LINEAR AND MULTIPLICATIVE 2-FORMS

HENRIQUE BURSZTYN, ALEJANDRO CABRERA, CRISTIÁN ORTIZ

ABSTRACT. We study the relationship between multiplicative 2-forms on Lie groupoids and linear 2-forms on Lie algebroids, which leads to a new approach to the infinitesimal description of multiplicative 2-forms and to the integration of twisted Dirac manifolds.

Contents

1. Introduction	1
1.1. Notations and conventions	3
1.2. Acknowledgements	3
2. Tangent and cotangent structures	3
2.1. Tangent and cotangent Lie groupoids	3
2.2. Tangent double vector bundles and duals	3
2.3. Tangent and cotangent Lie algebroids	5
3. Tangent lifts and the Lie functor	7
3.1. Tangent lifts of differential forms	7
3.2. Lie functor on multiplicative differential forms	11
4. Multiplicative 2-forms and their infinitesimal counterparts	13
4.1. Linear 2-forms on vector bundles	13
4.2. Linear 2-forms on Lie algebroids	14
4.3. IM 2-forms and Lie algebroid morphisms	15
4.4. Applications to integration	20
References	21

1. Introduction

The main purpose of this paper is to offer an alternate viewpoint to the study of multiplicative 2-forms on Lie groupoids and their infinitesimal counterparts carried out in [3]. This study turns out to be closely related to topics such as equivariant cohomology and generalized moment maps theories, see e.g. [2, 3, 19]. A particularly important case is that of symplectic multiplicative 2-forms (i.e., symplectic groupoids), whose infinitesimal counterparts are Poisson structures [6]. As shown in [3], infinitesimal versions of more general multiplicative 2-forms include twisted Dirac structures in the sense of [17].

Let \mathcal{G} be a Lie groupoid over M, with source and target maps $s, t : \mathcal{G} \longrightarrow M$, and multiplication $m: \mathcal{G}^{(2)} \longrightarrow \mathcal{G}$. Let A be the Lie algebroid of \mathcal{G} , with Lie bracket $[\cdot, \cdot]$ on $\Gamma(A)$ and anchor $\rho: A \longrightarrow TM$. A 2-form $\omega \in \Omega^2(\mathcal{G})$ is called *multiplicative* if

$$m^*\omega = p_1^*\omega + p_2^*\omega,$$

where $p_1, p_2 : \mathcal{G}^{(2)} \longrightarrow \mathcal{G}$ are the natural projections. Given $\phi \in \Omega^3(M)$ closed, we say that ω is relatively ϕ -closed if $d\omega = s^*\phi - t^*\phi$. The main result in [3] asserts that, if \mathcal{G} is s-simply-connected, then there exists a one-to-one correspondence between multiplicative 2-forms $\omega \in \Omega^2(\mathcal{G})$ and vector bundle maps $\sigma : A \longrightarrow T^*M$ satisfying

$$\begin{split} &\langle \sigma(u), \rho(v) \rangle = -\langle \sigma(v), \rho(u) \rangle \\ &\sigma([u,v]) = \mathcal{L}_{\rho(u)} \sigma(v) - i_{\rho(v)} d\sigma(u) + i_{\rho(v)} i_{\rho(u)} \phi, \end{split}$$

for all $u, v \in \Gamma(A)$. We refer to such maps σ as IM 2-forms relative to ϕ (IM stands for infinitesimal multiplicative). If $L \subset TM \oplus T^*M$ is a ϕ -twisted Dirac structure, then the projection $L \longrightarrow T^*M$ is naturally an IM 2-form, so the correspondence above includes the integration of twisted Dirac structures as a special case.

The IM 2-form associated with a multiplicative 2-form $\omega \in \Omega^2(\mathcal{G})$ is simply

(1.1)
$$\sigma(u) = i_u \omega|_{TM}, \quad u \in A,$$

where A and TM are naturally viewed as subbundles of $T\mathcal{G}|_M$. The construction of ω from a given $\sigma: A \longrightarrow T^*M$ in [3, Sec. 5] relies on the identification of \mathcal{G} with A-homotopy classes of A-paths (in the sense of [9], c.f. [16]), in such a way that ω is obtained by a variation of the infinite dimensional reduction procedure of [9]. A different, more general, viewpoint to this problem has been recently studied in [1], where this correspondence is seen as part of a general Van Est isomorphism.

In this paper, we avoid the use of path spaces by noticing that the construction of a multiplicative $\omega \in \Omega^2(\mathcal{G})$ out of an IM 2-form σ can be phrased as the integration of a suitable Lie algebroid morphism, similar in spirit to the approach of Mackenzie and Xu [13, 14] to the problem of integrating Lie bialgebroids to Poisson groupoids, which served as our main source of inspiration.

We notice that any multiplicative 2-form $\omega \in \Omega^2(\mathcal{G})$ naturally induces a 2-form $\Lambda \in \Omega^2(A)$ on the total space of A, which is *linear* in a suitable sense. We show that, when ω is relatively ϕ -closed, the 2-form Λ is totally determined by the map σ (1.1) and ϕ via the formula

(1.2)
$$\Lambda = -(\sigma^* \omega_{can} + \rho^* \tau(\phi)),$$

where ω_{can} is the canonical symplectic form on T^*M , and $\tau(\phi) \in \Omega^2(TM)$ is the 2-form defined, at each point $X \in TM$, by $\tau(\phi)|_X = p_M^*(i_X\phi)$, where $p_M : TM \longrightarrow M$ denotes the natural projection.

As a key step to reconstruct multiplicative 2-forms from infinitesimal data, consider an arbitrary Lie algebroid $A \longrightarrow M$, along with a vector bundle map $\sigma : A \longrightarrow T^*M$ and a closed $\phi \in \Omega^3(M)$. Let us use σ and ϕ to define $\Lambda \in \Omega^2(A)$ by (1.2). Our main observation is that the bundle map

$$\Lambda^{\sharp}: TA \longrightarrow T^*A, \ U \mapsto i_U \Lambda$$

is a morphism between tangent and cotangent Lie algebroids (see [13]) if and only if σ is an IM 2-form relative to ϕ . This result can be immediately applied to the integration of IM 2-forms: the morphism of groupoids $T\mathcal{G} \longrightarrow T^*\mathcal{G}$ obtained by integrating the morphism $\Lambda^{\sharp}: TA \longrightarrow T^*A$ determines the desired multiplicative 2-form. Our approach to multiplicative 2-forms can be naturally extended in different directions, e.g. to forms of higher degree or forms with no prescription on their exterior derivatives, as recently done in [1] from a different perspective. These extensions and a comparison with [1] will be discussed in a separate paper.

The paper is organized as follows. In Section 2 we briefly recall the definitions and main properties of tangent and cotangent Lie algebroids and groupoids. In Section 3, we discuss the construction of linear 2-forms on Lie algebroids associated with multiplicative 2-forms on Lie groupoids. In Section 4, we relate IM 2-forms with linear 2-forms defining algebroid morphisms $TA \longrightarrow T^*A$, and apply our results to integration of IM 2-forms.

- 1.1. Notations and conventions. For a Lie groupoid \mathcal{G} over M, its source and target maps are denoted by s, t. Composable pairs $(g,h) \in \mathcal{G}^{(2)} = \mathcal{G} \times_M \mathcal{G}$ are such that s(g) = t(h), and the multiplication map is denoted by $m: \mathcal{G}^{(2)} \to \mathcal{G}$, m(g,h) = gh. Its Lie algebroid is $A\mathcal{G} = \ker(Ts)|_M$, with anchor $Tt|_A: A \longrightarrow TM$, and bracket induced by right-invariant vector fields. For a general Lie algebroid $A \longrightarrow M$, we denote its anchor by ρ_A and bracket by $[\cdot, \cdot]_A$ (or simply ρ and $[\cdot, \cdot]$ if there is no risk of confusion). Given vector bundles $A \to M$ and $B \to M$, vector bundle maps $A \to B$ in this paper are assumed to cover the identity map (unless otherwise stated). Einstein's summation convention is consistently used throughout the paper.
- 1.2. **Acknowledgements.** Bursztyn and Cabrera thank CNPq (the Brazilian National Research Council) for financial support. Ortiz was supported by a PEC-PG scholarship from CAPES. We thank the referees for their comments.

2. Tangent and cotangent structures

In this section, we briefly recall tangent and cotangent algebroids and groupoids, following [12, 13], where readers can find more details.

2.1. **Tangent and cotangent Lie groupoids.** Let \mathcal{G} be a Lie groupoid over M, with Lie algebroid $A\mathcal{G}$ (if there is no risk of confusion, we may denote $A\mathcal{G}$ simply by A). The tangent bundle $T\mathcal{G}$ has a natural Lie groupoid structure over TM, with source (resp. target) map given by $Ts: T\mathcal{G} \longrightarrow TM$ (resp. $Tt: T\mathcal{G} \longrightarrow TM$). The multiplication on $T\mathcal{G}$ is defined by $Tm: T\mathcal{G}^{(2)} = (T\mathcal{G})^{(2)} \longrightarrow T\mathcal{G}$. We refer to this groupoid as the **tangent groupoid** of \mathcal{G} .

The cotangent bundle $T^*\mathcal{G}$ has a Lie groupoid structure over A^* , known as the **cotangent groupoid** of \mathcal{G} . The source and target maps are given by

$$\tilde{\mathsf{s}}(\alpha_q)u = \alpha_q(Tl_q(u - T\mathsf{t}(u))), \qquad \tilde{\mathsf{t}}(\beta_q)v = \beta_q(Tr_q(v))$$

where $\alpha_g, \beta_g \in T_g^*\mathcal{G}$, $u \in A_{s(g)}$, and $v \in A_{t(g)}$. Here $l_g : \mathsf{t}^{-1}(\mathsf{s}(g)) \longrightarrow \mathsf{t}^{-1}(\mathsf{t}(g))$ and $r_g : \mathsf{s}^{-1}(\mathsf{t}(g)) \longrightarrow \mathsf{s}^{-1}(\mathsf{s}(g))$ denote the left and right multiplications by $g \in \mathcal{G}$, respectively. The multiplication on $T^*\mathcal{G}$, denoted by \circ , is defined by

(2.3)
$$\alpha_g \circ \beta_h(Tm(X_g, Y_h)) = \alpha_g(X_g) + \beta_h(Y_h),$$
 for $(X_g, Y_h) \in T_{(g,h)}\mathcal{G}^{(2)}$.

2.2. Tangent double vector bundles and duals. Let $q_A : A \longrightarrow M$ be a vector bundle. There is a natural double vector bundle [12, 15] associated with it, referred to

as the **tangent double vector bundle** of A, and defined by the following diagram:

$$(2.4) TA \xrightarrow{Tq_A} TM \downarrow p_M \downarrow p_M A \xrightarrow{q_A} M$$

Here the vertical arrows are the usual tangent bundle structures. Similarly, one can consider the tangent double vector bundle of $q_{A^*}: A^* \longrightarrow M$, which defines a double vector bundle TA^* :

$$(2.5) TA^* \xrightarrow{Tq_{A^*}} TM \\ \downarrow^{p_M} \\ A^* \xrightarrow{q_{A^*}} M$$

It will be useful to consider coordinates on these bundles. If (x^j) , $j = 1, \ldots, \dim(M)$, are local coordinates on M and $\{e_d\}$, $d = 1, \ldots, \operatorname{rank}(A)$, is a basis of local sections of A, we write the corresponding coordinates on A as (x^j, u^d) and tangent coordinates on TA as $(x^j, u^d, \dot{x}^j, \dot{u}^d)$. For each $x = (x^j)$, note that (u^d) specifies a point in A_x , (\dot{x}^j) gives a point in T_xM , whereas (\dot{u}^d) determines a point on a second copy of A_x , tangent to the fibres of $A \longrightarrow M$, known as the core of TA (defined by $\ker(p_A) \cap \ker(Tq_A)$, see [12, 15]). Similarly, we have local coordinates (x^j, ξ_d) on A^* (relative to the basis $\{e^d\}$, dual to $\{e_d\}$), and tangent coordinates $(x^j, \xi_d, \dot{x}^j, \dot{\xi}_d)$, where now the coordinates $(\dot{\xi}_d)$ represent the core directions.

Let $T^{\bullet}A \longrightarrow TM$ be the vector bundle defined by dualizing the fibres of $Tq_A: TA \longrightarrow TM$, $(x^j, u^d, \dot{x}^j, \dot{u}^d) \mapsto (x^j, \dot{x}^j)$. This fits into the double vector bundle

$$(2.6) T^{\bullet}A \longrightarrow TM \\ \downarrow \qquad \qquad \downarrow p_{M} \\ A^{*} \xrightarrow{q_{A^{*}}} M$$

Here the vertical map $T^{\bullet}A \to A^*$ is defined by $(x^j, \zeta_d, \dot{x}^j, \eta_d) \mapsto (x^j, \eta_d)$, where $T^{\bullet}A$ is locally written as $(x^j, \zeta_d, \dot{x}^j, \eta_d)$, with (ζ_d) dual to (u^d) , and (η_d) dual to (\dot{u}^d) .

The double vector bundles (2.5) and (2.6) turn out to be isomorphic: as shown in [13, Prop. 5.3], by applying the tangent functor to the natural pairing $A^* \times_M A \longrightarrow \mathbb{R}$ (followed by the fibre projection $T\mathbb{R} \to \mathbb{R}$) one obtains a nondegenerate pairing $TA^* \times_{TM} TA \longrightarrow \mathbb{R}$, which induces an isomorphism of double vector bundles

$$(2.7) I: TA^* \longrightarrow T^{\bullet}A.$$

Locally, this identification amounts to the flip

$$(x^j, \xi_d, \dot{x}^j, \dot{\xi}_d) \mapsto (x^j, \dot{\xi}_d, \dot{x}^j, \xi_d).$$

The cotangent bundle T^*A can be locally written in coordinates (x^j, u^d, p_j, ζ_d) , where (p_j) determines a point in T_x^*M and ζ_d in A_x^* (dual to the direction tangent to the fibres $A \longrightarrow M$). If $c_A : T^*A \longrightarrow A$, $c_A(x^j, u^d, p_j, \zeta_d) = (x^j, u^d)$ denotes the

natural projection, we see that T^*A fits into the following double vector bundle:

$$(2.8) T^*A \xrightarrow{r} A^*$$

$$c_A \downarrow \qquad \qquad \downarrow q_{A^*}$$

$$A \xrightarrow{q_A} M$$

where the bundle projection $r: T^*A \longrightarrow A^*$ is given locally by $r(x^j, u^d, p_j, \zeta_d) = (x^j, \zeta_d)$. The same construction can be applied to the vector bundle $A^* \longrightarrow M$, yielding a double vector bundle structure for T^*A^* . These double vector bundles can be identified by a Legendre type transform [13, Thm. 5.5] (c.f. [18]):

$$(2.9) R: T^*A^* \longrightarrow T^*A,$$

given locally by $(x^j, \xi_d, p_j, u^d) \mapsto (x^j, u^d, -p_j, \xi_d)$.

There are two other identifications involving tangent and cotangent double vector bundles that we need to recall. For an arbitrary manifold M, we first have the canonical involution

$$(2.10) \qquad TTM \xrightarrow{J_M} TTM$$

$$\downarrow^{Tp_M} \qquad \downarrow^{Tp_M}$$

$$TM \xrightarrow{\text{Id}} TM$$

which is an isomorphism of double vector bundles (restricting to the identity on side bundles and cores). Writing local coordinates (x^j, \dot{x}^j) for TM, and tangent coordinates $(x^j, \dot{x}^j, \delta x^j, \delta \dot{x}^j)$ for T(TM), J_M is given by

$$J_M(x^j, \dot{x}^j, \delta x^j, \delta \dot{x}^j) = (x^j, \delta x^j, \dot{x}^j, \delta \dot{x}^j).$$

There is also an isomorphism of double vector bundles (also restricting to the identity on side bundles and cores),

$$(2.11) \Theta_M: TT^*M \longrightarrow T^*TM,$$

defined in local coordinates by

$$\Theta_M(x^j, p_j, \dot{x}^j, \dot{p}_j) = (x^j, \dot{x}^j, \dot{p}_j, p_j).$$

Here (x^j,p_j) are cotangent coordinates on T^*M . Equivalently, $\Theta_M=J_M^*\circ I_M$, where $J_M^*:T^{\bullet}TM\longrightarrow T^*TM$ is the dual of (2.10), and

$$(2.12) I_M: TT^*M \longrightarrow T^{\bullet}TM$$

is as in (2.7) (with A = TM).

2.3. Tangent and cotangent Lie algebroids. Suppose that the vector bundle $A \longrightarrow M$ carries a Lie algebroid structure, which can be equivalently described by a fibrewise linear Poisson structure on A^* (see e.g. [4, Sec. 16.5]). Since any Poisson structure on a manifold defines a Lie algebroid structure on its cotangent bundle (see e.g. [4, Sec. 17.3]), we obtain a Lie algebroid structure on T^*A^* ; it follows that TA^* inherits a Poisson structure, which turns out to be linear with respect to both vector bundle structures on TA^* (2.5). Hence the vector bundle $T^{\bullet}A^* \longrightarrow TM$, dual to $TA^* \longrightarrow TM$, is a Lie algebroid. Using the identification $T^{\bullet}A^* \cong TA$ as in (2.7),

we obtain a Lie algebroid structure on $TA \longrightarrow TM$, referred to as the **tangent Lie** algebroid of A.

To describe this algebroid structure more explicitly, we recall that any section $u \in \Gamma(A)$ gives rise to two types of sections on TA: the first one is just $Tu: TM \to TA$, and the second one, denoted by \widehat{u} , identifies u at each point with a core element in TA; locally, using coordinates (x^j, u^d) for A and $(x^j, u^d, \dot{x}^j, \dot{u}^d)$ for TA, $\widehat{u}: TM \to TA$ is defined by

(2.13)
$$\widehat{u}(x^j, \dot{x}^j) = (x^j, 0, \dot{x}^j, u^d(x)).$$

These two types of sections generate the space of sections of $TA \longrightarrow TM$. The Lie algebroid structure on TA is completely described in terms of these sections by the relations [13]:

$$[\widehat{u},\widehat{v}]_{TA} = 0, \quad [Tu,\widehat{v}]_{TA} = \widehat{[u,v]}_{A}, \quad [Tu,Tv]_{TA} = T[u,v]_{A},$$

for $u, v \in \Gamma(A)$; the anchor map is $\rho_{TA} = J_M \circ T \rho_A$, where $J_M : T(TM) \longrightarrow T(TM)$ is as in (2.10).

On the other hand, since $T^*A^* \to A^*$ is a Lie algebroid (defined by the linear Poisson structure on A^*), one can induce a Lie algebroid structure on $r: T^*A \to A^*$ using the identification (2.9). This is known as the **cotangent Lie algebroid** of A. Explicit formulas for its bracket and anchor will be recalled in Section 4.3.

Suppose that $A = A\mathcal{G}$ is the Lie algebroid of a Lie groupoid \mathcal{G} , and consider the natural inclusion $i_{A\mathcal{G}} : A\mathcal{G} \longrightarrow T\mathcal{G}$, which is a bundle map over the identity section $M \hookrightarrow \mathcal{G}$. Then the canonical involution $J_{\mathcal{G}} : T(T\mathcal{G}) \longrightarrow T(T\mathcal{G})$ (2.10) restricts to a Lie algebroid isomorphism

$$(2.15) j_{\mathcal{G}}: T(A\mathcal{G}) \longrightarrow A(T\mathcal{G}).$$

In other words, we have a commutative diagram

(2.16)
$$T(A\mathcal{G}) \xrightarrow{j_{\mathcal{G}}} A(T\mathcal{G})$$

$$T_{i_{A\mathcal{G}}} \downarrow \qquad \qquad \downarrow i_{A(T\mathcal{G})}$$

$$T(T\mathcal{G}) \xrightarrow{J_{\mathcal{G}}} T(T\mathcal{G})$$

The canonical pairing $T^*\mathcal{G} \times_{\mathcal{G}} T\mathcal{G} \longrightarrow \mathbb{R}$ is a morphism of groupoids, and applying the Lie functor one obtains a nondegenerate pairing $A(T^*\mathcal{G}) \times_{A\mathcal{G}} A(T\mathcal{G}) \longrightarrow \mathbb{R}$, explicitly given by

$$\langle U, V \rangle = \big\langle I_{\mathcal{G}}(i_{A(T^*\mathcal{G})}(U)), i_{A(T\mathcal{G})}(V) \big\rangle,$$

where $U \in A(T^*\mathcal{G})$, $V \in A(T\mathcal{G})$, and $I_{\mathcal{G}}$ is as in (2.12). This induces an isomorphism $A(T^*\mathcal{G}) \longrightarrow A^{\bullet}(T\mathcal{G})$, where $A^{\bullet}(T\mathcal{G})$ is obtained by dualizing the fibres of $A(T\mathcal{G}) \longrightarrow A(\mathcal{G})$, and the composition of this map with $j_{\mathcal{G}}^* : A^{\bullet}(T\mathcal{G}) \longrightarrow T^*(A\mathcal{G})$ defines a Lie algebroid isomorphism

(2.17)
$$\theta_{\mathcal{G}}: A(T^*\mathcal{G}) \longrightarrow T^*(A\mathcal{G})$$

Alternatively, one can check that $\theta_{\mathcal{G}} = (Ti_{A\mathcal{G}})^* \circ \Theta_{\mathcal{G}} \circ i_{A(T^*\mathcal{G})}$, where $(Ti_{A\mathcal{G}})^* : i_{A\mathcal{G}}^*T^*(T\mathcal{G}) \longrightarrow T^*(A\mathcal{G})$ is dual to the tangent map $Ti_{A\mathcal{G}} : T(A\mathcal{G}) \longrightarrow i_{A\mathcal{G}}^*T(T\mathcal{G})$.

3. Tangent lifts and the Lie functor

We now discuss how multiplicative forms on Lie groupoids relate to differential forms on Lie algebroids. As a first step, we need to recall a natural operation that lifts differential forms on a manifold to its tangent bundle,

(3.18)
$$\Omega^k(M) \longrightarrow \Omega^k(TM), \quad \alpha \mapsto \alpha_T,$$

known as the tangent (or complete) lift, see [10, 20].

3.1. Tangent lifts of differential forms. The properties of tangent lifts recalled in this subsection can be found (often in more generality) in [10]; we included the proofs of some key facts for the sake of completeness.

Given the tangent bundle $p_M: TM \longrightarrow M$, $(x^j, \dot{x}^j) \mapsto (x^j)$, consider the two vector bundle structures associated with T(TM):

$$(3.19) T(TM) \xrightarrow{Tp_M} TM$$

$$\downarrow p_{TM} \downarrow \qquad \qquad TM.$$

where $p_{TM}(x^j, \dot{x}^j, \delta x^j, \delta \dot{x}^j) = (x^j, \dot{x}^j)$ and $Tp_M(x^j, \dot{x}^j, \delta x^j, \delta \dot{x}^j) = (x^j, \delta x^j)$. We use the notation

$$T(TM)\times_{{\scriptscriptstyle Tp}_M}T(TM), \quad T(TM)\times_{{\scriptscriptstyle p}_{TM}}T(TM),$$

to specify the vector bundle structure used for fibre products over TM; more general k-fold fibre products over TM are denoted by

$$\prod_{Tp_M}^k T(TM), \quad \prod_{p_{TM}}^k T(TM).$$

Using the involution (2.10), given by $J_M(x^j, \dot{x}^j, \delta x^j, \delta \dot{x}^j) = (x^j, \delta x^j, \dot{x}^j, \delta \dot{x}^j)$ in local coordinates, we obtain a natural isomorphism

$$(3.20) J_M^{(k)}: \prod_{p_{TM}}^k T(TM) \longrightarrow \prod_{Tp_M}^k T(TM).$$

Given a k-form $\alpha \in \Omega^k(M)$, $k \geq 1$, consider the bundle map

(3.21)
$$\alpha^{\sharp}: \prod_{n_M} TM \longrightarrow T^*M, \quad \alpha^{\sharp}(X_1, \dots, X_{k-1}) = i_{X_{k-1}} \dots i_{X_1} \alpha.$$

(For $k=1, \alpha^{\sharp}: M \longrightarrow T^{*}M$ is just α viewed as a section of $T^{*}M$.) Using the natural identification $T(\prod_{p_{M}}^{k}TM)=\prod_{T_{p_{M}}}^{k}T(TM)$, we consider the tangent map

$$T\alpha^{\sharp}:\prod_{T_{p_M}}^{k-1}T(TM)\longrightarrow T(T^*M).$$

The tangent (or complete) lift of a k-form on M is defined as follows (c.f. [20]):

• If $f \in \Omega^0(M) = C^{\infty}(M)$, then $f_T \in C^{\infty}(TM)$ is the fibrewise linear function on TM defined by df,

$$f_T(X) = (df)_{p_M(X)}(X), X \in TM.$$

• If $\alpha \in \Omega^k(M)$, $k \geq 1$, we define

$$(\alpha_T)^{\sharp}: \prod_{p_{TM}}^{k-1} T(TM) \longrightarrow T^*(TM), \quad (\alpha_T)^{\sharp}:= \Theta_M \circ T\alpha^{\sharp} \circ J_M^{(k-1)},$$

and then $\alpha_T \in \Omega^k(TM)$ is given by

$$\alpha_T(U_1,\ldots,U_k) := \left\langle \alpha_T^{\sharp}(U_1,\ldots,U_{k-1}), U_k \right\rangle.$$

One can directly verify that α_T is multilinear. The fact that it is indeed a k-form on TM follows from the next lemma (c.f. [10, 20]).

Lemma 3.1. The following holds:

- (i) For $f \in C^{\infty}(M)$, $df_T = (df)_T$.
- (ii) For $f \in C^{\infty}(M)$, $\alpha \in \Omega^k(M)$,

$$(f\alpha)_T = f_T \alpha^{\vee} + f^{\vee} \alpha_T,$$

where $\beta^{\vee} = p_M^* \beta$ for any $\beta \in \Omega^l(M)$.

(iii) For $k \geq 2$, the tangent lift $(dx^{i_1} \wedge \ldots \wedge dx^{i_k})_T$ equals

$$\sum_{m=1}^{k} (dx^{i_1})^{\vee} \wedge \ldots \wedge (dx^{i_{m-1}})^{\vee} \wedge (dx^{i_m})_T \wedge (dx^{i_{m+1}})^{\vee} \wedge \ldots \wedge (dx^{i_k})^{\vee}.$$

(Whenever there is no risk of confusion, we write $(dx^j)^{\vee}$ simply as dx^j .)

Proof. To verify (i), let us consider $X \in TM$ and $U \in T_X(TM)$. In local coordinates, we write $X = (x^j, \dot{x}^j)$ and $U = (x^j, \dot{x}^j, \delta x^j, \delta \dot{x}^j)$. Then $f_T(X) = \frac{\partial f}{\partial x^i} \dot{x}^i$, and

(3.22)
$$d(f_T)_X(U) = \frac{\partial^2 f}{\partial x^j \partial x^i} \dot{x}^i \delta x^j + \frac{\partial f}{\partial x^j} \delta \dot{x}^j.$$

On the other hand, we may view df as a section

$$(df)^{\sharp}: M \longrightarrow T^*M, \quad x = (x^j) \mapsto (x^j, \frac{\partial f}{\partial x^j}).$$

Hence $T(df)^{\sharp}:TM\longrightarrow T(T^{*}M)$ is given by

$$T(df)^{\sharp}(x^{j},\dot{x}^{j}) = (x^{j}, \frac{\partial f}{\partial x^{j}}, \dot{x}^{j}, \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}} \dot{x}^{i}),$$

and, as a consequence,

$$(df)_T(x^j, \dot{x}^j) = \Theta_M(T(df)^{\sharp}(x^j, \dot{x}^j)) = (x^j, \dot{x}^j, \frac{\partial^2 f}{\partial x^i \partial x^j} \dot{x}^i, \frac{\partial f}{\partial x^j}).$$

It immediately follows that $((df)_T)_X(U)$ agrees with (3.22).

Let us show that (ii) holds for k > 1 (the cases k = 0, 1 are simpler). One can directly check that $(f\alpha)^{\sharp} = f\alpha^{\sharp}$ and

$$T(f\alpha)^{\sharp}(U_1,\ldots,U_{k-1}) = \alpha^{\sharp}(X_1,\ldots,X_{k-1})(df)_x(Y) + f(x)T\alpha^{\sharp}(U_1,\ldots,U_{k-1}),$$

where $X_i = p_{TM}(U_i) \in T_xM$, and $Y = (p_M)_*(U_1) = \dots = (p_M)_*(U_{k-1})$. In the last formula, addition and multiplication by scalars are with respect to the vector bundle structure $T(T^*M) \longrightarrow TM$ (in the fibre over $Y \in T_xM$), and $\alpha^{\sharp}(X_1, \dots, X_{k-1}) \in T_x^*M$ is viewed inside $T(T^*M)$ as the core (i.e., tangent to T^*M -fibres). Since

 $\Theta_M: T(T^*M) \longrightarrow T^*(TM)$ is a double vector bundle isomorphism restricting to the identity on side bundle and cores, we have

(3.23)
$$\Theta_{M}T(f\alpha)^{\sharp}(U_{1},\ldots,U_{k-1}) = \alpha^{\sharp}(X_{1},\ldots,X_{k-1})(df)_{x}(Y) + f(x)\Theta_{M}T\alpha^{\sharp}(U_{1},\ldots,U_{k-1}),$$

where now the addition and scalar multiplication operations are relative to the vector bundle $T^*(TM) \longrightarrow TM$, and $\alpha^{\sharp}(X_1,\ldots,X_{k-1})$ belongs to the core fibre in $T^*(TM)$ (i.e., cotangent to M). Writing $(U_1,\ldots,U_{k-1})=J_M^{(k-1)}(V_1,\ldots,V_{k-1})$, then $X_i=(p_M)_*(V_i)$ and $Y=p_{TM}(V_i)$, so (3.23) yields

$$(f\alpha)_T^{\sharp} = (f_T \alpha^{\vee} + f^{\vee} \alpha_T)^{\sharp}.$$

Let us now prove (iii). Note that

$$(dx^{i_1} \wedge \ldots \wedge dx^{i_k})^{\sharp}(X_1, \ldots, X_{k-1}) = \sum_{\sigma \in S_k} (-1)^{\sigma} \dot{x}_1^{i_{\sigma(1)}} \ldots \dot{x}_{k-1}^{i_{\sigma(k-1)}} dx^{i_{\sigma(k)}},$$

where $X_l = (x^j, \dot{x}_l^j) \in T_x M$. Then $\langle \Theta_M(T(dx^{i_1} \wedge \ldots \wedge dx^{i_k})^{\sharp}(U_1, \ldots, U_{k-1})), V_k \rangle$ equals

(3.24)
$$\sum_{\sigma \in S_k} (-1)^{\sigma} \sum_{n=1}^k \dot{x}_1^{i_{\sigma(1)}} \dots \dot{x}_{n-1}^{i_{\sigma(n-1)}} (\delta \dot{x})_n^{i_{\sigma(n)}} \dot{x}_{n+1}^{i_{\sigma(n+1)}} \dots \dot{x}_k^{i_{\sigma(k)}},$$

where $U_l = (x^j, \dot{x}_l^j, (\delta x)^j, (\delta \dot{x})_l^j)$ and $V_k = (x^j, (\delta x)^j, \dot{x}_k^j, (\delta \dot{x})_k^j)$. Since $(dx^j)_T = d\dot{x}^j$ (by (i)), one checks that

$$\sum_{n=1}^{k} (dx^{i_1})^{\vee} \wedge \ldots \wedge (dx^{i_{n-1}})^{\vee} \wedge (dx^{i_n})_T \wedge (dx^{i_{n+1}})^{\vee} \wedge \ldots \wedge (dx^{i_k})^{\vee} (V_1, \ldots, V_k),$$

where $V_l = (x^j, (\delta x)^j, \dot{x}_l^j, (\delta \dot{x})_l^j)$ (so that $J_M(V_l) = U_l$), equals

$$\sum_{\sigma \in S_k} (-1)^{\sigma} \sum_{n=1}^k \dot{x}_{\sigma(1)}^{i_1} \dots \dot{x}_{\sigma(n-1)}^{i_{n-1}} (\delta \dot{x})_{\sigma(n)}^{i_n} \dot{x}_{\sigma(n+1)}^{i_{n+1}} \dots \dot{x}_{\sigma(k)}^{i_k},$$

which agrees with (3.24) after reshuffling indices.

Let us now consider the operation

(3.25)
$$\tau: \Omega^k(M) \longrightarrow \Omega^{k-1}(TM), \ \tau(\alpha)_X = p_M^*(i_X\alpha),$$

where $X \in TM$ and $k \ge 1$. In other words, given $U_1, \ldots, U_{k-1} \in T_X(TM)$,

$$\tau(\alpha)_X(U_1,\ldots,U_{k-1}) = \alpha(X,(p_M)_*(U_1),\ldots,(p_M)_*(U_{k-1})).$$

In coordinates, writing $\alpha = \frac{1}{k!} \alpha_{i_1...i_k}(x) dx^{i_1} \wedge ... \wedge dx^{i_k}$ (with $\alpha_{i_1...i_k}$ totally antisymmetric), we have

$$\tau(\alpha)_X = \frac{1}{(k-1)!} \alpha_{i_1 \dots i_k}(x) X^{i_1} dx^{i_2} \wedge \dots \wedge dx^{i_k}.$$

Example 3.2. Consider the map $\omega^{\sharp}: TM \longrightarrow T^*M$, $\omega^{\sharp}(X) = i_X \omega$, associated with a 2-form $\omega \in \Omega^2(M)$. A direct computation shows that

$$\tau(\omega) = (\omega^{\sharp})^* \theta_{can},$$

where $\theta_{can} \in \Omega^1(T^*M)$ is the canonical 1-form, $\theta_{can} = p_i dx^i$.

The tangent lift operation is defined by the following Cartan-like formula (c.f. [10]).

Proposition 3.3. For $\alpha \in \Omega^k(M)$, its tangent lift is given by the formula

(3.26)
$$\alpha_T = d\tau(\alpha) + \tau(d\alpha).$$

Proof. It suffices to check (3.26) locally, so we replace M by a neighborhood with coordinates (x^j) , so that TM has coordinates (x^j, \dot{x}^j) . Let us consider the vector field V on TM defined by

$$V_X := \dot{x}^j \frac{\partial}{\partial x^j} \in T_X(TM),$$

where $X = (x^j, \dot{x}^j) \in TM$. This vector field has the property that $Tp_M(V_X) = X$. One can directly check that

(3.27)
$$f_T = \mathcal{L}_V(p_M^* f), \text{ and } (dx^j)_T = d\dot{x}^j = \mathcal{L}_V(p_M^* dx^j),$$

where $f \in C^{\infty}(M)$. From the definition of τ , it immediately follows that

(3.28)
$$\tau(\beta) = i_V p_M^* \beta, \quad \beta \in \Omega^k(M).$$

Given $\alpha = \frac{1}{k!} \alpha_{i_1...i_k}(x) dx^{i_1} \wedge ... \wedge dx^{i_k}$, using Lemma 3.1 we obtain

$$\alpha_{T} = \frac{1}{k!} (\alpha_{i_{1}...i_{k}})_{T} p_{M}^{*} (dx^{i_{1}} \wedge ... \wedge dx^{i_{k}}) + \frac{1}{k!} p_{M}^{*} \alpha_{i_{1}...i_{k}} (dx^{i_{1}} \wedge ... \wedge dx^{i_{k}})_{T}$$

$$= \frac{1}{k!} (\alpha_{i_{1}...i_{k}})_{T} p_{M}^{*} (dx^{i_{1}} \wedge ... \wedge dx^{i_{k}}) +$$

$$\frac{k}{k!} \sum_{i=1}^{k} (dx^{i_{1}...i_{k}})_{T} p_{M}^{*} (dx^{i_{1}} \wedge ... \wedge dx^{i_{k}}) + \frac{k}{k!} \sum_{i=1}^{k} (dx^{i_{1}...i_{k}})_{T} p_{M}^{*} (dx^{i_{1}} \wedge ... \wedge dx^{i_{k}}) + \frac{k}{k!} \sum_{i=1}^{k} (dx^{i_{1}...i_{k}})_{T} p_{M}^{*} (dx^{i_{1}} \wedge ... \wedge dx^{i_{k}}) + \frac{k}{k!} \sum_{i=1}^{k} (dx^{i_{1}...i_{k}})_{T} p_{M}^{*} (dx^{i_{1}} \wedge ... \wedge dx^{i_{k}}) + \frac{k}{k!} \sum_{i=1}^{k} (dx^{i_{1}...i_{k}})_{T} p_{M}^{*} (dx^{i_{1}} \wedge ... \wedge dx^{i_{k}})_{T} p_{M}^{*} (dx^{i_{1}} \wedge ... \wedge dx^{i_{1}})_{T} p_{M}^{*} (dx^{i_{1}} \wedge ... \wedge dx^{i_{1}})_{T} p_{M}^{*} (dx^{i_{1}} \wedge ... \wedge dx^{i_{1}})_{T} p_{M}^{*} (dx^{i_$$

$$\frac{1}{k!}p_M^*\alpha_{i_1\dots i_k}\sum_{n=1}^k dx^{i_1}\wedge\dots\wedge(dx^{i_n})_T\wedge\dots\wedge dx^{i_k}.$$

It then follows from (3.27) that $\alpha_T = \mathcal{L}_V p_M^* \alpha$. Using (3.28) and Cartan's formula, we have

$$\alpha_T = d(i_V p_M^* \alpha) + i_V p_M^* d\alpha = d\tau(\alpha) + \tau(d\alpha).$$

Example 3.4. From Example 3.2, it follows that if $\omega \in \Omega^2(M)$, then

$$\omega_T = -(\omega^{\sharp})^* \omega_{can} + \tau(d\omega).$$

Here $\omega_{can} = -d\theta_{can} = dx^i \wedge dp_i$ is the canonical symplectic form on T^*M . (For the tangent lift of closed 2-forms, see also [8, Sec. 3]).

An immediate consequence of (3.26) is the fact that tangent lifts and exterior derivatives commute.

Corollary 3.5. For $\alpha \in \Omega^k(M)$, $d(\alpha_T) = (d\alpha)_T$.

3.2. Lie functor on multiplicative differential forms. Let \mathcal{G} be a Lie groupoid over M, $A = A\mathcal{G}$ its Lie algebroid, and let $\alpha \in \Omega^k(\mathcal{G})$. We can define an induced k-form on A by pulling back the tangent lift $\alpha_T \in \Omega^k(T\mathcal{G})$ via the inclusion $i_A : A \longrightarrow T\mathcal{G}$. This section discusses this operation when α is multiplicative.

Recall that a k-form $\alpha \in \Omega^k(\mathcal{G})$ is multiplicative if

$$(3.29) m^*\alpha = p_1^*\alpha + p_2^*\alpha,$$

where $p_1, p_2 : \mathcal{G}^{(2)} \to \mathcal{G}$ are the natural projections, and m is the groupoid multiplication. We denote the associated k-form on A by

(3.30)
$$\operatorname{Lie}(\alpha) := i_A^* \alpha_T.$$

Note that it follows from Corollary 3.5 that

(3.31)
$$dLie(\alpha) = Lie(d\alpha).$$

In order to explain in which sense $Lie(\alpha)$ is the infinitesimal counterpart of α , we will need a known alternative characterization of multiplicative forms.

The tangent groupoid structure on the tangent bundle $p_{\mathcal{G}}: T\mathcal{G} \longrightarrow \mathcal{G}$ over TM induces a groupoid structure on the direct sum

$$\prod_{p_G}^n T\mathcal{G} = T\mathcal{G} \oplus \ldots \oplus T\mathcal{G}$$

over the base $\prod_{n=1}^{n} TM = TM \oplus \ldots \oplus TM$ in a canonical way.

Lemma 3.6. A k-form $\alpha \in \Omega^k(\mathcal{G})$ $(k \geq 1)$ is multiplicative if and only if the bundle map $\alpha^{\sharp}: \prod_{p_{\mathcal{G}}}^{k-1} T\mathcal{G} \longrightarrow T^*\mathcal{G}$ (see (3.21)) is a groupoid morphism.

Proof. Let us consider the following identities, obtained by differentiating basic identities on any Lie groupoid (see [3, Lem. 3.1]):

$$(3.32) (Tm)_{(t(q),q)}(Tt(X),X) = X = (Tm)_{(q,s(q))}(X,Ts(X)), \ \forall X \in T_q \mathcal{G},$$

$$(3.33) \qquad (Tr_g)_{\mathsf{t}(g)}(u) = (Tm)_{(\mathsf{t}(g),g)}(u,0), \quad (Tl_g)_{\mathsf{s}(g)}(v) = (Tm)_{(g,\mathsf{s}(g))}(0,v)$$

where $u \in A_{\mathsf{t}(g)} = \mathrm{Ker}(Ts)|_{\mathsf{t}(g)}$ and $v \in \mathrm{Ker}(Tt)|_{\mathsf{s}(g)}$. Using the first identities in (3.32) and (3.33), we see that if α is multiplicative, then by (3.29) we have

$$\alpha(Tt(X_1), \dots, Tt(X_{k-1}), u) = \alpha(X_1, \dots, X_{k-1}, Tr_g(u)),$$

where $X_i \in T_g \mathcal{G}, u \in A_{\mathsf{t}(g)}$. This is precisely the compatibility of α^{\sharp} with the target maps on $\prod_{pg}^{k-1} T\mathcal{G}$ and $T^*\mathcal{G}$. Similarly, note that (3.32) and (3.29) imply that, if $Z_1, \ldots, Z_k \in TM$, then $\alpha(Z_1, \ldots, Z_k) = 0$. Using this fact, along with (3.29) and the second identities in (3.32) and (3.33), we obtain the compatibility between α^{\sharp} and source maps:

$$\alpha(Ts(X_1), \dots, Ts(X_{k-1}), u) = \alpha(X_1, \dots, X_{k-1}, Tl_q(u - Tt(u))),$$

where $X_i \in T_g \mathcal{G}, u \in A_{\mathsf{t}(g)}$.

Assuming that α^{\sharp} is compatible with source and target maps, we see that it is a groupoid morphism if and only if

$$\alpha^{\sharp}(Tm(X_1, Y_1), \dots, Tm(X_{k-1}, Y_{k-1})) = \alpha^{\sharp}(X_1, \dots, X_{k-1}) \circ \alpha^{\sharp}(Y_1, \dots, Y_{k-1}).$$

By evaluating each side of the last equation on $Tm(X_k, Y_k)$, we see that this condition is equivalent to

$$\alpha(Tm(X_1, Y_1), \dots, Tm(X_k, Y_k)) = \alpha(X_1, \dots, X_k) + \alpha(Y_1, \dots, Y_k),$$

which is precisely the multiplicativity condition (3.29).

Given a groupoid morphism $\psi: \mathcal{G}_1 \longrightarrow \mathcal{G}_2$, we denote the associated morphism of Lie algebroids (given by the restriction of $T\psi: T\mathcal{G}_1 \longrightarrow T\mathcal{G}_2$ to $A\mathcal{G}_1 \subset T\mathcal{G}_1$) by

$$Lie(\psi): A\mathcal{G}_1 \longrightarrow A\mathcal{G}_2.$$

The natural projection $p_{\mathcal{G}}: T\mathcal{G} \to \mathcal{G}$ is a groupoid morphism, and one can directly verify that there is a canonical identification

$$A(\prod_{p_{\mathcal{G}}}^{k-1}T\mathcal{G}) = \prod_{\mathrm{Lie}(p_{\mathcal{G}})}^{k-1}A(T\mathcal{G}).$$

Using this identification we get, for any given multiplicative k-form $\alpha \in \Omega^k(\mathcal{G})$, a Lie algebroid morphism

(3.34)
$$\operatorname{Lie}(\alpha^{\sharp}): \prod_{\operatorname{Lie}(p_{\mathcal{G}})}^{k-1} A(T\mathcal{G}) \longrightarrow A(T^{*}\mathcal{G}).$$

The isomorphism $j_{\mathcal{G}}: T(A\mathcal{G}) \xrightarrow{\sim} A(T\mathcal{G})$, see (2.15), induces an identification

$$j_{\mathcal{G}}^{(k)}: \prod_{p_A}^k T(A\mathcal{G}) \longrightarrow \prod_{\text{Lie}(p_{\mathcal{G}})}^k A(T\mathcal{G}).$$

Recall the isomorphism $\theta_{\mathcal{G}}: A(T^*\mathcal{G}) \to T^*(A\mathcal{G})$ defined in (2.17).

Proposition 3.7. For a multiplicative k-form $\alpha \in \Omega^k(\mathcal{G})$, $\operatorname{Lie}(\alpha)$ and $\operatorname{Lie}(\alpha^{\sharp})$ are related by

$$\operatorname{Lie}(\alpha)^{\sharp} = \theta_{\mathcal{G}} \circ \operatorname{Lie}(\alpha^{\sharp}) \circ j_{\mathcal{G}}^{(k-1)} : \prod_{j=1}^{k-1} T(A\mathcal{G}) \longrightarrow T^{*}(A\mathcal{G}).$$

Proof. Recall that $\theta_{\mathcal{G}} = (Ti_{A\mathcal{G}})^* \circ \Theta_{\mathcal{G}} \circ i_{A(T^*\mathcal{G})}$ and $J_{\mathcal{G}} \circ Ti_{A\mathcal{G}} = i_{A(T\mathcal{G})} \circ j_{\mathcal{G}}$. This last identity immediately implies that

$$J_{\mathcal{G}}^{(k)} \circ (\prod_{i=1}^k Ti_{A\mathcal{G}}) = (\prod_{i=1}^k i_{A(T\mathcal{G})}) \circ j_{\mathcal{G}}^{(k)}.$$

Since $i_{A(T^*\mathcal{G})} \circ \text{Lie}(\alpha^{\sharp}) = T\alpha^{\sharp} \circ \prod^{k-1} i_{A(T\mathcal{G})}$, it follows that

$$\theta_{\mathcal{G}} \circ \operatorname{Lie}(\alpha^{\sharp}) \circ j_{\mathcal{G}}^{(k-1)} = (Ti_{A\mathcal{G}})^{*} \circ \Theta_{\mathcal{G}} \circ T\alpha^{\sharp} \circ \prod_{A(T\mathcal{G})}^{k-1} i_{A(T\mathcal{G})} \circ j_{\mathcal{G}}^{(k-1)}$$
$$= (Ti_{A\mathcal{G}})^{*} \circ \alpha_{T}^{\sharp} \circ (\prod_{A \in \mathcal{G}}^{k-1} Ti_{A\mathcal{G}}),$$

and this last term is $(i_A^* \alpha_T)^{\sharp} = (\text{Lie}(\alpha))^{\sharp}$.

Corollary 3.8. If $\alpha \in \Omega^k(\mathcal{G})$ is multiplicative and \mathcal{G} is s-connected, then $\alpha = 0$ if and only if $\text{Lie}(\alpha) = 0$.

Proof. If \mathcal{G} is s-connected, then $\prod_{p_{\mathcal{G}}}^{k-1} T\mathcal{G}$ also has connected source-fibres. We now use the fact that if two groupoid morphisms $\mathcal{G}_1 \longrightarrow \mathcal{G}_2$ induce the same Lie algebroid morphism and \mathcal{G}_1 has source-connected fibres, then they must coincide. Hence $\alpha^{\sharp} = 0$ if and only if $\operatorname{Lie}(\alpha^{\sharp}) = 0$. The conclusion now follows since $\alpha = 0$ (resp. $\operatorname{Lie}(\alpha) = 0$) is equivalent to $\alpha^{\sharp} = 0$ (resp. $\operatorname{Lie}(\alpha)^{\sharp} = 0$), and $\operatorname{Lie}(\alpha)^{\sharp} = 0$ if only if $\operatorname{Lie}(\alpha^{\sharp}) = 0$ by Prop. 3.7.

4. Multiplicative 2-forms and their infinitesimal counterparts

4.1. Linear 2-forms on vector bundles. Let $q: A \longrightarrow M$ be a vector bundle, and consider the double vector bundles TA and T^*A , as in Section 2.2. A 2-form $\Lambda \in \Omega^2(A)$ is called **linear** if

$$\Lambda^{\sharp}: TA \longrightarrow T^*A$$

is a morphism of double vector bundles (c.f. [11, Sec. 7.3]). In particular, there is a vector bundle map $\lambda:TM\to A^*$ (over the identity) making the following diagram commute:

$$(4.36) TA \xrightarrow{\Lambda^{\sharp}} T^*A .$$

$$Tq \downarrow \qquad \qquad \downarrow r$$

$$TM \xrightarrow{\lambda} A^*$$

In this case we say that Λ covers λ .

Remark 4.1. The fact that a bivector field π on a vector bundle A is linear is equivalent [11, 13] to the bundle map $\pi^{\sharp}: T^*A \to TA$ being a morphism of double vector bundles. Hence linear 2-forms are just their dual analogues.

It is simple to check from the definition that a linear 2-form has a local expression of the form:

(4.37)
$$\Lambda = \frac{1}{2} \Lambda_{ij}(x, u) dx^{i} \wedge dx^{j} + \Lambda_{jd}(x, u) dx^{j} \wedge du^{d}$$
$$= \frac{1}{2} \Lambda_{ij,d}(x) u^{d} dx^{i} \wedge dx^{j} + \lambda_{jd}(x) dx^{j} \wedge du^{d}.$$

where $(x, u) = (x^j, u^d)$ are local coordinates in A (relative to a local basis $\{e_d\}$), and $\lambda_{jd} = \langle \lambda(\frac{\partial}{\partial x^j}), e_d \rangle$.

Example 4.2. The canonical symplectic form $\omega_{can} = dx^j \wedge dp^j$ on the cotangent bundle T^*M is linear. Any vector bundle map $\sigma: A \longrightarrow T^*M$, locally written as $\sigma(e_d) = \sigma_{id}dx^j$, defines a linear 2-form on A by pullback,

$$\sigma^* \omega_{can} = u^d \frac{\partial \sigma_{id}}{\partial x^k} dx^i \wedge dx^k + \sigma_{id} dx^i \wedge du^d,$$

covering the map $\lambda = \sigma^t : TM \longrightarrow A^*$.

From the local expression (4.37), one can directly verify that Example 4.2 completely characterizes linear closed 2-forms:

Proposition 4.3. A linear 2-form $\Lambda \in \Omega^2(A)$ is closed if and only if it is of the form

$$\Lambda = (\lambda^t)^* \omega_{can},$$

where $\lambda^t: A \to T^*M$ is the fibrewise transpose of λ .

A proof of this result can be found in [11, Sec. 7.3].

Example 4.4. If $\omega \in \Omega^2(M)$, then its tangent lift $\omega_T \in \Omega^2(TM)$ is linear and covers the map $\lambda = \omega^{\sharp} : TM \to T^*M$. If ω is closed, then so is ω_T (it is in fact exact, by Prop. 3.3). It follows from Prop. 4.3 and the fact that $(\omega^{\sharp})^t = -\omega^{\sharp}$ that

$$\omega_T = -(\omega^{\sharp})^* \omega_{can},$$

in agreement with Example 3.4.

Example 4.5. Let $\phi \in \Omega^3(M)$ be a 3-form on M. Then the 2-form $\tau(\phi)$ on TM is linear; it covers the bundle map $\lambda : A \to T^*M$ that is zero on each fibre.

4.2. Linear 2-forms on Lie algebroids. Let $A \longrightarrow M$ be a Lie algebroid. We will discuss two natural ways to obtain linear 2-forms on A.

First, given any 3-form $\phi \in \Omega^3(M)$, we can use the anchor $\rho : A \longrightarrow TM$ to pull-back the linear 2-form $\tau(\phi)$ to A. The resulting 2-form

$$\rho^*(\tau(\phi)) \in \Omega^2(A)$$

is linear, covering the map $\lambda: TM \longrightarrow A^*$ which is zero on each fibre.

On the other hand, if $A = A\mathcal{G}$ is the Lie algebroid of a Lie groupoid \mathcal{G} , then one obtains linear 2-forms on A as infinitesimal versions of multiplicative 2-forms on \mathcal{G} :

Proposition 4.6. Let $\omega \in \Omega^2(\mathcal{G})$ be a multiplicative 2-form, and let $\lambda : TM \longrightarrow A^*$ be the defined by $\lambda(X)(u) = \omega(X, u)$, for $X \in TM$ and $u \in A$. Then

- (1) $\Lambda = \text{Lie}(\omega) \in \Omega^2(A)$ is linear and covers λ .
- (2) Given $\phi \in \Omega^3(M)$ closed and if \mathcal{G} is s-connected, then $d\omega = s^*\phi t^*\phi$ if and only if

$$\Lambda = (\lambda^t)^* \omega_{can} - \rho^* (\tau(\phi)).$$

Proof. Let us prove (1). Note that $\text{Lie}(\omega) = i_A^* \omega_T$ is linear since $\omega_T \in \Omega^2(T\mathcal{G})$ is linear, and the pull back of a linear 2-form to a vector subbundle is again linear.

From Lemma 3.6, we know that $\omega^{\sharp}: T\mathcal{G} \longrightarrow T^{*}\mathcal{G}$ is a groupoid morphism, which restricts to the map $\lambda: TM \longrightarrow A^{*}$ on identity sections. As a result, Lie(ω^{\sharp}) fits into the following commutative diagram:

$$A(T\mathcal{G}) \xrightarrow{\operatorname{Lie}(\omega^{\sharp})} A(T^*\mathcal{G})$$

$$\downarrow \qquad \qquad \downarrow$$

$$TM \xrightarrow{\lambda} A^*,$$

and it follows from Prop. 3.7 that $\Lambda = \text{Lie}(\omega)$ covers λ .

For part (2), note that

$$\operatorname{Lie}(\mathsf{s}^*\phi - \mathsf{t}^*\phi) = i_A^*(\mathsf{s}^*\phi)_T - i_A^*(\mathsf{t}^*\phi)_T.$$

From (3.26) and the fact that $d\phi = 0$, we see that $(\mathbf{s}^*\phi)_T = d\tau(\mathbf{s}^*\phi)$ and $(\mathbf{t}^*\phi)_T = d\tau(\mathbf{t}^*\phi)$. A simple computation shows that $\tau(\mathbf{s}^*\phi) = (T\mathbf{s})^*\tau(\phi)$ and $\tau(\mathbf{t}^*\phi) = (T\mathbf{t})^*\tau(\phi)$. Hence $\mathrm{Lie}(\mathbf{s}^*\phi - \mathbf{t}^*\phi) = d(i_A^*(T\mathbf{s})^*\tau(\phi) - i_A^*(T\mathbf{t})^*\tau(\phi))$. Since $T\mathbf{s} \circ i_A = 0$ (A is tangent to s-fibres) and $T\mathbf{t} \circ i_A = \rho$, we obtain $\mathrm{Lie}(\mathbf{s}^*\phi - \mathbf{t}^*\phi) = -d\rho^*\tau(\phi)$. By Corollary 3.8, we know that

$$d\omega - (s^*\phi - t^*\phi) = 0 \iff \operatorname{Lie}(d\omega - (s^*\phi - t^*\phi)) = 0.$$

But Lie $(d\omega - (s^*\phi - t^*\phi)) = d(\Lambda + \rho^*\tau(\phi))$. Since the linear 2-form $\Lambda + \rho^*\tau(\phi)$ covers λ , it follows from Prop. 4.3 that

$$d(\Lambda + \rho^* \tau(\phi)) = 0 \iff \Lambda + \rho^* \tau(\phi) = (\lambda^t)^* \omega_{can},$$

as desired. \Box

To make the connection between this paper and the results in [3] more transparent, it will be convenient to consider the map $\sigma_{\omega}: A \longrightarrow T^*M$ induced by $\omega \in \Omega^2(\mathcal{G})$ via

(4.38)
$$\sigma_{\omega}(u)(X) = \omega(u, X), \quad u \in A, X \in TM.$$

In the notation of Prop. 4.6, we have $\sigma_{\omega} = -\lambda^{t}$, so under the assumptions in part (2), $\Lambda = \text{Lie}(\omega)$ and σ_{ω} are related by

(4.39)
$$\Lambda = -(\sigma_{\omega}^* \omega_{can} + \rho^* \tau(\phi)),$$

in such a way that Λ covers $-\sigma_{\omega}^{t}:TM\longrightarrow A^{*}$.

4.3. **IM 2-forms and Lie algebroid morphisms.** This subsection presents to key step to integrate IM 2-forms.

Let $A \longrightarrow M$ be a Lie algebroid, with bracket $[\cdot, \cdot]$ and anchor ρ . Let $\sigma : A \longrightarrow T^*M$ be a vector bundle map (over the identity) and $\phi \in \Omega^3(M)$ a closed 3-form. Motivated by (4.39), let us consider the linear 2-form $\Lambda \in \Omega^2(A)$ defined by

$$\Lambda = -(\sigma^* \omega_{can} + \rho^* \tau(\phi)),$$

covering $-\sigma^t: TM \longrightarrow A^*$. The following result describes when such 2-form induces a morphism between tangent and cotangent algebroid structures.

Theorem 4.7. Let $\Lambda \in \Omega^2(A)$ be as in (4.40). The following are equivalent:

- (i) The map $\Lambda^{\sharp}: TA \longrightarrow T^*A$ is a Lie algebroid morphism.
- (ii) The map $\sigma: A \longrightarrow T^*M$ satisfies

$$\langle \sigma(u), \rho(v) \rangle = -\langle \sigma(v), \rho(u) \rangle$$

(4.42)
$$\sigma([u,v]) = \mathcal{L}_{\rho(u)}\sigma(v) - i_{\rho(v)}d\sigma(u) + i_{\rho(v)}i_{\rho(u)}\phi,$$

for all $u, v \in \Gamma(A)$.

Vector bundle maps $\sigma: A \longrightarrow T^*M$ satisfying conditions (4.41) and (4.42) were introduced in [3] and are referred to as **IM 2-forms** on A (relative to ϕ). We also recall that a **morphism** between Lie algebroids $A \longrightarrow M$ and $B \longrightarrow N$ (see e.g. [12]) is a vector bundle map $\Psi: A \longrightarrow B$, covering $\psi: M \longrightarrow N$, which is compatible with anchors, meaning that

$$\rho_B \circ \Psi = T\psi \circ \rho_A$$

and compatible with brackets in the following sense. Consider the pull-back bundle $\psi^*B \longrightarrow M$, and let us keep denoting by Ψ the induced map $\Gamma(A) \longrightarrow \Gamma(\psi^*B)$ at the level of sections. Given sections $u,v \in \Gamma(A)$ such that $\Psi(u) = f_j \psi^* u_j$ and $\Psi(v) = g_i \psi^* v_i$, where $f_j, g_i \in C^{\infty}(M)$ and $u_j, v_i \in \Gamma(B)$, the following condition should be valid:

(4.43)
$$\Psi([u, v]_A) = f_i g_i \psi^* [u_i, v_i]_B + \mathcal{L}_{\rho_A(u)} g_i \psi^* v_i - \mathcal{L}_{\rho_A(v)} f_i \psi^* u_i.$$

We will need explicit local formulas for the tangent and cotangent Lie algebroids. For a basis of local sections $\{e_d\}$ of A, we denote the corresponding Lie algebroid structure functions by ρ_a^j and C_{ab}^c ,

$$\rho_A(e_a) = \rho_a^j \frac{\partial}{\partial x^j}, \quad [e_a, e_b] = C_{ab}^c e_c.$$

Recall from Section 2.3 that any section $u: M \longrightarrow A$ defines two types of sections of $TA \longrightarrow TM$, denoted by Tu and \widehat{u} . From (2.14), the tangent Lie algebroid structure can be written as follows:

$$(4.44) [\widehat{e}_a, \widehat{e}_b]_{TA} = 0, [Te_a, \widehat{e}_b]_{TA} = C^c_{ab}\widehat{e}_c, [Te_a, Te_b]_{TA} = C^c_{ab}Te_c + dC^c_{ab}\widehat{e}_c,$$

$$(4.45) \rho_{TA}(Te_a) = \rho_a^j \frac{\partial}{\partial x^j} + d\rho_a^j \frac{\partial}{\partial \dot{x}^j}, \rho_{TA}(\hat{e}_a) = \rho_a^j \frac{\partial}{\partial \dot{x}^j}.$$

To describe the Lie algebroid structure on $T^*A \longrightarrow A^*$ explicitly, we also consider two types of sections that generate the space of sections of T^*A over A^* . The first type is induced from a section $u \in \Gamma(A)$, and denoted by u^L . In local coordinates (x^j, ξ_d) on A^* (relative to the basis of local sections $\{e^d\}$ of A^* , dual to $\{e_d\}$), it is given by

$$(4.46) u^{L}(x^{j}, \xi_{d}) = (x^{j}, u^{d}(x), 0, \xi_{d}),$$

where T^*A is written locally in coordinates (x^j, u^d, p_j, ζ_d) as in Section 2.2. The second type are *core sections*: locally, for each $\alpha = \alpha_j dx^j \in \Gamma(T^*M)$, we define the section $\widehat{\alpha}$ of $T^*A \longrightarrow A^*$ by

(4.47)
$$\widehat{\alpha}(x^j, \xi_d) = (x^j, 0, \alpha_j(x), \xi_d).$$

The cotangent Lie algebroid is defined by the relations:

$$(4.48) \quad [\widehat{dx^{i}}, \widehat{dx^{j}}]_{T^{*}A} = 0, \quad [e_{a}^{L}, \widehat{dx^{j}}]_{T^{*}A} = \widehat{d\rho_{a}^{j}}, \quad [e_{a}^{L}, e_{b}^{L}]_{T^{*}A}|_{(x,\xi)} = -\widehat{dC_{ab}^{c}}\xi_{c} + C_{ab}^{c}e_{c}^{L},$$

$$(4.49) \quad \rho_{T^{*}A}(\widehat{dx^{i}}) = \rho_{a}^{i} \frac{\partial}{\partial \xi_{c}}, \quad \rho_{T^{*}A}(e_{a}^{L})|_{(x,\xi)} = \rho_{a}^{i} \frac{\partial}{\partial x^{i}} + C_{ab}^{c}\xi_{c} \frac{\partial}{\partial \xi_{b}}.$$

We now turn to the proof of Theorem 4.7.

Proof. We work locally, so we assume that M has coordinates (x^j, u^d) (relative to a basis of local sections $\{e_d\}$), TA has tangent coordinates $(x^j, u^d, \dot{x}^j, \dot{u}^d)$, while induced coordinates on T^*A are denoted by (x^j, u^d, p_j, ζ_d) . Similarly, A^* has dual coordinates (x^j, ξ_d) , inducing coordinates $(x^j, \xi_d, \dot{x}^j, \dot{\xi}_d)$ on TA^* .

We start by discussing when Λ^{\sharp} is compatible with the anchors, i.e.,

$$(4.50) T(-\sigma^t) \circ \rho_{TA} = \rho_{T^*A} \circ \Lambda^{\sharp}.$$

Let us consider local expressions of the relevant maps. We write $\sigma: A \longrightarrow T^*M$ and $\sigma^t: TM \longrightarrow A^*$ locally as

$$\sigma(x^{j}, u^{d}) = (x^{j}, u^{d}\sigma_{id}(x)), \quad \sigma^{t}(x^{j}, \dot{x}^{j}) = (x^{j}, \dot{x}^{j}\sigma_{id}(x)).$$

Denoting coordinates on TM by (x^j, \dot{x}^j) , and on T(TM) by $(x^j, \dot{x}^j, \delta x^j, \delta \dot{x}^j)$, we get

$$T(-\sigma^t)(x^j, \dot{x}^j, \delta x^j, \delta \dot{x}^j) = (x^j, -\dot{x}^l \sigma_{ld}, \delta x^j, -\dot{x}^l \frac{\partial \sigma_{ld}}{\partial x^k} \delta x^k - \sigma_{ld} \delta \dot{x}^l) \in TA^*.$$

One can directly verify that the map Λ^{\sharp} can be locally written as follows:

(4.51)
$$\Lambda^{\sharp}(x^{j}, u^{d}, \dot{x}^{j}, \dot{u}^{d}) = (x^{j}, u^{d}, p_{j}, \zeta_{d}),$$

where

$$p_j = \dot{x}^l u^d \left(\frac{\partial \sigma_{jd}}{\partial x^l} - \frac{\partial \sigma_{ld}}{\partial x^j} \right) + \dot{u}^d \sigma_{jd} - \phi_{ijk} u^d \rho_d^k \dot{x}^i, \quad \zeta_d = -\dot{x}^l \sigma_{ld}.$$

The space of sections of $TA \longrightarrow TM$ is generated by sections of types Te_a and \hat{e}_b . We have

(4.52)
$$\Lambda^{\sharp}(Te_{a}|_{(x,\dot{x})}) = \left(x^{j}, \delta_{ad}, \dot{x}^{l} \left(\frac{\partial \sigma_{ja}}{\partial x^{l}} - \frac{\partial \sigma_{la}}{\partial x^{j}}\right) - \phi_{ijk} \rho_{a}^{k} \dot{x}^{i}, -\dot{x}^{l} \sigma_{ld}\right)$$

(4.53)
$$\Lambda^{\sharp}(\widehat{e}_b|_{(x,\dot{x})}) = (x^j, 0, \sigma_{jb}, -\dot{x}^l\sigma_{ld})$$

Using (4.45) and (4.49), one can directly check that

$$T(-\sigma^t)(\rho_{TA}(\widehat{e}_b|_{(x,\dot{x})})) = (x^j, -\dot{x}^l\sigma_{ld}, 0, -\sigma_{ld}\rho_b^l) \in (-\sigma^t)^*TA^*.$$

On the other hand, using the local expression (4.51), we have

$$\rho_{T^*A}(\Lambda^{\sharp}(\widehat{e}_b|_{(x,\dot{x})})) = (x^j, -\dot{x}^l \sigma_{ld}, 0, \rho_d^l \sigma_{lb})$$

It follows that the compatibility (4.50) for core sections amounts to

$$\langle \rho(e_b), \sigma(e_d) \rangle = -\langle \rho(e_d), \sigma(e_b) \rangle,$$

which is equivalent to (4.41).

For sections of type Te_b , again using (4.45) and (4.49), we get

$$T(-\sigma^t)(\rho_{TA}(Te_b|_{(x,\dot{x})})) = (x^j, -\dot{x}^l\sigma_{ld}, \rho_b^j, \zeta_d) \in (-\sigma^t)^*TA^*,$$

where

(4.54)
$$\zeta_d = -\dot{x}^l \left(\frac{\partial \sigma_{ld}}{\partial x^k} \rho_b^k + \sigma_{id} \frac{\partial \rho_b^i}{\partial x^l} \right) = -\langle \mathcal{L}_{\rho(e_b)} \sigma(e_d), \dot{x} \rangle$$

Similarly, we compute

$$\rho_{T^*A}(\Lambda^{\sharp}(Te_b|_{(x,\dot{x})})) = (x^j, -\dot{x}^l\sigma_{ld}, \rho_b^j, \zeta_d'),$$

where

(4.55)
$$\zeta_d' = \dot{x}^l \rho_d^k \left(\frac{\partial \sigma_{kb}}{\partial x^l} - \frac{\partial \sigma_{lb}}{\partial x^k} \right) - \phi_{ijk} \rho_b^k \dot{x}^i \rho_d^j + C_{db}^c \dot{x}^l \sigma_{lc}$$

$$= \left\langle -i_{\rho(e_d)} (d\sigma(e_b)) + i_{\rho(e_d)} i_{\rho(e_b)} \phi + \sigma([e_d, e_b]), \dot{x} \right\rangle.$$

Comparing (4.54) and (4.55), it follows that the compatibility (4.50) for sections of the type Te_b is verified if and only if (4.42) holds.

Let us now check the bracket preserving condition (4.43), that in our case reads

(4.56)
$$\Lambda^{\sharp}([U,V]_{TA}|_{(x,\dot{x})}) = f_j g_i [U_j, V_i]_{T^*A}|_{-\sigma^t(x,\dot{x})} + \mathcal{L}_{\rho_{TA}(U)} g_i V_i|_{-\sigma^t(x,\dot{x})} - \mathcal{L}_{\rho_{TA}(V)} f_j U_j|_{-\sigma^t(x,\dot{x})},$$

where $U, V \in \Gamma(TA)$, and $f_j, g_i \in C^{\infty}(TM)$, $U_j, V_i \in \Gamma(T^*A)$ are such that $\Lambda^{\sharp}(U) = f_j(-\sigma^t)^*U_j$ and $\Lambda^{\sharp}(V) = g_i(-\sigma^t)^*V_i$.

From (4.52), (4.53), we can write

(4.57)
$$\Lambda^{\sharp}(Te_{a}|_{(x,\dot{x})}) = e_{a}^{L}|_{-\sigma^{t}(x,\dot{x})} + f_{i}^{a}\widehat{dx^{j}}|_{-\sigma^{t}(x,\dot{x})}$$

(4.58)
$$\Lambda^{\sharp}(\widehat{e}_{a}|_{(x,\dot{x})}) = \widehat{\sigma(e_{a})}|_{-\sigma^{t}(x,\dot{x})} = g_{i}^{a}\widehat{dx^{i}}|_{-\sigma^{t}(x,\dot{x})},$$

where

$$(4.59) f_j^a = \dot{x}^l \left(\frac{\partial \sigma_{ja}}{\partial x^l} - \frac{\partial \sigma_{la}}{\partial x^j} \right) - \phi_{ijk} \rho_a^k \dot{x}^i, \quad g_i^a = \sigma_{ia},$$

so we can express the images in terms of sections of types (4.46) and (4.47) on T^*A . It will be useful to note that the functions $f_i^a = f_i^a(x, \dot{x})$ satisfy

$$f_i^a dx^j = i_{\dot{x}} d\sigma(e_a) - i_{\dot{x}} i_{\rho(e_a)} \phi,$$

viewed as an equality of horizontal 1-forms on TM, i.e. 1-forms of type $\alpha_j(x,\dot{x})dx^j$ (in this formula, \dot{x} is seen as the vector field $\dot{x}^l\frac{\partial}{\partial x^l}$ on TM). In fact, locally, there is an identification of the space of horizontal 1-forms on TM with a subspace of sections of $(-\sigma^t)^*T^*A$ via

$$(4.61) \qquad \Omega^1_{hor}(TM) \longrightarrow \Gamma((-\sigma^t)^*T^*A), \quad \alpha_j(x,\dot{x})dx^j \mapsto \alpha_j(x,\dot{x})\widehat{dx^j}|_{-\sigma^t(x,\dot{x})}.$$

In the remainder of this section, we will use this identification to view horizontal 1-forms on TM as sections on the bundle $(-\sigma^t)^*T^*A$. In particular, in order to simply our notation, we will write $\widehat{dx^j}|_{-\sigma^t(x,\dot{x})}$ just as dx^j .

Since it suffices to verify condition (4.56) for sections of types Te_a (linear) and \hat{e}_a (core), we have three cases to analyze.

Core-core sections

If $U = \hat{e}_a$ and $V = \hat{e}_b$ are core sections, then by (4.44) we know that $[\hat{e}_a, \hat{e}_b]_{TA} = 0$, so the l.h.s. of (4.56) vanishes. On the other hand, from (4.45), the Lie derivatives on the r.h.s. of (4.56) are only with respect to the variable \dot{x} . Since the functions g_j in (4.58) do not depend on \dot{x} and $[\widehat{dx^i}, \widehat{dx^j}]_{T^*A} = 0$, it follows that, for a pair of core sections, the r.h.s. of (4.56) vanishes as well.

Core-linear sections

Let us consider (4.56) when $U = Te_a$ and $V = \hat{e}_b$. Since $[Te_a, \hat{e}_b]_{TA} = C_{ab}^c \hat{e}_c$, it follows from (4.58) that the l.h.s. of (4.56) is

$$\Lambda^{\sharp}([Te_a,\widehat{e}_b]_{TA}) = \sigma([e_a,e_b]).$$

Using the bracket relations (4.48), one directly sees that the first term on the r.h.s. of (4.56) is just $\sigma_{ib}d\rho_a^i$. For the second term, we have

$$(\mathcal{L}_{\rho_{TA}(Te_a)}\sigma_{ib})dx^i = \mathcal{L}_{\rho_a^l \frac{\partial}{\partial x^l}}(\sigma_{ib}dx^i) - \sigma_{ib}\mathcal{L}_{\rho_a^l \frac{\partial}{\partial x^l}}dx^i$$
$$= \mathcal{L}_{\rho(e_a)}\sigma(e_b) - \sigma_{ib}d\rho_a^i.$$

The third term on the r.h.s. of (4.56) is given by

$$(\mathcal{L}_{\rho_{TA}(\widehat{e}_b)} f_j^a) dx^j = \left(\rho_b^l \left(\frac{\partial \sigma_{ja}}{\partial x^l} - \frac{\partial \sigma_{la}}{\partial x^j} \right) - \phi_{ijk} \rho_a^k \rho_b^i \right) dx^j$$
$$= i_{\rho(e_b)} d\sigma(e_a) - i_{\rho(e_b)} i_{\rho(e_a)} \phi.$$

As a result, in this case, (4.56) is equivalent to

$$\sigma([e_a, e_b]) = \mathcal{L}_{\rho(e_a)}\sigma(e_b) - i_{\rho(e_b)}d\sigma(e_a) + i_{\rho(e_b)}i_{\rho(e_a)}\phi,$$

which agrees with condition (4.42).

Linear-linear sections

We finally consider (4.56) when $U = Te_a$ and $V = Te_b$. From (4.44), (4.57) and (4.58), and using (4.60), we see that the l.h.s. of (4.56) is

$$\begin{split} \Lambda^{\sharp}([Te_{a},Te_{b}]_{TA}) &= C^{c}_{ab}e^{L}_{c}|_{-\sigma^{t}(x,\dot{x})} + C^{c}_{ab}f^{c}_{j}dx^{j} + dC^{c}_{ab}(\dot{x})\sigma(e_{c}) \\ &= [e_{a},e_{b}]^{L}|_{-\sigma^{t}(x,\dot{x})} + C^{c}_{ab}(i_{\dot{x}}d\sigma(e_{c}) - i_{\dot{x}}i_{\rho(e_{c})}\phi) + dC^{c}_{ab}(\dot{x})\sigma(e_{c}) \\ &= [e_{a},e_{b}]^{L}|_{-\sigma^{t}(x,\dot{x})} + i_{\dot{x}}d\sigma([e_{a},e_{b}]) + dC^{c}_{ab}\langle\sigma(e_{c}),\dot{x}\rangle - i_{\dot{x}}i_{[\rho(e_{a}),\rho(e_{b})]}\phi. \end{split}$$

As in (4.60), we abuse notation and use \dot{x} also to represent the vector field $\dot{x}^l \frac{\partial}{\partial x^l}$. By (4.57), we can write $\Lambda^{\sharp}(Te_a) = e_a^L + f_j^a dx^j$ and $\Lambda^{\sharp}(Te_b) = e_b^L + f_i^b dx^i$. Using (4.48), we see that the first term on the r.h.s. of (4.56) is

$$[e_a, e_b]^L|_{-\sigma^t(x, \dot{x})} + dC^c_{ab} \langle \sigma^t(\dot{x}), e_c \rangle - f^a_i d\rho^j_b + f^b_i d\rho^i_a.$$

Note that the second and third terms on the r.h.s. of (4.56) are $\mathcal{L}_{\rho_{TA}(Te_a)}f_i^b dx^i$ and $\mathcal{L}_{\rho_{TA}(Te_b)}f_j^a dx^j$, respectively. Let us find a more explicit expression for the latter (the former is clearly completely analogous). Since

$$\mathcal{L}_{\rho_{TA}(Te_b)} f_j^a dx^j = \mathcal{L}_{\rho_{TA}(Te_b)} (f_j^a dx^j) - f_j^a \mathcal{L}_{\rho_{TA}(Te_b)} dx^j,$$

it follows that

$$\mathcal{L}_{\rho_{TA}(Te_b)} f_j^a dx^j = \mathcal{L}_{\rho_{TA}(Te_b)} i_{\dot{x}} d\sigma(e_a) - \mathcal{L}_{\rho_{TA}(Te_b)} i_{\dot{x}} i_{\rho(e_a)} \phi - f_j^a d\rho_b^j.$$

Let us consider the (local) vector fields on TM given by $V_b = d\rho_b^l(\dot{x}) \frac{\partial}{\partial x^l}$ and $V_b' = d\rho_b^l(\dot{x}) \frac{\partial}{\partial \dot{x}^l}$, so that $\rho_{TA}(Te_b) = \rho(e_b) + V_b'$. It is simple to check that $[\rho(e_a), \dot{x}] = -V_b$ and $\mathcal{L}_{V_b'} i_{\dot{x}} \alpha = i_{V_b} \alpha$ for any $\alpha = \frac{1}{2} \alpha_{ij}(x) dx^i \wedge dx^j$. Using Cartan calculus, we find

$$\begin{split} \mathcal{L}_{\rho_{TA}(Te_b)} i_{\dot{x}} d\sigma(e_a) &= \mathcal{L}_{\rho(e_b)} i_{\dot{x}} d\sigma(e_a) + \mathcal{L}_{V_b'} i_{\dot{x}} d\sigma(e_a) \\ &= -i_{V_b} d\sigma(e_a) + i_{\dot{x}} \mathcal{L}_{\rho(e_b)} d\sigma(e_a) + i_{V_b} d\sigma(e_a) \\ &= i_{\dot{x}} di_{\rho(e_b)} d\sigma(e_a). \end{split}$$

Similarly,

$$\mathcal{L}_{\rho_{TA}(Te_b)}i_{\dot{x}}i_{\rho(e_a)}\phi = i_{\dot{x}}\mathcal{L}_{\rho(e_b)}i_{\rho(e_a)}\phi.$$

As a result, we obtain

$$\mathcal{L}_{\rho_{TA}(Te_b)} f_j^a dx^j = i_x di_{\rho(e_b)} d\sigma(e_a) - i_x \mathcal{L}_{\rho(e_b)} i_{\rho(e_a)} \phi - f_j^a d\rho_b^j.$$

Analogously, we have

$$\mathcal{L}_{\rho_{TA}(Te_a)} f_i^b dx^i = i_{\dot{x}} di_{\rho(e_a)} d\sigma(e_b) - i_{\dot{x}} \mathcal{L}_{\rho(e_a)} i_{\rho(e_b)} \phi - f_i^b d\rho_a^i.$$

Hence (4.56) amounts to the identity

$$(4.62) \qquad i_{\dot{x}}d\sigma([e_a, e_b]) - i_{\dot{x}}i_{[\rho(e_a), \rho(e_b)]}\phi = i_{\dot{x}}di_{\rho(e_a)}d\sigma(e_b) - i_{\dot{x}}\mathcal{L}_{\rho(e_a)}i_{\rho(e_b)}\phi - i_{\dot{x}}di_{\rho(e_b)}d\sigma(e_a) + i_{\dot{x}}\mathcal{L}_{\rho(e_b)}i_{\rho(e_a)}\phi$$

By basic Cartan calculus of forms, we have the identity

$$i_{[\rho(e_a),\rho(e_b)]}\phi - \mathcal{L}_{\rho(e_a)}i_{\rho(e_b)}\phi + \mathcal{L}_{\rho(e_b)}i_{\rho(e_a)}\phi = di_{\rho(e_b)}i_{\rho(e_a)}\phi.$$

It follows that (4.62) is equivalent to

$$\begin{split} d\sigma([e_{a},e_{b}]) &= d(i_{\rho(e_{a})}d\sigma(e_{b}) - i_{\rho(e_{b})}d\sigma(e_{a}) + i_{\rho(e_{b})}i_{\rho(e_{a})}\phi) \\ &= d(\mathcal{L}_{\rho(e_{a})}\sigma(e_{b}) - di_{\rho(e_{a})}\sigma(e_{b}) - i_{\rho(e_{b})}d\sigma(e_{a}) + i_{\rho(e_{b})}i_{\rho(e_{a})}\phi) \\ &= d(\mathcal{L}_{\rho(e_{a})}\sigma(e_{b}) - i_{\rho(e_{b})}d\sigma(e_{a}) + i_{\rho(e_{b})}i_{\rho(e_{a})}\phi) \end{split}$$

which holds by (4.42).

4.4. **Applications to integration.** In this section we present an alternative proof to the main result in [3], which describes IM 2-forms as infinitesimal versions of multiplicative 2-forms ([3, Thm. 2.5]).

Let $\mathcal G$ be a Lie groupoid over M, with Lie algebroid A. Let us denote the space of multiplicative 2-forms on $\mathcal G$ by $\Omega^2_{mult}(\mathcal G)$, and the space of linear 2-forms on A by $\Omega^2_{lin}(A)$. We also consider the subspace $\Omega^2_{alg}(A) \subset \Omega^2_{lin}(A)$ of linear 2-forms Λ for which $\Lambda^{\sharp}: TA \longrightarrow T^*A$ is a Lie algebroid morphism.

A direct consequence of Prop. 3.7 is that $\text{Lie}(\alpha)^{\sharp}$ is a Lie algebroid morphism for any multiplicative k-form α on \mathcal{G} . Using Prop. 4.6, part (1), we conclude that the Lie functor on multiplicative forms gives rise to a well-defined map

(4.63) Lie:
$$\Omega^2_{mult}(\mathcal{G}) \longrightarrow \Omega^2_{alq}(A), \ \omega \mapsto \Lambda = \text{Lie}(\omega).$$

Proposition 4.8. If \mathcal{G} is s-simply-connected, then (4.63) is a bijection.

Proof. We will show that (4.63) has an inverse map. If $\Lambda \in \Omega^2_{alg}(A)$, then $\Lambda^{\sharp} : TA \longrightarrow T^*A$ is a morphism of algebroids. So

$$\theta_{\mathcal{G}}^{-1} \circ \Lambda^{\sharp} \circ j_{\mathcal{G}}^{-1} : A(T\mathcal{G}) \longrightarrow A(T^*\mathcal{G})$$

is a Lie algebroid morphism. Since $\mathcal G$ is s-simply-connected, so is $T\mathcal G$. By Lie's second theorem for algebroids (see e.g. [12]), there exists a unique Lie groupoid morphism $\omega^{\sharp}: T\mathcal G \longrightarrow T^{*}\mathcal G$ with $\mathrm{Lie}(\omega^{\sharp}) = \theta_{\mathcal G}^{-1} \circ \Lambda^{\sharp} \circ j_{\mathcal G}^{-1}$, or $\Lambda^{\sharp} = \theta_{\mathcal G} \circ \mathrm{Lie}(\omega^{\sharp}) \circ j_{\mathcal G}$.

It remains to check that ω^{\sharp} is indeed the bundle map associated with a 2-form $\omega \in \Omega^2(\mathcal{G})$, i.e., that it is a vector bundle map (covering the identity) with respect to the bundle structures $T\mathcal{G} \longrightarrow \mathcal{G}$ and $T^*\mathcal{G} \longrightarrow \mathcal{G}$, and that $(\omega^{\sharp})^* = -\omega^{\sharp}$. A proof of this fact can be given just as in [14]: the key point is that the bundle projections $p_{\mathcal{G}}: T\mathcal{G} \longrightarrow \mathcal{G}, \ c_{\mathcal{G}}: T^*\mathcal{G} \longrightarrow \mathcal{G}$, the vector bundle sums $T\mathcal{G} \times_{p_{\mathcal{G}}} T\mathcal{G} \longrightarrow T\mathcal{G}$, $T^*\mathcal{G} \times_{c_{\mathcal{G}}} T^*\mathcal{G} \longrightarrow T^*\mathcal{G}$, and scalar multiplications $T\mathcal{G} \times \mathbb{R} \longrightarrow T\mathcal{G}, T^*\mathcal{G} \times \mathbb{R} \longrightarrow T^*\mathcal{G}$, as well as the natural pairing $T\mathcal{G} \times_{(p_{\mathcal{G}}, c_{\mathcal{G}})} T^*\mathcal{G} \longrightarrow \mathbb{R}$ are all groupoid morphisms. The corresponding maps for Lie algebroids (after the identifications (2.15) and (2.17)) are precisely the vector bundle structure maps and pairing for $p_A: TA \longrightarrow A$ and $c_A: T^*A \longrightarrow A$, see e.g. [13]. For example, to check that $c_{\mathcal{G}} \circ \omega^{\sharp} = p_{\mathcal{G}}$, it suffices to verify this condition (by connectivity of source-fibres) at the level of algebroids. But then we have

$$\operatorname{Lie}(c_{\mathcal{G}} \circ \omega^{\sharp}) = c_{A} \circ \Lambda^{\sharp} = p_{A} = \operatorname{Lie}(p_{\mathcal{G}}).$$

The other properties of ω^{\sharp} are derived from those of Λ^{\sharp} similarly, as in [14, Thm. 4.1].

Corollary 4.9 ([3]). If \mathcal{G} is s-simply-connected and $\phi \in \Omega^3(M)$ is closed, there is a one-to-one correspondence between multiplicative 2-forms on \mathcal{G} satisfying $d\omega = \mathbf{s}^*\phi - \mathbf{t}^*\phi$ and IM 2-forms $\sigma : A \longrightarrow T^*M$ relative to ϕ .

Proof. We know that Lie : $\Omega^2_{mult}(\mathcal{G}) \longrightarrow \Omega^2_{alg}(A)$, $\omega \mapsto \Lambda = \text{Lie}(\omega)$ is a bijection, and by Prop. 4.6, part (2), $d\omega = s^*\phi - t^*\phi$ if and only if $\Lambda = -(\sigma^*_\omega \omega_{can} + \rho^*\tau(\phi))$. The conclusion now follows from Theorem 4.7.

References

- [1] Arias Abad, C., Crainic, M., The Weil algebra and the Van Est isomorphism. Arxiv: 0901.0322.
- [2] Bursztyn, H., Crainic, M., Dirac geometry, quasi-Poisson actions and D/G-valued moment maps. ArXiv:0710.0639. To appear in *J. Differential Geom*.
- [3] Bursztyn, H., Crainic, M., Weinstein, A., Zhu, C., Integration of twisted Dirac brackets, *Duke Math. J.* **123** (2004), 549-607.
- [4] Cannas da Silva, A., Weinstein, A., Geometric models for noncommutative algebras. Berkeley Mathematics Lecture Notes, 10. American Mathematical Society, Providence, RI; Berkeley Center for Pure and Applied Mathematics, Berkeley, CA, 1999.
- [5] Cattaneo, A., Felder, G., Poisson sigma models and symplectic groupoids. Quantization of singular symplectic quotients, 61–93, Progr. Math., 198, Birkhuser, Basel, 2001.
- [6] Coste, A., Dazord, P., Weinstein, A., Groupoïdes symplectiques. Publications du Département de Mathématiques. Nouvelle Série. A, Vol. 2, i–ii, 1–62, Publ. Dép. Math. Nouvelle Sér. A, 87-2, Univ. Claude-Bernard, Lyon, 1987.
- [7] Courant, T., Dirac manifolds, Trans. Amer. Math. Soc. 319 (1990), 631-661.
- [8] Courant, T., Tangent Dirac structures, J. Phys. A: Math. Gen. 23 (1990), 5153-5168.
- [9] Crainic, M., Fernandes, R., Integrability of Lie brackets. Ann. of Math. 157 (2003), 575–620
- [10] Grabowski, J., Urbanski, P., Tangent lifts of Poisson and related structures, J. Phys. A 28 (1995), 6743–6777.
- [11] Konieczna, K., Urbanski, P., Double vector bundles and duality. Arch. Math. (Brno) 35 (1999), 59–95.
- [12] Mackenzie, K., General theory of Lie groupoids and Lie algebroids. London Mathematical Society Lecture Note Series, 213. Cambridge University Press, Cambridge, 2005.
- [13] Mackenzie, K., Xu, P., Lie bialgebroids and Poisson groupoids. Duke Math. J. 73 (1994), 415–452
- [14] Mackenzie, K., Xu, P., Integration of Lie bialgebroids. Topology 39 (2000), 445-467.
- [15] Pradines, J., Représentation des jets non holonomes par des morphismes vectoriels doubles souds, C.R. Acad. Sc. Paris, Série A, 278 (1974), 1523-1526.
- [16] Ševera, P., Some title containing the words "homotopy" and "symplectic", e.g. this one. Travaux mathématiques. Fasc. XVI (2005), 121–137.
- [17] Ševera, P., Weinstein, A., Poisson geometry with a 3-form background. Progr. Theoret. Phys. Suppl. 144 (2001), 145–154.
- [18] Tulczyjew, W., The Legendre transformation, Ann. Inst. H. Poicaré 27, 101-104.
- [19] Xu, P., Momentum maps and Morita equivalence. J. Differential Geom. 67 (2004), 289-333.
- [20] Yano, K., Ishira, S., Tangent and cotangent bundles, Marcel Dekker, Inc., New York, 1973.

Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, Rio de Janeiro, 22460-320, Brasil

E-mail address: henrique@impa.br, cabrera@impa.br, cortiz@impa.br