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ON CONVEX CONES WITH INFINITELY MANY CRITICAL ANGLES

Alfredo Tusem® and Alberto Seeger?

Abstract. This note deals with some cardinality issues concerning the set of critical
angles of a convex cone K C R?. Such set is referred to as the angular spectrum
of the cone. In a recent work of ours, it has been shown that the angular spectrum
of a polyhedral cone is necessarily finite and that its cardinality can grow at most
polynomially with respect to the number of generators. In this note we explore the case
of non-polyhedral cones. More specifically, we construct a cone whose angular spectrum
is infinite (but possibly countable), and, what is harder to achieve, we construct a cone
with noncountable angular spectrum. The construction procedure is highly technical
in both cases, but the obtained results are useful for better understanding why some
convex cones exhibit such a complicated angular structure.
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1 Introduction

The discussion takes place in the context of an Euclidean space R¢ equipped with the usual inner
product (u,v) = u’v and the associated norm ||-||. The symbol S refers to the corresponding unit
sphere. The dimension d is assumed to be greater or equal than 2.

Consider an arbitrary closed convex cone K C R?%. The problem of finding a pair of unit vectors
achieving the maximal angle

Omax(K) = sup  arccos(u,v) (1)
u,v EKNSy

arises in different areas of mathematics. By way of example, we mention that €. (K) serves to
measure the degree of pointedness of K (cf. [2]), as well as the efficiency of certain interior point
methods for solving feasibility systems with inequalities described by K (cf. [5]).
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As shown in [3], a necessary condition for a pair (u,v) € R? x R? to solve the maximization
problem (1) is that

u,v € KNSy, v— (u,v)u € K¥, u— (u,v)ve KT, (2)

where K+ = {y € R? : (y,z) > 0 Vz € K} denotes the dual cone of K. The criticality (or station-
arity) conditions stated in (2) can be easily derived by working out the equivalent minimization
problem?

co8[Omax(K)] = u,vehll{fmsd<u’v>' (3)

Definition 1. Let K C R? be a closed convex cone. By a critical pair of K one understands any
pair (u,v) of vectors satisfying (2). The angle formed by a critical pair is called a critical angle.
The set

Q(K) = {arccos(u, v) : (u,v) is a critical pair of K}

is called the angular spectrum of K.

Remark. Sometimes it is convenient to drop from Q(K) the critical angles which are improper,
that is to say, the critical angles formed by vectors u and v such that |(u,v)| = 1. A cone admits
at most two improper critical angles, so this point will not affect our discussion.

The angular spectrum is a set which describes somehow the angular structure of the cone.
Not only the maximal angle enters into the picture, but also a full bunch of additional angles
having a special meaning. For polyhedral (or finitely generated) cones the situation is fairly well
understood. Such type of cones has always a finite number of critical angles ([3]). Upper bounds
for the cardinality of their angular spectra are proposed in [4].

In this note we focuss the attention on non-polyhedral cones. We will exhibit a cone whose
angular spectrum is infinite (but possibly countable), and, what is harder to achieve, we will
construct a cone with noncountable angular spectrum.

2 Two preliminary lemmas on cones with infinite generators

We start with two results on cones with a possibly infinite number of generators. In the sequel N
refers to the set {1,2,...} of positive integers. For G C Sy, the symbol K will denote the cone

3 As pointed out by one of the referees, the criticality conditions stated in (2) can also be derived by using a direct
geometric argument. Assuming u # —v, denote by P the (d — 2)-dimensional subspace orthogonal to the vectors u, v
and by I'1,T'; the hyperplanes containing P U {u} and P U {v}, respectively. The fact that v and v are unit vectors
in K achieving the maximal angle (1) implies that I'1 and I's are support hyperplanes of K. Observe now that the
vectors v — (u,v)u and u — {u,v)v are orthogonal to I'y and I's, respectively.



generated by G, i.e.,

m

Kg = {Zaigi:mEN,gi EG(lSiSm),aERT}.
i=1

Lemma 1. If G is closed and there exists z € Sy such that (z,g9) > 0 for all g € G, then K¢g is

closed.

Proof. Take a sequence {z*}reny C K¢ converging to some z € R?. We will prove that z belongs
to Kg. By the conical version of Caratheodory’s Theorem (cf. [9, Corollary 17.1.2]), each xz*
can be written as a positive combination of up to d elements of G, i.e., 2% = Ej:l kg™ with
ag; > 0, g¥ € G. Clearly {g*'}icn is bounded for all j € {1,...,d}. We claim that {ay;}ren is
also bounded for all j € {1,...,d}. Note that

d
<2a$k) = Z aki<2,9’”>-
i=1

Since G is compact (because it is bounded and closed), and (z,g) > 0 for all g € G, there exists
v > 0 such that (z,g) > v for all g € G. Thus,

d

l2*]| > (z,2*) > VZOékz' > vagg,
i=1

ie., ag; € [0,]|z*|/v]. Since {z*} is bounded, because it is convergent, the claim holds. Thus we
can refine {z*} to {z%} so that {gek’J}keN converges for all j € {1,...,d}, say to ¢/, and {ay, j},cn
converges for all j € {1,...,d}, say to @;. It follows that

d d

7 = i LA L — 1 kT — 7.

z= Jim o = lim a® = lim 3oy, i = g0
J:l ]—1

Since G is closed, g/ belongs to G for all j € {1,...d} and z turns out to be a nonnegative

combination of elements of G, so that it belongs to K¢. O

The above result is most probably known, for instance a variant of Lemma 1 is mentioned
without proof in an old reference by Wets [10]. The hypothesis on the existence of z amounts to
saying that the dual cone of K has nonempty interior, or equivalently that Kg is pointed in the
sense that K¢ N —K¢g = {0}. The way it is formulated in the statement of the lemma is more
appropriate for the sequel.

We mention in passing that the dual cone of K admits the characterization

[Kal" ={yeR?: (y,9) >0Vg € G}.

This observation leads to the following lemma whose proof is immediate and therefore omitted.



Lemma 2. The unit vectors u,v € Kg form a critical pair of Kg if and only if, for all g € G,

(v,9) > (u,v)(u,g),
{u, g) > (u,v)(v,g)-

3 A general construction procedure

In order to construct a cone K¢ such that Q(K¢) is infinite, we start by considering the revolution
cone

~

R = {(m,t) e R x R:3||z]| < t} .
Clearly, all pairs (%(w, V3), %(—x, \/3)) with € S4_1 are critical for I?, and for all these pairs the
critical angle is 7/3, so that

Q(R) = {<%(m V3), %(—x,\/ﬁ)>} - {%}

We now select a closed subset @ C S;_1 and a continuous function v : @ — [1,3/2]. First
we perturb each z € @, multiplying it by the scalar v(z), and then we construct perturbed pairs
(u(z),v(x)) in R¢, duly normalized, as

u(z) = \/ﬁ (’)’(37)%\/3) ) @
v(z) = ———— (—v(z)z,V3) .

3+72(x)

We take next the set
G={u(z):z€Q}U{v(z) :z € Q} C Sy, (5)

and consider the cone K generated by G. The idea is that @) and - should be selected in such
a way that all pairs (u(z),v(z)) with z € @Q are critical for K¢, and that angles corresponding to
different pairs are different.

We identify next some properties of ) and y that ensure these intended goals.

Theorem 1. Take a closed subset Q C Sy_1 such that (z,y) > 0 for all z,y € Q, and a continuous
and one-to-one function v : Q@ — [1,3/2]. Consider the set G given by (5). Assume that

7(z)
(z,y) < m (6)

for all x,y € Q. Then,
i) K¢ is closed,



it) All pairs (u(x),v(x)), as defined by (4), are critical for Kq,
i1i) card[Q(Kg)] > card(Q).

Proof. 1) Since @Q is compact and the functions u(-),v(-) defined by (4) are continuous, it follows
that {u(z) : z € Q} and {v(z) : z € Q} are both compact. Hence G is closed. Take now the vector

z = (0,...,0,1) € R? and notice that (z,u(z)) = (z,v(z)) = \/3/(3+~2(z)) > 0 for all z € Q.

Thus, we are within the assumptions of Lemma 1, which ensures that K¢ is closed.
ii) In view of Lemma 2, it suffices to check that, for all z,y € Q,

(v(2),u(y)) 2 (u(z),v(z))(u(z), u(y)), (7)
(u(2), u(y)) = (u(x),v(z))(v(z), u(y)), (8)
{v(z),v(y)) = (u(z),v(z))(u(z),v(y)), 9)
(u(x),v(y)) = (u(z),v(x))(v(z),v(y)) (10)

(u(@),v(@)) = 3055y (11)
— (e o(u) — 3T Y@) W)z y)
{u(z), uly)) = (v(z),v(y)) N T ONCET M (12)
— to(). u(w)) — — 5= 1@ )z y)
(u(z),v(y)) = (v(z), u(y)) BT 20 (13)
Using (11)-(13), we get that (8) and (9) become
—~2(z
2N > [ 2750 6 @) (1)
and (7) and (10) become
(3
3= 2N o) > |50 ] 6+ (eh)a ), (15)



For (14), note that, since 1 < y(z) < 3/2 for all z € Q, and 0 < (z,y) < 1 for all z,y € @, the
left-hand side is not smaller that 3, while both factors in the right-hand side are positive, the first
one being not bigger than 1 and the second one not bigger than 3. It follows that the inequality
holds. We look now at (15). A simple algebraic manipulation shows that it is equivalent to

V(@) — @)y, y) > =7 (@) + v(2)v(y){z, ),

which is itself equivalent to assumption (6).
iii) In view of (ii) and (11),

A2
QKg) D {arccos [%] 1T € Q}. (16)
Note that 7 €]0, co[— (1) := g’jr—: =1- ﬁ is decreasing. Since <y is one-to-one and y(z) > 0
for all z € Q, we get that 9 : Q — R, defined as 9 (z) = 9(y(x)) = arccos[(3 —v2(z))/(3 + v2(z))],
is one-to-one. The result follows from (16). O

We mention that the specific angle of the initial revolution cone K , namely 7/3, as well as
the specific bounds on the image of -y, namely 1 and 3/2, are inessential. The chosen values make
computations easier because they ensure that the perturbed critical angles will be larger than /3
and still acute, i.e., lower the 7/2 (in fact we have that 1/7 < (u(z),v(z)) < 1/2 for all z € Q),
but we could have started with other revolution cones and others bounds for 7.

4 A cone with countable angular spectrum

Next we construct a pair @,y where @) is infinite and countable. Take d > 3 and consider a
convergent sequence {z¥}ren C Sq_1 such that

0< (2, 2F) <1 forallj k€N, j#k (17)
(mz,wj) < avk,xj) whenever j < k < /. (18)
An example of such a sequence is obtained by taking z* = (cosk~!,sink~1,0,...,0) for all k,

in which case (27,2*) = cos (j7! — k!). Let now 2°° = limj_,c z*. Define Q = {z*}en U {2},
i.e., Q consists of the sequence {z*}cn together with its limit z°°. Clearly, @ is closed and satisfies
the assumptions of Theorem 1. Regarding vy, let us write

v(zF) =4, Vk € NU {oco}. (19)

In view of the definition of @), continuity of v will be ensured if v, = limg_,o, 7. On the other
hand, assumption (6) is much harder to achieve. We construct next a sequence {7 }ren leading to



a function « which satisfies this assumption. For all k € N, let 7, = (z*,z%!). Consider {vx}ren
defined recursively by

7 €]1,3/2],  Yk+1 € Jmax{1,0x}, k[ fork=1,2,..., (20)
where 0}, = max;<j<x{7v;7;}. Finally, define
Yoo = lim . (21)
Next we prove that the sequence {7 }ren is well defined and that it satisfies the required properties.
Proposition 1. One has:
i) The choice (20) is feasible, i.e., maz{1, 0} < v, for all k € N.
it) {Yk}ren is decreasing and convergent.
iii) (z*,27) < yp/v; for all j,k € NU {oc}.

Proof. 1) By induction. For £ = 1 we need max{1,y1m} < 71, which holds because 1 < 7; and
0 < m < 1. Suppose now that max{l,d;} < 7; for j = 1,2,...,k — 1 and that y; has been
chosen according to (20) for j = 2,...,k. We must prove that max{1,dx} < 7. Note that
0 = max{dg_1,7kNMk}, so that max{l,dr} = max{1,0k—1,7kMk}, and hence it suffices to prove
that max{1,0; 1} < 7 and that vgn, < ;. The first of these inequalities is a consequence of
the inductive hypothesis, while the second one follows from (17) and the fact that -y, is positive,
ensured by (20).

ii) By construction, {7 }xen is decreasing and bounded from below by 1, hence convergent.
iii) Let j,k € N. Since (z/,z%) < 1 < y/v; for j > k, it suffices thus to deal with the case when

1 < j < k. Note that

ik, 27) < (et 27) = yimy < maxycoch{vene} = 6k < W, (22)
using (18) in the first inequality and (20) in the last one. The case j € N,k = oo follows from (22)
by letting £ — oo. Letting then ;7 — oo one takes care of the remaining case k = 00,7 = oc. O
Remark. If a more specific definition of the 7;’s is wanted, one can take e.g. the midpoint in each
interva‘l, i'e'a Y1 = 5/47 Ye+1 = (1/2)[7/6 + ma‘X{l,ak}]

Corollary 1. Consider the cone K¢ generated by the set G defined by (4)—(5), with Q = {z*}renU
{z*®} according to (17)—(18), and v as defined by (19)(21). Then, K¢ is closed, all pairs (u*,v¥)
defined as

uf = _ (7k:ck,\/§) , ok = _ (—7k$k,\/§) (k€ NU{o0})

are critical for Kg, and Q(Kq) is infinite.



Proof. We invoke Theorem 1. The set ) is closed because it consists of a converging sequence
with its limit. Notice that (z,y) > 0 for all z,y € @ because the first inequality in (17) extends
to the case in which & = oo or j = oco. The function +y is continuous by (21), one-to-one because
Y1 > Y2 > ... > Yoo, and condition (6) holds by Proposition 1(iii). The fact that @ is infinite
follows from the second inequality in (17), which implies that 7 # z* for all j # k. Then the three
statements of the corollary are consequences of items (i), (ii) and (iii) of Theorem 1, respectively. [

5 A cone with noncountable angular spectrum

Given two different critical angles, say 6y and 61, it is very tempting trying to construct a continuous
curve {(u(t),v(t)) : t € [0,1]} of critical pairs such that

arccos(u(0),v(0)) =6y and arccos{u(l),v(1)) = 6.

If this were possible, then the whole interval [6y, #;] would be contained in the angular spectrum of
the cone. The following proposition prevents us however from being too optimistic.

Proposition 2. Consider a closed convex cone K C R and an absolutely continuous curve C =
{(u(t),v(t)) : t € [0,1]} formed by critical pairs of K. Then,

/! —
(u'(t),v(t)) =0
almost everywhere on [0,1], and, in particular,
t €[0,1] — 1(t) = arccos(u(t),v(t)) is a constant function. (24)

Proof. Consider a point ¢ in |0, 1[ at which u(-) and v(-) are differentiable. The set of such points
has full Lebesgue measure in [0,1]. For notational convenience, let us introduce the function
A(-) = (u(-),v(-)). Since C is formed by critical pairs of K, one can write

(u(t) — At)v(t),v(t +eh)) >0

for h = £1 and € > 0 small enough. By subtracting (u(t) — A(t)v(t),v(¢)) = 0, dividing by e and
letting € — 0, one ends up with

(u(t) — A#)v(t),v'(t)) = 0.

But (v(t),v'(t)) = 0 because v(-) is contained in the unit sphere. In this way one gets the first
orthogonality condition stated in (23). The second one is obtained by permuting the roles of u(-)
and v(-). Since A is absolutely continuous, one can write

t
A(t) = A(0) —i—/() X(7)dr.

8



But M () = (u(-),v'(-))+(u'(-),v(-)) vanishes almost everywhere on [0, 1], so the constancy condition
(24) follows from the constancy of A. O

In view of the above proposition, it is not a wise idea to work with a set ) of the form
Q = {(cost,sint,0,...,0) : t € [a,b]}. Instead of an interval [a,b], we must try our chance with a
noncountable set having a more complicated structure. What we propose in fact is to look at

Q@ = {(cost,sint):te€ T} C S3_1, (25)
T = Cantor ternary set. (26)

We mention that we have fixed d = 3 with the only purpose of simplifying the notation; we could
as well work with any dimension d and @ = {(cost,sint,0,...,0) : t € T} C Sy_1.

Cantor’s ternary set is known well enough (cf. [1], [11]) so we don’t need to burden the pre-
sentation with all the details. What is strictly needed for our exposition is recalling that T' can be
represented in the form

o0

T= [0, 1] \ U ]amaﬁm[a (27)

m=1

where the open intervals |ay,, 5| are pairwise disjoint, and for all m € N there exists k € N such
that By, — am, = 37%.

So, T is closed because its complement is open. That T' is noncountable can be better seen if
one uses the ternary expansion of the elements of the interval [0,1]. We admit it as a fact that
card(T) = 2N. Also known is that |J°_,]cum, B[ is dense in [0, 1], so that T is nowhere dense, and
hence totally disconnected (i.e., all its connected components are singletons).

Having already chosen (), we must now select an appropriate y. To do this we introduce first
an auxiliary function o : [0,1] — R in the following way:

a(t) =0 ifteT, (28)
and on each interval Jay,, B[, o is defined as

O'(t) _ {(/Bm - am)(t - am) if o, <t < (am + /Bm)/2 (29)

(IBm - am)(ﬂm - t) if (am +ﬂm)/2 <t< ﬂm-

By construction, o vanishes over T" and is positive on any interval of the form ]ay,, 5,,[. One can
check that o is continuous on [0, 1], so one can define v : @ — R by means of the integral

y(z(t) =1 —i—/o o(r)dr, (30)



where we use the notation z(t) = (cost,sint) C Sy for t € T. We must check that this choice of Q
and +y satisfies the assumptions of Theorem 1. The critical item is (6), namely

(x(s), x(t)) < v(x(s))/v(2(t)) Vs, teT, (31)

for which we need two technical results.
Lemma 3. For all 7 € [-1,1], cosT < 1 —72/4.

Proof. The Maclaurin series expansion of cos(-) gives readily the inequality

2 7_4

<1-T -+
COS T -—+ =
24

for any 7 € R. For proving the result it suffices to show that

2 N 7_4 72
2 24 - 4’
but this turns out to be equivalent to 72 < 6, which certainly holds when 7 € [-1, 1]. O

Lemma 4. Consider o as defined by (28)—(29). Then,
i) Jam o(@)dt = (Bn — am)?/4,
i) fo t)dt = 1/100,

i) fﬁ t)dt < (B — a)®/4 for all a, B € T with o < .

Proof. ;From the definition of o over |ay,, B[, one sees that the integral (i) corresponds to the
area of a triangle with basis 3, — oy, and height (8, — a;;,)?/2. For computing the integral (ii),

we write
/ t)dt = Z/a (5m —404m)3_

m= 1

As mentioned before, £, — a,, = 37 for some k € N. From the very construction of the Cantor
ternary set, one knows that there are exactly 2% intervals of length 3~*+1. Thus,

! 1S 1 X /2\" 1 1
_ 1 (k+1) - B
/0 U(t)dt_zxg [3 k+1] 1082(27> 108 [1—22—7

As far as (iii) is concerned, consider the function p : [@, 8] — R defined as

p(t):{(ﬁ—a)(t—a) if a <t<(a+p)/2
(B—a)(B—1t) if (a+p)/2<t<p.

1
-~ 100°

(32)

10



Since ff p(t)dt = (B — a)®/4 by the same argument as in (i), it suffices to show that o(t) < p(t)
for all t € (a,3). This is the case if t € T', in view of (28). Otherwise ¢t €|ayy,, B | for some m, and
since a, 8 ¢]am, Bm[, because «, f € T, we have

o < oy < P < B. (33)

We emphasize that it is in (33) where we use in an essential way the fact that o, 5 € T. Now we
must consider, in view of (29) and (32), four cases

(a) t < (a+p8)/2,t < (am+Bm)/2

(b) t < (a+p)/2, t > (am + Bm)/2,

(c) 1> (a+p)/2,t < (om + Bm)/2,
t>(

(d) a+/8)/2a t> (O‘m +/8m)/2'

Note that, by virtue of (33), B —am < B—a, By —t < f—t, and t — ay, < t—a, from which we get
the result in cases (a) and (d). For case (c), we have t < (o, + Bm)/2 < (am + ) /2, which implies
t — ay < B —t, and therefore o(t) < p(t). For case (b), we have t > (am + Bm)/2 > (o + Bm)/2,
which implies 3, —t < ¢t — a, and we get again o(t) < p(t). O

Remark. Ttem (iii) of Lemma 4 is the critical point in the analysis and it is here that the set T
plays its essential role. We mention that 7' is maximal with respect to the inequality (33). If «
does not belong to T, there exists some 8 € T for which the inequality fails, namely 8 = 3, if
a € (am,Pm), as a simple geometrical argument shows, and the same situation occurs if 5 ¢ T.
Thus, there exists no T C [0, 1], strictly bigger than T', such that ff a(t)dt < (B — a)?/4 for all
a,BeT.

Now everything is prepared to state the main result of this section.

Theorem 2. Consider the cone Kg, generated by G defined in (4)—(5), with Q and T given by
(25)-(26). Let vy defined as in (30), with o given by (28)-(29). Then Kq is closed, for everyt € T
the pair (u(t),v(t)) defined as

1

u(t) = m (’7(37(75))37(75),\/5) ;
1

ot) = g (-1 ®)a(t), V)

with x(t) = (cost,sint), is critical for Kg, and the angular spectrum Q(Kqg) contains the set

O = {arccos [%] 1t € T} ,

which 18 noncountable.

11



Proof. We must check the assumptions of Theorem 1. The set @ is closed by compactness of T
and continuity of the trigonometric functions. For arbitrary s,t € T', the inner product

(z(s),z(t)) = cos scost + sinssint = cos(t — s) (34)

is nonnegative because |t — s| < 1. The continuity of 7 follows directly from its definition (30). On
the other hand,

is positive if s < ¢t. This proves not only that ¢t € T + ~y(z(¢)) is increasing, but also that vy : Q@ — R
is one-to-one. Also y(z(t)) > 1 by (30) and nonnegativity of o, and

101

1
1alt) <9(e() =1+ [ otrar = 15 < 5.

by Lemma 4(ii). It remains to check the hypothesis (6), which here takes the form (31). Since
~(z(+)) is increasing and z(s), z(t) are unit vectors, the result holds if s > ¢. Assume that 0 < s < ¢.
By (34) and Lemma 3,

(z(s),z(t)) = cos(t —s) <1 — (t — s)%/4. (35)
On the other hand, using (30) and Lemma 4(iii),

V() _ 1+ fyo(n)dr _ [lo(r)dr

B (t — s)3
v(z(t) 1 —i—fg o(r)dr B 1 —}—fg o(r)dr .

t
21—/0(7’)d7’21—
S

In view of (35) and (36), it suffices to check that

(t—s)?

1—

= bl

equivalent to ¢t — s < 1, which holds because 0 < s < ¢t < 1. We have checked all the assumptions
of Theorem 1, and the conclusion follows directly from it. O

6 Final remarks

The result presented in Theorem 2 is quite striking but it doesn’t close entirely the analysis of
angular spectra. Note that the function

3
t — f(t) = arccos [W

12



is an homeomorphism between the sets 7" and ©. This means that © inherits several of the
topological properties of T' like for instance being closed, nowhere dense, etc.

In principle, the set Q(K) could be larger than ©, and, in particular, it could contain an
interval of positive length. This is not however the case. It is possible to prove that Q(Kg) is
indeed equal to ©, but the analysis is too long and tedious, and goes beyond our purpose, namely
constructing a cone with noncountable angular spectrum.

This fact, nevertheless, gives rise to the following conjecture: the angular spectrum of any
closed and convex cone in R? is nowhere dense, and hence totally disconnected. Note that the set
of critical pairs is closed, as follows directly from (2), and hence, since it is contained in Sz x Sy,
it is compact. It follows that the angular spectrum is always closed, and so it would be enough to
prove that its complement is dense. This is certainly the case when the spectrum is either finite or
countable.

Our second remark concerns the localization of critical angles. Since f is increasing, the smallest
element of © is f(0) = 0, while the largest one is

3 —(101/100)?

f(1) = arccos [3 + (101/100)2

] ~ 0.3367

This means that we have constructed a cone K which exhibits noncountable many critical angles
scattered between 0 and 60.495 degrees (approximately). By applying a general duality result
established in [4], we deduce that [Kg]t exhibits noncountable many critical angles scattered
between 180 — 60.495 = 119.505 and 180 — 0 = 180 degrees. This time the concentration of critical
angles occurs in the region of obtuse angles.

We close this note with a last remark. Although the results presented in this work are rather
technical and fall in a narrow area of research, it is possible to reformulate them in a broader
context. A very interesting challenge in applied linear algebra is that of solving an eigenvalue
problem described by linear complementarity conditions: given a matrix A of size n X n and a
closed convex cone P C R", one must find all the real numbers A such that the system

r€P, Ar—AzxePt, (r,Az—Ar)=0 (37)

admits a nonzero solution z € R™. The spectrum (or set of eigenvalues) of A relative to P is by
definition the collection of all such A’s. The eigenvalue problem (37) arises in many different areas
and has been studied in [6, 7, 8], just to mention a few references. It is not difficult to see that if ¢
is a critical angle of K C R?%, then cos# is an eigenvalue of the 2d x 2d symmetric matrix

(8]

relative to the cone P = K x K C R?*. By choosing K¢ as in Corollary 1 one shows that, relatively
to a nonpolyhedral cone, the number of eigenvalues of a symmetric matrix may be infinite (but
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possibly countable). The cone K of Theorem 2 leads to an example of a noncountable set of
eigenvalues for a symmetric matrix. It was already known that a revolution cone may produce a
set of eigenvalues which contains an interval of positive length but this can occur only for matrices
which are not symmetric!

Of course, it is also possible to immerse our work in the general setting of a nonconvex con-
strained optimization problem. The \’s of the previous paragraph are interpreted now as Lagrange
multipliers associated to a nonlinear equality constraint. However, by lifting our original problem
to such an abstract level, we lose touch with our main motivation, namely, the analysis of the
angular geometry of a cone.
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