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Abstract

We introduce a two-step direct method, like Korpelevich’s, for solving monotone variational
inequalities. The advantage of our method over that one is that ours converges strongly in
Hilbert spaces, while only weak convergence has been proved for Korpelevich’s algorithm. Our
method also has the following desirable property: the sequence converges to the solution of the
problem which lies closest to the initial iterate.
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1 Introduction

Let C be a nonempty, closed and convex subset of a real Hilbert space H and T : H — P(H) a
point-to-set operator. The variational inequality problem for 7" and C, denoted VIP(T, C), is the
following;:

find z* € C such that there exists u* € T'(z*) satisfying

(u*yz —2*) >0 VzeC.

We denote the solution set of this problem by S(T,C).
The variational inequality problem was first introduced by P. Hartman and G. Stampacchia

[6] in 1966. An excellent survey of methods for finite dimensional variational inequality problems
(H =R") can be found in [4].
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Here, we are interested in direct methods for solving VIP(T,C). The basic idea consists of
extending the projected gradient method for constrained optimization, i.e., for the problem of
minimizing f(z) subject to z € C. This problem is a particular case of VIP(T,C) taking T = V f.
This procedure is given by the following iterative scheme:

20 € C, (1)

"t = Po(a* — oV f(¥)), (2)

with oy > 0 for all k. The coefficients oy, are called stepsizes and Po : H — C is the orthogonal
projection onto C, i.e. Po(z) = argmi(rjl |z — vyl
ye
An immediate extension of the method (1)—(2) to VIP(T, C) for the case in which T is point-
to-point, is the iterative procedure given by

¥ € C, (3)

oF 1 = Po(aF — 0, T(2F)). (4)

Convergence results for this method require some monotonicity properties of 7. We introduce
next several possible options.

Definition 1. Consider T : H — P(H) and W C H convez. T is said to be:

i) monotone on W if (u —v,x —y) >0 for all z, y € W and all u € T(z), v € T(y),

i) paramonotone on W if it is monotone in W, and whenever (u — v,z —y) = 0 with z,y € W,
u € T(z), v € T(y) it holds that u € T(y) and v € T(z),

i1i) uniformly monotone on W if (u — v,z —y) > ¥(||lx — y||) for all z, y € W and all u € T(x),
v € T(y), where 1 : Ry — R is an increasing function, with ¥ (0) =0,

iv) strongly monotone on W if (u — v,z — y) > w|z — y||? for some w > 0 and for all z, y € W
and all u € T(z), v € T(y).

It follows from Definition 1 that the following implications hold: (iv) = (iii) = (ii) = (i). The
reverse assertions are not true in general.

It has been proved in [5] that when T is strongly monotone and Lipschitz continuous, i.e. there
exists L > 0 such that ||T(z) —T'(y)|| < L||lx—y|| for all z,y € R™, then the scheme (3)-(4) converges
to the unique solution of VIP(T, C), provided that oy € (e, %—“2’) for all £ and for some ¢ > 0.

These results were later improved for the case in which T is point-to-set, establishing convergence
under weaker assumptions on 7', for suitable selections of the stepsizes aj. In this case, the iterative

procedure is given by
ot = Po(aF — apub), (5)



with u¥ € T(z*). The case of uniformly monotone operators is analyzed in [1] and the case of
paramonotone ones in [2].

We remark that there is no chance to relax the assumption on 7" to plain monotonicity. For
. . 1 .
example, consider T : R2 — R? defined as T'(z) = Az, with A = < _(1) 0 ) T is monotone and
the unique solution of VIP(T, C) is z* = 0. However, it is easy to check that ||z* —ax T(z*)|| > ||z*||
for all z¥ # 0 and all a > 0, and therefore the sequence generated by (5) moves away from the
solution, independently of the choice of the stepsize ay.
In order to overcome this difficulty, the following iteration, called extragradient method, was

proposed by G. M. Korpelevich in [11] for the finite dimensional case:
y* = Po (a5 - BT(aY)), (6)

4 = Po (o - BTWH)) (7)

where 8 > 0 is a fixed number. Assuming that 7" is monotone and Lipschitz continuous with
constant L, and that S € (e,%) for some ¢ > 0, Korpelevich showed that the sequence {z*}
generated by (6)-(7) converges to some point in S(7,C). When T is not Lipschitz, or it is Lipschitz
but the constant L is not known, the fixed stepsize (8 in the first step must be replaced by a
stepsize computed through an Armijo-type search, as in the following method, present in [10]. The
algorithm requires the following exogenous parameters: § € (0,1), B, B satisfying 0 < B < B, and

a sequence {f} C [B,B]

Initialization step. Take
2% eC.

Iterative step. Given z* define
2F = 2F — BT (zF).

If ¥ = P (2*) stop. Otherwise take
j(k) == min{ §20: (T@IPo(h) + (1 - 277)ak), ok — Po(h)) > ﬁi |lz* — Po())? } ,
k

ap = 2 IH),
y* = apPo(z) + (1 — ag)zF,
Hy = {z €M : (z—y"TW") < 0},
2" = Po(Py, (zF)).

This strategy for determining the stepsizes guarantees convergence under the only assumptions
of monotonicity and continuity of 7" and existence of solutions of VIP(T,C), without assuming



Lipschitz continuity of T'. Also, this algorithm demands only two projections onto C' per iteration,
unlike other variants, e.g. [7], with projections onto C inside the inner loop for the search.

This algorithm can be extended to an infinite dimensional Banach space, achieving weak con-
vergence under mild assumptions, see [9].

We will introduce a new Korpelevich-type algorithm with strong convergence in Hilbert spaces.
It is related to the method by M. Solodov and B. Svaiter in [13], where a similar modification
is performed upon the proximal point method for solving VIP(T, C), with the same goal, namely
upgrading weak convergence to strong one. Strong convergence is forced by combining Korpelevich-
type iterations with simple projection steps onto the intersection of C' and two halfspaces, containing
S(T,C).

Additionally, our algorithm has the distinctive feature that the limit of the generated sequence
is the closest solution of the problem to the initial iterate z°. This property is useful in many
specific applications, e.g. in image reconstruction. We emphasize that this feature is of interest
also in finite dimension, differently from on the strong versus weak convergence issue.

We mention that the method in [13], as all proximal point algorithm in general, requires in each
step the solution of a rather hard subproblem, while our method inherits from Korpelevich’s an
explicit nature, without subproblems to be solved, up to the projection onto the intersection of C
with two half-spaces. The presence of the half-spaces does not entail any significant additional cost
over the computation of the projection onto C' itself. The computational cost of this projection is
negligible as compared to the cost of a proximal step, for instance, and thus both Korpelevich’s
method and ours can be considered as direct methods for VIP(T, C).

We impose two additional conditions on 7', besides maximal monotonicity: 7' must be point-
to-point and uniformly continuous on bounded sets. We comment now on these assumptions.
Uniform continuous on bounded sets holds automatically in finite dimension, due to the continuity
of point-to-point maximal monotone operators (e.g. Theorem 4.6.3 in [3]). We also mention
that it is required in the analysis of [9] for proving weak convergence of Korpelevich’s method in
infinite dimensional spaces. In connection with the possibility of considering point-to-set, rather
than point-to-point operators, we mention that a variant of Korpelevich method for point-to-set
maximal monotone operators was proposed in [8], but with the following serious limitation: in
principle, we should replace T'(z*) by some u* € T'(z*) everywhere in the algorithm, but, due to
the lack of inner continuity of T, an arbitrary u* € T'(z¥) does not work; u* must satisfy some
additional conditions, which are not adequate for computational implementation. In particular,
the method cannot be applied to cases in which 7' is given by an “oracle”, which provides just one
u € T(z) for each z. This is a rather frequent situation for point-to-set operators. Thus, we have
opted to present our strongly convergent method only for the point-to-point setting.



2 Preliminary results

In this section, we present some definitions and results that are needed for the convergence analysis
of the proposed methods. First, we state two well known facts on orthogonal projections.

Lemma 1. Let K be any nonempty closed and convex set in H and Pk the orthogonal projection
onto K. For all z,y € H and all z € K, the following properties hold:

i) (z=y,2 = Pg(y)) > |z = Pc(y)|*-
it) (x — Px(z),z — P (z)) < 0.
Proof. See Lemma 1 in [13]. O

Proposition 1. Let T : H — H be a point-to-point monotone operator. If Px(x — BT (x)) = x for
some 3 > 0 then x € S(T, K).

Proof. See Proposition 2 in [10]. O
We recall now the definition of maximal monotone operators.

Definition 2. Let T : H — P(H) be a monotone operator. T is mazimal monotone if T =T' for
all monotone T' : H — P(H) such that G(T) C G(T"), where G(T') := {(z,u) € HxH : u € T(z)}.

We also need the following results on maximal monotone and operators.
Lemma 2. Let T : H — P(H) be a mazimal monotone operator. Then
i) G(T) is closed.
ii) S(T,C) is closed and convex for all closed and convex C C H.
Proof. 1) See Proposition 4.2.1(ii) of [3].

ii) Closedness of S(T, C) follows easily from (i). Convexity of S(T,C) is elementary.

3 An extragradient method with strong convergence

In this section, we introduce a new iterative method for solving VIP(T,C), which generates a
sequence strongly convergent to some point belonging to S(7',C), differently from Korpelevich’s
method, for which only weak convergence has been established. Of course, weak and strong conver-
gence are only distinguishable in the infinite-dimensional setting. We assume in this section that
T is maximal monotone, point-to-point, and uniformly continuous on bounded sets.



_ The algorithm requires the following exogenous parameters: § € 0,1), 8, 3 satisfying 0 < B <
B, and a sequence {f;} C [B,0]- It is defined as follows:

Algorithm A
Initialization step. Take
) € C.

Iterative step. Given z* define
28 .= 2F — B, T (zF). (8)

If z¥ = Pg(2*) stop. Otherwise let,
j(k) :== min{ §>0: (T2 Pc(2F) + (1 — 279)zk), 2% — Po(2%)) > ﬁi |zF — Po(2F)]2 } , (9)
k

ay, = 279k), (10
y* = apPo(z) + (1 — o)zt (11)
Define
Hy={z e (- yh T() <0}
Wk::{ZEH!<Z—$ka$O_$k> 0

k+

= PHkannc(.’EO). (12)

3.1 Convergence analysis of Algorithm A

First, we establish that Algorithm A is well defined.
Proposition 2. i) z¥ € C for all k > 0.

i1) j(k) is well defined.

iii) y* € C for all k > 0.
Proof. i) Follows from (12).

ii) Assume by contradiction that the minimum in (9) is not achieved. In this case, for all a > 0,
it holds that

(T(y* (), a* — Po(2")) < %lek — Po())1%, (13)
where y*(a) = aPc(2*) + (1 — a)z*. Note that

o = Po(5)|? < (2 — 2, 2% = Po(sh) = Bu(T(o), 2 — Po(s*) < 8lla* — Po(*)|?,



using Lemma, 1(i) in the first inequality, (8) in the equality and (13) in the second inequality,
after taking limits with o — oo, in view of the continuity of T. Since ||z¥ — Po(2*)|| > 0 by
the stopping criterion and § € (0,1), we arrive at a contradiction.

iii) Follows from (11), taking into account that a4 € [0, 1] for all £ > 0 by (9)-(10).

]
Next, we establish some properties of Algorithm A.
Proposition 3. For all k,
! — 2O > fla* — 20+ [l — 2|2 (14
and
ok b > 00 17" = PGP .
B M)
Proof. Since ¢! € Wy,
0> (gF L — gk g0 — gky = % (ka—i—l — M2 — gttt = 202 4 ||zt — $0||2) ’

which implies (14).
Now, using that ||z¥ — Py, (z%)| < ||z — 2F|| for all z € Hy, since z¥*1 € Hj, we have that

T k
|z +t — k|| > ||zF — Py, (z¥)||. Since Py, (z¥) = 2% — (T (%), zF — y¥) %, we obtain that
(TW"), 2" —y*) _  (T"),s" — Po(<h))
25t = 2®[| > [|lz* — P, (")) = = a
* 1T (") 1T (")

L gt = PRI |6 et = o)

B ITEHI T A T
using (8)-(11) in the second inequality and the fact that 8 < f for all k in the third one. O

Next we prove optimality of the weak cluster points of {z*}.

Theorem 1. Suppose that Algorithm A generates an infinite sequence {z*}. Then either {z*} is
bounded and each of its weak cluster points belongs to S(T,C) # 0, or S(T,C) = 0 and limy_,« ||z¥||
= 0.

Proof. 1f {z*} is bounded, we obtain from (14) that the sequence {|lz*¥ — z°||} is nondecreasing and
bounded, hence convergent. By (14) again, 0 < [|zFT! — 2¥||? < ||2*+! — 292 — ||zF — 2°||2, and we
conclude that
lim ||z — 2F|| = 0. (16)
k—o00



Since {z*} is bounded, there exists a subsequence {z*} of {z*} that converges weakly to some z*.
It follows from (15) and (16) that

o = PeGI? _

lim o
k=00 1T (")
The sequence {Pc(2*)} is bounded, using boundedness of {z*} and (8), and (9)-(11) imply that
{y*} is bounded. It follows from the uniform continuity of 7' that {T(y*)} is also bounded. Thus,

lim oy Hwk - Pc(xk)H =0. (17)

k—o00

We consider now two cases.

Case 1. Suppose that {a;} does not converge to 0, i.e. there exists a subsequence {ay, } of {ay}
and some o > 0 such that ;, > « for all k. In this case, we define w* := Pg(2*) and it follows
from (17) that

lim ||z — w'| = 0. (18)

k—o00

Since T' is uniformly continuous, we have

Jm IT(z") = T(w™)|| = 0. (19)

Let z* be a weak cluster point of {z%}. By (18), it is also a weak cluster point of {w }. Without
loss of generality, we assume that {2} and {w’} converge weakly to z*. Let Ng(x) be the normal
cone to C at z € C,ie, No(z) ={z€H : (x—y,z) >0 Vy e C}. Define

T(z) := T(z) + N¢(z). (20)

It is known that 7', as given in (20), is maximal monotone and that 0 € T'(z) if and only if
z € S(T,C); see [12].

In order to prove that z* € S(T,C), take (z,u) € G(T), so that z € C and u € T(z) =
T(z) + N¢(z), implying that uw — T'(z) € N¢(z). So, we have

(t—y,u—T(z)) >0 VyeC. (21)

On the other hand, since w* = Pg(z* — BT (z*)) and =z € C, it follows from Lemma 1(ii), with
K = C and z = z¥ — B, T(z*), that

(x —wk, 2F — BT (2*) —w*) <0 Vz e Candk>0. (22)

Since By is positive for all k, we get from (22)

$k_wk
<m—wk, 3 —T(ack)> <0 VzeCandk>0. (23)
k

8



Thus,

ZEk _ wk
(w—wk,u) > (m—wk,T(x)) > (:v—wk,T(x))+<x—wk, B —T(mk)>
$k _ ,wk
= (o — b T() — Th)) + (o — wF, (k) — T(ah) + <w S — >
.’Ek _ ,wk:

> (m—wk,T(wk)—T(mk))+<:1:—wk, 5 >

> -] (nT(wk) - T+ ot - wkn)

> -] (nT(wk) ()| + %nw’“ - xkn) , (24)

using (21) with y = w* because w* € C in the first inequality, (23) in the second inequality, the
monotonicity of 7" in the third one, Cauchy-Schwartz inequality in the fourth one and the fact that
Br > B > 0 for all £ in the last one. ‘ ‘ 4
Now, using (18) and (19), we get that the subsequences {w'* — z'*} and {T'(w') — T'(z")}
strongly converge to zero. Then, we can take limits with £k — oo in (24) over the subsequence with
superindices {i;} and, using that {w' } converges weakly to z*, we obtain that
(x—z*u) >0  V(z,u) € G(T). (25)
Since 7' is maximal monotone, it follows from (25) that (z*,0) € G(T) ie. 0 € T(z*) =
T(z*) + N¢(z*) and hence z* € S(T, C).
Case 2. Suppose that limg_, ap = 0. Taking
" = 20 Po (") + (1 — 2ay)a", (26)
it follows from the definition of j(k) in (9) that

(T(),a* — Po()) < %uwk — Po(H). (27)

Note that ¥ — z*F = 204, (Po(z*) — 2*) by (26). Since, as discussed above, { Po(2*)} and {z*} are
bounded, it follows from the assumption of this case that limy_,« |[|§* — || = 0. Thus, we get
from (27)

9
Bk

lz* — Po(2")|?

V
=
<

ol
\.\/
8
Bl
|

F
—

N

BN
=

I
=
<

Bl
N
|

N

(a%),a% — Po () +(T(a*), 2% — Po(2¥))

(2%), 2% — Po(ah) + ﬁ—1k<mk kb~ Po(eh))

> —|T@") - T")lz* ~ Pe(a")|| + éllxk — P ()|,

I
=
<

Bl
N
|

N
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using (8) in the second equality, and Cauchy-Schwartz inequality and Lemma 1(i) in the second
inequality. Now, an elementary rearrangement yields

(1—4) 1-36

Ja* - Petat)|? > Vot~ Peh)2, ()

using the fact that 8, < f for all k in the second inequality. Since |z* — Pg(z*)|| > 0 for all k
because z* ¢ S(T,C) for all k in view of Proposition 1, it follows from (28) that

1-4)

IT(5*) = T(a")lllla" ~ Po(a®)ll >

17 - 1)) > LD et~ Pea) >0 (20)
Since limg_ o0 ||§* — 2*|| = 0 and T is uniformly continuous on bounded sets, we obtain
lim ||T'(3*) - T'(a")|| = 0. (30)
k—o0

Taking limits with & — oo in (29) and using (30), we get 0 > limy_, o, ||z*¥ —Pc(2*)|| > 0. Therefore,
limy_y o0 ||2* — Po(2%)| = limg_s o0 ||2* — w¥|| = 0. From here on, we can proceed as in the previous
case, from (18) on, taking the whole sequences {z*}, {w*} instead of {z%}, {w'}, in order to
complete the proof of the first assertion.

Suppose now that S(T,C) = (. Using the preceding assertion in this proposition, we obtain
that {z*} is unbounded. Since the sequence {||z* — 2°||} is nondecreasing by (14), it follows that
limy, o0 ||2¥ — 2°|] = 0o and so limy_, ||z*|| = oo. O

We assume from now on that S(7', C) is nonempty. Define
Yi={zeH:(z—z,2"—2)<0 VzeS(T,C)}. (31)
Next we show that the generated sequence {z*} is contained in Y.
Proposition 4. If z* € Y then
i) S(T,C) C H, NnW,NC,
ii) 2kt is well defined and 1 €Y.
Proof. i) Note that
(T(F),a" —y*) = (T(*) —T(a"), 2" —y*) +(T(a"), 2" —y*)
< (T(a%),2" - y*) <0, (32)

for any z* € S(T,C), using the monotonicity of 7" in the first inequality, and the definition
of S(T, C) together with Proposition 2(iii) in the second inequality. It follows from (32) that
S(T,C) C Hy.

Since z¥ € Y, we have that (z* — z¥,2° — 2%) <0 forall z* € S(T,C). By definition of
Wiy, we obtain that S(T',C) C Wy. We conclude that S(7,C) C H,NnW;NC.

10



ii) Since S(T,C) C Hy N Wi N C and S(T,C) is nonempty, it follows that Hx N Wy N C is

nonempty. Thus the next iterate z**! is well defined, in view of (12). By Lemma 1(ii), we
have that
(z —zFtl 20 —2F1Y <0 Vze H.nW,NC. (33)
Since S(T,C) C H, N W, N C for all k, (33) holds for all z € S(T,C), and so zF*1 € Y by
(31).
U

Corollary 1. Algorithm A is well defined and generates infinite sequences {z*}, {y*} and {uF}
such that {zF} CY and S(T,C) C HyN W, N C for all k.

Proof. Tt is enough to observe that z° € Y and apply inductively Proposition 4.
O

Corollary 2. The sequence {z*} generated by Algorithm A is bounded and each of its weak cluster
points belong to S(T,C).

Proof. If the solution set is nonempty, in view of (12) we have that ||z¥+? — 20| < ||z — 29| for all
z € HyNWiNC. Since S(T,C) C HyNW;NC by Corollary 1, it follows that ||z*+1 —z9|| < [|z* — 20|
for all z* € S(T,C). Thus, {z*} is bounded, and by Theorem 1, all its weak cluster points belong
to S(T,C). O

Finally, we can now state and prove our main result.

Theorem 2. Assume that S(T,C) # 0 and let {z*} be a sequence generated by Algorithm A.
Define * = Pg(r,c) (z°). Then {z*} converges strongly to z*.

Proof. Note that z*, the orthogonal projection of z° onto S(T,C), exists because the solution set

S(T,C) is nonempty by assumption, and closed and convex by Lemma 2(ii). By the definition of
zF*1 we have that
|2kt — 20| < ||z — 20| Vze HoNWNC. (34)

Since z* € S(T,C) C H, N W N C for all k, it follows from (34) that
2% — || < fla* — 2% (35)

for all k. By Corollary 2, {z*} is bounded and each of its weak cluster points belongs to S(T,C).
Let {z%} be any weakly convergent subsequence of {z*}, and let & € S(T,C) be its weak limit.
Observe that

o =2 = ' — 20 — (2 — O]
o = 012 + Jla* — 2|2 - 2a — 20,5" — 2°)

2|z* — 202 — 2(z™ — 20, z* — 20),

IN

11



where the inequality follows from (35). By the weak convergence of {z%*} to &, we obtain

limsup [z — %[> < 2(||z* — 2| = (& — 2°, 2" — 2")). (36)
k—o00

Applying Lemma 1(ii) with K = S(T,C), z = z° and z = # € S(T, C), and taking into account
that z* is the projection of z° onto S(T,C), we have that

(% — 2%, & — %) < 0. (37)
Now, using (37) we have

0

—(& — ¥, z* — 2% = — (& — 2% 2% — 20) — (2 — 2* ¥ — )

—(z — 2, z* — :vo) +||z* - x0||2.

v v

It follows that
(T — 20,z — :BO) > ||lz* — :1:0||2. (38)

Combining (38) with (36), we conclude that {z’*} converges strongly to z*. Thus, we have
shown that every weakly convergent subsequence of {z*} converges strongly to z*. Hence, the
whole sequence {z*} converges strongly to z* € S(T,C). O

Acknowledgment

Research for this paper by the first author acknowledges his scholarship for his doctoral studies,
granted jointly by CNPq and TWAS. The second author was partially supported by CNPq grand
N¢ 301280-86.

References

[1] Alber, Ya.l. Recurrence relations and variational inequalities. Soviet Mathematicheskie Doklady
27 (1983) 511-517.

[2] Bello Cruz, J.Y., Tusem, A.N. Convergence of direct methods for paramonotone variational
inequalities (to be published).

[3] Burachik, R.S., Tusem, A.N. Set-Valued Mappings and Enlargements of Monotone Operators.
Springer, Berlin (2007).

[4] Facchinei, F., Pang, J.S. Finite-dimensional Variational Inequalities and Complementarity
Problems. Springer, Berlin (2003).

12



[5] Fang, S.-C. An iterative method for generalized complementarity problems. IEEE Transactions
on Automatic Control 25 (1980) 1225-1227.

[6] Hartman, P. and Stampacchia, G. On some non-linear elliptic differential-functional equations.
Acta Mathematica 115 (1966) 271-310.

[7] Tusem, A.N. An iterative algorithm for the variational inequality problem. Computational and
Applied Mathematics 13 (1994) 103-114.

[8] Tusem, A.N., Lucambio Pérez, L.R. An extragradient-type method for non-smooth variational
inequalities. Optimization 48 (2000) 309-332.

[9] Tusem, A.N., Nasri, M. Korpelevich’s method for variational inequality problems in Banach
spaces (to be published).

[10] Tusem, A.N., Svaiter, B.F. A variant of Korpelevich’s method for variational inequalities with
a new search strategy. Optimization 42 (1997) 309-321; Addendum Optimization 43 (1998) 85.

[11] Korpelevich, G.M. The extragradient method for finding saddle points and other problems.
Ekonomika i Matematcheskie Metody 12 (1976) T47-756.

[12] Rockafellar, R.T. On the maximality of sums of nonlinear monotone operators. Transactions
of the American Mathematical Society 149 (1970) 75-88.

[13] Solodov, M.V., Svaiter, B.F. Forcing strong convergence of proximal point iterations in a
Hilbert space. Mathematical Programming 87 (2000) 189-202.

13



