LINEAR AND MULTIPLICATIVE 2-FORMS
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ABSTRACT. We study the relationship between multiplicative 2-forms on Lie groupoids
and linear 2-forms on Lie algebroids, which leads to a new approach to the in-
finitesimal description of multiplicative 2-forms and to the integration of twisted
Dirac manifolds.

CONTENTS
1. Introduction 1
1.1. Notations and conventions 3
1.2.  Acknowledgements 3
2. Tangent and cotangent structures 3
2.1. Tangent and cotangent Lie groupoids 3
2.2. Tangent double vector bundles and duals 3
2.3. Tangent and cotangent Lie algebroids )
3. Tangent lifts and the Lie functor 7
3.1. Tangent lifts of differential forms 7
3.2.  Lie functor on multiplicative differential forms 11
4. Multiplicative 2-forms and their infinitesimal counterparts 13
4.1. Linear 2-forms on vector bundles 13
4.2. Linear 2-forms on Lie algebroids 14
4.3. IM 2-forms and Lie algebroid morphisms 15
4.4. Applications to integration 20
References 21

1. INTRODUCTION

The main purpose of this paper is to offer an alternate viewpoint to the study of
multiplicative 2-forms on Lie groupoids and their infinitesimal counterparts carried
out in [3]. This study turns out to be closely related to topics such as equivariant
cohomology and generalized moment maps theories, see e.g. [2, 3, 19]. A partic-
ularly important case is that of symplectic multiplicative 2-forms (i.e., symplectic
groupoids), whose infinitesimal counterparts are Poisson structures [6]. As shown
in [3], infinitesimal versions of more general multiplicative 2-forms include twisted
Dirac structures in the sense of [17].

Let G be a Lie groupoid over M, with source and target maps s,t: G — M, and
multiplication m : G2 . G. Let A be the Lie algebroid of G, with Lie bracket [-, -]
on I'(A) and anchor p: A — TM. A 2-form w € Q2(G) is called multiplicative if

m'w = piw + paw,
1
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where py,ps : G& — G are the natural projections. Given ¢ € Q3(M) closed, we say
that w is relatively ¢-closed if dw = s*¢ — t*¢. The main result in [3] asserts that,
if G is s-simply-connected, then there exists a one-to-one correspondence between
multiplicative 2-forms w € Q2(G) and vector bundle maps o : A — T*M satisfying

(o(u), p(v)) = —{o(v), p(u))
U([u’ U]) = Ep(u)a(v) - Zp(v)dg(u) + Z'p(v)ip(u)gba

for all u,v € I'(A). We refer to such maps o as IM 2-forms relative to ¢ (IM stands
for infinitesimal multiplicative). If L C TM & T*M is a ¢-twisted Dirac structure,
then the projection L — T*M is naturally an IM 2-form, so the correspondence
above includes the integration of twisted Dirac structures as a special case.

The IM 2-form associated with a multiplicative 2-form w € Q%(G) is simply

(1.1) o(u) = tyw|rm, u€ A,

where A and T'M are naturally viewed as subbundles of T'G|y;. The construction of
w from a given 0 : A — T*M in [3, Sec. 5] relies on the identification of G with
A-homotopy classes of A-paths (in the sense of [9], c.f. [16]), in such a way that w
is obtained by a variation of the infinite dimensional reduction procedure of [9]. A
different, more general, viewpoint to this problem has been recently studied in [1],
where this correspondence is seen as part of a general Van Est isomorphism.

In this paper, we avoid the use of path spaces by noticing that the construction of
a multiplicative w € Q%(G) out of an IM 2-form o can be phrased as the integration
of a suitable Lie algebroid morphism, similar in spirit to the approach of Mackenzie
and Xu [13, 14] to the problem of integrating Lie bialgebroids to Poisson groupoids,
which served as our main source of inspiration.

We notice that any multiplicative 2-form w € Q?(G) naturally induces a 2-form
A € Q2(A) on the total space of A, which is linear in a suitable sense. We show
that, when w is relatively ¢-closed, the 2-form A is totally determined by the map o
(1.1) and ¢ via the formula

(1.2) A= _(U*Wcan + p*T(¢)),

where Weqy, is the canonical symplectic form on T*M, and 7(¢) € Q?(T M) is the 2-
form defined, at each point X € TM, by 7(¢)|x = p};(ix¢), where pps : TM — M
denotes the natural projection.

As a key step to reconstruct multiplicative 2-forms from infinitesimal data, con-
sider an arbitrary Lie algebroid A — M, along with a vector bundle map o : A —
T*M and a closed ¢ € Q3(M). Let us use o and ¢ to define A € Q%(A) by (1.2).
Our main observation is that the bundle map

A TA—T*A, U igA

is a morphism between tangent and cotangent Lie algebroids (see [13]) if and only
if 0 is an IM 2-form relative to ¢. This result can be immediately applied to the
integration of IM 2-forms: the morphism of groupoids TG — T*G obtained by
integrating the morphism A¥ : TA — T*A determines the desired multiplicative
2-form. Our approach to multiplicative 2-forms can be naturally extended in dif-
ferent directions, e.g. to forms of higher degree or forms with no prescription on
their exterior derivatives, as recently done in [1] from a different perspective. These
extensions and a comparison with [1] will be discussed in a separate paper.
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The paper is organized as follows. In Section 2 we briefly recall the definitions and
main properties of tangent and cotangent Lie algebroids and groupoids. In Section
3, we discuss the construction of linear 2-forms on Lie algebroids associated with
multiplicative 2-forms on Lie groupoids. In Section 4, we relate IM 2-forms with
linear 2-forms defining algebroid morphisms T'TA — T* A, and apply our results to
integration of IM 2-forms.

1.1. Notations and conventions. For a Lie groupoid G over M, its source and
target maps are denoted by s, t. Composable pairs (g,h) € 6@ = G xu G are
such that s(g) = t(h), and the multiplication map is denoted by m : G — G,
m(g,h) = gh. Its Lie algebroid is AG = ker(T's)|ys, with anchor Tt|4 : A — TM,
and bracket induced by right-invariant vector fields. For a general Lie algebroid
A — M, we denote its anchor by ps and bracket by [-,-]4 (or simply p and [-,]
if there is no risk of confusion). Given vector bundles A — M and B — M, vector
bundle maps A — B in this paper are assumed to cover the identity map (unless
otherwise stated). Einstein’s summation convention is consistently used throughout
the paper.

1.2. Acknowledgements. Bursztyn and Cabrera thank CNPq (the Brazilian Na-
tional Research Council) for financial support. Ortiz was supported by a PEC-PG
scholarship from CAPES. We thank the referees for their comments.

2. TANGENT AND COTANGENT STRUCTURES

In this section, we briefly recall tangent and cotangent algebroids and groupoids,
following [12, 13], where readers can find more details.

2.1. Tangent and cotangent Lie groupoids. Let G be a Lie groupoid over M,
with Lie algebroid AG (if there is no risk of confusion, we may denote AG simply
by A). The tangent bundle T'G has a natural Lie groupoid structure over T'M, with
source (resp. target) map given by T's : TG — TM (resp. Tt : TG — TM). The
multiplication on TG is defined by Tm : TG®? = (TG)? — TG. We refer to this
groupoid as the tangent groupoid of G.

The cotangent bundle T*G has a Lie groupoid structure over A*, known as the
cotangent groupoid of G. The source and target maps are given by

s(ag)u = ag(Tly(u — Tt(u))), t(Bg)v = By(Try(v))

where ag4, 8, € T;G, u € Ayy), and v € Ay,. Here Iy : t7(s(g)) — t7'(t(g))
and ry 1 s7H(t(g)) — s7!(s(g)) denote the left and right multiplications by g € G,
respectively. The multiplication on T*G, denoted by o, is defined by

(2.3) ag o Bp(Tm(Xg, Yn)) = ag(Xg) + Bn(Ya),
for (Xg,Y3) € Tign)G®@.

2.2. Tangent double vector bundles and duals. Let g4 : A — M be a vector
bundle. There is a natural double vector bundle [12, 15] associated with it, referred to
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as the tangent double vector bundle of A, and defined by the following diagram:

Tqa

(2.4) TA—>TM

) |

A== M

Here the vertical arrows are the usual tangent bundle structures. Similarly, one can
consider the tangent double vector bundle of g4+ : A*—— M, which defines a double
vector bundle T A*:

Tqax
(2.5) TA* = 1M

pax \L \LPJVI

AT M

It will be useful to consider coordinates on these bundles. If (27), j = 1,...,dim(M),
are local coordinates on M and {egq}, d =1,...,rank(A), is a basis of local sections
of A, we write the corresponding coordinates on A as (27, ud) and tangent coordi-
nates on TA as (27,u?,7,4%). For each x = (27), note that (u?) specifies a point
in A, (') gives a point in T, M, whereas (1¢) determines a point on a second copy
of A,, tangent to the fibres of A — M, known as the core of TA (defined by
ker(pa) Nker(Tqa), see [12, 15]). Similarly, we have local coordinates (27,&;) on
A* (relative to the basis {e?}, dual to {eq}), and tangent coordinates (7, &4, 7, &y),
where now the coordinates (fd) represent the core directions.

Let T*A — T'M be the vector bundle defined by dualizing the fibres of T'q4 :
TA — TM, (27, u? &7, 0%) — (27,47). This fits into the double vector bundle

(2.6) T°A——=TM
l J{pM
A — M

Here the vertical map T®A — A* is defined by (27, (4,47, n4) — (27, 1n4), where T® A
is locally written as (27, (g, @7, nq), with (¢4) dual to (uf), and (nq) dual to (u4).

The double vector bundles (2.5) and (2.6) turn out to be isomorphic: as shown in
[13, Prop. 5.3], by applying the tangent functor to the natural pairing A* x ;A — R
(followed by the fibre projection TR — R) one obtains a nondegenerate pairing
TA* Xpp TA — R, which induces an isomorphism of double vector bundles

(2.7) [:TA* — T°A.
Locally, this identification amounts to the flip
(@7, 60,37, 8a) = (27, €0, 37, a).

The cotangent bundle T*A can be locally written in coordinates (z7,u,p;, (4),
where (p;) determines a point in Ty M and (g in A} (dual to the direction tangent
to the fibres A — M). If c4 : T*A — A, ca(z?,ul, pj, (4) = (27, u?) denotes the



natural projection, we see that T*A fits into the following double vector bundle:

(2.8) T*A —— A*

mi iqm

A= M

where the bundle projection r : T*A — A* is given locally by r(xj,ud,pj,Cd) =
(27,¢;). The same construction can be applied to the vector bundle A* — M,
yielding a double vector bundle structure for T%A*. These double vector bundles
can be identified by a Legendre type transform [13, Thm. 5.5] (c.f. [18]):

(2.9) R:T*A* — T*A,

given locally by (27, &4, pj, u?) — (29, u?, —p;, &4).

There are two other identifications involving tangent and cotangent double vector
bundles that we need to recall. For an arbitrary manifold M, we first have the
canonical involution

J
(2.10) TTM —>TTM
pTMl J/TPM
TM —>TM

which is an isomorphism of double vector bundles (restripting to the identity on
side bundles and cores). Writing local coordinates (z7,47) for TM, and tangent
coordinates (z7, 47,027, 647) for T(T'M), Jys is given by

Ia(x?, @9, 627 647) = (27, 627,47, 6d7).

There is also an isomorphism of double vector bundles (also restricting to the identity
on side bundles and cores),

(2.11) On : TT*M — T*T M,
defined in local coordinates by
Onr(2’,pj, a7, p) = (27,47, ;. p)).
Here (27,p;) are cotangent coordinates on T*M. Equivalently, Oy = Ji; o Iy,
where Jy, : T*TM — T*TM is the dual of (2.10), and
(2.12) Ing : TT*M — T*TM
is as in (2.7) (with A =TM).

2.3. Tangent and cotangent Lie algebroids. Suppose that the vector bundle
A — M carries a Lie algebroid structure, which can be equivalently described by a
fibrewise linear Poisson structure on A* (see e.g. [4, Sec. 16.5]). Since any Poisson
structure on a manifold defines a Lie algebroid structure on its cotangent bundle (see
e.g. [4, Sec. 17.3]), we obtain a Lie algebroid structure on 7*A*; it follows that T A*
inherits a Poisson structure, which turns out to be linear with respect to both vector
bundle structures on T'A* (2.5). Hence the vector bundle T*A* — T'M, dual to
TA* — TM, is a Lie algebroid. Using the identification T*A* = T'A as in (2.7),
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we obtain a Lie algebroid structure on TA — T'M, referred to as the tangent Lie
algebroid of A.

To describe this algebroid structure more explicitly, we recall that any section
u € T'(A) gives rise to two types of sections on T'A: the first one is just Tu :
TM — TA, and the second one, denoted by w, identifies u at each point with a core
element in T'A; locally, using coordinates (27, u?) for A and (27, u?, 47, u?) for TA,
w:TM — TA is defined by

(2.13) ﬂ(xj,j:j) = (xj,O,jcj,ud(a:)).

These two types of sections generate the space of sections of TA — T M. The Lie
algebroid structure on T'A is completely described in terms of these sections by the
relations [13]:

—

(2.14) [W,0]pa =0, [Tu,V]ra = [u,v],, [Tu,Tv]lrs = T[u,v]a,

A

for u,v € I'(A); the anchor map is pr4 = JyroTpa, where Jyr : T(TM) — T(TM)
is as in (2.10).

On the other hand, since T*A* — A* is a Lie algebroid (defined by the linear
Poisson structure on A*), one can induce a Lie algebroid structure on r : T*A — A*
using the identification (2.9). This is known as the cotangent Lie algebroid of A.
Explicit formulas for its bracket and anchor will be recalled in Section 4.3.

Suppose that A = AG is the Lie algebroid of a Lie groupoid G, and consider the
natural inclusion i4g : AG — TG, which is a bundle map over the identity section
M — G. Then the canonical involution Jg : T(TG) — T(T'G) (2.10) restricts to a
Lie algebroid isomorphism

(2.15) jg : T(AG) — A(TG).

In other words, we have a commutative diagram

(2.16) T(AG) —9~ A(TG)

Tiag l \LiA(Tg)

T(TG) -~ T(T9)

The canonical pairing 7*G xg TG — R is a morphism of groupoids, and applying
the Lie functor one obtains a nondegenerate pairing A(T*G) xag A(TG) — R,
explicitly given by

(U, V) = (Ig(iar+g)(U)) iarg)(V)),
where U € A(T*G),V € A(TG), and Ig is as in (2.12). This induces an isomorphism
A(T*G) — A®*(TG), where A*(TG) is obtained by dualizing the fibres of A(T'G) —

A(G), and the composition of this map with ji : A*(TG) — T*(AG) defines a Lie
algebroid isomorphism

(2.17) 05 : A(T*G) — T*(AG).

Alternatively, one can check that g = (Tiag)* o Og o ig-g), where (Tiag)" :
iygT*(1'G) — T*(AG) is dual to the tangent map Tiag : T(AG) — iT(TG).



3. TANGENT LIFTS AND THE LIE FUNCTOR

We now discuss how multiplicative forms on Lie groupoids relate to differential
forms on Lie algebroids. As a first step, we need to recall a natural operation that
lifts differential forms on a manifold to its tangent bundle,

(3.18) k(M) — Q¥ (TM), a— ar,
known as the tangent (or complete) lift, see [10, 20].

3.1. Tangent lifts of differential forms. The properties of tangent lifts recalled
in this subsection can be found (often in more generality) in [10]; we included the
proofs of some key facts for the sake of completeness.

Given the tangent bundle py; : TM — M, (27,47) + (27), consider the two
vector bundle structures associated with T'(T'M):

(3.19) T(TM) s g

pTMl

TM,

where pr (27,37, 627, 647) = (27,47) and Tpy (27,37, 527, 627) = (27, 627). We use
the notation

T(TM) Xg,,, T(TM), T(TM)x,,,, T(TM),
to specify the vector bundle structure used for fibre products over 7'M ; more general
k-fold fibre products over T'M are denoted by

k k
[[r@nm), [[7(TM).

Tpnm PTM

Using the involution (2.10), given by Jys (27, 47, 627, 847) = (27, 627,47, 647) in local
coordinates, we obtain a natural isomorphism

k k
(3.20) JW [ rrm) — []Tam).
PTM Tpm
Given a k-form o € QF(M), k > 1, consider the bundle map
k—1
(3.21) of [[TM — T*M, of(Xy,..., Xpo1) =ix,, - -ix 0
M

(For k = 1, af : M — T*M is just a viewed as a section of T*M.) Using the
natural identification T(H’;M ™) = Hl}pM T(TM), we consider the tangent map
k—1
Tot: [[ T(TM) — T(T*M).
Tpm
The tangent (or complete) lift of a k-form on M is defined as follows (c.f. [20]):
o If f € QO(M) = C°(M), then frr € C®°(TM) is the fibrewise linear function
on T'M defined by df,

fr(X) = (df)p,, ) (X), X € TM.



o If a € OF(M), k > 1, we define

k—1
(ar)t: [[ T(TM) — THTM), (ar)t =0y o0Tako iy,
pTMm

and then ar € QF(TM) is given by
ar(Us, ., Ug) i= (Ui, U 1), Uk ),

One can directly verify that a7 is multilinear. The fact that it is indeed a k-form
on T'M follows from the next lemma (c.f. [10, 20]).
Lemma 3.1. The following holds:
(i) For f € C®(M), dfr = (df)r.
(ii) For f € C®(M), a € QF(M),
(fa)r = fra’ + fYar,
where BV = pi,B3 for any B € QL (M).
(iii) For k > 2, the tangent lift (dz® A ... A dz'* )7 equals
k
> (da™)Y AL A (datm)Y A (dat e A (et AL LA (dat)Y
m=1

(Whenever there is no risk of confusion, we write (dz?)Y simply as dz’.)

Proof. To verify (i), let us consider X € TM and U € Tx(T'M). In local coordinates,
we write X = (27,49) and U = (29,47, 6279, 6i7). Then fp(X) = 2Lit and

 Oxt
’f i, Of .
(3.22) d(fT)X(U) = 8x38x’x ox’ + @(51‘ .
On the other hand, we may view df as a section
i 9f

(@LM—HMszW%ﬂL@ﬂ

Hence T(df)! : TM — T(T*M) is given by
of ., &

-7
" Oxi’T 7 OxtoxT )

T(df (e, 09) = (af
and, as a consequence,

(@) (o) = O (T, 7)) = (!, 4, -0 i O,
’ ’ " 0xt0xd T Oxd
It immediately follows that ((df)r)x(U) agrees with (3.22).
Let us show that (i7) holds for & > 1 (the cases kK = 0,1 are simpler). One can
directly check that (fa)! = faf and

T(fa)'(Uy,...,Up-1) = X (X1,..., Xpo1)(df)2(Y) + f(@) T (Uy, ..., Uk_1),

where X; = pry(U;) € TyM, and Y = (par)«(Ur) = ... = (pm)«(Uk—1). In the last
formula, addition and multiplication by scalars are with respect to the vector bundle
structure T(T*M) — TM (in the fibre over Y € T, M), and o#(X1,..., Xp_1) €
TxM is viewed inside T'(T*M) as the core (i.e., tangent to 7™M -fibres). Since
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Op : T(T*M) — T*(TM) is a double vector bundle isomorphism restricting to
the identity on side bundle and cores, we have
(3.23) OMT(fa) (Un,...,Up—1) =a* (X1, ..., Xp1)(df ) (Y)

+ f(2)OMTa (U, ..., Up 1),

where now the addition and scalar multiplication operations are relative to the vector

bundle T*(TM) — TM, and of (X1, ..., Xp_1) belongs to the core fibre in T*(T'M)

(i.e., cotangent to M). Writing (Uy,...,Ux_1) = ](5_1)(1/1,...,1@_1), then X; =

(pa)«(V;) and Y = pras(V;), so (3.23) yields
(fa)y = (fro¥ + for)t
Let us now prove (iii). Note that

(da™ AL Ada™ )X, X)) = Y (=17 a T date ),
€Sk

where X; = (a7,d]) € TuM. Then (Ox(T(da™* A ... Adz™)H(Uy,...,Up-1)), Vi)
equals

(3.24) P G DA A A e (R ECF O

€Sk n=1
where U, = (27,41, (3x), (8&)]) and Vi = (27, (§x), i), (§&)1). Since (dzf)r = di/
(by (7)), one checks that

k
D (dz)Y AL A (de )Y A (dat ) A (dat )Y A LA (da)Y (W V),

n=1

where Vi = (27, (8x)7, 4, (82)]) (so that Jy(V;) = Up), equals

k
> (=17 2—31 Eot) -+ Lo 1) L) iy Tt - - - Ty

og€ESy,

which agrees with (3.24) after reshuffling indices.

Let us now consider the operation
(3.25) 7: QN (M) — QN TM), T(a)x = pilixa),
where X € TM and k > 1. In other words, given Uy, ..., Ux_1 € Tx(TM),
T()x(Us,...,Uk-1) = (X, (pm)«(U1), - - -, (Pm)«(Ug-1))-

In coordinates, writing o = %ail...ik (x)dx™ A ... A da® (with o, ..i, totally anti-
symmetric), we have

1 . ) )
T(a)x = Wail...ik (£)X"dx Ao Ndx'.



10

Example 3.2. Consider the map w' : TM — T*M, w*(X) = ixw, associated with
a 2-form w € Q2(M). A direct computation shows that

T(w) = (Wﬁ)*ecana
where Oeon € QHT*M) is the canonical 1-form, Oean = pida’.
The tangent lift operation is defined by the following Cartan-like formula (c.f.
[10]).
Proposition 3.3. For a € QF(M), its tangent lift is given by the formula
(3.26) ar = dr(a) + 7(da).
Proof. 1t suffices to check (3.26) locally, so we replace M by a neighborhood with

coordinates (27), so that TM has coordinates (27,47). Let us consider the vector
field V on T'M defined by

. 0

where X = (27,47) € TM. This vector field has the property that Tpy(Vy) = X.
One can directly check that

(3.27) fr=Lv(pyf), and (da?)r = di’ = Ly (phda?),
where f € C°°(M). From the definition of 7, it immediately follows that
(3.28) 7(8) =ivohB, B € Q" (M),
Given a = Zay,. 4 (2)dz™ A ... A dz'*, using Lemma 3.1 we obtain
1 " i i L. i i
ar :H(Oxil,__ik)TpM(dm AL AR + HpMail---ik(dx AL AT )
1 * i i
:E(ailmik)TpM(dm VAL AdER )+
1

k
My iy Z dz' A ... A (dzs™)p A - A date

n=1

EP

It then follows from (3.27) that ar = Lypj,a. Using (3.28) and Cartan’s formula,
we have

ar = d(iypyra) + iy pyrda = dr(a) + 7(da).

Example 3.4. From Ezample 3.2, it follows that if w € Q%(M), then
wr = —(wH)*wean + T(dw).

Here Wean = —dBean = dz* A dp; is the canonical symplectic form on T*M. (For the
tangent lift of closed 2-forms, see also [8, Sec. 3]).

An immediate consequence of (3.26) is the fact that tangent lifts and exterior
derivatives commute.

Corollary 3.5. For a € Q¥(M), d(ar) = (da)r.
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3.2. Lie functor on multiplicative differential forms. Let G be a Lie groupoid
over M, A = AG its Lie algebroid, and let o € Ok (G). We can define an induced
k-form on A by pulling back the tangent lift ar € QF(TG) via the inclusion iy4 :
A — TG. This section discusses this operation when « is multiplicative.

Recall that a k-form a € QF(G) is multiplicative if

(3.29) m*a = pla + pya,

where p1,ps2 : G& — G are the natural projections, and m is the groupoid multipli-
cation. We denote the associated k-form on A by

(3.30) Lie(a) := i%arp.
Note that it follows from Corollary 3.5 that
(3.31) dLie(a) = Lie(da).

In order to explain in which sense Lie(«) is the infinitesimal counterpart of «, we
will need a known alternative characterization of multiplicative forms.

The tangent groupoid structure on the tangent bundle pg : TG — G over TM
induces a groupoid structure on the direct sum

HTQ:TQ@...@TQ

pPg

over the base HZM TM =TM @ ...®TM in a canonical way.

Lemma 3.6. A k-form o € Q¥(G) (k > 1) is multiplicative if and only if the bundle

map ot H’;;l TG — T*G (see (3.21)) is a groupoid morphism.

Proof. Let us consider the following identities, obtained by differentiating basic iden-

tities on any Lie groupoid (see [3, Lem. 3.1]):

(3.32) (T'm) ¢(g),g) (THX), X) = X = (T'm) g,5(9)) (X, Ts(X)), VX €Ty,

(3.33) (Trg)t(g)(u) = (Tm)(t(g),g) (’U,, 0), (Tlg)s(g) (U) = (Tm)(gﬁ(g))(o, U)

where u € Ayg) = Ker(T's)|yy) and v € Ker(Tt)|s,). Using the first identities in

(3.32) and (3.33), we see that if « is multiplicative, then by (3.29) we have
a(Tt(Xy),...,Tt(Xk-1),u) = (X1, ..., Xk—1,Trg(u)),

where X; € TyG,u € Ayy). This is precisely the compatibility of of with the target

maps on H';g_l TG and T*G. Similarly, note that (3.32) and (3.29) imply that, if

Zi,..., 2, € TM, then a(Zy,...,Z;) = 0. Using this fact, along with (3.29) and

the second identities in (3.32) and (3.33), we obtain the compatibility between o
and source maps:

Cv(TS(Xl), oo ,TS(kal), u) =a(Xy,... ,kal,Tlg(u — Tt(u))),
where X; € TyG,u € Ay(g)-

Assuming that af is compatible with source and target maps, we see that it is a
groupoid morphism if and only if

o (Tm(X1, Y1), ..., Tm(Xp_1,Yieo1)) = of (X1, ..., Xp_1) o a*(Y1,..., V1)
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By evaluating each side of the last equation on T'm/( Xk, Yy ), we see that this condition
is equivalent to
A(Tm(X1, Y1), ..., Tm(Xp, Yi) = a(X1, ..., X)) + Vi, .., Vi),
which is precisely the multiplicativity condition (3.29). O

Given a groupoid morphism v : G — Go, we denote the associated morphism of
Lie algebroids (given by the restriction of T4 : TGy — T'Ga to AGy C T'Gy) by

Lie(y) : AGy — AGo.

The natural projection pg : TG — G is a groupoid morphism, and one can directly
verify that there is a canonical identification

k—1
A(J] o) = H A(TG).
pPg Lie(pg)

Using this identification we get, for any given multiplicative k-form a € Q¥(G), a Lie
algebroid morphism

k—1
(3.34) Lie(a®): J[ A(TG) — A(T*9).
Lie(pg)
The isomorphism jg : T(AG) — A(TG), see (2.15), induces an identification
k k
(3.35) iWT[Tag) — [ ATG).
pA Lie(pg)

Recall the isomorphism g : A(T*G) — T*(AG) defined in (2.17).
Proposition 3.7. For a multiplicative k-form o € QF(G), Lie(a) and Lie(af) are
related by

Lie(a)! = 0g o Lie(a®) 0 j5Y H T(AG) — T*(AG).
pPA

Proof. Recall that 0g = (Tiag)* 0 ©Og 0iyr+g) and JgoTiag = ia(rg)© jg- This last
identity immediately implies that

k)
Jé HTZAg HZATQ) O]é)

Since i 4(7+g) © Lie(of) = Tat o H B iA(Tg)a it follows that

k—1
6g o Lie(a) 0 i) = (Tiag)* 0 ©g o Tak o [[ iugre) 0 dy "

= (Tiag)* o aT H Tiag),

and this last term is (i%a7)* = (Lie())*. O

Corollary 3.8. If a € Q%(G) is multiplicative and G is s-connected, then o = 0 if
and only if Lie(a) = 0.
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Proof. If G is s-connected, then ]_[];;1 TG also has connected source-fibres. We now
use the fact that if two groupoid morphisms G; — G5 induce the same Lie algebroid
morphism and G; has source-connected fibres, then they must coincide. Hence of = 0
if and only if Lie(a*) = 0. The conclusion now follows since a = 0 (resp. Lie(a) = 0)
is equivalent to af = 0 (resp. Lie(a)? = 0), and Lie(a)f = 0 if only if Lie(a*) = 0 by
Prop. 3.7. U

4. MULTIPLICATIVE 2-FORMS AND THEIR INFINITESIMAL COUNTERPARTS

4.1. Linear 2-forms on vector bundles. Let ¢ : A — M be a vector bundle,
and consider the double vector bundles T'A and T*A, as in Section 2.2. A 2-form
A € Q?(A) is called linear if

A TA—T*A
is a morphism of double vector bundles (c.f. [11, Sec. 7.3]). In particular, there is a
vector bundle map X\ : TM — A* (over the identity) making the following diagram
commute:

#
(4.36) TA—2>7+4.

Tqi i

TM T) A*
In this case we say that A covers A.

Remark 4.1. The fact that a bivector field m on a vector bundle A is linear is
equivalent [11, 13] to the bundle map 7 : T*A — TA being a morphism of double
vector bundles. Hence linear 2-forms are just their dual analogues.

It is simple to check from the definition that a linear 2-form has a local expression
of the form:

1 . . .
A= iAij(x’ w)dz' A da? + Ajg(z,u)da? A du

1 , A ,
(4.37) = iAij,d(x)udd:vZ A da? 4 Njg(x)dad A du.

where (z,u) = (27,u?) are local coordinates in A (relative to a local basis {e4}), and

)\jd = <)\(%), ed>.

Example 4.2. The canonical symplectic form ween = da? A dp’ on the cotangent

bundle T*M s linear. Any vector bundle map o : A — T*M, locally written as

o(eq) = ojqdz?, defines a linear 2-form on A by pullback,

dao'l'd
Ok

covering the map \ = ot : TM — A*.

da’ A da® + oigdat A du,

0 Wean = U

From the local expression (4.37), one can directly verify that Example 4.2 com-
pletely characterizes linear closed 2-forms:

Proposition 4.3. A linear 2-form A € Q2(A) is closed if and only if it is of the
form

A= (At)*wcaru
where X' : A — T*M s the fibrewise transpose of \.
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A proof of this result can be found in [11, Sec. 7.3].

Example 4.4. Ifw € Q*(M), then its tangent lift wp € Q?>(T M) is linear and covers
the map X = wt : TM — T*M. If w is closed, then so is wr (it is in fact exact, by
Prop. 3.3). It follows from Prop. 4.3 and the fact that (wf) = —w! that

wr = _(wﬁ)*wcana
in agreement with FExample 3.4.

Example 4.5. Let ¢ € Q3(M) be a 3-form on M. Then the 2-form 7(¢) on TM is
linear; it covers the bundle map X\ : A — T*M that is zero on each fibre.

4.2. Linear 2-forms on Lie algebroids. Let A — M be a Lie algebroid. We
will discuss two natural ways to obtain linear 2-forms on A.

First, given any 3-form ¢ € Q3(M), we can use the anchor p : A — TM to
pull-back the linear 2-form 7(¢) to A. The resulting 2-form

p(T(9)) € Q*(A)
is linear, covering the map A : TM — A* which is zero on each fibre.

On the other hand, if A = AG is the Lie algebroid of a Lie groupoid G, then one
obtains linear 2-forms on A as infinitesimal versions of multiplicative 2-forms on G:

Proposition 4.6. Let w € Q(G) be a multiplicative 2-form, and let X\ : TM — A*
be the defined by A\(X)(u) = w(X,u), for X € TM and u € A. Then
(1) A = Lie(w) € Q2(A) is linear and covers \.
(2) Given ¢ € Q3(M) closed and if G is s-connected, then dw = s*¢ — t*¢ if and
only if
A= ()\t)*wcan - p*(7(¢))

Proof. Let us prove (1). Note that Lie(w) = i*wy is linear since wr € Q*(TG) is
linear, and the pull back of a linear 2-form to a vector subbundle is again linear.

From Lemma 3.6, we know that w? : TG — T*G is a groupoid morphism, which
restricts to the map A\ : TM — A* on identity sections. As a result, Lie(w) fits
into the following commutative diagram:

ie(wh
A(TG) D A(rg)

L

T™ A,

A

and it follows from Prop. 3.7 that A = Lie(w) covers \.
For part (2), note that

Lie(s*¢p — t*¢) = i%(s*d)r — % (") 1.
From (3.26) and the fact that d¢ = 0, we see that (s*¢)r = d7(s*¢) and (t*¢)r =
dr(t*¢). A simple computation shows that 7(s*¢) = (Ts)*7(¢) and 7(t*¢
(Tt)*7(¢). Hence Lie(s*¢ — t*¢) = d(i%(T's)*17(¢) — i (T't)*7(¢)). Since T'soiy =0
(A is tangent to s-fibres) and Ttois = p, we obtain Lie(s*¢ — t*¢) = —dp*7(¢). By
Corollary 3.8, we know that

dw — (s°¢ — t'¢) = 0 <= Lie(dw — (s*¢ — t*¢)) = 0.



15

But Lie(dw — (s*¢ —t*¢)) = d(A+ p*7(¢)). Since the linear 2-form A+ p*7(¢) covers
A, it follows from Prop. 4.3 that

d(A+p*71(9) =0 <= A+ p*7(¢) = (A\) wean,
as desired. O

To make the connection between this paper and the results in [3] more transparent,
it will be convenient to consider the map o, : A — T*M induced by w € Q%(G) via

(4.38) ou(u)(X) =w(u,X), ue A, X € TM.

In the notation of Prop. 4.6, we have o, = —\!, so under the assumptions in part
(2), A = Lie(w) and o,, are related by

(4.39) A= _(Uzwcan + P*T(¢)),

in such a way that A covers —o! : TM — A*.

4.3. IM 2-forms and Lie algebroid morphisms. This subsection presents to key
step to integrate IM 2-forms.

Let A — M be a Lie algebroid, with bracket [-,-] and anchor p. Let 0 : A —
T*M be a vector bundle map (over the identity) and ¢ € Q3(M) a closed 3-form.
Motivated by (4.39), let us consider the linear 2-form A € Q%(A) defined by

(4.40) A= _(U*Wcan + p*T(qf))),

covering —o! : TM — A*. The following result describes when such 2-form induces
a morphism between tangent and cotangent algebroid structures.

Theorem 4.7. Let A € Q?(A) be as in (4.40). The following are equivalent:

(i) The map A*: TA — T*A is a Lie algebroid morphism.
(ii) The map o : A — T*M satisfies

(4.41) (o(u), p(v)) = —(o(v), p(u))
(4.42) o([u,v]) = Lo (v) —i

for all u,v € T'(A).

p(0) 40 (W) + i p(w)ipu) P,

Vector bundle maps o : A — T*M satisfying conditions (4.41) and (4.42) were
introduced in [3] and are referred to as IM 2-forms on A (relative to ¢). We also
recall that a morphism between Lie algebroids A — M and B — N (see e.g.
[12]) is a vector bundle map ¥ : A — B, covering 1) : M — N, which is compatible
with anchors, meaning that

ppo V¥ =Ty opay,

and compatible with brackets in the following sense. Consider the pull-back bundle
Y*B — M, and let us keep denoting by ¥ the induced map I'(A) — T'(p*B)
at the level of sections. Given sections u,v € I'(A) such that ¥(u) = f;9*u; and
U(v) = gi*v;, where f;,g; € C*®°(M) and uj,v; € I'(B), the following condition
should be valid:

(4.43) U([u,v]a) = [i9:0" [uj, vi]s + Ly, )90 Vi — L, (0) [0 05
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We will need explicit local formulas for the tangent and cotangent Lie algebroids.
For a basis of local sections {eq} of A, we denote the corresponding Lie algebroid
structure functions by pf, and C¢,,

o,
palea) = Pjﬁ,

Recall from Section 2.3 that any section v : M — A defines two types of sections of
TA — TM, denoted by Tw and u. From (2.14), the tangent Lie algebroid structure
can be written as follows:

[€q, en] = Copec.

(4.44) [Cas@b)ra =0, [Teq,ep)ra = C%ee, [Tea,Tep)ra = C5Tee + dCS,Ee,

a a

.o, .0 ~ .0
(4.45)  pra(Teq) = Pﬁ@ + dﬂé@a pra(€a) = sz@~

To describe the Lie algebroid structure on T*A — A* explicitly, we also consider
two types of sections that generate the space of sections of T*A over A*. The first
type is induced from a section u € T'(4), and denoted by u”. In local coordinates
(27,&4) on A* (relative to the basis of local sections {e?} of A*, dual to {eq}), it is
given by

(4.46) ul(2?,€0) = (a7, u’(2),0,€a),

where T*A is written locally in coordinates (z7 ,ud,pj,(d) as in Section 2.2. The
second type are core sections: locally, for each o = a;da? € T'(T*M), we define the
section & of T*A — A* by

(447) a(mjv ‘Sd) = (.’L'], 07 Qi (1’), gd)

The cotangent Lie algebroid is defined by the relations:

(448) [dat,dad)res =0, [el,dad]res = dpl, [k, ef]realiwe) = —dCGE + Cohel,

i ( 9 L i 0 ¢ 0
(149) prealde’) = phgems prea(ellong) = Phgyr + Clnkege
We now turn to the proof of Theorem 4.7.

Proof. We work locally, so we assume that M has coordinates (z7). Then A has coor-

dinates (27, u?) (relative to a basis of local sections {eq}), T'A has tangent coordinates

(27, ud, 37, 0), while induced coordinates on T* A are denoted by (27, u?, pj, (). Sim-

ilarly, A* has dual coordinates (x7,€,), inducing coordinates (27, &4, 47, £4) on TA*.
We start by discussing when A? is compatible with the anchors, i.e.,

(4.50) T(=0") 0 pra = prea o AR,
Let us consider local expressions of the relevant maps. We write 0 : A — T*M and
ot : TM — A* locally as
oz, ud) = (a:j,udojd(a:)), ol(z, i) = (a;j,j:jajd(x)).
Denoting coordinates on TM by (27,47), and on T(TM) by (27,47, 527, 527), we get
Ooyq

T(—o') (2, d7, 627, 647) = (27, —iloyg, 6a7 —:EZW&:E’“ — 01q0i!) € TA*.
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One can directly verify that the map Af can be locally written as follows:
(451) Aﬁ(xj7ud7x.'j7ad) = (xjvud7pjagd)a

where

Jo; Jdo, ,
1d jd ld . d d ki _
p;i=TU ( ol owi +u%0jq — Gijru’pgt’, Ca = —i 0.

The space of sections of TA — T'M is generated by sections of types Te, and &,.
We have

- . aO' a 60' a .q .
(4.52) Aﬁ(T€a|(m,¢)) = <$],5ad7$l < agjl a axlj> o ¢z‘jkpl§$ u_fElUld)
(4.53) Ati (€b](x7x)) = (acj, 0, O b, —.i'lUld)

Using (4.45) and (4.49), one can directly check that
T(—0")(pra(@l(zm)) = (a7, —3'014,0, —01ap}) € (—0')*TA*.
On the other hand, using the local expression (4.51), we have
prea(M @l (@0))) = (27, =31 014, 0, pyoms)

It follows that the compatibility (4.50) for core sections amounts to

(p(ep),o(eq)) = —(p(ea), o(ep))),

which is equivalent to (4.41).
For sections of type T'ep, again using (4.45) and (4.49), we get

T(—0")(pra(Tep|wsy)) = (7, =301, pl., Ca) € (—0')* T A%,
where
adld 8p .
(4.54) Ca = —i <8a:kp +0ig ) = —(Loeyo(ea); )
Similarly, we compute

pT*A(‘Ajj (Teb’(w,x))) = (xj7 _j:lo-ld7 p{p Q/j),

where
. do do i g c
¢ =tk <3xkzb - 8951’3) - ¢z‘jkzplzf$ ph+ Ciyitore
(4.55) = (~lp(ea) ([d(€r)) + ipes)ip(er) 8 + o ([eas er]), ).

Comparing (4.54) and (4.55), it follows that the compatibility (4.50) for sections of
the type T'ey is verified if and only if (4.42) holds.

Let us now check the bracket preserving condition (4.43), that in our case reads
(4.56) AU, V]ral@.s)) ijgi[Up Vilral—ot (@) T Lopa@)9iVil—ot (2,2)

pTA f]U | —ot(z.x)>

where U,V € T(T'A), and f;,g; € C®(TM), U;,V; € T(T*A) are such that A¥(U) =
fi(—ot)*U; and AY(V) = gi(—o')*Vi.

From (4.52), (4.53), we can write
(457) Aﬁ(T€a|(z,i)) = eaL|—at(z,:t) + f;d$j|—at(a§,:’c)

(4.58) N Cal(r.) = 0(€a)l—ot(wd) = 92T gt (20,
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where

. (0o Oo, s
(4.59) fi =4 < il la) — Gijkphd’, g = Oia,

Ox! OxJ

so we can express the images in terms of sections of types (4.46) and (4.47) on T*A.
It will be useful to note that the functions fi' = f(z,2) satisfy

(4.60) fda? =igdo(eq) — izipe,) P
viewed as an equality of horizontal 1-forms on T'M, i.e. 1-forms of type a;(x,4)dz?
(in this formula, & is seen as the vector field ! % on T'M). In fact, locally, there

is an identification of the space of horizontal 1-forms on T'M with a subspace of
sections of (—o!)*T* A via
(4.61) Qb (TM) — T((—0")*T*A),  aj(z,i)dr — aj(z, 2)drd | _g1(q 5)-
In the remainder of this section, we will use this identification to view horizontal
1-forms on T'M as sections on the bundle (—¢*)*T*A. In particular, in order to
simply our notation, we will write dxJ | —ot(z,2) Just as da? .

Since it suffices to verify condition (4.56) for sections of types T'e, (linear) and e,
(core), we have three cases to analyze.
Core-core sections

If U =€, and V = g, are core sections, then by (4.44) we know that [e,, €]z = 0,
so the L.h.s. of (4.56) vanishes. On the other hand, from (4.45), the Lie derivatives
on the r.h.s. of (4.56) are only with respect to the variable &. Since the functions g;

in (4.58) do not depend on & and [dz?, dai]=, = 0, it follows that, for a pair of core
sections, the r.h.s. of (4.56) vanishes as well.

Core-linear sections
Let us consider (4.56) when U = Te, and V' = &,. Since [Teq, eplra = CSe., it
follows from (4.58) that the L.h.s. of (4.56) is

Aﬁ([Tea, evlra) = o(lea, ep))-

Using the bracket relations (4.48), one directly sees that the first term on the r.h.s.
of (4.56) is just o;dp!,. For the second term, we have

(ﬁpTA(Tea)Uib>d$i = ﬁpé%(dibdwi) - Uibﬁpé%dlti
= ‘Cp(ea)a(eb) - O—ibdpit'
The third term on the r.h.s. of (4.56) is given by

o 00jq 001 i j
(Lopaienfi)da’ = <”é < ol aﬂ) = Piskp ’ém) -

= lp(ey) @0 (€a) = tp(ey)ip(ea) P-

As a result, in this case, (4.56) is equivalent to

o([€as €0]) = Lp(ea)7(€0) — tp(ey)d0(€a) + ip(ey)ipea)
which agrees with condition (4.42).

Linear-linear sections
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We finally consider (4.56) when U = Te, and V = Te;. From (4.44), (4.57) and
(4.58), and using (4.60), we see that the Lh.s. of (4.56) is
A¥([Teq, Teplra) = Copel|-ot(w.a) + Capfida? +dCG ()0 (ec)
= [eas )" | ot (n3) + Cip(iado(ec) — igip(e,)d) + dC5(E)o ()
= [eav eb]L‘fUt (z,2) + iida([eaﬂ eb]) + dCC (U( ) x) - Z:ﬂ[p(ea) p(eb)]¢‘
As in (4.60), we abuse notation and use # also to represent the vector field ! 8 2T
By (4.57), we can write A*(Te,) = ek + fj‘?dx] and Af(Tep) = ef + fdx’. Using
(4.48), we see that the first term on the r.h.s. of (4.56) is
[€a7 eb]L’fUt(x,jc) + ngb<Ut($), 6C> - fj(‘ldpi + fzdeZ
Note that the second and third terms on the r.h.s. of (4.56) are £

ﬁPTA (Tey)
(the former is clearly completely analogous). Since

‘CpTA(Teb)f]quj = [’pTA (Tep) (fadxj) faEpTA Teb)dxja
it follows that

pra(Tea) f dx' and
)5 da?, respectively. Let us find a more explicit expression for the latter

£PTA(T6b)qudxj =Ly a(Te,)ted0(€a) = Lpp 4 (Tey)tirip(eqa)® — f;dp{)-
Let us consider the (local) vector fields on TM given by V, = dp}(#)-2; 5o and V) =
dpl (2 )8 r, 50 that pra(Tey) = p(ep) + V. It is simple to check that [p(eq), ] = —V4
and Evb/zxoz =iy,a for any o = %a”( Ydz' A dz’. Using Cartan calculus, we find
EpTA(Teb)iide(ea) = ﬁp(eb)iidd(ea) + E‘/Ziida(ea)
= —ivbda(ea) + iiﬁp(eb)da(ea) + ’ivbd0<ea)
= iidip(eb)dd(ea).
Similarly,
£PTA(T6b)iiiP(€a)¢ = Z'f’bﬁp(eb)Z.P(ea)qs‘

As a result, we obtain

Lyraren) i da? = izdi p(en)d0(€a) = 12 Lo(e,)ip(ea) fadpb
Analogously, we have

Lopa(Tea J708" = iidip(e,)do(er) = iaLp(ey)ipe,) ® = Jidpa
Hence (4.56) amounts to the identity
(4.62) iida([ea, 6(,]) — ir'i[p(ea),p(eb)}¢ :ij;dip(ea)dd(eb) - iﬂbﬁp(ea)ip(eb)¢

~ tadip(e,)d0(€a) + ia Lo(e,)lp(ea) ?

By basic Cartan calculus of forms, we have the identity

Up(ea)o(en))® = Lplea)toes)® + Loten)iplea)® = Dip(ey)ip(eq) P-
It follows that (4.62) is equivalent to

da([ea, eb]) d( (ea)da(eb) p(eb)da(€a> + ip(eb)ip(ea)¢)
= d(Ly(e,)0(en) = dip(e,)0(€0) = ip(e,)do(€a) + ip(e,)ip(ea) ?)

A(Lo(ea)0(en) = ip(ey)d0(€a) + Tpe;)ip(ea)9)
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which holds by (4.42). 0

4.4. Applications to integration. In this section we present an alternative proof
to the main result in [3]|, which describes IM 2-forms as infinitesimal versions of
multiplicative 2-forms ([3, Thm. 2.5]).

Let G be a Lie groupoid over M, with Lie algebroid A. Let us denote the space
of multiplicative 2-forms on G by Q2 ..(G), and the space of linear 2-forms on A by
Q2 (A). We also consider the subspace 2, ,(4) C Q2 (A) of linear 2-forms A for
which A% : TA — T*A is a Lie algebroid morphism.

A direct consequence of Prop. 3.7 is that Lie(a)? is a Lie algebroid morphism for
any multiplicative k-form a on G. Using Prop. 4.6, part (1), we conclude that the
Lie functor on multiplicative forms gives rise to a well-defined map
(4.63) Lie: Q2 :(G) — Q%.(A), w A = Lie(w).

mult alg

Proposition 4.8. If G is s-simply-connected, then (4.63) is a bijection.

Proof. We will show that (4.63) has an inverse map. If A € leg(A), then A :
TA — T*A is a morphism of algebroids. So

05" o Aozt A(TG) — A(T*G)

is a Lie algebroid morphism. Since G is s-simply-connected, so is T'G. By Lie’s second
theorem for algebroids (see e.g. [12]), there exists a unique Lie groupoid morphism
wt: TG — T*G with Lie(w!) = 951 o At ojg_l, or Af = g o Lie(w!) o jg.

It remains to check that w! is indeed the bundle map associated with a 2-form
w € Q2(G), i.e., that it is a vector bundle map (covering the identity) with respect
to the bundle structures TG — G and T*G — G, and that (wﬁ)* = —wh A proof
of this fact can be given just as in [14]: the key point is that the bundle projections
pg : TG — G, ¢g : T*G — G, the vector bundle sums TG X pg ¢ — TG,
TG Xeg T*G — T7*G, and scalar multiplications TG xR — TG, T*G xR — T*G,
as well as the natural pairing TG X(,; ;) T*G — R are all groupoid morphisms.
The corresponding maps for Lie algebroids (after the identifications (2.15) and (2.17))
are precisely the vector bundle structure maps and pairing for p4 : TA — A and
ca: T*A — A, see e.g. [13]. For example, to check that cg o w = pg, it suffices
to verify this condition (by connectivity of source-fibres) at the level of algebroids.
But then we have

Lic(cg o w') = cq 0 A* = py = Lie(pg).

The other properties of w are derived from those of A* similarly, as in [14, Thm. 4.1].
O

Corollary 4.9 ([3]). If G is s-simply-connected and ¢ € Q3(M) is closed, there is
a one-to-ome correspondence between multiplicative 2-forms on G satisfying dw =
s*¢ —t*¢ and IM 2-forms o : A — T*M relative to ¢.

Proof. We know that Lie : Q2 ..(G) — leg(A), w — A = Lie(w) is a bijection,
and by Prop. 4.6, part (2), dw = s*¢ — t*¢ if and only if A = — (0 wean + p*7(9)).
The conclusion now follows from Theorem 4.7. O
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