A NEUMANN-NEUMANN METHOD FOR DG DISCRETIZATION
OF ELLIPTIC PROBLEMS
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Abstract. A discontinuous Galerkin (DG) discretization of Dirichlet problem for second order
elliptic equations with discontinuous coefficients in the 2-D is considered. For this discretization,
a Neumann-Neumann (N-N) algorithm is designed and analyzed as an additive Schwarz method
(ASM). The coarse spaces is defined usinga special partition of unity. The method is almost optimal
under the natural assumption on the triangulation. Its rate of convergence is independent of jumps
of coefficients. The method is well suited for parallel computations.
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1. Introduction. In this paper, discontinuous Galerkin approximation of ellip-
tic problems with discontinuous coefficients is considered. The problem is considered
in a polygonal region €2 which is a union of disjoint polygonal subregions 2;. The
discontinuities of the coefficients occur across 0€2;. The problem is approximated by
a conforming finite element method (FEM) on matching triangulation in each €; and
nonmatching one across 9€2;. This kind of triangulation and composite discretization
are motivated first of all by the regularity of the solution of the problem being dis-
cussed. Discrete problems are formulated using DG methods, symmetric and with
interior penalty terms on the 0€;; see [1, 2, 4]. A goal of this paper is to design
and analyze Neumann-Neumann (N-N) algorithms for the resulting discrete problem;
see [6, 9] and also [10]. The first step, the problem is reduced to the Schur comple-
ment problem with respect to unknowns on 9€);, for i = 1,..., N. For that discrete
harmonic functions defined in a special way are used. The method is designed and
analyzed for the Schur complement problem using the general theory of ASMs; see
[6, 10]. The local problems are defined on §; and faces of 9€2; which are common to
;. The coarse space is defined using a special partitioning of unity with respect to
; and introducing master and slave sides of substructures. A side F;; = 0Q; N 0%Q; is
master when p; > p;, otherwise it is slave, so if F;; C 0€); is master then Fj; C 09,
F;; = Fj;, is slave. The h;— and h;— triangulations on Fj; and F};, respectively,
are built in a way that h; > h; if p; > p; where h; and h; are the parameters of
these triangulations. It is proved that the algorithm is almost optimal and its rate of
convergence is independent of h; and h;, the number of subdomains €2; and the jumps
of coefficients. The algorithm is well suited for parallel computations and it can be
straitforwardly extended to the problems in 3 — D cases.

DG methods are becoming more and more popular for approximation of PDEs;
see [1, 2] and literature therein. There are also several papers devoted to algorithms
for solving the resulting discrete problem, in particular domain decomposition meth-
ods. We first mention [7] and [8] where composite discretization similar to those
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discussed in this paper are considered. In these papers overlapping Schwarz and
Neumann-Dirichlet methods were proposed and analyzed for DG discretization of el-
liptic problems with continuous coefficients. In [4] for the considered discrete problem,
a multilevel ASM is designed and analized but it is not optimal. In [3] a two-level
ASM is proposed and analyzed for DG discretization of fourth order problems. For our
knowledge N-N algorithms for DG discretization of elliptic problems with continuous
and discontinuous coefficients have not been analyzed in literature.

The paper is organized as follows. In Section 2 the differential problem and its DG
discretization are formulated. In Section 3 the Schur complement problem is derived
using descrite harmonic function in a special way. Sections 4 and 5 are devoted to
designing a N-N algorithm while Section 6 is devoted to the proof of the main result,
Theorem 5.2. In Section 7 auxiliary results are proved for the used coarse space.

2. Differential and discrete problems.

2.1. Differential problem. Find u* € Hg(Q) such that
(21) a(U*av) = f('U)a CAS H(}(Q)

where

N
= s VuVudz, = dx.
a(u,v) ;/Qp uVudz, f(v) /va x

We assume that Q = UN Q; and the substructures €; are disjoint shaped regular
polygonal subregions of diameter H; and form a geometrical conforming partition of
2, i.e. Vi # j the intersection 02; N 0€2; is empty or is a common vertex or face of
082 and 09;. We assume that f € L?(Q2) and the coefficients p; are constants larger
than a positive constant pg what guarantee that the problem is well posed in H} ().

2.2. Discrete problem. Let us introduce the shape regular triangulation in
each ); with triangular elements and h; as the mesh parameter. The resulting trian-
gulation on  is in general nonmatching across 9€);. Let X;(£2;) be a finite element
(FE) space of piecewise linear continuous functions 2;. Note that we do not assume
that functions in X;(£2;) vanish on 9; N 9€; see Remark 5.4 for others variations.
Define

Xh(Q) = Xl(Ql) X oo X XN(QN).

A discrete problem obtained by DG method, see [1, 2, 4], is of the form:
Find uj € X,(12) such that

(2.2) ap(uf,v) = f(v), veXu(Q)
where

N
(2.3) ap(u,v) = Z a;(u, v) + $q(u, v) + sp(u,v).

i=1

Here for u = {u;}¥; € X;,(Q) and v = {v;}; € Xx(Q)

(2.4) ai(u,v)z/inuinidx,
Q;
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3 pij Ou;  Ouy
2. by Ou Ouy.
(2.5) Z; I /F 5 (5t 5,0 (0 — vi)ds

where Fj; = 0€Q; N 0Q; is the common face of 0€; and 0€; and let I;; = 2. We
also include Fjy = 0€; N 02 whenever it has positive measure and let I;0 = 1. The
index [;; says how many subdomains shares F;;. The a% denotes the normal outward
derivative on 0€; and p;; = 2p;p;/(pi + p;) the harmonic average of p; and p; when
j # 0and p;p = p;. To make the notatlon even more compact, when j = 0 we take
u; =0 and v; = %7# and 2 6n = %ﬁ;. We note that when p;; is given by
harmonic average, min{pi,pj} < pi; < max{p;, p;}, and also p;; < 2p; and p;; < 2p;
The bilinear form s,(.,.) also can be written as

(2.6) (u,v) = Z / 8% —v;)ds + gvl( u;)ds}

F;;Co%;

where the term i(%,uj —u;i)2(Fy,) on Fy; C 08y has been added (Fj; = Fy;) to
3= %1; ,V; — V;)£2(F;,) and replacing -2 to 99 by —2 to 9. In a similar way we

proceed with the term i(%, U; — ui)Lz(Fji). The penalty term is given as

(2.7) (u,v) Z Z / d pl_] —u;)(vj —v;)ds

lis
i=1 F,;cos,; ’ Fis " hi

where ¢ is a penalty positive parameter. It is known that there is §o = O(1) > 0 such
that for § > dp the problem (2.2) has a unique solution. An error bound of the method
is optimal for p; = 1, see [1, 2], but is not for discontinuous coeflicients, see [4]. In the
later case the error is O(h%/?) only in the H'— broken norm if the solution of (2.1)
u* € H?’/Q"’E(Q)7 with € > 0. On the other hand we cannot expect more regularity
of u* in the case of discontinuous coefficients in a general case. In the discretization
of sq(.,.) and sp(.,.), see (2.6) and (2.7), we use the harmonic average of p; and p;,
pij = 2pipj/(pi + p;) instead of p; and p;. In the case of jump on the coefficients
across interfaces, it is a natural way of using it.

We introduce the so-called broken norm in X, () with weights given by p; and
pij- For u = {u;} € X,(Q) define

N
0 pij
28)  lulfa= Yoo Ve oy + 30 52 [ tw—uPas)
(2

i1 Fyyco0, W M JFi;
LEMMA 2.1. There exists 6o > 0 such that for 6 > &y and u € X (Q)
(2.9) vl wlp< an(u,u) < M|},

where v and M are positive constants independent of the p;, h; and H;.
For the proof see, for example [4].

3. Schur complement problem. In this section we derive a Schur complement
problem for the problem (2.2). We first introduce some auxiliary notations.
Let uw = {u;} € Xp(Q) be given. We can represent u; as

(3.1) w; = Hiu; + Pu;
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where H,u; is the discrete harmonic part of u; in the sense of a,(.,.), see (2.4), i.e.

(3.2) ai(Hiui,vi) =0 v; € )%i(Qi)

(3.3) Hiu; =u; on 0,
while P;u; is the projection of u; on )O(Z (€%;) in the sense of a;(.,.), i.e.
(3.4) ai(Prui, vi) = ai(ui, ), v € Xo(S).

Here )O(l (€;) is a subspace of X;(€;) of functions which vanish on 99;, and H;u;

is the classical discrete harmonic part of u;. Let us denote )O(h Q) = {)O(Z(QZ) N
to be a subspace of X}, () and consider the global projections Hu = {H,u;}, and

Pu={Pu;}Y, : Xn(Q) — X () in the sense of Zi\; a;(.,.). A function u € X3 ()
can therefore be decomposed as

(3.5) u = Hu+ Pu.
The function u € X5 (£2) can also be represented as
(3.6) u = Hu+ Pu

where Pu = {Pu; }Y, : X,(Q) — )%h(Q) is the projection in the sense of a(.,.), the

original bilinear form of (2.2), see (2.3). Since Pu; € )%Z(Q,) and v; € )O(z(Ql), we
have

ai(f)iu, v;) = ap(u,v;).

The discrete solution of (2.2) can be decomposed as uj = ﬂu; + Puz To find
pu’,; we need to solve the following set of usual discrete Dirichlet problems:

Find Piuj € )O(Z(Q) such that

(3.7) ai(Pui,v;) = f(v), v; € )O(z'(Qi)

fori=1,---,N. Note that these problems are local and independent, so they can be
solved in parallel. This is a precomputational step.

We now formulate the problem for Hu}; Let H;u be the discrete harmonic part
of u in the sense of a;(.,.), where Hou € X;(€;) is the solution of

(38) (AZZ(":[Z’LL,UZ) =0 Vi € )O(Z(QZ),

(3.9) u; on 0; and wu; on Fj C0Q; aregiven
where u; are given on Fj; = 0Q; N 0§ and

N ij  OV;
(3.10)  ai(ui,vi) = pi(Vuy, Voi) ooy + Y Q(%,uj —Ui)L2(Fy)-

l.-
FijCc’)Qi v



A Neumann-Neumann method for DG discretization of elliptic problems 5

Note that (3.8) - (3.9) has a unique solution. To see this, let us rewrite (3.8) in the
form

N ii O f
(3.11) pi(VH;u, thf)Lz(Qi) = — ?7]( 52 ,Uj — ui)Lz(Fij)
ij

F;; COQy

o
where ¥ are nodal basis functions of X; (€;) associated with interior nodal points

R
x of the h;-triangulation of 2;. Note that 88“‘;;

an interior node close to 9€;. We see that qu is a special extension into €2; of u
given on 0%2; and on the Fj; and therefore it depends on the values of u; given on
Fj; = 0Q;N0Q;, and on Fy; we already had assumed u; = 0 for j = 0. Note that ’I-L»u
is the discrete harmonic except on nodal points close to 9€2;. We will call sometimes
H,;u as discrete harmonic in special sense, i.e. in the sense of d,(.,.) or H;. We set
that Hu = {Hu}Y | € X,(Q).

Note that (3.8) is obtained from

does not vanish on 0f2; when =z is

(3.12) an(Hu,v) =0

for u € X;(Q) and when taking v = {v;}¥, € )O(h(Q) It is easy to see that Hu =
{Hu}Y | and Pu = {Pu;}}Y, are orthogonal in the sense of ay(.,.), i.e.

(3.13) an(Hu, Pv) = 0, u,v € X™(Q).
In addition,
(3.14) HHu = Hu, HHu = Hu

since Hu and Hu do not change the values of u on all the nodes on boundaries of the
subdomais €2; also denoted by

(3.15) ' = (U;0%n,).

We note that definition of I" includes the nodes on both side of U;05);.
We are now in the position to derive a Schur complement problem for (2.2). Let
us apply the decomposition (3.6) into (2.2). We get

an(Hu} + Pul, Hop + Poy) = f(Hup, + Pop)
or
an(Hul, Hop) + 2an(Hub, Pop) + an(Pul, Poy) = f(How) + f(Puy).
Using (3.7) and (3.12) we have
(3.16) an(Hul, Hop) = f(Hup), vp € Xp(Q).

This problem is the Schur complement problem for (2.2). We denote the space V;(T")
or in short notation V' as the set of all functions v, in X3 (2) such Puy, = 0, i.e. the
space of discrete harmonic functions in the sense of the H;. We rewrite the Schur
complement problem as:
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Find u} € V3, (T") such that
(3.17) s(uy,vp) = glvg), v, € V(D)

where here and below u; = Huj, and

(3.18) s(un,vn) = an(Hup, Hop), g(on) = f(Hop).

This problem has a unique solution.

4. Technical tools. A goal is to design and analyze a Neumann-Neumann (N-N)
method for solving (3.17). This will be done in next section. We now introduce some
notations and facts used for that. Let u = {u;}; € X;(Q) and v = {v;} ¥, € X,,(Q).
Let

0 Dix
(4.1) di(ui,vi) = pi(Vui, V’Uz’)]ﬂ(gi) + Z l—%(u] — U, V5 — Ui)sz(FU)
Fjco; W

and
(4.2) dp(u,v) = Z d;(u,v).

Note that for u,v € )O(h(Q)

(4.3) di(u,v) = a;(u,v) = p;i(Vui, Vi) r2(q,)

and for u € X3, ()
(4.4) Codp(u,u) < ap(u,uw) < Crdp(u,w)

in view of Lemma 2.1, where Cy and C; are positive constants independent of h;, H;
and p;. The next lemma shows the equivalence between discrete harmonic functions
in the sense H and in the sense 'Fl, and therefore we can take advantage of all the
discrete Sobolev results known for H discrete harmonic extensions.

LEMMA 4.1. For u € X,(Q)

(4.5) di (Hu, Hu) < dp(Hu, Hu) < Cdy,(Hu, Hu)

where Hu = {Hu;} N, and Hu = {Hu}, are defined by (3.2) - (3.3) and (3.8) -
(3.9) respectively, where C' is a positive constant independent of h;, u, p; and H;.

_ Proof. We note that P and H are projections in the sense of dj(.,.) while P and
‘H are projections in the sense of ap(.,.). Therefore, the LHS of (4.5) follows from

properties of minimum energy of discrete harmonic extensions in the dj(.,.) sense. To
prove RHS of (4.5) note that

(4.6) dp(Hu, Hu) = dy,(Hu, HHu + PHu) = dj,(Hu, Hu)) + dj,(Hu, PHu)

in viev of (3.14). The first term is estimated as

N N 1
(4.7) dp(Hu, Hu) < edp,(Hu, Hu) + ngh(Hu, Hu),
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with arbitrary € > 0. To estimate the second term of RHS of (4.6) note that for
v=PHu e )O((Q) and using (3.11), we get

N
(4.8) dh(’l:lu, v) = Z pi(V'):(iui, Vi) r2(a,)

i=1

al pij  Ov;
:—Z Z lﬂ(@nl,uj-—ui)LZ(Fij).

i=1 Fy;co0; 9

The terms of RHS of (4.8) are estimated as

ov; 0v;
i (5w = wi)raqrp| < pig Il 5= ez | i = g llzaemy)

Pij
< Chljz | Vi 2200l wi — uj [lr2(Fy)

3
Pij
< Clepiy 11 V01 By + ot | ws = w5 Pagr )}

Dii
< C{2ep; || Vi 220 + 5 o = 5 [Zam by

where we have used that p;; < 2p;. Substituting this into (4.8), we get

N
» » Pij
dp(Hu,v) < CY {2epi || VRHu; 7200, + 5= Y I wi =y 72,0}

i=1 dhie F;;COQ;
(4.9)
and using

| VPHu; || 2 (,) <I| VHiui |2,
we obtain

N PN 1

(4.10) dn(Hu,v) < C{edp(Hu, Hu) + ngh(Hu,’Hu)},
and then

PN PSRN 1
dp(Hu, Hu) < C{edy(Hu, Hu) + Zedh(Hu,'Hu)}.

Choosing now ¢ sufficiently small, the RHS of (4.5) follows. O

5. Neumann-Neumann method. We design and analyze Neumann-Neumann
(N-N) methods for solving (3.17); see [6, 9]. For that we follow the general framework
of ASM; see [10], and stated in the next lemma. The operators I; and T', the bilinear
forms b; and the spaces V; are defined on the next subsections while the space V' and
bilinear form a;, are the same as above.

LEMMA 5.1. Suppose the following three assumptions hold:

1) There exists a constant Cqy such that for allu € V there exists a decomposition
U= Ei]io Liu;, u; € V; with

N

Z bi(ui,u;) < Caap(u,u).
i=0
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it) There exist constants €; j,4,j =1,...,N such that
an (L, Iju;) < qyjah(fiui,Iiuj)l/2ah(fjuj,Ijuj)1/2, Yu; € Vi Vu; € V.
iii) There exists a constant w such that
ap(Liu, Liu) <wbj(u,u) YueV;, i=0,...,N.
Then, T is invertible and

Cgah(u7u) < ah(Tuvu) < (p(e) + l)wah(ua u)7 Vu € V.

N
ij=1°

Here, p(€) is the spectral radius of the matriz e = {e}
5.1. Local spaces V;. Let us denote V;(I';), in short notation V;, as the vector
space defined by the nodal values on 0f); and by nodal values on the neighboring
faces of Q;, i.e. on Fj; C 0§, where Fy; = Fj; = 0€Q; N 0§2;. We denote such nodes
by I';. We note that we do include the nodal values of OF}; (which are vertices of
;) as degrees of freedom of V;. We denote by u € V;, if u = {ul(z)}le#(i), where #(1)
is the index set composed of ¢ and the j indices where Fj; is a face of 9€;, where the
function ul@ is u restricted to 0); and the function u§l) is u restricted to Fj;. To
simplify notation we also use u = {u;} € V; to refer to a function defined on I';, and
u={u;} €V to refer to a function defined on all I
Let us define the regular zero extension operator I, : V; = V as follows: Given
u €V, let I;u be equal to u on nodes I'; and zero on T'\I';. Then we associate with
each Qi, k=1,---, N, the discrete harmonic function uy inside each 2 in the sense
of Hy, see (3.8) and (3.9).

5.2. Master and slave sides. We first classify faces F;; = 0§2; N 9€);, common
to §; and 2, as master and slave. The face Fj; is master if h; > h; and denoted by
vi; and slave if h; < h; and denoted by d;;. Here h; and h; are parameters of the
hi- and hj- triangulation of Fj; C 0%; and Fj; C 09, Fij = Fj;, respectively. We
consider in the analysis Fjy as the master side.

ASSUMPTION M: h; > h; if and only if p; > p;

5.3. Weighted prolongation operators I;. We associate with each Q;, i =
1,---, N, the weighting diagonal matrices D(V) = {Dl(l)}le#(i) on I'; as follows:
e On 9Q; (I=1)
_ 1 € vijn, COQ,
(51) sz) = 0 ze€ 5”‘}” C an,
1 zevy; C O

where v;jn, and &5, are the sets of nodal points of v;; C 9€Q; and d;; C 0%,
respectively; v; is the set of vertices of €;.

e On 8QJ (l = j, Fij = Fji = an ﬂan)

, 0, € vjin; C Oy, vji = 05, 0ij C 08,
(52) Dgz) = 1, ze€ 5jihj C 89“
0, x¢€ (8'7]’@‘}1]- U 86jihj)

where for F;g € 092 we set Dj(-i) =0.
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The extension operators I; : V; — V,i=1,..., N are defined as
(5.3) L= LD,

5.4. Coarse space and subspace decomposition. Note that

N
(5.4) S LI =1Ir
1=1

is a partition of unity on every node of I', where I is the identity operator on I'. The
coarse space Vy C V and its coarse basis functions ©®) are introduced as follows:

(5.5) Vo = Span{®W} X,

where ©) = [, where & € V; is defined as follows: If the substructure €; does
not share a face with the boundary of €2, i.e. when 02; N 92 has measure zero, then
we define ®* to be equal to one at every node of I';. Such substructure we denote
by N7 substructure. If not, €; is a Ng-substructure and we define ®® equal to one
on the faces Fj; and Fj; that do not touch 0€, the linear function decreasing from
one to zero on the faces Fj; and Fj; touching 052, and equal to zero on Fjy. Because
of the linearity, the function ®(*) matches across F;; and FY;.

Let us denote Iy = I, i.e. the identity operator on I'. Hence, V can be decom-
posed as

N
(5.6) V=> LV.
i=0
We now define bilinear form by as
H
(5.7) bo(u,v) = (1 + 1og%)—1dh(Hu,Hv), u,v € V.

REMARK 5.1. Other choices of coarse problems can be considered. We can replace

the bilinear form (5.7) to
H A A
(5.8) bo(u,v) = (1 + log F)’lah(Hu,Hv), u,v €V

and the analysis will follow straightforwardly from the analysis for (5.7) and using
(4-4) and (4.5).

In the case when §; are triangles, we can replace the space Vi by conforming
continuous piecewise linear functions on the coarse triangulation associated to T, i.e.
the functions are linear and matching on Fy; and Fj; and continuous at the vertices
of the substructures, and vanishing on 9. Theorem 5.2, see below, is valid for this
variant of method when the coefficient p; are quasimonotonic, see [5]. In the proof
ug € Vi is defined by values at common vertices xy of the substructures which are
equal to an algebraic average values of u; over faces of Q; with xy, as common vertez.

5.5. Local bilinear forms. For i« = 1,---,N, and for u = {w} € V; and
v ={u} €V, define

+ Z 5@/ (u; — wi)(v; —v;)ds,

FijCBQi ij
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where h;; = 2h;h;/(h;+h;) is the harmonic average of h; and h;. For a face Fj, we let
hij = hi, and again p;; = p; and v; = u; = 0, v; —v; = v; and u; —u; = 0. Note that
bi(.,.) differs from d;(.,.) by the Lo(€2;) term and also by the factor multiplying the
penalty term, where here we add the factors from neighboring subdomains, see (4.1).
The addition of the Ly(€2;) term makes b; (u, u) a norm also in the case where 9€2; does
not touch the Dirichlet boundary of the original domain 92, and as a consequence
the local problems will be uniquely solvable.
REMARK 5.2. In this paper we also consider the case where

(5.10) bi(u,v) = a;(Hiug, Hivg) + p” / —v;)ds.
F”CBQ

To fix the solvability issue of the local problems, where the constant functions might
be in the kernel, we replace V; by the space of functions in V; with zero average on
0 or in Q;. The analysis developed here includes also this case; see Remark 6.1.

REMARK 5.3. Like in Remark 5.2, a natural question to ask is if we can replace
the bilinear form (5.10) to

bi(u,v) = a;(Hiui, Hiv;)

pl] / 8H uz L Ul)ds + / 87;11}1 ('U/J _ 'U/l)ds} +
1] Fi; COQ Fij n
5 pw NMovs — v
(5.11) + Z —u;)(v; —v;)ds
Fi;COQ; '

and define a version of balancing domain decomposition as in ([9]). The answer is no
because we cannot estimate (6.8) with C' independent of the ratio h;/h;. In addition,
we cannot replace the last term of (5.11) to

o pi
/ 3 ZJ (uj —ui)(v; —v;)ds
F”C691 K

since the associated bilinear form might not be positive definite whenever h; < h;,
except if we take & > 28, where dy is given on Lemma 2.1, since we can use that

5.6. Projection-like operators. For ¢ =0, --- N, let T; : V — V; be defined as
(5.12) bi(Tyu,v) = ap(u, Lv), veV;,
and let T, = I,T;. .

5.7. Preconditioner and main theorem. Find uj € V such that

(5.13) Tuj, = gn

where

(5.14) T=>T
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and

N
gn=Y_9i 9i="Tuj,
=0

and uj is the solution of (3.17).
THEOREM 5.2. Assume that Assumption M holds. Then there exist positive
constants Cy and Cy independent of h;, H; and the jumps of p; such that

H
(5.15) Coan(u,u) < ap(Tu,u) < Cy(1+log E)Qah(u,u) Yue V.

Here log(H/h) = max; log(H;/h;).

REMARK 5.4.

Two other possible discretizations rather the one defined in Section 2 can be con-
sidered: In the first discretization, for the case where Q; is a Np substructure, we
modify the space X;(§;) as the discrete functions vanishing on Fyy. In the second dis-
cretization, for the case ; is such that 9Q; NOQ # we modify the space X;(Q;) as the
discrete functions vanishing on 0X). The essential difference of these two discretiza-
tions is that the first discretization does not assume that the X;(€;) should vanish on
0Q; N O whenever ; touches 02 at only a verter. In the second discretization all
nodes of 0, N OSY are not degrees of freedom of the problem, while in the first dis-
cretization, all nodes but those that 0€;p, touches O at only a vertex are not degrees
of freedom. In both cases, the boundary terms and penalty terms on Fyo, see (2.6) and
(2.7), do not exist and are not required.

Neumann-Neumann methods can also be developed for those cases. For the first
discretization no changes are required for the coarse problem, and for the local problems
associated to Ny substructures. For the local problems on Np substructurez €; we
simply eliminate all the degrees of freedom associated to the nodes on 08, NOSY; and
Theorem 5.2 will hold with a similar proof. For the second discretization more changes
are required to design the preconditioner. For Ny substructures that touch 902 at just
one vertex, we modify Vo considering ® ;) to be linear in the coarse trinagulation on
I'; and vanishing at that vertez, i.e. like what was done for Np substructures. The
space V' and the nodes T' now do not have any degrees of freedom on 92, and the
spaces V; are defined as the space V' restricted to I';, where now the I'; do not include
nodes on 9. The definition of the D also do not have any entrance associated
to nodes on 02. When proving Theorem 5.2, a technical problem will arise: How to
bound w; in (6.26) for the case that Q; touches O at only one vertex? There are two
possibilitites for the analysis: If there exists a Np substructure ); where p; < p; and
with a face Fi; in common, then G; can be estimated from the energy norm on §); and
on §;; in this case Theorem 5.2 holds. If not, a log factor in the estimation of u; is
obtained and therefore, Theorem 5.2 will hold with three-logs.

6. Proof of Theorem 5.2. By the general theorem of ASMs we need to check
the three key assumptions of Lemma 5.1.
Assumption(ii). We need to prove that

(6.1) ap(u,u) <wbg(u,u), ueVp
and fori=1,---,N

(6.2) ap(Liu, Liu) < wb;(u,u), ueV;
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with w < C(1+ log %)2 where C is a positive constant independent of h;, H; and p;.
By Lemma 2.1 and Lemma 4.1

(6.3) an(Hu, Hu) < Cdy,(Hu, Hu) < Cdy, (Hu, Hu).

where dp(.,.) is defined by (4.2). The proofs of (6.1) and (6.2) then reduce to
dp(Hu, Hu) instead of ap,(Hu, Hu).
The proof of (6.1) follows from the definition of by, see (5.7), where

PO H
(6.4) ap(Hu, Hu) < Cdp(Hu, Hu) = C(1 + log ﬁ)bo(Hu,Hu)

with w < C(1 + log £1).

We now prove (6.2). In order to simplify notations, all the functions are considered
as harmonic extensions in the H sense. Hence, we denote HI;u by I;u and let u =
{wi}ie@) € Vi. Using (4.1), (4.2), (5.3) and (5.9) we have

(6.5) dp,(Iiu, Iiw) = d;(DWu, DWy) + Z d;(DDu, DDy
J

where the sum is taken over €2; with common faces to €2;. We now estimate the two
RHS terms of (6.5) as follows:

(6.6) (D, DOy — / pi| VD, 2 dz +

v >

/F (Dz@ui - Dy)uj)de.
FijCé)Qi v v i

J
We now estimate the first term of (6.6). We have
pi || VD ui [0, < 201l V(D s = wi) a0, + | Vi 20}
and

pi | V(D ui —wi) G20y < C D0 pill i /e
5,00, 00 .

where %; = u; at the interior nodal points of d;; and %; = 0 on 96;5. It can be proved,
see for example [10], that

_ H;
(6.7) pi |l ||§{é(§2(5ij)§ C(1+log E)Zpi I H%_Il(ﬂi)7

where we have denoted
2 2 1 2
| wi 17 )=l Vi [[22(0,) T2 [ i llz20,) -
K2

REMARK 6.1. In the case we use the approach described in Remark 5.2, we use
the fact that u; has average zero on 0); and then use Friedrich’s inequality to obtain
semi-norm on the RHS of (6.7). See also (6.8) below and after (6.10).
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We now estimate the second term of (6.6) and (6.10). Note that for Fj, i.e. for
faces on Jw, the estimates of the terms corresponding to Fjy follow straightfowardly.
On a slave face Fj; of 0€);, i.e. where h; < h; and p; < p;, or on Fjg, we have

H Dl(l)ul - Dj(l)uj H%Q(F”)S Ch; I%ix |ul|2

hence,
Pii | pli) (), (2 2 A 2
. | D;"ui = Dj"uj (|22, < Cpi H}?X|Ui| < C(1+log ;)Pi | wi 17 ,)»
i ij 0

where we have used that p;; < 2p;, and since h; < h; we also have h;; > h;.
On a master side Fj; of 0Q;, i.e. where h; > h; and p; > p;, we have

I D u; — DY |2y <Nl wi — g llz2gm) + 1 i (0090 + wi (H)H |2,

where go? and gojH are the nodal basis functions on 0§2; associated to the endpoints of
the face Fj; = (0, H). Using a triangular inequality we have

13 (0065 L2y < C g llzznn < Cl i llz2ony) + I wi =y llz2cey)

and
H;
s 172 (0,0, < Cﬂ;axlul'lzhj < Chj(1+log -=) || us %10 -

Using similar arguments for bounding || u; (H)gaf |l L2(F,), and using that p;; < 2p;,
and h; > h; which implies h;; > h;, we obtain

Pij i i H;
(6.8) 521 D s = D (2, < C(1+ log 75)bi(u, u),
1] 7
and the estimate
H;,
follows.

We now estimate the second term of (6.6) d;(Du, D®u) by b;(u,u). For u =
{w;} € V; we have
(6.10)d;(DDu, DDu) = p; || VDJ(- )U]‘ H%Q(Qj) +r% (Dl( Jui — D; )uj)de.
ig 15 JFy;
We need to estimate the first term only since the second term has been already
estimated, see (6.8). If Fj; is a slave side of 0€2; then Dj(-l) vanishes, and so vanishes

I VDj(-i)uj HQL?(Q]-)' We now estimate the case where Fj; is a master side of 0€2; and
it is not equal to Fjp. On Fj; we decompose u; = w; + uj(())cp(; + uj (H)gof, where

wj = D;i)uj. ‘We have

2
w*
(6.11) || Vw; [[72(0,)< C || w; ”fqgfwﬁ): Cllwjl /2, ) + /F m ds}.

J
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We estimate the first term of RHS of (6.11). Let @; be the Lo- projection on the h;-
triangulation of F}j;. Using this we have

(6.12) w512y < 2{ws — Qjtiline g,y + 1Qiuilie e,y }
<Ol g = ey + 1 Vs o)
and
(6.13) || wy — wi [ F2(p,)< 2 1wy = wi |20, +2 [ 450095 + wi(H)of [ F2(r,)
where the second term of the RHS of (6.13) can be bounded as before and using the

fact that p; < p;.
It remains to estimate the second term of (6.11). We have

w? W
14 ————ds < —=d ds}.
(6.14) /FJ dist(s,0F};) 0= C{/O s * /H/2 (H - s)) s}

Let us estimate the first term of RHS of (6.14). We have

H/2 w2 h; w2 H/2 u2
/ —Lds :/ —jds—i—/ —Lds
0 s o S h, S

J

2 HIZ 0 — H/2 2
< C{uj(hj)+/ ds—l—/h —ds}

h; S S

1 H,
< CLBhy) + o Il wi =y 13,y +(1+log 22) max i}
J ] @j

1 H; H;
< C{h—j | wi = uj |72,y +(1+log h—;)(l + log hj?) Il wi 1) 0}

The second term of (6.14) is estimated similarly. Substituting these estimates to
(6.14) we get

u2

H
1 —J _— _ds< 1+ log —)? i 132
619 [ Gresmy e S Ol 108 5 Vu i +

1 1
+ 2 | i H%P(Qi)) + n | wi — u; ||2L2(F7;j)}'

In turn, substituting (6.12) and (6.15) into (6.11), and the resulting estimate and
(6.8) into (6.10) we get

) . H
(6.16) d;(DWu, DDu) < O(1 + log F)Qbi(u, w).
Using (6.9) and (6.16) into (6.2), we get
H.,
dh(ua U) < C(l + lOg E) bi(ua u)

The proof of Assumption(ii) is complete.
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Assumption(iii) We need to prove that

(6.17) an(LiuW, LuW) < Ceijaib/z(liu(i), Lu®) ai/z(Iju(j),Iju(j))

for u® e V; and u) € Vi, 4,7 = 1,---,N, and the spectral radius of ¢ =
{eij}D;=1, ol€), is bounded. In our case g(¢) < C with constant independent of
h; and H;. This follows from the fact that u(9 and u(9) are different from zero on Q;
and Q; and their neighbor substructures.

Assumption(i) By Lemma 2.1 and Lemma 4.1, we need to prove that for u =
{u;}N, € V there exist v(¥ € V5 and v(¥ € V; such that

N
(6.18) V@ +3 10 =w
i=1
and
N . .
(6.19) bo(v @, () + Zbi(v(l),v(l)) < Cdp(u,u)
i=1

where C' is independent of h; and H;.
We first set

N
) 1
(6.20) @ = g 2,00, = —/ u;ds
P €% Jo,

where u = {u;}Y; € V. We note that another possibility would be to define u; as
the average of u; on 9€; or a face of it. The v(®) also can be represented, see (5.5), as

N
0@ =3"ra;00.

i=1

Using the partition of unity (5.4) we compute
N ~

(6:21) w=u—v® =3 L(ITu—500),
i=1

and define

v = ITu— w;®,

ie. v = {vl(i)}le#(i) € V; is defined as %@ = u; — ﬂiégi) on 08, vj@ =uj — ﬂiCI)y)

on neighboring faces Fj; including also the nodes on 0F;.
By Lemma 7.1, see below, we have

(6.22) bo(v @, 0@y = (1 + 1og%)*1dh(u(0>,v<0>) < Cdp(u,u).
It remains to estimate b;(v®,v®) for i = 1,---, N. We have
(6.23) bi(v®, v < C{pi | VHi(ul) — 7:00) |22q,, +
ggp 1Ha? — w2 ey + 3 07 lla? = o e, )

Fi]‘ CoQ; v
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where we note that we have used in the last term of the LHS of (6.23) that @Ei) = <I>§-i)

on the faces Fj; and Fj; and @gi) vanishes on faces of 9Q; N 9N, If Q; is a Ny

substructure, i.e. it does not share a face with 02, the function <I>Z(-i) is the constant
equal to one and using Poincaré’s inequality we obtain

(6.24) Il H(wi — 50 320, < CH? | Vs 320, -
When §2; is a Np substructure, then
(6.25) I VHi (i — @2) |32, < 2| VHi(uwi — @) 3200, +

+2a? || VH;(1 - @) 320 -

To estimate the second term of (6.25), we use that 1 — <I>§i) is linear on the faces of
0%); and vanishes in one of them and minimum energy arguments to have

I Hi(1 = @) 220, < C.

To bound @;, we consider u;q the average of u; on F;y and we use a Poincaré inequality
to obtain

(6.26) u; < C|| VHiui [|72q,) +2u,
and using that
fo < Ci”ui”QL?(Fio)
and H; > h; we obtain
©20) 1| VHs(us — 020) [ OU VHous 320+ Nuilag)

and then use Poincaré inequality to bound the first term of the RHS of (6.23). An
estimate of the last term of (6.23) is obvious and the proof of Theorem 5.2 is complete.

7. Auxiliary lemma. Let ug € Vj be defined for u = {u;}¥, € V as

N
) 1
(7.1) ug = 2,0, 4, = —/ w;ds.
2 9 o,

LEMMA 7.1. Assume that Assumption M holds. Then for ug defined by (7.1)
holds

H
(7.2) dp(uo,up) < C(1+log z)dh(u,u)
where C' is independent of h;, H; and the jumps of p;

Proof By Lemma 4.1 the estimate (7.2) is enough to prove for Hug = {H;ud}¥ ;.
Let us below denote Hug by ug. We have

Pij
(7.3)  dn(uo, uo) Z{PZ I VUl 720+ D el K P =y [Z2(m,) b
F;;COQ; hij
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We estimate the first term. Note that on 0€2;

(7.4) w=50"+ > @6y
045 COLY;
and
(7.5) w0 =20 + Y el
&UCE)Qi
Note that
| Vg 1720, = I V(U — @) 1720, <
(7.6) <2 || V(W) = ;) |32, + 262 | V(1 =2 [320q,) -

When §; is a Ny substructure, the second term of (7.6) vanishes, otherwise we can
use similar arguments as in (6.27) and show that

_ i 1
@ | V(= Hi@(") 720, < Ol VM 520, 7 luilFacr )

To bound the first term of (7.6), we use (7.4) and (7.5) to have

| Yl = 2) [Fa0)< € D (@i— ) 107 |31z <
6i; COy
_ _\2 Hz
(7.7) < C(u; —a;)*(1 +log h—)
since

. H;
| OF I3/25,, < C1+log 55).

Let for Fij = Fji,Fl‘j C 6Qi,Fji C 89]

s~ 5. i =
Uip,, = = [ u;ds Uip,, = —— [ wu;ds.
] SR, P El Sy

Using this we get
(78) (a’i - ﬂj)2 < C{(ﬂl - aiFij)Z =+ (ﬂiFi]‘ - ﬂiji)2 + (ﬂiji - aj)Z <

1
< C{ll Vui 1720, T | wi — u; ||2L2(Fij) + || Vuy H%Z(Qj)}-
ij

We have used Poincare’ inequality and that H; > h;;
- - 2 1 2 1 2
(Uir,; — UjF,;)" < Cﬁ(ui —uj, )72,y < CEHW — Ul z2(p,,)-
K3

Substituting (7.8) into (7.7), and using that on ¢;; we have p; < p;, and we obtain

H;
(79) pi || Vu 720,y < C(1+log F){pi | Vui [I720,) +05 | Vi 1220, +

Pij 2
+ th | wi —wj 22,0}
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We now estimate the second term of (7.3). Let F; = 7,5, i.e. F;; be the master
side. Note that for F;y the estimate is obvious. For the remaining we have

(7.10) u? _ U? = aiel@ _ ('aj@é]) + ﬂi@y)) — (ﬂl — ’l]j)@;J)’
therefore
1 0o 02 _177290)2 < Ol —w.:)?
hfij | ug — u; ||L2(Fij)_ E(W — ) | J ”L?(FU)— (; — ;)
since
(7.11) | ey 720 < By

and h; < h; and h;; > h;. Using (7.8) and that p;; < p; and p;; < 2p;, we get

Pij
# luf = uf 72em,y < CLoi || Vi 720, +05 1| Vg 1720,y +
¥}

Pij
(7.12) + th (| wi — ||%2(Fij)}~

Let F;; = §;;, i.e F;; be the slave side. In this case (7.10) reduces to

u) — ) = (a; - 7;)0)"

therefore we get

Pij Pij - i
(7.13) ,7 lu = 325, = hj(ui — ;)% [ 0 132p,) <
< Cpij(ai — u;)* < C{pi || Vi [[12(0,) +05 || VU [720,) +

Pij
+h7_]_ | wi — ”%,Q(Fij)}
ij

in view of (7.11) for 6;; C 09Q; and (7.8).
Substituting (7.9), (7.13) into (7.3) we get (7.2). The proof of Lemma 7.1 is
complete.
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