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Abstract

We develop the convergence analysis for a numerical scheme proposed for approximating the
solution of the elliptic problem

Leue = —ai%iaij(x/e)aixju€ =fin Q wu.=0 on 09,
where the matrix a(y) = (ai;(y)) is symmetric positive definite and periodic with period Y. The
major goal is to develop a numerical scheme capturing the solution oscillations in the € scale on
a mesh size h > € (or h >> €). The proposed method is based on asymptotic analysis and on
numerical treatments for the boundary corrector terms, and the convergence analysis is based on
asymptotic expansion estimates and finite elements analysis. We obtain discretization errors of
O(h® + €¥/? + ¢h) and O(h + €) in the L? norm and the broken H' semi-norm, respectively.

1 Introduction

This paper develops the convergence analysis of the numerical scheme proposed in [44] to approximate
U, the solution of the problem:

0 0
Leu, = —8—%(aij(:§/e)87ju€) =fin Q, wu.=0 on 99, (1)
where a(y) = (a;;(y)) is a positive symmetric definite matrix and e € (0,1) is the periodicity parameter.
We assume the a;; € Lo, (Y), i.e. aij € L>°(R?) and Y-periodic, Y = (0,1)?, and there exists a positive
constant v, such that a;;(y)&&; > 7all€]]? for all ¢ € R? and y € Y. We always use the Einstein
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summation convention, i.e. repeated indices indicate summation, except for the index k, which refers
to variables or functions associated to edges of the polygonal domain §2.

We note that when the mesh size h > €, standard finite element methods do not yield good numerical
approximations; see [27]. Recently, new numerical methods have been proposed for solving the Problem
(1) such as the multi-scale finite element methods [23, 26, 4, 13, 21], the residual-free bubble function
methods [11, 5, 6, 38, 12], and the generalized FEM for homogenization problems [39]. There are also
related methods for the case the homogenized equation is not known; see the heterogeneous multiscale
method [18, 19, 2] and [22, 20] . The numerical method considered here, opposed to the methods in
[5, 26, 38, 4, 11] is based strongly on the asymptotic expansion of u.. We also explore the periodicity
of the matrix a to obtain a very efficient method for approximating ..

One of the first mathematical tools used to handle this problem was homogenization theory [8, 9].
Based on this theory a first order expansion of u. plus a boundary corrector term is considered and
then each term is numerically approximated in [43, 44]. These methods were designed to work with a
mesh size h > € (or h >> ¢), however they also work in the case h < e. The article [43] presents the
numerical algorithm when the domain  is a rectangular region, while [44] generalizes the method to
the case where the domain € is a convex polygon with rational boundary normals. This generalization
is possible due to the Lagrange multiplier space introduced to approximate d,ug on 9€).

The convergence analysis for the numerical method is performed in two parts. First we estimate the
error between u. and ug-+eu; +e¢. in L? and H' norms, where ¢. denotes the theoretical approximation
for the boundary corrector term .. The theory developed for approximating 6. is similar to the
one proposed in [3, 34]. We note that Propositions 6.1 and 6.4, which estimates the error between
ue and ug + eu; + €f, on the H' and L? norms, respectively, extend the results in [3, 34]. More
specifically, Proposition 6.1 gives the same error estimate of Theorem 2.2 in [3], however here we
assume ug € WP(Q) and x? € Wy4(Q) for 1/p+1/q < 1/2 while in Theorem 2.2 in [3] it is assumed

up € W2°°(Q) and x? € H!, (). We also note that Propositions 6.1 and 6.4 generalize respectively,

per

Propositions 2.1 and 2.3 from [34]. In Proposition 6.1 we assume a;; € L2 .(Y), ug € W*P(Q) and

per

X € Whi(Q) for 1/p+1/q < 1/2, and Q C R*3, while in Proposition 2.1 from [34] it is assumed

per

aij € CLB(Y), up € H*(Q) and Q C R2. In Proposition 6.4 we assume a;; € L2, (Y), ug € W3P(Q), x’

per per
and X € WL1(Q) for 1/p+1/q < 1/2, and Q C R*?, while in Proposition 2.3 from [34] it is assumed
ai; € CLE(Y), up € H3(Q) and Q@ € R?% The importance of considering a theory that handles the
case a;; € Ly, (V) comes from applications to composite materials where the coefficients a;; are often
piecewise constant; see also Theorem 1.1 from [32] which gives conditions on the discontinuities of the
functions a;; so that x7 and x* € W,,>*(Y"). We also observe that Proposition 2.1 from [34] is used in
the convergence analysis of the numerical methods presented in [23, 27, 38], and therefore the analysis
presented here can be helpful for extending the convergence proofs of these numerical methods assuming
less regularity on a or ug. In the second part of the convergence analysis we use finite elements theory
to estimate the error due to the discrete approximation. The main difficulty here lies in the fact that
we use a discrete approximation of J,ug as Dirichlet boundary condition for the boundary corrector
problem. We observe that if uf! is a finite element approximation for ug, then &Iug does not necessarily
belong to the trace of the finite element space used to obtain ul, hence we introduce the Lagrange
multiplier space to approximate 0,uo and we develop error estimates between 9,u¢ and its discrete
approximation in W11=1/P spaces; see Lemma 4.3.

To simplify the exposition we perform the analysis in the case Q = (0,1)?, although the same theory
holds in the case Q = H?:l(a’i? bi), a; < b; € R. We note that Propositions 6.1 and 6.4 are proved in

the case Q C R? d = 2,3, is a convex domain and Y = (0,1)%. The analysis presented here can also be



extended to the case where the domain € is a convex polygon with rational boundary normals; see [42].
We now introduce some norms and semi-norms. Let B C R? be an open set and define

lollm,co,5 = max {ess.sup |0%v(z)|},
[a]<m z€B

[V]m,co,5 = max {ess.sup |0%v(z)|},
|al=m €B

and for 1 < ¢ < o0

1/q
olmas = | [ 3 1Doprar)
B
lee|<m
1/q
g = | [ 3 Dot
B la]=m
We also define the non-conforming norms related to a partition 7, = K;, Ko, ..., Ky of B by
[0]lm,n = Z HU||2Hm(Kj)'
K]‘G'Th

Throughout this paper we do not make reference to the domain B, or to the coefficient ¢ when
B =, or ¢ =2, respectively. In what follows ¢ denotes a generic constant independent of ¢ and mesh
parameters.

This paper is organized as follows. Section 2 introduces the asymptotic expansion of u. considered
in [43, 44], describes a theoretical approximation for the boundary corrector term, and presents the
main theorems for estimating the errors due to the asymptotic expansion approximation. Section 3
describes the numerical algorithm, Section 4 treats the discretization errors due to the finite element
approximation, and Section 5 presents the numerical experiments. The Appendix contains the proofs
of the main results from Section 2.

2 Theoretical Approximation

2.1 The Asymptotic Expansion
Consider the following anzats
ue(x) = uo(z, x/€) + euy (x, x/€) + ua(z, x/€) + - - -, (2)

where the functions u;(z,y) are Y periodic in y. Using (2) in Equation (1) and matching the terms
with the same order in €, one may define functions u; such that ug(z,z/€) + eus(z, x/€) + eusz(z, x/€)
approximates u., for instance if ug € C?(Q2) and x/ € WH>°(Y') we have

1/2

[ue(z) —uo(z, z/€) — eur(w, z/€)|lr < ce”/=luoll2,00



where the constant ¢ depends on a, x7 and §2. These terms are defined below; for more details, including
the proof of the above inequality see [9, 29].

Let x7 € Hjep(Y), ie. X/ € H}, (R?) and Y-periodic, be the weak solution with zero average over
Y of

. B
Vy - a(y)Vyx! =Vy - aly)Vyy; = a—yaij(y), (3)

and define the matrix

0

ay—m(yj —x))dy. (4)

1 ) i
Aij = m/yalm(y)a_yl(yi -x")

It is easy to check that the matrix A is symmetric positive definite. Define ug € Hj(Q2) as the weak
solution of

—V.AVuy=f in Q, wuy=0 on 01, (5)
and let
ua. D)= 0 (£) 20a) ©)
e €/ Oz,

Note that ug + eu; does not satisfy the zero Dirichlet boundary condition on 02 imposed for u.. In
order to overcome this, the boundary corrector term 6. € H' () is introduced as the solution of

-V -a(z/e)Vl. =0 in Q, 60.=—uy(z, E) on 0, (7)
€
hence ug + eu; + ef. € H}(Q). Propositions 6.1 and 6.6 provide error estimates between . and
ug + euy + €6, in the norms || - ||; and || - ||o, respectively.
We also define the term us, which is used in the proof of Proposition 6.4. Set
A _
bij = —aij + Gim Sy + B (amix’)

and observe that bj; = A;j, where b;j = [, bijdy. Define x¥ € H}..(Y) as the weak solution with zero
average over Y of

Vy - aVyx"? = bi; — by (8)
and let 52
Ty i (T “o
w0 (2) i, 0

2.2 Boundary Corrector Approximation

The coefficients a;j(x/€) and the boundary values —u;(x, £) in the Equation (7) are highly oscillatory,
hence it is not a trivial problem to obtain a good discrete approximation for 6. . We propose an
analytical approximation for 6., denoted by ¢., which satisfies the oscillating boundary condition and
is suitable for numerical approximation. The approximation for 6. proposed here is similar to the one
used in [3, 34].

Note that uy vanishes on 02, therefore Vug|ao = 170, uo, where 1 denotes the unity outward normal
vector to 0§ and 0, uo denotes the unity outward derivative of ug on 9€). Hence in order to obtain the
approximation ¢, for 6., we introduce the following decomposition 6. = 6. + 6., where



~V-a(z/e)VO.=0 in Q, 6. = (Xj(z)nj —X")Opup on 0N (10)
€

and

~V-a(z/e)VO. =0 in Q, 0.=x"0uy on 09, (11)
where x*|r, = X}, k € {e,w,n,s} are properly chosen constants defined in Subsection 2.2.1, and
T, = {1} x[0,1], Ty = {0} x[0,1], Ty, = [0,1] x {1}, and T’ = [0, 1] x {0}. In Remark 2.1 we show that
X Onuo and X7 (2)n;0yug € HY/2(09Q), therefore the Problems (10) and (11) are well posed. Later in

this section we define the functions (;36 and ¢, which are the approximations for 6, and 6, respectively,
and define ¢, = ¢ + @.

Remark 2.1 Let Q C R? be a convex polygon and assume ug € H*(Q) N HE (). We have by Theorem
A.2 [37] that Dyuoly, € Hop?(Tx) and 190 172

ry < clluol|2, therefore

IxX*Oguollgirzoa) < c(X*)lluoll2-

Note also that uy(z,2) = —x7 (£) g%?(ac) and g—;; =— (%) gZ? -7 (a?;g;j). If we assume ug €
W2P(Q) and x? € W;ég(Y), forp>2andq>2 orp>2andq>2, by a direct application of Sobolev
embedding Theorem (5.4 [1]) we obtain uy € HY(Q). In addition, from regularity theory of elliptic
equations we obtain 7 € L=(Y)N HY(Y) (see Theorem 13.1 [30] and 4.28 [15]), hence we also have

uilr, € Ho (Th).

2.2.1 Calculating the Constants x;

We define the constants xj, such that the function be decays exponentially to zero away from the
boundary and satisfies the Dirichlet boundary condition ¢.(z) = —ui(x, £) — x*Oyuo(x) for x € 0.
Associated to each side of Q define the functions v, k € {e,w,n, s} as

1. Let G. = {(—00,0] x [0,1]} and v, the solution of

—Vy - a(y1,y2)Vyve = 0 in G,

ve(0,72) = x*(1/e,92) for 0 <yz <1,
ve(y1,-) [0,1]-periodic for — oo < y3 < 0,
and 9y, veexp(—yy1) € L*(G.) i=1,2.

2. Let Gy, = {[0,00) x [0,1]} and v,, the solution of

—Vy - a(y1,y2)Vyvy =0 In Gy,

0w (0,y2) = —x1(0,y2) for 0 <y, <1,
vw(y1,-) [0, 1]-periodic for 0 < y1 < o0,
and dy,vyexp(yy1) € L3(Gy) i=1,2.



3. Let Gy, = {[0,1] x (—o0,0]} and v,, the solution of

=V, -aly1,y2)Vyv, =0 in Gy,

Un(y1,0) = X*(y1,1/€) for 0 <y <1,
Un(-,y2) [0, 1]-periodic for — oo < ya < 0,
and 9y, vpexp(—yy2) € L*(G,) i=1,2.

4. Let G5 = {[0,1] x [0,00)} and v, the solution of

=V, -alyr,y2)Vyvs =0 in G,
vs(y1,0) = —x?(y1,0) for 0 <y <1,
vs(+,y2) [0, 1]-periodic for 0 < yz < o0,
and O, vpexp(yy2) € L2(Gs) i=1,2.

The above problems have been studied by several authors, see [36, 33, 29, 34]. Theorem 10.1 in Section
10.4 from [33] guarantees the existence of a unique solution for each of the above equations. In addition,
by Theorem 3 [36] there exists constants x}, such that

[ve(y) — Xi| < cexp(yy - k) as y - mr — —o0,

where 75, denotes the unity outward normal on I'j.

2.2.2 Approximating 0,

We note by Remark 2.1 that (uy(z, £)—x*0,uo)|r, € Héf(l“k). Thus, we can split §, = D ke{ewms) ok

where

L6 =0 in Q, and éf_{

—ui(z, L) — x*Opuo
0 on

We approximate éf by qgf given as

OE (1, 9)

ngu(xlva)

o¢ (21, 22)

¢: (w1, 72)

where @), are nonnegative smooth functions satisfying

Pe(s) = ¢n(s)

{

1
0

if se[2/3,1]

lf s e [0’1/3]7 Sﬁw(s)—¢s(5)—{ 1

on Iy

00\ T

if se[2/3,1]

if sel0,1/3].

(12)

(13)



Hence B B
b= > ¢ (14)

ke{e,w,n,s}

approximates éé, and (;36 =6, on the boundary of €.

2.2.3 Approximating 6,

The boundary condition imposed on Equation (11) does not depend on e. An effective approximation
for 0. is given by ¢ € H'(2) the weak solution of

~V-AV¢ =0 in Q, ¢=x"0yup on 99. (15)

By Propositions 6.3 and 6.5, we have that ¢ is a good approximation for #. only on the L? norm,
since [|¢ — fc|lo is O(e) and ||¢ — fc|l1 is O(1). We note, however, that the asymptotic expansion
considered here to approximate u. is given by ug + eu; + €6, + €., and by a triangular inequality we
obtain |ju, — up — euy — ep — e§E||1 < ce+ ||ue — ug — euy — €f¢||1. Hence, when estimating the error on
the H' norm between u. and its theoretical approximation, the contribution due to the approximation
of 0. by ¢ is O(e).

2.2.4 Approximating u.

We finally define the theoretical approximation for u. as ug + eu; + €pe, where

(be = Q’;e + é (16)

Note that ¢c|aq = 0¢|oq, therefore ug + eus + €. = 0 on 9.

2.2.5 Error estimates

The following theorems provide error estimates between u. and ug — eu; — €. on the H' and L? norms.
Theorem 2.1 estimates the error on the H' norm, while Theorems 2.2 and 2.3 estimate the error on
the L? norm. Theorem 2.2 assumes more regularity on ug and less regularity on a that is assumed in
Theorem 2.3.

Theorem 2.1 Let u be the solution of the Problem (1), ug, u1 and ¢. defined by Equations (5), (6) and
(16), respectively. Assume a;j € L2 (Y), ug € WP(Q), x? € Wd(Y), ve and V(ve — x3) exp(—yy1) €

L*(G.), for 1/s+3/p<1,s>2and 1/p+1/q<1/2. We also assume similar hypothesis for the other
functions vi,. Then there exists a constant ¢ independent of € such that

[ue() = uo() —ewr(:,-/€) = ede(-)ll1 < celluollep-

Proof: See Subsection 6.1 [J

Theorem 2.2 Let u, be the solution of Problem (1), ug, u1, ¢c, ¢ and X defined by Equations (5),
(6), (16), (15) and (8), respectively. Assume a;j € LS. (Y), ug € W3P(Q), and ¢ € W?P(Q) and x €

per

Wd(Y), forp>2and 1/p+1/q <1/2. Assume also x7 € WH>(Y), v, and V (v, — x5)exp(—yy1) €



L>(G.). We also assume similar hypothesis for the other functions vi. Then there exists a constant c
independent of € such that

[ ue(-) = uo(-) = eur(-,-/€) = ede(-)lo < ce*?|luo]
Proof: See Subsection 6.2

3,p*

Theorem 2.3 Let u. be the solution of Problem (1), ug, w1 and ¢. be defined by Equations (5), (6)
and (16), respectively. Assume a;; € C;;ﬁ(YL B >0, ug € H3(Q). Then there exists a constant ¢
independent of € such that

ue(-) = uo() — eur (-, -/€) — ede(-)llo < ce*/?||uglls.

Proof: See Subsection 6.3 O

Remark 2.2 Due to the Proposition 6.2, which under the hypothesis of Theorems 2.2 and 2.3 gives
that ||0. — ¢cllo is O(e'/2), we obtain a factor €¥/? in these theorems, rather than €% as in Propositions

6.4 and 6.6.

3 Finite Element Approximation

We now describe how to approximate the terms ug, u1, ég and ¢ numerically.

e Approximate the solution of Problem (3) with a second order accurate conforming finite element
on a partition 7;(Y). Denote these solutions by X%-

o Define Al = 7 [y aim(y) g (i — X3) 5= (45 — X3 )y

e Let V"(Q) be a conforming second order accurate finite element space on a mesh 75, (€2) and let

VIH(Q) = VI (Q) N HE(Q). Define ugﬁ € V() as the solution of

AhVug’iL Vode = | foldr, Vol € V().
Q Q

e Since 0,uo appears as boundary condition imposed in Equation (15), it is important to obtain
a good discrete approximation for it. In oder to approximate d,uo we define Y = V"(Q)|sq,

Y =Y, and Y, = {\* € Y'; A" = 0 at 9T%}. Let A" € Yy, be the solution of

/ Ak hdg = / ALdult o, de — | folda, (17)
Ty Q Q

v ¢ € V(Q), such that ¢h|aﬂ\rk = 0. Later in Proposition 4.3 we show that /\Z’E is a good

approximation for AVug -, on I'y, hence we approximate d,ug by ,uhﬁ where

. hoh ) 4 1 if k=ecw
Mh’hh“k:)‘k /A?;clk7 lk:{ 2 if k=n,s.



e We observe that we use uhﬁ as the approximation for d,uo in Equation (21), hence in order to
guarantees that the final numerical approximation for wu. satisfies the zero Dirichlet boundary
condition we define the approximation for Vug as

v = vyt ST B - vt (18)
kef{e,w,n,s}

Here E,’j() denotes a non-conforming discrete extension of ,uhﬁ — Vug’h -n* by zero on Q. More
specifically, E,}g(uh’iI - Vug’h nkF)(2) = 0, if 2 is a vertex of 75 (Q) \ [k, E,’j(uh’iI - Vug’h F)(2) =
pht —Tule Mok (2), if 2 is a vertex of Ty, and Ep (uh —Vud" 0¥k, € VF(Q)|k,, ¥V Ki € Tu().

e Define . - )
P @,z /) = 0P @) (afe). (19)

Note that this leads to a nonconforming approximation for u; in the partition 7, (2).

e Let 7 be a positive integer and GT = {y € R?; —7 <y; < 0and 0 < yo < 1}. Define 9. € H'(GY)
as the weak solution of

—Vy - a(y)Vyte =0 in GI,

ve(y) = x} (1/€,y2) on {y € GT,y1 =0},
Oyt =0 on {y € GT; y1 = —7},

and ve(y1,0) = vg(y1,1) for —7 <gyy <O0.

Let v"™ be a numerical approximation of @, using a second order accurate conforming finite
element on a mesh 7; (G7), and define

: L
ot o= / vl (=7, y2)dyo.
0

The other cases k € {w,n, s} are treated similarly.

e Observe that the term ve(”“T_l, #2) appears in Equation (13). The approximation v(’;” is defined in
G7, hence we have defined v/7(£=1 22} only when z; > 1—e7. Since the functions v, — x decays

exponentially to zero in the —n, direction, its is natural to define the following approximation

. h, —1 Jh, hoh s
Tehhr _ (ve T(med z2) g T) v if & >1—er
o (z1,22) = .
otherwise.

o Let . o
A D DI (20)

kef{e,w,n,s}

where the others terms ¢®"/7 are defined in a similar way.



e Let thfm be a second order accurate finite element approximation on a mesh of size h for the
following equation (for the well posedness of the equation bellow see Remark 3.1)

VAW =0 in Q, and ¢ ="M on 0Q. (21)

e Approximate 6. by ¢§’E’T = (;3?’;"7 + qgh’;” and finally define the numerical solution for Equation
(1) as
ul T = ug’h + eul ! 4 eghhoT, (22)

Remark 3.1 By construction ,uh’iI vanishes at the corners of ), therefore X**E*T,uhﬁ e H'Y2(0Q).

This implies that Equation (21) is well posed. In addition X*’;"Tuh’h € V" aq, hence we can look for a
numerical solution of Equation (21) in V(Q).

4 Finite Element Approximation Error Analysis

For the discrete error analysis we assume h = 0 and 7 = oo, i.e. v/ = vg, x¥! = xJ and A" = A, and
y 9 k ) Xh X 9

for this reason we will note make reference to the index 7 and ﬁ when we make reference to the the
numerical approximation for ug, Vug, ¢, gZ;E and ., i.e. u? = u"" and similar for the other terms; an
error analysis including the error due to the numerical approximation of the functions vy and x’, and
the matrix A is currently work under progress. We also assume that linear or bilinear finite elements
are used to approximate ug. Theorems 4.1 and 4.2 give the main results of this section. Theorem 4.1
provides error estimates for the broken H' semi-norm and the L? norm between the exact solution u.
and its numerical approximation u. Theorem 4.2 assumes more regularity from ug resulting in a better

error estimate on the L? norm.

Theorem 4.1 Let u, be the solution of the Problem (1), ug, X’ and u” be defined by Equations (3),
(5) and (22), respectively, and the functions vy, and the constants ;. be defined as in Subsection 2.2.1.
Assume a;; € L;’)ZT(Y), up € W2P(Q), ¥/ € WLi(Y), ve and V(ve — x2)exp(—vyy1) € L*(Ge), for

per
1/p+1/¢g <1/2 and 1/s+3/p < 1. We also assume similar hypothesis for the other functions vy,.
Then there exists a constant c independent of € and h such that

e = uglin < c(h+ o)l

and

lue = ulllo < c(h® + e + eh)[[uoll2p.

Proof: By the triangular inequality we have

|u€—u§|17h < Iue—uO—ul—¢e|1+luO—u’5|1,h+e|u1—u’fll,h
+eld — @11 + €l — D1 n,

and the theorem follows from Theorem 2.1, the approximation error (23), and Propositions 4.2, 4.3 and
4.4. O

10



Theorem 4.2 Let u. be the solution of the Problem (1), X7, uo, X, ¢ and u" be defined by Equations
(8), (5), (8), (15) and (22), respectively, and the functions vy and the constants xi be defined as in
Subsection 2.2.1. Assume a;; € L32.(Y), ug € W3P(Q), ¢ € W2P(Q) and x € Wi(Y), for p > 2
and 1/p + 1/q <1/2. Also assume x7 € WH°(Y), and v. and V(ve — x2)exp(—yy1) € L=(G.). We
also assume similar hypothesis for the other functions vi. Then there exists a constant c independent
of € and h such that

e — ulllo < e(h? + €2 + eh)|uol|s,p-

Furthermore, if a;; € CLE(Y) and ug € H3(Q), then

per
lue —ulllo < c(h? + €2 + eh)|Juo]s.

Proof: The same proof of Theorem 4.1 holds here, except that (23) is replaced by (24) and Theorem
2.1 is replaced by Theorems 2.3 and 2.2. O

We now prove the propositions used in the proofs of Theorems 4.1 and 4.2.
For the approximation error of the term ug we use standard finite element analysis to obtain

luo — ufl|1,p < chlluollzp, for 2 < p < oo, (23)
o — ugllo,p < ch®|Jugll2,p, for 2 < p < oo (24)

and
o — ugflo,00 < ch®In(h)|tig]|2,005 (25)

see Corollary 7.1.2, Theorem 4.4.20 and inequality (7.5.4) from [10]. Let Z" be the usual local point-wise
Py or Q; interpolate and K € 75,(2), then

luo — ugl2p.x < Juo — T uol2p,x + [T"u0 — ug |2,k
Using an interpolation error estimate, see Theorem 4.4.20 [10], we obtain
luo — T"ugls p.n < ch™ *|uglm p.n, for 0 < s <m, (26)

and from an inverse inequality, see Lemma 4.5.3 [10], we have

|Ihu0 - ’U,g|27p7K < chilﬂfhuo - ’U,g| 1,p,K - (27)
Finally from (26), (27) and (23) we obtain
luo — ugll2p.n < clluollzp- (28)

In order to estimate the L? and the broken H! semi-norm of u; — u?, (see Proposition 4.2) we note
that uy — uf = (9, u0 — \I/?) X’ hence by a Cauchy inequality and the Sobolev embedding Theorem we
obtain [luy — ufllo < ¢[|@,u0 — ¥4 |oplX llo,q for 1/p+1/q < 1/2. Therefore we have to estimate the
error between W” and Vug on the LP and on the broken W semi-norm, (see Proposition 4.1) this is
done by first estimating the error between AVug -7 and A" in the trace space of W1P(2) over ' in

different norms; see Lemma 4.3. Lemmas 4.1 and 4.2 are auxiliary results used for obtaining Lemma
4.3.
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Consider the following spaces:
Case 2 < p < ooz Since W'=1/PP(T'})) < CO(T},), we define the spaces

W(Jlo_l/p’p(Fk) = {p € WI=V/PP(T}); ¢ =0 on AT} equipped with the norm
1M asmoeyy = - Dicssmneey

Case p = 2: We set Wolo_l/p’p(Fk) = H&F(Fk) and || - ||W010—1/p,p
definition of Hyy”(T).

Case 1 < p < 2: We define Wiy /P*(T'),) = W1=1/PP(T}) equipped with the norm \|-||W[)1[;1/p,p

|| ’ ||W1*1/Pwp(rk)-

These spaces have the following important feature. Denote by ¢ the extension by zero to 9Q \ T'k
of a given function ¢ € Wy, "/"*P(Ts). Then by the Trace Theorem and the Lift Theorem 1.5.2.3 from
[24] there exists a function ), € WP(Q) such that ¥, |so = ¢ and

() = Il - ”H&{Q(Fk); see [31] for the

(Tw) —

Cl||<P||W;J P < ollip <cll@ll 1.0

1
Pk

<clell 1, (29)
) w,

D

(BQ 00 ( k)

We also introduce the dual space of Wi /?*(T'y,), denoted by W=1+1/P# (T'), where 1/p+1/p/ = 1.
The following inverse inequality is required in the proof of Lemma 4.3.

Lemma 4.1 Let 1 < p < oo and v" € Yohk Then
||vh||W01(j1/p,p(Fk) < C}fl||Uh||W—1+1/p’,p(pk)- (30)
Proof: Counsider the following inverse inequality (see Theorem 4.5.11 [10])
0" |s.q.00 < ch™%|v"]l0.q00, Yo" €Y 1<g<ocand0<s<1. (31)

Given v" € Yohk let 3" € Y" be the extension of v to 9Q \ T\, by zero. Using (29) and (31) we obtain

IN

h ~h
||U ”W(,l(;l/p’p(l—‘k) C”U ||W1*1/P’p(69)

IN

ch™ I | aony = ch P oy (32)

Let Po x denote the L? projector to YO},Lk and assume that v" € YO}?k' Then

h h'])
Wl = sup gy S0 Posd)
¢€Lp’(f‘k) ||¢||LP’(Fk) ¢6Lp'(r\k) ||¢||LPI(F;€)

By Theorem 1 in [17] we have

1Po,kdll 1o ryy < €llbllporr,y 1 <P < oo (33)
Hence
||'Uh||W*1+ﬁ~P(F )||,P0,k¢||wlfﬁ,p/ -
”vh”LP(Fk) < ¢ sup F 00 (Tx)
peL? () 1Pkl Lo (ry)
< ch™ W |h y
= ¢ ||U ||W*1+ﬁ,p(rk)7 ( )
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where on the last inequality we have used (32) for bounding [|Po k|| 1-1/0 .0
00
ities (32) and (34) we obtain (30). O

)’ Combining inequal-

The following lemma provide stability and error estimates concerning Py x, the L? projector to YO];LIC'
These results are required in the proof of Lemma 4.3.

Lemma 4.2 Let 2 < p < 0o and Py, : Wt (Ty) — O];Lk be the L? projector to Yo}fk. Then we

have
1-1,
[Posdll 1, <cllol 1,  VoeWy "' (Tk), (35)
Woo 7 (Th) Woo P (Th)

1 1—1,

16 = Posdllowy < b w1, Ve Wy " (T), (36)
Woo ( k)

_ 1 ’

16 =Poxdllve s oy S TSN,y V6 € LP(Th) (37)
and L

1Posdll et gy S Nl it ) VOE WP (Ty,). (38)

Proof of (35):
Case p > 2: Observe that Poy : LP(T) — Y is stable in L? and WP, ie. [[Pordlrr(r,) <
e,y ¥V ¢ € LP(Tx), and [[Pordllwrer,) < cllollwire,) Y ¢ € WLP(T},), respectively; see
1
Theorems 1 and 2 in [17]. Since W'~ (') = [LP(T}), WP(Tg)]1-1/p,p; see Theorem 12.2.3 in [10],

we obtain the stability of Pg ;. in Wl_%’p(Fk) by the real interpolation method, see Proposition 12.1.5
n [10], and the inequality (35) follows.

Case p = 2: By definition Hééz(l"k) = [L?(T%), H}(T'k)]1/2 and the proof is analogue to the case
p > 2.

Proof of (36):

Case p > 2: Let " : LP(T'y) — V"(Q)|r, denote the standard P; or Q; interpolation operator.
Then we have

k

|6 —Poxdllrary < llo— Ih¢||LP(Pk) + || Po,x(d — Ihéf’)”m(rk)
< c||¢_Ih¢”LP(Fk)7 by (33)
< e rlgll o, by (26). (39)
WOU P (F )

Case p = 2: Follows similarly to the case p > 2 by replacing Z" by the Clement interpolation
operator defined by (2.13) in [40] and use the real interpolation method to obtain (39).
Proof of (37):

(¢ — Poro,v)

-P L, - AP~ PORS P
H(b O)k¢||W 1+11)1p (Fk) 1S,ulp,p ||’U|| l—l,P

vEWy, P (Th) Woo © (Tk)
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(¢ — Pord,v — Porv)

= S
T I
v WO(J P Woo ( k)
_ sup <¢7 (O PO,kU>
T, v _1
veE 010 " H ” 010 yp(rk)
- 9l Lo () lv — PokvllLo(ry)
- C1 v _1
wewidr Wb
1—1
< ch pH(b”LP/(Fk)? (40)
where we have used (36) to obtain the last inequality.
Proof of (38):
<P0 k¢av>
P il = su 7 L
1Portlly et e,y N Tl
vEWy, P (Tk) Woo ¥ (Tk)
, P
< ¢ sup (Po,x¢: Poxv) , by (35)
-1y MPoxvll aoa,
vEWy, ¥ (Tk) Woo ¥ (Tk)
<¢7P0 kv>
< c su : <c T ) .
S el s s Al
vEWy P (Tk) Woo 7 (Tk)

O
The following lemma estimate the error between AVug -1 and its numerical approximation A", This
lemma is used in the proof of Proposition 4.1.

Lemma 4.3 Let \' be defined by Equation (17) and X\ = Opao = Ai;Ojuon;, where 1; is the ith
component of the normal vector to I'y. Assume that ug € W*P(Q). Then we have

[N — )\h||W01(;1/p,p(Fk) < cJugll2,p for 2 <p< oo, (41)
1N = Nl o,y < b ugllay for 2<p < oo (42)

and
IA = Nl 143/ 0y < Chlltoll2p for 2<p < oo. (43)

Proof of (41): From Remark 2.1 if p = 2, or from the Sobolev embedding theorem if p > 2, we have
A1/ gy < ellolla (44)
In order to prove inequality (41) observe that
h h
X=Xl oy < Mlwazme gy + I lwgarme ey,

and

)\h
I s, = sup UL N
Woo 7 (Tk) “1+30 [ @llw-1+1/m07 ()

14



Since A\ € Yohk then (A", ¢) = (A" Py 1 ¢), and using (38) we obtain

<)‘h7 PO,]C¢>
HPO,k¢||W—1+%,p’

<c sup

< (45)
pew P (1))

IV s
Wolo v p(Fk)

(Tx)

Now we introduce the A-discrete harmonic extension operator H" : Y — V() defined as the
solution of

/ Aij0;H gh ol dr = 0 Vol € V(Q), and H"g"|sq = ¢".
Q

The A-harmonic extension operator H : H'/2(092) — H'() is defined similarly. By Theorem 5.4 in
[41] (a generalization of Lax-Milgram theorem for Banach spaces) we have

[Hgllwrr) < cllgllwi-1/ppaa), for 1 <p<oo. (46)

Hence if g" € YO}jk and §" denotes the extension of g" by zero to 9Q \ 'y, from Theorem 7.1.11 in [10]
it follows

||Hh§h||17p < CHthHWle(Q)
h
||g ||W()1(;1/p,p(rk), by (46) (47)

IN

Let 7507;@(;5 denote the discrete extension of Py ¢ to dQ \ T by zero. From the definition of A", the
stability of the A-discrete harmonic extension, (47) and (23), we obtain

N Pord) = (N Pord) + alul — uo, H"Po 10)
< ||)‘||W01(;1/P,p(1—~k)||'P0,k¢||W*1+1/p,p’(1“k) + ChHUO||2,p||7)0,k¢||wol(;1/p',p’(Fk)
< o (M7, + cluollzp) 1Poxdllw-remm r,): (48)

Here we used the inverse estimate (30) applied to Py r¢ to obtain (48) . Inequality (41) follows from
(48), (45) and (44).
Proof of (43): We observe that

<)\ - )\h7¢>
A= My oy = Sup
1-L1p ||¢|| -1y
PEWyo ’ (Tx) Woo v (Tx)
h h
S ¢ Sup <>\ >\ 7¢ P07k¢> + c Sup <>\ )\ 77301k¢> (49)
1-1.p ||¢|| 1-1p 11, |‘P0,k¢|| 1-1p
¢6W00 P (Fk) WUU P (Fk) ¢EW00 P (Fk) W()() P (Fk)

In order to estimate the second term on the right hand side of (49) we use the definition of A\ and A",
and the inequality (47) to obtain

<)‘ - )‘ha PO,]C¢> = a(ug — Uo, Hh'lso,k@
< Ch”uoHQ@HPMMW[}J”P’*P'(Fk)
< chl|uol2,pl ,PO)]C¢||W(}O—1/;),1)(FIC) since p > p’. (50)
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For estimating the first term on the right hand side of (49) we note that

(¢ — Po,rktp,v — Porv)

p— P ’ =
107 Postlly i o S
vEWy 7 (Tk) Woo ¥ (T)
< sup ¢ = Poxdll 2w llv = PokvllL2(ry)
vewol(:%’p(pk) ||’U||W(}071/p,p(l_‘k)
S Cth)HWr}O*l/PvP(Fk)' (51)

In the last inequality we used (36) and the fact that Woloil/p’p(Fk) — Hégz (Tk) for p > 2. Hence,

<>\ - Ah7¢_PO,k¢> S ||A_ )\hHWOIJI/p,p(Fk)”d)_,PO,kd)HW*IJrl/p,p'(Fk)
< chlluollapl@llys 1/msr, s By (41) and (51), (52)

A

and the inequality (43) follows from (49), (50) and (52).
Proof of (42):
Case 2 < p < co: We have

A=A g — A=At
A — )\h”Lp(Fk) < sup < &= Po.x9) + sup A= A% Poxd) (53)
peLr’ (T'y) ||¢||Lp’(1‘k) $eLr' (T'y) HQS”LP/(F;C)
The first term on the right hand side of (53) is bounded as follows:
A=A g - P il
</\_/\h;¢_730,k¢> ” ||W010 ;,p(rk)”¢ O,k¢||W 14+1.p (%)
sup < sup
$ELP' (Ty) 161l ry) $ELP' (Ty) 191l o)
< ch o gl (54)

Here we have used (37) and (41) to arrive in (54). In order to estimate the second term on the right
hand side of (53) we use the definition of A and A" to obtain

A =N Posd)  _ fy aii0i(uo — ul)d; (M Po kg)dy
Po.k®ll Lo ()

lollzp[Pos@ll -

ch 00
1Po.xdll Lo (r,)

_ 1
ch' "% ||uoll2p, by (32).

sup
sere'my) Nl

IN

Case p = oo: Let z € I, then

IA(z) = N(2)] < IM(2) = PorA(2)] + [\"(2) = PorA(2)]. (55)
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For the first term of (55), by Theorem 3.1 in [45] there exists a positive constant ¢ such that

[A(2) = PoxA(z)| < c||A— vh| 0,00, + € €xp(—ch)||A — vh||071,r,c7 vl e Yok (56)

The use of Q; elements to approximate ug implies AVul - nx|r, € Yo, therefore we can take v" =
AVul - mi, in (56) and use (23) to obtain
[A = PokAllo,c0 < chl|uo]2,00- (57)

When P; elements are used AVul - 1y is piecewise constant, hence AVul - nglr, ¢ Yor. We then
consider a rectangular mesh 7"(Q) such that the approximation @/ using bilinear elements on 77 (Q)
for ug satisfies AVal - ni|r, € Yor. Hence we take v = AVal - n; in (56) and use (23) to obtain (57).

To estimate the second term on the right hand side of (55) we follow ideas from [45]. Let E, C Ty
denote an edge of an element K, € 7"(f) such that z € E., and define 6, as the polynomial of degree
1 on E, such that

/ 3. (s)v(s)ds = v(z), for any v polynomial of degree 1.
E.

Regard ¢, as extended by zero to 'y, \ E, and denote by 67; evh () the extension by zero of Py 6, to
Q). Then we have

MNi(2) = PosrA(z) = / Por(A* = N)s.ds = / (A" — NPy x6.ds
Ty

Ty
= /QAijai(Uo — ug)0; (6 )dx (58)
where we have used the definition of A" to obtain (58). From (23) and (58) follows
IN"(2) = PoseA(2)| < chlfuollz,o0l|8%]]1.1-
Using an inverse estimate followed by a Poincare inequality we have
1621111 < ch™MI6% o1 < ellPoxdzllo,1,r-

Finally, we use the fact that ||Po xdz]l0,1,r, < ¢, see Lemma 3.5 in [45], and (42) follows. OJ
Proposition 4.1 estimates the error between Vug and its proposed numerical approximation W”.
This Proposition is required in the proof of Proposition 4.2.

Proposition 4.1 Let ug and V" be defined by Equations (5) and (18), respectively. Assume ug €
W?2P(Q) and that linear or bilinear finite elements are used to approzimate ug. Then for 2 < p < oo
we have

[(Vug — ¥") - vllo,p < chlluollap, ¥ veR? with |v| =1 (59)

and
[(Vug — ¥™) - vll1pn < clluollzp, Vv eR? with |v| = 1. (60)
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Proof of (59): From the triangular inequality we have
1(Vuo =) - vllop < [[(Vuo — Vug) - vlop + [(Vug — ") - vo,p- (61)

Use (23) to estimate the first term on the right hand side of (61). For the second term, by the definition
of ", we have

(Vg =" - vlop<e Do IERW" = Vi -1") oy

ke{e,w,n,s}

Consider k = e and that bilinear elements are used to approximate wug; the other cases, k € {w,n, s}

h

or when P, elements are used, follow in a similar way. From definition, the function E" ( h g%fl’) is
linear in the x1 direction and equal to zero in x1 < 1 — h, hence

1EE (1" = Vg - 0F)lop < hYP (|00, uf = 1o, p s 1 2<p < o0
or

1B (1" = Vug -0 )lo,c0 < [|0ug — 1" s if =00
Case 2 < p < oo: The triangular inequality gives
h h h h
HamluO —H Ho,p,re S Hamluo - 311“0”0,,,;6 + H(?mluo —H Ho,p,re : (62)

In order to estimate the first term on the right hand side of (62), let K € 75(2) containing an edge
E C T'y,. Applying a Trace Theorem we have

102,45 = 0z olly , 1 <
-1 h P p—1 h p 1/p
c(h |02, ug _aﬂﬂluOHo,p,K—"h |0, ug —6$1u0||1)p)K) . (63)
From (23), (28) and (63) we obtain
0,18 — Dyt < Pl (64)

For second term on the right hand side of (62), we apply the definition of A and A" to obtain
|0z, u0 — “hHopr =Apn ||A- /\hHop r» and therefore from (42) we have

Haﬂhu@ - MhHO7p7FC < Chl_l/pHuO”Zp' (65)
From (62), (64) and (65) we obtain
1Ee(1" = Vug - 1) o, < chlluollz.p,

and hence estimate (59) holds for p < cc.
Case 2 = co: We have

102, = 1" {lg o, < 102, uf = Bayuollo,oo,r. + 10,10 = 1" o,co,r.

and applying (42) and (23) we have
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19z, t0 = 1" lg oo r, <

and hence estimate (59) follows for p = oo.
Proof of (60): We have

(Vg = 9") - vlop e (Vuo = ¥") - vllo,p + [[(Vuo — Vug) - vllo,p

<
< chlluollzp, by (23) and (59) (66)

and from an inverse inequality, see Lemma 4.5.3 from [10], follows that

1(Vug —¥") - vll1pn < clluollzp
Since
(Vo — ¥") - vl pn < e (|(Vug — Vo) - v1pn + [(Vug — ") - vl pn)

we obtain (60) from (28). O
The following proposition estimates the error between u; and uf. These estimates are required in
the proof of Theorems 4.1 and 4.2.

Proposition 4.2 Let u; and u} be defined by (6) and (19), respectively. Assume that ug € W?P(Q)
and x* € Wi(Y), for 1/p+1/q < 1/2. Then there exists a constant ¢ independent of € and h such
that

h2 1/2
=t < cllollaslilhay (5 +1) (67)

and
lur = uillo < chlluollzpllxll1q.v, (68)
where [Ix[l1.qy =32 X' 1.0y
Proof of (67): We have

|u1 U1|1 h < (69)

2 3 [ (Ono— W0 )+ () -0, (00 — W) Pl
K;eTn () Y 5Ki jel1,2
For the first term on the right hand side of (69) we have

S 3 (o= W0, ()P < 00 -

K;eTn() Y i je1,2

05, X' (/)54

00,0 = UL plIXIT gy < e 2R fuoll3 X7 .y (70)

where we have used (59) to obtain (70).
The second term on the right hand side of (69) is bounded by a Cauchy inequality, ||x‘0;(9;uo —
W2 < Il gl — WO, .
Proof of (68): Tt follows from a direct application of Cauchy inequality and the approximation error
estimate (23). O
The following proposition estimates the error between qze and é? This Proposition is required in
the proof of Theorems 4.1 and 4.2.
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Proposition 4.3 Let ¢, and ¢! be defined by (14) and (20), respectively. Assume that ug € W2P(Q)
and v, € WH4(GYy,), for 1/p+1/q < 1/2. Then

N N h2 1/2
o=t e (1) maxludioelule ()

and

16 = G20 < ch max [[vy = X [lo.q.6 | uoll2,p- (72)

Proof: From definition of gZ;E and (;3? we have
e —dllin< D 18F =G i,
ke{e,w,n,s}

and the proposition follows from arguments similar to the ones given in the proof of Proposition 4.2. [J

Finally, we prove the last proposition used in the proof of Theorems 4.1 and 4.2. Proposition 4.4
estimates the error between ¢ and ¢".

Proposition 4.4 Let ¢ be defined by Equation (15), ¢" be the finite element approzimation to the
Equation (21), and assume that ug € H?(). Then we have

16 = " 11 < clluoll2 (73)

and

16— ¢"llo < chlluo]2- (74)

Proof of (73): We note that x*u € H'/2(99Q), see Remark 3.1, hence we define 1) € H'() as the
solution of
V-AVY =0 in Q = x*u" on 9Q. (75)

From regularity theory and (41) we have

] < ZC||X*Mh||H3(§2(Fk) < cfluoll2, (76)
k

and from triangular inequality

16 ="l < 16 — Dl + 16" — ]ls-

Since x*u" € V*(Q), the problem of finding ¢ reduces to a conforming finite element problem, hence
standard finite element analysis and (76) gives

lo" — ¥|1 < cfluollz.

Finally, from regularity theory and Lemma 4.3 we obtain

6 —vh < X" = X Oguoll/2(an)
< Dot - X Ouoll g2,y < clluollo-
B
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Proof of (74): From the triangular inequality

16— ¢"llo < cllé = vllo + 16" — Vllo,

and from standard finite element analysis and (76) we obtain

16" —llo < [l < chlluol2.

Theorem 6.1 from [37] states

le—=vllo < e lIx*Onuo = X 1" I3-1/20,))
k
< ch|uoll2 by (43).

O

5 Numerical Results

As in [26] we consider the case

(24 1.8sin(2mzy /)
ax) = (2 + 1.8cos(2mx2 /€)

2 + sin(2mxsa/€)
2 + 1.8sin(27zy /e

)>IQ><2, and f(z)=-1.

We compare the solution obtained by our method with the solution obtained by a second order accurate
finite element method on a fine mesh with size h¢, which we call u}. Table 1 provide absolute errors

estimates for u} — ui“i“p. We have used 7 = 2, h = 1/128, hy = 1/2048, and a triangular mesh with

. . Lo . ; J h,T
continuous piecewise linear functions to approximate X;, and v),’".

Table 1: u} — ul™7 error

| - |lo error

el ho 18 1/16 1/32 1/64

1/16 2.7085e-04 | 7.7993e-05

1/32 2.6300e-04 | 6.6246e-05 | 1.7773e-05

1/64 2.5388e-04 | 5.8069e-05 | 1.6020e-05 | 1.2137e-05
| - |1,n error

1/16 0.0097 0.0067

1/32 0.0086 0.0051 0.0036

1/64 0.0086 0.0044 0.0025 0.0018

From Table 1, we see that for ¢ << h we have errors of order O(h?) and O(h) for the L? norm
and H' semi norm , respectively. We observe that when we fix A and decrease € the errors almost do
not change. This is evidence that in this case the dominant error term is O(h). Also looking at the
diagonal values in this table we see clearly that the numerical error agrees with the theoretical rates
from Theorems 4.1 and 4.2.
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Table 2:
e=1/64, h=1/32, hy =1/1024

[ llo |- J1n
ur —up" 0.0287 0.0215
ur —up" — eul” 0.0213 0.0026
wr —ult — euh — eghihr 5.0450e-05 | 0.0026
wt —ulh — el — e(ghhT 4 Ty | 5.1865-05 | 0.0025

Table 2 shows the improvement obtained in the final approximation when the term ¢ is taken
into account. It can be appreciated from this table that a better improvement on the || - || norm rather
than on | - |1, semi norm is clearly seen. The improvement on the L? norm is an evidence that we
were able to obtain, through the proper calculation of x*, the asymptotic L? behavior of the boundary
corrector 6. in the interior of the domain 2. We also note that the term ¢. primarily forces the final
approximation u"7 to satisfy the zero Dirichlet boundary condition, and since it has support only in
a thin boundary layer of 99, then no much error improvement is obtained on the | - |1 5 semi norm.

We also consider the following example:

2 if2/5<y1 <3/bor2/5b<ys,<3/5 -
aly) = { 1 otherwise. and f =1
Table 3: u} — u?ﬁ" error
| - |lo error, hy = 1/2000
el h—|1/10 1/20 1/40
1/20 4.8318e-04 | 1.3043e-04
1/40 4.7578e-04 | 1.1954e-04 | 3.0805e-05
1/64 2.5388e-04 | 5.9446e-05 | 1.4414e-05
Table 4: u} — u?ﬁ" error
| - |1,n error, hy = 1/2000
el h—|1/10 1/20 1/40
1/20 0.0180 | 0.0092
1/40 0.0179 | 0.0090 | 0.0046
1/64 0.0086 | 0.0045 | 0.0026

We compare the solution obtained by our method with the solution obtained by a second order
accurate finite element method in a fine mesh of size hy, which we call u}. Tables 3 and 4 provide
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absolute errors estimates for u — u"7 on the || - ||o norm and |- |, semi norm for different values
of h and e. We have used 7 = 2, h = 1/128, and a triangular mesh with continuous piecewise linear

functions to approximate X% and v™7.

Although the convergence analysis presented here are not intended for the quasi periodic case
a;j(z, x/€) the numerical approximation presented here can be generalized for this case. This would be
done by approximating matrix a(z,z/€) by >, a’(z/€)IK, (), where Ik, is the characteristic function
for K; € 7,,(Q2), and then solving a cell problem in each sub-domain K.

6 Appendix

6.1 Proof of Theorem 2.1
By the triangular inequality we have
|ue —uo —u1 — @i < ue —up —ur — Oels
+elfe — @l1 + €l6c — bcla,
and the theorem follows from Propositions 6.1, 6.2 and 6.3. O

We now prove the propositions used in the proof of Theorem 2.1. The following proposition gives
the same error estimate of Theorem 2.2 in [3], however here we assume ug € W2P(Q) and x? € Wki(Q)

/ per
for 1/p+1/q <1/2 while in Theorem 2.2 in [3] it is assumed ug € W>>(Q2) and x? € H},,.(Q). It also
generalizes Proposition 2.1 from [34] where it is assumed a;; € Cp2(Y), ug € H*(Q) and Q C R?. We

note here that Theorem 1.1 from [32] gives conditions concerning the discontinuities of the functions a;;
such that x7 € WZ}e’ﬁo (Y). Finally, we observe that in the case a;; € C;ég (Y) a error estimate similar to
Proposition 6.1 can be obtained in the case a zero Neumann boundary condition is used to define w;

see [35].

Proposition 6.1 Let Q@ C R, d = 2,3 be a conver domain, u. be the solution of Problem (1) and
ug, u1, and 6O be defined by Equations (5), (6) and (7), respectively. Assume a;; € L2 (Y), up €

. per
W2P(Q), and x7 € Wy d(Y) for 1/p+1/q < 1/2. Then there exists a constant ¢ independent of ug and
€, such that

l[ue(-) = uo(-) — eur(;-/€) — €be(-)[l1 < celluol|2,p-
Proof: Define
. ou
vo(z,y) = a(y)Veuo(z) + aly)Vyui (z,y) = a(y)(Vyy; — Vyx’ (y))%é(w)-
j
From the definition of x’ we have

/Y (a(y)(e5 — Vyx? (4)) — Aej) Vydly)dy =0, ¥ 6 € HL, (V).

Since the vector a(y)(e; — VX7 (y)) — Ae; is Y periodic and has zero average entries over Y, by Lemma
6.1 there exists ¢;(y) € H.,.(Y) with zero average over Y such that

a(y)(Vyy; — Vyx! (y) — Aej = —curly¢;(y). (78)
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Let P
U
6= ¢j<y>a—£<x> (79)
and define
vi(z,y) = —curlyd(z,y)

82
B —; (v) amgij (x)
- 82 .
b (y)w?,;j(z)
In the case d = 2 we have |curlyd;loq = |¢;l1,4- Since x/ € W,
we apply a Poincare inequality to obtain

2(Y) and ¢, has zero average over Y,

165ll1,0.v < cleurlydsloqy < clllx ey + IX*1,0.v)-

In the case d = 3 by the Remark 3.11 in [25] we also obtain that ¢; € W,.4(Y)3 if x7 € Wj4(Y). From
hypothesis ug € W2?(Q) for 1/p+ 1/q < 1/2, hence v1(z,z/e) € L*(Q) and |Jv1]lo < e(|x 1.0y +
Ix111,4,v)|wol|2,p. Moreover, by Lemma 6.1,

Ve -v(z,y) =0, (80)
and simple calculations give
Vy-vi(z,y) = Vy-curly (gbj(y)azjuo(:zr))
= =V curly (¢;(y)0x,uo(x))
—Va-vo(z,y) — f. (81)
Let
ze(x) = ue(x) — up(x) — eup (x, 2 /€)
and
Ne(z) = a(z/e)Vue(x) — vo(z, x/€) — evi(x, x/€).
Then
a(w/e)VzE(x) - 775(55)
= a(x/e)Vue(z) — a(z/e)Vyuo(x) — ealx/e)Vyur (z, z/€)
—a(z/e)Vyui(z,x/e) — a(x/e)Vue(z) + vo(x, z/€) + evi(z, z/€)
=e(vi(z,z/€) — alx/€)Vui(x, x/¢€)),
and so
la(-/€)Vze = nello < €llvr(:,-/€) = al-/)Vaur(:,-/€)llo- (82)
Given g € L*(Q), let w. € H}(Q) be the solution of
[ ate/ouo) Vs = [ gapp@as, o e H®. (53)
Q Q
hence

/Qg(zE —eb)dr = /Qa(~/e)Vw€ V(e — €0.)da
— /QCL(/G)Vw€ - Vzedr — E/Q@('/G)Vwe V6.dz

= /Q a(-/€)Vuw, - Vzeda. (84)
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Now observe that
/ a(-/e)Vwe - Vzdr = / a(-/e)Vwe - (Vze — ne)dx —i—/ Ne - Vwedx. (85)
Q Q Q

In order to estimate the second term on the right hand side of (85) we apply the definition of 7. to
obtain

/ Ne - Vwedr = /(a(z/e)Vue(:zr) —vo(z,z/€) — evi(z,x/€)) - Vw(z)dx
Q Q
= fwedz — / (vo(z,z/€) — evy(x,z/€)) - Vw,(z)dx. (86)
Q Q

We note that

/Qvl (z,z/€) - Vwe(x)dz /QV cv1(x, x/€)we(x)dx

/Q(Vm +1/eVy) - vi(2,y)|(y=z/ewe(x)dx

- /Qm oo+ fwed, (87)

€

where we have used (80) and (81) to obtain (87). Using the definition of vy we have

j Oou
/Qvo(:zr,:zr/e) - Vwe(z)dr = /Qa(x/e)(ej — Vyx (I/e))a—xo(x) - Vwe(z)dz,

J

and by the chain rule we obtain

8u0

[ wteae Fude = [ atofee; - V0t 3 (Gu ) ) ds (55)

_/Qa(z/e)(ej — VX (z/€)) - (wevg%j

(:c)) dz.

In this paragraph we evaluate the first term on the right hand side of (88). Let (§Yi)i=1 be
a finite set of translated cells of Y, recovering Q, and consider a partition of unity p;, such that
suppp; C %Yi, where %Yi denotes the cell %Y centered in §Yi. We note that

supp(p;we) C %YZ NQCeY; (89)
hence
[ atwle)es = Vo a/e) - V(G 2w, (a))ds =
Q J
> [ atafotes = Vi w/e) - VG wo)ds = (90)

=10,
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Here to obtain (90) we first note that uo has a stable extension to W2P(R?), which we also denote

ug applying (89) we obtain that the function p;0,,uowe is defined uniquely as zero outside of € and
since 1/p+ 1/q < 1/2 we obtain p;0,,upw. € Wha'(R?) for 1/¢ = 1 —1/q. We then observe that
I e Wha(y), H',, (Y) — WL?(Y) and (3) implies

per per per

/ 0 )0y (OF — 4)0yt = 0, ¥ 1 € WET (V).
Y

Finally, since piawj uowe has a compact support contained in the interior of €Y7, see (89), then p;0, ;UpWe €
Wple’gl (eY;) and (90) follows.
For the second term on the right hand side of equation (88), we use the definition of vy and it follows

that
6’11,0

- [atesote; - s (w552 @) o=~ [ V- wote o/l
o /Q vo(x, 2/€) - Vs (z)dz = — /Q V. - volw, /e)w. ()dz. (91)

From Equations (86), (87) and (91) we obtain

/ Ne - Vwedzr = 0,
Q

and from (85)
/ a(-/e)Vwe - Vzdr = / a(-/€)(Vze — ne) - Vwe )de. (92)
Q

Q
From Equations (84) and (92) we have

/ g(ze — €8, )dz
Q

IN

clla(-/€)Vze = nellollwell1
< ellvi(s,-/e) —al-/e)Viur(,-/€)lollgll-1 by (82).
Dividing by ||g||-1 and taking the supremum for g # 0 we get

[ze(x) — €bellx cellvi(-,-/e) = al(-/€)Vaur(-,-/€)llo

ce(Ix gy + 13 [lqv) luollzp-

A

IN N

O

The following remark is used in the proof of Proposition 6.5.

Remark 6.1 Let f € H™'(Q), g € HY?2(0Q) and define uc € H'(Q) as the weak solution of the
following problem
Lu.=f in Q, ue=g on 0N.

It is easy to see that Proposition 6.1 extends immediately to this case if ug, defined as the solution of
—V.AVus=f in Q, wuyg=g on 09,
belongs to W2P(Q).
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The following corollary follows from Proposition 6.1 and is used in the proof of Proposition 6.5.

Corollary 6.1 Let Q C RY, d = 2,3, be a conver domain, u. and ug be defined by Equations (1) and
(5), respectively. Assume a;; € L2.(Y), ug € W™P(Q) and x? € WLi(Y) for (m — 1)p > 2 and

per per

1/p+1/q < 1/2. Then there exists a constant ¢ independent of ug and € such that
l[ue = uollo < cel|uo]|m,p-

Proof: The hypothesis ug € W™P(Q), (m — 1)p > d implies 9,,up € C(Q2), and x?/ € C(Y) see Remark
2.1, therefore |Juillo < c[|uollm,p- From the maximum principle [|0c]o,00 < [|0z;u00,00,00 /X" |0,00,00:
and hence the corollary follows from Proposition 6.1. [J

The following proposition estimates the H' norm of 6, — ¢., and is used in the proof of Theorem
6.1.

Proposition 6.2 Let ug, 0. and ¢. be defined by Equations (5), (10) and (14), respectively, and the
functions vy, be defined as in Subsection 2.2.1. Assume ug € W2P(Q), and ve and V(ve—x3)exp(—yy1) €
L*(Ge) for s > 2 and 1/s+3/p < 1. We also assume similar hypothesis for the other functions vy.
Then there exists positive constants 0 < 0(p,s) < 1/2, and c(9,) independent of € such that
10 = Gells < e(0, 7)€ llallo.se [luolly,, max (1 (vk — xi)ezp(=vy - 1) 0.5,
+ o = Xills.60) -

In addition, when p,s — oo then 6 — 1/2 with ¢(d,v) bounded independent of 6.

Proof: By definition
10—l S 10—

ke{e,w,n,s}

z1—1 I2)
e 7 €

Consider the case k = e, the other cases are treated in a similar way. We denote v&(z) = ve(
and a¢(z) = a(x/e), and let g € H} (). Then applying the definition of ¢¢ we obtain

8u0

/ a*V(0¢ — ¢¢)Vgdx = / —aV ((vé - xZ)%—) Vgdx
Q Q 8561

_ 8’[1,0 € € * _ € %), € %
= —/Q <<p88—mla V(v¢ Xe)) Vgdz /Q <(vE X5)aV <<pe &61)) Vgdz. (93)

We note that due to the Sobolev embedding Theorem 5.4 from [1], the integrals above are well defined.
For the first term on the right hand side of Equation (93) we have

Ouo e a _
/Q(spea—xla V(’Ue Xe)) ng'r_

* 8’&0 > / < 8’&0)
a*V (i = x5V | e=—g |dz — | a*V(vs —x}) gV | pe=— | dz. 94
[ave - (e gie) o= [ a9z -x0)- a7 (0. 52 (94)
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We now estimate the first term of the right hand side of (94). Let I; = {(i — 1)e/6 — €/6 < 22 <
i€/64¢€/6, }, im = 1+ sup;cn(i3/€ < 1), and consider a partition of unity p; of 2, subject to (0,1) x I;.
Let If be the interval centered in I; with |If| = e. Since supp(pig) C [0, 1] x If we have

[ vt =9 (1050 ) o = (99
Q
8’&0
E / /EGVU _Xev Pi@ea—xlg dxadry = 0,
1=0:%m,

where to arrive in (95) we have used the definition of v, and arguments similar to the ones used to
obtain (90).
For the second term on the right hand side of Equation (94), we apply a Cauchy inequality to obtain

vz =x0) 9 (52 ) g <
Q

Il—l
—)

(96)

-1

(v/€) Y exp(y 22

lalloclpe Vol 1p || Vocexp(—y )9

0,5 \7V 0,1 7
where 1/l =1—1/p—1/s. Taking y1 = (z1 — 1)/e and y2 = x2/¢, and exploring the [0, 1]-periodicity
of ve(y1,-) we have

1 —1

€ * 1 1
HV(ve — Xz )exp(—y

0 1
(= + 1)/ / |V yveexp(—yy1)|* € *dyzdy
1/e JO

€

)

0,s

IN

€

IN

'V yveexp(=y91) 5.5 . - (97)
Let g, € C$°(2), gn — ¢ in H and I,, = (0,1) N |g,| > 0, then integrating by parts in

0,1 (/ / P l’Y
( / /ln ~exp ( ) 6(|?g;|ldx dx2)1/l o
) ( -) 0) R

/(1)
(Q)(s'(1 — 1)1 <—) gal2. (100)

x1—1
H (7/6)1”exp(717)9n

11
)|gn| dxldxg)

9n
8561

IN

Hgn”o s'(1-1)
0,r’

x1
exp (lw

IN

7'l

To obtain (99) we have used a Cauchy inequality with 1/r' + 1/s’ = 1/2. In order to obtain (100), we
note that the last inequality in the proof of Lemma 5.10 in [1] states

IN

2t —t
lonloa < 200 (32 Yl for 20/2-0) = 51-1), 151 <2

IN

2t —t
o(t=1)/t (ﬁ) vol(Q)/t=1/2)| g, [l1, by Theorem 2.8 in [1]
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2t —t
< ¢(Q) <ﬁ> |gnl1, by a Poincare inequality.
Hence (100) follows from (99). Taking the limit n — oo we obtain inequality (100) for g.
Since 1/s + 3/p < 1, there exists ' > 2 such that 1/l7' + 1/l +1/s — 1 > 0, and hence from (94),
(95), (96), (97), and (100) it follows

6’11, % _ ’
/Qcpea—;;afv(vé —X5)Vgdz < () (s' (1 — 1) la]| ool pe Vol p
IV (ve — xZ)exp(—=yy1)llo,s,c.lgl1, (101)

where &' = 1/lr' +1/1+1/s — 1.
For estimating the second term on the right hand side of (93), we apply a Cauchy inequality with
1/r+1/p =1/2 to obtain

€ *\ € 8’[1,0 8’&0 *\T Hr
/ (ve—xemv(%—)-vmx < Jafloe e 20 < J dy> 9
Q 6(E1 axl 1,p G.
r 8’&0 € *
< e fallooe [0 22| ot - xilrlah, (102
1 1,p

where we have used the Sobolev embedding Theorem 5.4 in [1] to obtain the last inequality.
Taking g = 6¢ — ¢¢ and using the ellipticity of a

O =Gty < 0 [ @V - 30) - V@~ s
(1)

< 7—55||a||0700|cpevu0|1,p (IIV(ve = x2)exp(=yy1)llo,s.c.
+ IV (ve = xOle) 162 = &l my -
where § = min{d’,1/r}.
Observe that s,p — oo implies I — 1. Choosing s’ = 1/(I — 1) in Inequality (100) we have that

(s'(1 — 1))t=D/t (e/(r'lw))l/(rll) — €/2/(27). In inequality (102) p — oo implies 1/r — 1/2 and
c(r)et/m — cet/?. O

Finally, we prove the last proposition used in the proof of Theorem 6.1. Proposition 6.3 estimates
the H' norm of ¢ — 6.,

Proposition 6.3 Let Q be a convex polygon, and the functions ug, 0. and ¢ be defined by Equations
(5), (11) and (15), respectively. Assume that ug € H?(Q), then there exists a positive constant c
independent of € and ug such that

7 Py a 0,00,Y
16— 8]y < cllocey

a

Proof: Consider the notation a¢(r) = a(z/€), the same will be used for a;;. Since (¢ — 6.) = 0 on 99
we have

/ € 6(& - 96) a((lg - éﬁ)dw _ / € 6& a((lg B éﬁ)dm
Q Q

a. . a;
K 8171 8CCJ‘ t 8:61 8CCj
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1/2 1/2
< lalosy ( / |w3|2dx) (/Q |v<<zs—91>|2dw) ,

and from the ellipticity of a we obtain

The regularity theory gives that |¢|; < cl[x*Onuol| /2 (90, and since Q is a convex polygon by Remark
2.1

6 — Bel1 < cfluol|z.

The proposition follows from a Poincare inequality. [

6.2 Proof of Theorem 2.2

Use a triangular inequality similar to the one used in the proof of Theorem 2.1 and Propositions 6.4,
6.2 and 6.5. O

We now prove the propositions used in the proof of Theorem 2.2. The following proposition gen-

eralizes Proposition 2.3 from [34], where it is assumed a;; € C’;;ﬁ(Y), up € H3(Q) and Q C R%. We
note here that Theorem 1.1 from [32] gives conditions concerning the discontinuities of the functions
aij such that x7 and x € Wy (Y).
Proposition 6.4 Let Q C R?, d = 2,3 be a conver domain, uc be the solution of Problem (1), and
X7, wo, ui, O and XV be defined by Equations (3), (5), (6), (7) and (8), respectively. Assume a;; €
L2, (Y), uo € W3P(Q), x? and x7 € Wpd(Y), for p,q>d and 1/p+1/q <1/2 . Then there exists a
constant ¢ independent of ug and € such that

lae) = wo(-) = eur(:s-/€) = ebe(-)llo < Ce[luols,p(max [Ixllo.g + max X 111.q)-

Proof:
Define the field v; by
. a2uO 6)(” (92’11/0
. J
(Ul (xi y))k alﬂ (y)X 8CCJ8-T'L (‘T) + a/kl (y) ayl 8$J8I1 &€ I (103)
hence
a(y)Vaur(z,y) + a(y)Vyus(z,y) = vi(z,y). (104)

Let q(y) = ¢(y), ¢ defined by Equation (79) and let ¢);; € Wgé?(Y) such that

j 1 1
—anx’ +audix’ —cy;

(é) 2

curlyrj = 1/;1]- = —ao1x? + andx* — ¢j —c1 |
—az1x! +azdx" + ¢§- ) ci;

—arax? + andix® + ¢2§3) — ¢y

curlyo; = 1/;23‘ = —a02X? + andx*? —c5;

—azox? + az O x> — ¢§]1) - ng
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and _ _ 9
3 —aysx? + aydix® — ¢§ = C%j
curlyij = ¥3; = | —agsx? + andix®’ + ¢g('1) —d; |

: 4
—azsx’ + azu x>’ —cy;

where the constants cﬁj are chosen such that each entry of the vectors @j has integral zero over Y, e.g.

C%j = fy —anx? + aydxdy. It is easy to check that V,, - 1/~ka = 0, what guarantees by Lemma 6.1
the existence of such functions ¥y;, and by Remark 3.11 in [25] we have

1vmsllg < (X llo.g + 11X l11,q). (105)
Define 52
— . Uo
and let
va(x,y) = —curlzp(z,y),
and a simple calculation gives
Vy"Ug:—vm"Ul, Vm"UQZO (107)
and
loa(s-/elllo < clluollsp maxlensllr,q v
< clluollsp(Ixllog + Ix"Ilq) by (105). (108)
Define
Ve(2) = uc(x) — uo(z) — eus(z,2/€) — us(w, v /e)
and
E(x) = a(x/€)Vuc(z) — vo(z,z/€) — evi(x,2/€) — v, 2 /€),
where vg is defined by (77). Then
a(x/e)Vipe — () = a(z/e)Vuc(z) — alx/e)Vug(x) — ea(z/e)Vui(x, z/€)
—e®a(z/e)Vua(z,z/€)
—a(z/€)Vuc(x) +vo(z,2/€) + evi(z, 2/€) + *v2(x, 2 /€)
= —a(z/e)Vaup(z) —ealx/e)Vyui(x, x/e) — alx/e)Vyui(z, z/e€)
—e2a(x/€)Vuz(x, v/€) — ea(z/€)V uz(z, 2 /€)
+vg(z, x/€) + evi(x, 2/€) + 2vo(x, 2 /€)
= E(va(w,x/€) — alw/e)Vus(x,x/€)), by (77), and (104).
From the definition of uy and (108) we obtain
laz/e)Vipe = Ecllo < ee®luollap max(lx’llo.g + X 111.q)- (109)
Define ¢, € H'(Q2) as the weak solution of
—V-a(z/e)Vpe =0 in Q, and ¢(z) =uz(z,x/e) on ON. (110)
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We observe that the Sobolev embedding theorem and the hypothesis p, ¢ > d, implies the function wus
is continuous. Therefore, we use the maximum principle to obtain

pello < clleello,oo
< Cmi?x ||XZJ||07007Y|‘8mimju0”0100
< emax X N11,q,v luoll3,p- (111)

Given g € L%(Q), let w. € H(Q) denotes the solution of

/Qa(z/e)VwE(:c)Vd)(z)dz:/g(x)¢(x)dx, Vi € Hy (). (112)

Q

Since 1, + €0 + €2p. € HE(Q) we obtain

/ g(he + €l + ezgoe)dw = a(x/e)(Vipe + eV + EQV@e)Vwe(:v)dx
Q

S— 5

a(z/e)Vip.Vwe(x)dz, (113)
where we have used the definition of 6. and ¢, to obtain (113). We observe that

/ a*Vi - Vwdr = / (a*Vipe — &) - Vwdz +/ & - Vwedr, (114)
Q Q Q

and we estimate the second term on the right hand side of (114) as follows

/ ¢ - Vwedr = /(a(x/e)Vue(x) —wvo(x,z/€) — evi(x, x/€)

Q Q

—2vy(z,2/€)) - Vwe(x)dx

/wae(:v) + Vg - vo(z, z/e)we(x)

—evi(z, z/€) - Vwe(z) + eV (2, z/e)we (x)dz, (115)

here we used the definition of u., (91), integration by parts and (107) to obtain (115). Using (103) we
have

/v (z,z/€) - Vwe(z) = / —ag X! O uq (x)
Q ! ’ € o Q kzxea‘f]a.fz
e oxY  9%ug . ow,
kit Oy, O0x;0x;

O (x)dx. (116)

Consider the partition of unit p; defined in the proof of Proposition 6.1, then

/ae aXZE] 82’“0 8’[1)5 (CC)dSC o
Q Kl Oy, Ox;0z; Oxy, -
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o2

B i/ 0%ug 8w€d$

- i 3yl s Da;0; Oy

— sz:/ p.%w (z)) — af % (@) — 0 p.% da
@i 8yl &’ck Zazj[?:ci ¢ kt oy Oxy Zascjazi

LS et (e s

B 1 € ie 'J ““8 g 85%8561 €

(0 9%y 9%y Ow,
€ \J I .
+ak1Xs (a (p’t 817](9561 (I)> We (I) + Pin A 8CCJ 8171 (CC) azk (CC)) dx

T
oxY 0 0%ug
_ € e (z) =2 d 11
/Q @t oy, we(@) dxy, <8:vj8xi * (117)
82
= a T - € d
/Qe (V voaxjaz(:c) f>w(a:)z
- 9%ug 8w€
_ € i
/Qakz’“azjascz /Vw vidz. (118)

Here we used the definition of X% to arrive in (117), and from (115), (116) and (118) we obtain

/ & - Vwe(z)dx =0,
Q

[a“Vpe = &)lol|lwelly

and hence from (109) and (114)

IN

/ g(e + €0 + e2cp6)d:v
Q

IN

4 y
c€?[luoll3p (X7 llo.qy + I1X* 1.3 lgll 1.

Dividing by g and taking the supremum over g, we have

1,q)-

3,p H}ﬂx(HXﬂ 0. 11X ‘
J

[t — 1o — eur — e — *uz — || < ce®luol

Observe that uz (7, /€) and ¢.(z) are bounded in L?() by ||ug||3,, maxy; [|[x*||1,4, independent of e,
see (111). Hence

1,q)-

l[te — uo — eus — ebe | < ce?[|ug| s,p(mfx X7 [lo,q + max Ix*7

The following proposition estimates the L? norm of ¢ — 6., and it is used in the proof of Theorem
2.2

Proposition 6.5 Let ug, X7, 0. and ¢ be defined by (5), (3), (11) and (15), respectively. Assume that
ug € WHP(Q), ¢ € WP(Q) and x7 € Wpd(Y), for 1/p+1/q <1/2. Then we have

19 — @llo < celluolls p-
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Proof: Observe that ¢ € W2P?(Q) and p > 2, hence from Corollary 6.1 and Remark 6.1 we obtain

10 = Sllo < cel|gl2.-

Since -
Ploa =D erxi Vo - nklog,
K

by regularity theory, see Theorems 4.3.1.4 and 4.3.2.4 [24], ||¢[|2, < e(x*)||uol|3,p, and the proposition
follows. O

6.3 Proof of Theorem 2.3

Use a triangular inequality similar to the one used in the Proof of Theorem 2.1 and Propositions 6.6,
6.2 and 6.5. Observe that if a;; € CLE(Y),3 > 0, by regularity theory x/ € CLZ v, € C1P and

per per>

V(ve — x5)exp(—7yy1) € L>®(G,); see Theorem 15.1 in [30] and Remark 6.4 in [34]. By the Sobolev
embedding theorem ug € W2°°(Q), hence Proposition 6.2 holds for § = 1/2. O

The following proposition is used in the proof of Theorem 2.3. Proposition 6.6 generalizes Proposition
2.3 from [34] to the case Q C R3.

Proposition 6.6 Let Q@ C R%, d = 2,3 be a convex domain, u. be the solution of Problem (1), and
ug, u1, and 0. be defined by Equations (5), (6) and (7), respectively. Assume a;; € CYP(Y),3 >0 and
up € H3(Q). Then there exists a constant ¢ independent of ug and €, such that

[ue(-) — uo(-) — eur(-,-/€) — €0 (-)]lo < Ce*|luglls.

Proof: Since a;; € CH#(Y) by regularity theory x* € C*#(Y), x¥ € C1(Y)) and by Theorem 3 in [7] we
obtain ‘
[pello < ellua(-,-/€)llo,00 < clluollsllx"illo,c0

where the function ¢, is defined by (110) and we have used the trace theorem in the last inequality.
The rest of the proof of follows exactly as the proof of Proposition 6.4. [J

6.4 Auxiliary Result
The following lemma is used in the proof of Propositions 6.1 and 6.4.

Lemma 6.1 A function v e L2, (Y)?, (ve L2,.(Y)?) satisfies

V.v=0, (119)
and [y, vidy = 0 iff there exists a function ¢ € H),.(Y) (¢ € H}.,.(Y)?) such that:

v = curlp. (120)

Proof: Similar to the proof of Theorem 3.4 from [25] using discrete Fourier transforms rather than
continuous Fourier transforms, see [42]. O
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7 Conclusions

We perform the convergence analysis for the proposed numerical method for approximating the solution
of Equation (1). The error estimates obtained in the numerical experiments agree with the theoretical
errors estimates from Theorems 4.1 and 4.2. The method presented here is strongly based on the
periodicity of the coefficients a;;, and for this reason it has relative low computational cost with optimal
error convergence rate.

We generalize results found in the literature for estimating the error between u. and its first order
asymptotic expansion ug+ eu; approximation plus the boundary corrector term 6.. Such generalization
permit us to develop sharp finite element error estimates with very weak assumptions on the regularity
of a(y), including composite materials applications.
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