here we add the factors from neighboring subdomains, see (4.1).
The addition of the L2(Ωi) term makes bi(u, u) a norm also in the case where ∂Ωi does
not touch the Dirichlet boundary of the original domain ∂Ω, and as a consequence
the local problems will be uniquely solvable.

Remark 5.2. In this paper we also consider the case where

bi(u, v) = ai(Hiui,Hivi) +
∑

Fij⊂∂Ωi

δ
ρij

hij

∫
Fij

(uj − ui)(vj − vi)ds.(5.10)

To fix the solvability issue of the local problems, where the constant functions might
be in the kernel, we replace Vi by the space of functions in Vi with zero average on
∂Ωi or in Ωi. The analysis developed here includes also this case; see Remark 6.1.

Remark 5.3. Like in Remark 5.2, a natural question to ask is if we can replace
the bilinear form (5.10) to

bi(u, v) = ai(Ĥiui, Ĥivi) +

+
ρij

lij

∑
Fij⊂∂Ωi

{
∫

Fij

∂Ĥiui

∂n
(vj − vi)ds +

∫
Fij

∂Ĥivi

∂n
(uj − ui)ds}+

+
∑

Fij⊂∂Ωi

∫
Fij

δ

lij

ρij

hi
(uj − ui)(vj − vi)ds(5.11)

and define a version of balancing domain decomposition as in ([9]). The answer is no
because we cannot estimate (6.8) with C independent of the ratio hi/hj. In addition,
we cannot replace the last term of (5.11) to∑

Fij⊂∂Ωi

∫
Fij

δ

2
ρij

hij
(uj − ui)(vj − vi)ds

since the associated bilinear form might not be positive definite whenever hi < hj,
except if we take δ ≥ 2δ0, where δ0 is given on Lemma 2.1, since we can use that
hij ≥ hi.

5.6. Projection-like operators. For i = 0, · · ·N , let T̃i : V → Vi be defined as

bi(T̃iu, v) = ah(u, Iiv), v ∈ Vi,(5.12)

and let Ti = IiT̃i. .

5.7. Preconditioner and main theorem. Find u∗h ∈ V such that

Tu∗h = gh(5.13)

where

T =
N∑

i=0

Ti(5.14)
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and

gh =
N∑

i=0

gi gi = Tiu
∗
h,

and u∗h is the solution of (3.17).
Theorem 5.2. Assume that Assumption M holds. Then there exist positive

constants C0 and C1 independent of hi,Hi and the jumps of ρi such that

C0ah(u, u) ≤ ah(Tu, u) ≤ C1(1 + log
H

h
)2ah(u, u) ∀u ∈ V.(5.15)

Here log(H/h) = maxi log(Hi/hi).
Remark 5.4.
Two other possible discretizations rather the one defined in Section 2 can be con-

sidered: In the first discretization, for the case where Ωi is a NB substructure, we
modify the space Xi(Ωi) as the discrete functions vanishing on Fi0. In the second dis-
cretization, for the case Ωi is such that ∂Ωi∩∂Ω 6= we modify the space Xi(Ωi) as the
discrete functions vanishing on ∂Ω. The essential difference of these two discretiza-
tions is that the first discretization does not assume that the Xi(Ωi) should vanish on
∂Ωi ∩ ∂Ω whenever Ωi touches ∂Ω at only a vertex. In the second discretization all
nodes of ∂Ωihi ∩ ∂Ω are not degrees of freedom of the problem, while in the first dis-
cretization, all nodes but those that ∂Ωihi touches ∂Ω at only a vertex are not degrees
of freedom. In both cases, the boundary terms and penalty terms on Fi0, see (2.6) and
(2.7), do not exist and are not required.

Neumann-Neumann methods can also be developed for those cases. For the first
discretization no changes are required for the coarse problem, and for the local problems
associated to NI substructures. For the local problems on NB substructurez Ωi we
simply eliminate all the degrees of freedom associated to the nodes on ∂Ωihi ∩∂Ωi and
Theorem 5.2 will hold with a similar proof. For the second discretization more changes
are required to design the preconditioner. For NI substructures that touch ∂Ω at just
one vertex, we modify V0 considering Φ(i) to be linear in the coarse trinagulation on
Γi and vanishing at that vertex, i.e. like what was done for NB substructures. The
space V and the nodes Γ now do not have any degrees of freedom on ∂Ω, and the
spaces Vi are defined as the space V restricted to Γi, where now the Γi do not include
nodes on ∂Ω. The definition of the D(i) also do not have any entrance associated
to nodes on ∂Ω. When proving Theorem 5.2, a technical problem will arise: How to
bound ūi in (6.26) for the case that Ωi touches ∂Ω at only one vertex? There are two
possibilitites for the analysis: If there exists a NB substructure Ωj where ρi ≤ ρj and
with a face Fij in common, then ūi can be estimated from the energy norm on Ωi and
on Ωj; in this case Theorem 5.2 holds. If not, a log factor in the estimation of ūi is
obtained and therefore, Theorem 5.2 will hold with three-logs.

6. Proof of Theorem 5.2. By the general theorem of ASMs we need to check
the three key assumptions of Lemma 5.1.
Assumption(ii). We need to prove that

ah(u, u) ≤ ωb0(u, u), u ∈ V0(6.1)

and for i = 1, · · · , N

ah(Iiu, Iiu) ≤ ωbi(u, u), u ∈ Vi(6.2)
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with ω ≤ C(1 + log H
h )2 where C is a positive constant independent of hi, Hi and ρi.

By Lemma 2.1 and Lemma 4.1

ah(Ĥu, Ĥu) ≤ Cdh(Ĥu, Ĥu) ≤ Cdh(Hu,Hu).(6.3)

where dh(., .) is defined by (4.2). The proofs of (6.1) and (6.2) then reduce to
dh(Hu,Hu) instead of ah(Ĥu, Ĥu).

The proof of (6.1) follows from the definition of b0, see (5.7), where

ah(Ĥu, Ĥu) ≤ Cdh(Hu,Hu) = C(1 + log
H

h
)b0(Hu,Hu)(6.4)

with ω ≤ C(1 + log H
h ).

We now prove (6.2). In order to simplify notations, all the functions are considered
as harmonic extensions in the H sense. Hence, we denote HIiu by Iiu and let u =
{ul}l∈#(i) ∈ Vi. Using (4.1), (4.2), (5.3) and (5.9) we have

dh(Iiu, Iiu) = di(D(i)u, D(i)u) +
∑

j

dj(D(i)u, D(i)u)(6.5)

where the sum is taken over Ωj with common faces to Ωi. We now estimate the two
RHS terms of (6.5) as follows:

di(D(i)u, D(i)u) =
∫

Ωi

ρi|∇D
(i)
i ui|2dx +(6.6)

+
∑

Fij⊂∂Ωi

δ

lij

ρij

hi

∫
Fij

(D(i)
i ui −D

(i)
j uj)2dx.

We now estimate the first term of (6.6). We have

ρi ‖ ∇D
(i)
i ui ‖2

L2(Ωi)
≤ 2ρi{‖ ∇(D(i)

i ui − ui) ‖2
L2(Ωi)

+ ‖ ∇ui ‖2
L2(Ωi)

}

and

ρi ‖ ∇(D(i)
i ui − ui) ‖2

L2(Ωi)
≤ C

∑
δij⊂∂Ωi

ρi ‖ ũi ‖2

H
1/2
00 (δij)

,

where ũi = ui at the interior nodal points of δij and ũi = 0 on ∂δij . It can be proved,
see for example [10], that

ρi ‖ ũi ‖2

H
1/2
00 (δij)

≤ C(1 + log
Hi

hi
)2ρi ‖ ui ‖2

H1(Ωi)
,(6.7)

where we have denoted

‖ ui ‖2
H1(Ωi)

=‖ ∇ui ‖2
L2(Ωi)

+
1

H2
i

‖ ui ‖2
L2(Ωi)

.

Remark 6.1. In the case we use the approach described in Remark 5.2, we use
the fact that ui has average zero on ∂Ωi and then use Friedrich’s inequality to obtain
semi-norm on the RHS of (6.7). See also (6.8) below and after (6.10).
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We now estimate the second term of (6.6) and (6.10). Note that for Fi0, i.e. for
faces on ∂ω, the estimates of the terms corresponding to Fi0 follow straightfowardly.
On a slave face Fij of ∂Ωi, i.e. where hi < hj and ρi < ρj , or on Fi0, we have

‖ D
(i)
i ui −D

(i)
j uj ‖2

L2(Fij)
≤ Chi max

Fij

|ui|2

hence,

ρij

hij
‖ D

(i)
i ui −D

(i)
j uj ‖2

L2(Fij)
≤ Cρi max

Fij

|ui|2 ≤ C(1 + log
Hi

hi
)ρi ‖ ui ‖2

H1(Ωi)
,

where we have used that ρij ≤ 2ρi, and since hi < hj we also have hij > hi.
On a master side Fij of ∂Ωi, i.e. where hi ≥ hj and ρi ≥ ρj , we have

‖ D
(i)
i ui −D

(i)
j uj ‖L2(Fij)≤‖ ui − uj ‖L2(Fij) + ‖ uj(0)ϕ0

j + uj(H)ϕH
j ‖L2(Fij),

where ϕ0
j and ϕH

j are the nodal basis functions on ∂Ωj associated to the endpoints of
the face Fji ≡ (0,H). Using a triangular inequality we have

‖ uj(0)ϕ0
j ‖L2(Fij)≤ C ‖ uj ‖L2(0,hj)≤ C(‖ ui ‖L2(0,hj) + ‖ ui − uj ‖L2(Fij))

and

‖ ui ‖2
L2(0,hj)

≤ C max
Fij

|ui|2hj ≤ Chj(1 + log
Hi

hi
) ‖ ui ‖2

H1(Ωi)
.

Using similar arguments for bounding ‖ uj(H)ϕH
j ‖L2(Fij), and using that ρij ≤ 2ρi,

and hi ≥ hj which implies hij ≥ hj , we obtain

ρij

hij
‖ D

(i)
i ui −D

(i)
j uj ‖2

L2(Fij)
≤ C(1 + log

Hi

hi
)bi(u, u),(6.8)

and the estimate

di(Iiu, Iiu) ≤ C(1 + log
Hi

hi
)2bi(u, u)(6.9)

follows.
We now estimate the second term of (6.6) dj(D(i)u, D(i)u) by bi(u, u). For u =

{ul} ∈ Vi we have

dj(D(i)u, D(i)u) = ρj ‖ ∇D
(i)
j uj ‖2

L2(Ωj)
+

δ

lij

ρij

hj

∫
Fij

(D(i)
i ui −D

(i)
j uj)2dx.(6.10)

We need to estimate the first term only since the second term has been already
estimated, see (6.8). If Fij is a slave side of ∂Ωi then D

(i)
j vanishes, and so vanishes

‖ ∇D
(i)
j uj ‖2

L2(Ωj)
. We now estimate the case where Fij is a master side of ∂Ωi and

it is not equal to Fi0. On Fji we decompose uj = wj + uj(0)ϕ0
j + uj(H)ϕH

j , where

wj = D
(i)
j uj . We have

‖ ∇wj ‖2
L2(Ωj)

≤ C ‖ wj ‖2

H
1/2
00 (Fji)

= C{|wj |2H1/2(Fji)
+

∫
Fji

w2
j

dist(s, ∂Fji)
ds}.(6.11)
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We estimate the first term of RHS of (6.11). Let Qj be the L2- projection on the hj-
triangulation of Fji. Using this we have

|wj |2H1/2(Fji)
≤ 2{|wj −Qjui|2H1/2(Fij)

+ |Qjui|2H1/2(Fij)
}(6.12)

≤ C{ 1
hj

‖ wj − ui ‖2
L2(Fij)

+ ‖ ∇ui ‖2
L2(Ωi)

}

and

‖ wj − ui ‖2
L2(Fij)

≤ 2 ‖ uj − ui ‖2
L2(Fij)

+2 ‖ uj(0)ϕ0
j + uj(H)ϕH

j ‖2
L2(Fij)

(6.13)

where the second term of the RHS of (6.13) can be bounded as before and using the
fact that ρj ≤ ρi.

It remains to estimate the second term of (6.11). We have∫
Fji

w2
j

dist(s, ∂Fji)
ds ≤ C{

∫ H/2

0

w2
j

s
ds +

∫ H

H/2

w2
j

(H − s)
)ds}.(6.14)

Let us estimate the first term of RHS of (6.14). We have

∫ H/2

0

w2
j

s
ds =

∫ hj

0

w2
j

s
ds +

∫ H/2

hj

u2
j

s
ds

≤ C{u2
j (hj) +

∫ H/2

hj

u2
i − u2

j

s
ds +

∫ H/2

hj

u2
i

s
ds}

≤ C{u2
j (hj) +

1
hj

‖ ui − uj ‖2
L2(Fji)

+(1 + log
Hj

hj
) max

Fij

|ui|2}

≤ C{ 1
hj

‖ ui − uj ‖2
L2(Fij)

+(1 + log
Hi

hi
)(1 + log

Hj

hj
) ‖ ui ‖2)H1(Ωi)}.

The second term of (6.14) is estimated similarly. Substituting these estimates to
(6.14) we get∫

Fji

u2
j

dist(s, δFji)
ds ≤ C{(1 + log

H

h
)2(‖ ∇ui ‖2

L2(Ωi)
+(6.15)

+
1

H2
i

‖ ui ‖2
L2(Ωi)

) +
1
hj

‖ ui − uj ‖2
L2(Fij)

}.

In turn, substituting (6.12) and (6.15) into (6.11), and the resulting estimate and
(6.8) into (6.10) we get

dj(D(i)u, D(i)u) ≤ C(1 + log
H

h
)2bi(u, u).(6.16)

Using (6.9) and (6.16) into (6.2), we get

dh(u, u) ≤ C(1 + log
H

h
)2bi(u, u).

The proof of Assumption(ii) is complete.
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Assumption(iii) We need to prove that

ah(Iiu
(i), Iju

(j)) ≤ Cεija
1/2
h (Iiu

(i), Iiu
(i)) a

1/2
h (Iju

(j), Iju
(j))(6.17)

for u(i) ∈ Vi and u(j) ∈ Vj , i, j = 1, · · · , N, and the spectral radius of ε =
{εij}N

i,j=1, %(ε), is bounded. In our case %(ε) ≤ C with constant independent of
hi and Hi. This follows from the fact that u(i) and u(j) are different from zero on Ωi

and Ωj and their neighbor substructures.
Assumption(i) By Lemma 2.1 and Lemma 4.1, we need to prove that for u =

{ui}N
i=1 ∈ V there exist v(0) ∈ V0 and v(i) ∈ Vi such that

v(0) +
N∑

i=1

Iiv
(i) = u(6.18)

and

b0(v(0), v(0)) +
N∑

i=1

bi(v(i), v(i)) ≤ Cdh(u, u)(6.19)

where C is independent of hi and Hi.
We first set

v(0) =
N∑

i=1

ūiΘ(i), ūi =
1
|Ωi|

∫
Ωi

uids(6.20)

where u = {ui}N
i=1 ∈ V . We note that another possibility would be to define ūi as

the average of ui on ∂Ωi or a face of it. The v(0) also can be represented, see (5.5), as

v(0) =
N∑

i=1

IiūiΦ(i).

Using the partition of unity (5.4) we compute

w ≡ u− v(0) =
N∑

i=1

Ii(ĨT
i u− ūiΦ(i)),(6.21)

and define

v(i) ≡ ĨT
i u− ūiΦ(i),

i.e. v(i) = {v(i)
l }l∈#(i) ∈ Vi is defined as v

(i)
i = ui − ūiΦ

(i)
i on ∂Ωi, v

(i)
j = uj − ūiΦ

(i)
j

on neighboring faces Fji including also the nodes on ∂Fji.
By Lemma 7.1, see below, we have

b0(v(0), v(0)) = (1 + log
H

h
)−1dh(v(0), v(0)) ≤ Cdh(u, u).(6.22)

It remains to estimate bi(v(i), v(i)) for i = 1, · · · , N . We have

bi(v(i), v(i)) ≤ C{ρi ‖ ∇Hi(u
(i)
i − ūiΦ

(i)
i ) ‖2

L2(Ωi)
+(6.23)

+
ρi

H2
i

‖ Hi(u
(i)
i − ūiΦ

(i)
i ) ‖2

L2(Ωi)
+

∑
Fij⊂∂Ωi

δ
ρij

hij
‖ u

(i)
i − u

(i)
j ‖2

L2(Fij)
},
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where we note that we have used in the last term of the LHS of (6.23) that Φ(i)
i = Φ(i)

j

on the faces Fij and Fji and Φ(i)
i vanishes on faces of ∂Ωi ∩ ∂Ω. If Ωi is a NI

substructure, i.e. it does not share a face with ∂Ω, the function Φ(i)
i is the constant

equal to one and using Poincaré’s inequality we obtain

‖ Hi(ui − ūiΦ
(i)
i ) ‖2

L2(Ωi)
≤ CH2

i ‖ ∇Hiui ‖2
L2(Ωi)

.(6.24)

When Ωi is a NB substructure, then

‖ ∇Hi(ui − ūiΦ
(i)
i ) ‖2

L2(Ωi)
≤ 2 ‖ ∇Hi(ui − ūi) ‖2

L2(Ωi)
+(6.25)

+ 2ū2
i ‖ ∇Hi(1− Φ(i)

i ) ‖2
L2(Ωi)

.

To estimate the second term of (6.25), we use that 1 − Φ(i)
i is linear on the faces of

∂Ωi and vanishes in one of them and minimum energy arguments to have

‖ Hi(1− Φ(i)
i ) ‖2

L2(Ωi)
≤ C.

To bound ūi, we consider ūi0 the average of ui on Fi0 and we use a Poincaré inequality
to obtain

ū2
i ≤ C ‖ ∇Hiui ‖2

L2(Ωi)
+2ū2

i0,(6.26)

and using that

ū2
i0 ≤

C

Hi
‖ui‖2

L2(Fi0)

and Hi ≥ hi we obtain

‖ ∇Hi(ui − ūiΦ
(i)
i ) ‖2

L2(Ωi)
≤ C{‖ ∇Hiui ‖2

L2(Ωi)
+

1
hi
‖ui‖2

L2(Fi0)
},(6.27)

and then use Poincaré inequality to bound the first term of the RHS of (6.23). An
estimate of the last term of (6.23) is obvious and the proof of Theorem 5.2 is complete.

7. Auxiliary lemma. Let u0 ∈ V0 be defined for u = {ui}N
i=1 ∈ V as

u0 =
N∑

i=1

ūiΘ(i), ūi ≡
1
|Ωi|

∫
Ωi

uids.(7.1)

Lemma 7.1. Assume that Assumption M holds. Then for u0 defined by (7.1)
holds

dh(u0, u0) ≤ C(1 + log
H

h
)dh(u, u)(7.2)

where C is independent of hi, Hi and the jumps of ρi

Proof By Lemma 4.1 the estimate (7.2) is enough to prove for Hu0 = {Hiu
0
i }N

i=1.
Let us below denote Hu0 by u0. We have

dh(u0, u0) =
N∑

i=1

{ρi ‖ ∇u0
i ‖2

L2(Ωi)
+

∑
Fij⊂∂Ωi

δ
ρij

hij
‖ u0

i − u0
j ‖2

L2(Fij)
}.(7.3)
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We estimate the first term. Note that on ∂Ωi

u0 = ūiΘ
(i)
i +

∑
δij⊂∂Ωi

ūjΘ
(j)
i(7.4)

and

ūiΦ
(i)
i = ūiΘ

(i)
i +

∑
δij⊂∂Ωi

ūiΘ
(j)
i .(7.5)

Note that

‖ ∇u0
i ‖2

L2(Ωi)
= ‖ ∇(u0

i − ūi) ‖2
L2(Ωi)

≤

≤ 2 ‖ ∇(u0
i − Φ(i)

i ūi) ‖2
L2(Ωi)

+ 2ū2
i ‖ ∇(1− Φ(i)

i ) ‖2
L2(Ωi)

.(7.6)

When Ωi is a NI substructure, the second term of (7.6) vanishes, otherwise we can
use similar arguments as in (6.27) and show that

ū2
i ‖ ∇(1−HiΦ

(i)
i ) ‖2

L2(Ωi)
≤ C{‖ ∇Hiui ‖2

L2(Ωi)
+

1
Hi
‖ui‖2

L2(Fi0)
}.

To bound the first term of (7.6), we use (7.4) and (7.5) to have

‖ ∇(u0
i − Φ(i)

i ūi) ‖2
L2(Ωi)

≤ C
∑

δij⊂∂Ωi

(ūi − ūj)2 ‖ Θ(j)
i ‖2

H
1/2
00 (δij)

≤

≤ C(ūi − ūj)2(1 + log
Hi

hi
)(7.7)

since

‖ Θ(j)
i ‖2

H
1/2
00 (δij)

≤ C(1 + log
Hi

hi
).

Let for Fij = Fji, Fij ⊂ ∂Ωi, Fji ⊂ ∂Ωj

ūiFij
=

1
|Fij |

∫
Fij

uids, ūjFji
=

1
|Fji|

∫
Fji

ujds.

Using this we get

(ūi − ūj)2 ≤ C{(ūi − ūiFij
)2 + (ūiFij

− ūjFji
)2 + (ūjFji

− ūj)2 ≤(7.8)

≤ C{‖ ∇ui ‖2
L2(Ωi)

+
1

hij
‖ ui − uj ‖2

L2(Fij)
+ ‖ ∇uj ‖2

L2(Ωj)
}.

We have used Poincare’ inequality and that Hi ≥ hij

(ūiFij
− ūjFji

)2 ≤ C
1

H2
i

(ui − uj , 1)2L2(Fij)
≤ C

1
Hi
‖ui − uj‖2

L2(Fij)
.

Substituting (7.8) into (7.7), and using that on δij we have ρi ≤ ρj , and we obtain

ρi ‖ ∇u0
i ‖2

L2(Ωi)
≤ C(1 + log

Hi

hi
){ρi ‖ ∇ui ‖2

L2(Ωi)
+ρj ‖ ∇uj ‖2

L2(Ωj)
+(7.9)

+
ρij

hij
‖ ui − uj ‖2

L2(Fij)
}.
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We now estimate the second term of (7.3). Let Fij = γij , i.e. Fij be the master
side. Note that for Fi0 the estimate is obvious. For the remaining we have

u0
i − u0

j = ūiΘ
(i)
i − (ūjΘ

(j)
j + ūiΘ

(i)
j ) = (ūi − ūj)Θ

(j)
j ,(7.10)

therefore

1
hij

‖ u0
i − u0

j ‖2
L2(Fij)

=
1

hij
(ūi − ūj)2 ‖ Θ(j)

j ‖2
L2(Fij)

≤ C(ūi − ūj)2

since

‖ Θ(j)
j ‖2

L2(Fij)
≤ hj(7.11)

and hj ≤ hi and hij ≥ hj . Using (7.8) and that ρij ≤ ρi and ρij ≤ 2ρj , we get

ρij

hij
‖ u0

i − u0
j ‖2

L2(Fij)
≤ C{ρi ‖ ∇ui ‖2

L2(Ωi)
+ρj ‖ ∇uj ‖2

L2(Ωj)
+

+
ρij

hij
‖ ui − uj ‖2

L2(Fij)
}.(7.12)

Let Fij = δij , i.e Fij be the slave side. In this case (7.10) reduces to

u0
i − u0

j = (ūi − ūj)Θ
(i)
i

therefore we get

ρij

hij
‖ u0

i − u0
j ‖2

L2(Fij)
=

ρij

hij
(ūi − ūj)2 ‖ Θ(i)

i ‖2
L2(Fij)

≤(7.13)

≤ Cρij(ūi − ūj)2 ≤ C{ρi ‖ ∇ui ‖2
L2(Ωi)

+ρj ‖ ∇uj ‖2
L2(Ωj)

+

+
ρij

hij
‖ ui − uj ‖2

L2(Fij)
}

in view of (7.11) for δij ⊂ ∂Ωi and (7.8).
Substituting (7.9), (7.13) into (7.3) we get (7.2). The proof of Lemma 7.1 is

complete.
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