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1 Introduction

The investigation of rational points on curves over finite fields has a long history in
mathematics; for example, Gauss determined the number of rational points in prime
fields F, with p > 5 of the Fermat curve of degree three.

By a curve C over the finite field F, we will always mean a geometrically irreducible
smooth projective curve defined over F,. The main result of this theory is due to A.
Weil and it gives in particular an upper bound (the so-called Hasse-Weil bound) for the

cardinality of the set C(IF,) consisting of the F,-rational points on the curve C:

#C(Fy) <1+4+q+2/q-9(C), (1.1)

where g(C) denotes the genus of C. This result of A. Weil is equivalent to the validity of
the Riemann Hypothesis for the Zeta Function associated to the curve C.

Thara [17] was the first one to realize that the Hasse-Weil bound (1.1) could be improved
for curves with large genus. Fixing the finite field F, and considering curves C over F,

with ¢(C) arbitrarily large, Ihara defined

: #C(Fy)
A(q) =1
(@) = lmsup =)

(1.2)

and he proved that

e A(q) < +/2q for all q.

o A(q) > ./q—1if q is a square.



Note that the Hasse-Weil bound (1.1) gives only the inequality A(¢q) < 2,/q. Later
Drinfeld-Vladut [4] showed that

Alg) < /q—1 forallgq.

So we have the equality
A(q) =/q—1 if ¢ is a square. (1.3)
The exact value of A(q) for nonsquare ¢ is not known. Serre showed in particular that
A(g) >0 for all g. (1.4)

For cubic powers of prime numbers, Zink [23] showed that

2(p* — 1)

A(p®) >
(p°) > P

for all primes p. (1.5)

Recently the interest on explicit equations for curves over finite fields with many
rational points was renewed, after the construction of good linear codes from such curves;
this construction is due to Goppa [16]. Another big motivation for explicit equations came
from the result of Tsfasman-Vladut-Zink [22] proving the existence of arbitrary long linear
codes with limit parameters above the so-called Gilbert-Varshamov bound.

We refer to [14] for an overview of recent developments in this field of curves over

finite fields and its applications.

2 Maximal curves

Let g be a square; say ¢ = 2. A mazimal curve C over F, is a curve attaining the upper

bound in (1.1); i.e., a curve C such that
#C(F,) =1+ 2 + 20 - g(C). (2.1)
The genus of a maximal curve C over F, satisfies (see [17]):
g(C) <L(e—1))2. (2.2)

There is a unique maximal curve H over F, with ¢ = ¢? such that g(H) = £(¢ — 1)/2; it
is the so-called Hermitian curve over [F, and it can be given by the affine plane equation
(see [20]):

YP4+Y = X" over Fp. (2.3)



Not every integer g with 1 < g < g(H) is the genus of a maximal curve over Fyp (see
[7]). For example, let ¢ = ¢? and q odd (i.e., the characteristic p is odd), then the second

largest genus ¢, of maximal curves over I, is

go = (£ —1)?/4. (2.4)

There is a unique maximal curve over [, with genus given by (2.4); it can be given by

the affine plane equation (see [8]):
Yi4+Y = XED2 0 over Fpe. (2.5)

The unicity results in (2.3) and (2.5) do not hold in general; i.e., there are nonisomorphic
maximal curves over Fp2 with the same genus (see [1] and [3]). The problem of determining
the genera of all maximal curves over F,2 is an open problem.

Suppose that Cy is a subcover of Cy; i.e., we have a surjective map
p: Cy — Cy

where both curves C;,Cy and the map ¢ are defined over the finite field IF,. It is a result
of Serre (see [18]) that

C; maximal implies (s maximal. (2.6)

So subcovers C of the Hermitian curve H over F, are maximal curves. The converse
statement is an open problem:

Open Problem. Is any mazimal curve C over F, with ¢ = ¢* a subcover of H?

We now want to present a maximal curve Cy over F, with ¢ = 27% which is not a Galois

subcover of H; i.e., there is no surjective Galois map ¢ (see [9])
p: H — Cs.

For ¢ = /% and ¢ = p™, with p prime and n odd, consider the curve C(p,n) given by the

affine plane equation
y?P _y — x@+D/(p+1) (2.7)

One can show that (2.7) defines a maximal curve over F, and we then take C; := C(3, 3).

We refer to [10] for an overview on results on maximal curves.



3 Recursive towers of curves

The fundamental result of Tsfasman-Vladut-Zink (see [22] and Proposition VII.2.5 of [21])
asks for good lower bounds for Thara’s quantity A(q) which was defined in (1.2) above.
One way to get lower bounds on A(q) is by considering the limits A(F) of towers F of
curves defined over the finite field F, (see (3.2) below). Such a tower F is an infinite

sequence of curves and surjective maps
......... — Cq —» C3 — Cy — (3

such that all curves and all maps are defined over F, and moreover
9(Cp) 00 as n— oo

The limit A\(F) of an F -tower F is defined by (see [11])

A(F) := lim 3.1
(7) = lim B2 (3.1)

By the definitions we have
0 < XNF)<A(q) forany F,tower F. (3.2)

There is a way of “cooking up” an F,-tower F from a single absolutely irreducible
polynomial f(X,Y) € F,[X,Y]; the towers F obtained are then called recursive (or
recursively defined by the polynomial f(X,Y")). If we write

F=(wc..»Cs—»C3—»Cy—>Cy) then:

C, is the projective line P!.

C, is the curve (nonsingular projective model) given by the affine plane equation

f(Xl, XQ) - 0

Cs is the curve (nonsingular projective model) given in 3-space by the two equations

f(X1,X5) =0 and f(X5, X3) =0.

Cy is the curve (nonsingular projective model) given in 4-space by the three equations
f(X1, Xo) = f(Xa, X3) = f(X3, X4) =0,

and so on ...



In the next section we will present recursive towers F over F, giving proofs of the
results in (1.3), (1.4) and (1.5). The advantages here are:

e The proofs are simpler than the original ones.

e They provide explicit equations for the curves C, in the towers, and also explicit

formulas for ¢(C,,).

Other methods to get information on A(g) are from Class Field (see [19]) and from
Modular Curves (elliptic, Shimura, Drinfeld). We refer to [5] and [6] for the modular

interpretation of some of the recursive towers in the next section.

4 Explicit recursive towers

Let = (... »» C4 - C3 — Cy — () be an F,-tower. The tower F is called tame
if all maps ¢: C,+1 — C,, are tame maps (i.e., the characteristic p does not divide any
ramification index of the map ). Otherwise we call F an wild tower. We present in
this section two tame towers and three wild towers, all of them recursively defined by
polynomials f(X,Y) € F,[X,Y]. We start with the tame towers:

Example 4.1. Let ¢ = p* with p prime and ¢ > 2. Consider the tower F; over F, given
recursively by the polynomial (see [13])

fX)Y)=Y"—(X+1)"+1 withm=
We have that its limit satisfies
MF1) >2/(qg—2) >0. (4.1)
The result in (4.1) above is obtained in a very simple manner and it gives:

e A very simple proof of the result of Serre in (1.4) for nonprime finite fields (i.e., for

q # p).

e A very simple proof of the equality A(4) = 1; i.e., the result in (1.3) for ¢ = 4.
([l

Example 4.2. Let ¢ = p* with p an odd prime. Consider the recursive tower F; over F,

given by (see [12])
X?+1
V?= :
2X




This means that F; is the tower over [, given recursively by the polynomial
f(X,)Y)=2XY? - X? — 1.
We have that its limit satisfies

MF)=p—1=,/g—1. (4.2)

The result in (4.2) is much harder to obtain than the one in (4.1). To get it we needed
an investigation of the roots of Deuring polynomial (which is a polynomial parametrizing
supersingular elliptic curves). The result in (4.2) and the one in (4.1) for the case ¢ = 4,
show that we have

A(p*) =p—1 for all primes p.
O

The towers F; and F, above are such that each step ¢: C,y1 — C, is a Kummer
cover. The next two towers F3 and F, are such that each step is an Artin-Schreier cover;
in particular F3 and F, are wild towers. The determination of explicit formulas for g(C,,)

for all values of n € N, is much harder in the case of wild towers.

Example 4.3. Let ¢ = ¢2 where / is a prime power. Consider the recursive tower Fj

over [F, given by the equation below (see [11]):

XZ
¢ _
Y°+Y = 1T X
We have that its limit satisfies
AMNFs)=0—-1=,/qg—1. (4.3)

As mentioned above the determination of the individual genus ¢(C,,) for all values of n € N

is a hard task. In our case of the tower F3 we get for example (see Remark 3.8 of [11]):
g(Cy) = (£ —1)*  if nis even.
(|

The result in (4.3) above gives a complete proof of the statement in (1.3) in the in-
troduction, with the advantage of providing explicit equations for the infinite sequence of
algebraic curves involved. Now we turn our attention to finite fields with cubic cardinal-

ities.



Example 4.4. Let ¢ = 8; i.e., ¢ = p* and p = 2. Consider the tower F, over Fg given
recursively by (see [15]):

1
Y24+Y=X+—+1.
+ +5+

Its limit satisfies

3 2(22-1)
= -/ 44
NF)=35="373 (4.4)
So F, is an explicit recursive tower attaining Zink’s lower bound in (1.5) for p = 2.
O

In all four towers above we have that each step ¢: C,.1 — C, is Galois. The next

tower F5 is an wild tower with nonGalois steps (for £ # 2).

Example 4.5. Let ¢ = ¢2 where ¢ is a prime power. Consider the recursive tower F

over F, given by the equation below (see [2]):

1-Y X'+X-1

Yt X
Its limit satisfies
2002 — 1)
A > ——. 4.5
)2 2 (45)
The result in (4.5) proves the following generalization of the statement in (1.5):
2(02 -1
A% > % for all prime powers /. (4.6)

The tower Fj in the case ¢ = 2 is the same tower as F, (after some change of variables).
O

The result in (4.6) is considered as a very good lower bound on the quantity A(q) for
q = (3. What about good lower bounds for

AP, AW, A@M,...?

The question above is completely open.
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