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Abstract

A remarkable recent result by S. Artstein-Avidan and V. Milman states that, up to pre-
composition with affine operators, addition of affine functionals, and multiplication by positive
scalars, the only fully order preserving mapping acting on the class of lower semicontinuous
proper convex functions defined on R

n is the identity operator, and the only fully order reversing
one acting on the same set is the Fenchel conjugation. Here fully order preserving (reversing)
mappings are understood to be those which preserve (reverse) the pointwise order among convex
functions, are invertible, and such that their inverses also preserve (reverse) such order. In this
paper we establish a suitable extension of these results to order preserving and order reversing
operators acting on the class of lower semicontinous proper convex functions defined on arbitrary
Banach spaces.
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1 Introduction

In their recent paper [3], S. Artstein-Avidan and V. Milman established a remarkable result on
certain mappings acting on the class of convex functions defined on R

n. More precisely, let C (Rn)
be the set of lower semicontinuous proper convex functions f : R

n → R∪{+∞}. For f, g ∈ C (Rn),
we write f ≤ g if and only if f(x) ≤ g(x) for all x ∈ R

n. An operator T : C (Rn) → C (Rn) is said to
be order preserving if T (f) ≤ T (g) whenever f ≤ g, and order reversing if T (f) ≥ T (g) whenever
f ≤ g. We will say that T is fully order preserving (reversing) if, in addition, T is invertible
and its inverse T−1 is also order preserving (reversing). The main results in [3] state that, up to
pre-composition with affine operators, addition of affine functionals, and multiplication by positive
scalars, the only fully order preserving mapping acting on C (Rn) is the identity operator, and
the only fully order reversing one acting on the same set is the Fenchel conjugation, meaning the
operator T given by T (f) = f∗ for all f ∈ C (Rn), where f∗ denotes the Fenchel conjugate of f ,
defined as f∗(u) = supx∈Rn{〈u, x〉 − f(x)} for all u ∈ R

n. We mention, parenthetically, that the
Fenchel conjugation is called “Legendre transform” in [3]. We think that our notation follows the
usual practice in the convex analysis literature.

These results from [3] were the starting point of several interesting developments, consisting
mainly of replacing C (X) by other sets. Along this line, we mention for instance the characteriza-
tions of fully order reversing mappings acting on:

i) the class of s-concave functions (see [2]),

ii) the family of convex functions vanishing at 0 (see [4]),

iii) closed and convex cones, with the order given by the set inclusion, and the polarity mapping
playing the role of the Fenchel conjugation (see [8]),

iv) closed and convex sets (see [9]),

v) ellipsoids (see [5]).

All these papers deal exclusively with the finite dimensional case. In [11], it is proved that the
composition of two order reversing bijections acting on the class of convex functions defined on
certain locally convex topological vector spaces is the identity if and only in the same happens with
their restrictions to the subset of affine functions, but no characterization of the kind established
in [3] is given. To our knowledge, the extension of the above described results in [3] to infinite
dimensional spaces remains as an open issue. Adressing it is the main goal of this paper. More
precisely, we will generalize the analysis of order preserving and order reversing operators developed
by Milman and Artstein-Avidan to the setting of arbitrary Banach spaces. As a corollary, we also
obtain a characterization of order preserving involutions (see Corollary 6).

We mention now the main differences between [3] and our work.
When dealing, as we do, with arbitrary Banach spaces, the analysis becomes substantially more

involved, demanding different tools. This situation occurs at several points in the analysis. For
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instance, a key element of the proof consists of establishing the fact that the restriction of the
operators of interest to the space of affine functions is itself affine (see Propositions 5 and 7 for a
precise statement). In the infinite dimensional case, we need to show that such restriction is also
continuous (cf. Propositions 8 and 9), which turns out to be rather nontrivial. Of course, such
continuity is a moot issue in a finite dimensional setting.

Other specific features of our infinite dimensional analysis are the use of the Fenchel biconjugate
f∗∗ and its properties (cf. the proof of Theorem 1), and the fact that, in the nonreflexive case, the
order reversing operators under consideration send lower semicontinuous functions with respect to
the strong topology in X to lower semicontinuous ones with respect to the weak∗ topology in X∗

(see Theorem 2).
There is also another important difference between our approach and the one in [3]. As Milman

and Artstein-Avidan rightly point out in [3], one can establish the characterization for the order
preserving case and obtain the one for the order reversing case as an easy consequence, or make
the full analysis for order reversing operators and then get the result for order preserving ones as
a corollary. In [3], they chose the second option, while we follow in this paper the first one. As a
consequence, excepting for some basic results (e.g. Proposition 1), or the use of some classical tools
(like Lemma 1), which appear in [3] as well as in our work, both prooflines are basically different.
For instance, the role played by the δ-functions (i.e., the indicator functions of singletons), in the
analysis of the order reversing case in [3], is taken by the affine funcions in the order preserving
one, developed here (e.g., our Propositions 3, 4, 5, 6 and 7). We also obtain, as a by-product of
our analysis, some results which are possibly interesting on their own, like two characterizations
of affine functions in general Banach spaces (see Proposition 2 and Lemma 2), which are fully
unrelated to the contents of [3].

2 The order preserving case

We start by introducing some quite standard notation. Let X be a real Banach space. We denote
by X∗ and X∗∗ its topological dual and bidual, respectively. We define as C (X) the set of lower
semicontinuous proper convex functions f : X → R ∪ {+∞}, where the lower semicontinuity is
understood to hold with respect to the strong (or norm) topology in X. For f ∈ C (X), f∗ :
X∗ → R ∪ {+∞} will denote its Fenchel conjugate, defined as f∗(u) = supx∈X{〈u, x〉 − f(x)} for
all u ∈ X∗, where 〈·, ·〉 stands for the duality coupling, i.e. 〈u, x〉 = u(x) for all (u, x) ∈ X∗ ×X.
As usual, f∗∗ : X∗∗ → R ∪ {+∞} will indicate the biconjugate of f , i.e. f∗∗ = (f∗)∗. Given a
linear and continuous operator C : X∗ → X∗, C∗ : X∗∗ → X∗∗ will denote the adjoint of C, defined
by the equation 〈C∗a, u〉 = 〈a,Cu〉 for all (a, u) ∈ X∗∗ ×X∗. We consider the pointwise order in
C (X), i.e., given f, g ∈ C (X), we write f ≤ g whenever f(x) ≤ g(x) for all x ∈ X. We denote as
R++ the set of strictly positive real numbers.

The next definition introduces the family of operators on C (X) whose characterization is the
main goal of this paper.
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Definition 1. i) An operator T : C (X) → C (X) is order preserving whenever f ≤ g implies
T (f) ≤ T (g).

ii) An operator T : C (X) → C (X) is fully order preserving whenever f ≤ g iff T (f) ≤ T (g),
and additionally T is onto.

iii) We define as B the family of fully order preserving operators T : C (X) → C (X).

We will prove that T belongs to B if and only if there exist c ∈ X, w ∈ X∗, β ∈ R, τ ∈ R++

and a continuous automorphism E of X such that

T (f)(x) = τf(Ex+ c) + 〈w, x〉 + β,

for all f ∈ C (X) and all x ∈ X. We begin with an elementary property of the operators in B.

Proposition 1. If T belongs to B then,

i) T is one-to-one,

ii) Given a family {fi}i∈I ⊂ C (X) such that supi∈I fi belongs to C (X) (i.e., the supremum is
not identically equal to +∞), it holds that T (supi∈I fi) = supi∈I T (fi).

Proof. i) If T (f) = T (g) then T (f) ≤ T (g) and T (g) ≤ T (f), so that, since T is fully order
preserving, f ≤ g and g ≤ f , implying that f = g.

ii) Let f̂ = supi∈I fi. Since fi ≤ f̂ for all i ∈ I and T is order preserving, we get that T (fi) ≤

T
(
f̂
)

for all i ∈ I, so that

sup
i∈I

T (fi) ≤ T
(
f̂
)

= T

(
sup
i∈I

fi

)
. (1)

In view of (1), supi∈I T (fi) belongs to C (X). Since T is onto, there exists g ∈ C (X) such that
supi∈I T (fi) = T (g). Observe that T (fi) ≤ supi∈I T (fi) = T (g), so that, since T is fully order

preserving, fi ≤ g for all i ∈ I, and hence f̂ = supi∈I fi ≤ g. Since T is order preserving,

T

(
sup
i∈I

fi

)
= T

(
f̂
)
≤ T (g) = sup

i∈I
T (fi). (2)

The result follows from (1) and (2).

An important consequence of Proposition 1(ii) is that an operator in B is fully determined
by its action on the family of affine functions on X, because any element of C (X) is indeed a
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supremum of affine functions (see, e.g., [10], p. 90). Hence, we will analyze next the behavior of
the restrictions of operators in B to the family of affine functions.

Define A ⊂ C (X) as A = {h : X → R such that h is affine and continuous}. For u ∈
X∗, α ∈ R, define hu,α ∈ A as hu,α(x) = 〈u, x〉 + α. Clearly, every h ∈ A is of the form h = hu,α
for some (u, α) ∈ X∗ × R. For f ∈ C (X), define A(f) ⊂ A as A(f) = {h ∈ A : h ≤ f}.

We continue with an elementary characterization of affine functions.

Proposition 2. For all f ∈ C (X), f belongs to A if and only if there exists a unique u ∈ X∗ such
that hu,α ∈ A(f) for some α ∈ R.

Proof. We start with the “only if” statement. If f ∈ A then f = hu′,α′ for some (u′, α′) ∈ X∗ ×R.
Take an arbitrary hu,α ∈ A(f), so that 〈u, x〉 + α ≤ 〈u′, x〉 + α′ for all x ∈ X, or equivalently

〈u− u′, x〉 ≤ α′ − α (3)

for all x ∈ X. We claim that u − u′ = 0. Otherwise, there exists z ∈ X such that 〈u − u′, z〉 6= 0,
and WLOG we may assume that 〈u− u′, z〉 > 0 (otherwise, substitute −z for z). Take now x = tz
in (3), with t ∈ R++, getting 〈u − u′, z〉 ≤ (α′ − α)/t. Taking limits with t → ∞, we obtain
〈u− u′, z〉 ≤ 0, a contradiction, and henceforth u = u′.

We prove now the “if” statement. A well known result in convex analysis (see, e.g., [10], p. 90),
establishes that f = suph∈A(f) h for all f ∈ C (X), so that A(f) 6= ∅ for all f ∈ C (X). If there
exists a unique u ∈ X∗ such that hu,α belongs to A(f), then A(f) = {hu,αi

}i∈I for some set I 6= ∅,
and hence,

f(x) = sup
h∈A(f)

h(x) = sup
i∈I

hu,αi
(x) = sup

i∈I
{〈u, x〉 + αi} = 〈u, x〉 + sup

i∈I
{αi} (4)

for all x ∈ X. Since f is proper, supi∈I{αi} < ∞. Taking α = supi∈I{αi}, we conclude from (4)
that f(x) = 〈u, x〉 + α, i.e., f belongs to A .

Corollary 1. If f = hu,α ∈ A then A(f) = {hu,δ : δ ≤ α}.

Proof. Immediate from Proposition 2.

Corollary 2. Consider hu,α ∈ A , f ∈ C (X). If f ≤ hu,α, then f = hu,δ with δ ≤ α.

Proof. Take hu′,α′ ∈ A(f). Then hu′,α′ ≤ f ≤ hu,α, i.e. hu′,α′ ∈ A (hu,α). By Corollary 1, u′ = u,
i.e., there exists a unique u such that hu,α′ ∈ A(f) for some α′ ∈ R. By Proposition 2, f is affine,
and the result follows from Corollary 1.

Next, we prove that operators in B map affine functions to affine functions.

Proposition 3. If T belongs to B then

i) T (h) ∈ A for all h ∈ A ,
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ii) if T (f) ∈ A for some f ∈ C (X) then f ∈ A .

Proof. i) Let h = hu,α. We will use Proposition 2 in order to establish affinity of T (h). Take
hz,δ, hz′,δ′ ∈ A(T (h)), i.e. hz,δ ≤ T (h), hz′,δ′ ≤ T (h). Since T is onto, there exist g, g′ ∈ C (X)
such that hz,δ = T (g), hz′,δ′ = T (g′), so that T (g) ≤ T (h), T (g′) ≤ T (h). Since T is fully
order preserving, we get g ≤ h, g′ ≤ h. By Corollary 2, there exist η, η′ ∈ R such that
g = hu,η, g

′ = hu,η′ . Assume, without loss of generality, that η ≤ η′ so that g ≤ g′, and hence,
since T is order preserving,

hz,δ = T (g) ≤ T (g′) = hz′,δ′ . (5)

In view of Corollary 2, we get from (5) that z = z′. We have proved that there exists a unique
z ∈ X∗ such that hz.δ ∈ A(T (h)) for some δ ∈ R, and hence T (h) is affine by Proposition 2.

ii) Note that whenever T ∈ B, its inverse, the operator T−1, also belongs to B. It follows that
T−1 also maps affine functions to affine functions, which establishes the result.

We have seen that operators T ∈ B map A to A . For T ∈ B, we denote as T̂ : A → A

the restriction of T to A . Note that T̂ inherits from T the properties of being onto and fully
order preserving in A . However, if we start with an operator in A with these properties, and
we “lift it up” to C (X), the resulting operator may not belong to B. This is due to the fact
that the order preserving property is rather weak in A because, as we have seen, a pair of affine
functions is ordered only when they have the same linear part. More precisely, consider an operator
R̂ : A → A which is onto and fully order preserving. We can extend it to C (X) in a natural way,
defining R : C (X) → C (X) as R(f) = suph∈A(f) R̂(h). Since f ≤ g implies A(f) ⊂ A(g), it is easy
to prove that R is order preserving, but it might fail to be fully order preserving, as the following
example shows:

Take X = R and define R̂ : A → A as

R̂(hu,α) =

{
hu,α if u ∈ (−1, 1)

h−u,α otherwise.

It is immediate that R̂ is onto and fully order preserving; in fact it is an involution, meaning that

R̂
(
R̂(h)

)
= h for all h ∈ A . Consider its extension R : C (X) → C (X) as defined above, and take

f1(x) = 1/2 |x|, f2(x) = max{x, 0}. It is easy to check that R(f1) = f1 = (1/2) |x|, R(f2) = |x|,
so that R(f1) ≤ R(f2), but it is not true that f1 ≤ f2 (the inequality fails for x < 0). In fact
any operator R̂ : A → A of the form R̂(hu,α) = hψ(u),ϕ(α) where ψ : X∗ → X∗ is a bijection and
ϕ : R → R is increasing and onto, turns out to be onto and fully order preserving in A , while
operators T̂ : A → A which are the restrictions of operators T in B have a much more specific
form; we will prove next that T̂ : A → A is indeed affine for all T ∈ B, with the following meaning:
we identify A with X∗ ×R, associating hu,α to the pair (u, α), and hence we write T̂ (u, α) instead

of T̂ (hu,α), and consider affinity of T̂ as an operator acting on X∗ × R.
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In view of Proposition 3, with this notation, for T ∈ B, T̂ maps X∗ × R to X∗ × R, and so we
will write

T̂ (u, α) = (y(u, α), γ(u, α)), (6)

with y : X∗ × R → X∗, γ : X∗ × R → R, i.e. y(u, α) is the linear part of T (u, α) and γ(u, α) is its
additive constant, so that T (hu,α)(x) = 〈y(u, α), x〉 + γ(u, α).

We must prove that both y and γ are affine. We start with y, establishing some of its properties
in the following two propositions.

Proposition 4. If T ∈ B then y(·, ·), defined by (6), depends only upon its first argument.

Proof. Consider arbitrary pairs (u, α), (u, δ) ∈ X∗ × R, and assume WLOG that α ≤ δ, so that
hu,α ≤ hu,δ, and, since T is order preserving,

hy(u,α),γ(u,α) = T (hu,α) ≤ T (hu,δ) = hy(u,δ),γ(u,δ). (7)

It follows from (7) and Corollary 2 that y(u, α) = y(u, δ) and hence y does no depend upon its
second argument.

In view of Proposition 4, we will write in the sequel y : X∗ → X∗, with y(u) = y(u, α) for an
arbitrary α ∈ R, and also

T̂ (u, α) = (y(u), γ(u, α)). (8)

We recall that φ : X∗ → R is quasiconvex if φ(su1 + (1 − s)u2) ≤ max{φ(u1), φ(u2)} for all
u1, u2 ∈ X∗ and all s ∈ [0, 1].

Proposition 5. Assume that T belongs to B. Then,

i) y : X∗ → X∗, defined by (8), is one-to-one and onto,

ii) both 〈y(·), x〉 : X∗ → R and 〈y−1(·), x〉 : X∗ → R are quasiconvex for all x ∈ X.

Proof. i) Suppose that y(u1) = y(u2) for some u1, u2 ∈ X∗. Assume WLOG that γ(u1, 0) ≤
γ(u2, 0). Then T (hu1,0) ≤ T (hu2,0), implying, since T is fully order preserving, that hu1,0 ≤ hu2,0,
and hence u1 = u2 by Corollary 2, so that y is one-to-one. Surjectivity of y follows from surjectivity
of T̂ , which is a consequence of Proposition 3(ii).
ii) Take u1, u2 ∈ X∗, s ∈ [0, 1]. Note that

hsu1+(1−s)u2,0 = shu1,0 + (1 − s)hu2,0 ≤ max{hu1,0, hu2,0}.

Hence,
T

(
hsu1+(1−s)h2,0

)
≤ T (max {hu1,0, hu2,0}) = max {T (hu1,0) , T (hu2,0)} , (9)
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using the order preserving property of T in the inequality and Proposition 1(ii) in the equality.
Evaluating the leftmost and rightmost expressions in (9) at a point of the form tx with x ∈ X, t ∈
R++, we get

〈y(su1 + (1− s)u2), tx〉+ γ(su1 + (1− s)u2), 0) ≤ max{〈y(u1), tx〉+ γ(u1, 0), 〈y(u2), tx〉+ γ(u2, 0)}.
(10)

Dividing both sides of (10) by t and taking limits with t→ ∞, we get

〈y(su1 + (1 − s)u2), x〉 ≤ max{〈y(u1), x〉, 〈y(u2), x〉},

establishing quasiconvexity of 〈y(·), x〉 for all x ∈ X. Quasiconvexity of 〈y−1(·), x〉 follows using
the same argument with T̂−1 instead of T̂ .

Next we recall a well known result on finite dimensional affine geometry.

Lemma 1. Let V, V ′ be finite dimensional real vector spaces, with dim(V ) ≥ 2. If Q : V → V ′ is
one-to-one and maps segments to segments, then Q is affine.

Proof. The result appears, e.g., in [1]. A short proof can be found in Remark 6 of [3].

The next corollary extends this result to our infinite dimensional setting.

Corollary 3. Let Z,Z ′ be arbitrary real vector spaces with dim(Z) ≥ 2. If Q : Z → Z ′ is one-to-one
and maps segments to segments, then Q is affine.

Proof. Take vectors z1, z2 ∈ Z and s ∈ [0, 1]. We must prove that

Q(sz1 + (1 − s)z2) = sQ(z1) + (1 − s)Q(z2). (11)

We may suppose WLOG that Q(0) = 0 (otherwise, replace Q by Q′;Z → Z ′, defined as Q′(z) =
Q(z) − Q(0), which also maps segments to segments). Assume first that z1, z2 are linearly inde-
pendent. Let V ⊂ Z be the two-dimensional subspace spanned by z1, z2, and V ′ ⊂ Z ′ the subspace
spanned by Q(z1), Q(z2). Since Q maps segments to segments, and henceforth lines to lines, the
line through z1 must be mapped to the line through Q(z1) in Z ′, and the line through z2 to the
line through Q(z2) in Z ′. Since these two lines in Z ′ are indeed contained in V ′, and every point
in V belongs to some segment with extremes in the lines through z1 and z2, we conclude that
the image of the restriction Q|V of Q to V is contained in V ′. Hence, since V and V ′ are finite
dimensional, and dim(V ) = 2, we may apply Lemma 1 to Q|V : V → V ′, concluding that Q|V is
affine, and hence (11) holds. Assume now that z1, z2 are linearly dependent, i.e. colinear. Since
(11) holds trivially when both z1 and z2 vanish, assume WLOG that z1 6= 0, and replace z2 by
z̃2 = z2 + z3, with z3 linearly independent of z1, z2. Now apply the same argument as above to the
two dimensional subspace Ṽ spanned by z1, z̃2, concluding that the restriction of Q to Ṽ is affine
(henceforth continuous), and that (11) holds with z̃2 = z2 + z3 substituting for z2. Take limits then
in (11) with z3 → 0 in Ṽ , and conclude from the continuity of Q in Ṽ that (11) holds with z1, z2
also in the colinear case. Since z1 and z2 are arbitrary points in Z, Q itself is affine.
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We continue with another result, possibly of some interest on its own.

Lemma 2. If a mapping M : X∗ → X∗ satisfies:

i) M is one-to-one and onto,

ii) both 〈M(·), x〉 : X∗ → R and 〈M−1(·), x〉 : X∗ → R are quasiconvex for all x ∈ X,

then M is affine.

Proof. Take u1, u2 ∈ X∗, s ∈ [0, 1]. We show next that M(su1 + (1− s)u2) belongs to the segment
between M(u1) and M(u2). Define ū = su1 + (1 − s)u2. By assumption (ii),

〈M(ū), x〉 ≤ max{〈M(u1), x〉, 〈M(u2), x〉}. (12)

Note that if M(u1) = M(u2) then u1 = u2 = ū because M is one-to-one, and the result holds
trivially. Assume that M(u1) 6= M(u2), and consider the halfspaces U = {x ∈ X : 〈M(u1) −
M(u2), x〉 ≥ 0}, W = {x ∈ X : 〈M(u1) −M(ū), x〉 ≥ 0}. Note that if x ∈ U then the maximum in
the right hand side of (12) is attained in the first argument, in which case 〈M(ū), x〉 ≤ 〈M(u1), x〉,
i.e., x belongs to W . We have shown that U ⊂ W . It is an easy consequence of the Convex
Separation Theorem that M(u1) − M(u2) and M(u1) − M(ū) belong to the same halfline, i.e.,
there exists σ > 0 such that M(u1) −M(ū) = σ(M(u1) −M(u2)), or equivalently,

M(su1 + (1 − s)u2) = σM(u2) + (1 − σ)M(u1). (13)

Reversing the roles of u1, u2, we conclude, with the same argument, that there exists σ′ > 0 such
that

M(su1 + (1 − s)u2) = (1 − σ′)M(u2) + σ′M(u1),

implying that σ = 1−σ′ and therefore σ ∈ [0, 1]. Thus, (13) shows that M(su1 +(1−s)u2) belongs
to the segment between M(u1) and M(u2), and therefore M maps all points in the segment between
u1 and u2 to points between M(u1) and M(u2). The fact that the image of the first segment fills
the second one results from the same argument applied to M−1, which enjoys, by assumption, the
same quasiconvexity property as M . We have shown that M maps segments to segments, and then
affinity of M follows from Corollary 3.

Corollary 4. If T ∈ B then y : X∗ → X∗, defined by (8), is affine.

Proof. The result follows from Proposition 5 and Lemma 2.

We establish next affinity of γ(·, ·). We start with an elementary property of γ(u, ·).

Proposition 6. If T belongs to B then γ(u, ·) : R → R is strictly increasing, one-to-one and and
onto for all u ∈ X∗.
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Proof. Since T is a bijection, we get from Proposition 3(ii) that T̂ is also a bijection, and hence
the same holds for γ(u, ·). If α ≤ δ then hu,α ≤ hu,δ, which implies, since T is order preserving,
hy(u),γ(u,α) ≤ hy(u),γ(u,δ), so that, in view of Corollary 2, γ(u, α) ≤ γ(u, δ). Since γ(u, ·) is one-to-
one, we conclude that it is strictly increasing.

Next we establish affinity of γ(·, ·).

Proposition 7. If T ∈ B then γ : X∗ × R → R, defined by (8), is affine.

Proof. We start by proving that γ is convex. Take u1, u2 ∈ X∗, α1, α2 ∈ R and s ∈ [0, 1]. We
consider first the case in which u1 6= u2. Define ū = su1 + (1 − s)u2, ᾱ = sα1 + (1 − s)α2. Observe
that

shu1,α1 + (1 − s)hu2,α2 ≤ max {hu1,α1 , hu2,α2} . (14)

As in the proof of Proposition 5(i), we get from (14)

T (hū,ᾱ) ≤ max {T (hu1,α1) , T (hu2,α2)} ,

so that, for all x ∈ X,

〈y(su1 + (1 − s)u2), x〉 + γ(ū, ᾱ) = s〈y(u1), x〉 + (1 − s)〈y(u2), x〉 + γ(ū, ᾱ) ≤

max{〈y(u1), x〉 + γ(u1, α1), 〈y(u2), x〉 + γ(u2, α2)}, (15)

using Corollary 4 in the equality. Since u1 6= u2, and y is one-to-one by Proposition 5(i), we have
that y(u1) 6= y(u2), and hence there exists x̄ ∈ X such that

〈y(u1), x̄〉 + γ(u1, α1) = 〈y(u2), x̄〉 + γ(u2, α2),

so that
〈y(u1) − y(u2), x̄〉 = γ(u2, α2) − γ(u1, α1). (16)

Replacing (16) in (15), and noting that for x = x̄ there is a tie between both arguments for the
maximum in the rightmost expression of (15), we obtain, after some elementary algebra,

〈y(u2), x̄〉 + sγ(u2, α2) − sγ(u1, α1) + γ(ū, ᾱ) ≤ 〈y(u2), x̄〉 + γ(u2, α2). (17)

Rearranging terms in (17) and using the definitions of ū, ᾱ, we get

γ(s(u1, α1) + (1 − s)(u2, α2)) ≤ sγ(u1, α1) + (1 − s)γ(u2, α2), (18)

establishing joint convexity of γ in its two arguments. In order to obtain affinity of γ, it sufices to
prove that (18) holds indeed with equality. Suppose that, on the contrary, there exist u1, u2 ∈ X∗,
u1 6= u2, α1, α2 ∈ R and s̄ ∈ [0, 1] such that (18) holds with strict inequality, and take θ ∈ R such
that

γ(s̄(u1, α1) + (1 − s̄)(u2, α2)) < θ < s̄γ(u1, α1) + (1 − s̄)γ(u2, α2). (19)
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For the sake of a lighter notation, define γ̄ = γ(s̄(u1, α1) + (1 − s̄)(u2, α2)), γ1 = γ(u1, α1), γ2 =
γ(u2, α2). Since γ(ū, ·) is onto by Proposition 6, there exists η ∈ R such that θ = γ(ū, η), and hence
it follows from (19) that

hy(ū),γ̄ < hy(ū),γ(ū,η) < hy(ū),s̄γ1+(1−s̄)γ2 ≤ max
{
hy(u1),γ1 , hy(u2),γ2

}
=

max{T̂ (u1, α1), T̂ (u2, α2)} = T (max {hu1,α1 , hu2,α2}) . (20)

Since hy(ū),γ̄ = T (hū,ᾱ) and hy(ū,)γ(ū,η) = T (hū,η) , we can rewrite (20) as

T (hū,ᾱ) < T (hū,η) ≤ T (max {hu1,α1 , hu2,α2}) ,

which gives, since T is fully order preserving and one-to-one,

hū,ᾱ < hū,η ≤ max {hu1,α1 , hu2,α2} ,

and therefore, for all x ∈ X,

〈ū, x〉 + ᾱ < 〈ū, x〉 + η ≤ max{〈u1, x〉 + α1, 〈u2, x〉 + α2}. (21)

Since u1 6= u2, there exists x̄ such that 〈u1 − u2, x̄〉 = α2 − α1, in which case

〈ū, x̄〉 + ᾱ = 〈u1, x̄〉 + α1 = 〈u2, x̄〉 + α2,

which contradicts (21), and establishes that

γ(s(u1, α1) + (1 − s)(u2, α2)) = sγ(u1, α1) + (1 − s)γ(u2, α2), (22)

completing the proof of affinity of γ when u1 6= u2. Now we deal with the remaining case, namely
u1 = u2, and so we proceed to establish affinity of γ(u, ·) for a fixed u. First note that we have
indeed established affinity of γ(·, α) for fixed α, because for a fixed second argument (i.e., α1 = α2),
(22) holds trivially when u1 = u2. Hence, for all α ∈ R the restriction of γ(·, α) to any finite
dimensional subspace of X∗, being affine, is continuous. Take now u, v ∈ X∗ with v 6= 0, so that
u 6= u+ v, and observe that (22) holds indeed with u1 = u+ v, u2 = u, and hence

γ(u+ sv, ᾱ) = γ(u+ sv, sα1 + (1 − s)α2) =

γ(s(u+ v, α1) + (1 − s)(u, α2)) = sγ(u+ v, α1) + (1 − s)γ(u, α2). (23)

We look now at the restrictions of γ(·, ᾱ) and γ(·, α1) to the two dimensional subspace of X spanned
by u and v. Since such restrictions are continuous, as already noted, after taking limits with v → 0
in (23), we obtain

γ(u, sα1 + (1 − s)α2) = sγ(u, α1) + (1 − s)γ(u, α2),

proving that γ(u, ·) is affine for all u ∈ X∗, and completing the proof of affinity of γ(·, ·).
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In the finite dimensional case, Proposition 7 would suffice for obtaining an explicit form of T̂ ,
but in our setting we still have to prove continuity of T̂ , which is not immediate from its affinity.
For proving continuity, we will need the following elementary result.

Proposition 8. Take T ∈ B. If f ∈ C (X) is finite everywhere, then T (f) is also finite everywhere.

Proof. Take T ∈ B and a finite everywhere f ∈ C (X). Suppose that T (f)(x0) = ∞ for some
x0 ∈ X and define g0 : X → R ∪ {∞} as

g0(x) =

{
0 if x = x0

∞ otherwise.

Since T is onto, there exists f0 ∈ C (X) such that T (f0) = g0. Since f is finite everywhere,
f̃ = max{f, f0} belongs to C (X). Therefore, using Proposition 1(ii),

T
(
f̃
)

= max{T (f), T (f0)} = max{T (f), g0},

so that T
(
f̃
)

(x) = ∞ for all x ∈ X. Hence, we have that f̃ ∈ C (X) and T
(
f̃
)
/∈ C (X), in

contradiction with our assumptions on T .

Proposition 9. If T ∈ B then both y : X∗ → X∗ and γ : X∗ × R → R are continuous.

Proof. First we prove that γ is continuous. Let g = ‖·‖ ∈ C (X) and define ḡ = T (g). Let B the
the unit ball in X∗, i.e. B = {u ∈ X∗ : ‖u‖ ≤ 1}. Since ‖x‖ = supu∈B {hu,0(x) = 〈u, x〉}, we have

ḡ(x) = T (g)(x) = sup
u∈B

{(T (hu,0)) (x)} = sup
u∈B

{hbT (u,0)
(x)} = sup

u∈B
{〈y(u), x〉 + γ(u, 0)}. (24)

Therefore,
ḡ(0) = sup

u∈B
{γ(u, 0)}. (25)

Since γ : X∗ × R → R is affine by Proposition 7, it can be written as γ(u, α) = γ̃(u) + γ̂(α) + µ
where µ = γ(0, 0) ∈ R and γ̃ : X∗ → R, γ̂ : R → R are linear functionals. Using this representation
of γ and (25), we conclude that supu∈B{γ̃(u)} + µ = ḡ(0) < ∞, where the inequality follows from
Proposition 8 and the definition of g. Therefore

|γ̃(u)| = max{γ̃(u), γ̃(−u)} ≤ ḡ(0) − µ ∈ R,

for all u ∈ B, and hence γ̃ is a bounded linear functional with ‖γ̃‖ ≤ ḡ(0) − µ, so that γ̃ is
continuous. Continuity of γ̂ follows trivially from its linearity and the fact that its domain is finite
dimensional. Hence γ is continuous.
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For proving continuity of y, observe that y can be written as y(u) = Du+w where D : X∗ → X∗

is a linear operator and w = y(0) ∈ X∗. Combining this representation of y with (24) we have

sup
u∈B

{〈Du+ w, x〉 + 〈γ̃, u〉 + µ} = ḡ(x) <∞ (26)

for all x ∈ X, where the inequality follows from Proposition 8 and the definition of g. Take u ∈ B
and conclude from (26) that

〈Du, x〉 ≤ ḡ(x) − 〈w, x〉 − γ̃(u) − µ ≤ ḡ(x) − 〈w, x〉 + ‖γ̃‖ ‖u‖ − µ ≤ ḡ(x) − 〈w, x〉 + ‖γ̃‖ − µ.

Therefore
sup
u∈B

{|〈Du, x〉|} = sup
u∈B

{〈Du, x〉} <∞

for all x ∈ X. This means that the family of bounded linear operators {Du | u ∈ B} is pointwise
bounded. Applying Banach-Steinhaus uniform boundedness principle (see, e.g., [7], p. 32), we get
that this family is uniformly bounded, i.e., there exists ν < ∞ such that ‖Du‖ ≤ ν for all u ∈ B.
It follows that ‖D‖ ≤ ν, and therefore D is bounded and linear, hence continuous. We conclude
that the operator y defined as y(u) = Du+ w is continuous, completing the proof.

Now we present a more explicit formula for the operator T̂ .

Corollary 5. If T ∈ B, then there exist d ∈ X∗∗, w ∈ X∗, β ∈ R, τ ∈ R++ and a continuous
automorphism D of X∗ such that T̂ (u, α) = (Du+ w, 〈d, u〉 + τα+ β).

Proof. Being affine and continuous by virtue of Corollary 4 and Propositions 7 and 9 we have that
y(u) = Du+w, γ(u, α) = 〈d, u〉+ τα+β, with D, d,w, τ and β as in the statement of the corollary.
The facts that D is an automorphism of X∗ and that τ is positive follow from Propositions 5(i)
and 6, which establish that y is a bijection and that γ(u, ·) is increasing, respectively.

We recall now two basic properties of the Fenchel biconjugate, which will be needed in the proof
of our main result.

Proposition 10. i) For all f ∈ C (X), f∗∗|X = f , where f∗∗|X denotes the restriction of f∗∗ to
X ⊂ X∗∗.

ii) For all f ∈ C (X) and all a ∈ X∗∗, f∗∗(a) = suphu,α∈A(f){〈a, u〉 + α}.

Proof. A proof of item (i), sometimes called Fenchel-Moreau Theorem, can be found, for instance,
in Theorem 1.11 of [7].

We proceed to prove item (ii). Observe that, by definition of f∗∗, f∗∗(a) = supu∈X∗{〈a, u〉 −
f∗(u)}. Also, by definition of f∗, f∗(u) = supx∈X{〈u, x〉 − f(x)}, so that hu,−f∗(u)(x) = 〈u, x〉 −
f∗(u) ≤ f(x) for all x ∈ X, and therefore hu,−f∗(u) belongs to A(f) for all u ∈ X∗ (we may assume
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f∗(u) < +∞ when taking the supremum over u ∈ X∗, in the formula of f∗∗(a)). Next, we prove
that if hu,α belongs to A(f) then α ≤ −f∗(u). Indeed, if hu,α ∈ A(f) then, for all x ∈ X,

α ≤ inf
x∈X

{f(x) − 〈u, x〉} = inf
x∈X

{−(〈u, x〉 − f(x))} = − sup
x∈X

{〈u, x〉 − f(x)} = −f∗(u). (27)

In view of (27) and the fact that hu,−f∗(u) ∈ A(f) for all u ∈ X∗, we have

sup
hu,α∈A(f)

{〈a, u〉 + α} = sup
hu,−f∗(u)∈A(f)

{〈a, u〉 − f∗(u)} = sup
u∈X∗

{〈a, u〉 − f∗(u)} = f∗∗(a).

We mention, parenthetically, that the Fenchel-Moreau Theorem can be easily deduced from
Proposition 10(ii). Next we present our first main result, characterizing the operators T ∈ B

Theorem 1. An operator T : C (X) → C (X) is fully order preserving if and only if there exist
c ∈ X, w ∈ X∗, β ∈ R, τ ∈ R++ and a continuous automorphism E of X such that

T (f)(x) = τf(Ex+ c) + 〈w, x〉 + β, (28)

for all f ∈ C (X) and all x ∈ X.

Proof. We start with the “only if” statement. As already mentioned, a basic convex analysis result
establishes that f = suph∈A(f) h. In view of Proposition 1(ii), we have

T (f) = sup
h∈A(f)

T̂ (h) = sup
hu,α∈A(f)

T̂ (hu,α) = sup
hu,α∈A(f)

hy(u),γ(u,α),

meaning that

T (f)(x) = sup
hu,α∈A(f)

{〈y(u), x〉 + γ(u, α)} = sup
hu,α∈A(f)

{〈Du+ w, x〉 + 〈d, u〉 + τα+ β}, (29)

using Corollary 5 in the last equality. Define now C ∈ Aut(X∗), c ∈ X∗∗ as C = τ−1D, c = τ−1d.
Continuing from (29),

T (f)(x) = sup
hu,α∈A(f)

{〈Du, x〉 + 〈d, u〉 + τα} + 〈w, x〉 + β =

τ

[
sup

hu,α∈A(f)
{〈Cu, x〉 + 〈c, u〉 + α}

]
+〈w, x〉+β = τ

[
sup

hu,α∈A(f)
{〈C∗x+ c, u〉 + α}

]
+〈w, x〉+β. (30)

Note that C∗ is an operator in X∗∗, so that the expression C∗x in (30) must be understood through
the natural immersion of X in X∗∗ (i.e., from now on we consider X as a subspace of X∗∗). Observe
that, by Proposition 10(ii),

sup
hu,α∈A(f)

{〈a, u〉 + α} = f∗∗(a). (31)

14



Replacing (31) in (30), with a = C∗x+ c ∈ X∗∗, we get

T (f)(x) = τf∗∗(C∗x+ c) + 〈w, x〉 + β. (32)

Define Y ⊂ X∗∗ as Y = {C∗x+c : x ∈ X}. We claim that Y = X. Assume first that there exists
x̃ ∈ X \ Y , and define f1 : X → R∪ {+∞} as the indicator function of {x̃}, i.e. f1(x) = 0 if x = x̃,
f1(x) = +∞ otherwise. It is easy to check that f∗∗1 : X∗∗ → R∪{+∞} is still the indicator function
of {x̃}, seen now as a subset of X∗∗. We look now at T (f1). Since x̃ /∈ Y , we have C∗x + c 6= x̃
for all x ∈ X, so that f∗∗1 (C∗x+ c) = +∞ for all x ∈ X. In view of (32), T (f1)(x) = +∞ for all
x ∈ X, implying that T (f1) is not proper, and so T (f1) /∈ C (X), contradicting our assumptions on
T . We have shown that X ⊂ Y . Suppose now that there exists x̌ ∈ Y \X. Since x̌ belongs to Y ,
there exists x′ ∈ X such that C∗x′ + c = x̌. Define f2 : X → R∪{+∞} as the indicator function of
{x′}, i.e. f2(x) = 0 if x = x′, f2(x) = +∞ otherwise. Since T is onto, there exists f ∈ C (X) such
that T (f) = f2. Let ξ = −τ−1(〈w, x′〉 + β). In view of (31) we have f∗∗(C∗x + c) = ξ if x = x′,
f∗∗(C∗x + c) = +∞ otherwise. So, there exists a unique point in Y , namely C∗x′ + c = x̌, where
f∗∗ takes a finite value, or equivalently, f∗∗(z) = +∞ for all z ∈ Y \ {x̌}. Since we already know
that X ⊂ Y and x̌ /∈ X, so that X ⊂ Y \ {x̌}, we conclude that f∗∗(z) = +∞ for all z ∈ X, and
hence, in view of Proposition 10(i), f(x) = +∞ for all x ∈ X, so that f is not proper, implying
that f /∈ C (X), a contradiction. We have completed the proof of the equality between X and Y ,
establishing the claim. Now, since C∗x + c ∈ X for all x ∈ X, as we have just proved, we apply
Proposition 10(i), and rewrite (32) as:

T (f)(x) = τf(C∗x+ c) + 〈w, x〉 + β. (33)

We observe now that, since C∗x + c ∈ X for all x ∈ X, taking x = 0, we get c ∈ X. As a
consequence, the restriction of C∗ to X is an automorphism of X. At this point, that fact that this
automorphism is the restriction to X of the adjoint of an automorphism C of X∗, is not significant
any more, since any automorphism E of X is of the restriction to X of some C∗ : X∗∗ → X∗∗:
it suffices to define C : X∗ → X∗ as C = E∗. Substituting E for C∗ in (33), we recover (28),
completing the proof of the “only if” statement.

Now we prove the “if” statement, i.e., we must show that operators T iof the form given by (28)
belong to B. First, it is immediate that such operators map C (X) to C (X). Now, we will denote
as T [E, c,w, τ, β] the operator T defined by (28). Clearly, T [E, c,w, τ, β] is order preserving. In
order to complete the proof, we must show that T [E, c,w, τ, β] is fully order preserving and onto.
It suffices to show that T [E, c,w, τ, β] is invertible, and that its inverse is also order preserving. We
claim that

T [E, c,w, τ, β]−1 = T [Ē, c̄, w̄, τ̄ , β̄], (34)

with

Ē = E−1, c̄ = −E−1c, w̄ = −τ−1
(
E−1

)∗
w, τ̄ = τ−1, β̄ = τ−1(〈E−1c, w〉 − β). (35)
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Note that E−1 exists because E is a continuous automorphism of X, and is continuous by virtue of
the Closed Graph Theorem (see, e.g., Corollary 2.7 in [7]). For the sake of a lighter notation, define
T = T [E, c,w, τ, β], T̄ = T [Ē, c̄, w̄, τ̄ , β̄]. Observe that, for all f ∈ C (X), in view of the definitions
of T and T̄ ,

T̄ (T (f)) = T̄ (τf (E(·) + c) + 〈w, ·〉 + β) =

τ̄
[
τf

(
E(Ē(·) + c̄) + c

)
+ 〈w, Ē(·) + c̄〉 + β

]
+ 〈w̄, ·〉 + β̄ = f(·),

using the definitions of Ē, c̄, w̄, τ̄ and β̄. It follows that T̄ (T (f)) = f for all f ∈ C (X). A similar
computation shows that T (T̄ (f)) = f for all f ∈ C (X), and hence T̄ = T−1 so that T is onto.
Since T̄ = T [C̄, c̄, w̄, τ̄ , β̄] is also of the form given by (28), we conclude that T−1 = T̄ is order
preserving, showing that T is fully order preserving, and completing the proof.

We remark that in the reflexive case, the fact that X = Y follows immediately from the equality
between X and X∗∗.

The result in Theorem 1 can be rephrased as saying that the identity operator is the only
fully order preserving operator in C (X), up to addition of affine functionals, pre-composition with
affine operators, and multiplication by positive scalars, thus extending to Banach spaces the result
established in [3] for the finite dimensional case.

It is also worthwhile to consider another set of operators on C (X), namely the one consisting of
order preserving involutions, i.e., of those order preserving operators T : C (X) → C (X) which are
involutions, namely operators T such that T (T (f)) = f for all f ∈ C (X). Since for such a T we
have T−1 = T , it follows that T−1 is also order preserving, and hence T is fully order preserving,
so that such set is indeed a subset of B. The characterization of order preserving involutions in
C (X) is given in the following corollary, whose finite dimensional version can be found in Theorem
1 of [3].

Corollary 6. An operator T : C (X) → C (X) is an order preserving involution if and only if
there exist c ∈ X, w ∈ X∗ and a continuous automorphism E of X, satisfying E2 = IX , c ∈
Ker(E + IX), w ∈ Ker(E∗ + IX∗) such that

T (f)(x) = f(Ex+ c) + 〈w, x〉 −
1

2
〈c, w〉 (36)

for all x ∈ X, where IX denotes the identity operator in X.

Proof. It is immediate that T is an order preserving involution if and only if T ∈ B and T = T−1.
In view of the formula for T−1 given by (34), an operator T ∈ B satisfies T = T−1 if and only
if T [E, c,w, τ, β] = T [Ē, c̄, w̄, τ̄ , β̄], with Ē, c̄, w̄, τ̄ , β̄ given by (35), which occurs if and only if
Ē = E, c̄ = c, w̄ = w, τ̄ = τ and β̄ = β, as can be seen after some elementary algebra. It is
easy to check, using (35), that these equalities are equivalent to E2 = IX , c ∈ Ker(E + IX), w ∈
Ker(E∗ + IX∗), τ = 1 and β = −〈w, c〉/2, in which case (28) reduces to (36), so that the result is
just a consequence of Theorem 1.
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3 The order reversing case

In this section we will characterize fully order reversing operators, but before defining them formally,
we must discuss the appropriate co-domains for such operators. In [3], the prototypical fully order
reversing operator turns out to be the Fenchel conjugation, and it is reasonable to expect that
it will play a similar role in the infinite dimensional case. Of course, the operator which sends
f ∈ C (X) to its Fenchel conjugate f∗ : X∗ → R ∪ {+∞} is well defined in any Banach space;
however its co-domain is not C (X), but rather C (X∗). There is an additional complication. As
we have seen in the order preserving case, the fact that we are dealing with surjective operators,
whose inverses enjoy a similar order preserving property, is rather essential for the characterization.
It turns out to be the case that in nonreflexive Banach spaces the Fenchel conjugation is not onto,
generally speaking. In fact, if we take c ∈ X∗∗ \X, it is easy to check that the linear functional
〈c, ·〉 : X∗ → R is not the Fenchel conjugate of any function in C (X) (the natural candidate
would be the indicator function of the singleton {c}, but it does not belong to C (X), because
c /∈ X). One way to overcome this obstacle is to reduce somewhat the co-domain of the operators
of interest. It is well known that convex functions are lower semicontinuous in the strong topology
if and only if they are lower semicontinuous in the weak one. On the other hand, if we consider
a dual space X∗ with the weak∗ topology, the class of lower semicontinuous convex functions with
respect to this topology is strictly smaller; in fact a linear functional 〈c, ·〉 with c ∈ X∗∗ \ X is
not weak∗ lower semicontinuous. It is well known that the topological dual of X∗ with the weak∗

topology is precisely X, so that the topological bidual of X∗ with this topology is X∗. Also, the
biconjugate of a weak∗ lower semicontinuous proper convex g : X∗ → R ∪ {+∞} coincides with g,
and hence the image of C (X) through the Fenchel conjugation coincides with the class of weak∗

lower semicontinuous proper convex functions defined on X∗.
Thus, we define Cw∗(X∗) as the set of weak∗ lower semicontinuous proper convex functions

g : X∗ → R ∪ {+∞}. We give next the formal definition of order reversing operators.

Definition 2. i) An operator S : C (X) → Cw∗(X∗) is order reversing whenever f ≤ g implies
S(f) ≥ S(g).

ii) An operator S : C (X) → Cw∗(X∗) is fully order reversing whenever f ≤ g iff S(f) ≥ S(g),
and additionally S is onto.

We will characterize fully order reversing operators with this definition, and the result will be
an easy consequence of Theorem 1. The issue of characterizing fully order reversing operators
S : C (X) → C (X) (or S: C (X) → C (X∗) in the nonreflexive case), are left as open problems,
deserving future research.

We start with an elementary result on the conjugate of compositions with affine operators and
additions of affine functionals.
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Proposition 11. Consider f ∈ C (X). Let E be a continuous automorphism of X, and take
c ∈ X,w ∈ X∗, β ∈ R, τ ∈ R++. Define g ∈ C (X) as g(x) = τf(Ex+ c) + 〈w, x〉 + β. Then

g∗(u) = τf∗(Hu+ v) + 〈u, y〉 + ρ

for all u ∈ X∗, where

H = τ−1(E−1)∗, v = −τ−1(E−1)∗w, y = −τ−1E−1c ∈ X, ρ = τ−1(〈w,E−1c〉 − β).

Proof. Elementary.

Now we present our characterization of fully order reversing operators, which extends to Banach
spaces the similar finite dimensional result in [3].

Theorem 2. An operator S : C (X) → Cw∗(X∗) is fully order reversing if and only if there exist
v ∈ X∗, y ∈ X, ρ ∈ R, τ ∈ R++ and a continuous automorphism H of X∗ such that

S(f)(u) = τf∗(Hu+ v) + 〈u, y〉 + ρ,

for all f ∈ C (X) and all u ∈ X∗.

Proof. Define F : C (X) → C (X∗) as F (f) = f∗, i.e. F is the Fenchel conjugation. It is immediate
from its definition that F is order reversing. Note that f∗ is convex, proper, and also lower
semicontinuous in the weak∗ topology for all f ∈ C (X), being the supremum of affine functions
which are continuous in this topology. Hence, F (C (X)) ⊂ Cw∗(X∗). We recall also that the
topological dual of X∗ with the weak∗ topology is precisely X with the strong topology (see, e.g.,
Proposition 2.3(ii) in [6]). We observe that F is invertible; in fact, its inverse F−1 : Cw∗(X∗) →
C (X) is given by

F−1(g) = sup
u∈X∗

{〈u, ·〉 − g(u)} (37)

for all g ∈ Cw∗(X∗). We conclude from (37) that F (C (X)) = Cw∗(X∗). It follows also from (37)
that F−1 is order reversing, and, since F is also order reversing, we obtain from the characterization
of the image of F that F−1 is fully order reversing.

Consider now the operator F−1 ◦ S : C (X) → C (X). Being the composition of two fully
order reversing operators, it is fully order preserving. It follows from Theorem 1 that there exist
c ∈ X,w ∈ X∗, β ∈ R, τ ∈ R++ and a continuous automorphism E of X, such that

F−1 ◦ S = T [E, c,w, τ, β], (38)

where T [E, c,w, τ, β] ∈ B, as in the proof of Theorem 1, is defined as

T [E, c,w, τ, β](f)(x) = τf(Ex+ c) + 〈w, x〉 + β,

for all f ∈ C (X) and all x ∈ X. It follows from (38) that S = F ◦T [E, c,w, τ, β], so that S(f) = g∗,
where g ∈ C (X) is defined as g(x) = τf(Ex+ c)+ 〈w, x〉+β. The “only if” statement follows then
from Proposition 11. The “if” statement is a consequence of the facts that the Fenchel conjugation
is a fully order reversing operator and the affine operator L(u) = Hu+ c is invertible.
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We remark that when X is reflexive the weak and the weak∗ topologies in X∗ coincide, so that
C (X∗) = Cw∗(X∗), and hence in this case Theorem 2 characterizes the set of fully order reversing
operators S : C (X) → C (X∗). In fact, it is easy to check that reflexivity of X is equivalent to
surjectivity of the Fenchel conjugation as a map from C (X) to C (X∗).

As in the case of fully order preserving operators, the result of Theorem 2 can be rephrased
as saying that the Fenchel conjugation is the only fully order reversing operator from C (X) to
Cw∗(X∗), up to addition of affine functionals, pre-composition with affine operators, and multipli-
cation by positive scalars.
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