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turo Fernandes Perez.

Gostaria de agradecer também aos professores Jacob Palis Júnior(a pessoa que me
incentivou a estudar folheações e seus conselhos foram decisivos na escolha da área),
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Júlio Daniel, Fernando Carneiro, Joyce, Flávia Furtado, Fernanda Lopes, Pablo Guar-
ino, Flávio Rocha, Pedro Rizzo, Alejandro Simarra, Ruben Lizarbe, Raphael Constant,
Liliana, Evilson, Rudy, Luiz Carlos, Josenildo, Kênia, famı́lia Petrúcio(os 3 irmãos).

Enfim a todos os meus amigos que fiz no IMPA. Aos meus amigos de Ouro Branco
especialmente muito especialmente ao Cristiano(Tibém), Domingos, Vérton, Cristiano do
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Abstract. Let Fol (k;n) be the space of codimension one holomorphic foliations of
degree k on Pn. In this work we prove that, if n ≥ 3, then the set of foliations F of
Pn which can be written as F = f∗ (G), where G is a foliation in P2 of degree d ≥ 2
with three invariant lines in general position and f : Pn P2, deg (f) = ν ≥ 2, f =(
Fα0 : F β1 : F γ2

)
, (α, β, γ) ∈ N3 such that 1 ≤ α < β < γ and g.c.d (β.γ, α.γ, α.β) = 1, is

an irreducible component of the following space:

Fol

((
ν

[
(d− 1) +

1

α
+

1

β
+

1

γ

]
− 2, n

))
.
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1. Notations

(1) Πn : Cn+1\ {0} → Pn− The canonical projection which defines Pn. If p ∈
Cn+1\ {0} then Πn(p) = [p]= line in Cn+1 joining 0 to p.

(2) deg (f)− the algebraic degree of f.

(3) Il3 (d, 2)− Subset of Fol (d, 2) corresponding to the foliations with three invariant
straight lines in general position.

(4) BRM (n, ν, α, β, γ) = {f : Pn P2} of degree ν which are given by f =
(
Fα

0 : F β
1 : F γ

2

)
,

where deg (F0) .α = deg (F1) .β = deg (F2) .γ = ν, ν ≥ 2, (α, β, γ) ∈ N3 such that
1 ≤ α < β < γ and g.c.d (β.γ, α.γ, α.β) = 1. (Branched Rational Mappings)

(5) Gen (n, ν, α, β, γ)− The Zariski open subset corresponding to those f ∈ BRM (n, ν, α, β, γ)

such that for all p ∈ f̃−1 (0) \ {0} we have dF0 (p)∧ dF1 (p)∧ dF2 (p) 6= 0, here we

are denoting by f̃ the lifting of f .

(6) Sing (F)− Singular set of F .

(7) I (f)− The indeterminacy set of f.

(8) Z (F0, ..., Fm)− Common zero set of the polynomials F0, ..., Fm.

(9) P (f)− Critical set of f : Pn → P2.

(10) V (f)− The set V (f) = Pn\I (f) .

(11) C (f)− The image of the critical set of f : Pn P2, C (f) = f (P (f)).

(12) H (d, 2) = Subset of Fol (d, 2) corresponding to the foliations such that all their
singularities are of Hyperbolic-type.

(13) Submanifold − A smooth complex subvariety in Pn.

(14) P2
[r,s,t]− the weighted projective plane with weights (r, s, t).
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2. Introduction

Let F be a holomorphic singular foliation on Pn of codimension 1, Πn : Cn+1\ {0} → Pn
be the natural projection and F∗ = Π∗n (F) . It is known that F∗ can be defined by an
integrable 1−form Ω =

∑n
j=0Ajdzj, where the A′js are homogeneous polynomials of the

same degree, satisfying the so called Euler condition:

(1)
n∑
j=0

zjAj ≡ 0,

and codim(S (Ω)) ≥ 2, where S (Ω) is the singular set of Ω, S (Ω) = {A0 = ... = An = 0} .

Let us give an idea of the proof of this fact. Since H1 (Cn+1\ {0} ,O∗) = 0 and F∗ can be
defined locally by an integrable 1-forms, it follows that F∗ can be defined by an integrable
holomorphic 1-form η in Cn+1\ {0}. Hartog’s Theorem implies that η can be extended to
Cn+1, so that we can consider its Taylor series η = ηk + ηk+1 + ..., where the coefficients
of ηj are homogeneous polynomials of degree j and ηk is integrable. On the other hand,
since the fibers of Πn are contained in the leaves of F∗, we get that F∗ is invariant by the
homotheties of Cn+1. This implies that F∗ can be represented by Ω = ηk and that the
coefficients of Ω satisfy (1). The singular set of F , S (F) , is Πn (S (Ω)) = Πn (S (F∗)) .
Recall that the integrability condition is given by

(2) Ω ∧ dΩ = 0.

The leaves of F are of the form Πn(L), where L is a leaf of F∗, that is, a codimension-1
solution of the differential equation Ω = 0. The form Ω will be called a homogeneous
expression of F . The degree of F is, by definition, the number of tangencies (counted
with multiplicities) of a generic linearly embedded P1 with F . If we denote it by deg(F)
then deg (F) = d − 1, where d = deg (A0) = ... = deg (An) . We will denote the space of
foliations of a fixed degree, say k, in Pn by Fol (k, n) . If we consider relation (2), and the
fact that S (F) has codimension ≥ 2, then we see that Fol (k, n) can be identified with
a Zariski’s open set in the variety obtained by projectivizing the space of forms Ω which
satisfy (1) and (2). It is in fact an intersection of quadrics. Hence we have the following:

Problem: Describe and classify the irreducible components of Fol (k;n) k ≥ 3
on Pn, n ≥ 3.

Before stating the precise results, let us describe some known results and examples. We
recall that this list is not complete.

(1) Example 0. In the case n = 2 condition (1) implies condition (2), so that Fol(k, 2)
is a Zariski open set of a linear variety.

(2) Example 1. A foliation of degree 0 in Pn has meromorphic first integral of the form

f/g, where f, g : Cn+1 → C are homogeneous polynomials of degree 1. The form
Ω, which describes the foliation, is in this case Ω = fdg − gdf. As a consequence,
all foliations of degree 0 are linearly equivalent.
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(3) Example 2. A foliation of degree 1 in Pn can be described by a 1-form in Cn+1

which has an integrating factor. We say that a meromorphic function φ is an
integrating factor of Ω, if the form Ω/φ is closed. In the case of degree 1, the form
Ω can be of three types:

(a) Ω = f1f2f3

∑3
j=1 λj

dfj
fj
, where f1, f2 and f3 are homogeneous polynomials of

degree 1 and λ1 +λ2 +λ3 = 0. In this case the integrating factor is φ = f1f2f3.

(b) Ω = f 2
2df1 − f1 (f2 + f3) df2 + f1f2df3, where f1, f2 and f3 are homogeneous

polynomials of degree 1. The integrating factor is φ = f1f
2
2 . As is shown in

[C.Ln] this case can be considered as a limit case of (3a).

(c) Ω = f2df1 − 2f1df2, where deg(f1) = 2 and deg(f2) = 1. The proof of the
above result can be found in [Jou]. As a consequence, Fol(1, n), for n ≥ 3, has
two irreducible components, where a generic point of the first (resp. second)
component is given by a form of the type (3a) (resp.(3c)).

Next we will describe some known irreducible components of Fol (k, n) , n ≥ 3.

(4) Example 3. Linear Pull-back foliations. Let F be a foliation of degree k in P2 and

f : Pn P2, n ≥ 3, be a linear submersion f̃ : Cn+1 → C3. Then F∗ = f̃ ∗ (F) is a
foliation in Fol (k, n) . We denote the space of foliations of this type by PBL (k;n) .
It can be proved, by using the techniques developed in [Ca.Ln], that PBL (k;n)
is an irreducible component of Fol(k, n) for all k ≥ 2 and n ≥ 3.

(5) Example 4. Rational Components. Given l,m ∈ N such that l +m− 2 = k, let f

and g be homogeneous polynomials in Cn+1 such that:

(a) deg (f) = l, deg (g) = m, and l/m = r/s, where g.c.d (r, s) = 1.

(b) If z ∈ {f = g = 0} − {0} , then df (z) ∧ dg (z) 6= 0.

(c) The hypersurface π (f = 0) ⊂ Pn is smooth.
Let F be the foliation in Pn, n ≥ 3, whose leaves are the level surfaces
of φ = f r/gs, considered as a meromorphic function on Pn. In homoge-
neous coordinates F can be defined by the form Ω = rgdf − sfdg, where
codim(S (Ω)) ≥ 2,. Therefore F ∈ Fol (k, n) for k = l+m− 2. We denote by

R (l,m;n) the set of foliations in Fol (k, n) of this type. The following result
is a direct consequence of [G.Ln] and [C.Ln1].

Theorem 2.1. R (l,m;n) is a irreducible component of Fol (k, n), if n ≥ 3.

In the case k = 2 we have two possibilities: l = m = 2 and l = 1,m = 3.
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(6) Example 5. Logarithmic components. Let f1, ..., fm be homogeneous polynomials

in Cn+1, where m ≥ 3, and λ1, ..., λm ∈ C∗ be such that
∑m

j=1 λjdj = 0 where

dj = deg(fj). The form

Ω = f1...fm

m∑
j=1

λj
dfj
fj
,

is integrable. The condition
∑m

j=1 λjdj = 0 implies that Ω satisfies (1), so that it

defines a foliation F = F(Ω) ∈ Pn. A 1-form as in (3) will be called a logarithmic
form, and the foliation it induces in Pn a logarithmic foliation.

When f1, ..., fm are irreducibles and relatively prime we will denote F by

F(f1, ..., fm, λ1, ..., λm).

The set of the foliations of this type will be denoted by L(d1, ..., dm) ⊂ Fol(k, n),
where k = d1 + ...+ dm − 2.

The following is a known result:

Theorem 2.2. If n ≥ 3,m ≥ 3 and k = d1 + ...+ dm− 2, then L (d1, ..., dm) is an
irreducible component of Fol (k, n) .

The proof of this theorem is done in [C.A].

In the case k = 2 we have two possibilities: m = 4, d1 = d2 = d3 = d4 = 1 and
m = 3, d1 = d2 = 1, d3 = 2. We have so far described five types of irreducible
components of Fol(k, n);n ≥ 3.

To obtain a satisfactory description of Fol (d;n) (for example, to talk about deformations)
it would be reasonable to know the decomposition of Fol (d;n) in irreducible components.

In the paper [C.Ln], the authors have proved that the space of holomorphic codimen-
sion one foliations of degree 2 on Pn, n ≥ 3, has six irreducible components, which can
be described by geometric and dynamic properties of a generic element. Five of these
components are

R (2, 2;n),R (1, 3;n),L (1, 1, 1, 1;n),L (1, 1, 2;n);PBL (2;n).

The sixth component is called exceptional, in particular, because two generic elements in
it are equivalent by an automorphism of Pn. We refer the curious reader to [C.Ln], [Ln]
for a detailed discussion and for the explanation about the notation.

A consequence of their classification is that we have two possibilities for a degree two
foliation F on Pn, n ≥ 3: either F is defined by a meromorphic closed 1-form on Pn, or
F = f ∗ (G), where f : Pn P2 is a linear map and G is a degree two foliation of P2. A
foliation defined by a meromorphic closed 1-form admits a special transverse projective
structure with poles, namely a translation structure [Sc]. On the other hand, a foliation of
the form F = f ∗(G) admits such a structure, if and only if, G admits [C.Ln.L.P.T], which
is not always the case: a foliation of P2 which admits a projective or affine transverse
structure has always algebraic leaves, whereas for any k ≥ 2, the generic foliations on P2

of degree k ≥ 2 has no algebraic invariant curves.
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On the other hand there are known irreducible components in which the typical element
is a pull-back of a foliation on P2 by a rational map, like the following result associated
to ”Non Linear (generic) Pull-Backs” [C.Ln.E],[Ln].

Let us introduce the objects needed to give the precise statement: Given a generic ratio-
nal map f : Pn P2 of degree ν ≥ 1, it can be written in homogeneous coordinates as
f = (F0, F1, F2) where F0, F1 and F2 are homogeneous polynomials of degree ν. Also con-
sider foliation G on P2 of degree d ≥ 2. We can associate to the pair (f,G) the pull-back
foliation F = f ∗G. The degree of the foliation F is ν(d + 2) − 2 as proved in [C.Ln.E].
Denote by PB(d, ν;n) the closure in Fol (ν(d+ 2)− 2, n), n ≥ 3 of the set of foliations F
of the form f ∗G, where f has degree ν and G ∈ Fol (d, 2). Since the map (f,G)→ f ∗G is
an algebraic parametrization of PB(d, ν;n), it follows that PB(d, ν;n) is an irreducible
algebraic subset of Fol (ν(d+ 2)− 2, n), n ≥ 3.

The main result contained in [C.Ln.E] is as follows:

Theorem PB(d, ν;n) is a unirational irreducible component of Fol (ν(d+ 2)− 2, n) ;
n ≥ 3, ν ≥ 1 and d ≥ 2.

We remind that the previous result contains the result of [Ca.Ln].

This motivates the following conjecture which is attributed to different authors (Brunella,
Lins-Neto among others.)

Main Conjecture: Any codimension one holomorphic foliation on Pn, n ≥ 3

is either a pull-back of a foliation G on P2 by a Rational Map f : Pn P2

or admits a transverse projective structure with poles, in a codimension 1 algebraic

submanifold.

A particular case of this conjecture was proved in [C.Ln.L.P.T]. Recently, in a paper
to appear, Cerveau and Lins-Neto [C.Ln2] proved that this conjecture is also true for
foliations of degree 3.

3. The Present Work

Two distinct families of irreducible components of ”Pull-Back type” are known:

(1) ”Linear Pull-Backs” [Ca.Ln],[C.Ln],[Ln].

(2) ”Non Linear (Generic) Pull-Backs” [C.Ln.E],[Ln].

In the present work, we will see a generalization of case (2).

What we will do is described as follows:

(1) Describe some irreducible subvariety A(k;n) ⊂ Fol (k;n).
(2) Study a neighborhood U ⊂ Fol (k;n) of a generic member of the family A(k;n).
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In some cases, one can show that all such foliations on the neighborhood U ⊂ Fol (k;n),
also belong to the family A(k;n). In this case, the closure A(k;n) will be an irreducible
component of the space Fol (k;n) .

Without details, let us state some results that we will prove in this thesis:

Denote by H(d, 2) the subset of foliations on P2 of degree d with all singularities of
Hyperbolic-Type and Il3(d, 2) the set of foliations on P2 of degree d having 3 invariant
lines in general position (later we will discuss in detail this set).

Set also A (d) = Il3 (d, 2) ∩H (d, 2). Our first result is the following:

Theorem A. Let d ≥ 2. There exists an open and dense subset M1 (d) ⊂ A (d), such
that if G ∈M1 (d) then the only algebraic invariant curves of G are the three lines.

Let us describe the type of pull-back foliation that we will consider.
Let G be a foliation on P2 with three invariant straight lines in general position, say `0, `1

and `2.
Consider coordinates (X, Y, Z) ∈ C3 such that

`0 = Π2(X = 0), `1 = Π2(Y = 0) and `2 = Π2(Z = 0).

The foliation G can be represented in these coordinates by a polynomial 1-form of the
type

Ω = Y ZA (X, Y, Z) dX +XZB (X, Y, Z) dY +XY C (X, Y, Z) dZ

where A+B + C = 0 by (1).
Let f : Pn P2 be a rational map represented in homogeneous coordinates W ∈ Cn+1

and (X, Y, Z) ∈ C3 by f̃ = (Fα
0 , F

β
1 , F

γ
2 ), where F0, F1 and F2 ∈ C[W ] are homogeneous

polynomials without common factors satisfying

α.dg(F0) = β.dg(F1) = γ.dg(F2) = ν.

The pull back foliation f ∗(G) is then defined in homogeneous coordinates W by η̃[f,G] (W ),
where

f̃ ∗Ω = d (Fα
0 ) .F β

1 .F
γ
2 . (A ◦ F ) + Fα

0 .d
(
F β

1

)
.F γ

2 . (B ◦ F ) + Fα
0 .F

β
1 .d (F γ

2 ) . (C ◦ F )

=
[
Fα−1

0 .F β−1
1 .F γ−1

2

]
η̃[f,G] (W ) .

Note that,

η̃[f,G] (W ) = [α.F1.F2. (A ◦ F ) dF0 + β.F0.F2. (B ◦ F ) dF1 + γ.F0.F1. (C ◦ F ) dF2] ,

and if there are no more common terms to simplify we have that the degree of the 1− form
η̃[f,G] (W ) is equal to the degree of any term. And the value of the degree is Γ(d, ν, α, β, γ)

is the degree’s sum of one of the terms of the above expression, since F̃ ∗Ω is a homogeneous
polynomial 1-form, that is, where the coefficients of η̃[f,G] (W ) are homogeneous of degree

Γ = ν

[
(d− 1) +

1

α
+

1

β
+

1

γ

]
− 1.
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Remark 1. The crucial point here is that the mapping f sends the three hypersurfaces
(Fi = 0) contained in its critical set over the three G invariant lines.

Let PB (Γ− 1, ν, α, β, γ) be the closure in Fol (Γ− 1, n) of the following set:{[
η̃[f,G]

]
, where η̃[f,G] is as before

}
.

This set is an irreducible algebraic subset of Fol (Γ− 1, n). We will return to this point
in section 6.

Let us state our main theorem.

Theorem B. PB(Γ−1, ν, α, β, γ) is a unirational irreducible component of Fol (Γ− 1, n)
for all n ≥ 3, deg(F0).α = deg(F1).β = deg(F2).γ = ν ≥ 2, (α, β, γ) ∈ N3 such that
1 ≤ α < β < γ, g.c.d (β.γ, α.γ, α.β) = 1 and d ≥ 2.

In order to state and prove precisely our results we have to go through several concepts.

4. Rational Maps

As we know from projective geometry the concept of regular maps is very restrictive, since
points of indeterminacy are quite natural. This leads to the concept of rational maps,
which are regular on a dense Zariski-open set and need not be defined outside.

More precisely, let X ⊆ Pn and Y ⊆ Pm be irreducible algebraic varieties. Then a rational
map f : X Y is an equivalence class of regular maps fU : U → Y defined on some
dense Zariski-open U ⊂ X, where fU and fV are equivalent if fU = fV on U ∩ V . In
particular, if X = Pn, there are homogeneous polynomials F0, ..., Fm ∈ C [T0, ..., Tm] of the
same degree such that U := Pn\V (F0, ..., Fm) 6= ∅ and f (x) = (F0 (x) , ..., Fm (x)) ∈ Y
for every x ∈ U. Obviously, there is a maximal open set Def (f) ⊂ Pn, where f is regular,
which is called the domain of definition. The closed set I (f) := Pn\ Def (f) is called the
indeterminacy set. A rational map f is regular iff Def (f) = Pn, that is I (f) = ∅.
It is important to note that when we are working in algebraic geometry we have two
natural topologies: the Zariski topology and the Strong topology.

When we are working with the Zariski topology we use the term Regular and when we are
using the Strong topology we use the term Holomorphic. In many situations, the strong
topology will be more useful.
We will use the following interpretation of a rational map. Let f : Pn P2 be a rational
map and f̃ : Cn+1 → C3 a lifting of f , that is a homogeneous polynomial map such that
the diagram below commutes:

Cn+1\f̃−1 (0)
f̃−−−→ C3\ {0}

Πn

y Π2

y
Pn\Πn

(
f̃−1 (0)

)
f−−−→ P2



RAMIFIED PULL-BACK COMPONENTS OF THE SPACE OF CODIMENSION ONE FOLIATIONS 15

The indeterminacy locus of f is by definition the set I (f) = Πn

(
f̃−1 (0)

)
. Observe that

the restriction f |Pn\I(f) is holomorphic.

4.1. Branched Rational Maps

Definition 4.1. Denote by BRM (n, ν, α, β, γ) the set of maps {f : Pn P2} of degree

ν given by f =
(
Fα

0 : F β
1 : F γ

2

)
where F0, F1 and F2 are homogeneous polynomials without

common factors, with deg (F0) .α=deg (F1) .β= deg (F2) .γ=ν, ν ≥ 2, (α, β, γ) ∈ N3 such
that 1 ≤ α < β < γ and g.c.d (β.γ, α.γ, α.β) = 1.

Let us fix some coordinates (z0, ..., zn) on Cn+1 and (X, Y, Z) on C3 and denote by(
Fα

0 , F
β
1 , F

γ
2

)
the components of f relative to these coordinates.

We recall that the indeterminacy locus I(f) is the intersection of the 3 hypersurfaces
(F0 = 0), (F1 = 0) and (F2 = 0).

Definition 4.2. We say that f ∈ BRM (n, ν, α, β, γ) is generic if for all p ∈ f̃−1 (0) \ {0}
we have dF0 (p) ∧ dF1 (p) ∧ dF2 (p) 6= 0.

This is equivalent to say that f ∈ BRM (n, ν, α, β, γ) is generic if I(f) is the transverse
intersection of the 3 hypersurfaces (F0 = 0), (F1 = 0) and (F2 = 0) i.e. the three hyper-
surfaces intersect transversely at each point of I(f), or equivalently, dF0 (p) ∧ dF1 (p) ∧
dF2 (p) 6= 0 for each p ∈ I(f).

This implies that the set I(f) is smooth.
For instance, if n = 3, f is generic and deg(f) = ν, then by Bezout′s theorem I (f)

consists of ν3

αβγ
distinct points with multiplicity αβγ. If n = 4, then I (f) is a smooth

connected algebraic curve in P4 of degree ν3

αβγ
. In general, for n ≥ 4, I (f) is a smooth

connected algebraic submanifold of Pn of degree ν3

αβγ
and codimension 3.

The critical set of f̃ is given by the points of Cn+1\{0} where the rank of the following
derivative matrix is smaller than 3 α

(
Fα−1

0

)
∇F0

β
(
F β−1

1

)
∇F1

γ
(
F γ−1

2

)
∇F2


where ∇Fk = (∂Fk

∂z0
, ..., ∂Fk

∂zn
).

Note that the critical set is the union of two sets. The first is given by the set of
{Z ∈ Cn+1\ 0} = X1 such that the rank of the following matrix∇F0

∇F1

∇F2


is smaller than 3. And the second is the subset

X2 =
{
Z ∈ Cn+1\ {0} |

(
Fα−1

0 .F β−1
1 .F γ−1

2

)
(Z) = 0

}
.

Denote P (f) = Πn (X1 ∪X2) where X1 and X2 are the first and the second sets described
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previously.

The set of generic maps will be denoted by Gen (n, ν, α, β, γ).
Let us prove the following proposition,

Proposition 4.3. Gen (n, ν, α, β, γ) is a Zariski dense subset of BRM (n, ν, α, β, γ).

Proof. Consider the following set

X = {(f, p) ; p ∈ I (f) and dF0 (p) ∧ dF1 (p) ∧ dF2 (p) = 0} ,

Note that X is an algebraic subset of BRM (n, ν, α, β, γ) × Pn. If we consider the first
projection

π1 : BRM(n, ν, α, β, γ)× Pn → BRM(n, ν, α, β, γ),

since Pn is a projective variety, π1 (X) is closed in BRM (n, ν, α, β, γ). Then if its com-
plement is not empty it is an open and dense Zariski’s subset of BRM (n, ν, α, β, γ) .

To conclude that the set Gen(n, ν, α, β, γ) is non-empty we take three smooth projective
hypersurfaces of degree ν

α
, ν
β

and ν
γ

that intersect transverselly two by two. The existence

of hypersufaces that satisfy these properties is a well known fact from differential topology
[Hi].

The corresponding homogeneous polynomials that define each one of them we call F0, F1

and F2. Hence we define lots of branched generic rational mappings. �

Remark 2. Let us observe that inside the set of all rational maps f : Pn P2 with
degree ν, BRM (n, ν, α, β, γ) is a small subset. This is because irreducible polynomials
are generic.

5. Foliations with 3 invariant lines

Denote by I(d, 2) the set of the holomorphic foliations on P2 of degree d ≥ 2 that leaves
the lines X = 0, Y = 0 and Z = 0 invariant. An element of this set can be represented
by the following homogeneous polynomial 1−form

Ω = Y ZA(X, Y, Z)dX +XZB(X, Y, Z)dY +XY C(X, Y, Z)dZ,

where the polynomials A, B and C are homogeneous of degree d − 1. The condition
iRΩ = 0, where R is the radial vector field,

R(X, Y, Z) = X
∂

∂X
+ Y

∂

∂Y
+ Z

∂

∂Z
,

implies that A+B + C = 0. Moreover, any foliation which has 3 invariant straight lines
in general position can be carried to one of these by a linear automorphism of P2. And
what we do now is to let the group of linear automorphisms of P2 act on I(d, 2). After
this procedure we obtain a set of foliations of degree d that we denote by Il3(d, 2).
The relation

A+B + C = 0
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enables to parametrize I(d, 2) as follows

H0(P2,OP2(d− 1))×2 → H0(P2,OP2(d− 1))×3

(A,B) 7→ (A,B,−A−B)

We are interested in making deformations of foliations and for our purposes we need a sub-
set of Il3(d, 2) with good properties (foliations having few algebraic invariant curves and
only hyperbolic singularities). These properties will be explained in the next subsection.

5.1. A Jouanoulou’s type theorem for foliations inside Il3(d, 2)

Let q ∈ U be an isolated singularity of a foliation G defined on an open subset of U ⊂ C2.
We say that q is nondegenerate if there exists a holomorphic vector field X tangent to
G in a neighborhood of q, such that DX(q) is nonsingular. In particular q is an isolated
singularity of X.

Let q be a nondegenerate singularity of G. The characteristic numbers of q are the
quotients λ and λ−1 of the eingenvalues of DX(q), which do not depend on the vector
field X chosen as above. If λ /∈ Q+ then G exhibits exactly two (smooth and transverse)
local separatrices at q, say, S+

q and S−q , which are tangent to the characteristic directions
of a vector field X as above, and with eigenvalues λ+

q and λ−q , respectively.
The Camacho-Sad index, for short, characteristic numbers, of these local separatrices are
given by

I(G, S+
q ) =

λ−q
λ+
q

and I(G, S−q ) =
λ+
q

λ−q
,

respectively.

The singularity is hyperbolic if the characteristic numbers are nonreal. We introduce the
following spaces of foliations:

(1) ND(d, 2) = {G ∈ Fol(d, 2) such that the singularities of G are nondegenerate},

(2) H(d, 2) = {G ∈ ND(d, 2) such that any characteristic number λ of G satisfies
λ ∈ C\R}.

It is a well-known fact that H(d, 2) contains an open and dense subset of Fol(d, 2), see
[Ln1]. Denote by A(d) = Il3(d, 2) ∩ H(d, 2). Observe that A(d) is a Zariski dense subset
of Il3(d, 2).

For the reader’s convenience let us remember Theorem A.

Theorem A. Let d ≥ 2. There exists an open and dense subset M1 (d) ⊂ A (d), such
that if G ∈M1 (d) then the only algebraic invariant curves of G are the three lines.

We begin with a preliminary result:
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Proposition 5.1. Let G0 ∈ ND(d, 2). Then #sing(G0) = d2 + d + 1 = N(d). Moreover
if sing(G0) = {p0

1, ..., p
0
N} where p0

i 6= p0
j if i 6= j, then there are connected neighborhoods

Uj 3 pj, pairwise disjoint, and holomorphic maps φj : U ⊂ ND(d, 2)→ Uj, where U 3 G0

is an open neighborhood, such that for G ∈ U , (sing(G) ∩ Uj) = φj(G) is a nondegenerate
singularity. In particular, ND(d, 2) is open in Fol(2, d).

Moreover, if G0 ∈ H(d, 2) then the two local separatrices as well as their associated
eigenvalues depend analytically on G.

This result was proved in [Ln1] as a consequence of the Implicit Function Theorem for
holomorphic mappings.

Regarding the position of the singularities of an element G ∈ A(d) we have the next
proposition.

Proposition 5.2. Let G be in A(d), the localization of its singular set is:

(1) On the intersection of two of these lines we have one singularity.

(2) Over each line excluding the singularities which are in the intersection of two of
them we have (d− 1) singularities.

(3) We have (d− 1)2 singularities outside of these 3 lines.

We will use the intersection formulas of line bundles with curves. Let G be as above and
consider its normal line bundle. When C is an invariant compact curve under G we have
that:

NG.C = C.C +GSV (G, C)

where

GSV (G, C) =
∑
p∈C

GSV (G, C, p)

and GSV (G, C, p) is the Gomez-Mont-Seade-Verjovsky Index.

Let us prove the proposition 5.2:

Proof. Let C be an invariant straight line. It is known that index GSV (G, C, p) = 1. This
is due to the fact that our singularities are of the Hyperbolic-type [Bru] and the straight
line has only one branch through p. As we know our foliation G has a normal bundle
given by NG = OP2(d + 2) where d is the foliation’s degree. Applying the intersection
formula to the straight line we have that

(d+ 2) · 1 = 1 + (#sing(G)|C)

so
#sing(G)|C = d+ 1.

Excluding the singular points that are at the corners we have (d−1) singularities on each
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straight line. This implies that the three lines contain 3(d − 1) + 3 = 3d singularities.
Therefore, by Darboux’s Theorem, outside the three lines we have

(d2 + d+ 1)− 3− 3(d− 1) = (d− 1)2

singularities. �

Let us fix a coordinate system on P2 and denote by `0, `1, and `2 the straight lines that
corresponds to the planes X = 0, Y = 0 and Z = 0 in C3, respectively.

Taking out the separatrices of the singularities of a foliation G ∈ A(d) that are at the
corners, we will divide the subset of the remaining singularities and separatrices in 4 new
subsets as follows,

(1) SW (G) = {pi; 1 ≤ i ≤ (d− 1)2}, that correspond to the singularities of G outside
of the three invariant straight lines,

(2) S`r(G) = {pr,j; 0 ≤ r ≤ 2, 1 ≤ j ≤ (d− 1)} that correspond to the singularities of
G over the straight line `r different from the vertices,

(3) We also have [0 : 0 : 1], [0 : 1 : 0] and [1 : 0 : 0] that correspond to the intersection
two by two of those invariant lines.

We enumerate the separatrices of the singularity pi by S+
i and S−i for {1 ≤ i ≤ (d− 1)2}.

The separatrix of the singularity pr,j, 0 ≤ r ≤ 2, 1 ≤ j ≤ (d − 1) that is transverse to
`r we will denote by Srj . We denote by I(G, S−i ) and I(G, S+

i ) the characteristic numbers

associated to the local separatrices S+
i and S−i , and by I(G, S0

j ), I(G, S1
j ) and I(G, S2

j ) the

characteristic numbers associated to the local separatrices S0
j , S

1
j and S2

j respectively.

Let us choose a neighborhood U of G inside A(d) as described previously, in such a way
that

(1) U 3 G → I(G, S−i ),

(2) U 3 G → I(G, S+
i ),

(3) U 3 G → I(G, Skj ),

are holomorphic maps. We denote by S(G) = {S−i , S+
i , S

k
j } where i, j, k are as before.

Definition 5.3. A configuration is a subset C ⊂ S(G). Given a configuration C we define

I(G, C) =
∑
S−i ∈C

I(G, S−i ) +
∑
S+
i ∈C

I(G, S+
i ) +

∑
Srj∈C

I(G, Srj ).

Let C be a configuration. Then we can split C in three parts

C = L ∪M ∪N,
where

(1) L = {S0
j , S

1
j , S

2
j ∈ C},
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(2) M = {S+
i ∈ C|S−i /∈ C} ∪ {S−i ∈ C|S+

i /∈ C},

(3) N = {S+
i ∈ C|S−i ∈ C} ∪ {S−i ∈ C|S+

i ∈ C}.

We define l = #L, m = #M and n = #N .

If C = ∅ then I(G, C) = 0. If S ⊂ P2 is an invariant irreducible algebraic curve then we
define the configuration of S as the configuration C(S) defined by the local separatrices

of G. Denote by k̃ the degree of S.

Proposition 5.4. Let G be as above, and let S be an irreducible algebraic curve which is
different from the 3 invariant straight lines. Write C(S) = L ∪M ∪ N as above. Then
C(S) satisfies the following properties:

(1) l = #L = 3k̃, where 1 ≤ k̃ ≤ (d− 1).

(2) I(G, C(S)) = 2l2+9n
18

where l = 3deg(S) and n = 2(#nodes).

Proof. Part (1) follows from Bezout’s Theorem. Note that the number of intersection
points between S and anyone of the invariant straight lines is the same (it coincides with
the degree of the curve). In order to prove (2) we recall [Ln1] where it is shown that

0 < I(G, S) = l − χ(S̃)

where χ(S̃) is the Euler characteristic of the normalization S̃ of the curve S. Since S
has only nodal singularities, which correspond to local separatrices in N which meet
transversely, it follows from Hurwitz formula that

χ(S̃) = 2− 2
( l

3
− 1)( l

3
− 2)

2
− 1

2
n =

−2l2 + 18l − 9n

18
so that I(G, S) = 2l2+9n

18
.

�

Definition 5.5. Let d ≥ 2 ∈ N, we define the subset M1(d) consisting of those foliations

G ∈ A(d) such that for all configurations C ⊆ S(G), with l(C) = 3k̃, where 1 ≤ k̃ ≤ (d−1)

we have I(G, C(S)) 6= 2l(C)2+9n(C)
18

.

REMARKS.

(1) If G ∈M1(d) then G admits no irreducible algebraic invariant curve except for the
3 invariant straight lines.

(2) A(d)\M1(d) is an analytic subset of A(d), because it is defined (locally) by a finite

number of equations of the form I(G, C(S)) = 2l(C)2+9n(C)
18

.

(3) M1(d) is open in A(d).

Now we will prove Theorem A:
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Proof. Since A(d)\M1(d) is an analytic subset of A(d), it suffices to prove that M1(d) 6= ∅
(see also [Ln1]).

Let U0 = {C2, (x, y)}, U1 = {C2, (u, v)} and U2 = {C2, (ς, s)} be a covering of P2 by
affine coordinate systems such that:



x =
1

u
y =

v

u
,

x =
s

ς
y =

1

ς
,

ς =
u

v
s =

1

v
Consider the polynomial vector field X0(x, y) on U0 = {C2, (x, y)} given by:{

ẋ = x(cxd−1 + ayd−1 + λ),

ẏ = y(bxd−1 + eyd−1 + µ).

We demand that the constants a, b, c, e, λ and µ are all nonzero and a 6= e, b 6= c.
In the coordinates U1 = {C2, (u, v)} this differential equation turns into X1(u, v) which is
given by {

u̇ = u(λud−1 + avd−1 + c),

v̇ = v[(b− c) + (µ− λ)ud−1 + (e− a)vd−1]

In the coordinates U2 = {C2, (ς, s)} this differential equation turns into X2(ς, s) which is
given by {

ς̇ = ς[(e− a) + (b− c)ςd−1 + (µ− λ)sd−1],

ṡ = s(e+ µsd−1 + bςd−1)

Observe that this foliation can be seen on homogeneous coordinates of C3 by the following
homogeneous polynomial 1−form:

Ω = Y ZA (X, Y, Z) dX +XZB (X, Y, Z) dY +XY C (X, Y, Z) dZ,

where:

(1) A(X, Y, Z) = bXd−1 + eY d−1 + µZd−1,

(2) B(X, Y, Z) = −(cXd−1 + aY d−1 + λZd−1),

(3) C(X, Y, Z) = (c− b)Xd−1 + (a− e)Y d−1 + (λ− µ)Zd−1.

The singular set of the previous foliation is decomposed in 7 orbits by the action of the
following finite automorphism group of P2

C,

δK 0 0
0 δl 0
0 0 δm

XY
Z

 =

δkXδly
δmZ


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where δ is a (d− 1)−th root of 1 and 1 ≤ k, j, l ≤ d− 1.

In local coordinates, for example in chart U0 = {C2, (x, y)} the foliation is invariant by
the finite group generated by the two linear automorphisms of C2, T (x, y) = (δx, y) and
H(x, y) = (x, δy) where δ a (d− 1)th root of unity. For the other local coordinate charts
is analogous.

Let G be the foliation which is defined by the 1−form Ω of the previous example. The
action under this group enables to divide the singular set of G into 7 distinct orbits:

(1) Each corner `i ∩ `j, i 6= j is a fixed point of H and T .

(2) The set of (d− 1) singularities over the straight line `r, 0 ≤ r ≤ 2, (which are not
corners) is an orbit of G.

(3) The set of (d − 1)2 singularities outside the 3 invariant straight lines constitute
another orbit of G.

In our example we fix a = (1− i), b = 1, c = i, e = 1, µ = i and λ = 1.

Let us analyze the singular set of G.

The singularities of G in U0 are given by:

(1) (0,0) which has characteristic numbers λ
µ

= 1
i

and µ
λ

= i which implies that this

singularity is hyperbolic.

(2) the characteristic numbers of the singularities outside the 2 axes are obtained from
the matrix

DX0(xk, yj) =

(
c(d− 1)xd−1

k a(d− 1)xky
d−2
j

b(d− 1)yjx
d−2
k e(d− 1)yd−1

j

)
where 1 ≤ j ≤ (d− 1) and 1 ≤ k ≤ (d− 1), that is, these characteristic numbers
are roots of

σ + σ−1 + 2 =
(Tr)2

D
=
−i
2

where (Tr) is the trace and D is the determinant of the matrix DX0(xk, yj). There-
fore solving this equation we obtain

σ− =
1

4

[
(−4− i)−

√
(−1 + 8i)

]
=

1

4
[−(4 + ζ)− i(θ + 1)]
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and

σ+ =
1

4

[
(−4− i) +

√
(−1 + 8i)

]
=

1

4
[(ζ − 4) + i(θ − 1)]

where

ζ =

√
−1 +

√
65

2
and θ =

4

ζ
.

Again we get hyperbolic singularities.
(3) The singularities over the line x = 0, excluding the origin are obtained solving the

following equations {
x = 0

0 = (eyd−1 + µ).

The linear part on the singularities is given by

DX0(0, yj) =

(
ayd−1

j + λ 0

0 e(d− 1)yd−1
j

)
where 1 ≤ j ≤ (d− 1), and the characteristic value is

e(d− 1)yd−1
j

ayd−1
j + λ

=
(d− 1)

5
+

2i(d− 1)

5
.

Because d ≥ 2 these singularities are hyperbolic.
(4) By an analogous argument the characteristic value of the singularities over the

line y = 0 is
c(d− 1)xd−1

k

bxd−1
k + λ

=
−2(d− 1)

5
+
i(d− 1)

5
.

Again we get hyperbolic singularities.

The singularities of G in U1 are given by:

(1) (0,0) which has characteristic numbers b−c
c

= −1− i and c
b−c = 1

−1−i which implies
that this singularity is hyperbolic.

(2) the singularities over the line u = 0, excluding the origin are obtained solving the
following equations {

u = 0

0 = [(b− c) + (e− a)vd−1].

The linear part on the singularities is given by

DX1(0, vj) =

(
avd−1

j + c 0

0 (b− c) + d(e− a)vd−1
j

)
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as before we calculate the (characteristic number) corresponding to the transversal sepa-
ratrix passing through the singularity. And we have

(b− c) + d(e− a)vd−1
j

avd−1
j + c

=
(d− 1)

5
+

3i(d− 1)

5
.

The singularity of G in U2 is given by:

(1) (0,0) which has characteristic numbers e−a
e

= i and e
e−a = 1

i
which implies that

this singularity is hyperbolic.

Since d ≥ 2 this already shows that all the singularities of G are hyperbolic.

To finish the proof, it remains to prove that G has no other invariant algebraic curve.
This will be done using the Lins Neto’s version of Camacho-Sad Index Theorem.

In fact we will sum (to combine) all the possible configurations.

The possible values for the Camacho-Sad Index are the following :

r(
1

4
[(−4− θ) + i(ζ + 1)])+

s(
1

4
[(−4 + θ) + i(−ζ + 1)])+

6k̃

5
(d− 1)i

where k̃ = deg(S) ≤ (d− 1). We also have that 0 ≤ r ≤ (d− 1)2 and 0 ≤ s ≤ (d− 1)2.
Now we divide the previous sum in its real and imaginary parts.

(1) Imaginary Part:

I =
1

4
[(ζ + 1)r + s(1− ζ)] +

k̃

5
(6d− 6)

(2) Real Part

R =
1

4
[(−θ − 4)r + s(θ − 4)]

Since R ∈ Z and θ /∈ Q we have r=s and R = −2r ≤ 0. This is a contradiction because

I(G, C(S)) = 2l(C)2+9n(C)
18

> 0.

Hence, for this foliation, there is no possibility to have an algebraic invariant curve
different from those three invariant straight lines. This finishes the proof of the theorem.

�
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Figure 1. A singular hyperbolic holomorphic foliation on P2
C leaving 3

invariant lines.

6. Ramified Pull-Back Components - Generic Conditions -

Once we have a good set of foliations, that is, M1 (d) and a good set of rational maps,
Gen (n, ν, α, β, γ), we will join these objects in the next definition.

Let us fix a coordinate system on P2 and denote by `0, `1 and `2 the straight lines that
correspond to the planes X = 0, Y = 0 and Z = 0 in C3, respectively. Let us denote by
M̃1 (d) the subset M1 (d) ∩ I(d, 2).

Definition 6.1. Let f ∈ Gen (n, ν, α, β, γ). We say that G ∈M1 (d) is in generic position
with respect to f if [Sing (G) ∩ Y2] = ∅, where:

Y2(f) = Y2 := Π2

[
f̃
{
w ∈ Cn+1|dF0 (w) ∧ dF1 (w) ∧ dF2 (w) = 0

}]
and `0, `1 and `2 are G-invariant.

In this case we say that (f,G) is a generic pair.
In particular when we fix a map f ∈ Gen(n, ν, α, β, γ) the set

A = {G ∈M1 (d) |Sing (G) ∩ Y2(f) = ∅}

is an open and dense subset inM1(d) see[Ln.Sc], because V C(f) is an algebraic curve in P2.

The set

U1 := {(f,G) ∈ Gen(n, ν, α, β, γ)× M̃1 (d) |Sing (G) ∩ Y2(f) = ∅}
is an open and dense subset in Gen(n, ν, α, β, γ)× M̃1 (d).
Hence the set

W :=
{
η̃[f,G]| (f,G) ∈ U1

}
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is an open and dense subset of PB (Γ− 1, ν, α, β, γ) .

As we will see later, if (f,G) is a generic pair then the foliation f ∗ (G) has degree (Γ− 1).
(Section 7.)

Denote by BRM (n, ν, α, β, γ) the set of maps {f : Pn P2} of degree ν given by

f =
(
Fα

0 : F β
1 : F γ

2

)
where F0, F1 and F2 are homogeneous polynomials without common

factors, with deg (F0) .α=deg (F1) .β= deg (F2) .γ=ν, ν ≥ 2, (α, β, γ) ∈ N3 such that
1 ≤ α < β < γ and g.c.d (β.γ, α.γ, α.β) = 1.

Consider the set of foliations Il3 (d, 2), d ≥ 2, and the following map:

Φ : BRM (n, ν, α, β, γ)× Il3 (d, 2) → Fol (Γ− 1, n)

(f,G) → f ∗ (G) = Φ (f,G) .

The image of the mapping Φ can be written as:

Φ (f,G) = [α.F1.F2. (A ◦ F ) dF0 + β.F0.F2. (B ◦ F ) dF1 + γ.F0.F1. (C ◦ F ) dF2] .

Remember that Φ (f,G) = η̃[f,G].
More precisely, let PB(Γ− 1, ν, α, β, γ) be the closure in Fol (Γ− 1, n) of the set of folia-
tions F of the form f ∗ (G), where f ∈ BRM (n, ν, α, β, γ) and G ∈ Il3(2, d).

Since BRM (n, ν, α, β, γ) and Il3(2, d) are irreducible algebraic sets and the map (f,G)→
f ∗ (G) ∈ Fol (Γ− 1, n) is an algebraic parametrization of PB(Γ− 1, ν, α, β, γ). It follows
that PB(Γ−1, ν, α, β, γ) is an irreducible algebraic subset of Fol (Γ− 1, n), which contains
the set of generic pull-backs foliations
{F ;F = f ∗(G), where (f,G) is a generic pair} ⊂ PB(Γ− 1, ν, α, β, γ) as an open(not

Zariski) and dense subset of PB(Γ − 1, ν, α, β, γ) for ν ≥ 2, (α, β, γ) ∈ N3 such that
1 ≤ α < β < γ, g.c.d (β.γ, α.γ, α.β) = 1 and d ≥ 2.

Once we have described all the ingredients let us recall Theorem B.

Theorem B. PB(Γ−1, ν, α, β, γ) is a unirational irreducible component of Fol (Γ− 1, n)
for all n ≥ 3, deg(F0).α = deg(F1).β = deg(F2).γ = ν ≥ 2, (α, β, γ) ∈ N3 such that
1 ≤ α < β < γ and g.c.d (β.γ, α.γ, α.β) = 1 and d ≥ 2.

7. Description of generic pull-back foliations on Pn

7.1. The Kupka-Reeb Phenomenon

In this section we will consider an important class of singularities, which have stability
properties under deformations. Moreover, these singularities appear in a Zariski’s open
subset of Fol(k;n).
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Definition 7.1. Let Ω ∈ Fol(k;n). The Kupka singular set of the foliation Ω consists of
the points

KF = {p ∈ Pn|Ω(p) = 0; dΩ(p) 6= 0}.
Remark 3. This condition does not depends of the holomorphic 1-form that expresses the
foliation F .

The main properties of the Kupka set, are summarized in the following result.

Theorem 7.2. Let Ω and KF be as above, then:

(1) F has a local product structure along KF : For every connected component K ⊂ KF
there exist a holomorphic 1-form, ω̃ = A(x, y)dx+B(x, y)dy called the transversal
type at K, defined on a neighborhood V of 0 ∈ C2 and vanishing only at 0, an open
cover Uα of a neighborhood of K in Pn and a family of submersions φα : Uα → C2

such that
[a] φ−1

α (0) = K ∩ Uα and
[b] Ωα = φ∗αω̃ defines F in Uα

(2) KF is persistent under perturbations of F . More precisely, let K ⊂ KF be a con-
nected component and K̃ ⊂ K be a compact subset. Then K̃ is stable under small
deformations of F . Let (Ft)t∈(C,0) be an analytic deformation of F in Fol(k;n).

Then (KFt)t∈(C,0) contains a compact subset (K̃t)t∈(C,0) such that:

(a) (K̃t)t∈(C,0) is a holomorphic deformation of K̃ in Pn.

(b) There exists a unique 1-form (ω̃t)t∈(C,0) in a neighborhood of C2 such that for

all p ∈ (K̃t)t∈(C,0) there exists a holomorphic submersion φp : Vp → C2, Vp a
neighborhood of p, such that (Ft)t∈(C,0)|Vp is represented by (φ∗pω̃t)t∈(C,0).

Let X be the dual vector field of ω̃, since dΩ 6= 0, we have that tr(DX(0)) 6= 0, thus the
linear part D = DX(0) which is well defined up to linear conjugation and multiplication
by scalars, has at least one non-zero eigenvalue. We will say that D is the linear type of
K. Normalizing, we may assume that the eigenvalues are 1 and µ. We will distinguish
four possible types of Kupka type singularities:

(1) Sadle-node: If µ = 0, in this case, the transversal type has the normal form

ω̃(x, y) = (x(1 + λyp) + yR(x, y))dy − yp+1dx,

where λ ∈ C and p ∈ N.
(2) Semisimple: If µ 6= 0 and D is semisimple.
(3) Non-semisimple: This is the case when µ = 1 and D is not semisimple.
(3) Hyperbolic: If µ /∈ R.

A consequence of the previous theorem is the following:

Proposition 7.3. Let F be a holomorphic foliation on a complex manifold M of dimen-
sion n ≥ 3 such that cod(sing(F)) ≥ 2. Let KF = ∪j∈JKj be the decomposition of KF in
its connected components. If p, q ∈ Kj then the transversal type of F at p and q coincide.

We also note that K(F) = Sing(F)−W (F) where W (F) = ∪α∈AWα, where
Wα = {p ∈ Uα|ωα(p) = 0, dωα(p) = 0}. Observe that W (F) is an analytic subset of M.
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7.2. Codimension 2 part and the Kupka set of F = f ∗(G)

Let τ be a singularity of G and Vτ = f−1(τ). We will show that if (f,G) is a generic pair
then Vτ\I(f) is contained in the Kupka set of F .

Consider coordinates (X, Y, Z) such that `0 = (X = 0), `1 = (Y = 0) and `2 = (Z = 0).
The singular set of G consists of the points: a = [0 : 0 : 1], b = [0 : 1 : 0], c = [1 : 0 : 0],
SW (G), S`r(G), 0 ≤ r ≤ 2. We know that #SW (G) = (d − 1)2, #S`r(G) = (d − 1),
0 ≤ r ≤ 2. (See 5.1)

Fix p ∈ Vτ\I(f). We have three possibilities:

(1) The case where τ is a corner, for instance a = [0 : 0 : 1].

In this case f is not a submersion at p, but there exist analytic coordinate
systems (U, (x, y, z)), (x, y) : U → C2, z : U → Cn−2, and (V, (u, v)), at p and
a = f(p), respectively, such that u(a) = v(a) = 0, f(x, y, z) = (xα, yβ) = (u, v).
Suppose that G is represented by the 1-form

ω = P (u, v)dv −Q(u, v)du

in a neighborhood of a. Then F is represented by

ω̃ = f ∗(ω) = P (xα, yβ)d(yβ)−Q(xα, yβ)d(xα).

Moreover, the hypothesis of G be of Hyperbolic-type implies that we can suppose

ω(u, v) = λ1u(1 +R(u, v))dv − λ2vdu,

where λ2
λ1
∈ C\R.

We obtain ω̃(x, y) = (xα−1.yβ−1)ω̂(x, y) where

ω̂(x, y) = λ1βx(1 +R(xα, yβ)dy − αλ2ydx,

and so dω̂(p) 6= 0.
Therefore p is in the Kupka-set of F .

For the other corners the argumentation is analogous.

(2) At the points τ ∈ SW (G):
In this case f is a submersion at p and there exist analytic coordinate systems
(U, (x, y, z)), (x, y) : U → C2, z : U → Cn−2, and (V, (u, v)), at p and τ = f(p)
respectively, such that, u(τ) = v(τ) = 0 and f(x, y, z) = (x, y). In this case G
can be represented in a neighborhood of 0 by a 1-form ω such that dω 6= 0. Since
f is a submersion in a neighborhood of p, F is represented by f ∗ω on U and so
d(f ∗(ω))(p) 6= 0. Therefore p is in the Kupka-set of F .

Remark 4. In this case the transversal type of F at p is the same of the germ of
G at τ.

(3) At the points τ ∈ S`r , 0 ≤ r ≤ 2. For instance when τ ∈ S`0 .
In this case f is not a submersion at p, but there exist analytic coordinate

systems (U, (x, y, z)), (x, y) : U → C2, z : U → Cn−2, and (V, (u, v)), at p and
τ = f(p) respectively, such that, u(τ) = v(τ) = 0 and f(x, y, z) = (xα, y). Suppose
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that G is represented by the 1-form

ω = P (u, v)dv −Q(u, v)du

in a neighborhood of τ.
Then F is represented by

ω̃ = f ∗(ω) = P (xα, y)dy −Q(xα, y)d(xα).

Moreover, the hypothesis of G be of Hyperbolic-type implies that we can suppose

ω(u, v) = λ1u(1 +R(u, v))dv − λ2vdu,

where λ2
λ1
∈ C\R.

We obtain ω̃(x, y) = (xα−1)ω̂(x, y) where

ω̂(x, y) = λ1x(1 +R(xα, y)dy − αλ2ydx,

and so dω̂(p) 6= 0.
Therefore p is in the Kupka-set of F .

The other cases are similar.

Figure 2. A typical singular set of a generic pull-back foliation in P3.
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7.3. Quasi-homogeneous singularities

In this part we will study some special type of singularities: quasi-homogeneous singu-
larities. They appear in the indeterminacy set of f . Remember that the indeterminacy
set of f is contained in the singular set of F . And they will play a central role in great
part of the proof of Theorem B.

7.3.1. Generalized Kupka and quasi-homogeneous singularities. The next lines have been
extracted from [C.CA.G.LN]. We refer the reader also to [Ln0].

Definition 7.4. The affine Lie Algebra, aff(C), is the Lie Algebra of dimension 2 gener-
ated by the vectors {e1, e2, [e2, e1] = e2}.

A representation
ρ : aff(C)→ χ(C3)

can be defined by a pair of two holomorphic vector fields in C3, namely S and X that
satisfies an equality of the following type [S,X ] = `X for some ` ∈ C∗.

Definition 7.5. Let ω be an holomorphic integrable 1-form defined in a neighborhood of
p ∈ C3. We say that p is a Generalized Kupka(GK) singularity of ω if ω(p) = 0 and
either dω(p) 6= 0 or p is an isolated zero of dω.

When p is an isolated singularity of dω, the singularity is logarithmic, degenerate or
quasi-homogeneous. These singularities will be explained in the next lines.

Let p0 ≥ p1 ≥ p2 > 0 be relatively prime integers and S be the semi-simple vector-field
on C3 given by

S = p0x0
∂

∂x0

+ p1x1
∂

∂x1

+ p2x2
∂

∂x2

.

We say that a vector-field X holomorphic in a neighborhood of 0 ∈ C3, is S-quasi-
homogeneous of weight `, if we have the following Lie-Bracket identity [S,X ] = `X .
Notice that necessarily `+p2 is a non-negative integer and X is a polynomial vector field.
In fact, if

X = P0
∂

∂x0

+ P1
∂

∂x1

+ P2
∂

∂x2

,

the condition that X is S quasi-homogeneous of weight ` is equivalent to the fact that,
after giving weights p0, p1 and p2 to the variables x0, x1 and x2, the polynomials P0, P1

and P2 are weighted homogeneous of degrees `+ p0, `+ p1 and `+ p2 respectively.
Moreover, S and X give a representation of the affine Lie algebra on the algebra of

polynomial vector-fields. If we suppose that S and X are linearly independent at generic
points, then these vector fields generate an algebraic foliation on C3, which is given by
the integrable 1-form

η = iSiX (dx0 ∧ dx1 ∧ dx2).

The geometrical description of the foliation induced by η is as follows: the singular set
of F(η), denoted by sing(F(η)), is invariant under the flow of S, exp(tS) := St. This
follows from the relation

LS(η) = mη, where m = `+ tr(S) = `+ p0 + p1 + p2,

as the reader can check. The relation before also implies that if q ∈ sing(F(η))\{0},
then F(η) is in a neighborhood of q, equivalent to the product of a foliation in dimension
two by a one-dimensional disk.

In the affine chart C3, where S is as before, the leaves of F(η) are ”S-cones” with
vertex at 0 ∈ C3, that is, immersed surfaces invariant by the flow of S. If sing(F(η))
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has codimension two, then each of its components is the closure of an orbit of S. Now we
impose a condition which implies the local stability of this kind of singularity by small
perturbations of the form defining the foliation.

Let ω be an integrable 1-form in a neighborhood of p ∈ C3 and (µ=volume form) be
a holomorphic 3-form such that µ(p) 6= 0. Then dω = iZ(µ) where Z is a holomorphic
vector field. The integrability of ω is equivalent to iZ(ω) = 0. It is not difficult to see that
if p is a GK singularity of ω, then we have two possibilities as follows.

(1) Z(p) 6= 0. In this case we have a singularity of Kupka type.
(2) Z(p) = 0 and p is an isolated singularity of Z. In this case, there exists a neigh-

borhood U of p such that the singularities of ω in U\{p} are of the Kupka type.
Let L := DZ(p) be the linear part of Z at p and λ0, λ1, λ2 be the eigenvalues of
L. Note that λ0 + λ1 + λ2 = 0. This implies that we have three sub-cases.

(2.a) λ0, λ1, λ2 6= 0. In this case, if we take p = 0, the second jet of ω at p is
of the form

j2(ω)0 = ax1x2dx0 + bx0x2dx1 + cx0x1dx2 = x0x1x2(a
dx0

x0

+ b
dx1

x1

+ c
dx2

x2

),

where λ0 = c− b, λ1 = a− c, λ2 = b− a. When a, b, c 6= 0 it is proven in [C.Ln3],
that there exists a germ of vector field X at p such that [X ,Z] = 0 and

iX iZ(dx0 ∧ dx1 ∧ dx2) = fω

where f(p) 6= 0, so that the foliation is locally generated by an action of C2.
It is also proven in [C.Ln3] that if the triple (a, b, c) satisfies some conditions of
non-resonance, then there exists a local coordinate system (x0, x1, x2) such that

ω = x0x1x2(a
dx0

x0

+ b
dx1

x1

+ c
dx2

x2

),

for this reason we say that the singularity is of the logarithmic type (even if ω is
not equivalent to its 2-jet).

(2.b) One of the eigenvalues, say λ2 is zero and the other two satisfy λ0 =
−λ1 6= 0. We call this type of singularity degenerate. An example of this situation
is

ω = x0x1dx2 + xn2 (ax0dx1 + bx1dx0),

where a · b · (a − b) 6= 0 and n ≥ 2. In this case, if we take µ = dx0 ∧ dx1 ∧ dx2

then we get dω = iZµ where

Z = x0(1− bnxn−1
2 )

∂

∂x0

− x1(1− anxn−1
2 )

∂

∂x1

+ (b− a)xn2
∂

∂x2

.

Note that 0 ∈ C3 is an isolated singularity of Z with multiplicity mult(Z, 0) = n
and the eigenvalues of DZ(0) are 1,−1, 0.

(2.c) λ0 = λ1 = λ2 = 0. In this case, the germ of X at p is nilpotent (as a
derivation in the local ring of formal power series at p.)

Definition 7.6. We say that p is a quasi-homogeneous singularity of ω if p is an isolated
singularity of Z and the germ of Z at p is nilpotent.

This definition is justified by the following result that can be found in [Ln0] or [C.CA.G.LN]:

Theorem 7.7. Let p be a quasi-homogeneous singularity of an holomorphic integrable
1-form ω. Then there exists two holomorphic vector fields S and Z and a local chart
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U := (x0, x1, x2) around p such that x0(p) = x1(p) = x2(p) = 0 ∈ (C3, 0); and germs of
holomorphic vector fields S, Z ∈ (C3, 0) such that:

(a) ω = λiSiZ(dx0 ∧ dx1 ∧ dx2), λ ∈ Q+ dω = iZ(dx0 ∧ dx1 ∧ dx2) and Z = (rot(ω)),
(b) S = p0x0

∂
∂x0

+ p1x1
∂
∂x1

+ p2x2
∂
∂x2

, where, p0, p1, p2 are positive integers with

g.c.d(p0, p1, p2) = 1,
(c) p is an isolated singularity for Z, Z is polynomial in the chart U := (x0, x1, x2)

and [S,Z] = `Z, where ` ≥ 1

Definition 7.8. Let p be a quasi-homogeneous singularity of ω. We say that it is of the
type (p0 : p1 : p2; `), if for some local chart and vector fields S and Z the properties (a), (b)
and (c) of the previous theorem are satisfied.

Remark 5. Let p ∈ C3 be a quasi-homogeneous singularity of ω. If S and Z are as in the
previous theorem, then the multiplicity of Z at the singularity p, mult(Z, p), (also called
Milnor’s number), is given by

mult(Z, p) =
(`+ p0)(`+ p1)(`+ p2)

p0p1p2

.

In particular, p0p1p2 must divide (`+ p0)(`+ p1)(`+ p2).

The proof of this fact can be found in [Ln0]. We can now state the stability result:

Proposition 7.9. Let (ωs)s∈Σ be a holomorphic family of integrable 1 − forms defined
in a neighborhood of a compact ball B = {z ∈ C3; |z| ≤ ρ}, where Σ is a neighborhood of
0 ∈ Ck. Suppose that all singularities of ω0 in B are GK and that sing(dω0) ⊂ int(B).
Then there exists ε > 0 such that if s ∈ B(0, ε) ⊂ Σ, then all singularities of ωs in B
are GK. Moreover, if 0 ∈ B is a logarithmic or quasi-homogeneous singularity of type
(p0 : p1 : p2; `) then there exists a holomorphic map B(0, ε) 3 s 7→ z(s), such that z(0) = 0
and z(s) is a GK singularity of ωs of the same type (logarithmic or quasi-homogeneous
of the type (p0 : p1 : p2; `), according to the case).

The proof can be found in [C.CA.G.LN].

Remark 6. Let p be a quasi-homogeneous singularity of ω. Since the singular set of ω is
formed by a finite number of solutions of the vector field S, which is of the Poincaré-type,
there exists an ε0 > 0 such that every component of Sing(ω) is transversal to the 5-sphere
of radius ε < ε0, S5

ε .

7.4. Quasi-homogeneous singularities of F = f ∗(G)

Let (f,G) be a generic pair. As before, let us fix a homogeneous coordinate system
in P2 and denote by `0, `1, and `2 the G-invariant straight lines that correspond to the
planes X = 0, Y = 0 and Z = 0 in C3, respectively.
In this coordinate system, G is written as

Ω = Y ZA(X, Y, Z)dX +XZB(X, Y, Z)dY +XY C(X, Y, Z)dZ.

Let us describe F = f ∗(G) in a neighborhood of a point p ∈ I(f).

Lemma 7.10. There exists a local chart (U, (x0, x1, x2, y) ∈ C3 × Cn−2) around p such

that the lifting f̃ of f is of the form f̃ |U = (xα0 , x
β
1 , x

γ
2) : U → C3. In particular F|U(p) is
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represented by the 1-form

η(x0, x1, x2, y) = α.x1.x2.A(xα0 , x
β
1 , x

γ
2)dx0

+ β.x0.x2.B(xα0 , x
β
1 , x

γ
2)dx1

+ γ.x0.x1.C(xα0 , x
β
1 , x

γ
2)dx2.

Proof. We will consider only the case n = 3. We can suppose p = [0 : 0 : 0 : 1] ∈ I(f),
so that p = (0, 0, 0) in the affine plane Σ = {z3 = 1}. Note that we can write the lifting

of f , f̃ : C4 → C3 as the composition of two mappings: f̃ = g ◦ f where f : C4 → C3

is given by f(Z) = (F0(Z), F1(Z), F2(Z)) and g : C3 → C3 is given by g(x0, x1, x2) =

(xα0 , x
β
1 , x

γ
2). Since F0, F1, F2 are homogeneous, it follows that p̃ = (0, 0, 0, 1) ∈ (f)−1(0)

and dF0(p̃)∧dF1(p̃)∧dF2(p̃) 6= 0, and so dF0|Σ(p̃)∧dF1|Σ(p̃)∧dF2|Σ(p̃) 6= 0. In particular,
f |Σ is a biholomorphism in a neighborhood of p̃ in Σ. This implies that there exists a
coordinate system ψ = (x0, x1, x2) : U(p̃) → C3 such that f |Σ ◦ ψ = (x0, x1, x2). After

composing with the mapping g we obtain the local expression of f̃ :

f̃(x0, x1, x2) = g ◦ f |Σ ◦ ψ = (x0, x1, x2) = (xα0 , x
β
1 , x

γ
2).

Remark 7. For the case n ≥ 4 the argument is similar.

Now, F = f ∗(G) is represented in U by the 1-form:

f ∗(Ω)(x0, x1, x2) = xβ1 .x
γ
2 .A(xα0 , x

β
1 , x

γ
2)d(xα0 )

+ xα0 .x
γ
2 .B(xα0 , x

β
1 , x

γ
2)d(xβ1 )

+ xα0 .x
β
1 .C(xα0 , x

β
1 , x

γ
2)d(xγ2)

f ∗(Ω)(x0, x1, x2) = (xα−1
0 .xβ−1

1 .xγ−1
2 )[η(x0, x1, x2)]

Extracting the codimension one term (xα−1
0 .xβ−1

1 .xγ−1
2 ) we obtain

η(x0, x1, x2) = α.x1.x2.A(xα0 , x
β
1 , x

γ
2)dx0

+ β.x0.x2.B(xα0 , x
β
1 , x

γ
2)dx1

+ γ.x0.x1.C(xα0 , x
β
1 , x

γ
2)dx2.

�

And there are no other common factors to extract. Let us give a proof of this fact. We
will divide the proof in two cases.

(1) First: We can suppose without loss of generality that we can write η(x0, x1, x2) =
xm.α0 η̃(x0, x1, x2) where 1 ≤ m ≤ (d − 1). This would imply that A(X, Y, Z) =
XmÃ(X, Y, Z). Which would imply that codim(sing(Ω)) = 1, contradiction.

(2) Second: In fact, if for instance we could extract from η a polynomial h(xα0 , x
β
1 , x

γ
2),

that we can suppose without loss of generality that h is irreducible, this would
imply that the polynomial h(X,Y,Z) would have to divide A,B and C but this also
would imply that codim(sing(Ω)) = 1, contradiction. In both cases as we know
this is impossible because we are working with G satisfying codim(sing(G)) ≥ 2.

The previous discussion give us the following:
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Corollary 7.11. If F comes from a generic pair, then the degree of F is

ν

[
(d− 1) +

1

α
+

1

β
+

1

γ

]
− 2.

Remark 8. This corollary can be obtained also using the proposition 2.1 contained in
[Fa.Pe].

Let us now obtain the vector field S as in Theorem 7.7.

Consider the radial vector field R = X ∂
∂X

+ Y ∂
∂Y

+ Z ∂
∂Z

and observe that

(g ◦ f |Σ ◦ ψ)∗R =
1

α
x0

∂

∂x0

+
1

β
x1

∂

∂x1

+
1

γ
x2

∂

∂x2

.

Since the eigenvalues of S have to be integers, multiplying (g ◦ f |Σ ◦ ψ) ∗ R by αβγ we
obtain

S = (βγ)x0
∂

∂x0

+ (αγ)x1
∂

∂x1

+ (αβ)x2
∂

∂x2

.

Let us describe the orbits of the vector field S.
In fact the closure of the orbits of the vector field S can be parametrized as follows:

C 3 s→ (jsβγ, nsαγ, ksαβ)

where (j, n, k) ∈ C3.
Let us concentrate in the case n = 3.

Lemma 7.12. If p ∈ I(f) then p is a quasi-homogeneous singularity of η.

Proof. First of all note that iSη = 0. Let us calculate LSη. By standard computations
with the Lie derivative we have
LSη = mη, where m = [(βγ+αβ+αβ) + (αβγ)(d− 1)]. This implies that the singular

set of η is invariant under the flow of S.
The vector field Z such that η = iSiZ(dx0 ∧ dx1 ∧ dx2) is given by

Z = Z0(x0, x1, x2)
∂

∂x0

+ Z1(x0, x1, x2)
∂

∂x1

+ Z2(x0, x1, x2)
∂

∂x2

where:

(a) Z0(x0, x1, x2) = x0.Ã(xα0 , x
β
1 , x

γ
2)

(b) Z1(x0, x1, x2) = x1.B̃(xα0 , x
β
1 , x

γ
2)

(c) Z2(x0, x1, x2) = x2.C̃(xα0 , x
β
1 , x

γ
2)

Where the polynomials Ã(X, Y, Z), B̃(X, Y, Z) and C̃(X, Y, Z) are homogeneous of de-
gree (d− 1) and they are not unique!

We have to show that 0 is an isolated singularity of Z and all eigenvalues of DZ(0)
are 0. It is not difficult to show that the Jacobian matrix DZ(0) is the null matrix(by
standard computations) which implies that it has null eigenvalues. To conclude that the
0 is an isolated singularity of Z if follows from the fact that all singular curves of F in
a neighborhood (U, (x0, x1, x2)) of 0 are of Kupka type, as we have proved in section 7.2.
Note that the unique singularities of η in the neighborhood (U, (x0, x1, x2)) of 0 come from

f̃ ∗Sing(G), this follows from the fact that {Sing (G) ∩ V C(f)\`0 ∪ `1 ∪ `2 = ∅} . On the
other hand we have seen that (g ◦ f |Σ ◦ ψ)−1(sing(G))\I(f) is contained in the Kupka
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set of F . Hence the point p is an isolated singularity of dη and hence it is an isolated
singularity of Z. �

Therefore, in the case n = 3 any p ∈ I(f) is a quasi-homogeneous singularity of type

[βγ : αγ : αβ] .

From any of components of the vector Z we can find the value of `. For instance, it follows
from the expression in the item (a) that

`+ p0 = βγ + αβγ(d− 1),

since p0 = βγ the value of ` is
αβγ(d− 1).

We can use Remark 5. to calculate the Milnor’s number of the quasi-homogeneous singu-
larity. This is the content of the next corollary.

Corollary 7.13. Let 0 ∈ C3 be a quasi-homogeneous singularity of η. If S and Z are as
in the previous discussion, then the multiplicity of Z at 0 is:

(α(d− 1) + 1)(β(d− 1) + 1)(γ(d− 1) + 1).

Proof. The multiplicity of Z at 0 is given by

mult(Z, 0) =
(`+ p0)(`+ p1)(`+ p2)

p0p1p2

where

(a) p0 = βγ,
(b) p1 = αγ,
(c) p2 = αβ.

Since
` = (d− 1)(αβγ)

it follows that

mult(Z, q = 0) = (α(d− 1) + 1)(β(d− 1) + 1)(γ(d− 1) + 1).

�

In the case n ≥ 4 the explanation is analogous. In fact, in this case we will have a local
structure product near any point p ∈ I(f).

The local product structure follows from the next theorem:

Theorem 7.14. If η has a simple singularity at 0 ∈ Cn, n ≥ 4 then rk(η, 0) ≤ 3. In
particular, F(η) is equivalent to the product of a foliation of codimension one in (C3, 0)
by a regular foliation of codimension 3.

Remark 9. By rk(η, 0) we mean the minimum number of variables that we can write η in
a neighborhood of 0 ∈ Cn.

The proof of this theorem and the definition of simple singularity can be found in [Ln] pp
43-44.

In fact in the case n ≥ 4 we have:

Corollary 7.15. Let (f,G) be a generic pair. Let p ∈ I(f) and η an 1-form defining F in
a neighborhood of p. Then there exists a 3-plane Π ⊂ Cn such that d(η)|Π has an isolated
singularity at 0 ∈ Π.

Proof. Immediate from the local product structure. �
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7.5. Quasi-Homogeneous Foliations and Weighted Projective Spaces

If we observe the quasi-homogeneous 1-form η in detail, we see that each one of its
components has a different degree. Let us write the quasi-homogeneous 1-form η in its
simplified form:

η(x0, x1, x2) = ω0(x0, x1, x2)dx0 + ω1(x0, x1, x2)dx1 + ω2(x0, x1, x2)dx2.

Let us calculate the degree of each one of its terms with respect to the weights (βγ, αγ, αβ).
By standard computations we have:

(1) ω0(x0, x1, x2) is a quasi-homogeneous polynomial of degree

αβγ(d− 1) + αγ + αβ,

(2) ω1(x0, x1, x2) is a quasi-homogeneous polynomial of degree

αβγ(d− 1) + βγ + αβ,

(3) ω2(x0, x1, x2) is a quasi-homogeneous polynomial of degree

αβγ(d− 1) + βγ + αγ,

and following the discussion of [So.Cor]. Since

iSη = 0

we have that the quasi-homogeneous 1-form η defines naturally a holomorphic foliation
on the weighted projective plane P2

[βγ,αγ,αβ]. Here the vector field S is what the authors

in [So.Cor] call a Radial adapted vector field.
In the case n = 3, the previous discussions means that the germ (f ∗G, p) of f ∗G at

p ∈ I(f) is almost equivalent to the germ Π∗2(G), 0. More precisely, if we make a weighted

blow-up with weights (βγ, αγ, αβ) at the point p ∈ P3, p ∈ I(f), say πw : P̃3 → P3,
then the strict transform of π∗w(F) of f ∗G is transversal to the exceptional divisor E ∼=
P2

[βγ,αγ,αβ]. Moreover, using that P2
[βγ,αγ,αβ] is isomorphic to the standard projective plane

P2 (see for instance [B.R]), we can use the isomorphism between them to obtain up to
automorphism, the foliation G. We will come back to this topic later.

7.6. Deformations of the singular set of F0 = f ∗0 (G0) - Auxiliary Lemmas

As done in [C.Ln.E], to prove the main theorem we have to use the following result from
Complex Analytic Geometry.

Lemma 7.16. Let X1 ⊂ X2 be irreducible analytic subsets of a complex manifold M.
Suppose that there exists an open subset U 6= ∅ of X1 such that U is also an open subset
of X2. Then X1 = X2.

Remark 10. For more details we refer the reader to [Seb], or [Ln] where it appears as
Lemma 2.2.1 on page 75.

Here we are thinking in X2 as being the irreducible component of Fol (Γ− 1;n) and
X1 = PB(Γ − 1, ν, α, β, γ). We have constructed an open and dense subset W inside
PB(Γ − 1, ν, α, β, γ) containing the generic pull-back foliations. We will show that for
any rational foliation F0 ∈ W and any germ of a holomorphic family of foliations (Ft)t∈(C,0)

such that F0 = Fo, we have Ft ∈ PB(Γ− 1, ν, α, β, γ) for all t ∈ (C, 0).
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As before, let us fix a coordinate system on P2 and denote by `0, `1, and `2 the G-invariant
straight lines that correspond to the planes X = 0, Y = 0 and Z = 0 in C3, respectively.

Let G ∈ A and suppose that G is given in homogeneous coordinates by a 1−form

Ω = Y ZA(X, Y, Z)dX +XZB(X, Y, Z)dY +XY C(X, Y, Z)dZ.

Let us describe the singular set of the foliation F = f ∗G in a neighborhood of a point
p ∈ I(f). First, let us consider the case n = 3. Let f̃ be a lift of f. Let C3 ' E ⊂ C4

be an affine plane (0 /∈ E) such that E cuts transversely the line Π−1
3 (p) at q ∈ E.

Since f̃(q) = 0 and dF0(q) ∧ dF1(q) ∧ dF2(q) 6= 0 by hypothesis, we have seen before
that there exists a local coordinate system around q, (W,x ∈ C3) such that x(q) = 0

and f̃ |W (x) = (xα0 , x
β
1 , x

γ
2). In particular, in this coordinate system F is described by the

1-form η and it has a quasi-homogeneous singularity of the type [βγ : αγ : αβ]. Assuming
n = 3, we also have (d2 + d + 1) special analytic curves passing through the point p
in this neighborhood. These curves are common orbits of the two vector fields S and
Z. Moreover, we know that in C3\{0} they are singularities of Kupka-type having local
product structure with a constant transversal type. In an analogous way, for the case
n = r+3 > 3, the foliation F is locally the product of a regular foliation and the foliation
defined by the 1−form η (see Thm 7.14).

Now let us fix F0 = f ∗0 (G0) in W and a germ of a holomorphic family (Ft)t∈(C,0) of
foliations such that Fo = F0.

Lemma 7.17. There exists a germ of isotopy of class C∞, (I(t))t∈(C,0) having the following
properties:

(I) I(0) = I(f0) and I(t) is algebraic and smooth of codimension 3 for all t ∈ (C, 0).
(II) For all p ∈ I(t), there exists a neighborhood U(p, t) = U of p such that Ft is

equivalent to the product of a regular foliation of codimension 3 and a singular
foliation Fp,t of codimension one given by the 1-form ηp,t. The family of 1-forms
ηp,t, represents the quasi-homogeneous foliation given by the Lins Neto’s stability
theorem of quasi-homogeneous singularities [Ln0] and [C.CA.G.LN].

Remark 11. For the definition and properties of isotopies we refer the reader to [Hi].

Let us denote Z = (x, y) where x = (z1, ..., zn−3) ∈ Cn−3 and y = (zn−2, zn−1, zn) ∈ C3.

Proof. In the case n = 3 it follows from Proposition 7.9 since I(f0) is finite. Let us concen-
trate on the case n ≥ 4. We can consider a smooth tubular neighborhood π : U → I(f0),
of I(f0) with fibers BZ := π−1(Z) ' B3, where B3 is a complex ball of dimension 3. This
is possible because the variety I(f0) is smooth of codimension three [Hi]. The main idea
is to construct a smooth germ of the mapping, ψ : (C, 0) × I(f0) → U , such that for all
t ∈ (C, 0) we have ψ(t, Z) ∈ BZ . We will work with a representative of the germ (Ft)t,
defined on a disk Dε = (|t| < ε) ⊂ C.

Fix p ∈ I(f0) and a holomorphic local chart at p, Φ = (x, y) : V → Cn−3 × C3, such that
V1 := V ∩ I(f0) = (y = 0),Φ(p) = (0, 0) and V ⊂ U. Take Z0 = (x0, 0) ∈ V ∩ I(f0), and
consider FZ0 = (Z = x0) ⊂ {x0} × C3. For Z = (x, 0) ∈ V fixed, we know that (F0)|BZ

has a quasi-homogeneous singularity of type [βγ : αγ : αβ]. By the Proposition 7.9, there
exists 0 < ε1 ≤ ε and a holomorphic mapping ψZ : (|t| < ε1)→ FZ such that (Ft)|FZ has
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a quasi-homogeneous singularity of the type [βγ : αγ : αβ] in ψZ(t).

We can write φZ(t) = (x, Y (t, x)), where t→ Y (t, x) ∈ C3 is holomorphic. The holomor-
phic local product structure for Ft at the point (x, Y (t, x)) implies that the germ (t, x)→
Y (t, x) is holomorphic. We can define Y as a holomorphic function in a neighborhood C
of {0}× V . For fixed t, the graph grY t of the mapping x ∈ C ∩ ({t}×Cn−3)→ Y (t, x) is
a holomorphic submanifold of U .

Consider now the fibration given by the tubular neighborhood π : U → I(f0). Since
the fibers are transverse to I(f0), for small |t| the fiber BW intersects grY t exactly in
one point(by proposition 7.9), which we will denote by ψ(t,W ). For t = 0, we have
Y (0, x) = 0, so that ψ(0, w) = w, which implies that ψ is defined on a neighborhood of
{0} × V1. Note that the map ψ is smooth on its domain of definition.

To finish the proof, let us observe that the map ψ does not depend on the choice of local
coordinates (Φ, V ) about the point p, since the point ψ(t,W ) can be considered as the
unique quasi-homogeneous singularity of type [βγ : αγ : αβ] on BW of Ft. If we take a
covering of I(f0) by local charts as above, we can extend ψ to a germ of the mapping
ψ : (C, 0)× I(f0)→ U such that ψ(t,W ) on BW is the unique quasi-homogeneous singu-
larity of Ft in BW for all t ∈ (C, 0). Since I(f0) is compact, this germ has a representative,
which we denote again by ψ : (|t| < δ)×I(f0)→ U, δ > 0. Putting I(t) = ψ (({t} × I(f0)),
we have the desired isotopy.

The assertion (II) is a consequence of Thm.(7.14), since the foliation is regular of rank 3.
This theorem also implies that I(t) is a holomorphic submanifold of codimension 3. �

Remark 12. In the case n > 3, the variety I(t) is connected since I(f0) is connected
(Lefschetz’s Theorem). The local product structure in I(t) implies that the transversal
type of Ft is constant. In particular, Fp,t, does not depends on p ∈ I(t). In the case n = 3,
I(t) = p1(t), ..., pj(t), ..., p ν3

αβγ

(t) and we can not guarantee a priori that Fpi,t = Fpj ,t, if

i 6= j.

Consider coordinate system on P2 and denote by `0, `1, and `2 the G-invariant straight
lines that correspond to the planes X = 0, Y = 0 and Z = 0 in C3, respectively.

The singular set of G0 consists of the points: a = [0 : 0 : 1], b = [0 : 1 : 0], c = [1 : 0 : 0],
SW (G0), S`r(G0), 0 ≤ r ≤ 2. We know that #SW (G0) = (d − 1)2, #S`r(G0) = (d − 1),

0 ≤ r ≤ 2. Let τ ∈ sing(G0) and K(F0) = ∪τ∈sing(G0)Vτ\I(f0) where Vτ = f−1
0 (τ). As in

the previous lemma, let us consider a representative of the germ (Ft)t, defined in a disc
Dδ := (|t| < δ).

Lemma 7.18. There exists ε > 0 and smooth isotopies φτ : Dε × Vτ → Pn, τ ∈ Sing(G0)
such that Vτ (t) = φτ ({t} × Vτ ) satisfies:

(a) Vτ (t) is an algebraic subvariety of codimension two of Pn and Vτ (0) = Vτ for all
τ ∈ Sing(G0) and for all t ∈ Dε.

(b) I(t) ⊂ Vτ (t) for all τ ∈ Sing(G0) and for all t ∈ Dε. Moreover, if τ 6= τ ′, and
τ, τ ′ ∈ Sing(G0), we have Vτ (t) ∩ Vτ ′(t) = I(t) for all t ∈ Dε and the intersection
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is transversal.

(c) Vτ (t)\I(t) is contained in the Kupka-set of Ft for all τ ∈ Sing(G0) and for all
t ∈ Dε. In particular, the transversal type of Ft is constant along Vτ (t)\I(t).

Proof. We consider only the case n ≥ 4, the proof in the case n = 3 is analogous (the
only difference being that I(t) consists of discrete points and so is not connected). Here
we can consider the same smooth tubular neighborhood π : U → I(f0) of I(f0) as before.
This tubular neighborhood has the following properties:

(1) The boundary ∂U is a smooth submanifold of real dimension 2n− 1.

(2) For each τ ∈ Sing(G0), Vτ intersects ∂U transversely in a real codimension 4 sub-
manifold Sτ = ∂U ∩ Vτ .

Fix τ ∈ SW (G0). Since Vτ\U is compact and smooth of codimension 2, there exists
a smooth tubular neighborhood πτ : Aτ → Vτ\U such that the fiber FZ := π−1

1 (Z)
is diffeomorphic to the complex ball B2 of complex dimension 2. The argument now
proceeds as in the proof of the previous lemma. We will construct a germ of the smooth
mapping,

φ : ((C, 0)× Vτ )→ Aτ
such that φ(t, Z) ∈ FZ for all t. Since Vτ is compact, φ has a representative

φ : Dε × Vτ → Aτ

and we define Vτ (t) = φ({t} × Vτ ).
Let us fix Z0 ∈ Vτ\U. We claim that there exists a germ of the mapping φZ0 : (C, 0)→

FZ0 such that φZ0(t) is a Kupka-singularity of Ft for all t (where it is defined). Indeed,
let (ωt)t be a holomorphic family of integrable 1-forms such that (ωt) represents Ft on a
fixed neighborhood UZ0 of Z0 in Pn.

Since dω0(Z0) 6= 0, we can take UZ0 in such a way that dω0(p) 6= 0 for all p ∈ UZ0 . Take
ε(Z0) such that if |t| < ε(Z0), then dωt(p) 6= 0 for all p ∈ UZ0 . Hence, if p ∈ sing(Ft)∩UZ0 ,
p is a Kupka-singularity for Ft when |t| < ε(Z0). Let us now use the local transversal
product structure for F0. Since FZ0 is transversal to Vτ\U and F0 has a Kupka-singularity
in Z0, ω0|FZ0

has a Kupka-singularity of multiplicity one in Z0 ∈ FZ0 ' B2.
Since these singularities are stable under small perturbations, there exists a smooth

mapping φZ0 : (C, 0)→ FZ0 , such that φZ0(t) is a singularity of multiplicity one of ωt|FZ0

for all t. Since the point φZ0(t) is a singularity of Ft for all t such that φZ0(t) ∈ UZ0 , it is
Kupka. Then we have constructed a germ of mapping

φ : ((C, 0)× (Vτ\U))→ Aτ

such that φ(t, Z) ∈ FZ and φ(t, Z) is a Kupka singularity of Ft for all t. Let us now
extend the germ φ to the points ((C, 0)× (Vτ ∩ U)).

Fix Z0 ∈ I(f). As we have seen before, there exists a neighborhood UZ0 of Z0 and a
change of coordinates g : UZ0 → C3 such that F0|UZ0 is represented by η0. Moreover, the
Lins Neto’s Stability Theorem [Ln0] guarantees that there exists a holomorphic family of
integrable holomorphic 1-forms ηt such that η0 = η and ηt represents Ft|UZ0 for all |t| < δ.
By the construction in the previous lemma, ψ(t, Z0) is a quasi-homogeneous singularity
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of type [βγ : αγ : αβ] of ηt|BZ0 for all t ∈ Dε. In some holomorphic coordinate system in
ψ(t, Z0), the 1-form ηt|BZ0 represents a foliation

Ft|UZ0 = ηt
where ηt defines a holomorphic family of foliations on P2

[βγ,αγ,αβ].

This implies that Sing(ηt)|Bz0 has a smooth irreducible component Sτ (t) of codimen-
sion two that corresponds to the singularity κτ (t) ∈ P2

[βγ,αγ,αβ], where Sτ (0) = Vτ ∩ BZ0 .
Since for each Kupka component the transversal type is constant, it follows that the
d2 + d+ 1 algebraic subvarieties extend to the interior of the tubular neighborhood and,
by continuity, connect to I(t). The family (Sτ (t))t∈Dε is an analytic deformation of the
germ Vτ ∩BZ0 in Z0.

Let us now use the compatibility condition. Since Sτ (0) = Vτ ∩BZ0 for all Z ∈ Vτ ∩BZ0 ,
Sτ (0) is transversal to FZ ⊂ BZ0 in BZ0 . Hence there exists a neighborhood C of Z0 in
Sτ (0) and ε1 > 0 such that Sτ (t) is transversal to FZ for all Z ∈ C and t ∈ Dε1 . If we fix
Z ∈ C and let |t| be sufficiently small, Sτ (t) ∩ FZ has a unique point ζ(t) and the germ
of function ζ : (C × C) → Bz0 is smooth. Note that the germs φ and ζ coincide along
{0}× (C\{Z0}), since if Z ∈ (C\{Z0}) and |t| is sufficiently small, then φ(t, Z) ∈ FZ and
ζ(t, Z) ∈ FZ are Kupka singularities of Ft and there exists only one singularity in FZ .
Since Z0 ∈ I(F ) is arbitrary, we get a smooth extension of the germ φ along {0}×Vτ . �

Figure 3. Global deformation of the singular set of a generic pull-back
foliation, case n = 3.
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7.7. End of the Proof of Theorem B

We now want to prove that the subvarieties Va(t), Vb(t) and Vc(t) are fibers of (ft)t∈Dε′
are fibers of a rational map ft : Pn P2, ft ∈ Gen(n, ν, α, β, γ), in such a way that
(ft)t∈Dε is a deformation of f0. We also want to prove that there exists a family of
foliations (Gt)t∈Dε ,Gt ∈ A (see section 6 pp.25) such that Ft = f ∗t (Gt) for all t ∈ Dε.
In fact, we will prove that every fiber Vτ (t) is a fiber of (ft)t∈Dε at Appendix section 8.7.
We consider the case n = 3, then show how the general case n ≥ 4 reduces to this case in
the end.

For convenience we remind the reader the description of the quasi-homogenous singular
set of Ft:

(1) In the case n = 3, I(t) consists of ν3

αβγ
distinct points pj(t), and for each j ∈

{1, ..., ν3

αβγ
} there is an ε > 0 and an analytic coordinate system around pj(t), say

(U j
t , Z

j
t ), such that Zj

T (pj(t)) = 0 ∈ (C3, 0) and Ft|(U j
t , Z

j
t ) can be represented by

ηpj(t), a holomorphic family of integrable 1-forms such that:

(a) Sing(dηpj(t)) = pj(t) for all |t| < ε

(b) pj(t) is quasi-homogeneous singularity of type

[β.γ : α.γ : α.β]

of ηpj(t) for all |t| < ε.

(2) If n ≥ 4, I(t) is a codimension-three smooth and connected submanifold of Pn,
and Ft has a local product structure near all points of I(t). Namely, it is given
by the previous homogeneous foliation times a regular foliation of codimension 3.
The family of integrable 1-forms ηpj(t) naturally defines a holomorphic family of
foliations on the weighted projective plane P2

[βγ,αγ,αβ].

Let us define the family of candidates that will be a deformation of the mapping f0.

Set Va = f−1
0 (a), Vb = f−1

0 (b), Vc = f−1
0 (c), where a = [0 : 0 : 1], b = [0 : 1 : 0] and

c = [1 : 0 : 0] and denote by Vτ∗ = f−1
0 (τ ∗), where τ ∗ ∈ Sing(G0)\{a, b, c}.

Proposition 7.19. Let (Ft)t∈Dε be a deformation of F0 = f ∗0 (G0), where (f0,G0) is a
generic pair, with G0 ∈ A, f0 ∈ Gen (n, ν, α, β, γ) and deg(f0) = ν ≥ 2. Then there exists
a deformation (ft)t∈Dε of f0 in the set Gen (n, ν, α, β, γ) such that:

(i) Va(t), Vb(t) and Vc(t) are fibers of (ft)t∈Dε′ .
(ii) I(t) = I(ft),∀t ∈ Dε′.

In the Appendix section 8.7 we will prove that the others curves Vτ (t) where τ is
different of a, b and c are also fibers of the mapping ft for fixed t (See Lemma 8.4 and
Lemma 8.5).

Proof. Let f̃0 = (Fα
0 , F

β
1 , F

γ
2 ) : Cn+1 → C3 be the homogeneous expression of f0. Then

Vc, Vb, and Va appear as the complete intersections (F1 = F2 = 0), (F0 = F2 = 0),
and (F0 = F1 = 0) respectively, so I(f0) = Va ∩ Vb = Va ∩ Vc = Vb ∩ Vc. With this in
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mind, it follows from [Ser1] (see section 4.6 pp 235-236) that Va(t) is a complete inter-
section, say Va(t) = (F0(t) = F1(t) = 0) in homogeneous coordinates, where (F0(t))t∈Dε′
and (F1(t))t∈Dε′ are deformations of F0 and F1 respectively, and Dε′ is a possibly smaller
neighborhood of 0. Moreover, F0(t) = 0 and F1(t) = 0 meet transversely along Va(t).
In the same way, it is possible to define Vc(t) and Vb(t) as the complete intersections,

say (F̂1(t) = F2(t) = 0) and (F̂0(t) = F̂2(t) = 0), where (Fj(t))t∈Dε′ and (F̂j(t))t∈Dε′ are
deformations of Fj, 0 ≤ j ≤ 2. We will use these families of polynomials to define a family
of rational maps that satisfy the required properties.
We are going to prove that we can find polynomials P0(t), P1(t) and P2(t) in such a way
that Vc(t) = (P1(t) = P2(t) = 0), Vb(t) = (P0(t) = P2(t) = 0) and Va(t) = (P0(t) =
P1(t) = 0). Observe first that since F0(t), F1(t) and F2(t) are near F0, F1 and F2 respec-
tively, they meet as a regular complete intersection at:

J(t) := (F0(t) = F1(t) = F2(t) = 0)

= (F0(t) = F1(t) = 0) ∩ (F2(t) = 0)

= Va(t) ∩ (F2(t) = 0),

so that J(t) ∩ (F̂1(t) = 0) = Vc(t) ∩ Va(t) = I(t), which implies that I(t) ⊂ J(t). Since

I(t) and J(t) have ν3

αβγ
points, we have that I(t) = J(t) for all t ∈ Dε′ .

Remark 13. In the case n ≥ 4, both sets are codimension-three smooth and connected
submanifolds of Pn, implying again that I(t) = J(t). In particular, we obtain that

I(t) = (F0(t) = F1(t) = F2(t) = 0) ⊂ (F̂j(t) = 0), 0 ≤ j ≤ 2.

Let us now use Noether’s Theorem, which can be stated as follows:

Lemma 7.20. (Noether’s Theorem) Let G0, ..., Gk ∈ C[z1, ..., zm] be homogeneous poly-
nomials where 0 ≤ k ≤ m and m ≥ 2, and X = (G0 = ... = Gk = 0). Suppose that the set
Y := {p ∈ X|dG0(p) ∧ ... ∧ dGk(p) = 0} = 0 or ∅. If G ∈ C[z1, ..., zm] satisfies G|X ≡ 0,
then G ∈ < G0, ..., Gk >, the ideal generated by G0, ..., Gk.

Remark 14. We have taken the above lemma in this form from [Ln] (pp. 86).

Back to the proof of Proposition 7.19.
Take k = 2, G0 = F0(t), G1 = F1(t) and G2 = F2(t). In this case, we have Y = {0}, and
we can use the Noether’s Theorem. Using the fact that all polynomials involved are ho-
mogeneous, we have F̂1(t) ∈ < F0(t), F1(t), F2(t) >, and since deg(F0(t)) > deg(F1(t)) >

deg(F2(t)), we conclude that F̂1(t) = F1(t) + g(t)F2(t), where g(t) is a homogeneous

polynomial of degree deg(F1(t))−deg(F2(t)). Observe also that Vc(t) = V (F̂1(t), F2(t)) =
V (F1(t), F2(t)), where V (H1, H2) denotes the projective algebraic variety defined by (H1 =

H2 = 0)! Similarly for Vb(t) we have that F̂2(t) ∈ < F0(t), F1(t), F2(t) >. On the

other hand, since F̂2(t) has the lowest degree, we can assume that F̂2(t) = F2(t). In an

analogous way we have that F̂0(t) = F0(t) + m(t)F1(t) + n(t)F2(t) for the polynomial

F̂0(t). Now observe that V (F̂0(t), F̂2(t)) = V (F0(t) + m(t)F1(t), F2(t)). Hence we can

define ft = (Pα
0 (t), P β

1 (t), P γ
2 (t)) where P0(t) = F0(t) + m(t)F1(t), P1(t) = F1(t) and

P2(t) = F2(t). This defines a family of mappings (ft)t∈Dε′ : P3 P2, and Va(t), Vb(t)
and Vc(t) are fibers of ft for fixed t. Observe that, for ε′ sufficiently small, (ft)t∈Dε′ is
generic in the sense of definition 4.2, and its indeterminacy locus I(ft) is precisely I(t).
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Moreover, since Gen(3, ν, α, β, γ) is open, we can suppose that this family (ft)t∈Dε′ is in
Gen (3, ν, α, β, γ). This concludes the proof of proposition 7.19. �

Let us now define a family of foliations (Gt)t∈Dε ,Gt ∈ A (see section 6 pp.25) such
that Ft = f ∗t (Gt) for all t ∈ Dε. We consider first the case n = 3.

Let M[βγ,αγ,αβ](t) be the family of “complex algebraic threefolds” obtained from P3 by

weighted blowing-up with weights (βγ, αγ, αβ) (see Appendix section 8.4) at the ν3

αβγ

points p1(t), ..., pj(t), ..., p ν3

αβγ

(t) corresponding to I(t) of Ft; and denote by

πw(t) : M[βγ,αγ,αβ](t)→ P3

the blowing-up map. The exceptional divisor of πw(t) consists of ν3

αβγ
orbifolds Ej(t) =

πw(t)−1(pj(t)), 1 ≤ j ≤ ν3

αβγ
, that are weighted projective planes of the type P2

[βγ,αγ,αβ].

Each of them has three lines of singular points of M[βγ,αγ,αβ](t), all isomorphic to weighted
projective lines, but these singularities will not disturb our arguments. (See [Ma-Mor] ex.
3.6 pp 21.)

More precisely, if we blow-up Ft at the point pj(t), then the restriction of the strict trans-
form of π∗wFt to the exceptional divisor Ej(t) = P2

[βγ,αγ,αβ] is the same quasi-homogeneous

1-form that defines Ft at the point pj(t) (see Appendix sections 8.4, 8.5 and 8.6 for compu-
tations for case t = 0). Using the isomorphism between Ej(t) and P2 we can push-forward
the foliation to P2. With this process we produce a family of holomorphic foliations in A.
This family is the “holomorphic path” of candidates to be a deformation of G0. In fact,
since A is an open set we can suppose that this family is inside A (see Appendix section
8.6 for computations for case t = 0). Let us denote this family of candidates by (Gt)t∈Dε ,
and choose the exceptional divisor E1(t) to work with. Observe that with this process we
are producing foliations in A up to a linear automorphism of P2.

Consider the family of mappings ft : P3 P2, t ∈ Dε′ defined in the proposition 7.19.

We wish to consider the family (ft)t∈Dε as a family of rational maps ft : P3 E1(t). We
can decrease ε if necessary. Note that the map

ft ◦ πw(t) : M[βγ,αγ,αβ](t)\ ∪j Ej(t)→ E1(t) ' P2

extends holomorphically, that is, as an orbifold mapping, to

f̂t : M[βγ,αγ,αβ](t)→ P2
[βγ,αγ,αβ] ' E1(t) ' P2

This is due to the fact that each orbit of the vector field St in the coordinate system
where it is linear, determines an equivalence class in P2

[βγ,αγ,αβ] and the orbits are fibers
of the map

(x0(t), x1(t), x2(t))→ (xα0 (t), xβ1 (t), xγ2(t)).

The mapping ft can be interpreted as follows. Each fiber of ft meets pj(t) once, which

implies that each fiber of f̂t cuts E1(t) once outside of the three singular curves in
[M[βγ,αγ,αβ](t) ∩ E1(t)]. Since M[βγ,αγ,αβ](t)\ ∪j Ej(t) is biholomorphic to P3\I(t), then
after identifying E1(t) with P2

[βγ,αγ,αβ], we can imagine that if q ∈M[βγ,αγ,αβ](t)\ ∪j Ej(t),
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then f̂t(q) is the intersection point of the fiber f̂−1
t (f̂t(q)) with E1(t). Using the isomor-

phism between P2
[βγ,αγ,αβ] and P2, we obtain a mapping

f̂t : M[βγ,αγ,αβ](t)→ P2.

It can be extended over the singular set of M[βγ,αγ,αβ](t) using Riemann’s Extension The-
orem because the orbifold M[βγ,αγ,αβ](t) has singular set of codimension 2 and theses
singularities are of the quotient type and therefore it is a normal complex space. We shall
denote this extension also by f̂t to simplify the exposition. In the appendix section 8.8
we show that the weighted blowing-up with weights (βγ, αγ, αβ) can solve completely the
indeterminacy set of ft for each t. With all these ingredients we can define the foliation:
F̃t = f ∗t (Gt) ∈ PB(Γ − 1, ν, α, β, γ). This foliation is a deformation of F0. Based on the

previous discussion let us denote F1(t) = πw(t)∗(Ft) and F̂1(t) = πw(t)∗(F̃t).

We will prove the following

Lemma 7.21. If F1(t) and F̂1(t) are the foliations defined previously, we have that

F1(t)|E1(t)'P2
[βγ,αγ,αβ]

= Ĝt = F̂1(t)|E1(t)'P2
[βγ,αγ,αβ]

where Ĝt is the foliation induced on E1(t) ' P2
[βγ,αγ,αβ] by the quasi-homogeneous 1-form

ηp1(t).

Proof. The first equality, that is, F1(t)|E1(t)'P2
[βγ,αγ,αβ]

= Ĝt, follows from the fact that Ft
is represented in a neighborhood of p1(t) ∈ I(t) by the quasi-homogeneous 1-form ηp1(t),
that satisfies iStηp1(t) = 0 and therefore it defines naturally a foliation on the weighted
projective space E1(t) ' P2

[βγ,αγ,αβ]. In the appendix, section 8.4 and 8.5 we show that

F1(t)|E1(t)'P2
[βγ,αγ,αβ]

= Ĝt is up to a linear automorphism of P2
[βγ,αγ,αβ] the 1-form ηp1(t).

The second equality F̂1(t)|E1(t)'P2
[βγ,αγ,αβ]

= Ĝt, follows from the geometrical interpretation

of the mapping f̂t : M[βγ,αγ,αβ](t)→ P2
[βγ,αγ,αβ] ' P2. �

So now we use the fact that P2
[βγ,αγ,αβ] ' P2 to obtain the equality

Gt = F1(t)|E1(t)'P2 = F̂1(t)|E1(t)'P2 ,

where Gt is obtained from Ĝt by push-forward by the mapping fw : P2
[βγ,αγ,αβ] → P2. (See

Appendix section 8.6). Observe that if after this procedure we do not obtain yet the
equality we just have to compose with a linear automorphism of P2 and in the we will
obtain the required equality. We remind that this equality we be fundamental to the next
argument.

Now let τ1(t) be a singularity of Gt outside the three invariant straight lines. Since the
map t → τ1(t) ∈ P2 is holomorphic, there exists a holomorphic family of automorphisms
of P2, t → H(t) such that τ1(t) = [a : b : c] ∈ E1(t) ' P2 is kept fixed. Observe
that such a singularity has non algebraic separatrices at this point. Fix a local analytic
coordinate system (xt, yt) at τ1(t) such that the local separatrices are (xt = 0) and (yt = 0),

respectively. Observe that the local smooth hypersurfaces along V̂τ1(t) = f̂−1
t (τ1(t)) defined

by X̂t := (xt ◦ f̂t = 0) and Ŷt := (yt ◦ f̂t = 0) are invariant for F̂1(t). Furthermore, they

meet transversely along V̂τ1(t). On the other hand, V̂τ1(t) is also contained in the Kupka
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set of F1(t). Therefore there are two local smooth hypersurfaces say Xt := (xt ◦ f̂t = 0)

and Yt := (yt ◦ f̂t = 0) are invariant for F1(t), such that:

(1) Xt and Yt meet transversely along V̂τ1(t).

(2) Xt ∩ πw(t)−1(p1(t)) = (xt = 0) = X̂t ∩ πw(t)−1(p1(t)) and Yt ∩ πw(t)−1(p1(t)) =

(yt = 0) = Ŷt ∩ πw(t)−1(p1(t)) (because F1(t) and F̂1(t)) coincide on E1(t) ' P2).

(3) Xt and Yt are deformations of X0 = X̂0 and Y0 = Ŷ0, respectively.

Lemma 7.22. Xt = X̂t for small t.

Proof. Let us consider the projection f̂t : M[βγ,αγ,αβ](t) → P2
[βγ,αγ,αβ] ' P2 on a neigh-

borhood of the regular fibre V̂τ1(t), and fix local coordinates xt, yt on P2 such that Xt :=

(xt ◦ f̂t = 0). Let Hε = (yt ◦ f̂t = ε), ε small, so that Σ̂ε = X̂t ∩Hε are (vertical) compact

curves, deformations of Σ̂0 = V̂τ1(t). Set Σε = Xt ∩ Ĥε. Like the Σ̂′εs also Σ′εs are compact

curves (for t and ε small), because Xt and X̂t are both deformations of the same X0 and

so Xt is close to X̂t, for t small. It follows that f̂t(Σε) is an analytic curve contained in a
small neighborhood of τ1(t), for small ε. By the maximum principle, we must have that

f̂t(Σε) is a point, so that f̂t(Xt) = f̂t(∪εΣε) is a curve C, i.e., Xt = f̂−1
t (C). But Xt and

X̂t intersects along the exceptional divisor E1(t) ' P2 along the separatrix (xt = 0) of Gt
through τ1(t). This implies that Xt = f̂−1

t (C) = f̂−1
t (xt = 0) = X̂t. �

We have prooved that the foliations Ft and F̃t have a common local leaf: the leaf

that contains πw(t)
(
Xt\V̂τ1(t)

)
which is not algebraic. Let D(t) := Tang(F(t), F̂(t)) be

the set of tangencies between F(t) and F̂(t). This set can be defined by D(t) = {Z ∈
C4; Ω(t) ∧ Ω̂(t) = 0}, where Ω(t) and Ω̂(t) define F(t) and F̂(t), respectively. Hence it
is an algebraic set. Since this set contains a immersed non-algebraic surface Xt, we have
necessarily that D(t) = P3. This proves the Theorem in the case n = 3.

Suppose now that n ≥ 4. The previous argument implies that if Υ is a generic 3−plane
in Pn, we have F(t)|Υ = F̂(t)|Υ. In fact, such planes cut transversely every strata of

the singular set, and I(t) consists of ν3

αβγ
points. This implies that ft is generic for |t|

sufficiently small. We can then apply the previous argument again, finishing the proof of
the lemma and also that of Theorem B.

Using the same techniques used in the proof of the previous theorem and lemma, we
can prove the following result:

Theorem C. Let f : Pn P2 be a generic rational map of degree ν given by f = (Fα
0 :

F β
1 : F γ

2 ), where deg(F0).α=deg(F1).β=deg(F2).γ=ν, ν ≥ 2, (α, β, γ) ∈ N3 such that
1 ≤ α < β < γ and g.c.d (β.γ, α.γ, α.β) = 1, I(f) its indeterminacy locus and F a
foliation on Pn, n ≥ 3.
Suppose that the following conditions hold:

(1) At any point pj ∈ I(f), F has the following local structure: In the case n = 3,
there exists an analytic coordinate system around pj, say (Upj , Zpj), such that
Zpj(pj) = 0 ∈ (C3, 0) and F|(Upj ,Zpj ) can be represented by ηpj a quasihomoge-
neous 1-form, as described in the lemma 7.10 p.32 and 33, such that:
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(a) sing(dηpj) = 0,

(b) 0 is a quasi-homogeneous singularity of the type

[β.γ : α.γ : α.β]

of ηpj .

In the case, n ≥ 4, F has a local structure product, given as before, times a regular
foliation in Cn−3.

(2) There exists a fibre f−1(q) = V (q) such that V (q) = f−1(q)\I(f) is contained
in the Kupka-Set of F and V (q) is not contained inside of the 3 hypersurfaces,⋃i=2
i=0(Fi = 0).

(3) V (q) has a transversal type X, where X is a germ of vector field on (C2, 0), with a
non-degenerated singularity at 0 ∈ C2, having eigenvalues λ1 and λ2, where λ2

λ1
/∈ R

and with a non-algebraic separatrix.

Then F is a pull back foliation, F = f ∗(G), where G is of degree d ≥ 2 on P2 with
three invariant lines in general position.

Proof. The proof of this theorem is essentially the previous lemma. �

Remark 15. Note that when G does not have invariant algebraic curves and we make the
pull-back by a map as above, the indeterminacy set of f does not satisfy the hypothesis
of the theorem. Take G for example as being the Jouanoulou’s foliation and make the
pull-back by f as above. In the case n = 3 the indeterminancy set of f is not a quasi-
homogenious singularity of F = f ∗(G).

Figure 4. Weighted Blow-up and Tang Argument related to lemmas 7.21
and 7.22.
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8. APPENDIX

8.1. Complete Intersections

In 1958 Kodaira and Spencer showed, that any smooth projective hypersurface which is
not a K3 surface remains projective algebraic under small deformations. This same type
result has been done in the case of complete intersections of dimension ≥ 2 (see [Ser] and
[Weh]), and later extended to the case when the complete intersection is an algebraic curve
(see [Ser1]). We say that a k-dimensonal algebraic variety V ⊂ Pn is a global complete
intersection if its homogeneous ideal I(V ) ⊂ C[Z0, ..., Zn] is generated by n− k elements,
say, f1, ..., fn−k of degrees d1, ...dn−k respectively. We will always order the dj,s so that
dj ≤ dj+1, j = 1, ..., n− k, and call d = (d1, ..., dn−k) the multidegree of V .

We now state the stability theorem for complete intersections:

Theorem 8.1. (Sernesi-Wehler) Let V be a global complete intersection in Pn of multi-
degree d, possibly with singularities, and assume dimCV ≥ 1. If V is not a K3 surface,
then all sufficiently small deformations of V are again global complete intersections of
multidegree d.

A complete proof of this theorem can be found in [Ser1] Deformation of Algebraic Schemes,
Section 4.6 - Examples and Applications pages 235 and 236.

Another important result is

Proposition 8.2. Let V be a complete intersection on Pn, we have the following:

(1) If dimCV ≥ 2, then V is simply-connected,

(2) If dimCV = 1, then V is connected.

8.2. Orbifolds and Foliations - A glimpse into the theory

This section is motivated by some of the techniques used to justify arguments in the proof
of the main theorem (Theorem B). As we have seen, we needed to blow-up the points of
the indeterminacy set of f . During this process there appears a new category of algebraic
variety, that we call an orbifold, and the exceptional divisors obtained are Weighted
Projective Spaces, which are singular spaces in general.

Primary examples of orbifolds are quotient spaces of smooth manifolds by a smooth finite
group action. Here we consider that the quotient space is uniformized (or modeled) by a
manifold with the finite group action. Hence a notion of smoothness for the quotient space
is inherited from the manifold through those objects which are invariant under the group
action. We require that any element of the group either acts trivially or has fixed-point
set of codimension at least two.This requirement has the consequence that the non-fixed-
point set is locally connected. Indeed, the first known examples of these objects where
obtained as quotients of manifolds under the action of finite groups of automorphisms.
Analogous to the definition of manifold, a complex orbifold atlas is locally modeled on
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open subsets of Cn modulo finite groups of biholomorphisms acting on it, such that a
suitable condition of compatibility is satisfied in the intersection of any pair of “charts.”
There is a well defined notion of “map” between orbifolds, fiber bundle theory (Orbibun-
dles) and Chern-Weil theory, and much more.

In this thesis, we use the following fundamental concepts:

• Foliations on Weighted Projective Spaces

• Weighted Blow-ups

• Mappings between Orbifolds

• Weighted Projective Spaces

• Chern-Weill Theory

8.3. Foliations on weighted projective spaces

Foliations on weighted projective spaces often appears in higher dimensional questions
related to the resolution of singularities, for example [Pan]. They are also similar to
foliations on Hopf surfaces. A polynomial P in n variables (x1, ..., xn) is said to be quasi-
homogeneous with weights (k1, ..., kn) and degree d if for every λ ∈ C∗ one has

P (λk1x1, ..., λ
knxn) = λdP (x1, ..., xn).

For example, in C[x, y, z] the polynomial P (x, y, z) = xz + y2 is not only quadratic (i.e.
homogeneous of degree 2) but also quasi-homogeneous of degree 4 relative to the weights
(1, 2, 3).

Given a set of weights (k1, ..., kn), we have a natural action of C∗ on Cn\{0} given by

λ.(x1, ..., xn) = (λk1x1, ..., λ
knxn).

Consider the quotient space Cn\{0}, where two points are identified if and only if they
belong to the same orbit of C∗. The resulting space is a compact manifold with singular-
ities called a weighted projective space, whose dimension is obviously equal to (n− 1).

Whether it has singularities or not, this type of manifold can be given an algebraic struc-
ture since it can be realized as a Zariski-closed set of a complex projective space with
sufficiently high dimension. The existence of this embedding can be shown by means of
Plücker coordinates. Alternatively, the quotient of this C∗-action can also be realized as
the quotient of the projective space of dimension (n − 1) by some finite group of auto-
morphisms.

A polynomial vector field in Cn

P1
∂

∂x1

+ ...+ Pn
∂

∂xn
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is said to be quasi- homogeneous with weights (k1, ..., kn) and degree d if for every λ ∈ C∗,
one has Λ∗X = λ(d−1)X, where Λ stands for the map

(x1, ..., xn)→ (λk1x1, ..., λ
knxn).

An example of a quasi-homogeneous vector field with weights (1, 2, 3) and degree 4 in
C[x, y, z] is

(xz + y2)
∂

∂x
+ (2zy + 3x5)

∂

∂y
+ (xy3z − y3 + 2z2)

∂

∂z
.

If X is quasi-homogeneous with weights (k1, ..., kn), then the definition above implies that
X defines a complex direction at each point of the projective space with the same weights
(k1, ..., kn). Being of complex dimension 1, these directions can naturally be integrated
to form a singular holomorphic foliation. Therefore, quasi-homogeneous vector fields give
rise to singular holomorphic foliations on weighted projective spaces.
Henceforth, we will concentrate on the case of weighted projective planes. Let w :=
(w0, w1, w2) ∈ N3. Consider the action of the multiplicative group C∗ on C3\{0} given by

(x0, x1, x2) 7→ (tw0x0, t
w1x1, t

w2x2).

The set of orbits C3\{0} under this action is the weighted projective plane of type w,

P2
[w0:w1:w2] := Pw.

The class of a non-zero element (x0, x1, x2) ∈ C3 is denoted by [x0 : x1 : x2]w and the weight
vector is omitted if no ambiguity seems likely to arise. When w := (w0, w1, w2) = (1, 1, 1)
one obtains the usual projective plane and the weight vector is always omitted. For
Z ∈ C3\{0}, the closure of [Z]w ∈ C3 is obtained by adding the origin and it is an alge-
braic curve.

Definition 8.3. We say that Pw is well-formed if g.c.d(wi, wj) = 1 for i 6= j.

In the paper [So.Cor], the authors include hypotheses regarding the weights. In a private
communication, Mauŕıcio Corrêa Júnior noted that the hypothesis g.c.d(wi, wj) = 1 is
not necessary for the proof of the following statements:

According to [Mann E.], we have a natural orbifold map

fw : P2 → Pw
[x0 : x1 : x2] → [xw0

0 : xw1
1 : xw2

2 ]w

which allows us to show that there exists a unique (up to isomorphism) rank 1 complex
Q-bundle OPw(1) over Pw, such that

f ∗wOPw(1) = OP2(1).

The Euler sequence carries over to the weighted case and we have the exact sequence of
Q-bundles over Pw:

0→ C→ OPw(w0)⊕OPw(w1)⊕OPw(w2)→ TPw → 0

where C is the trivial orbifold bundle and TPw is the orbifold tangent bundle of Pw.
Additionally, from [Mann E.], the Chern-Weil theory of Chern classes holds in Pw as it
does in projective spaces, and denoting ζ = c1(OPw(1)) from the previous exact sequence,
we have:
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c(TPw) = (1 + w0ζ)(1 + w1ζ)(1 + w2ζ).

Hence
ci(TPw) = σi(w0, w1, w2)ζ i

where σi is the i-th elementary symmetric function. Now let X be a quasi-homogeneous
vector field of type (w0, w1, w2) and degree d in C3. Writing X =

∑2
i=0 Pi(x0, x1, x2) ∂

∂zi
,

we have that
Pi(λ

w0x0, λ
w1x1, λ

w2x2) = λd+wi−1Pi(x0, x1, x2),

which descend to Pw. In fact, tensorizing the first exact sequence by OPw(d− 1) we get

0→ OPw(d− 1)→
2⊕
i=0

OPw(d+ wi − 1)→ TPw ⊗OPw(d− 1)→ 0.

It follows that a quasi-homogeneous vector field X induces a foliation F of Pw and that
gRw +X define the same foliation as X, where Rw is the adapted radial vector field

Rw = w0x0
∂

∂x0

+ w1x1
∂

∂x1

+ w2x2
∂

∂x2

,

with g a quasi-homogeneous polynomial of type (w0, w1, w2) and degree d − 1. Dually,
noting |w| = w0 + w1 + w2, we have the exact sequence

0→ Ω1
Pw ⊗OPw(d+ |w| − 1)→

2⊕
i=0

OPw(d+ |w| − wi − 1)→ OPw(d+ |w| − wi − 1)→ 0.

Hence, a foliation F of Pw is also induced by a 1-form

η = A0dx0 + A1dx1 + A2dx2,

with Ai a quasi-homogeneous polynomial of type (w0, w1, w2), degree d+ |w|−wi− 1 and
iRwη = w0x0A0 + w1x1A1 + w2x2A2 ≡ 0. In the situation that are interested in, we take
the weight vector

w := (w0, w1, w2) = (βγ, αγ, αβ)

where (α, β, γ) ∈ N3 such that 1 ≤ α < β < γ and g.c.d (β.γ, α.γ, α.β) = 1.

Following [A.M.O-G] and [B.R], our wighted projective plane is not well-formed, thus we
have another natural orbifold map between P2

[βγ,αγ,αβ] and P2 as follows:

fw : P2
[βγ,αγ,αβ] → P2

[x0 : x1 : x2]w →
[
xα0 : xβ1 : xγ2

]
.

In fact, this map defines an isomorphism between them, as explained in [B.R] Proposition
3.C.5 page 128.

8.4. Weighted Blowing-up

In Singularity Theory, resolution of a singularity is one of the most important tools. In
the embedded case (standard procedure), the starting point is a singular hypersurface.
After a sequence of suitable blow-ups this hypersurface is replaced by a long list of smooth
hypersurfaces (the strict transform and the exceptional divisors) which intersect in the
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simplest way (coordinate hyperplanes in general position for suitable local coordinates).
This process can be very expensive from the computational point of view and, moreover,
little of the data obtained is used for understanding the singularity.

Experimental work shows that most of these data can be recovered if one allows some
mild singularities to survive in the process (the quotient singularities). These partial
resolutions, called embedded Q-resolutions, can be obtained as a sequence of weighted
blow-ups and their computational complexity is much lower compared with standard res-
olutions. Moreover, the process is optimal in the sense that only useful data is obtained.
For more details about weighted blow-up we refer the reader to [Ma-Mor] [A.M.O-G] and
[A.M.O-G1] and for the application to the study of foliations we refer [Pan].

Let us fix a type of quasi-homogeneity, i.e, a set of exponents ki. We are interested
in blow-up points on P3. In this way we can proceed locally, that is, on C3. As before
we are assuming that (α, β, γ) ∈ N3 with the conditions 1 ≤ α < β < γ and g.c.d
(β.γ, α.γ, α.β) = 1. In blowing-up C3 at p with weights (β.γ, α.γ, α.β), the idea is to leave
C3 unaltered except at the point p, which is replaced by the set of “algebraic curves”
through p, a copy of P2

[βγ,αγ,αβ]. To make this precise, let us choose a suitable coordinate

system for C3 so that the point p may be assumed to be the “origin”. Consider (C3, 0)

with coordinates (x0, x1, x2) and denote by (̃C3, 0) the closure of the graph of

(C3, 0)→ P2
[βγ,αγ,αβ] ⊂ (C3, 0)× P2

[βγ,αγ,αβ].

We have that the exceptional divisor is P2
[βγ,αγ,αβ]. This (̃C3, 0) is a singular variety, that is,

an orbifold. In general, (̃C3, 0) has three lines (cyclic quotient) of singular points located
at the 3 axes of the exceptional divisor (the fixed points of the action).
As in the standard blow-up procedure, we also have a birational map

πw : (̃C3, 0)→ (C3, 0),

and orbifold charts covering (̃C3, 0) as follows:

(1) U0 = π−1
w ({x0 6= 0});

Orbifold chart: (Ũ0,Zβγ, πβγ) where:

Zβγ is the finite group of order βγ, Ũ0 = C3. The action is given by

(y0, y1, y2)→ (ξβγy0, ξ
−αγ
βγ y1, ξ

−αβ
βγ y2)

where ξβγ is a βγ-th root of 1.

The exceptional divisor is given by y0 = 0. The expression of πw ◦ πβγ is:

(a) x0 = yβγ0

(b) x1 = yαγ0 y1

(c) x2 = yαβ0 y2
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(2) U1 = π−1
w ({x1 6= 0});

Orbifold chart: (Ũ1,Zαγ, παγ) where:

Zαγ is the finite group of order αγ, Ũ0 = C3. The action is given by

(y0, y1, y2)→ (ξ−βγαγ y0, ξαγy1, ξ
−αβ
αγ y2)

where ξαγ is a αγ-th root of 1.

The exceptional divisor is given by y1 = 0. The expression of πw ◦ παγ is:

(a) x0 = yβγ1 y0

(b) x1 = yαγ1

(c) x2 = yαβ1 y2

(3) U2 = π−1
w ({x2 6= 0});

Orbifold chart: (Ũ2,Zαβ, παβ) where:

Zαβ is the finite group of order αβ, Ũ0 = C3. The action is given by

(y0, y1, y2)→ (ξ−βγαβ y0, ξ
−αγ
αβ y1, ξαβy2)

where ξαβ is a αβ-th root of 1.

The exceptional divisor is given by y2 = 0. The expression of πw ◦ παγ is:

(a) x0 = yβγ2 y0

(b) x1 = yαγ2 y1

(c) x2 = yαβ2

In this part we will make the weighted blow-up with weights (βγ, αγ, αβ) at
0 ∈ C3 of the quasi-homogeneous 1-form η and we will restrict π∗wη to the
exceptional divisor π−1

w (0) ≡ P2
w.

We know that

η(x0, x1, x2) = α.x1.x2.A(xα0 , x
β
1 , x

γ
2)dx0

+ β.x0.x2.B(xα0 , x
β
1 , x

γ
2)dx1

+ γ.x0.x1.C(xα0 , x
β
1 , x

γ
2)dx2.

Let us make the weighted blow-up of the 1-form η at the point 0 ∈ C3 with weights

[βγ, αγ, αβ].
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On the first chart:

(1)

d(x0) = d(yβγ0 ) = (βγ)yβγ−1
0 dy0

(2)
d(x1) = d(yαγ0 y1) = [yαγ0 dy1 + (αγ)y1y

αγ−1
0 dy0]

(3)

d(x2) = d(yαβ0 y2) = [yαβ0 dy2 + (αβ)y2y
αβ−1
0 dy0]

(1)

αyαγ0 y1Ã(yαβγ0 , yαβγ0 yβ1 , y
αβγ
0 yγ2 ).yαβ0 y2d(yβγ0 ) = (βγ)αy1y2Ã(1, yβ1 , y

γ
2 )[y

αβ+βγ+αγ−1+(d−1)αβγ
0 ]dy0

(2)

βyαγ0 yαβ0 y2B̃(yαβγ0 , yαβγ0 yβ1 , y
αβγ
0 yγ2 ).yαβ0 y2(yαγ0 dy1 + (αγ)y1y

αγ−1
0 dy0)

= [y
αβ+βγ+αγ−1+(d−1)αβγ
0 ](βy2B̃(1, yβ1 , y

γ
2 )y0dy1 + αγy1dy0)

= y0βy2B̃(1, yβ1 , y
γ
2 )d1 + αβγy1y2B(1, yβ1 , y

γ
2 )dy0

(3)

γ(yαγ0 )y1y
βγ
0 B̃(yαβγ0 , yαβγ0 yβ1 , y

αβγ
0 (yαβ0 dy2 + (αβ)yαβ−1

0 y2y0)

= [y
αβ+βγ+αγ−1+(d−1)αβγ
0 ][γy1C̃(1, yβ1 , y

γ
2 )(y0dy2 + αβy2dy0)]

= [γy1C̃(1, yβ1 , y
γ
2 )(y0dy2 + αβy2dy0)].

Extracting [y
αβ+βγ+αγ−1+(d−1)αβγ
0 ] from the prior expressions and then adding them up we

obtain:

αβγy1y2Ã(1, yβ1 , y
γ
2 )dy0 + y0βy2B̃(1, yβ1 , y

γ
2 )dy1 + αβγy1y2B̃(1, yβ1 , y

γ
2 )dy0

+y0γy1C̃(1, yβ1 , y
γ
2 )dy2 + αβγy1y2C̃(1, yβ1 , y

γ
2 )dy0

Using the fact that

αβγy1y2Ã(1, yβ1 , y
γ
2 )dy0 + αβγy1y2B̃(1, yβ1 , y

γ
2 )dy0 + αβγy1y2C̃(1, yβ1 , y

γ
2 )dy0 ≡ 0,

we can simplify (extract the y0 from the two remaining expressions) to obtain the expres-
sion of π∗wη restricit to the exceptional divisor π−1

w (0) ≡ P2
w.

π∗wη|y0=0 = βy2B̃(1, yβ1 , y
γ
2 )dy1 + γy1C̃(1, yβ1 , y

γ
2 )dy2.

This is the local expression of the foliation in the first coordinate chart of the weighted
projective plane P2

[βγ,αγ,αβ]. In the second and third coordinate systems the computations
are similar. Summarized as follows:

(1) In the second chart:
Using the previous coordinates we have:
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d(x0) = d(y0y
βγ
1 ) = (βγ)y0y

βγ−1
1 dy1 + yβγ1 dy0

d(x1) = d(yαγ1 ) = (αγ)yαγ−1
1 dy1

d(x2) = d(yαβ1 y2) = [yαβ1 dy2 + (αβ)y2y
αβ−1
1 dy1].

Making the pull-back we obtain:

π?wη|[y1=0] = αy2A(yα0 , 1, y
γ
2 )dy2 + γy0B(yα0 , 1, y

γ
2 )dy2

and the exceptional divisor corresponds to y1 = 0.

(2) In the third chart:
Using the previous coordinates we have:

d(x0) = d(y0y
βγ
2 ) = (βγ)y0y

βγ−1
2 dy2 + yβγ2 dy0

d(x1) = d(yαγ2 y1) = (αγ)y1y
αγ−1
2 dy2 + yαγ2 dy1

d(x2) = d(yαβ2 ) = (αβ)yαβ−1
2 dy2

Making the pull-back we obtain:

π∗wη|[y2=0] = αy0A(yα0 , y
β
1 , 1)dy1 + βy1B(yα0 , y

β
1 , 1)dy0

and the exceptional divisor is given by y2 = 0.

Remark 16. Observe that this blow-up is being done at time t = 0.

After blowing-up P3 in v3

αβγ
points, the new space that appears has v3

αβγ
exceptional divisors,

each of which is isomorphic to P2
[βγ,αγ,αβ]. Each divisor contains have three lines (each

of which is isomorphic to P1), which are in fact weighted projective lines of singular
points. Note that although the quotient spaces are written in their normalized form,
the exceptional divisors can be simplified. This is due to the fact that each weighted
projective plane that appears is not well-formed. In the next section we will use the

orbifold charts of P2
[βγ,αγ,αβ] to conclude that this procedure is the correct way to recover

the quasi-homogeneous 1-form η up to automorphisms.

8.5. Recovering the original foliation from the blowing-up process

Let us give an orbifold structure of the weighted projective plane P2
[βγ,αγ,αβ] (for a

detailed description see [Mann E.1] pp 51). We can consider the sets

Vi = {[x0 : x1 : x2]w ∈ P2
[βγ,αγ,αβ] : xi 6= 0} ⊂ P2

[βγ,αγ,αβ]

and the bijective maps φi from Vi to C2/Gi, where Gi is a finite group of biholomorphisms
of C2. For the orbifold chart V0, we have coordinates

(1) (1, y1, y2),

where y1 =
x1

x
(αβ )
0

and y2 =
x2

x
(α
γ

)

0

. For the chart V1 we have coordinates
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(1) (y0, 1, y2),

where y0 =
x0

x
( β
α

)

1

and y2 =
x2

x
(β
γ

)

1

. For V2 we have coordinates

(1) (y0, y1, 1)

where y0 =
x0

x
( γ
α

)

2

and y1 =
x1

x
( γ
β

)

2

. Let us examine the restriction to

P2
[βγ,αγ,αβ] of the foliation obtained via the weighted blow-up in coordinates (x0, x1, x2)

in C3. For this purpose we only need to analyze one case:
Let us take the 1-form

Σ0 = π∗wη|y0=0 = βy2B̃(1, yβ1 , y
γ
2 )dy1 + γy1C̃(1, yβ1 , y

γ
2 )dy2

that defines the foliation in V0. Consider the mapping πc : C3 → V0 and the 1-form π∗cΣ0.
In the coordinates on V0 we have

d(y1) = d

 x1

x
(αβ )
0

 =
x
α
β

+1

0 dx1 − α
β
x1x

α
β

0 dx0

x
2α
β

+1

0

and

d(y2) = d

(
x2

x
(α
γ

)

0

)
=

x
α
γ

+1

0 dx2 − α
γ
x2x

α
γ

0 dx0

x
2α
γ

+1

0

.

By standard computations and using the relation iSη = 0, we obtain that

(π∗cΣ0) (x0, x1, x2) =
1

p(x0, x1, x2)
η(x0, x1, x2),

where p(x0, x1, x2) = y
αβγ(d−1)+α

β
+α
γ

+1

0 . Now we extract the factor 1
p(x0,x1,x2)

and recover

the 1-form η as we wanted.

Remark 17. If we make the same procedure using another coordinate chart we obtain the
same thing.

8.6. Push-Forward

Following [A.M.O-G], since our weighted projective plane is not well-formed we have an
another natural orbifold map between P2

[βγ,αγ,αβ] and P2 as follows:

fw : P2
[βγ,αγ,αβ] → P2

(x0 : x1 : x2)w → (xα0 : xβ1 : xγ2) = (X, Y, Z).

The lifting of the map fw can be seen as follows:
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C3\{0} f̃w−−−→ C3\{0}

Π2w

y Π2

y
P[βγ,αγ,αβ]

fw−−−→ P2.

We are denoting by Π2w the quotient mapping.

f̃w : C3 → C3

(x0, x1, x2) → (xα0 , x
β
1 , x

γ
2) = (X, Y, Z).

The pushforward of the foliation in P2
[βγ,αγ,αβ] to P2 is given as follows. We have that the

foliation on P2
[βγ,αγ,αβ] is given by

η = iSiZ(dx0 ∧ dx1 ∧ dx2)

where

S = (β.γ)x0
∂

∂x0

+ (α.γ)x1
∂

∂x1

+ (α.β)x2
∂

∂x2

and Z is given by

Z = Z0(x0, x1, x2)
∂

∂x0

+ Z1(x0, x1, x2)
∂

∂x1

+ Z2(x0, x1, x2)
∂

∂x2

where:

(a) Z0(x0, x1, x2) = x0.Ã(xα0 , x
β
1 , x

γ
2)

(b) Z1(x0, x1, x2) = x1.B̃(xα0 , x
β
1 , x

γ
2)

(c) Z2(x0, x1, x2) = x2.C̃(xα0 , x
β
1 , x

γ
2).

Remark 18. The polynomials Ã(X, Y, Z), B̃(X, Y, Z) and C̃(X, Y, Z) are homogeneous of
degree (d− 1) and they are not unique!

Let us take the pushforward of the two vector fields S and Z under the mapping f̃w:

(f̃w)∗(S)(p) = (Df̃w)(f̃w
−1

(p))S(f̃w
−1

(p))

where

(Df̃w)(f̃w
−1

(xα0 , x
β
1 , x

γ
2)) =

αxα−1
0 0 0

0 βxβ−1
1 0

0 0 γxγ−1
2


Hence

(f̃w)∗(S)(p) = (Df̃w)(f̃w
−1

(p))S(f̃w
−1

(p))

is the vector αβγxα0αβγxβ1
αβγxγ2

 ,
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which is equivalent to αβγXαβγY
αβγZ

 .
Hence, it is a multiple of the radial vector field.

Applying the same process to the vector field Z we obtain

(3)

xα0 Ã(xα0 , x
β
1 , x

γ
2)

xβ1 B̃(xα0 , x
β
1 , x

γ
2)

xγ2C̃(xα0 , x
β
1 , x

γ
2)


which is equivalent to

(4)

XÃ(X, Y, Z)

Y B̃(X, Y, Z)

ZC̃(X, Y, Z)


hence it is a homogeneous vector field. Now we can define a foliation on P2 using these
two vectors obtained in the pushforward process.
In fact

i(f̃w)∗(S)i(f̃w)∗(Z)dX ∧ dY ∧ dZ
is equivalent to the determinant of the following matrix dX dY dZ

XÃ(X, Y, Z) Y B̃(X, Y, Z) ZC̃(X, Y, Z)
αβγX αβγY αβγZ

 .
Hence we have the 1−form

Y Z[B̃ − C̃](X, Y, Z)dX +XZ[C̃ − Ã](X, Y, Z)dY +XY [Ã− B̃](X, Y, Z)dZ

of degree (d+ 1). Also note that

{[B̃ − C̃] + [C̃ − Ã] + [Ã− B̃]}(X, Y, Z) ≡ 0,

and therefore it is in Il3(d, 2), moreover if we begin with G ∈ M1(d, 2) we re-obtain up
to a linear automorphism of P2 a foliation in M1(d, 2). This also holds for a foliation G ∈ A.

It follows from the previous discussions, that if we make a weighted punctual blow-up at a
indeterminacy point with weights (βγ, αγ, αβ) on the quasi-homogeneous 1-form defining
the holomorphic foliation on a neighborhood of a indeterminacy point of f . Then the
strict transform of the foliation restricted to the exceptional divisor is (up to a linear
automorphism of P2 ' P2

[βγ,αγ,αβ]) the same foliation. Hence, if we begin with a foliation

G ∈ M1(d, 2) we re-obtain (again, up to a linear automorphism of P2) a foliation in
M1(d, 2).

8.7. Proof that the curves Vτ (t) are fibers of ft.

We have seen in proposition 7.18 that we can define a family of rational mappings
(ft)t∈Dε′ : P3 P2, in such a way that the singular curves Va(t), Vb(t) and Vc(t) of the
foliation Ft are fibers of ft for fixed t. Observe that, for ε′ sufficiently small, (ft)t∈Dε′ is
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generic in the sense of definition 4.2, and its indeterminacy locus I(ft) is precisely I(t).
Moreover, since Gen(3, ν, α, β, γ) is open, we can suppose that this family (ft)t∈Dε′ is in
Gen (3, ν, α, β, γ). In this section we will show that the remaining singular curves, that
we have denoted by Vτ (t) also are fibers of ft for fixed t. In fact, in the local coordinates
X(t) = (x0(t), x1(t), x2(t)) near some point of I(t), where the vector field S is diagonal
we have that the components of the map ft are written as follows:

(1) P0(t) = u0tx0(t) + x1(t)x2(t)h0t

(2) P1(t) = u1tx1(t) + x0(t)x2(t)h1t

(3) P2(t) = u2tx2(t) + x0(t)x1(t)h2t

where the functions uit ∈ O∗(C3, 0) and hit ∈ O(C3, 0), 0 ≤ i ≤ 2.
Observe that when the parameter t goes to 0 the functions hi(t), 0 ≤ i ≤ 2 also goes

to 0. We want to show that an orbit of the vector field S in the coordinate system X(t)
that extends globally like a singular curve of the foliation Ft is a fiber of ft.

Observe that the conditon α < β < γ implies that αγ < β(α+γ) and also αβ < γ(α+β).
We will prove first that if βγ ≤ α(β + γ) then any generic orbit of the vector field S

that extends globally as singular curve of the foliations Ft is also a fiber of ft for fixed t.
On the other hand, if we have the situation βγ > α(β + γ) then we will prove that any
orbit of the vector field S that is contained in the coordinate planes that extends globally
as singular curve of the foliations Ft are fibers of the mapping ft. Using this fact, we can
prove that any generic orbit of the vector field S that extends globally as singular curve
of the foliations Ft is also a fiber of ft in this case.

Lemma 8.4. If βγ ≤ α(β + γ) then any generic orbit of the vector field S that extends
globally as singular curve of the foliations Ft is also a fiber of ft for fixed t.

To simplify, in the notation we will omit the index t.

Proof. Let us consider a generic orbit of the vector field S. We will denote it by δ(s) (here
by a generic orbit we mean an orbit that is not contained in any coordinate plane). We
can parametrize the orbit as

s→ (asβγ, bsαγ, csαβ), a 6= 0, b 6= 0, c 6= 0.

Without loss of generality we can suppose that a = b = c = 1. We have

ft(δ(s)) = [(sβγu0 + sα(β+γ)h0)α : (sαγu1 + sβ(α+γ)h1)β : (sαβu2 + sγ(α+β)h2)γ]

If we have the condition βγ ≤ α(β + γ) this implies that we can extract the factor sαβγ

from ft(δ(s)) since we are considering projective coordinates.
Hence we obtain

ft(δ(s)) = [(u0 + skh0)α : (u1 + slh1)β : (u2 + smh2)γ](∗∗)
where k = α(β + γ)− βγ, l = β(γ + α)− αγ and m = γ(α + β)− αβ.

Observe that Vτ is a fiber and so f0(Vτ ) = [d : e : f ] ∈ P2 where d 6= 0, e 6= 0, f 6= 0.

If we take a covering of I(f) = {p1, ..., p ν3

αβγ

} by small open balls Bj(pj), 1 ≤ j ≤ ν3

αβγ
the

set Vτ\ ∪j Bj(pj) is compact. For a small deformation ft of f0 then ft[Vτ (t)\ ∪j Bj(pj)(t)]
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stays near to f [Vτ\ ∪j Bj(pj)], and hence for t sufficiently small the components of the
previous expression (∗∗) does not vanish and when we are outside of the neighborhood
∪jBj(pj)(t) the components of ft also does not vanish.

This implies that the components of ft do not vanish along each generic fiber that
extends locally as a singular curve of the foliation Ft. This is possible only if ft is
constant along this curves. In fact, ft(Vτ (t)) is either a curve or a point. If it is a curve
then it cuts all lines of P2 and therefore the components should be zero somewhere.

Hence ft(Vτ (t)) is constant and we conclude that Vτ (t) is a fiber.
Observe also that when we make a blow-up with weights (βγ, αγ, αβ) at the points

of I(ft) we solve completely the indeterminacy points of the mappings ft in the case
βγ ≤ α(β + γ) for each t. �

When βγ > α(β + γ) the situation is more difficult. Let us suppose that the orbits
that are contained in the coordinate planes that extends globally as singular curves of the
foliation Ft are fibers of ft. This fact will be proved at the Lemma 8.5.
To simplify the argumentation let us suppose also that the numbers g.c.d(α, β) = 1,
g.c.d(α, γ) = 1 and g.c.d(γ, β) = 1. The general case is similar.

We can assume without loss of generality that this orbit is contained in the coordinate
plane x0(t) = 0 and we will use the hypothesis g.c.d(γ, β) = 1.

In this case the orbit is of the form (x0 = xβ1 − cx
γ
2 = 0). Since we are assuming by

hypothesis that the previous curve is a fiber of the mapping ft we have that the germ of
f0,t at the point belongs to the ideal generated by x0(t) and (xβ1 − cx

γ
2)(t) hence we can

write the function h0t as follows:

h0t = x0(t)h01t + (xβ1 (t)− cxγ2(t))h02t,

where h01t, h02t ∈ O2. Hence we can repeat the argument at the first situation, and then
we can extract the factor sαβγ. In fact, making the computations we have:

ft(δ(s)) = [(sβγ[u0 + sα(β+γ)(h01 + sαβγ)(1− c)h02])α : sαβγ(u1 + slh1)β : sαβγ(u2 + smh2)γ]

where l = β(γ + α)− αγ and m = γ(α + β)− αβ.
Hence we can extract from the previous expression the term sαβγ obtaining the term

ft(δ(s)) = ([u0 + sα(β+γ)(h01 + sαβγ)(1− c)h02])α : (u1 + slh1)β : (u2 + smh2)γ]

In this way we can proceed the argumentation as at the end of the first situation. We
conclude that Vτ (t) is also a fiber when we have βγ > α(β + γ).

�

Lemma 8.5. If βγ > α(β + γ) then any orbit of the vector field S that is contained in
some coordinate plane at pj(t) where the vector field S is linear, that extends globally as
a singular curve of the foliations Ft is a fiber of the mapping ft for fixed t.

Denote (ft)t∈Dε′ : P3 P2 by ft = [Pα
0 (t) : P β

1 (t) : P γ
2 (t)]. As previously, let us

consider an orbit of the vector field S on a small neighborhood of an indeterminacy point
of ft, Bj(pj(t)), 1 ≤ j ≤ ν3

αβγ
and denote by Vτ (t) the global extension of this orbit to

P3. Without loss of generality we can assume that the orbit is contained in the plane
(x0(t) = 0) and we can suppose that it can be parametrized as

s→ (0, sγ, sβ).

To simplify in the notation we will omit the index t in some expressions. After evaluating
the mapping ft on this orbit, on a neighborhood of pj(t) we obtain:
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ft(δ(s)) = [sα(β+γ)hα0 : sβγuβ1 : sβγuγ2 ].

This can be written as

(5) [sα(β+γ)h̃0 : sβγuβ1 : sβγuγ2 ] = [X(s) : Y (s) : Z(s)]

and we will initially prove that ft(Vτ (t)) is contained in a line of the form (Y − λZ = 0)

of P2. Let us consider the meromorphic function in Bj(pj(t)) given by gt(s) = Z(s)
Y (s)

=
uγ2
uβ1

.

When s → 0 this function goes to a constant λ 6= 0, λ 6= ∞. Observe that for small t

the function
Pβ1
P γ2

(t) : Vτ (t)\ ∪j Bj(pj(t)) stays near
Pβ1
P γ2

(0) : Vτ (0)\ ∪j Bj(pj(0)) which also

does not vanish because Vτ (0) is a fiber. We conclude that ft(Vτ (t)) ⊂ (Y −λZ = 0) ' P1.

If βγ > α(β + γ) we can write eq.(5) as

[h̃0(s) : smuβ1 : smuγ2 ]

where m = βγ − α(β + γ).

Observe when s = 0 that the function h̃0(s) could vanish and in this case such a point
corresponds to a indeterminacy point pj(t) of ft for some j. At pj(t) we can write the

first component of eq.(5) as h̃0(s) = sρj h̃j(s) where h̃j(s) ∈ O∗(C, 0) or h̃0 ≡ 0 but in this
case we are done, that is Vτ (t) is a fiber of ft.

At a point pj(t) we have two possibilities:

First case: if ρj < m.
In this case we can write the expression in eq.(5) as:

(6) [h̃j(s) : sm−ρjuβ1 : sm−ρjuγ2 ]

and if s→ 0 the image goes to [1 : 0 : 0] which implies that ft|Vτ (t)(pj(t)) = [1 : 0 : 0].

Second case, if ρj ≥ m we can write the expression in eq.(6) as:

(7) [sρj−mh̃j(s) : uβ1 : uγ2 ]

and if s→ 0 the image goes to [a : λ : 1] where a ∈ C. This is because the image of such
a point belongs to the curve (Y − λZ = 0) ' P1 and we can write it as [a : λ : 1].

Indeed, let us suppose that ft|Vτ (t) is not constant and consider the mapping ft|Vτ (t) :
Vτ (t)→ ft(Vτ (t)) ⊂ (Y − λZ = 0) for fixed t.

Denote A = {j|ρj < m} and observe that p ∈ Vτ (t) and ft|Vτ (t)(p) = [1 : 0 : 0] implies
that p = pj(t) for some j ∈ A; that is (ft|Vτ (t))

−1[1 : 0 : 0] = {pj(t), j ∈ A}. Moreover, by
eq.(6) we have mult(ft|Vτ (t), pj(t)) = m− ρj. In particular, the degree of ft|Vτ (t) is

degree(ft|Vτ (t)) =
∑
j

(m− ρj)

On the other hand, if p ∈ (ft|Vτ (t))
−1[0 : λ : 1] then (Pα

0 (p) = 0) and somult(ft|Vτ (t), p) =
the intersection number of (Pα

0 (t) = 0) with Vτ (t) at p. Hence

degree(ft|Vτ (t)) = Vτ (t).P
α
0 (t) = deg(Vτ (t))× deg(Pα

0 (t)) =
ν3

α
=
∑
j

(m− ρj)
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But, (m− ρj) ≤ m = βγ − α(β + γ) and so∑
j∈A

(m− ρj) ≤ #A×m ≤ ν3

αβγ
× (βγ − α(β + γ)) = ν3(

1

α
− 1

β
− 1

γ
)

which implies that
1

α
≤ 1

α
− 1

β
− 1

γ
,

a contradiction. Therefore, A = ∅ and ft|Vτ (t) is a constant and Vτ (t) is a fiber of ft. �

8.8. Solving the indeterminacy of ft

We saw that in a neighborhood of a point of indeterminacy of the map ft : P3 P2

most of its fibers are locally the orbits of the vector field S. Moreover, many of these
orbits are singular with the exception of three. Due to this fact a standard punctual
blow-up does not solve the indeterminacy point of the map ft. Since the orbits are gener-
ally cusp an usual blow-up would produce tangencies between the strict transform of this
curves with exceptional divisor. We will proceed locally, that is at each point pj(t). In
fact, in the local coordinates X(t) = (x0(t), x1(t), x2(t)) near some point of I(t), where the
vector field S is diagonal we have that the components of the map ft are written as follows:

(1) P0(t) = u0tx0(t) + x1(t)x2(t)h0t

(2) P1(t) = u1tx1(t) + x0(t)x2(t)h1t

(3) P2(t) = u2tx2(t) + x0(t)x1(t)h2t

where the functions uit ∈ O∗(C3, 0) and hit ∈ O(C3, 0), 0 ≤ i ≤ 2.
For each fixed t we can write the mapping ft as

ft = [u0tx0(t) + x1(t)x2(t)h0t)
α : (u1tx1(t) + x0(t)x2(t)h1t)

β : (u2tx2(t) + x0(t)x1(t)h2t)
γ]

As we will see it is sufficient to do the blowing-up only in one chart. Let us take the first
one. In local coordinates as described in section 8.4 the weighted blow-up with weights
(βγ, αγ, αβ) can be written as:

(1) x0(t) = y0(t)βγ

(2) x1(t) = y0(t)αγy1(t)

(3) x2(t) = y0(t)αβy2(t)

To simplify the notation we will omit the parameter t from the next expressions. Observe
that the condition α < β < γ implies that αγ < β(α + γ) and also αβ < γ(α + β).

We will prove first that if βγ ≤ α(β + γ) we can solve completely the indeterminacy
set of ft.

In fact, after standart computations we obtain

πw(t)∗ft = yαβγ0 [(u0 + y1y2y
2α
0 h0)α : (u1y1 + yβγ0 y2h1)β : (u2y2 + y2γ

0 y1h2)γ](∗∗).
If we have the condition βγ ≤ α(β + γ) this implies that we can extract the factor yαβγ0

from πw(t)∗ft since we are considering projective coordinates. If we make this process at
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the ν3

αβγ
indeterminacy points of ft for each t we can solve completely the indeterminacy

set of ft. And we are done.

When βγ > α(β + γ) the situation is more difficult. In the previous section we have
seen that the orbits that are contained in the coordinate planes that extends globally as
singular curves of the foliation Ft are fibers of ft. This fact was proved at the Lemma
8.5.
To simplify the argumentation let us suppose also that the numbers g.c.d(α, β) = 1,
g.c.d(α, γ) = 1 and g.c.d(γ, β) = 1. The general case is similar. We can assume without
loss of generality that this orbit is contained in the coordinate plane x0(t) = 0 and we will

use the hypothesis g.c.d(γ, β) = 1. In this case the orbit is of the form (x0 = xβ1−cx
γ
2 = 0).

Since we know that the previous curve is a fiber of the mapping ft we have that the
germ of f0,t at the point belongs to the ideal generated by x0(t) and (xβ1 − cx

γ
2)(t) hence

we can write the function h0t as follows:

h0t = x0(t)h01t + (xβ1 (t)− cxγ2(t))h02t,

where h01t, h02t ∈ O2. Hence we can repeat the argument at the first situation, and then
we can extract the factor yαβγ0 . In fact, making the computations we have:

πw(t)∗ft = yαβγ0 [(u0+y1y2y
2α
0 [y0h01+yαβγ0 (yβ1−cy2γ))α : (u1y1+yβγ0 y2h1)β : (u2y2+y2γ

0 y1h2)γ](∗∗).
This implies that we can extract the factor yαβγ0 from πw(t)∗ft since we are considering

projective coordinates. If we make this process at the ν3

αβγ
indeterminacy points of ft for

each t we can solve completely the indeterminacy set of ft. And we are done.

8.9. Extension Theorem

For complex spaces and orbifolds, holomorphic functions can often be extended to larger
open sets. This is the content of the Riemann Removable Singularity Theorem for orbifolds
and complex spaces.

Theorem 8.6. Let V be a normal complex space and A ⊂ V an analytic subset of
codimension at least 2 in every point. Then every holomorphic function in V \A has a
unique holomorphic extension to V.

This result can be found in [G.M1] page 126.
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la Société Mathématique de France. vol. 126, p. 381-406, (1998).

[Ma-Mor] J. Mart́ın-Morales. Monodromy Zeta Function Formula for Embedded Q-Resolutions Preprint,
2011.

[Mann E.] Mann E. Orbifold quantum cohomology of weighted projective spaces. J. Algebraic Geom. 17
(2008), 137-166.

[Mann E.1] Mann E. Cohomologie quantique orbifold des espaces projectifs á poids.
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