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Abstract

We develop the convergence analysis for a numerical scheme proposed for approximating the
solution of the elliptic problem

Lεuε = −

∂

∂xi
aij(x/ε)

∂

∂xj
uε = f in Ω, uε = 0 on ∂Ω,

where the matrix a(y) = (aij(y)) is symmetric positive definite and periodic with period Y . The
major goal is to develop a numerical scheme capturing the solution oscillations in the ε scale on
a mesh size h > ε (or h >> ε). The proposed method is based on asymptotic analysis and on
numerical treatments for the boundary corrector terms, and the convergence analysis is based on
asymptotic expansion estimates and finite elements analysis. We obtain discretization errors of
O(h2 + ε3/2 + εh) and O(h + ε) in the L2 norm and the broken H1 semi-norm, respectively.

1 Introduction

This paper develops the convergence analysis of the numerical scheme proposed in [44] to approximate
uε, the solution of the problem:

Lεuε = −
∂

∂xi
(aij(x/ε)

∂

∂xj
uε) = f in Ω, uε = 0 on ∂Ω, (1)

where a(y) = (aij(y)) is a positive symmetric definite matrix and ε ∈ (0, 1) is the periodicity parameter.
We assume the aij ∈ L∞

per(Y ), i.e. aij ∈ L∞(R2) and Y -periodic, Y = (0, 1)2, and there exists a positive

constant γa such that aij(y)ξiξj ≥ γa‖ξ‖
2 for all ξ ∈ R

2 and y ∈ Y . We always use the Einstein
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summation convention, i.e. repeated indices indicate summation, except for the index k, which refers
to variables or functions associated to edges of the polygonal domain Ω.

We note that when the mesh size h > ε, standard finite element methods do not yield good numerical
approximations; see [27]. Recently, new numerical methods have been proposed for solving the Problem
(1) such as the multi-scale finite element methods [23, 26, 4, 13, 21], the residual-free bubble function
methods [11, 5, 6, 38, 12], and the generalized FEM for homogenization problems [39]. There are also
related methods for the case the homogenized equation is not known; see the heterogeneous multiscale
method [18, 19, 2] and [22, 20] . The numerical method considered here, opposed to the methods in
[5, 26, 38, 4, 11] is based strongly on the asymptotic expansion of uε. We also explore the periodicity
of the matrix a to obtain a very efficient method for approximating uε.

One of the first mathematical tools used to handle this problem was homogenization theory [8, 9].
Based on this theory a first order expansion of uε plus a boundary corrector term is considered and
then each term is numerically approximated in [43, 44]. These methods were designed to work with a
mesh size h > ε (or h >> ε), however they also work in the case h < ε. The article [43] presents the
numerical algorithm when the domain Ω is a rectangular region, while [44] generalizes the method to
the case where the domain Ω is a convex polygon with rational boundary normals. This generalization
is possible due to the Lagrange multiplier space introduced to approximate ∂ηu0 on ∂Ω.

The convergence analysis for the numerical method is performed in two parts. First we estimate the
error between uε and u0+εu1+εφε in L2 and H1 norms, where φε denotes the theoretical approximation
for the boundary corrector term θε. The theory developed for approximating θε is similar to the
one proposed in [3, 34]. We note that Propositions 6.1 and 6.4, which estimates the error between
uε and u0 + εu1 + εθε on the H1 and L2 norms, respectively, extend the results in [3, 34]. More
specifically, Proposition 6.1 gives the same error estimate of Theorem 2.2 in [3], however here we
assume u0 ∈ W 2,p(Ω) and χj ∈ W 1,q

per(Ω) for 1/p+ 1/q ≤ 1/2 while in Theorem 2.2 in [3] it is assumed

u0 ∈ W 2,∞(Ω) and χj ∈ H1
per(Ω). We also note that Propositions 6.1 and 6.4 generalize respectively,

Propositions 2.1 and 2.3 from [34]. In Proposition 6.1 we assume aij ∈ L∞
per(Y ), u0 ∈ W 2,p(Ω) and

χj ∈ W 1,q
per(Ω) for 1/p + 1/q ≤ 1/2, and Ω ⊂ R

2,3, while in Proposition 2.1 from [34] it is assumed

aij ∈ C1,β
per(Y ), u0 ∈ H2(Ω) and Ω ⊂ R

2. In Proposition 6.4 we assume aij ∈ L∞
per(Y ), u0 ∈ W 3,p(Ω), χj

and χij ∈W 1,q
per(Ω) for 1/p+ 1/q ≤ 1/2, and Ω ⊂ R

2,3, while in Proposition 2.3 from [34] it is assumed

aij ∈ C1,β
per(Y ), u0 ∈ H3(Ω) and Ω ⊂ R

2. The importance of considering a theory that handles the
case aij ∈ L∞

per(Y ) comes from applications to composite materials where the coefficients aij are often
piecewise constant; see also Theorem 1.1 from [32] which gives conditions on the discontinuities of the
functions aij so that χj and χij ∈ W 1,∞

per (Y ). We also observe that Proposition 2.1 from [34] is used in
the convergence analysis of the numerical methods presented in [23, 27, 38], and therefore the analysis
presented here can be helpful for extending the convergence proofs of these numerical methods assuming
less regularity on a or u0. In the second part of the convergence analysis we use finite elements theory
to estimate the error due to the discrete approximation. The main difficulty here lies in the fact that
we use a discrete approximation of ∂ηu0 as Dirichlet boundary condition for the boundary corrector
problem. We observe that if uh

0 is a finite element approximation for u0, then ∂ηu
h
0 does not necessarily

belong to the trace of the finite element space used to obtain uh
0 , hence we introduce the Lagrange

multiplier space to approximate ∂ηu0 and we develop error estimates between ∂ηu0 and its discrete
approximation in W 1,1−1/p spaces; see Lemma 4.3.

To simplify the exposition we perform the analysis in the case Ω = (0, 1)2, although the same theory

holds in the case Ω =
∏2

i=1(ai, bi), ai < bi ∈ R. We note that Propositions 6.1 and 6.4 are proved in
the case Ω ⊂ R

d d = 2, 3, is a convex domain and Y = (0, 1)d. The analysis presented here can also be
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extended to the case where the domain Ω is a convex polygon with rational boundary normals; see [42].
We now introduce some norms and semi-norms. Let B ⊂ R

2 be an open set and define

‖v‖m,∞,B = max
|α|≤m

{ess. sup
x∈B

|∂αv(x)|},

|v|m,∞,B = max
|α|=m

{ess. sup
x∈B

|∂αv(x)|},

and for 1 ≤ q <∞

‖v‖m,q,B =





∫

B

∑

|α|≤m

|Dαv|qdx





1/q

,

|v|m,q,B =





∫

B

∑

|α|=m

|Dαv|qdx





1/q

.

We also define the non-conforming norms related to a partition Th = K1,K2, ...,KN of B by

‖v‖m,h =

√

∑

Kj∈Th

‖v‖2
Hm(Kj)

.

Throughout this paper we do not make reference to the domain B, or to the coefficient q when
B = Ω, or q = 2, respectively. In what follows c denotes a generic constant independent of ε and mesh
parameters.

This paper is organized as follows. Section 2 introduces the asymptotic expansion of uε considered
in [43, 44], describes a theoretical approximation for the boundary corrector term, and presents the
main theorems for estimating the errors due to the asymptotic expansion approximation. Section 3
describes the numerical algorithm, Section 4 treats the discretization errors due to the finite element
approximation, and Section 5 presents the numerical experiments. The Appendix contains the proofs
of the main results from Section 2.

2 Theoretical Approximation

2.1 The Asymptotic Expansion

Consider the following anzats

uε(x) = u0(x, x/ε) + εu1(x, x/ε) + ε2u2(x, x/ε) + · · ·, (2)

where the functions uj(x, y) are Y periodic in y. Using (2) in Equation (1) and matching the terms
with the same order in ε, one may define functions uj such that u0(x, x/ε) + εu1(x, x/ε) + ε2u2(x, x/ε)
approximates uε, for instance if u0 ∈ C2(Ω) and χj ∈W 1,∞(Y ) we have

‖uε(x) − u0(x, x/ε) − εu1(x, x/ε)‖1 ≤ cε1/2‖u0‖2,∞
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where the constant c depends on a, χj and Ω. These terms are defined below; for more details, including
the proof of the above inequality see [9, 29].

Let χj ∈ H1
per(Y ), i.e. χj ∈ H1

loc(R
2) and Y -periodic, be the weak solution with zero average over

Y of

∇y · a(y)∇yχ
j = ∇y · a(y)∇yyj =

∂

∂yi
aij(y), (3)

and define the matrix

Aij =
1

|Y |

∫

Y

alm(y)
∂

∂yl
(yi − χi)

∂

∂ym
(yj − χj)dy. (4)

It is easy to check that the matrix A is symmetric positive definite. Define u0 ∈ H1
0 (Ω) as the weak

solution of

−∇.A∇u0 = f in Ω, u0 = 0 on ∂Ω, (5)

and let

u1(x,
x

ε
) = −χj

(x

ε

) ∂u0

∂xj
(x). (6)

Note that u0 + εu1 does not satisfy the zero Dirichlet boundary condition on ∂Ω imposed for uε. In
order to overcome this, the boundary corrector term θε ∈ H1(Ω) is introduced as the solution of

−∇ · a(x/ε)∇θε = 0 in Ω, θε = −u1(x,
x

ε
) on ∂Ω, (7)

hence u0 + εu1 + εθε ∈ H1
0 (Ω). Propositions 6.1 and 6.6 provide error estimates between uε and

u0 + εu1 + εθε in the norms ‖ · ‖1 and ‖ · ‖0, respectively.
We also define the term u2, which is used in the proof of Proposition 6.4. Set

bij = −aij + aim
∂χj

∂ym
+

∂

∂ym
(amiχ

j)

and observe that bij = Aij , where bij =
∫

Y
bijdy. Define χij ∈ H1

per(Y ) as the weak solution with zero
average over Y of

∇y · a∇yχ
ij = bij − bij (8)

and let

u2(x,
x

ε
) = −χij

(x

ε

) ∂2u0

∂xi∂xj
(x). (9)

2.2 Boundary Corrector Approximation

The coefficients aij(x/ε) and the boundary values −u1(x,
x
ε ) in the Equation (7) are highly oscillatory,

hence it is not a trivial problem to obtain a good discrete approximation for θε . We propose an
analytical approximation for θε, denoted by φε, which satisfies the oscillating boundary condition and
is suitable for numerical approximation. The approximation for θε proposed here is similar to the one
used in [3, 34].

Note that u0 vanishes on ∂Ω, therefore ∇u0|∂Ω = η∂ηu0, where η denotes the unity outward normal
vector to ∂Ω and ∂ηu0 denotes the unity outward derivative of u0 on ∂Ω. Hence in order to obtain the

approximation φε for θε, we introduce the following decomposition θε = θ̃ε + θ̄ε, where
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−∇ · a(x/ε)∇θ̃ε = 0 in Ω, θ̃ε = (χj(
x

ε
)ηj − χ∗)∂ηu0 on ∂Ω (10)

and
−∇ · a(x/ε)∇θ̄ε = 0 in Ω, θ̄ε = χ∗∂ηu0 on ∂Ω, (11)

where χ∗|Γk
= χ∗

k, k ∈ {e, w, n, s} are properly chosen constants defined in Subsection 2.2.1, and
Γe = {1}× [0, 1], Γw = {0}× [0, 1], Γn = [0, 1]×{1}, and Γs = [0, 1]×{0}. In Remark 2.1 we show that
χ∗∂ηu0 and χj(x

ε )ηj∂ηu0 ∈ H1/2(∂Ω), therefore the Problems (10) and (11) are well posed. Later in

this section we define the functions φ̃ε and φ̄ε, which are the approximations for θ̃ε and θ̄ε respectively,
and define φε = φ̃ε + φ̄ε.

Remark 2.1 Let Ω ⊂ R
2 be a convex polygon and assume u0 ∈ H2(Ω)∩H1

0 (Ω). We have by Theorem

A.2 [37] that ∂ηu0|Γk
∈ H

1/2
00 (Γk) and ‖∂ηu0‖H

1/2

00
(Γk)

≤ c‖u0‖2, therefore

‖χ∗∂ηu0‖H1/2(∂Ω) ≤ c(χ∗)‖u0‖2.

Note also that u1(x,
x
ε ) = −χj

(

x
ε

)

∂u0

∂xj
(x) and ∂u1

∂xl
= −

(

∂χj

∂xl

)

∂u0

∂xj
− χj

(

∂2u0

∂xl∂xj

)

. If we assume u0 ∈

W 2,p(Ω) and χj ∈ W 1,q
per(Y ), for p ≥ 2 and q > 2 or p > 2 and q ≥ 2, by a direct application of Sobolev

embedding Theorem (5.4 [1]) we obtain u1 ∈ H1(Ω). In addition, from regularity theory of elliptic
equations we obtain χj ∈ L∞(Y ) ∩ H1(Y ) (see Theorem 13.1 [30] and 4.28 [15]), hence we also have

u1|Γk
∈ H

1/2
00 (Γk).

2.2.1 Calculating the Constants χ∗
k

We define the constants χ∗
k such that the function φ̃ε decays exponentially to zero away from the

boundary and satisfies the Dirichlet boundary condition φ̃ε(x) = −u1(x,
x
ε ) − χ∗∂ηu0(x) for x ∈ ∂Ω.

Associated to each side of Ω define the functions vk, k ∈ {e, w, n, s} as

1. Let Ge = {(−∞, 0]× [0, 1]} and ve the solution of

−∇y · a(y1, y2)∇yve = 0 in Ge,

ve(0, y2) = χ1(1/ε, y2) for 0 < y2 < 1,

ve(y1, ·) [0, 1]-periodic for −∞ < y1 < 0,

and ∂yiveexp(−γy1) ∈ L2(Ge) i = 1, 2.

2. Let Gw = {[0,∞) × [0, 1]} and vw the solution of

−∇y · a(y1, y2)∇yvw = 0 in Gw,

vw(0, y2) = −χ1(0, y2) for 0 < y2 < 1,

vw(y1, ·) [0, 1]-periodic for 0 < y1 <∞,

and ∂yivwexp(γy1) ∈ L2(Gw) i = 1, 2.
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3. Let Gn = {[0, 1]× (−∞, 0]} and vn the solution of

−∇y · a(y1, y2)∇yvn = 0 in Gn,

vn(y1, 0) = χ2(y1, 1/ε) for 0 < y1 < 1,

vn(·, y2) [0, 1]-periodic for −∞ < y2 < 0,

and ∂yivnexp(−γy2) ∈ L2(Gn) i = 1, 2.

4. Let Gs = {[0, 1]× [0,∞)} and vs the solution of

−∇y · a(y1, y2)∇yvs = 0 in Gs,

vs(y1, 0) = −χ2(y1, 0) for 0 < y1 < 1,

vs(·, y2) [0, 1]-periodic for 0 < y2 <∞,

and ∂yivnexp(γy2) ∈ L2(Gs) i = 1, 2.

The above problems have been studied by several authors, see [36, 33, 29, 34]. Theorem 10.1 in Section
10.4 from [33] guarantees the existence of a unique solution for each of the above equations. In addition,
by Theorem 3 [36] there exists constants χ∗

k, such that

|vk(y) − χ∗
k| ≤ cexp(γy · ηk) as y · ηk → −∞,

where ηk denotes the unity outward normal on Γk.

2.2.2 Approximating θ̃ε

We note by Remark 2.1 that (u1(x,
x
ε )−χ∗∂ηu0)|Γk

∈ H
1/2
00 (Γk). Thus, we can split θ̃ε =

∑

k∈{e,w,n,s} θ̃
k
ε

where

Lεθ̃
k
ε = 0 in Ω, and θ̃k

ε =

{

−u1(x,
x
ε ) − χ∗∂ηu0 on Γk

0 on ∂Ω \ Γk.
(12)

We approximate θ̃k
ε by φ̃k

ε given as

φ̃e
ε(x1, x2) = ϕe(x1)

(

ve(
x1 − 1

ε
,
x2

ε
) − χ∗

e

)

∂u0

∂x1
(x1, x2), (13)

φ̃w
ε (x1, x2) = −ϕw(x1)

(

vw(
x1

ε
,
x2

ε
) − χ∗

w

) ∂u0

∂x1
(x1, x2),

φ̃n
ε (x1, x2) = ϕn(x2)

(

vn(
x1

ε
,
x2 − 1

ε
) − χ∗

n

)

∂u0

∂x2
(x1, x2),

φ̃s
ε(x1, x2) = −ϕs(x2)

(

vs(
x1

ε
,
x2

ε
) − χ∗

s

) ∂u0

∂x2
(x1, x2),

where ϕk are nonnegative smooth functions satisfying

ϕe(s) = ϕn(s) =

{

1 if s ∈ [2/3, 1]
0 if s ∈ [0, 1/3],

ϕw(s) = ϕs(s) =

{

0 if s ∈ [2/3, 1]
1 if s ∈ [0, 1/3].
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Hence
φ̃ε =

∑

k∈{e,w,n,s}

φ̃k
ε (14)

approximates θ̃ε, and φ̃ε = θ̃ε on the boundary of Ω.

2.2.3 Approximating θ̄ε

The boundary condition imposed on Equation (11) does not depend on ε. An effective approximation
for θ̄ε is given by φ̄ ∈ H1(Ω) the weak solution of

−∇ ·A∇φ̄ = 0 in Ω, φ̄ = χ∗∂ηu0 on ∂Ω. (15)

By Propositions 6.3 and 6.5, we have that φ̄ is a good approximation for θ̄ε only on the L2 norm,
since ‖φ̄ − θ̄ε‖0 is O(ε) and ‖φ̄ − θ̄ε‖1 is O(1). We note, however, that the asymptotic expansion
considered here to approximate uε is given by u0 + εu1 + εθ̄ε + εθ̃ε, and by a triangular inequality we
obtain ‖uε − u0 − εu1 − εφ̄− εθ̃ε‖1 ≤ cε+ ‖uε − u0 − εu1 − εθε‖1. Hence, when estimating the error on
the H1 norm between uε and its theoretical approximation, the contribution due to the approximation
of θ̄ε by φ̄ is O(ε).

2.2.4 Approximating uε

We finally define the theoretical approximation for uε as u0 + εu1 + εφε, where

φε = φ̃ε + φ̄. (16)

Note that φε|∂Ω = θε|∂Ω, therefore u0 + εu1 + εφε = 0 on ∂Ω.

2.2.5 Error estimates

The following theorems provide error estimates between uε and u0− εu1− εφε on the H1 and L2 norms.
Theorem 2.1 estimates the error on the H1 norm, while Theorems 2.2 and 2.3 estimate the error on
the L2 norm. Theorem 2.2 assumes more regularity on u0 and less regularity on a that is assumed in
Theorem 2.3.

Theorem 2.1 Let uε be the solution of the Problem (1), u0, u1 and φε defined by Equations (5), (6) and
(16), respectively. Assume aij ∈ L∞

per(Y ), u0 ∈ W 2,p(Ω), χj ∈W 1,q
per(Y ), ve and ∇(ve −χ

∗
e)exp(−γy1) ∈

Ls(Ge), for 1/s+3/p≤ 1, s ≥ 2 and 1/p+1/q ≤ 1/2. We also assume similar hypothesis for the other
functions vk. Then there exists a constant c independent of ε such that

‖uε(·) − u0(·) − εu1(·, ·/ε) − εφε(·)‖1 ≤ cε‖u0‖2,p.

Proof: See Subsection 6.1 �

Theorem 2.2 Let uε be the solution of Problem (1), u0, u1, φε, φ̄ and χij defined by Equations (5),
(6), (16), (15) and (8), respectively. Assume aij ∈ L∞

per(Y ), u0 ∈W 3,p(Ω), and φ̄ ∈W 2,p(Ω) and χij ∈

W 1,q
per(Y ), for p > 2 and 1/p+ 1/q ≤ 1/2. Assume also χj ∈ W 1,∞(Y ), ve and ∇(ve − χ∗

e)exp(−γy1) ∈

7



L∞(Ge). We also assume similar hypothesis for the other functions vk. Then there exists a constant c
independent of ε such that

‖uε(·) − u0(·) − εu1(·, ·/ε) − εφε(·)‖0 ≤ cε3/2‖u0‖3,p.

Proof: See Subsection 6.2 �

Theorem 2.3 Let uε be the solution of Problem (1), u0, u1 and φε be defined by Equations (5), (6)
and (16), respectively. Assume aij ∈ C1,β

per(Y ), β > 0, u0 ∈ H3(Ω). Then there exists a constant c
independent of ε such that

‖uε(·) − u0(·) − εu1(·, ·/ε) − εφε(·)‖0 ≤ cε3/2‖u0‖3.

Proof: See Subsection 6.3 �

Remark 2.2 Due to the Proposition 6.2, which under the hypothesis of Theorems 2.2 and 2.3 gives
that ‖θ̃ε − φ̃ε‖0 is O(ε1/2), we obtain a factor ε3/2 in these theorems, rather than ε2 as in Propositions
6.4 and 6.6.

3 Finite Element Approximation

We now describe how to approximate the terms u0, u1, φ̃ε and φ̄ numerically.

• Approximate the solution of Problem (3) with a second order accurate conforming finite element
on a partition Tĥ(Y ). Denote these solutions by χj

ĥ
.

• Define Aĥ
ij = 1

|Y |

∫

Y
alm(y) ∂

∂yl
(yi − χi

ĥ
) ∂

∂ym
(yj − χj

ĥ
)dy.

• Let V h(Ω) be a conforming second order accurate finite element space on a mesh Th(Ω) and let

V h
0 (Ω) = V h(Ω) ∩H1

0 (Ω). Define uh,ĥ
0 ∈ V h

0 (Ω) as the solution of
∫

Ω

Aĥ∇uh,ĥ
0 · ∇vhdx =

∫

Ω

fvhdx, ∀vh ∈ V h
0 (Ω).

• Since ∂ηu0 appears as boundary condition imposed in Equation (15), it is important to obtain
a good discrete approximation for it. In oder to approximate ∂ηu0 we define Y h = V h(Ω)|∂Ω,

Y h
k = Y h|Γk

and Y h
0,k = {λh ∈ Y h

k ;λh = 0 at ∂Γk}. Let λh,ĥ
k ∈ Y h

0,k be the solution of

∫

Γk

λh,ĥ
k φhdσ =

∫

Ω

Aĥ
ij∂iu

h,ĥ
0 ∂jφ

hdx−

∫

Ω

fφhdx, (17)

∀ φh ∈ V h(Ω), such that φh|∂Ω\Γk
= 0. Later in Proposition 4.3 we show that λh,ĥ

k is a good

approximation for A∇u0 · ηk on Γk, hence we approximate ∂ηu0 by µh,ĥ where

µh,ĥ|Γk
= λh,ĥ

k /Aĥ
lklk

, lk =

{

1 if k = e, w
2 if k = n, s.
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• We observe that we use µh,ĥ as the approximation for ∂ηu0 in Equation (21), hence in order to
guarantees that the final numerical approximation for uε satisfies the zero Dirichlet boundary
condition we define the approximation for ∇u0 as

Ψh,ĥ = ∇uh,ĥ
0 +

∑

k∈{e,w,n,s}

Eh
k (µh,ĥ −∇uh,ĥ

0 · ηk)ηk. (18)

Here Eh
k (·) denotes a non-conforming discrete extension of µh,ĥ −∇uh,ĥ

0 · ηk by zero on Ω. More

specifically, Eh
k (µh,ĥ −∇uh,ĥ

0 ·ηk)(z) = 0, if z is a vertex of Th(Ω)\Γk, Eh
k (µh,ĥ −∇uh,ĥ

0 ·ηk)(z) =

µh,ĥ−∇uh,ĥ
0 ·ηk(z), if z is a vertex of Γk, and Eh

k (µh,ĥ−∇uh,ĥ
0 ·ηk)|Ki ∈ V h(Ω)|Ki , ∀ Ki ∈ Th(Ω).

• Define
uh,ĥ

1 (x, x/ε) = −Ψh,ĥ
j (x)χj

ĥ
(x/ε). (19)

Note that this leads to a nonconforming approximation for u1 in the partition Th(Ω).

• Let τ be a positive integer and Gτ
e = {y ∈ R

2; −τ ≤ y1 ≤ 0 and 0 ≤ y2 ≤ 1}. Define ṽe ∈ H1(Gτ
e )

as the weak solution of

−∇y · a(y)∇y ṽe = 0 in Gτ
e ,

ṽe(y) = χ1
ĥ
(1/ε, y2) on {y ∈ Gτ

e , y1 = 0},

∂ηṽe = 0 on {y ∈ Gτ
e ; y1 = −τ},

and ve(y1, 0) = vk(y1, 1) for − τ ≤ y1 ≤ 0.

Let vĥ,τ
e be a numerical approximation of ṽe using a second order accurate conforming finite

element on a mesh Tĥ(Gτ
e ), and define

χ∗,ĥ,τ
e =

∫ 1

0

vĥ,τ
e (−τ, y2)dy2.

The other cases k ∈ {w, n, s} are treated similarly.

• Observe that the term ve(
x1−1

ε , x2

ε ) appears in Equation (13). The approximation vĥ,τ
e is defined in

Gτ
e , hence we have defined vĥ,τ

e (x1−1
ε , x2

ε ) only when x1 ≥ 1−ετ . Since the functions ve−χ
∗
e decays

exponentially to zero in the −ηe direction, its is natural to define the following approximation

φ̃e,h,ĥ,τ
ε (x1, x2) =

{ (

vĥ,τ
e

(

x1−1
ε , x2

ε

)

− χ∗,ĥ,τ
e

)

Ψh,ĥ if x1 > 1 − ετ

0 otherwise.

• Let
φ̃h,ĥ,τ

ε =
∑

k∈{e,w,n,s}

φ̃k,h,ĥ,τ
ε , (20)

where the others terms φ̃k,h,ĥ,τ
ε are defined in a similar way.
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• Let φ̄h,ĥ,τ be a second order accurate finite element approximation on a mesh of size h for the
following equation (for the well posedness of the equation bellow see Remark 3.1)

−∇ · Aĥ∇ψ = 0 in Ω, and ψ = χ∗,ĥ,τµh,ĥ on ∂Ω. (21)

• Approximate θε by φh,ĥ,τ
ε = φ̃h,ĥ,τ

ε + φ̄h,ĥ,τ and finally define the numerical solution for Equation
(1) as

uh,ĥ,τ
ε = uh,ĥ

0 + εuh,ĥ
1 + εφh,ĥ,τ

ε . (22)

Remark 3.1 By construction µh,ĥ vanishes at the corners of Ω, therefore χ∗,ĥ,τµh,ĥ ∈ H1/2(∂Ω).

This implies that Equation (21) is well posed. In addition χ∗,ĥ,τµh,ĥ ∈ V h|∂Ω, hence we can look for a
numerical solution of Equation (21) in V h(Ω).

4 Finite Element Approximation Error Analysis

For the discrete error analysis we assume ĥ = 0 and τ = ∞, i.e. vĥ,τ
k = vk, χj

ĥ
= χj and Aĥ = A, and

for this reason we will note make reference to the index τ and ĥ when we make reference to the the
numerical approximation for u0, ∇u0, φ̄, φ̃ε and uε, i.e. uh

ε = uh,ĥ,τ
ε and similar for the other terms; an

error analysis including the error due to the numerical approximation of the functions vk and χj , and
the matrix A is currently work under progress. We also assume that linear or bilinear finite elements
are used to approximate u0. Theorems 4.1 and 4.2 give the main results of this section. Theorem 4.1
provides error estimates for the broken H1 semi-norm and the L2 norm between the exact solution uε

and its numerical approximation uh
ε . Theorem 4.2 assumes more regularity from u0 resulting in a better

error estimate on the L2 norm.

Theorem 4.1 Let uε be the solution of the Problem (1), u0, χ
j and uh

ε be defined by Equations (3),
(5) and (22), respectively, and the functions vk and the constants χ∗

k be defined as in Subsection 2.2.1.
Assume aij ∈ L∞

per(Y ), u0 ∈ W 2,p(Ω), χj ∈ W 1,q
per(Y ), ve and ∇(ve − χ∗

e)exp(−γy1) ∈ Ls(Ge), for
1/p + 1/q ≤ 1/2 and 1/s + 3/p ≤ 1. We also assume similar hypothesis for the other functions vk.
Then there exists a constant c independent of ε and h such that

|uε − uh
ε |1,h ≤ c(h+ ε)‖u0‖2,p

and

‖uε − uh
ε ‖0 ≤ c(h2 + ε+ εh)‖u0‖2,p.

Proof: By the triangular inequality we have

|uε − uh
ε |1,h ≤ |uε − u0 − u1 − φε|1 + |u0 − uh

0 |1,h + ε|u1 − uh
1 |1,h

+ε|φ̄− φ̄h|1,h + ε|φ̃ε − φ̃h
ε |1,h,

and the theorem follows from Theorem 2.1, the approximation error (23), and Propositions 4.2, 4.3 and
4.4. �
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Theorem 4.2 Let uε be the solution of the Problem (1), χj , u0, χ
ij , φ̄ and uh

ε be defined by Equations
(3), (5), (8), (15) and (22), respectively, and the functions vk and the constants χ∗

k be defined as in
Subsection 2.2.1. Assume aij ∈ L∞

per(Y ), u0 ∈ W 3,p(Ω), φ̄ ∈ W 2,p(Ω) and χij ∈ W 1,q
per(Y ), for p > 2

and 1/p + 1/q ≤ 1/2. Also assume χj ∈ W 1,∞(Y ), and ve and ∇(ve − χ∗
e)exp(−γy1) ∈ L∞(Ge). We

also assume similar hypothesis for the other functions vk. Then there exists a constant c independent
of ε and h such that

‖uε − uh
ε ‖0 ≤ c(h2 + ε

3
2 + εh)‖u0‖3,p.

Furthermore, if aij ∈ C1,β
per(Y ) and u0 ∈ H3(Ω), then

‖uε − uh
ε ‖0 ≤ c(h2 + ε

3
2 + εh)‖u0‖3.

Proof: The same proof of Theorem 4.1 holds here, except that (23) is replaced by (24) and Theorem
2.1 is replaced by Theorems 2.3 and 2.2. �

We now prove the propositions used in the proofs of Theorems 4.1 and 4.2.
For the approximation error of the term u0 we use standard finite element analysis to obtain

‖u0 − uh
0‖1,p ≤ ch‖u0‖2,p, for 2 ≤ p ≤ ∞, (23)

‖u0 − uh
0‖0,p ≤ ch2‖u0‖2,p, for 2 ≤ p <∞ (24)

and
‖u0 − uh

0‖0,∞ ≤ ch2ln(h)‖u0‖2,∞; (25)

see Corollary 7.1.2, Theorem 4.4.20 and inequality (7.5.4) from [10]. Let Ih be the usual local point-wise
P1 or Q1 interpolate and K ∈ Th(Ω), then

|u0 − uh
0 |2,p,K ≤ |u0 − Ihu0|2,p,K + |Ihu0 − uh

0 |2,p,K .

Using an interpolation error estimate, see Theorem 4.4.20 [10], we obtain

|u0 − Ihu0|s,p,h ≤ chm−s|u0|m,p,h, for 0 ≤ s ≤ m, (26)

and from an inverse inequality, see Lemma 4.5.3 [10], we have

|Ihu0 − uh
0 |2,p,K ≤ ch−1‖Ihu0 − uh

0‖1,p,K . (27)

Finally from (26), (27) and (23) we obtain

‖u0 − uh
0‖2,p,h ≤ c‖u0‖2,p. (28)

In order to estimate the L2 and the broken H1 semi-norm of u1 − uh
1 , (see Proposition 4.2) we note

that u1 − uh
1 = (∂xju0 −Ψh

j )χj hence by a Cauchy inequality and the Sobolev embedding Theorem we

obtain ‖u1 − uh
1‖0 ≤ c‖∂xju0 − Ψh

j ‖0,p‖χ
j‖0,q for 1/p+ 1/q ≤ 1/2. Therefore we have to estimate the

error between Ψh and ∇u0 on the Lp and on the broken W 1,p semi-norm, (see Proposition 4.1) this is
done by first estimating the error between A∇u0 · η and λh in the trace space of W 1,p(Ω) over Γk in
different norms; see Lemma 4.3. Lemmas 4.1 and 4.2 are auxiliary results used for obtaining Lemma
4.3.
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Consider the following spaces:
Case 2 < p <∞: Since W 1−1/p,p(Γk) ↪→ C0(Γk), we define the spaces

W
1−1/p,p
00 (Γk) = {ϕ ∈ W 1−1/p,p(Γk); ϕ = 0 on ∂Γk} equipped with the norm

‖ · ‖
W

1−1/p,p
00

(Γk)
= ‖ · ‖W 1−1/p,p(Γk).

Case p = 2: We set W
1−1/p,p
00 (Γk) = H

1/2
00 (Γk) and ‖ · ‖

W
1−1/p,p
00

(Γk)
= ‖ · ‖

H
1/2

00
(Γk)

; see [31] for the

definition of H
1/2
00 (Γk).

Case 1 < p < 2: We defineW
1−1/p,p
00 (Γk) = W 1−1/p,p(Γk) equipped with the norm ‖·‖

W
1−1/p,p
00

(Γk)
=

‖ · ‖W 1−1/p,p(Γk).
These spaces have the following important feature. Denote by ϕ̃ the extension by zero to ∂Ω \ Γk

of a given function ϕ ∈W
1−1/p,p
00 (Γk). Then by the Trace Theorem and the Lift Theorem 1.5.2.3 from

[24] there exists a function ψϕ ∈W 1,p(Ω) such that ψϕ|∂Ω = ϕ̃ and

c1‖ϕ‖
W

1− 1
p

,p

00
(Γk)

≤ ‖ψϕ‖1,p ≤ c‖ϕ̃‖
W

1− 1
p

,p
(∂Ω)

≤ c2‖ϕ‖
W

1− 1
p

,p

00
(Γk)

. (29)

We also introduce the dual space of W
1−1/p,p
00 (Γk), denoted by W−1+1/p,p′

(Γk), where 1/p+ 1/p′ = 1.
The following inverse inequality is required in the proof of Lemma 4.3.

Lemma 4.1 Let 1 < p <∞ and vh ∈ Y h
0,k. Then

‖vh‖
W

1−1/p,p
00

(Γk)
≤ ch−1‖vh‖W−1+1/p′,p(Γk). (30)

Proof: Consider the following inverse inequality (see Theorem 4.5.11 [10])

‖vh‖s,q,∂Ω ≤ ch−s‖vh‖0,q,∂Ω, ∀ vh ∈ Y h, 1 ≤ q ≤ ∞ and 0 ≤ s ≤ 1. (31)

Given vh ∈ Y h
0,k let ṽh ∈ Y h be the extension of vh to ∂Ω \ Γk by zero. Using (29) and (31) we obtain

‖vh‖
W

1−1/p,p
00

(Γk)
≤ c‖ṽh‖W 1−1/p,p(∂Ω)

≤ ch−1+1/p‖ṽh‖Lp(∂Ω) = ch−1+1/p‖vh‖Lp(Γk). (32)

Let P0,k denote the L2 projector to Y h
0,k and assume that vh ∈ Y h

0,k. Then

‖vh‖Lp(Γk) = sup
φ∈Lp′(Γk)

〈vh, φ〉

‖φ‖Lp′ (Γk)

= sup
φ∈Lp′(Γk)

〈vh,P0,kφ〉

‖φ‖Lp′ (Γk)

.

By Theorem 1 in [17] we have

‖P0,kφ‖Lp′ (Γk) ≤ c‖φ‖Lp′ (Γk) 1 ≤ p′ ≤ ∞. (33)

Hence

‖vh‖Lp(Γk) ≤ c sup
φ∈Lp′(Γk)

‖vh‖
W

−1+ 1

p′
,p

(Γk)
‖P0,kφ‖

W
1− 1

p′
,p′

00
(Γk)

‖P0,kφ‖Lp′ (Γk)

≤ ch
−1+ 1

p′ ‖vh‖
W

−1+ 1

p′
,p

(Γk)
, (34)
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where on the last inequality we have used (32) for bounding ‖P0,kφ‖W
1−1/p′,p′

00
(Γk)

. Combining inequal-

ities (32) and (34) we obtain (30). �

The following lemma provide stability and error estimates concerning P0,k, the L2 projector to Y h
0,k.

These results are required in the proof of Lemma 4.3.

Lemma 4.2 Let 2 ≤ p < ∞ and P0,k : W−1+ 1
p

,p′

(Γk) → Y h
0,k be the L2 projector to Y h

0,k. Then we
have

‖P0,kφ‖
W

1− 1
p

,p

00
(Γk)

≤ c‖φ‖
W

1− 1
p

,p

00
(Γk)

∀ φ ∈ W
1− 1

p ,p

00 (Γk), (35)

‖φ−P0,kφ‖Lp(Γk) ≤ ch1− 1
p ‖φ‖

W
1− 1

p
,p

00
(Γk)

∀ φ ∈ W
1− 1

p ,p

00 (Γk), (36)

‖φ−P0,kφ‖
W

−1+ 1
p

,p′

(Γk)
≤ ch1− 1

p ‖φ‖Lp′(Γk) ∀ φ ∈ Lp′

(Γk) (37)

and
‖P0,kφ‖

W
−1+ 1

p
,p′

(Γk)
≤ c‖φ‖

W
−1+ 1

p
,p′

(Γk)
∀ φ ∈W−1+ 1

p ,p′

(Γk). (38)

Proof of (35):

Case p > 2: Observe that P0,k : Lp(Γk) → Y h
0,k is stable in Lp and W 1,p, i.e. ‖P0,kφ‖Lp(Γk) ≤

c‖φ‖Lp(Γk) ∀ φ ∈ Lp(Γk), and ‖P0,kφ‖W 1,p(Γk) ≤ c‖φ‖W 1,p(Γk) ∀ φ ∈ W 1,p(Γk), respectively; see

Theorems 1 and 2 in [17]. Since W 1− 1
p ,p(Γk) = [Lp(Γk),W 1,p(Γk)]1−1/p,p; see Theorem 12.2.3 in [10],

we obtain the stability of P0,k in W 1− 1
p ,p(Γk) by the real interpolation method, see Proposition 12.1.5

in [10], and the inequality (35) follows.

Case p = 2: By definition H
1/2
00 (Γk) = [L2(Γk), H1

0 (Γk)]1/2 and the proof is analogue to the case
p > 2.

Proof of (36):

Case p > 2: Let Ih : Lp(Γk) → V h(Ω)|Γk
denote the standard P1 or Q1 interpolation operator.

Then we have

‖φ−P0,kφ‖Lp(Γk) ≤ ‖φ− Ihφ‖Lp(Γk) + ‖P0,k(φ− Ihφ)‖Lp(Γk)

≤ c‖φ− Ihφ‖Lp(Γk), by (33)

≤ ch1− 1
p ‖φ‖

W
1− 1

p
,p

00
(Γk)

, by (26). (39)

Case p = 2: Follows similarly to the case p > 2 by replacing Ih by the Clement interpolation
operator defined by (2.13) in [40] and use the real interpolation method to obtain (39).

Proof of (37):

‖φ−P0,kφ‖
W

−1+ 1
p

,p′

(Γk)
= sup

v∈W
1− 1

p
,p

00
(Γk)

〈φ−P0,kφ, v〉

‖v‖
W

1− 1
p

,p

00
(Γk)
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= sup

v∈W
1− 1

p
,p

00

〈φ−P0,kφ, v −P0,kv〉

‖v‖
W

1− 1
p

,p

00
(Γk)

= sup

v∈W
1− 1

p
,p

00

〈φ, v −P0,kv〉

‖v‖
W

1− 1
p

,p

00
(Γk)

≤ sup

v∈W
1− 1

p
,p

00

‖φ‖Lp′(Γk)‖v −P0,kv‖Lp(Γk)

‖v‖
W

1− 1
p

,p

00
(Γk)

≤ ch1− 1
p ‖φ‖Lp′ (Γk), (40)

where we have used (36) to obtain the last inequality.
Proof of (38):

‖P0,kφ‖
W

−1+ 1
p

,p′

(Γk)
= sup

v∈W
1− 1

p
,p

00
(Γk)

〈P0,kφ, v〉

‖v‖
W

1− 1
p

,p

00
(Γk)

≤ c sup

v∈W
1− 1

p
,p

00
(Γk)

〈P0,kφ,P0,kv〉

‖P0,kv‖
W

1− 1
p

,p

00
(Γk)

, by (35)

≤ c sup

v∈W
1− 1

p
,p

00
(Γk)

〈φ,P0,kv〉

‖P0,kv‖
W

1− 1
p

,p

00
(Γk)

≤ c‖φ‖
W

−1+ 1
p

,p′

(Γk)
.

�

The following lemma estimate the error between A∇u0 ·η and its numerical approximation λh. This
lemma is used in the proof of Proposition 4.1.

Lemma 4.3 Let λh be defined by Equation (17) and λ = ∂ηAu0 = Aij∂ju0ηi, where ηi is the ith
component of the normal vector to Γk. Assume that u0 ∈ W 2,p(Ω). Then we have

‖λ− λh‖
W

1−1/p,p
00

(Γk)
≤ c‖u0‖2,p for 2 ≤ p <∞, (41)

‖λ− λh‖Lp(Γk) ≤ ch1− 1
p ‖u0‖2,p for 2 ≤ p ≤ ∞ (42)

and
‖λ− λh‖W−1+1/p,p′ (Γk) ≤ ch‖u0‖2,p for 2 ≤ p <∞. (43)

Proof of (41): From Remark 2.1 if p = 2, or from the Sobolev embedding theorem if p > 2, we have

‖λ‖
W

1−1/p,p
00

(Γk)
≤ c‖u0‖2,p. (44)

In order to prove inequality (41) observe that

‖λ− λh‖
W

1−1/p,p
00

(Γk)
≤ ‖λ‖

W
1−1/p,p
00

(Γk)
+ ‖λh‖

W
1−1/p,p
00

(Γk)
,

and

‖λh‖
W

1− 1
p

,p

00
(Γk)

= sup

φ∈W
−1+ 1

p
,p′

(Γk)

〈λh, φ〉

‖φ‖W−1+1/p,p′(Γk)

.
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Since λh ∈ Y h
0,k then 〈λh, φ〉 = 〈λh,P0,kφ〉, and using (38) we obtain

‖λh‖
W

1− 1
p

,p

00
(Γk)

≤ c sup

φ∈W
−1+ 1

p
,p′

(Γk)

〈λh,P0,kφ〉

‖P0,kφ‖
W

−1+ 1
p

,p′

(Γk)

. (45)

Now we introduce the A-discrete harmonic extension operator Hh : Y h → V h(Ω) defined as the
solution of

∫

Ω

Aij∂iH
hgh∂jv

hdx = 0 ∀ vh ∈ V h
0 (Ω), and Hhgh|∂Ω = gh.

The A-harmonic extension operator H : H1/2(∂Ω) → H1(Ω) is defined similarly. By Theorem 5.4 in
[41] (a generalization of Lax-Milgram theorem for Banach spaces) we have

‖Hg‖W 1,p(Ω) ≤ c‖g‖W 1−1/p,p(∂Ω), for 1 < p <∞. (46)

Hence if gh ∈ Y h
0,k and g̃h denotes the extension of gh by zero to ∂Ω \ Γk, from Theorem 7.1.11 in [10]

it follows

‖Hhg̃h‖1,p ≤ c‖Hg̃h‖W 1,p(Ω)

≤ ‖gh‖
W

1−1/p,p
00

(Γk)
, by (46). (47)

Let P̃0,kφ denote the discrete extension of P0,kφ to ∂Ω \ Γk by zero. From the definition of λh, the
stability of the A-discrete harmonic extension, (47) and (23), we obtain

〈λh,P0,kφ〉 = 〈λ,P0,kφ〉 + a(uh
0 − u0,H

hP̃0,kφ)

≤ ‖λ‖
W

1−1/p,p
00

(Γk)
‖P0,kφ‖W−1+1/p,p′ (Γk) + ch‖u0‖2,p‖P0,kφ‖W

1−1/p′,p′

00
(Γk)

≤ c
(

‖λ‖
W

1−1/p,p
00

(Γk)
+ c‖u0‖2,p

)

‖P0,kφ‖W−1+1/p,p′ (Γk). (48)

Here we used the inverse estimate (30) applied to P0,kφ to obtain (48) . Inequality (41) follows from
(48), (45) and (44).

Proof of (43): We observe that

‖λ− λh‖W−1+1/p,p′ (Γk) = sup

φ∈W
1− 1

p
,p

00
(Γk)

〈λ− λh, φ〉

‖φ‖
W

1− 1
p

,p

00
(Γk)

≤ c sup

φ∈W
1− 1

p
,p

00
(Γk)

〈λ− λh, φ−P0,kφ〉

‖φ‖
W

1− 1
p

,p

00
(Γk)

+ c sup

φ∈W
1− 1

p
,p

00
(Γk)

〈λ− λh,P0,kφ〉

‖P0,kφ‖
W

1− 1
p

,p

00
(Γk)

. (49)

In order to estimate the second term on the right hand side of (49) we use the definition of λ and λh,
and the inequality (47) to obtain

〈λ− λh,P0,kφ〉 = a(uh
0 − u0,H

hP̃0,kφ)

≤ ch‖u0‖2,p‖P0,kφ‖W
1−1/p′,p′

00
(Γk)

≤ ch‖u0‖2,p‖P0,kφ‖W
1−1/p,p
00

(Γk)
since p > p′. (50)
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For estimating the first term on the right hand side of (49) we note that

‖φ−P0,kφ‖
W

−1+ 1
p

,p′

(Γk)
= sup

v∈W
1− 1

p
,p

00
(Γk)

〈φ−P0,kφ, v −P0,kv〉

‖v‖
W

1− 1
p

,p

00
(Γk)

≤ sup

v∈W
1− 1

p
,p

00
(Γk)

‖φ−P0,kφ‖L2(Γk)‖v −P0,kv‖L2(Γk)

‖v‖
W

1−1/p,p
00

(Γk)

≤ ch‖φ‖
W

1−1/p,p
00

(Γk)
. (51)

In the last inequality we used (36) and the fact that W
1−1/p,p
00 (Γk) ↪→ H

1/2
00 (Γk) for p > 2. Hence,

〈λ− λh, φ−P0,kφ〉 ≤ ‖λ− λh‖
W

1−1/p,p
00

(Γk)
‖φ−P0,kφ‖W−1+1/p,p′ (Γk)

≤ ch‖u0‖2,p‖φ‖W
1−1/p,p
00

(Γk)
, by (41) and (51), (52)

and the inequality (43) follows from (49), (50) and (52).
Proof of (42):

Case 2 ≤ p <∞: We have

‖λ− λh‖Lp(Γk) ≤ sup
φ∈Lp′ (Γk)

〈λ− λh, φ−P0,kφ〉

‖φ‖Lp′(Γk)

+ sup
φ∈Lp′(Γk)

〈λ − λh,P0,kφ〉

‖φ‖Lp′(Γk)

. (53)

The first term on the right hand side of (53) is bounded as follows:

sup
φ∈Lp′ (Γk)

〈λ− λh, φ−P0,kφ〉

‖φ‖Lp′(Γk)

≤ sup
φ∈Lp′(Γk)

‖λ− λh‖
W

1− 1
p

,p

00
(Γk)

‖φ−P0,kφ‖
W

−1+ 1
p

,p′

(Γk)

‖φ‖Lp′(Γk)

≤ ch1− 1
p ‖u0‖2,p. (54)

Here we have used (37) and (41) to arrive in (54). In order to estimate the second term on the right
hand side of (53) we use the definition of λ and λh to obtain

sup
φ∈Lp′ (Γk)

〈λ− λh,P0,kφ〉

‖φ‖Lp′(Γk)

≤

∫

Y aij∂i(u0 − uh
0)∂j(H

hP̃0,kφ)dy

‖P0,kφ‖Lp′ (Γk)

≤ ch

‖u0‖2,p‖P0,kφ‖
W

1− 1

p′
,p′

00

‖P0,kφ‖Lp′ (Γk)

≤ ch1− 1
p ‖u0‖2,p, by (32).

Case p = ∞: Let z ∈ Γk, then

|λ(z) − λh(z)| ≤ |λ(z) −P0,kλ(z)| + |λh(z) −P0,kλ(z)|. (55)
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For the first term of (55), by Theorem 3.1 in [45] there exists a positive constant c such that

|λ(z) −P0,kλ(z)| ≤ c‖λ− vh‖0,∞,Γk
+ c exp(−ch)‖λ− vh‖0,1,Γk

, ∀ vh ∈ Y0,k. (56)

The use of Q1 elements to approximate u0 implies A∇uh
0 · ηk|Γk

∈ Y0,k, therefore we can take vh =
A∇uh

0 · ηk in (56) and use (23) to obtain

‖λ−P0,kλ‖0,∞ ≤ ch‖u0‖2,∞. (57)

When P1 elements are used A∇uh
0 · ηk is piecewise constant, hence A∇uh

0 · ηk|Γk
/∈ Y0,k. We then

consider a rectangular mesh T̃ h(Ω) such that the approximation ũh
0 using bilinear elements on T̃ h(Ω)

for u0 satisfies A∇ũh
0 · ηk|Γk

∈ Y0,k. Hence we take vh = A∇ũh
0 · ηk in (56) and use (23) to obtain (57).

To estimate the second term on the right hand side of (55) we follow ideas from [45]. Let Ez ⊂ Γk

denote an edge of an element Kz ∈ T h(Ω) such that z ∈ Ez, and define δz as the polynomial of degree
1 on Ez such that

∫

Ez

δz(s)v(s)ds = v(z), for any v polynomial of degree 1.

Regard δz as extended by zero to Γk \Ez and denote by δ̃h
z ∈ V h(Ω) the extension by zero of P0,kδz to

Ω. Then we have

λh(z) −P0,kλ(z) =

∫

Γk

P0,k(λh − λ)δzds =

∫

Γk

(λh − λ)P0,kδzds

=

∫

Ω

Aij∂i(u0 − uh
0)∂j(δ̃

h
z )dx (58)

where we have used the definition of λh to obtain (58). From (23) and (58) follows

|λh(z) −P0,kλ(z)| ≤ ch‖u0‖2,∞‖δ̃h
z ‖1,1.

Using an inverse estimate followed by a Poincare inequality we have

‖δ̃h
z ‖1,1 ≤ ch−1‖δ̃h

z ‖0,1 ≤ c‖P0,kδz‖0,1,Γk
.

Finally, we use the fact that ‖P0,kδz‖0,1,Γk
≤ c, see Lemma 3.5 in [45], and (42) follows. �

Proposition 4.1 estimates the error between ∇u0 and its proposed numerical approximation Ψh.
This Proposition is required in the proof of Proposition 4.2.

Proposition 4.1 Let u0 and Ψh be defined by Equations (5) and (18), respectively. Assume u0 ∈
W 2,p(Ω) and that linear or bilinear finite elements are used to approximate u0. Then for 2 ≤ p ≤ ∞
we have

‖(∇u0 − Ψh) · ν‖0,p ≤ ch‖u0‖2,p, ∀ ν ∈ R
2 with |ν| = 1 (59)

and
‖(∇u0 − Ψh) · ν‖1,p,h ≤ c‖u0‖2,p, ∀ ν ∈ R

2 with |ν| = 1. (60)
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Proof of (59): From the triangular inequality we have

‖(∇u0 − Ψh) · ν‖0,p ≤ ‖(∇u0 −∇uh
0 ) · ν‖0,p + ‖(∇uh

0 − Ψh) · ν‖0,p. (61)

Use (23) to estimate the first term on the right hand side of (61). For the second term, by the definition
of Ψh, we have

‖(∇uh
0 − Ψh) · ν‖0,p ≤ c

∑

k∈{e,w,n,s}

‖Eh
k (µh −∇uh

0 · ηk)‖0,p.

Consider k = e and that bilinear elements are used to approximate u0; the other cases, k ∈ {w, n, s}

or when P1 elements are used, follow in a similar way. From definition, the function Eh
e

(

µh −
∂uh

0

∂x1

)

is

linear in the x1 direction and equal to zero in x1 ≤ 1 − h, hence

‖Eh
e (µh −∇uh

0 · ηk)‖0,p ≤ h1/p
∥

∥∂x1
uh

0 − µh
∥

∥

0,p,Γe
, if 2 ≤ p <∞

or
‖Eh

e (µh −∇uh
0 · ηk)‖0,∞ ≤

∥

∥∂x1
uh

0 − µh
∥

∥

0,∞,Γe
, if p = ∞.

Case 2 ≤ p <∞: The triangular inequality gives

∥

∥∂x1
uh

0 − µh
∥

∥

0,p,Γe
≤
∥

∥∂x1
uh

0 − ∂x1
u0

∥

∥

0,p,Γe
+
∥

∥∂x1
u0 − µh

∥

∥

0,p,Γe
. (62)

In order to estimate the first term on the right hand side of (62), let K ∈ Th(Ω) containing an edge
E ⊂ Γk. Applying a Trace Theorem we have

∥

∥∂x1
uh

0 − ∂x1
u0

∥

∥

0,p,E
≤

c
(

h−1
∥

∥∂x1
uh

0 − ∂x1
u0

∥

∥

p

0,p,K
+ hp−1‖∂x1

uh
0 − ∂x1

u0‖
p
1,p,K

)1/p

. (63)

From (23), (28) and (63) we obtain

∥

∥∂x1
uh

0 − ∂x1
u0

∥

∥

0,p,Γe
≤ ch1−1/p‖u0‖2,p. (64)

For second term on the right hand side of (62), we apply the definition of λ and λh to obtain
∥

∥∂x1
u0 − µh

∥

∥

0,p,Γe
= A11

∥

∥λ− λh
∥

∥

0,p,Γe
, and therefore from (42) we have

∥

∥∂x1
u0 − µh

∥

∥

0,p,Γe
≤ ch1−1/p‖u0‖2,p. (65)

From (62), (64) and (65) we obtain

‖Ee(µ
h −∇uh

0 · ηe)‖0,p ≤ ch‖u0‖2,p,

and hence estimate (59) holds for p <∞.
Case 2 = ∞: We have

∥

∥∂x1
uh

0 − µh
∥

∥

0,∞,Γe
≤ ‖∂x1

uh
0 − ∂x1

u0‖0,∞,Γe + ‖∂x1
u0 − µh‖0,∞,Γe ,

and applying (42) and (23) we have
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∥

∥∂x1
u0 − µh

∥

∥

0,∞,Γe
≤ ch‖u0‖2,∞,

and hence estimate (59) follows for p = ∞.
Proof of (60): We have

‖(∇uh
0 − Ψh) · ν‖0,p ≤ c‖(∇u0 − Ψh) · ν‖0,p + ‖(∇u0 −∇uh

0 ) · ν‖0,p

≤ ch‖u0‖2,p, by (23) and (59) (66)

and from an inverse inequality, see Lemma 4.5.3 from [10], follows that

‖(∇uh
0 − Ψh) · ν‖1,p,h ≤ c‖u0‖2,p.

Since
‖(∇u0 − Ψh) · ν‖1,p,h ≤ c

(

‖(∇uh
0 −∇u0) · ν‖1,p,h + ‖(∇uh

0 − Ψh) · ν‖1,p,h

)

,

we obtain (60) from (28). �

The following proposition estimates the error between u1 and uh
1 . These estimates are required in

the proof of Theorems 4.1 and 4.2.

Proposition 4.2 Let u1 and uh
1 be defined by (6) and (19), respectively. Assume that u0 ∈ W 2,p(Ω)

and χi ∈ W 1,q
per(Y ), for 1/p+ 1/q ≤ 1/2. Then there exists a constant c independent of ε and h such

that

|u1 − uh
1 |1,h ≤ c‖u0‖2,p‖χ‖1,q,Y

(

h2

ε2
+ 1

)1/2

(67)

and
‖u1 − uh

1‖0 ≤ ch‖u0‖2,p‖χ‖1,q,Y , (68)

where ‖χ‖1,q,Y =
∑

i ‖χ
i‖1,q,Y .

Proof of (67): We have

|u1 − uh
1 |

2
1,h ≤ (69)

2
∑

Kj∈Th(Ω)

∫

Kj

∑

j∈1,2

((∂xiu0 − Ψh
i )∂xjχ

i(·/ε))2 + (χi(·/ε) · ∂xj (∂xiu0 − Ψh
i ))2dx.

For the first term on the right hand side of (69) we have

∑

Kj∈Th(Ω)

∫

Kj

∑

j∈1,2

((∂xiu0 − Ψh
i )∂xjχ

i(·/ε))2dx ≤ |∂xiu0 − Ψh
i |

2
0,p‖∂xjχ

i(·/ε)‖2
0,q

≤ ε−2|∂xiu0 − Ψh
i |

2
0,p‖χ‖

2
1,q,Y ≤ cε−2h2‖u0‖

2
2,p‖χ‖

2
1,q,Y , (70)

where we have used (59) to obtain (70).
The second term on the right hand side of (69) is bounded by a Cauchy inequality, ‖χi∂j(∂iu0 −

Ψh
i )‖2

0 ≤ ‖χ‖2
0,q|∂iu0 − Ψh

i |
2
1,p,h.

Proof of (68): It follows from a direct application of Cauchy inequality and the approximation error
estimate (23). �

The following proposition estimates the error between φ̃ε and φ̃h
ε . This Proposition is required in

the proof of Theorems 4.1 and 4.2.
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Proposition 4.3 Let φ̃ε and φ̃h
ε be defined by (14) and (20), respectively. Assume that u0 ∈ W 2,p(Ω)

and vk ∈ W 1,q(Gk), for 1/p+ 1/q ≤ 1/2. Then

|φ̃ε − φ̃h
ε |1,h ≤ c

(

h2

ε2
+ 1

)1/2

max
k

‖vk‖1,q,Gk
‖u0‖2,p (71)

and
‖φ̃ε − φ̃h

ε ‖0 ≤ chmax
k

‖vk − χ∗
k‖0,q,Gk

‖u0‖2,p. (72)

Proof: From definition of φ̃ε and φ̃h
ε we have

|φ̃ε − φ̃h
ε |1,h ≤

∑

k∈{e,w,n,s}

|φ̃k
ε − φ̃k,h

ε |1,h,

and the proposition follows from arguments similar to the ones given in the proof of Proposition 4.2. �

Finally, we prove the last proposition used in the proof of Theorems 4.1 and 4.2. Proposition 4.4
estimates the error between φ̄ and φ̄h.

Proposition 4.4 Let φ̄ be defined by Equation (15), φ̄h be the finite element approximation to the
Equation (21), and assume that u0 ∈ H2(Ω). Then we have

‖φ̄− φ̄h‖1 ≤ c‖u0‖2 (73)

and
‖φ̄− φ̄h‖0 ≤ ch‖u0‖2. (74)

Proof of (73): We note that χ∗µh ∈ H1/2(∂Ω), see Remark 3.1, hence we define ψ ∈ H1(Ω) as the
solution of

∇ ·A∇ψ = 0 in Ω ψ = χ∗µh on ∂Ω. (75)

From regularity theory and (41) we have

‖ψ‖1 ≤
∑

k

c‖χ∗µh‖
H

1/2

00
(Γk)

≤ c‖u0‖2, (76)

and from triangular inequality

‖φ̄− φ̄h‖1 ≤ ‖φ̄− ψ‖1 + ‖φ̄h − ψ‖1.

Since χ∗µh ∈ V h(Ω), the problem of finding φ̄ reduces to a conforming finite element problem, hence
standard finite element analysis and (76) gives

|φ̄h − ψ|1 ≤ c‖u0‖2.

Finally, from regularity theory and Lemma 4.3 we obtain

|φ̄− ψ|1 ≤ ‖χ∗µh − χ∗∂ηu0‖H1/2(∂Ω)

≤
∑

k

‖χ∗µh − χ∗∂ηu0‖H
1/2

00
(Γk)

≤ c‖u0‖2.
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Proof of (74): From the triangular inequality

‖φ̄− φ̄h‖0 ≤ c‖φ̄− ψ‖0 + ‖φ̄h − ψ‖0,

and from standard finite element analysis and (76) we obtain

‖φ̄h − ψ‖0 ≤ ch‖ψ‖1 ≤ ch‖u0‖2.

Theorem 6.1 from [37] states

‖φ̄− ψ‖0 ≤ c(
∑

k

‖χ∗∂ηu0 − χ∗µh‖2
H−1/2(Γk))

1/2

≤ ch‖u0‖2 by (43).

�

5 Numerical Results

As in [26] we consider the case

a(x) =

(

2 + 1.8sin(2πx1/ε)

2 + 1.8cos(2πx2/ε)
+

2 + sin(2πx2/ε)

2 + 1.8sin(2πx1/ε)

)

I2×2, and f(x) = −1.

We compare the solution obtained by our method with the solution obtained by a second order accurate
finite element method on a fine mesh with size hf , which we call u∗ε . Table 1 provide absolute errors

estimates for u∗ε − uh,ĥ,p
ε . We have used τ = 2, ĥ = 1/128, hf = 1/2048, and a triangular mesh with

continuous piecewise linear functions to approximate χj

ĥ
and vĥ,τ

k .

Table 1: u∗ε − uh,ĥ,τ
ε error

‖ · ‖0 error
ε ↓ h→ 1/8 1/16 1/32 1/64
1/16 2.7085e-04 7.7993e-05
1/32 2.6300e-04 6.6246e-05 1.7773e-05
1/64 2.5388e-04 5.8069e-05 1.6020e-05 1.2137e-05

| · |1,h error
1/16 0.0097 0.0067
1/32 0.0086 0.0051 0.0036
1/64 0.0086 0.0044 0.0025 0.0018

From Table 1, we see that for ε << h we have errors of order O(h2) and O(h) for the L2 norm
and H1 semi norm , respectively. We observe that when we fix h and decrease ε the errors almost do
not change. This is evidence that in this case the dominant error term is O(h). Also looking at the
diagonal values in this table we see clearly that the numerical error agrees with the theoretical rates
from Theorems 4.1 and 4.2.
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Table 2:

ε = 1/64, h = 1/32, hf = 1/1024
‖ · ‖0 | · |1,h

u∗ε − uh,ĥ
0 0.0287 0.0215

u∗ε − uh,ĥ
0 − εuh,ĥ

1 0.0213 0.0026

u∗ε − uh,ĥ
0 − εuh,ĥ

1 − εφ̄h,ĥ,τ 5.0450e-05 0.0026

u∗ε − uh,ĥ
0 − εuh,ĥ

1 − ε(φ̄h,ĥ,τ + φ̃h,ĥ,τ
ε ) 5.1865e-05 0.0025

Table 2 shows the improvement obtained in the final approximation when the term φh,ĥ,τ
ε is taken

into account. It can be appreciated from this table that a better improvement on the ‖ · ‖0 norm rather
than on | · |1,h semi norm is clearly seen. The improvement on the L2 norm is an evidence that we
were able to obtain, through the proper calculation of χ∗, the asymptotic L2 behavior of the boundary
corrector θε in the interior of the domain Ω. We also note that the term φ̃ε primarily forces the final

approximation uh,ĥ,τ
ε to satisfy the zero Dirichlet boundary condition, and since it has support only in

a thin boundary layer of ∂Ω, then no much error improvement is obtained on the | · |1,h semi norm.
We also consider the following example:

a(y) =

{

2 if 2/5 < y1 < 3/5 or 2/5 < y2 < 3/5
1 otherwise.

and f = −1

Table 3: u∗ε − uh,ĥ,τ
ε error

‖ · ‖0 error, hf = 1/2000
ε ↓ h→ 1/10 1/20 1/40
1/20 4.8318e-04 1.3043e-04
1/40 4.7578e-04 1.1954e-04 3.0805e-05
1/64 2.5388e-04 5.9446e-05 1.4414e-05

Table 4: u∗ε − uh,ĥ,τ
ε error

| · |1,h error, hf = 1/2000
ε ↓ h→ 1/10 1/20 1/40
1/20 0.0180 0.0092
1/40 0.0179 0.0090 0.0046
1/64 0.0086 0.0045 0.0026

We compare the solution obtained by our method with the solution obtained by a second order
accurate finite element method in a fine mesh of size hf , which we call u∗ε . Tables 3 and 4 provide
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absolute errors estimates for u∗ε − uh,ĥ,τ
ε , on the ‖ · ‖0 norm and | · |1,h semi norm for different values

of h and ε. We have used τ = 2, ĥ = 1/128, and a triangular mesh with continuous piecewise linear

functions to approximate χj

ĥ
and vĥ,τ

e .
Although the convergence analysis presented here are not intended for the quasi periodic case

aij(x, x/ε) the numerical approximation presented here can be generalized for this case. This would be
done by approximating matrix a(x, x/ε) by

∑

j a
j(x/ε)IKj (x), where IKJ is the characteristic function

for Kj ∈ Tk(Ω), and then solving a cell problem in each sub-domain Kj .

6 Appendix

6.1 Proof of Theorem 2.1

By the triangular inequality we have

|uε − u0 − u1 − φε|1,h ≤ |uε − u0 − u1 − θε|1

+ε|θ̄ε − φ̄|1 + ε|θ̃ε − φ̃ε|1,

and the theorem follows from Propositions 6.1, 6.2 and 6.3. �

We now prove the propositions used in the proof of Theorem 2.1. The following proposition gives
the same error estimate of Theorem 2.2 in [3], however here we assume u0 ∈W 2,p(Ω) and χj ∈ W 1,q

per(Ω)

for 1/p+ 1/q ≤ 1/2 while in Theorem 2.2 in [3] it is assumed u0 ∈ W 2,∞(Ω) and χj ∈ H1
per(Ω). It also

generalizes Proposition 2.1 from [34] where it is assumed aij ∈ C1,β
per(Y ), u0 ∈ H2(Ω) and Ω ⊂ R

2. We
note here that Theorem 1.1 from [32] gives conditions concerning the discontinuities of the functions aij

such that χj ∈W 1,∞
per (Y ). Finally, we observe that in the case aij ∈ C1,β

per(Y ) a error estimate similar to
Proposition 6.1 can be obtained in the case a zero Neumann boundary condition is used to define uε;
see [35].

Proposition 6.1 Let Ω ⊂ R
d, d = 2, 3 be a convex domain, uε be the solution of Problem (1) and

u0, u1, and θε be defined by Equations (5), (6) and (7), respectively. Assume aij ∈ L∞
per(Y ), u0 ∈

W 2,p(Ω), and χj ∈ W 1,q
per(Y ) for 1/p+1/q ≤ 1/2. Then there exists a constant c independent of u0 and

ε, such that
‖uε(·) − u0(·) − εu1(·, ·/ε) − εθε(·)‖1 ≤ cε‖u0‖2,p.

Proof: Define

v0(x, y) = a(y)∇xu0(x) + a(y)∇yu1(x, y) = a(y)(∇yyj −∇yχ
j(y))

∂u0

∂xj
(x). (77)

From the definition of χj we have
∫

Y

(

a(y)(ej −∇yχ
j(y)) −Aej

)

∇yφ(y)dy = 0, ∀ φ ∈ H1
per(Y ).

Since the vector a(y)(ej −∇yχ
j(y))−Aej is Y periodic and has zero average entries over Y , by Lemma

6.1 there exists φj(y) ∈ H1
per(Y ) with zero average over Y such that

a(y)(∇yyj −∇yχ
j(y)) −Aej = −curlyφj(y). (78)
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Let

φ = φj(y)
∂u0

∂xj
(x) (79)

and define
v1(x, y) = −curlxφ(x, y)

=

(

−φj(y)
∂2u0

∂x2∂xj
(x)

φj(y)
∂2u0

∂x1∂xj
(x)

)

.

In the case d = 2 we have |curlyφj |0,q = |φj |1,q . Since χj ∈ W 1,q
per(Y ) and φj has zero average over Y ,

we apply a Poincare inequality to obtain

‖φj‖1,q,Y ≤ c|curlyφj |0,q,Y ≤ c(‖χ1‖1,q,Y + ‖χ2‖1,q,Y ).

In the case d = 3 by the Remark 3.11 in [25] we also obtain that φj ∈W 1,q
per(Y )3 if χj ∈W 1,q

per(Y ). From
hypothesis u0 ∈ W 2,p(Ω) for 1/p + 1/q ≤ 1/2, hence v1(x, x/ε) ∈ L2(Ω) and ‖v1‖0 ≤ c(‖χ1‖1,q,Y +
‖χ2‖1,q,Y )‖u0‖2,p. Moreover, by Lemma 6.1,

∇x · v1(x, y) = 0, (80)

and simple calculations give

∇y · v1(x, y) = ∇y · curlx
(

φj(y)∂xju0(x)
)

= −∇x · curly
(

φj(y)∂xju0(x)
)

= −∇x · v0(x, y) − f. (81)

Let
zε(x) = uε(x) − u0(x) − εu1(x, x/ε)

and
ηε(x) = a(x/ε)∇uε(x) − v0(x, x/ε) − εv1(x, x/ε).

Then
a(x/ε)∇zε(x) − ηε(x)
= a(x/ε)∇uε(x) − a(x/ε)∇xu0(x) − εa(x/ε)∇xu1(x, x/ε)
− a(x/ε)∇yu1(x, x/ε) − a(x/ε)∇uε(x) + v0(x, x/ε) + εv1(x, x/ε)

= ε(v1(x, x/ε) − a(x/ε)∇xu1(x, x/ε)),

and so
‖a(·/ε)∇zε − ηε‖0 ≤ ε‖v1(·, ·/ε) − a(·/ε)∇xu1(·, ·/ε)‖0. (82)

Given g ∈ L2(Ω), let wε ∈ H1
0 (Ω) be the solution of

∫

Ω

a(x/ε)∇wε(x)∇ψ(x)dx =

∫

Ω

g(x)ψ(x)dx, ∀ψ ∈ H1
0 (Ω), (83)

hence
∫

Ω

g(zε − εθε)dx =

∫

Ω

a(·/ε)∇wε · ∇(zε − εθε)dx

=

∫

Ω

a(·/ε)∇wε · ∇zεdx− ε

∫

Ω

a(·/ε)∇wε · ∇θεdx

=

∫

Ω

a(·/ε)∇wε · ∇zεdx. (84)
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Now observe that
∫

Ω

a(·/ε)∇wε · ∇zεdx =

∫

Ω

a(·/ε)∇wε · (∇zε − ηε)dx+

∫

Ω

ηε · ∇wεdx. (85)

In order to estimate the second term on the right hand side of (85) we apply the definition of ηε to
obtain

∫

Ω

ηε · ∇wεdx =

∫

Ω

(a(x/ε)∇uε(x) − v0(x, x/ε) − εv1(x, x/ε)) · ∇wε(x)dx

=

∫

Ω

fwεdx−

∫

Ω

(v0(x, x/ε) − εv1(x, x/ε)) · ∇wε(x)dx. (86)

We note that
∫

Ω

v1(x, x/ε) · ∇wε(x)dx =

∫

Ω

∇ · v1(x, x/ε)wε(x)dx

=

∫

Ω

(∇x + 1/ε∇y) · v1(x, y)|(y=x/ε)wε(x)dx

= −
1

ε

∫

Ω

(∇x · v0 + f)wεdx, (87)

where we have used (80) and (81) to obtain (87). Using the definition of v0 we have

∫

Ω

v0(x, x/ε) · ∇wε(x)dx =

∫

Ω

a(x/ε)(ej −∇yχ
j(x/ε))

∂u0

∂xj
(x) · ∇wε(x)dx,

and by the chain rule we obtain

∫

Ω

v0(x, x/ε) · ∇wεdx =

∫

Ω

a(x/ε)(ej −∇yχ
j(x/ε)) · ∇

(

∂u0

∂xj
wε(x)

)

dx (88)

−

∫

Ω

a(x/ε)(ej −∇yχ
j(x/ε)) ·

(

wε∇
∂u0

∂xj
(x)

)

dx.

In this paragraph we evaluate the first term on the right hand side of (88). Let ( ε
3Yi)i=1,...,im be

a finite set of translated cells of ε
3Y , recovering Ω, and consider a partition of unity ρi, such that

suppρi ⊂
2ε
3 Yi, where 2ε

3 Yi denotes the cell 2ε
3 Y centered in ε

3Yi. We note that

supp(ρiwε) ⊂
2ε

3
Yi ∩ Ω ⊂ εYi (89)

hence
∫

Ω

a(x/ε)(ej −∇yχ
j(x/ε)) · ∇(

∂u0

∂xj
wε(x))dx =

∑

i=1:im

∫

εYi

a(x/ε)(ej −∇yχ
j(x/ε)) · ∇(ρi

∂u0

∂xj
wε(x))dx = 0. (90)
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Here to obtain (90) we first note that u0 has a stable extension to W 2,p(R2), which we also denote
u0 applying (89) we obtain that the function ρi∂xju0wε is defined uniquely as zero outside of Ω and

since 1/p + 1/q ≤ 1/2 we obtain ρi∂xju0wε ∈ W 1,q′

(R2) for 1/q′ = 1 − 1/q. We then observe that

χj ∈W 1,q
per(Y ), H1

per(Y ) ↪→W 1,q′

per (Y ) and (3) implies

∫

Y

aij(y)∂yl
(χj − yj)∂ymψ = 0, ∀ ψ ∈W 1,q′

per (Y ).

Finally, since ρi∂xju0wε has a compact support contained in the interior of εYi, see (89), then ρi∂xju0wε ∈

W 1,q′

per (εYi) and (90) follows.
For the second term on the right hand side of equation (88), we use the definition of v0 and it follows

that

−

∫

Ω

a(x/ε)(ej −∇yχ
j(x/ε)) ·

(

wε∇
∂u0

∂xj
(x)

)

dx = −

∫

Ω

∇x · v0(x, x/ε)wε(x)dx.

Hence
∫

Ω

v0(x, x/ε) · ∇wε(x)dx = −

∫

Ω

∇x · v0(x, x/ε)wε(x)dx. (91)

From Equations (86), (87) and (91) we obtain
∫

Ω

ηε · ∇wεdx = 0,

and from (85)
∫

Ω

a(·/ε)∇wε · ∇zεdx =

∫

Ω

a(·/ε)(∇zε − ηε) · ∇wε)dx. (92)

From Equations (84) and (92) we have
∣

∣

∣

∣

∫

Ω

g(zε − εθε)dx

∣

∣

∣

∣

≤ c‖a(·/ε)∇zε − ηε‖0‖wε‖1

≤ ε‖v1(·, ·/ε) − a(·/ε)∇xu1(·, ·/ε)‖0‖g‖−1 by (82).

Dividing by ‖g‖−1 and taking the supremum for g 6= 0 we get

‖zε(x) − εθε‖1 ≤ cε‖v1(·, ·/ε) − a(·/ε)∇xu1(·, ·/ε)‖0

≤ cε(‖χ1‖1,q,Y + ‖χ2‖1,q,Y )‖u0‖2,p.

�

The following remark is used in the proof of Proposition 6.5.

Remark 6.1 Let f ∈ H−1(Ω), g ∈ H1/2(∂Ω) and define uε ∈ H1(Ω) as the weak solution of the
following problem

Lεuε = f in Ω, uε = g on ∂Ω.

It is easy to see that Proposition 6.1 extends immediately to this case if u0, defined as the solution of

−∇.A∇u0 = f in Ω, u0 = g on ∂Ω,

belongs to W 2,p(Ω).
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The following corollary follows from Proposition 6.1 and is used in the proof of Proposition 6.5.

Corollary 6.1 Let Ω ⊂ R
d, d = 2, 3, be a convex domain, uε and u0 be defined by Equations (1) and

(5), respectively. Assume aij ∈ L∞
per(Y ), u0 ∈ Wm,p(Ω) and χj ∈ W 1,q

per(Y ) for (m − 1)p > 2 and
1/p+ 1/q ≤ 1/2. Then there exists a constant c independent of u0 and ε such that

‖uε − u0‖0 ≤ cε‖u0‖m,p.

Proof: The hypothesis u0 ∈Wm,p(Ω), (m− 1)p > d implies ∂xiu0 ∈ C(Ω), and χj ∈ C(Y ) see Remark
2.1, therefore ‖u1‖0 ≤ c‖u0‖m,p. From the maximum principle ‖θε‖0,∞ ≤ ‖∂xiu0‖0,∞,∂Ω‖χ

i‖0,∞,∂Ω,
and hence the corollary follows from Proposition 6.1. �

The following proposition estimates the H1 norm of θ̃ε − φ̃ε, and is used in the proof of Theorem
6.1.

Proposition 6.2 Let u0, θ̃ε and φ̃ε be defined by Equations (5), (10) and (14), respectively, and the
functions vk be defined as in Subsection 2.2.1. Assume u0 ∈W 2,p(Ω), and ve and ∇(ve−χ

∗
e)exp(−γy1) ∈

Ls(Ge) for s ≥ 2 and 1/s + 3/p ≤ 1. We also assume similar hypothesis for the other functions vk.
Then there exists positive constants 0 < δ(p, s) ≤ 1/2, and c(δ, γ) independent of ε such that

‖θ̃ε − φ̃ε‖1 ≤ c(δ, γ)εδ‖a‖0,∞ ‖u0‖2,p max
k

(

‖∇(vk − χ∗
k)exp(−γy · ηk)‖0,s,Gk

+ ‖vk − χ∗
k‖1,s,Gk

) .

In addition, when p, s→ ∞ then δ → 1/2 with c(δ, γ) bounded independent of δ.

Proof: By definition

‖θ̃ε − φ̃ε‖1 ≤
∑

k∈{e,w,n,s}

‖θ̃k
ε − φ̃k

ε ‖1.

Consider the case k = e, the other cases are treated in a similar way. We denote vε
e(x) = ve(

x1−1
ε , x2

ε )

and aε(x) = a(x/ε), and let g ∈ H1
0 (Ω). Then applying the definition of φ̃e

ε we obtain

∫

Ω

aε∇(θ̃e
ε − φ̃e

ε)∇gdx =

∫

Ω

−aε∇

(

(vε
e − χ∗

e)ϕe
∂u0

∂x1

)

∇gdx

= −

∫

Ω

(

ϕe
∂u0

∂x1
aε∇(vε

e − χ∗
e)

)

∇gdx−

∫

Ω

(

(vε
e − χ∗

e)a
ε∇

(

ϕe
∂u0

∂x1

))

∇gdx. (93)

We note that due to the Sobolev embedding Theorem 5.4 from [1], the integrals above are well defined.
For the first term on the right hand side of Equation (93) we have

∫

Ω

(

ϕe
∂u0

∂x1
aε∇(vε

e − χ∗
e)

)

∇gdx =

∫

Ω

aε∇(vε
e − χ∗

e)∇

(

ϕe
∂u0

∂x1
g

)

dx−

∫

Ω

aε∇(vε
e − χ∗

e) · g∇

(

ϕe
∂u0

∂x1

)

dx. (94)
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We now estimate the first term of the right hand side of (94). Let Ii = {(i − 1)ε/6 − ε/6 < x2 <
iε/6+ ε/6, }, im = 1 + supi∈N(i3/ε < 1), and consider a partition of unity ρi of Ω, subject to (0, 1)× Ii.
Let Iε

i be the interval centered in Ii with |Iε
i | = ε. Since supp(ρig) ⊂ [0, 1]× Iε

i we have

∫

Ω

aε∇(vε
e − χ∗

e)∇

(

ϕe
∂u0

∂x1
g

)

dx = (95)

∑

i=0:im

∫ 1

0

∫

Iε
i

aε∇(vε
e − χ∗

e)∇

(

ρiϕe
∂u0

∂x1
g

)

dx2dx1 = 0,

where to arrive in (95) we have used the definition of ve and arguments similar to the ones used to
obtain (90).

For the second term on the right hand side of Equation (94), we apply a Cauchy inequality to obtain
∣

∣

∣

∣

∫

Ω

aε∇(vε
e − χ∗

e) · ∇

(

ϕe
∂u0

∂x1

)

gdx

∣

∣

∣

∣

≤ (96)

‖a‖∞|ϕe∇u0|1,p

∥

∥

∥

∥

∇vε
eexp(−γ

x1 − 1

ε
)

∥

∥

∥

∥

0,s

(

ε

γ

)1/l ∥
∥

∥

∥

(γ/ε)1/lexp(γ
x1 − 1

ε
)g

∥

∥

∥

∥

0,l

,

where 1/l = 1 − 1/p− 1/s. Taking y1 = (x1 − 1)/ε and y2 = x2/ε, and exploring the [0, 1]-periodicity
of ve(y1, ·) we have

∥

∥

∥

∥

∇(vε
e − χ∗

e)exp(−γ
x1 − 1

ε
)

∥

∥

∥

∥

s

0,s

≤ (
1

ε
+ 1)

∫ 0

−1/ε

∫ 1

0

|∇yveexp(−γy1)|
sε2−sdy2dy1

≤ cε(1−s)‖∇yveexp(−γy1)‖
s
0,s,Ge

. (97)

Let gn ∈ C∞
0 (Ω), gn → g in H1 and In = (0, 1) ∩ |gn| > 0, then integrating by parts in x1

∥

∥

∥

∥

(γ/ε)1/lexp(γ
x1 − 1

ε
)gn

∥

∥

∥

∥

0,l

=

(∫ 1

0

∫

In

γ

ε
exp(lγ

x1 − 1

ε
)|gn|

ldx1dx2

)1/l

=

(

−

∫ 1

0

∫

In

1

l
exp

(

lγ
x1 − 1

ε

)

∂|gn|
l

∂x1
dx1dx2

)1/l

(98)

≤ c

(

∥

∥

∥

∥

exp

(

lγ
x1 − 1

ε

)∥

∥

∥

∥

0,r′

‖gn‖
l−1
0,s′(l−1)

∥

∥

∥

∥

∂gn

∂x1

∥

∥

∥

∥

0

)1/l

(99)

≤ c(Ω)(s′(l − 1))(l−1)/l

(

ε

r′lγ

)1/(r′l)

|gn|
2
1. (100)

To obtain (99) we have used a Cauchy inequality with 1/r′ + 1/s′ = 1/2. In order to obtain (100), we
note that the last inequality in the proof of Lemma 5.10 in [1] states

‖gn‖0,s′(l−1) ≤ 2(t−1)/t

(

2t− t

2 − t

)

‖gn‖1,t, for 2t/(2− t) = s′(l − 1), 1 ≤ t < 2

≤ 2(t−1)/t

(

2t− t

2 − t

)

vol(Ω)(1/t−1/2)‖gn‖1, by Theorem 2.8 in [1]
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≤ c(Ω)

(

2t− t

2 − t

)

|gn|1, by a Poincare inequality.

Hence (100) follows from (99). Taking the limit n→ ∞ we obtain inequality (100) for g.
Since 1/s+ 3/p < 1, there exists r′ > 2 such that 1/lr′ + 1/l + 1/s− 1 > 0, and hence from (94),

(95), (96), (97), and (100) it follows
∫

Ω

ϕe
∂u0

∂x1
aε∇(vε

e − χ∗
e)∇gdx ≤ c(Ω, γ)(s′(l − 1))(l−1)/lεδ

′

‖a‖∞|ϕe∇u0|1,p

‖∇(ve − χ∗
e)exp(−γy1)‖0,s,Ge |g|1, (101)

where δ′ = 1/lr′ + 1/l+ 1/s− 1.
For estimating the second term on the right hand side of (93), we apply a Cauchy inequality with

1/r + 1/p = 1/2 to obtain

∣

∣

∣

∣

∫

Ω

(vε
e − χ∗

e)a
ε∇

(

ϕe
∂u0

∂x1

)

· ∇gdx

∣

∣

∣

∣

≤ ‖a‖0,∞

∣

∣

∣

∣

ϕe
∂u0

∂x1

∣

∣

∣

∣

1,p

(

ε

∫

Ge

(ve − χ∗
e)

rdy

)1/r

|g|1

≤ c(r)ε1/r‖a‖0,∞

∣

∣

∣

∣

ϕe
∂u0

∂x1

∣

∣

∣

∣

1,p

‖vε
e − χ∗

e‖1,Ge |g|1, (102)

where we have used the Sobolev embedding Theorem 5.4 in [1] to obtain the last inequality.
Taking g = θ̃e

ε − φ̃e
ε and using the ellipticity of a

|θ̃e
ε − φ̃e

ε |
2
H1

0
(Ω) ≤ γ−1

a

∫

Ω

(aε∇(θ̃e
ε − φ̃e

ε)) · ∇(θ̃e
ε − φ̃e

ε)dx

≤
c(r)

γa
εδ‖a‖0,∞|ϕe∇u0|1,p (‖∇(ve − χ∗

e)exp(−γy1)‖0,s,Ge

+ ‖∇(ve − χ∗
e)‖1,Ge) |θ̃

e
ε − φ̃e

ε |H1
0
(Ω),

where δ = min{δ′, 1/r}.
Observe that s, p → ∞ implies l → 1. Choosing s′ = 1/(l − 1) in Inequality (100) we have that

(s′(l − 1))(l−1)/l (ε/(r′lγ))
1/(r′l)

→ ε1/2/(2γ). In inequality (102) p → ∞ implies 1/r → 1/2 and
c(r)ε1/r → cε1/2. �

Finally, we prove the last proposition used in the proof of Theorem 6.1. Proposition 6.3 estimates
the H1 norm of φ̄− θ̄ε,

Proposition 6.3 Let Ω be a convex polygon, and the functions u0, θ̄ε and φ̄ be defined by Equations
(5), (11) and (15), respectively. Assume that u0 ∈ H2(Ω), then there exists a positive constant c
independent of ε and u0 such that

‖φ̄− θ̄ε‖1 ≤ c
‖a‖0,∞,Y

γa
‖u0‖2.

Proof: Consider the notation aε(x) = a(x/ε), the same will be used for aij . Since (φ̄ − θ̄ε) = 0 on ∂Ω
we have

∫

Ω

aε
ij

∂(φ̄− θ̄ε)

∂xi

∂(φ̄− θ̄ε)

∂xj
dx =

∫

Ω

aε
ij

∂φ̄

∂xi

∂(φ̄− θ̄ε)

∂xj
dx
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≤ ‖a‖0,∞,Y

(∫

Ω

|∇φ̄|2dx

)1/2(∫

Ω

|∇(φ̄− θ̄ε)|
2dx

)1/2

,

and from the ellipticity of a we obtain

|φ̄− θ̄ε|1 ≤
‖a‖0,∞,Y

γa
|φ̄|1.

The regularity theory gives that |φ̄|1 ≤ c‖χ∗∂ηu0‖H1/2(∂Ω), and since Ω is a convex polygon by Remark
2.1

|φ̄− θ̄ε|1 ≤ c‖u0‖2.

The proposition follows from a Poincare inequality. �

6.2 Proof of Theorem 2.2

Use a triangular inequality similar to the one used in the proof of Theorem 2.1 and Propositions 6.4,
6.2 and 6.5. �

We now prove the propositions used in the proof of Theorem 2.2. The following proposition gen-
eralizes Proposition 2.3 from [34], where it is assumed aij ∈ C1,β

per(Y ), u0 ∈ H3(Ω) and Ω ⊂ R
2. We

note here that Theorem 1.1 from [32] gives conditions concerning the discontinuities of the functions
aij such that χj and χij ∈W 1,∞

per (Y ).

Proposition 6.4 Let Ω ⊂ R
d, d = 2, 3 be a convex domain, uε be the solution of Problem (1), and

χj , u0, u1, θε and χij be defined by Equations (3), (5), (6), (7) and (8), respectively. Assume aij ∈
L∞

per(Y ), u0 ∈W 3,p(Ω), χj and χij ∈W 1,q
per(Y ), for p, q > d and 1/p+ 1/q ≤ 1/2 . Then there exists a

constant c independent of u0 and ε such that

‖uε(·) − u0(·) − εu1(·, ·/ε) − εθε(·)‖0 ≤ Cε2‖u0‖3,p(max
j

‖χj‖0,q + max
kj

‖χkj‖1,q).

Proof:
Define the field v1 by

(v1(x, y))k = −aki(y)χ
j ∂2u0

∂xj∂xi
(x) + akl(y)

∂χij

∂yl

∂2u0

∂xj∂xi
(x), (103)

hence
a(y)∇xu1(x, y) + a(y)∇yu2(x, y) = v1(x, y). (104)

Let q(y) = φ(y), φ defined by Equation (79) and let ψij ∈W 1,q
per(Y ) such that

curlyψ1j = ψ̃1j =







−a11χ
j + a1l∂lχ

1,j − c11j

−a21χ
j + a2l∂lχ

1,j − φ
(3)
j − c21j

−a31χ
j + a3l∂lχ

1,j + φ
(2)
j − c31j






,

curlyψ2j = ψ̃2j =







−a12χ
j + a1l∂lχ

2,j + φ
(3)
j − c12j

−a22χ
j + a2l∂lχ

2,j − c22j

−a32χ
j + a3l∂lχ

2,j − φ
(1)
j − c32j







30



and

curlyψ1j = ψ̃3j =







−a13χ
j + a1l∂lχ

3,j − φ
(2)
j − c13j

−a23χ
j + a2l∂lχ

3,j + φ
(1)
j − c23j

−a33χ
j + a3l∂lχ

3,j − c33j






,

where the constants clij are chosen such that each entry of the vectors ψ̃ij has integral zero over Y , e.g.

c11j =
∫

Y −a11χ
j + a1l∂lχ

1,jdy. It is easy to check that ∇y · ψ̃kj = 0, what guarantees by Lemma 6.1
the existence of such functions ψkj , and by Remark 3.11 in [25] we have

‖ψkj‖1,q ≤ c(‖χj‖0,q + ‖χkj‖1,q). (105)

Define

p(x, y) = ψkj(y)
∂2u0

∂xk∂xj
(x) (106)

and let
v2(x, y) = −curlxp(x, y),

and a simple calculation gives
∇y · v2 = −∇x · v1, ∇x · v2 = 0 (107)

and

‖v2(·, ·/ε)‖0 ≤ c‖u0‖3,p max
kj

‖ψkj‖1,q,Y

≤ c‖u0‖3,p(‖χ
j‖0,q + ‖χkj‖1,q) by (105). (108)

Define
ψε(x) = uε(x) − u0(x) − εu1(x, x/ε) − ε2u2(x, x/ε)

and
ξε(x) = a(x/ε)∇uε(x) − v0(x, x/ε) − εv1(x, x/ε) − ε2v2(x, x/ε),

where v0 is defined by (77). Then

a(x/ε)∇ψε − ξε(x) = a(x/ε)∇uε(x) − a(x/ε)∇u0(x) − εa(x/ε)∇u1(x, x/ε)

−ε2a(x/ε)∇u2(x, x/ε)

−a(x/ε)∇uε(x) + v0(x, x/ε) + εv1(x, x/ε) + ε2v2(x, x/ε)

= −a(x/ε)∇xu0(x) − εa(x/ε)∇xu1(x, x/ε) − a(x/ε)∇yu1(x, x/ε)

−ε2a(x/ε)∇xu2(x, x/ε) − εa(x/ε)∇yu2(x, x/ε)

+v0(x, x/ε) + εv1(x, x/ε) + ε2v2(x, x/ε)

= ε2(v2(x, x/ε) − a(x/ε)∇xu2(x, x/ε)), by (77), and (104).

From the definition of u2 and (108) we obtain

‖a(x/ε)∇ψε − ξε‖0 ≤ cε2‖u0‖3,p max
kj

(‖χj‖0,q + ‖χkj‖1,q). (109)

Define ϕε ∈ H1(Ω) as the weak solution of

−∇ · a(x/ε)∇ϕε = 0 in Ω, and ϕε(x) = u2(x, x/ε) on ∂Ω. (110)
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We observe that the Sobolev embedding theorem and the hypothesis p, q > d, implies the function u2

is continuous. Therefore, we use the maximum principle to obtain

‖ϕε‖0 ≤ c‖ϕε‖0,∞

≤ cmax
ij

‖χij‖0,∞,Y ‖∂xixju0‖0,∞

≤ cmax
ij

‖χij‖1,q,Y ‖u0‖3,p. (111)

Given g ∈ L2(Ω), let wε ∈ H1(Ω) denotes the solution of

∫

Ω

a(x/ε)∇wε(x)∇ψ(x)dx =

∫

Ω

g(x)ψ(x)dx, ∀ψ ∈ H1
0 (Ω). (112)

Since ψε + εθε + ε2ϕε ∈ H1
0 (Ω) we obtain

∫

Ω

g(ψε + εθε + ε2ϕε)dx =

∫

Ω

a(x/ε)(∇ψε + ε∇θε + ε2∇ϕε)∇wε(x)dx

=

∫

Ω

a(x/ε)∇ψε∇wε(x)dx, (113)

where we have used the definition of θε and ϕε to obtain (113). We observe that

∫

Ω

aε∇ψε∇wεdx =

∫

Ω

(aε∇ψε − ξε) · ∇wεdx+

∫

Ω

ξε · ∇wεdx, (114)

and we estimate the second term on the right hand side of (114) as follows

∫

Ω

ξε · ∇wεdx =

∫

Ω

(a(x/ε)∇uε(x) − v0(x, x/ε) − εv1(x, x/ε)

−ε2v2(x, x/ε)) · ∇wε(x)dx

=

∫

Ω

fwε(x) + ∇x · v0(x, x/ε)wε(x)

−εv1(x, x/ε) · ∇wε(x) + ε∇xv1(x, x/ε)wε(x)dx, (115)

here we used the definition of uε, (91), integration by parts and (107) to obtain (115). Using (103) we
have

∫

Ω

v1(x, x/ε) · ∇wε(x) =

∫

Ω

(

−aε
kiχ

j
ε

∂2u0

∂xj∂xi
(x)

+ aε
kl

∂χij
ε

∂yl

∂2u0

∂xj∂xi
(x)

)

∂wε

∂xk
(x)dx. (116)

Consider the partition of unit ρi defined in the proof of Proposition 6.1, then

∫

Ω

aε
kl

∂χij
ε

∂yl

∂2u0

∂xj∂xi

∂wε

∂xk
(x)dx =

32



=

im
∑

1

∫

εYi

aε
kl

∂χij
ε

∂yl
ρi

∂2u0

∂xj∂xi

∂wε

∂xk
dx

=

im
∑

1

∫

εYi

aε
kl

∂χij
ε

∂yl

∂

∂xk

(

ρi
∂2u0

∂xj∂xi
wε(x)

)

− aε
kl

∂χij
ε

∂yl
wε(x)

∂

∂xk

(

ρi
∂2u0

∂xj∂xi

)

dx

=

im
∑

1

∫

εYi

ε−1

(

aε
ij − aε

ik

∂χj
ε

∂yk

+Aij

)

ρi
∂2u0

∂xj∂xi
wε

+aε
kiχ

j
ε

(

∂

∂xk

(

ρi
∂2u0

∂xj∂xi
(x)

)

wε(x) + ρi
∂2u0

∂xj∂xi
(x)

∂wε

∂xk

(x)

)

dx

−

∫

Ω

akl
∂χij

ε

∂yl
wε(x)

∂

∂xk

(

∂2u0

∂xj∂xi

)

dx (117)

=

∫

Ω

ε−1

(

∇xv0
∂2u0

∂xj∂xi
(x) − f

)

wε(x)dx

−

∫

Ω

aε
kiχ

j
ε

∂2u0

∂xj∂xi

∂wε

∂xk

(x)dx −

∫

Ω

∇x · v1dx. (118)

Here we used the definition of χij to arrive in (117), and from (115), (116) and (118) we obtain
∫

Ω

ξε · ∇wε(x)dx = 0,

and hence from (109) and (114)
∣

∣

∣

∣

∫

Ω

g(ψε + εθε + ε2ϕε)dx

∣

∣

∣

∣

≤ ‖aε∇ψε − ξε)‖0‖wε‖1

≤ cε2‖u0‖3,p(‖χ
j‖0,q,Y + ‖χkj‖1,q,Y )‖g‖−1.

Dividing by g and taking the supremum over g, we have

‖uε − u0 − εu1 − εθε − ε2u2 − ε2ϕε‖ ≤ cε2‖u0‖3,p max
kj

(‖χj‖0,q + ‖χkj‖1,q).

Observe that u2(x, x/ε) and ϕε(x) are bounded in L2(Ω) by ‖u0‖3,p maxkj ‖χ
kj‖1,q, independent of ε,

see (111). Hence

‖uε − u0 − εu1 − εθε‖ ≤ cε2‖u0‖3,p(max
j

‖χj‖0,q + max
kj

‖χkj‖1,q).

�

The following proposition estimates the L2 norm of φ̄ − θ̄ε, and it is used in the proof of Theorem
2.2

Proposition 6.5 Let u0, χ
j , θ̄ε and φ̄ be defined by (5), (3), (11) and (15), respectively. Assume that

u0 ∈W 3,p(Ω), φ̄ ∈W 2,p(Ω) and χj ∈W 1,q
per(Y ), for 1/p+ 1/q ≤ 1/2. Then we have

‖θ̄ε − φ̄‖0 ≤ cε‖u0‖3,p.
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Proof: Observe that φ̄ ∈W 2,p(Ω) and p ≥ 2, hence from Corollary 6.1 and Remark 6.1 we obtain

‖θ̄ε − φ̄‖0 ≤ cε‖φ̄‖2,p.

Since
φ̄|∂Ω =

∑

k

ϕkχ
∗
k∇u0 · ηk|∂Ω,

by regularity theory, see Theorems 4.3.1.4 and 4.3.2.4 [24], ‖φ̄‖2,p ≤ c(χ∗)‖u0‖3,p, and the proposition
follows. �

6.3 Proof of Theorem 2.3

Use a triangular inequality similar to the one used in the Proof of Theorem 2.1 and Propositions 6.6,
6.2 and 6.5. Observe that if aij ∈ C1,β

per(Y ), β > 0, by regularity theory χj ∈ C1,β
per , ve ∈ C1,β and

∇(ve − χ∗
e)exp(−γy1) ∈ L∞(Ge); see Theorem 15.1 in [30] and Remark 6.4 in [34]. By the Sobolev

embedding theorem u0 ∈W 2,∞(Ω), hence Proposition 6.2 holds for δ = 1/2. �

The following proposition is used in the proof of Theorem 2.3. Proposition 6.6 generalizes Proposition
2.3 from [34] to the case Ω ⊂ R

3.

Proposition 6.6 Let Ω ⊂ R
d, d = 2, 3 be a convex domain, uε be the solution of Problem (1), and

u0, u1, and θε be defined by Equations (5), (6) and (7), respectively. Assume aij ∈ C1,β(Y ), β > 0 and
u0 ∈ H3(Ω). Then there exists a constant c independent of u0 and ε, such that

‖uε(·) − u0(·) − εu1(·, ·/ε) − εθε(·)‖0 ≤ Cε2‖u0‖3.

Proof: Since aij ∈ C1,β(Y ) by regularity theory χi ∈ C2,β(Y ), χij ∈ C1(Y ) and by Theorem 3 in [7] we
obtain

‖ϕε‖0 ≤ c‖u2(·, ·/ε)‖0,∂Ω ≤ c‖u0‖3‖χ
ij‖0,∞,

where the function ϕε is defined by (110) and we have used the trace theorem in the last inequality.
The rest of the proof of follows exactly as the proof of Proposition 6.4. �

6.4 Auxiliary Result

The following lemma is used in the proof of Propositions 6.1 and 6.4.

Lemma 6.1 A function v ∈ L2
per(Y )2, (v ∈ L2

per(Y )3) satisfies

∇ · v = 0, (119)

and
∫

Y vidy = 0 iff there exists a function φ ∈ H1
per(Y ) (φ ∈ H1

per(Y )3) such that:

v = curlφ. (120)

Proof: Similar to the proof of Theorem 3.4 from [25] using discrete Fourier transforms rather than
continuous Fourier transforms, see [42]. �
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7 Conclusions

We perform the convergence analysis for the proposed numerical method for approximating the solution
of Equation (1). The error estimates obtained in the numerical experiments agree with the theoretical
errors estimates from Theorems 4.1 and 4.2. The method presented here is strongly based on the
periodicity of the coefficients aij , and for this reason it has relative low computational cost with optimal
error convergence rate.

We generalize results found in the literature for estimating the error between uε and its first order
asymptotic expansion u0 + εu1 approximation plus the boundary corrector term θε. Such generalization
permit us to develop sharp finite element error estimates with very weak assumptions on the regularity
of a(y), including composite materials applications.
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