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Abstract

To each prime number p ∈ P assign a random variable Xp taking values on

the set {−1, 1} and denote this sequence by X = (Xp)p∈P . We define the Random

Möbius function µX to be the multiplicative function with support on the square free

naturals such that at each prime p, µX(p) = Xp. A Theorem due to A. Wintner

[19] states that if the sequence X = (Xp)p∈P is of independent and identically

distributed random variables such that Xp has equal probability to be +1 and −1

then the partial sums of the Random Möbius function satisfies with probability one:

µX(1) + ...+ µX(N)� N1/2+ε, ∀ε > 0,

and in [12] the term� N1/2+ε was improved to�
√
N(log logN)3/2+ε for all ε > 0.

In this work we study the effect of the condition P(Xp = −1) > P(Xp = +1) on the

partial sums of the Random Möbius function.

Theorem. Assume that the random variables X = (Xp)p∈P are independent and

such that P(Xp = −1) = 1
2 + 1

2pα , for α > 0. Denote by Sα(N) :=
∑N

k=1 µX(k).

Then the Riemann Hypothesis is equivalent to

lim
α→0

P(Sα(N)� N1/2+ε,∀ε > 0) = 1.

Moreover, we prove that the Random Möbius function as in this Theorem cor-

relates with the one associated to the Wintner’s model. Also we prove the following

results:

Theorem (limp→∞ P(Xp = −1) = 1/2). Assume that the random variables X =

(Xp)p∈P are independent and such that P(Xp = −1) = 1
2 +

δp
2 . Let ∆ be the event

∆ = [µX(1) + ...+ µX(N)� N1/2+ε, ∀ε > 0],

then:

i.
∑

p∈P
δp√
p <∞ implies that P(∆) = 1;

ii. δp → 0 and 1
pε � δp, for all ε > 0 implies that P(∆) = 0.

Theorem (limp→∞ P(Xp = −1) = 1). Assume that the random variables X =

(Xp)p∈P are independent and such that P(Xp = −1) = 1 − δp. Assume that for

some α ∈ (0, 1/2), 1
pα � δp. Then

P(µX(1) + ...+ µX(N)� N1/2+ε, ∀ε > 0) = 0.

Keywords: Random Multiplicative Functions, Probabilistic Number Theory.



Resumo

A cada número primo p ∈ P associe uma variável aleatória Xp tomando valores no

conjunto {−1, 1} e denote esta sequência por X = (Xp)p∈P . Definimos a Função de

Möbius aleatória µX como sendo a função multiplicativa com suporte nos números livres

de quadrados tal que a cada número primo p, µX(p) = Xp. Um Teorema provado por A.

Wintner [19] afirma que se a sequência X = (Xp)p∈P é constitúıda por variáveis aleatórias

independentes e identicamente distribúıdas tais que cada Xp possui igual probabilidade

de assumir +1 e −1 então as somas parciais da Função de Möbius aleatória satisfazem

com probabilidade um:

µX(1) + ...+ µX(N)� N1/2+ε, ∀ε > 0.

Recentemente, em [12] o termo � N1/2+ε no Teorema de Wintner foi melhorado para

�
√
N(log logN)3/2+ε para todo ε > 0. Neste trabalho estudamos o efeito da condição

P(Xp = −1) > P(Xp = +1) nas somas parciais da Função de Möbius aleatória.

Teorema. Assuma que as variáveis aleatórias X = (Xp)p∈P são independentes e tais que

P(Xp = −1) = 1
2

+ 1
2pα

, para α > 0. Denote Sα(N) :=
∑N

k=1 µX(k). Então a Hipótese de

Riemann é equivalente a:

lim
α→0

P(Sα(N)� N1/2+ε,∀ε > 0) = 1.

Além disso, provamos que a Função de Möbius aleatória como nesse Teorema correlaciona

com a Função de Möbius aleatória associada ao modelo de Wintner. Também provamos

os seguintes resultados:

Teorema (limp→∞ P(Xp = −1) = 1/2). Assuma que as variáveis aleatórias X = (Xp)p∈P
são independentes e tais que P(Xp = −1) = 1

2
+ δp

2
. Seja ∆ o evento

∆ = [µX(1) + ...+ µX(N)� N1/2+ε, ∀ε > 0],

então:

i.
∑

p∈P
δp√
p
<∞ implica que P(∆) = 1;

ii. δp → 0 e 1
pε
� δp, para todo ε > 0 implica que P(∆) = 0.

Teorema (limp→∞ P(Xp = −1) = 1). Assuma que as variáveis aleatórias X = (Xp)p∈P
são independentes e tais que P(Xp = −1) = 1− δp. Assume que para algum α ∈ (0, 1/2),
1
pα
� δp. Então

P(µX(1) + ...+ µX(N)� N1/2+ε,∀ε > 0) = 0.

Keywords: Funções Multiplicativas Aleatórias, Teoria Probabilistica dos Números.
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3.1 Back to the β Random Möbius function. . . . . . . . . . . . . . . . . . . . 34

3.2 Random Dirichlet Series and the Lindelöf Hypothesis. . . . . . . . . . . . . 35
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1 Introduction.

Let µ : N → {−1,+1} be the Möbius function, that is, µ(1) = 1, µ(k) = (−1)l if k

is the product of l distinct primes and µ(k) = 0 otherwise. The asymptotic behavior

of the Mertens function M : N → R which is given by the sum M(N) :=
∑N

k=1 µ(k)

is of great importance in Analytic Number Theory. For example, the Prime Number

Theorem is equivalent to M(N) = o(N) and the Riemann Hypothesis is equivalent to

M(N) = o(N1/2+ε) for all ε > 0. Moreover, M(N) = o(N1/2+α) for some α > 0 implies

that the zeros of the Riemann zeta function have real part less or equal to 1/2 + α.

In particular, the exponent 1/2 inside this o-term is optimal, since the Riemann zeta

function has many zeros with real part equals to 1/2. The order M(N) = o(N1/2+α) for

any α < 1/2 still unknown up to date.

It is interesting to observe that the sum of independent random variables (Yk)k∈N assuming

−1 or +1 with equal probability exhibits the behavior expected for M(N) under the

Riemann Hypothesis. Indeed, denoting SY (N) =
∑N

k=1 Yk, with probability 1 one has

SY (N) = o(N1/2+ε), for all ε > 0 and also that the exponent 1/2 is optimal.

This suggests a probabilistic approach to the Möbius function. It is necessary to observe

that µ has multiplicative “dependencies”, that is, for n and m naturals without primes in

common, the knowledge of the values µ(n) and µ(m) implies the knowledge of µ(n ·m)

which is equal to µ(n) · µ(m). A arithmetic function possessing this property is called

multiplicative function. Thus, as observed by P. Lévy [13], independent random variables

can not reproduce this effect. This motivates the following definitions:

Definition 1.1. Let P be the set of the prime numbers, µ the Möbius function and

X = (Xp)p∈P a sequence of independent random variables assuming values on {−1, 1}
defined in the probability space (Ω,F ,P). The Random Möbius Function associated with

X is the arithmetic random function given by

µX(1) = 1,

µX(n) = |µ(n)|
∏
p|n

Xp.

Definition 1.2. The random Mertens function is the arithmetic random function MX

which is given by MX(N) =
∑N

k=1 µX(k).
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1.1 Random Möbius Function: An Historical Overview.

The Wintner’s model. The Definition 1.1 with a different terminology1 was firstly in-

troduced by A. Wintner [19]. Assuming that the random variables are distributed as

P(Xp = −1) = P(Xp = +1) = 1/2, A. Wintner proved that the Random Mertens func-

tion satisfies

P(MX(N) = O(N1/2+ε), ∀ε > 0) = 1

and also that the exponent 1/2 is optimal. This is a remarkable result since the random

variables (µX(k))k∈N have multiplicative dependencies which turns on dependencies of

infinite range between them.

Pairwise Independence. A sequence of random variables Y = (Yk)k∈N is said to be pairwise

independent if for any k 6= l the pair Yk, Yl is independent. Denoting by S the set of the

square free naturals, the random variables (µX(k))k∈S are identically distributed and

pairwise independent, that is, for any square free k, l with k 6= l, µX(k) is independent

from µX(l). Thus, the Strong Law of Large Numbers for pairwise independent random

variables (see Theorem A.3) gives another proof of Wintner’s Theorem.

Below is a historical overview about improvements obtained in Wintner’s model.

An Improvement by P. Erdős. P. Erdős [6] proved the existence of a constant c1 such that

P(MX(N) = O(
√
N(logN)c1) = 1.

An Improvement by G. Halász. G. Halász [9] substituted the Erdős term (logN)c1 by

exp(c2

√
log logN log log logN) for some c2 > 0.

Close to the Law of the Iterated Logarithm. The Law of the Iterated Logarithm states

that for a sum S(N) :=
∑N

k=1 Zk of independent random variables (Zk)k∈N uniformly

distributed over {+1,−1} with probability one:

lim sup
N→∞

SN√
N log logN

=
1√
2
.

Recently, the Halász term was improved to (log logN)c+ε for all ε > 0. In [2] J. Basquin

obtained c = 2 and in [12] Y. Lau, G. Tenenbaum and J. Wu obtained c = 3/2.

Central Limit Theorems for short Intervals. Denote SN,N+m to be the quantity of square

free naturals between N and N + m. Assuming that N1/5 logN ≤ m = o(N/ logN), in

1In Wintner’s paper [19] µX did not received the name Random Möbius Function. In the subsequent

works [4, 10] µX was called Random Multiplicative function. In [11] Random Multiplicative function

refer to a completely multiplicative function with random signs at the primes. We found conveniently

to call µX by Random Möbius function to emphasize a Random Multiplicative function with support on

the square free naturals.
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[4] S. Chatterjee and K. Soundararajan proved that 1√
SN,N+m

∑N+m
k=N µX(k) converges in

distribution to the gaussian distribution.

More Central Limit Theorems. Denote d(k) the quantity of distinct primes that divide k,

ML
X(N) :=

N∑
k=1

d(k)≤L

µX(k),

and σN := E|ML
X(N)|2. Assuming that L = o(log logN), in [10] A. Harper proved

gaussian approximation for 1√
σN
ML

X(N).

Consider µX the completely multiplicative extension of µX , that is, for all k and l, µX(k ·
l) = µX(k)·µX(l) and µX(n) = µX(n) for n square free. Denote M

L

X(N) :=
∑N

k=1
d(k)≤L

µX(k)

and σN := E|ML

X(N)|2. Assuming that L = o(log log logN), also in this case, in [11] B.

Hough proved gaussian approximation for 1√
σN
M

L

X(N).

1.2 Main Results.

The aim of this work is to study the effect of the condition P(Xp = +1) < P(Xp = −1) < 1

on the random Mertens function. It turns out that one loses the pairwise independence

as in Wintner’s model. Yet, this condition brings to the Random Möbius Function µX
the parity effect of the quantity of distinct primes that divide a given number k, denoted

by d(k). This effect is also exhibited by the classical Möbius function. This because for

a square free natural k, µ(k) = (−1)d(k), and under the condition P(Xp = +1) < P(Xp =

−1) < 1, P(µX(k) = µ(k)) > P(µX(k) 6= µ(k)).

β Random Möbius function. Let β be a parameter in the interval [1/2, 1] and Xβ =

(Xp,β)p∈P be a sequence of independent identically distributed random variables with

distribution P(Xp,β = −1) = β = 1−P(Xp,β = +1). Denote by µβ and Mβ the respective

Random Möbius function and Random Mertens function associated with Xβ. Observe

that for β = 1 one recover the definition of the Classical Möbius and Mertens function.

Question 1. Is it true that for all β ∈ (1/2, 1) we have that P(Mβ(N) = O(N1/2+ε), ∀ε >
0) = 1?

Question 2. Assume that answer to the Question 1 is yes at least for all β ∈ [β∗, 1) for

some β∗ < 1. There exists a continuity argument in which it implies the result in the

case β = 1, that is, the Mertens Function M(N) = O(N1/2+ε), ∀ε > 0 and hence that the

Riemann Hypothesis is true?

Theorem 1.1. Answer to Question 1 is no. Precisely for β ∈ (1/2, 1) we have that

P(Mβ(N)� N1−ε, for some ε > 0) = 0.
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The proof of this result involve complex analytic and probabilistic results. In the special

case where β is either of the form 1− 1
2n

or 1
2

+ 1
2n

the proof is done by combining coupling

techniques such as uniform coupling with the concept of Interval Exchange Transforma-

tions. Moreover, a variant of the proof for this special case enables to construct the

continuity argument inquired in Question 2.

Distance between multiplicative functions. One way to measure the distance between

two multiplicative functions f, g : N → C with |f |, |g| ≤ 1 was introduced in [8] by A.

Granville and K. Soundararajan and is defined as follows: Denote PN to be the set of the

primes less than N and define the distance from f to g up to N by

D(f, g,N)2 :=
∑
p∈PN

1−Re(f(p)g(p))

p
.

Indeed, denoting by I the constant function equals to 1, one has D(f, g,N) = D(I, fg,N);

the triangle inequality

D(I, fg,N) ≤ D(I, f,N) + D(I, g,N)

and D(f, g,N) = 0 for all N if and only if f(p) = g(p) and |f(p)| = 1. Accordingly to a

Theorem due to Wirsing (see Theorem A.14) for a multiplicative function f : N→ [−1, 1]

with support on the square free naturals such that D(I, f,N)2 is a convergent series

then f possess a positive mean value, that is, limN→∞
1
N

∑N
k=1 f(k) > 0. Thus, the

multiplicative function f, g : N → [−1, 1] with support on the square free naturals are

said to be at a finite distance if D(f, g,N)2 = D(I, fg,N)2 is a convergent series and we

denote D(f, g) = limN→∞D(f, g,N). In this case, since the multiplicative function fg

has a positive mean value,

lim
N→∞

#{k ≤ N : f(k) = g(k)} −#{k ≤ N : f(k) 6= g(k)}
N

> 0.

Now let µ1/2 = µX1/2
be the β Random Möbius function with β = 1/2 and X1/2 =

(Xp,1/2)p∈P be the associated sequence of independent identically distributed random vari-

ables. Let X = (Xp)p∈P be another sequence of independent random variables such that

P(Xp = −1) =
1

2
+
δp
2

= 1− P(Xp = +1),

with δp > 0 and limp→∞ δp = 0. Moreover, assume that the sequences X1/2 and X

are coupled in the following way: For each prime p, P(Xp 6= Xp,1/2) = δp
2

. Thus, as a

consequence of Kolmogorov Two Series Theorem we can prove the following:

Proposition 1.1. If
∑

p∈P
δp
p
<∞ then with probability one µX pretend to be µ1/2, that

is, P(D(µX , µ1/2) <∞) = 1.
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This motivates the following question.

Question 3. Suppose that X = (Xp)p∈P are independent with distribution

P(Xp = −1) =
1

2
+
δp
2

= 1− P(Xp = +1),

where δp ∈ [0, 1]. Let ∆ be the event ∆ = [MX(N) = O(N1/2+ε), ∀ε > 0]. Then we obtain

that the probability P(∆) is function of the sequence (δp)p∈P . When δp = 0 for all prime

p, by Wintner’s result, P(∆) = 1. When δp = δ for all prime p for some small δ > 0, by

Theorem 1.1, P(∆) = 0. Thus how exactly happens the transition P(∆) = 1↔ P(∆) = 0

in terms of the velocity in which δp → 0?

Theorem 1.2. Let ∆ be as in Question 3 and δp ∈ [0, 1] be such that either δp = δ > 0

for all prime p or δp → 0. Then

P(∆) =


1, if δp = O(p−1/2);

?, if δp = 1
pα
, for any α ∈ (0, 1/2);

0, if δ−1
p = O(pε) for all ε > 0 ( ex. δp = (log p)−A for some A > 0 ).

Theorem 1.3. Let Xα = (Xα
p )p∈P be independent random variables with distribution

P(Xα
p = −1) =

1

2
+

1

2pα
= 1− P(Xα

p = +1).

Then the Riemann Hypothesis is equivalent to

lim
α→0

P(MXα(N)� N1/2+ε, ∀ε > 0) = 1.

Theorems 1.2 and 1.3 gives, conditionally on the Riemann Hypothesis, a full answer to

Question 3. In particular, the goal of Theorem 1.3 is to achieve a criteria for the Riemann

Hypothesis based on a sum of random variables having the same multiplicative structure

of the Möbius function and that pretend to be the Random Möbius function µ1/2 in the

sense of Proposition 1.1.

On the other hand, in a similar random neighborhood of the Möbius function:

Theorem 1.4. LetX = (Xp)p∈P be independent with distribution P(Xp = −1) = 1−δp =

P(Xp = +1). Assume that δp → 0 and δ−1
p � p−α for some α ∈ [0, 1/2). Then

P(MX(N) = O(N1−α−ε), for some ε > 0) = 0.

Is interesting to compare Theorems 1.2 and 1.4. In Theorem 1.3 µX is close to the

Wintner’s model while in Theorem 1.4 µX is close to the Möbius function. Also this
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both distributions share the same size of perturbation δp = p−α. Theorem 1.4 tell us that

MX(N) is not O(N1/2+ε) without the knowledge of the order of the Mertens function itself.

On the other hand, in Wintner’s model, MX(N) exhibits a kind of Iterated Logarithm

Law while Theorem 1.2 do not gives a completely description of the order of MX in the

neighborhood of this model. Then Theorem 1.3 tell us that in the gap of Theorem 1.2

one gets a criteria for the Riemann Hypothesis.

α Random Möbius Function. This terminology refers to the Random Möbius Function

associated to the sequence Xα as in Theorem 1.3. We can prove that for any α ∈ (0, 1/2),

with probability one MXα(N) = o(N1−α+ε) for all ε > 0. On the other hand, at this

moment we can only prove that, in the border case ε = 0, with probability one MXα =

o(N1−α) for α < 1/3. Indeed we have

Proposition 1.2. If α < 1/3, then

P
(
∃ lim
N→∞

N∑
k=1

µXα(k)

k1−α+it
∀t ∈ R

)
= 1.

If α ∈ (0, 1/2), then

lim
N→∞

E
∣∣∣∣ N∑
k=1

µXα(k)

k1−α

∣∣∣∣2 = 0.

The reason α < 1/3 is related to some probabilistic bounds and to the exponent 2/3

appearing in the log term that describes the best zero free region known up to date for

the Riemann zeta function, due to Vinogradov-Korobov: There exists a constant A > 0

such that for σ and t satisfying

1− σ 6
A

(log t)2/3(log log t)1/3

then ζ(σ + it) 6= 0. The L2 convergence is proved by using a recent Remark due to T.

Tao [16]: For any m ∈ N ∣∣∣∣ N∑
k=1

gcd(k,m)=1

µ(k)

k

∣∣∣∣ ≤ 1.

As consequence obtained from Proposition 1.2 and it’s proof we have

Proposition 1.3. There exists a real B such that for all α ∈ (0, 1/3), with probability

one

MXα(N)� N1−α exp

(
−B

(
logN

log logN

)1/3)
.
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1.3 Organization.

I try to write this thesis in both Probability Theory and Analytic Number Theory lan-

guages. For this, in Section 2.1 I introduce some common notations and concepts de-

veloped here that will be used in the proofs. Also, intended to a fast reading, at the

end I included an appendix containing some general results and some proofs that I found

conveniently to left for the end. In Section 2.2 I prove Theorem 1.1 in the special case

β = 1 − 1
2n

and β = 1
2

+ 1
2n

for n ≥ 2. The proof of Theorem 1.1 in it’s generality is

included in the proof of Theorem 1.2 in Section 2.3. The proof of Theorem 1.4 is found in

Section 2.4. In Section 2.5 I prove a result in which Theorem 1.3 follows as a consequence

in Section 2.6. In Section 3 I conclude with some interesting remarks and some open

questions.
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2 Main Results: The proofs.

2.1 The Probabilistic-Analytic setup.

Notations 2.1. P stands for the set of the prime numbers and p for a generic element

of P . d|n and d - n means that d divides and that d do not divides n, respectively.

S = {k ∈ N : p|k ⇒ p2 - k} stands for the set of the square free naturals. µ is the

canonical Möbius function:

µ(k) =

(−1)|{p∈P:p|k}|, if k ∈ S,
0, if k ∈ N \ S.

M : N→ R stands for the Mertens function: M(N) =
∑N

k=1 µ(k). Given a unbounded set

R ⊂ C and functions f, g : R→ C, the Vinogradov notation f � g and big Oh notation

f = O(g) are used to mean that there exists a constant C > 0 such that |f(z)| ≤ C|g(z)|.

Uniform Coupling. (Ω,F ,P) is the probability space: Ω = [0, 1]P , F is the Borel sigma

algebra of Ω and P is the Lebesgue product measure. A generic element ω ∈ Ω is denoted

by (ωp)p∈P . A sequence X = (Xp)p∈P of independent random variables such that P(Xp =

−1) = ap = 1 − P(Xp = +1) is defined as follows: Xp : Ω → {−1,+1} depends only in

the coordinate ωp for each prime p and

Xp(ωp) = −1[0,ap](ωp) + 1(ap,1](ωp).

If Y = (Yp)p∈P is another sequence of independent random variables defined in the same

way as X such that P(Yp = −1) ≤ P(Xp = −1), then

Xp ≤ Yp, ∀p ∈ P .

This property is called uniform coupling.

Notations 2.2. Given a square integrable random variable X : Ω→ R denote:

EX :=

∫
Ω

X(ω)P(dω),

VX :=EX2 − (EX)2.

A measurable set is called event. Also, given a property Q such that the set {ω ∈ Ω :

X(ω) has property Q} is measurable, this set is abbreviated by [X has property Q].

Definition 2.1. Given a set S, a random function f is a map f : S × Ω → C such that

for each s ∈ S, f(s) is a random variable.
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Notations 2.3. If X : Ω→ RN is a random sequence and f : S ×RN → C is such that

for each s, ω 7→ f(s,X(ω)) is a random variable, fX : S × Ω→ C stands for the random

function (s, ω) 7→ f(s,X(ω)) and fX(ω) stands for the function f(·, X(ω)) : S → C.

Multiplicative functions. A function f : N→ C such that f(n·m) = f(n)f(m) for all n and

m coprime, that is, with greater common divisor gcd(n,m) = 1, is called multiplicative

function. Observe that for each ω ∈ Ω, µX(ω) is a multiplicative function.

Notations 2.4. Given a ∈ R, Ha stands for the half plane {s ∈ C : Re(s) > Re(a)}.

Definition 2.2. LetX as in Definition 1.1. The random Riemann zeta function associated

to X is a random function ζX : H1 × Ω→ C given by:

ζX(z) :=
∏
p∈P

1

1 + Xp
pz

.

Proposition 2.1. For all ω ∈ Ω:

i. ζX and 1/ζX are analytic functions in H1 and in particular these random functions

never vanish on this half plane.

ii. For each z ∈ H1:

1

ζX(z)
=
∞∑
k=1

µX(k)

kz
=
∏
p∈P

(
1 +

Xp

pz

)
. (1)

iii. For each ω ∈ Ω there exists an analytic function RX(ω) : H1/2 → C and a branch of

the logarithm log∗ ζX(ω) : H1 → C such that:

1

ζX(ω)(z)
= exp(− log∗ ζX(ω)(z)) (2)

− log∗ ζX(ω)(z) =
∑
p∈P

Xp(ω)

pz
+RX(ω)(z). (3)

Proof. See Proposition A.1 with parameters C = 1 and α = 0.

Definition 2.3. Let R1 ⊂ R2 be two connected regions of C and h : R1 × Ω → C be a

random function such that for each ω ∈ Ω, h(·, ω) is analytic. The function h(·, ω) has

analytic extension to the region R2 if there exists an analytic function hω : R2 → C that

coincides with h(·, ω) in R1.

We always keep the symbol h instead h to represent an analytic extension. This because

when an analytic extension exists, it is unique.
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Proposition 2.2. Let (Xk)k∈N be a sequence of independent random variables such that

VX2
k <∞ for all k. Let z ∈ C and FN(z) :=

∑N
k=1

Xk
kz

. Define

σ1 = inf
{
σ ∈ R : EFN(σ) is a convergent sequence

}
,

σ2 = inf
{
σ ∈ R : VFN(σ) is a convergent sequence

}
.

Let σc = max{σ1, σ2}. Then with probability one there exists a random analytic function

F : Hσc × Ω→ C such that FN → F in Hσc .

Proof. The assumption that for all real σ > σc both series EFN(σ) and VFN(σ) converge,

by Kolmogorov Two-Series Theorem (see Theorem A.2), it implies that with probability

one FN(σ) converges for all real σ > σc. By Theorem A.5, convergence of a series of

the type
∑N

k=1
ck
kσ

implies that this series converges uniformly on compact subsets of Hσ.

Thus we conclude that with probability one, the pointwise limit limN→∞ FN(z) exists for

all z ∈ Hσc and defines a random function that it is analytic in this region.

Proposition 2.3. The random variable

ρX := inf{1/2 6 c 6 1 : 1/ζX has analytic extension to Hc}

is measurable in the tail sigma algebra generated by the sequence X and hence, by Kol-

mogorov 0-1 Law, there exists a deterministic number υ such that P(ρX = υ) = 1.

Furthermore

P(MX(N)� N c) ≤ P(ρX ≤ c). (4)

Proof. By Proposition 2.1, 1/ζX is analytic in H1 for all ω ∈ Ω and can be represented as

a Dirichlet series on this half plane. For each q = q1 + iq2 ∈ H1 with q1, q2 ∈ Q define:

Rq(ω) = lim sup
n→∞

∣∣∣∣ 1

n!

dn

dzn
1

ζX(ω)(q)

∣∣∣∣ 1n .
Since for all n ∈ N, dn

dzn
1

ζX(ω)(q)
= (−1)n

∑∞
k=1

µX(ω)(k)

kq
(log k)n is an absolute convergent

series for each q ∈ H1 it follows that Rq is measurable with respect to the sigma algebra

generated by the random variables Xp. Since 1/Rq(ω) is the radius of convergence of the

Taylor series of the function 1/ζX(ω) at the point q = q1 + iq2 (c.f. [5], chapter III ), this

function is analytic in the open ball with center q and radius 1/Rq(ω). Therefore, if for all

q ∈ H1 ∩ (Q+ iQ) we assume that 1/Rq(ω) > q1 − c, then 1/ζX(ω) has analytic extension

to the half plane Hc. Reciprocally, if 1/ζX(ω) has analytic extension to Hc, then for each

q = q1 + iq2 ∈ H1 the radius of convergence 1/Rq(ω) is greater or equal to the distance

from the point q to the boundary of Hc (c.f [5], page 72, Theorem 2.8). This implies

that [ρX 6 c] =
⋂
q∈H1∩(Q+iQ)[Rq 6 1/(q1 − c)], and hence ρX is measurable in the sigma
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algebra generated by the independent random variables (Xp)p∈P . To show that ρX is a tail

random variable, let D be a finite subset of primes and FD be the sigma algebra generated

by the random variables (Xp)p∈D. Define θD : H1/2 ×Ω→ C by θD(z) :=
∏

p∈D
(
1 + Xp

pz

)
.

Clearly θD and 1/θD are analytic for all ω ∈ Ω since for each p, 1 +Xpp
−z is analytic and

only vanish at the vertical strip Re(z) = 0. This implies that, since for each z ∈ H1

1

ζX(z)
= θD(z)

∏
p∈P\D

(
1 +

Xp

pz
)
,

1/ζX has analytic extension to Hc (c < 1) if and only if 1
θD·ζX

has analytic extension to Hc.

Since 1
θD·ζX

depends only on the random variables (Xp)p∈P\D we conclude that the event

[ρX ≤ c] is measurable in the sigma algebra generated by this random variables and hence

that this is indeed a tail event (see Definition A.1). This shows that ρX is a tail random

variable. To prove Inequality (4), observe that by the summation by parts formula (see

Lemma A.7) we have that [MX(N) � N c] ⊂ [SN(σ) =
∑N

k=1
µX(k)
kσ

converges ∀σ > c].

By the analytic properties of Dirichlet Series (see the proof of Proposition 2.2) we obtain

that [MX(N)� c] ⊂ [ρX ≤ c].

2.2 β Random Möbius Function.

Let β ∈ [1/2, 1]. By our choose of the probability space (see uniform coupling in Section

2.1) the random variables Xβ = (Xp,β)p∈P given by:

Xp,β(ω) = −1[0,β](ωp) + 1(β,1](ωp). (5)

are independent, have common distribution P(Xp,β = −1) = β = 1−P(Xp,β = 1) and are

uniformly coupled.

Notations 2.5. The random functions µβ, Mβ and ζβ are the random Möbius function,

Random Mertens Function and the random Riemann zeta function associated with the

sequence Xβ = (Xp,β)p∈P respectively. For γ ∈ [0, 1] denote θγ : H1 × Ω→ C by θγ = ζ
ζγ

.

The aim of this section is to prove the following result:

Proposition 2.4. Assume that β is either of the form 1− 1
2n

or 1
2

+ 1
2n

for n ≥ 2. Then

P(Mβ(N)� N1−ε, for some ε > 0) = 0.

The following Lemma is a essential part of the proof Proposition 2.4 and it’s construction

will be used in the proof of Theorem 1.4 and also to construct the continuity argument

inquired in Question 2 whose proof is left for the Remarks Section.
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Lemma 2.1. Let β ∈ [1/2, 1] and βn = 1− 1−β
2n

where n ∈ N. Then there exists a measure

preserve transformation Tn : Ω→ Ω such that the following functional equations holds in

H1 for all ω ∈ Ω:

θβ(z, ω) =
2n∏
k=1

θβn(z, T knω). (6)

Proof. Let En be a partition of the interval [β, 1] into to 2n subintervals {Ik : k = 1, ..., 2n}
of length 1−β

2n
where Ik = (ak−1, ak] with ak = β + k

2n
(1 − β). For z ∈ H1 and ω ∈ Ω

decompose:

θβ(z, ω) =
2n∏
k=1

ζak(z, ω)

ζak−1
(z, ω)

. (7)

Proposition 2.1 implies that each random function ζak/ζak−1
is analytic in H1 for all ω ∈ Ω.

Also these random functions have Euler product representation in H1. In fact, by using

the uniform coupling we obtain:

ζak(z, ω)

ζak−1
(z, ω)

= lim
N→∞

∏
p∈P∩[0,N ]

(
1 +

Xp,ak(ω)

pz

)−1

lim
N→∞

∏
p∈P∩[0,N ]

(
1 +

Xp,ak−1
(ω)

pz

)
=
∏
p∈P

pz + 1Ik(ωp)

pz − 1Ik(ωp)
.

This identity gives that the distribution of
ζak (z)

ζak−1
(z)

depends only on z and on the difference

ak − ak−1 that do not depend on k. Hence for each z ∈ H1 and k ∈ {1, ..., 2n}, ζak/ζak−1

equals in distribution to θβn(z). In fact we can couple these random functions. Let

g : [0, 1] → [0, 1] be a interval exchange transformation defined as follows: For each k,

g|Ik is a translation; g|[0,β] = Id; g(I1) = I2n and for k ≥ 2, g(Ik) = Ik−1. It follows that

g preserves Lebesgue measure and gk(Ik) = I2n . Thus 1Ik = 1I2n ◦ gk. Define Tn : Ω→ Ω

to be the measure preserve transformation (ωp) 7→ (g(ωp))p∈P . Then we can rewrite (7)

as:

θβ(z, ω) =
2n∏
k=1

θβn(z, T knω).

Proof. (Proposition 2.4)

Claim 2.1. For n ∈ N set βn = 1− 1
2n

. Then for n ≥ 2

P(Mβn � N1−ε for some ε > 0) = 0.
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Proof of Claim 2.1. Lemma 2.1 applied to the parameter β = 1/2 gives a measure

preserving transformation Tn : Ω→ Ω such that

θ1/2(z, ω) =
2n∏
k=1

θβn(z, T knω).

Recalling that θβn = ζ
ζβn

, simplifying equation above we obtain the following functional

equation in H1 for all ω ∈ Ω:

1

ζ(z)2n−1
=

ζ1/2(z, ω)∏2n

k=1 ζβn(z, T knω)
. (8)

Claim 2.2. For β > 1/2, P
(

limk→∞
1

ζβ(1+1/k)
= 0
)

= 1.

Proof of the Claim 2.2. For each k ∈ N decompose:∑
p∈P

Xp,β

p1+1/k
=
∑
p∈P

Xp,β − EXp,β

p1+1/k
+
∑
p∈P

EXp,β

p1+1/k
. (9)

Proposition 2.2 implies that with probability one the random function z 7→
∑

p∈P
Xp,β−EXp,β

pz

is analytic in H1/2. In particular we obtain

lim
k→∞

∣∣∣∣∑
p∈P

Xp,β − EXp,β

p1+1/k

∣∣∣∣ =

∣∣∣∣∑
p∈P

Xp,β − EXp,β

p

∣∣∣∣ <∞, P− a.s. (10)

On the other hand, since −EXp,β = 2β − 1 > 0 for each p and
∑

p
−EXp,β

p
= ∞, Fatou’s

Lemma implies that limk→∞
∑

p
−EXp,β
p1+1/k =∞. This divergence together with (10) and (9)

gives that with probability one limk→∞
∑

p∈P
Xp,β
p1+1/k = −∞. Since the term RXβ in (3)

is analytic in H1/2 for all ω ∈ Ω, this divergence combined with (3) finishes the proof of

Claim 2.2.

Claim 2.3. For β = 1/2, P
(
ζ1/2 and 1

ζ1/2
have analytic extension to H1/2

)
= 1.

Proof of the Claim 2.3. Proposition 2.2 implies that, with probability one, the ran-

dom function z 7→
∑

p∈P
Xp,1/2
pz

is analytic in H1/2. This combined with (3) gives that

with probability one log∗ ζ1/2 extends analytically to H1/2. Hence, the relation ζ±1
1/2 =

exp(± log∗ ζ1/2) also holds in H1/2, finishing the proof of Claim 2.3.

End of proof of the Claim 2.1. Let ρβ = ρXβ as in Proposition 2.3 and

E = [ρβn < 1] ∩ [1/ζβn(1) = 0] ∩ [ρ1/2 = 1/2] ∩ [ζ1/2(z) 6= 0,∀z ∈ H1/2].

Claims 2.2 and 2.3 imply that P(E) = P(ρβn < 1). By contradiction assume that P(ρβn <

1) = 1. This implies that the event E ′ :=
⋂2n

k=1 T
−k
n (E) also has probability one, since Tn
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preserves measure. In particular there exists ω′ ∈ E ′. For this ω′, the functions ζ1/2(·, ω′)
and 1/ζβ(·, T knω′) for k = 1, ..., 2n are analytic in H1−ε for some ε = ε(ω′) > 0 and satisfy:

ζ1/2(1, ω′) 6=0,

1

ζβn(1, T knω
′)

=0, k = 1, ..., 2n.

Thus we obtain that the function on the right side of the (8) has the point z = 1 as a

zero of multiplicity at least 2n. On the other hand the function on the left side of the

same equation has the point z = 1 as a zero of multiplicity 2n−1, since the Riemann ζ

function has a simple pole at the point z = 1. This leads to a contradiction which implies

that E ′ = ∅ and hence P(ρβn < 1) < 1. This together Proposition 2.3 imply that this

probability actually is 0. Inequality (4) completes the proof of Claim 2.1.

Claim 2.4. For γn = 1
2

+ 1
2n+1

P(Mγn � N1−ε for some ε > 0) = 0.

Proof of Claim 2.4. The proof of this statement is done by induction on n. The case

n = 1 corresponds to the case γ1 = 3/4 in which is included in the proof of Claim 2.1.

Assume the induction hypothesis:

P(ργk < 1) = 0 for 1 ≤ k ≤ n. By adapting the proof of formula (8) there exists a

transformation Tn : Ω→ Ω that preserves measure and such that the following functional

equation holds in H1 for all ω ∈ Ω:

1

ζγn(z, ω)
=

ζ1/2(z, Tnω)

ζγn+1(z, Tnω) · ζγn+1(z, ω)
. (11)

Indeed, let h : [0, 1]→ [0, 1] be a interval exchange transformation such that h((1/2, γn+1]) =

(γn+1, γn] and h((γn+1, γn]) = (1/2, γn+1] are translations and h|[0,1]\(1/2,γn] = Id. Let

T : Ω→ Ω be the measure preserve transformation given by (ωp)p∈P 7→ (h(ωp))p∈P . Since

ζγn+1(z, ω)

ζ1/2(z, ω)
=

ζγn(z, Tω)

ζγn+1(z, Tω)
,

we obtain
ζγn(z, ω)

ζ1/2(z, ω)
=

ζγn(z, Tω)

ζγn+1(z, Tω)
· ζγn(z, ω)

ζγn+1(z, ω)

which gives (11) by denoting Tn = T−1.

Define En+1 = [ργn+1 < 1]∩ [ρ1/2 = 1/2] and E ′n+1 = En+1∩T−1
n (En+1). Then by (11) and

the induction hypothesis

P(E ′n+1) ≤ P(ργn < 1) = 0,

and hence P(En+1) < 1. Thus, by Claim 2.3 we obtain P(ργn+1 < 1) = P(En+1) < 1.

Proposition 2.3 implies that this probability equals to 0, finishing the induction step.

Inequality (4) completes the proof of Claim 2.4, finishing the proof of Proposition 2.4.
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2.3 Neighborhood of β = 1/2.

Let ∆ = [MX(N) � N1/2+ε, ∀ε > 0]. Then the probability P(∆) depends in the distri-

bution of X. The aim of this section is to prove the following result:

Theorem 1.2. Let X = (Xp)p∈P be independent with distribution

P(Xp = −1) =
1

2
+
δp
2

= 1− P(Xp = +1),

where δp ∈ [0, 1] and either δp = δ > 0 for all prime p or δp → 0. Then

P(∆) =

1, if δp = O(p−1/2);

0, if δ−1
p = O(pε) for all ε > 0 ( ex. δp = (log p)−A for some A > 0 ).

Proof.

Claim 2.5. Assume that (δp)p∈P are non negative and δp � p−α for some α > 0. Then:

P(MX(N)� Nmax{1−α,1/2}+ε, ∀ε > 0) = 1.

In particular, if α ≥ 1/2, then P(∆) = 1.

Proof of the Claim 2.5 Define:

Xp(ω) := −1
[0, 1

2
+
δp
2

]
(ωp) + 1

( 1
2

+
δp
2
,1]

(ωp),

Zp(ω) := −1
[0, 1

2
− δp

2
)
(ωp) + 1

( 1
2

+
δp
2
,1]

(ωp),

Wp(ω) := −1
[ 1
2
− δp

2
, 1
2

+
δp
2

]
(ωp).

The identities Xp = Wp + Zp and Wp · Zp = 0 imply that µX = µW ∗ µZ , where ∗ stands

for the Dirichlet convolution (see Definition A.3). Thus, to prove that with probability

one both series
∑∞

k=1
|µW (k)|
kx

and
∑∞

k=1
µZ(k)
kx

converges for each for x > max{1 − α, 1/2}
implies that, by Theorem A.8, the series

∑∞
k=1

µX(k)
kx

converges for the same values of

x which combined with Kronecker’s Lemma (see Theorem A.6) gives that P(MX(N) �
Nmax{1−α,1/2}+ε, ∀ε > 0) = 1. Thus one needs only to show the convergence of the series∑∞

k=1
|µW (k)|
kx

and
∑∞

k=1
µZ(k)
kx

for x > max{1− α, 1/2}.

For the convergence of
∑∞

k=1
|µW (k)|
kx

, the assumption δp � 1/pα implies that for each

x > max{1− α, 1/2}: ∑
p∈P

E
|Wp|
px
�
∑
p∈P

1

px+α
<∞,

∑
p∈P

V
|Wp|
px
�
∑
p∈P

1

p2x
<∞.
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Thus Kolmogorov 2-series Theorem imply that with probability one the random series∑∞
p∈P

Wp

pz
converges absolutely for these values of x. This combined with Theorem A.15

gives the desired absolute convergence of
∑∞

k=1
µW (k)
kx

. For the convergence of
∑∞

k=1
µZ(k)
kx

,

observe that Zp = Xp,1/2 · (1 +Wp) where

Xp,1/2 = −1[0, 1
2

](ωp) + 1( 1
2
,1](ωp)

and that Xp,1/2 is independent from 1 +Wp. Let S be the set of the square free naturals

and denote the random set S ′ = {k ∈ S : p|k ⇒ Wp = 0}. Being µ1/2 the random

Möbius function as in Notations 2.5, we have

MZ(N) =
∑

k∈S′∩[0,N ]

µ1/2(k).

Since S ′ ⊂ S, the random variables (µ1/2(k))k∈S′ are, conditioned on the sigma algebra

σ(Wp : p ∈ P), pairwise independent and identically distributed since this sigma algebra

is independent from σ(Xp,1/2 : p ∈ P). Thus, by the Strong Law of Large numbers

for pairwise independent random variables (Theorem A.3) we have that P(ΛZ) = 1 and

hence, by Lemma A.7, with probability one the series
∑∞

k=1
µZ(k)
kx

converges for all x > 1/2,

finishing the proof of Claim 2.5.

Claim 2.6. Let the constants δp = −EXp be such that δp = δ < 1 for all prime p or

δp → 0 and δ−1
p � p−ε for all ε > 0. Then either:

a.
∑
p∈P

EXp

p
= −∞ and

∑
p∈P

1 + EXp

p
=∞;

b.−
∑
p∈P

EXp

p1+ε
<∞ iff ε ≥ 0.

Proof of Claim 2.6. For 0 < δp = δ < 1 for all p or δp → 0+ the series
∑

p∈P
1−δp
p

= ∞
and

∑
p∈P

δp
p
∈ R∪{∞}. If the the last sum above is∞ then the constants (δp)p∈P satisfy

a. If the last sum above is a real number, then condition δ−1
p � pε, ∀ε > 0 implies that∑

p∈P
δp
p1+ε

converges if and only ε ≥ 0 and hence the constants (δp)p∈P satisfy b, finishing

the proof of the Claim 2.6.

The proof of the second part of Theorem 1.2 will be done accordingly the constants δp
satisfy a. or b. of Claim 2.6.

Case a. By Proposition 2.1 there exists a random function RX analytic in H1/2 for all

ω ∈ Ω such that

− log∗ ζX(z) =
∑
p∈P

Xp

pz
+RX(z), z ∈ H1, (12)
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Claim 2.7. 0 ≤ −EXp ≤ 1 and
∑

p∈P
EXp
p

= −∞ imply that

P( lim
k→∞

1/ζX(1 + 1/k) = 0) = 1.

Proof of Claim 2.7. The proof is done by an adaption of the proof of Claim 2.2.

Claim 2.8. 0 ≤ −EXp ≤ 1 and
∑

p∈P
1+EXp

p
=∞ imply that

P
(

lim
k→∞

ζ(1 + 1/k)

ζX(1 + 1/k)
=∞

)
= 1.

Proof of the Claim 2.8. (12) applied for the sequence ξ = (−1,−1, ...) gives for z ∈ H1

log∗ ζ(z) =
∑
p∈P

1

pz
+R(z), (13)

where R(z) :=
∑

p∈P
∑∞

m=2
1

mpmz
is analytic in H1/2. Proposition 2.2 implies that with

probability one the random function z 7→
∑

p∈P
Xp−EXp

pz
is analytic in H1/2. Thus the

random function H : H1/2 × Ω → C given by H(z) =
∑

p∈P
Xp−EXp

pz
+ R(z) + RX(z) is,

with probability one, analytic in H1/2. In particular

P
(

lim
k→∞

H(1 + 1/k) ∈ R
)

= 1. (14)

On the other hand, Fatou’s Lemma implies that

lim
k→∞

∑
p∈P

1 + EXp

p1+1/k
=∞. (15)

By adding (12) at the point z = 1 + k−1 with (13) at the same point we obtain:

log
ζ(1 + 1/k)

ζX(1 + 1/k)
=
∑
p∈P

1 + EXp

p1+1/k
+H(1 + 1/k).

This combined with equations (14) and (15) complete the proof of Claim 2.8.

End of the proof of a. Let ρX as in Proposition 2.3 and by contradiction assume P(ρX <

1) = 1. Then Claim 2.7 and Theorem A.16 imply that there exists a random variable

m ≥ 1 such that with probability one 1/ζX(z)
(z−1)m

is analytic and does not vanish on a open

(random) ball B = B(ω) centered at z = 1. This implies that, since the Riemann ζ

function has a simple pole at z = 1, P
(

limk→∞
ζ(1+1/k)
ζX(1+1/k)

= ∞
)

= 0, which contradicts

Claim 2.8. Thus P(ρX < 1) < 1 and hence, by Proposition 2.3, this probability equals to

0. Inequality (4) completes the proof.

Case b. Since δp ∈ [0, 1], the function A : H1 → C defined by A(z) := −
∑

p∈P
δp
pz

is

analytic, since this series converges absolutely in this half plane. The random function
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H2(z) =:
∑

p∈P
Xp−EXp

pz
+ RX(z) has the same structure of the function H(z) − R(z),

where H and R are as in the proof of the Case a above and hence we obtain:

P(H2 is analytic in H1/2) = 1. (16)

In the half plane H1 decompose (12) in the form

− log∗ ζX = A+H2. (17)

Assumption δp ≥ 0 for all p and
∑

p∈P
δp
p
<∞ combined with the monotone convergence

Theorem implies that limk→∞A(1+1/k) ∈ R in which combined with (16) and (17) gives

that P(limk→∞ 1/ζX(1 + k−1) 6= 0) = 1. This implies that

P([ρX < 1] ∩ [H2 is analytic in H1/2] ∩ [1/ζX(1) 6= 0]) = P(ρX < 1).

By contradiction assume that P(ρX < 1) = 1. In particular exists ω′ ∈ Ω and ε = ε(ω′) > 0

such that:

H2(·, ω′) : H1/2 → C is analytic; (18)

1/ζX(ω′) : H1−ε → C is analytic; (19)

1/ζX(ω′)(1) 6= 0.. (20)

Thus, (19) and (20) imply the existence of an open ball Bω′ ⊂ H1−ε centered in z = 1 such

that 1/ζX(ω′)(z) 6= 0 for all z ∈ Bω′ . Then, by (17), 1/ζX(ω′)(z) 6= 0 for every z ∈ H1∪Bω′ .

Since H1 ∪ Bω′ is a simply connected region, by Theorem A.17, there exists a branch of

the logarithm log∗ ζX(ω′) : H1 ∪ Bω′ → C which is given by (17) for z ∈ H1. Thus the

function −A extends analytically to the region H1 ∪Bω′ given by the formula

−A(z) = log∗ ζX(ω′)(z) +H2(z, ω′).

Since the function −A is a Dirichlet series consisted of positive terms, by Landau’s Theo-

rem (see definition A.4 and Theorem A.10), assumption
∑

p∈P
δp
p1+ε

<∞, iff ε ≥ 0 implies

that the function A has singularity at z = 1 and hence it can not be analytic in H1 ∪Bω′ .

This leads to a contradiction which implies P(ρX < 1) < 1 and hence by Proposition 2.3

this probability is zero. Inequality (4) completes the proof, finishing the proof of Theorem

1.2.

2.4 Neighborhood of β = 1

Theorem 1.4. Let X = (Xp)p∈P be independent with distribution P(Xp = −1) =

1− δp = P(Xp = +1). Assume that δp → 0 and δ−1
p � p−α for some α ∈ [0, 1/2). Then

P(MX(N) = O(N1−α−ε), for some ε > 0) = 0.
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Proof. Without loss of generality, assume that δp → 0 and δp = bpp
−α for some α ∈ [0, 1/2)

with b−1
p � pε for all ε > 0. Let X, Y and Z be sequences of independent random variables

uniformly coupled, that is,

Xp(ω) =− 1[0,1−δp](ωp) + 1(1−δp,1](ωp),

Yp(ω) =− 1[0, 1
2
−δp](ωp) + 1( 1

2
−δp,1](ωp),

Xp, 1
2
(ω) =− 1[0, 1

2
](ωp) + 1( 1

2
,1](ωp).

Claim 2.9. Let Y as above and ρY as in Proposition 2.3. The condition δp → 0, α ∈
[0, 1/2) and δp = bpp

−α with b−1
p � pε for all ε > 0 implies that P(ρY < 1− α) = 0.

Proof of Claim 2.9. Introduce new random variables for each prime p:

Wp(ωp) = 1(1/2−δp,1/2+δp)(ωp),

Zp(ωp) = 1[1/2+δp,1](ωp)− 1[0,1/2−δp](ωp).

The identities Yp = Wp + Zp and Wp · Zp = 0 imply that µY = µW ∗ µZ . Thus, by

Proposition 2.1 and Theorem A.8, for all ω ∈ Ω and z ∈ H1:

1

ζY (ω)(z)
=

1

ζW (ω)(z)

1

ζZ(ω)(z)
. (21)

Observe that the random variables Zp are independent, Zp ∈ {−1, 0, 1} and EZp = 0.

Hence, similarly to the proof of Claim 2.3 we obtain

P(1/ζZ and ζZ have analytic extension to H1/2) = 1. (22)

On the other hand, since each Wp ≥ 0, Theorem A.15 assures that for each ω ∈ Ω,

1/ζW (ω)(z) =
∑∞

k=1

µW (ω)(k)

kz
and

∑
p∈P

Wp(ω)

pz
share the same abscissa of convergence σc(ω).

Theorem A.10 implies that the random function 1/ζW has a singularity at the random

variable σc. The independence of the random variables {Wp}p∈P implies that σc is a

tail random variable and hence is a constant with probability one. In fact, being σ′c the

abscissa of convergence of the Dirichlet series
∑

p∈P E
Wp

px
= 2

∑
p∈P

δp
px

, by Kolmogorov 2-

Series Theorem, with probability one σc equals to max{σ′c, 1
2
}. The condition α ∈ [0, 1/2),

δp = bpp
−α with b−1

p � pε for all ε > 0 imply that σ′c = 1−α and hence, P(σc = 1−α) = 1.

This combined with (21) and (22) imply that:

P(1/ζY has a singularity at z = 1− α) = P(1/ζW has a singularity at z = 1− α) = 1,

and hence P(ρY < 1− α) = 0, finishing the proof of the Claim 2.9.

End of the proof of Theorem 1.4. Let Ip = (1
2
−ap, 1

2
] and Jp = (1−ap, 1]. By Proposition

2.1, the random functions θX := ζ
ζX

and χY :=
ζ1/2
ζY

are analyticH1 and have Euler product
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representation in this half plane. Moreover, using that these sequences are uniformly

coupled we obtain that

θX(z, ω) =
∏
p∈P

pz + 1Jp(ωp)

pz − 1Jp(ωp)
,

χY (z, ω) =
∏
p∈P

pz + 1Ip(ωp)

pz − 1Ip(ωp)
.

Let gp : [0, 1]→ [0, 1] be the interval exchange transformation such that g|[0,1]\Ip∪Jp = Id

and gp(Ip) = Jp and gp(Jp) = Ip are translations. Thus gp preserves Lebesgue measure for

each prime p and 1Ip = 1Jp◦gp. Thus the map T : Ω→ Ω such that (ωp)p∈P 7→ (gp(ωp))p∈P
preserves P and together with the product representation for θX and χY yield the following

functional equation in H1

χY (z, ω) = θX(z, Tω). (23)

Since δp → 0,
∑

p∈P
EXp
p

= −
∑

p∈P
1−2δp
p

= −∞. Hence, by adapting the proof of the

Claim 2.2 we obtain P(limk→∞ 1/ζX(1 + 1/k) = 0) = 1. Thus on the event [ρX < 1 −
α]∩ [1/ζX(1) = 0], the random function θX has analytic extension to the same half plane

where 1/ζX has it, because by Theorem A.16, the zero of the function 1/ζX at z = 1

cancel with the simple pole at z = 1 of the Riemann ζ function. This combined with the

fact that T preserves measure, (23), Claim 2.3 and Claim 2.9 imply, respectively:

P(ρX < 1− α) = P([ρX < 1− α] ∩ [1/ζX(1) = 0])

≤ P
(
∃ ε > 0 : θX is analytic in H1−α−ε

)
= P

(
∃ε > 0 : χY is analytic in H1−α−ε

)
= P

(
∃ε > 0 : χY · ζ−1

1/2 is analytic in H1−α−ε
)

= P(ρY < 1− α) = 0.

Inequality (4) completes the proof of Theorem 1.4.

2.5 The main technical Theorem

Exceptionally in this section each random variable Xp on Definition 1.1 may assume

arbitrary values on R. The aim is to prove the following result:

Theorem 2.1. Let (Xp)p∈P be independent random variables such that:

i. For some C ≥ 1 and some α ∈ [0, 1
2
):

|Xp| ≤

1 , if C >
√
p;

Cpα , if C ≤ √p.
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ii. EXp = −1 except on a finite subset of primes and E|Xp| ≤ 1 for all p. Then

P(MX(N)� N1/2+α+ε,∀ε > 0) = 1

if and only if the zeros of the Riemann Zeta function have real part less or equal than

1/2 + α.

In the next section the Theorem 1.3 will be obtained as a consequence from Theorem 2.1

and in Section 3 some interesting applications.

Being the random variables (Xp)p∈P independent, the abscissa of absolute convergence

(see definition A.4) of the random series
∑

p∈P
Xp
px

is a tail random variable and hence

with probability one it is equal to a extended real number ρ. Denote

Ω′ =

[ ∑
p∈P

Xp

px
converges absolutely in Hρ

]

and define the random Riemann zeta function ζX : Hρ × Ω→ C as:

ζX(ω)(z) =


∏

p∈P
1

1+
Xp(ω)

pz

, if ω ∈ Ω′

0, otherwise.
(24)

Lemma 2.2. Let (Xp)p∈P be independent random variables satisfying conditions i. and ii.

of Theorem 2.1. Then with probability one the random function θX := ζ
ζX

: H1/2+α×Ω→
C is analytic and

θX(z) = exp

(∑
p∈P

Xp − EXp

pz

)
exp(AX(z)), (25)

where AX : H1/2+α × Ω→ C is analytic for all ω ∈ Ω and satisfies:

AX(z)�δ 1, in H 1
2

+α+δ.

Proof. Define R : H1/2 → C as R(z) :=
∑

p∈P
∑∞

m=2
1

mpmz
and RX : H1/2+α × Ω → C as

RX(z) :=
∑

p∈P
∑∞

m=2(−1)m+1 Xm
p

mpmz
. By Proposition A.1, R and RX are analytic for all

ω ∈ Ω and satisfy:

R +RX �δ 1, in H1/2+α. (26)

Since the set P ′ = {p : EXp 6= −1} is finite and E|Xp| ≤ 1, the function z 7→
∑

p∈P ′
EXp+1

pz

is analytic in H1/2+α and satisfies in the closure H1/2+α:∣∣∣∣∑
p∈P ′

EXp + 1

pz

∣∣∣∣� 1. (27)
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Defining AX : H1/2+α × Ω→ C by

AX(z) = R(z) +RX(z) +
∑
p∈P ′

EXp + 1

pz
,

(26) and (27) imply that AX �δ 1, in H1/2+α+δ. By Proposition A.1, for z ∈ H1+α

log∗ ζ(z) =
∑

p∈P
1
pz

+R(z), − log∗ ζX(z) =
∑

p∈P
Xp
pz

+RX(z). Thus

log∗
ζ(z)

ζX(z)
=
∑
p∈P

Xp − EXp

pz
+ AX(z).

Since for each x > 1/2 + α,
∑

p∈P V
Xp−EXp

px
�
∑

p∈P
1

p2(x−α)
<∞, Proposition 2.2 implies

that with probability one the random function z 7→
∑

p∈P
Xp−EXp

pz
is analytic in H1/2+α.

Thus, with probability one log∗ ζ(z)
ζX(z)

is analytic in H1/2+α and since θX = exp
(

log∗ ζ
ζX

)
in H1+α, this relation extends analytically to the half plane H1/2+α.

Definition 2.4. Given c ≥ 0 and a random function f : Hc ×Ω→ C, Lf : (c,∞)×Ω→
R ∪ {∞} stands for the random Lindellöff function, that is

Lf (σ, ω) := inf{A ≥ 0 : f(σ + it, ω)� tA}.

Lemma 2.3. Let X = (Xp)p∈P satisfy condition i of Lemma 2.2 and ρX be as in Propo-

sition 2.3. Then ρX is a tail random variable. Moreover, for c ∈ (1/2 + α, 1 + α),

UX(c, A) := [ρX ≤ c] ∩ [L1/ζX (σ)} ≤ A, ∀σ > c]

also is a tail event and

P(UX(c, 0)) 6 P(MX(N)� N c+δ, ∀δ > 0) ≤ P(ρX 6 c). (28)

Proof. By Proposition A.1, for all ω ∈ Ω the Dirichlet series 1/ζX(ω) is analytic in H1+α.

Thus, by the same arguments of the proof of Proposition 2.3, the set [ρX 6 c] is measurable

in the sigma algebra generated by the independent random variables (Xp)p∈P . Let D be

a finite subset of prime numbers, FD be the sigma algebra generated by the random

variables {Xp : p ∈ D} and Y = (Yp)p∈P be such that

Yp =

Xp, if p ∈ D;

0, if p ∈ P \D.

Observe that 1
ζX

= 1
ζY

∏
p∈P\D

(
1 + Xp

pz

)
, and that the sequence Y satisfies the hypothesis

of Proposition A.1. Hence, by statement iii. of this proposition:

− log∗ ζY (ω)(z) =
∑
p∈D

Xp(ω)

pz
+RY (ω)(z),
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where RY is analytic in H1/2+α and satisfies |RY | �δ 1 in H1/2+α+δ, for all ω ∈ Ω. Hence,

since |D| < ∞, − log∗ ζY also is analytic in this half plane for all ω ∈ Ω and satisfies:

log∗ ζY �δ 1, in H1/2+α+δ. Subsequently:

ζY ,
1

ζY
�δ 1, in H1/2+α+δ. (29)

Thus 1/ζX extends analytically to Hc if and only if ζY /ζX extends analytically to the

same half plane. Since ζY /ζX depends only the random variables (Xp)p∈P\D, we conclude

that [ρX ≤ c] is independent from FD and hence ρX is a tail random variable.

By the continuity of the Lindelöff function (Theorem A.12):

UX(c, A) = [ρX ≤ c]
⋂

σ∈Q∩(c,∞)

[L1/ζX (σ) ≤ A].

Thus UX(c, A) is measurable in the sigma algebra generated by the independent random

variables (Xp)p∈P . On the other hand, on the event [ρX ≤ c], for σ > c (29) implies:

L 1
ζX

(σ) = L ζY
ζX

(σ). Since ζY
ζX

is independent from FD, L ζY
ζX

also is independent from FD.

Thus UX(c, A) is a tail event.

The second inequality in (28) follows from Theorem A.7. For the first inequality, if

ω ∈ UX(c, 0), by Theorem A.13 the series
∑∞

k=1

µX(ω)(k)

kz
converges in Hc. In particular

this series converges at every point c+ δ for any δ > 0. This combined with Kronecker’s

Lemma (Theorem A.6) gives that limN→∞
MX(ω)(N)

Nc+δ = 0. This completes the proof.

Lemma 2.4. Let {Xk}k∈N be independent random variables with 0 expectation. Assume

that for some α > 0, |Xn| � nα. Let σ > 1/2 + α. Then there exists a finite random

variable Cσ such that for each x = 1/2 + α + κ ≥ σ with κ ≤ 1
2
:

P
(∣∣∣∣ ∞∑

k=1

Xk

kx+it

∣∣∣∣ ≤ Cσ(log(|t|+ e))
1
2
−κ( log log(|t|+ ee) )

1
2

+κ

)
= 1.

In [3], F. Carlson proved that if (Xk)k∈N are independent, uniformly bounded and sym-

metric then for all σ > 1/2

P
( ∞∑

k=1

Xk

kσ+it
= o(

√
log t

)
= 1.

The Lemma 2.4 improve Carlson’s result in two directions: Firstly the symmetry condi-

tion is weakened by EXk = 0 for all k and secondly the exponent 1/2 is decreased. Indeed,

this improvement is obtained by combining Carlson’s ideas with the Central Limit The-

orem encoded in the Marcinkiewicz-Zygmund inequality and the Hadamard Tree Circles

Theorem (see Theorems A.4 and A.18, respectively).
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Proof. Let F (z) :=
∑∞

k=1
Xk
kz

and denote Fω = F (·, ω). For each x > 1
2

+α,
∑∞

k=1 V
Xk
kx
�∑∞

k=1
1

k2(x−α)
<∞ and hence by Proposition 2.2 the event

Ω∗ := [F (z) converges and is analytic in H1/2+α]

has probability one. Let ε ∈ (0, 1/3], σ = 1/2 +α+ ε and σ′ = 1/2 +α+ ε/2. Let R1 and

R2 be the rectangles:

R1 =R1(T, ε) = [σ, 4/3 + α]× [−eT−2, eT−2],

R2 =R2(T, ε, ω) = [σ′, σ′ + 1]× [−τ ′(ω), τ(ω)]

whith τ, τ ′ ∈ [eT−1, eT ] to be chosen later. Observe that R1 ⊂ R2 and the distance from

R1 to R2 equals to ε/2. For T ∈ N and ω ∈ Ω∗, F T
ω is analytic on H1/2+α and hence, by

the Cauchy integral formula, for each z ∈ R1:

|Fω(z)|T = |Fω(z)T | = 1

2π

∣∣∣∣ ∫
∂R2

Fω(s)T

s− z
ds

∣∣∣∣ ≤ 1

πε

∫
∂R2

|Fω(s)|Tds,

and hence:

‖Fω‖L∞(R1) ≤
1

ε1/T
‖Fω‖LT (∂R2). (30)

Claim 2.10. Let ε−1 = 3 log(T + e). There exists H1 such that

P(Ω∗ ∩ [ ‖F‖L∞(R1) > H1

√
ε−1T ]) ≤ 2e−T . (31)

Proof of the Claim 2.10. The complex Marcinkiewicz-Zygmund inequality (Lemma A.1)

combined with Fatou’s Lemma gives for each T ∈ N and y ∈ R:

E|F (σ′ + iy)|T ≤ (2B)TT T/2E
[( ∞∑

k=1

|Xk|2

k2σ′

)T/2]
,

and since by hypothesis Xn � nα, there exists Λ > 0 such that:

E|F (σ′ + iy)|T ≤ (ε−1ΛT )T/2,

|F (σ′ + 1 + iy)|T ≤ (Λ)T/2. (32)

Hence, by Fubini’s Theorem:

E
∫ eT

−eT
|F (σ′ + iy)|Tdy =

∫ eT

−eT
E|F (σ′ + iy)|Tdy ≤ (4eε−1ΛT )T/2

E
∫ σ′+1

σ′

∫ eT

−eT
|F (x+ iy)|Tdxdy =

∫ σ′+1

σ′

(
E
∫ eT

−eT
|F (x+ iy)|Tdy

)
dx ≤ (4eε−1ΛT )T/2.
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Thus, by Markov’s inequality we obtain for H = 4e3Λ:

P(ATε ) := P
(

Ω∗ ∩
[ ∫ eT

−eT
|F (σ′ + iy)|Tdy ≥ (ε−1HT )T/2

])
≤ e−T ,

P(BT
ε ) := P

(
Ω∗ ∩

[ ∫ σ′+1

σ′

∫ eT

−eT
|F (x+ iy)|Tdxdy ≥ (ε−1HT )T/2

])
≤ e−T ,

Define ET
ε = Ω∗ ∩ (ATε ∪BT

ε )c. Then P(ET
ε ) ≥ 1− 2e−T and for each ω ∈ ET

ε :∫ eT

−eT
|Fω(σ′ + iy)|Tdy < (ε−1HT )T/2, (33)

∫ σ′+1

σ′

∫ eT

−eT
|Fω(x+ iy)|Tdxdy < (ε−1HT )T/2. (34)

Decompose: ∂R2 = I1∪I2∪I3∪I4, where I1 and I3 are the vertical lines at Re(s) = σ′+1

and Re(s) = σ′ respectively and I2 and I4 are the horizontal lines at Im(s) = −τ ′ and

Im(s) = τ respectively. Thus (32), (33) and (34) implies that for each ω ∈ ET
ε we can

choose τ ′, τ ∈ [eT−1, eT ] such that:∫
Ij

|Fω(s)|Tds ≤ (ε−1HT )T/2, j = 1, 2, 3, 4. (35)

In fact, for any choice of τ, τ ′ ≤ eT , (32) and (33) gives the bound for I1 and I3. To prove

the bound for I2 and I4, assume by contradiction that do not exists τ and τ ′ as above.

Then for all y ∈ [eT−1, eT ], (ε−1HT )T/2 <
∫ σ′+1

σ′
|Fω(x + iy)|Tdx, which combined with

Fubini’s Theorem and (34) implies that:

eT−1(e− 1)(ε−1HT )T/2 ≤
∫ eT

eT−1

∫ σ′+1

σ′
|Fω(x+ iy)|Tdxdy

≤
∫ σ′+1

σ′

∫ eT

−eT
|Fω(x+ iy)|Tdxdy ≤ (ε−1HT )T/2,

and hence eT−1(e− 1) ≤ 1, which is an absurd for T ≥ 1.

Let H1 = 4θ
√
H where θ = supT≥1 log(T + e)1/T . Thus (35) and (30) implies that for

ω ∈ ET
ε : ‖Fω‖L∞(R1) ≤ θ‖Fω‖LT (∂R2) ≤ H1

√
ε−1T , finishing the proof of the Claim 2.10.

Claim 2.11. Let t ∈ R, ε−1 = 3 log log(|t|+ ee), σ = 1/2 + α+ ε and H1 as in the Claim

2.10. Denote R = R(t) := [σ, 4
3

+ α] × [−t, t]. Then there exists Ω′ with P(Ω′) = 1 such

that for each ω ∈ Ω′ there exists a real number t0 = t0(ω) such that for t ≥ t0:

‖Fω‖L∞(R) ≤ H1

√
ε−1 log(|t|+ e).
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Proof of the Claim 2.11. Claim 2.10 implies that

∞∑
T=1

P(Ω∗ ∩ [ ‖F‖L∞(R1) > H2

√
T log(T + e) ]) ≤

∞∑
T=1

2e−T∞

and hence by the Borel-Cantelli Lemma:

P(Ω∗ ∩ [ ‖F‖L∞(R1) > H1

√
T log(T + e) ] for infinitely many T ′s. ) = 0.

Thus there exists a event Ω′ of probability one such that for each ω ∈ Ω′ exists T0 = T0(ω)

such that for all integer T ≥ T0

‖Fω‖L∞(R1) ≤ H1

√
T log(T + e). (36)

Let t0 = eT0 . For real t with |t| ≥ t0 let T − 5 = blog(|t| + e) + 1c and R = R(t)

as in the statement of the Claim 2.11. Thus T � log(|t| + e), log(T + ee) � ε−1 and

R(t) ⊂ R1(T, ε). Hence by (36), ‖F‖L∞(R) ≤ ‖F‖L∞(R1) ≤ H1

√
ε−1 log(|t|+ e), finishing

the proof of the Claim 2.11.

End of the Proof of Lemma 2.4. Let ω ∈ Ω′, t0(ω) and ε = ε(t) as in the Claim 2.11. Let

σ = 1
2

+α+ ε and x = 1
2

+α+κ with κ ∈ (0, 1/2]. Let t1 be such that ε(t1) < κ and hence

σ < x for |t| ≥ t1. Define t2 = t2(x, ω) = max{t0(ω), t1}. Since Fω(σ − it) = Fω(σ + it)∗,

it is enough establish Lemma 2.4 for t > t2(ω). Let λ = o(t) be a large number to be

chosen later and C1, C2, C3 be concentric circles with center λ + it and passing trough

the points: σ + 1
2

+ it, x + it and σ + it respectively (see the figure 1 below). Thus, the

respective radius of C1, C2, C3 are:

r1 =λ− σ − 1

2
,

r2 =λ− x,
r3 =λ− σ.

Denote Mj = Mj(ω) = maxz∈Cj |Fω(z)|, j = 1, 2, 3. Thus by the Hadamard Three-Circles

Theorem (Theorem A.18):

M2 ≤M1−a
1 Ma

3 , (37)

where a =
log(

r2
r1

)

log(
r3
r1

)
. Assumption Xn � nα implies that

M1 ≤
∞∑
k=1

|Xk|
kσ+ 1

2

�
∞∑
k=1

1

k1+ε
� 1

ε
. (38)

Denote τ = λ−1. Hence

a = a(τ) =

log

(
1−τx

1−τ(σ+ 1
2

)

)
log

(
1−τσ

1−τ(σ+ 1
2

)

) =

log

(
1 + τ

1
2
−κ+ε

1−τ(σ+ 1
2

)

)
log

(
1 + τ

1
2

1−τ(σ+ 1
2

)

) .
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Using that for ϕ small, log(1 + ϕ) = ϕ+O(ϕ2), we obtain:

a(τ) =

(
τ

1
2
− κ+ ε

1− τ(σ + 1
2
)

+O(τ 2)

)
·
(

2

τ
·

1− τ(σ + 1
2
)

1 +O(τ 2)

)
=1− 2κ+ 2ε+O(λ−1). (39)

Let R = R(t + λ) as in the Claim 2.11. Thus C3 ∩Hc
4/3+α ⊂ R (see the figure 1 below).

Thus, since F converges absolutely in H1+α:

M3 ≤ max{‖F‖L∞(R) , ‖F‖L∞(H4/3+α) } � ‖F‖L∞(R).

Thus, by combining Claim 2.11 with (39) we obtain:

Ma
3 � ( ε−1 log(t+ λ+ e) )1/2−κ+ε+O(λ−1).

Choose λ = ε−1. Since ε → 0, εO(ε) = O(1) and since ε−1 = 3 log log(t + ee), also

(log(|t+ λ|+ 3))O(ε) = O(1). This and (38) gives respectively:

Ma
3 �ε−(1/2−κ)(log(|t|+ 3))

1
2
−κ,

M1−a
1 �ε−2κ,

and hence by (37):

|Fω(x+ it)| ≤M1−a
1 Ma

3 � (log(|t|+ 3))
1
2
−κ(log log(|t|+ ee))1/2+κ.

Observe that the inequality above holds with the same constant for Fω(y + it) with

y ∈ [x, 1 + α] and t > t2(ω). Let R′(ω) = [x, 4/3 + α]× [0, t2(ω)] (see the figure 1 below).

Thus R′ ⊂ R and by our choice of t2 = t2(x, ω)

‖Fω‖L∞(R′) ≤
√

3H1

√
log(t2 + e) log log(t2 + ee),

where H1 is the constant of Claim 2.11. Thus there exists a constant Cx(ω) such that for

y = 1
2

+ α + κ′ ≥ x with κ′ ≤ 1/2:

|Fω(y + it)| ≤ Cx(ω)(log(|t|+ 3))
1
2
−κ′(log log(|t|+ ee))1/2+κ′ ,

finishing the proof of Lemma 2.4.
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Figure 1: The concentric circles C1, C2, C3 and the rectangles R and R′.

Proof of Theorem 2.1. The only if implication. Let θX = ζ/ζX . By Lemma 2.2

Ω′ = [ θX and 1/θX have analytic extension to H1/2+α ]

has probability one. Thus, hypothesis P(MX(N)� N1/2+α+ε,∀ε > 0) = 1 combined with

the second inequality in (28) imply that P(ρX = 1/2 + α) = 1. Since for all ω ∈ Ω we

have in H1+α
1

ζ(z)
=

1

θX(z)
· 1

ζX(z)
, (40)

there exists ω0 ∈ Ω′ ∩ [ρX = 1/2 + α] where the function in the right side of (40) is a

product of two analytic functions in H1/2+α providing in this way one analytic extension

of the function 1/ζ to this half plane. Hence the zeros of the Riemann zeta function can

only have real part less or equal than 1/2 + α.

The if implication. Assuming that the Riemann zeta function does not have zeros in

H1+α, by (40) we obtain for each ω ∈ Ω′ that 1/ζX(ω) has analytic extension to the half

plane H1/2+α given by the product:

1

ζX(ω)

=
1

ζ
· θX(ω), (41)

and hence P(ρX = 1/2 + α) = 1. Observe that the Lindelöff function (see Definition 2.4)

L1/ζX satisfies for each σ > 1/2 + α:

L1/ζX (σ, ω) ≤ LθX(σ,ω) + L1/ζ(σ). (42)

Littlewood’s result ([14]) implies that the absence of zeros of ζ in H1/2+α gives that

L1/ζ(σ) = 0 for σ > 1/2 + α. On the other hand, by Lemma 2.2, with probability one

θX(z)� exp
(∑
p∈P

Xp − EXp

pz
)
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and by Lemma 2.4, also with probability one∑
p∈P

Xp − EXp

pσ+it
� ( log(t+ e) )1−σ( log log(t+ ee) )σ

and hence P(LθX (σ) = 0, ∀σ > 1/2 + α) = 1. By (42) also P(L1/ζX (σ) = 0, ∀σ >

1/2+α) = 1. Thus the event UX(1/2+α, 0) of Lemma 2.3 has probability one and finally

(28) completes the proof.

2.6 α Random Möbius function

In this section we consider the sequence of independent random variables Xα = (Xα
p )p∈P

such that:

P(Xα
p = −1) =

1

2
+

1

2pα
= 1− P(Xα

p = +1). (43)

The aim is to prove the following result:

Theorem 1.3 The Riemann hypothesis is equivalent to:

lim
α→0

P(MXα(N)� N1/2+ε, ∀ε > 0) = 1. (44)

Proof. Let α ∈ (0, 1/2). Consider Yp = pαXα
p . Then Y = (Yp)p∈P satisfies the conditions

i. and ii. of Theorem 2.1 with parameters C = 1 and same α. Thus the Riemann zeta

function ζ is free of zeros on H1/2+α if and only if P(MY (N) � N1/2+α+ε, ∀ε > 0) = 1.

Thus by Lemma A.7 and Kronecker’s Lemma (Lemma A.6) this probability is one if

and only if with probability one the series
∑∞

k=1
µY (k)

k1/2+α+ε
converges for all ε > 0. Since

µY (k) = kαµXα(k) for each k, this series converges with probability one for all ε > 0 if

and only if with probability one the series
∑∞

k=1
µXα (k)

k1/2+ε
converges for all ε > 0. Hence, by

Lemma A.7 and Kronecker’s Lemma this convergence is equivalent to

P(MXα(N)� N1/2+ε, ∀ε > 0) = 1. (45)

Thus (45) is equivalent to ζ be free of zeros on H1/2+α. Hence

lim
α→0

P(MXα(N)� N1/2+ε,∀ε > 0) = 1

is equivalent to ζ be free of zeros on H1/2 which is equivalent to the Riemann Hypothesis,

since the zeros of ζ are symmetrically reflected over the critical line Re(z) = 1/2.

By Claim 2.4 we obtain that

P(MXα(N)� N1/2+α+ε, ∀ε > 0) = 1.
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Thus Theorem 1.3 motivates, at least, to prove the bound P(MXα(N) � N1−α) = 1 for

all α ∈ (0, 1/2). Below we prove this bound for α < 1/3 and for 1/3 ≤ α < 1/2 this

bound still unknown. The reason α < 1/3 is related to the bound obtained in Lemma 2.4

and the best zero free region for the Riemann Zeta function obtained by Vinogradov and

Korobov ([18], Chapter VI). This zero free region R is constituted by the points x + iy

such that

1− x ≤ A

(log |y|)2/3(log log |y|)1/3

for some constant A > 0. In this region R the Riemann zeta function satisfies uniformly

for all z = z + iy ∈ R
1

ζ(x+ iy)
� (log |y|)2/3(log log |y|)1/3.

Proposition 1.2. If α < 1/3, then

P
(
∃ lim
N→∞

N∑
k=1

µXα(k)

k1−α+it
∀t ∈ R

)
= 1.

If α ∈ (0, 1/2), then

lim
N→∞

E
∣∣∣∣ N∑
k=1

µXα(k)

k1−α

∣∣∣∣2 = 0.

Proof. Proceeding equally as in the proof of Lemma 2.2 we conclude that with probability

one the random Riemann zeta function 1/ζXα satisfies in H1−α the following functional

equation:
1

ζXα(z)
=

Gα(z)

ζ(z + α)
,

where with probability one Gα : H1/2 × Ω→ C is analytic and satisfies

Gα(z)�H 1
2+δ

exp

(∑
p∈P

Xp − EXp

pz

)
, ∀δ > 0.

Thus, with probability one 1/ζXα is analytic in the region Rα = H1−α ∪ (R − α) where

R is the best zero free region of the Riemann zeta function up to date. This together

Lemma 2.4 and Vinogradov-Korobov bound for 1/ζ imply that there exists a event Ω′ of

probability one such that for ω ∈ Ω′, for all σ + it ∈ Rα:

1

ζXα(σ + it, ω)
�ω,σ exp

(
( log(t+ e) )1−σ( log log(t+ ee) )σ

)
. (46)

From now on t ≥ 0 and α < 1/3 will be fixed. The realization ω ∈ Ω′ will be implicit in

the expressions. By the Perron’s Formula (Theorem A.11) we obtain:

N∑
k=1

µXα(k)

k1−α+it
=

1

2πi

∫ c+iT

c−iT

1

ζXα(1− α + it+ z)

N z

z
dz +O

(
N1/3 logN

T
+
N1/3 log T

T

)
,
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where c = α+1/ logN . Let N = T ≥ t+ee and δ = A( (logN)2/3(log logN)1/3 )−1, where

A > 0 is the Vinogradov-Korobov constant. Define the rectangle S = [−δ, c] × [−N,N ]

and decompose ∂S = I1 ∪ I2 ∪ I3 ∪ I4 where I1 and I3 are the vertical lines at the levels

<(z) = c and <(z) = −δ respectively and I2 and I4 are horizontal lines at the levels

Im(z) = −N and Im(z) = +N respectively. On that way, the closed curve ∂S + 1−α is

contained in Rα which is the region where the bound (46) is applicable. By the cauchy

integral formula: 1
ζXα (1−α+it)

= 1
2πi

∫
∂S

1
ζXα (1−α+it+z)

Nz

z
dz, and hence:

∣∣∣∣ N∑
k=1

µXα(k)

k1−α+it
− 1

ζXα(1− α + it)

∣∣∣∣ ≤ |J2|+ |J3|+ |J4|+O

(
logN

N2/3

)
, (47)

where Jk =
∫
Ik

1
ζXα (1−α+it+z)

Nz

z
dz, k = 1, 2, 3, 4. Now observe that

J2, J4 �‖1/ζXα(1− α + it+ ·)‖L∞(I2)

∫ c

−δ
ex logN dx√

N2 + x2

� 1

N1−α exp
(
( logN )α+δ( log logN) )1−α),

J3 �N−δ‖1/ζXα(1− α + it+ ·)‖L∞(I3)

∫ N

−N

dy√
δ2 + y2

� 1

N δ
exp

(
( logN )α+δ( log logN) )1−α)

� exp

(
( logN )α( log logN) )1−α − A

(
logN

log logN

) 1
3
)

= exp

(
− A

(
logN

log logN

) 1
3

(1 + oω,α(1))

)
.

Inserting these upper bounds in (47), we conclude that:∣∣∣∣ N∑
k=1

µXα(k, ω)

k1−α+it
− 1

ζXα(1− α + it, ω)

∣∣∣∣�ω,α exp

(
−A

(
logN

log logN

) 1
3

(1 + oω,α(1))

)
. (48)

Therefore:

P
(

lim
N→∞

N∑
k=1

µXα(k, ω)

k1−α+it
=
Gα(1− α + it)

ζ(1 + it)

)
= 1. (49)

To prove the second statement, for each prime p define Yp = Xα
p + p−α and consider µY

the respective Möbius function. Observe that the sequence {µY (k)}k≥2 is orthogonal in

L2(Ω,F ,P) and EY 2
p = 1− p−2α ≤ 1. Writing Xα

p = Yp − p−α we have for each k square

free:

µXα(k) =
∏
p|k

(Yp − p−α) =
∑
d|k

µY (d)µ

(
k

d

)(
k

d

)−α
.
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Therefore

N∑
k=1

µXα(k)

k1−α =
N∑
k=1

1S(k)

k1−α

∑
d|k

µY (d)µ

(
k

d

)(
k

d

)−α

=
N∑
k=1

1S(k)

k

N∑
d=1

µY (d)dαµ

(
k

d

)
1d|k

=
N∑
d=1

µY (d)dα
N∑
k=1

1

k
µ

(
k

d

)
1d|k1S(k).

Since for k square free with d|k we have k = da with gcd(d, a) = 1, we obtain:

N∑
k=1

µXα(k)

k1−α =
N∑
d=1

µY (d)

d1−α Ad,N ,

where

Ad,N =

[N/d]∑
gcd(a,d)=1

µ(a)

a
.

One of the consequences of the Prime number Theorem is that limN→∞Ad,N = 0, for all

d ∈ N. On the other hand, a result in [16] states that for all d and N , |Ad,N | ≤ 1. Since

A1,N = E
N∑
k=1

µXα(k)

k1−α =
N∑
k=1

µ(k)

k
,

the orthogonality of {µY (k)}k≥2 implies:

E
∣∣∣∣ N∑
k=1

µXα(k)− EµXα(k)

k1−α

∣∣∣∣2 ≤ N∑
d=2

A2
d,N

d2−2α
(50)

≤
∞∑
d=1

1

d2−2α
. (51)

Defining Ad,N = 0 for d > N , by the dominated convergence Theorem for series, (51)

implies that

lim
N→∞

∞∑
d=2

A2
d,N

k2−2α
=
∞∑
d=2

lim
N→∞

A2
d,N

k2−2α
= 0

which combined with (50) and limN→∞A1,N = 0 gives that

lim
N→∞

E
∣∣∣∣ N∑
k=1

µXα(k)

k1−α

∣∣∣∣2 = 0.
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Proposition 1.3. There exists a real B such that for all α ∈ (0, 1/3), with probability

one

MXα(N)� N1−α exp

(
−B

(
logN

log logN

)1/3)
.

Proof. For α < 1/3, by (49), with probability one limN→∞
∑N

k=1
µXα (k)
k1−α

= 0, since also

with probability one |Gα(1 − α)| < ∞ and 1
ζ(1)

= 0. Thus, by (48) we obtain that with

probability one

TN :=
N∑
k=1

µXα(k)

k1−α � exp

(
− A

(
logN

log logN

)1/3)
:= KN . (52)

Let TN and KN as in (52). Hence we obtain for M = N1/3

MXα(N) = MXα(M) +
N∑

k=M+1

k1−α(Tk − Tk−1)

= MXα(M)− (M + 1)1−αTM +N1−αTN +
N−1∑

k=M+1

Tk(k
1−α − (k + 1)1−α)

� |MXα(M)|+ 2 max
M≤k≤N

|Tk|(M1−α +N1−α)

� N1/3 +N1−αKN1/3

� N1−α
(
N−1/3 + exp

(
− A

(
logN1/3

log logN1/3

)1/3))
� N1−α exp

(
− A

4

(
logN

log logN

)1/3)
.

Thus by taking B = A/4 we conclude the proof of Proposition 1.3.
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3 Concluding Remarks

3.1 Back to the β Random Möbius function.

Let µβ, Mβ and ζβ as in Notations 2.5.

Claim 3.1 (Answer to Question 2). The assumption that

P(Mβ(N)� N1/2+ε, ∀ε >)) = 1

for all β ∈ [β∗, 1) for some β∗ < 1 implies the Riemann Hypothesis.

Claim 3.1 is a conditional result and it’s proof utilizes the construction of Lemma 2.1.

Even that the basic assumption of this result is false by Theorem 1.1, the intuition that

motivated it is of theoretical interest: Denoting d(k) the number of distinct primes that

divide k and νβ an approximation of µβ defined as νβ(k) = (2β − 1)−ω(k)µβ(k), we have

Proposition 3.1. The Riemann hypothesis is equivalent to

P
( N∑

k=1

νβ(k)� N1/2+ε = 0,∀ε > 0

)
= 1,

for all β ∈ [1
2

+ 1
2
√

2
, 1).

Observe that for β close to 1, (2β−1)−d(k) is uniformly closed to 1 for all k with ω(k) ≤ λ

for fixed λ ∈ N. Thus νβ and µβ are uniformly close on the set {k ∈ N : ω(k) ≤ λ}.

Proof of Claim 3.1. By Lemma 2.1, for each n there exists a measure preserving trans-

formation Tn such that

θβ∗(z, ω) =
2n∏
k=1

θβ∗n(z, T knω).

Let Λ0 = [1/ζβ∗ extends analytically to H1/2 \ {1}] and for n ≥ 1

Λn =
2n⋂
k=1

T−kn ( [1/ζβ∗n extends analytically to H1/2 \ {1}] ).

Since θβ∗n = ζ(z) 1
ζβ∗n

and that ζ is analytic in C \ {1}, our assumption combined with

inequality 4 gives for each n ≥ 0, with probability one, θβ∗n and θβ∗n extends analytically to

H1/2\{1}. Since Tn preserves measure, P(Λn) = 1 for all n ≥ 0 and hence P(∩∞n=0Λn) = 1.

Now let ω∗ ∈ ∩∞n=0Λn, K ⊂ H1/2 \ {1} a compact set and mK(ω∗) the quantity of

zeros counted with multiplicities of θβ∗(·, ω∗) in K. Since θβ∗(·, ω∗) is given by the Euler
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product representation in H1, this function does not vanishes in this half plane. Thus, by

analyticity, Theorem A.16 implies that the set of points in the complex plane for which

θβ∗(·, ω∗) equals to zero is discrete an hence mK(ω∗) < ∞. Now choose t = t(ω∗) such

that 2t > mK(ω∗). Then the functional relation

θβ∗(z, ω
∗) =

2t∏
k=1

θβ∗t (z, T
kω∗)

implies that there exists τ ∈ {1, ..., 2t} such that θβ∗t (z, T
τ
t ω
∗) 6= 0 for all z ∈ K. Since

θβ∗t (z, T
τω∗) = ζ(z) 1

ζβt (z,T
τ
t ω
∗)

and these functions are analytic in K, it follows that ζ(z) 6=
0 for all z ∈ K. Repeating the procedure for a sequence of compacts KN ⊂ H1/2 \ {1}
such that

⋃∞
N=1KN = {z ∈ C : 1

2
< Re(z) < 1}, we conclude that the zeros of ζ

all have real part less or equal to 1/2 in which together Riemann’s functional equation

ζ(s) = ζ(1− s) ·A(s), where A(s) is analytic in {z ∈ N : Re(z) ∈ (0, 1)}, implies that the

zeros of ζ can only have real part equals to 1/2, finishing the proof of Claim 3.1.

Proof of Proposition 3.1. For β ∈ [1
2

+ 1
2
√

2
, 1), at each prime p

|νβ(p)| = 1

2β − 1
|µβ(p)| ≤

√
2.

Thus the sequence ((2β−1)−1µβ(p))p∈P satisfies conditions i. and ii. of Theorem 2.1 with

parameters C =
√

2 and α = 0.

3.2 Random Dirichlet Series and the Lindelöf Hypothesis.

Let η : H0 → C be the alternating series:

η(z) =
∞∑
k=1

(−1)k

kz
.

This function is analytic and satisfies on the half plane H0 the following relation

ζ(z) =
1

1− 21−z η(z). (53)

The Lindelöf Hypothesis due to E. Lindelöf states that the Riemann zeta function ζ

satisfies on the critical line ζ(1/2 + it) = o((t + 1)ε) for all ε > 0 which is equivalent

to ζ(σ + it) = o((t + 1)ε) for all ε > 0 and σ > 1/2. This Hypothesis is known to be

a consequence of the Riemann Hypothesis yet is not equivalent. Indeed it has many

consequences related to the zeros of ζ in the critical line (see [18], Chapter XIII). By (53)

this is equivalent to the alternating series η(σ+ it) = o((t+ 1)ε) for all ε > 0 and σ > 1/2.

Changing the sequence ((−1)k)k∈N by independent random variables, we have as a direct

consequence from Lemma 2.4 and Proposition 2.2:
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Theorem 3.1. Assume that (Xk)k∈N are independent, uniformly bounded and that the

series
∑∞

k=1
EXk
kx

converges for all x > 1/2. Then with probability one, for x = 1/2 + κ

with κ > 0
∞∑
k=1

Xk

kσ+it
=
∞∑
k=1

EXk

kσ+it
+O((log t)

1
2
−κ(log log t)

1
2

+κ).

I would like to call this result by Complex Strong Law of Large Numbers and abbreviate

it by CSLLN.

Now let (Xk)k∈N be independent, uniformly distributed over {−1,+1} and (Yk)k∈N be

independent with distribution P(Yk = +1) = 1
2

+ (−1)kδ = 1− P(Yk = −1). Thus EYk =

2δ(−1)k and hence |E(Y1 + ...+ YN)| ≤ 1. Denote SX(N) := X1 + ...+XN and similarly

SY (N). By the Central Limit Theorem both N−1/2SX(N) and N−1/2SY (N) converge in

distribution to the gaussian distribution. Moreover, define a continuous random function

BN
X : [0, 1] → R as follows: For k = 1, ..., N and t = k/N , BN

X (t) = N−1/2SX(k) and

for other values of t, BN
X (t) is given by the linear interpolation of these points. Similarly

define BN
Y . The Donsker Invariance Principle states that both BN

X and BN
Y converge in

distribution to a continuous random function B : [0, 1] → [0, 1] called Brownian Motion.

Thus at least in this sense, the sequences X and Y are indistinguishable. This motivates

the following concept: Say that sequences of independent random variables X and Y are

indistinguishable in the sense of CSLLN if, with probability one
∑∞

k=1
Yk

kσ+it
= o(τ ε) for

all ε > 0. As a consequence of Theorem 3.1:

The Lindelöf hypothesis is equivalent to the sequences X and Y being indistinguishable in

the sense of CSLLN.
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A Appendix

A.1 Probability Theory

Definition A.1. Let X = (Xk)k∈N be a sequence of independent R-valued random vari-

ables and F∞n be the sigma algebra σ(Xk : k ≥ n ). The sigma algebra F =
⋂∞
n=1F∞n is

called tail sigma algebra and an element A ∈ F is called tail event.

Theorem A.1 (Kolmogorv 0-1 Law). Every tail event has either probability 0 or prob-

ability 1.

Theorem A.2 (Kolmogorov Two-Series Theorem). Let X = (Xk)k∈N be a sequence of

independent R-valued random variables. Assume that |Xk| ≤ C for all k. Then the

random series
∑∞

k=1Xk converges if and only if
∑∞

k=1 EXk and
∑∞

k=1 VXk are convergent

series.

Theorem A.3 (SLLN for pairwise independence, [15]). Let (Vk)k∈N be identically dis-

tributed and pairwise independent. For γ ∈ (1, 2) and τ > 0 and τ > 4γ − 6 assume

E|V1|γ( log(|X|+ 2) )τ <∞.

Then SN := V1 + ...+ VN satisfies

P(SN = o(N1/γ)) = 1.

Theorem A.4 (The Marcinkiewicz-Zygmund Inequality). If (Xk)k∈N are independent,

E|Xk|T <∞ for some T > 1 and EXk = 0, then there exists A > 0 and B > 0 such that

ATT T/2E
[ ( N∑

k=1

|Xk|2
)T/2 ]

≤ E
[ ( N∑

k=1

Xk

)T ]
≤ BTT T/2E

[ ( N∑
k=1

|Xk|2
)T/2 ]

.

Lemma A.1. Let T ≥ 1 and {Xk}k∈N be a family of independent real random variables

such that each Xk ∈ LT (Ω,F ,P) has EXk = 0. For z = x+ iy:

E
∣∣∣∣ N∑
k=1

Xk

kz

∣∣∣∣T ≤ (2B)TT T/2E
( N∑

k=1

|Xk|2

k2x

)T/2

Proof. Let T ≥ 1 and for z = x+ iy define:

a =
N∑
k=1

Xk

kx
cos(y log k), b = −

N∑
k=1

Xk

kx
sin(y log k).
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Thus, by the Marcinkiewicz-Zygmund inequality we obtain

E|a|T ≤ BTT T/2E
( N∑

k=1

|Xk|2

k2x
cos2(y log k)

)T/2
≤ BTT T/2E

( N∑
k=1

|Xk|2

k2x

)T/2
,

and similarly we obtain the same inequality for E|b|T . Since
∑N

k=1
Xk
kz

= a + ib, by the

inequality |a+ ib|T ≤ 2T (|a|T + |b|T ), we obtain:

E
∣∣∣∣ N∑
k=1

Xk

kz

∣∣∣∣T ≤ 2T (E|a|T + E|b|T ) ≤ (2B)TE
( N∑

k=1

|Xk|2

k2x

)T/2
.

A.2 Dirichlet Series.

Definition A.2. Given a function f : N → C a Dirichlet series associated to f at the

point z ∈ C is denoted by F (f, z) and is given by F (f, z) =
∑∞

k=1
f(k)
kz

.

Ha is the half plane {z ∈ C : Re(z) > Re(a)}.

Theorem A.5 ([1], Theorems 11.8 and 11.11). If a Dirichlet series converges at z0 ∈ C
then converges at every point of the half plane Hz0 and F (f, ·) : Hz0 → C is an analytic

function. The complex derivatives of all orders of this analytic function are also convergent

Dirichlet series on the same half plane and are given by:

dn

dzn

∞∑
k=1

f(k)

kz
= (−1)n

∞∑
k=1

f(k)

kz
(log k)n.

Theorem A.6 (Kronecker’s Lemma). Suppose that x > 0 and the Series
∑∞

k=1
f(k)
kx

converges. Then

lim
N→∞

f(1) + ...+ f(N)

Nx
= 0.

Theorem A.7. Suppose that the Dirichlet series F (z) :=
∑∞

k=1
f(k)
kz

converges absolutely

for z ∈ Ha and that for some c < a

sup
N

|f(1) + ...+ f(N)|
N c

= C <∞.

Then the function F : Ha → C has analytic extension to Hc.
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Proof. Let δ > 0 and denote SN := f(1) + ... + f(N). By summation by parts we have

that ∣∣∣∣ N∑
k=M

f(k)

kc+δ

∣∣∣∣ =

∣∣∣∣f(M)

M c+δ
+

SN
N c+δ

− SM
(M + 1)c+δ

−
N−1∑

k=M+1

Sk((k + 1)−c−δ − k−c−δ)
∣∣∣∣.

Observe that by hypothesis the first, second and third term on the right side of the

equation above goes to 0 when N,M goes to infinity. For the fourth term, the mean value

inequality implies that for some C ′ > 0, |(k + 1)−c−δ − k−c−δ| 6 C ′k−c−δ−1 and this allow

us to bound: ∣∣∣∣ N−1∑
k=M+1

Sk((k + 1)−c−δ − k−c−δ)
∣∣∣∣ 6 CC ′

N∑
k=M

1

k1+δ
.

Hence the referred fourth term also goes to 0 when N,M goes to infinity. Hence the

Dirichlet series F (c + δ) is convergent for every δ > 0 and by Theorem A.5 this series

gives the desired analytic extension.

Definition A.3. Given functions f, g : N→ C, the Dirichlet Convolution is given by

(f ∗ g)(n) =
∑
d|n

f(d)g

(
n

d

)
.

Theorem A.8 ([1], Theorem 11.5). Let f, g : N → C and H be a half plane where the

Dirichlet Series associated to f converges and the Dirichlet series associated to g converges

absolutely. Then the Dirichlet series associated to f ∗ g converges at each z ∈ H and:( ∞∑
k=1

f(k)

kz

)( ∞∑
k=1

g(k)

kz

)
=
∞∑
k=1

(f ∗ g)(k)

kz
.

Definition A.4. Given a Dirchlet series
∑∞

k=1
f(k)
kx

, the numbers

σa = inf{x ∈ R :
∞∑
k=1

f(k)

kx
converges absolutely}

and

σc = inf{x ∈ R :
∞∑
k=1

f(k)

kx
converges }

are called abscissa of absolute convergence and convergence respectively. Hσa and Hσc

are called half plane of absolute convergence and half plane of convergence respectively.

Theorem A.9 ([1], Theorem 11.10). For every Dirichlet series such that σc is finite,

σa − 1 6 σc 6 σa.
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Theorem A.10 (Landau, [17], page 111, Theorem 6). A Dirichlet series of positive terms

always has the point σa as a singularity.

Theorem A.11 (Perron’s Formula, [17] Corollary 2.1, pg 133). Let F (f, s) be a Dirichlet

series with σa <∞. Suppose that there exists a real number η ≥ 0 and a non-decreasing

function B : N→ R such that

i)
∞∑
k=1

|f(k)|
kσ

= O

(
1

(σ − σa)η

)
, σ > σa

ii) |f(n)| ≤ B(n)

Then for N ≥ 2, T ≥ 2, σ = <(z) ≤ σa, δ = σa − σ + 1/ logN , we have

N∑
k=1

f(k)

kz
=

1

2πi

∫ δ+iT

δ−iT
F (f, z + s)N sds

s

+O

(
Nσa−σ (logN)η

T
+
B(2N)

Nσ

(
1 +N

log T

T

))
Definition A.5. Let c ∈ R and f : Hc × Ω→ C. The Lindelöf function associated to f ,

Lf : (c,∞)→ R ∪ {∞} is the function

Lf (σ) := inf

{
A > 0 : lim

τ→∞

f(σ + iτ)

τA
= 0

}
where the infimum over the set above is taken to be ∞ if this set is empty.

Theorem A.12 ([17], pg.120 Theorem 16). The Lindelöff function Lf is convex and

continuous in the interval (σ1, σ2) if is finite on the closure of this interval

Theorem A.13 ([17], (Schnee-Landau), pg. 133, Theorem 4). Suppose that the Dirichlet

series F (z) :=
∑∞

k=1
f(k)
kz

has finite abscissa of absolute convergence σa. Suppose that the

function F has analytic extension to Hc with c < σa and for all σ > c has Lindelöf function

LF (σ) = 0. Then this Dirichlet series converges at every point of Hc.

A.3 Multiplicative Functions.

A arithmetic function f : N→ C is called multiplicative if for all n and m coprime, that

is, with gcd(n,m) = 1, f(n ·m) = f(n) · f(m). When this relation holds for all pairs n

and m, is called completely multiplicative.

Theorem A.14 (Wirsing,[17], Theorem 5 pg. 336). Let f : N→ [−1,+1] be multiplica-

tive. Then

lim
N→∞

1

N

N∑
k=1

f(k) =
∏
p∈P

((
1 +

1

p

)
·
∞∑
m=0

f(pm)

pm

)
.
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Theorem A.15 ([1], Theorem 11.6). A Dirichlet series associated to a multiplicative

function f : N→ C has the same half plane of absolute convergence of the double series∑
p∈P

∑∞
m=1

f(pm)
pmz

. For every z in this half plane this Dirichlet series admits representation

in Eulerian product:
∞∑
k=1

f(k)

kz
=
∏
p∈P

(
1 +

∞∑
m=1

f(pm)

pmz

)
.

A.4 Complex analysis

Theorem A.16 ([5], Corollary 3.8 and 3.9). Let G ⊂ C be an connected region. Then

the zeros of a non constant analytic function f : G → C are isolated. Furthermore for

each z0 such that f(z0) = 0, there exists an integer m, called multiplicity of the zero z0,

such that f(z)
(z−z0)m

is analytic in G and is not zero at z0.

Theorem A.17 ([5], Corollary 6.16). If G is simply connected and f : G→ C is analytic

and does not vanish at every point in G, then there exists an analytic function g : G→ C

such that

f(z) = exp(g(z)).

A function g satisfying the equation above is unique up to a constant and is called branch

of the logarithm.

Theorem A.18 (Hadamard Three-Circles Theorem). Let f : {R1 ≤ |z| ≤ R2} → C be

continuous and analytic in {R1 < |z| < R2}. For R1 < r < R2, denote

M(r) := max
|z|=r
|f(z)|,

a :=
log( r

R1
)

log(R2

R1
)
.

Then:

M(r) ≤M(R1)1−aM(R2)a.

A.5 Decomposition of the Random Riemann zeta function.

Proposition A.1. Let (Xp)p∈P be independent random variables such that:

i. For some C ≥ 1 and some α ≥ 0:

|Xp| ≤

1 , if C >
√
p;

Cpα , if C ≤ √p.
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Then for all ω ∈ Ω:

i. ζX(z) :=
∏

p∈P
1

1+
Xp
pz

and 1/ζX are analytic in H1+α and in particular these random

functions never vanish on this half plane.

ii. For each z ∈ H1+α:

1

ζX(z)
=
∞∑
k=1

µX(k)

kz
=
∏
p∈P

(
1 +

Xp

pz

)
. (54)

iii. For each ω ∈ Ω there exists an analytic function RX(ω) : H1/2+α → C such that

RX �δ 1 in H 1
2

+α+δ and a branch of the logarithm log∗ ζX(ω) : H1+α → C such that:

− log∗ ζX(ω)(z) =
∑
p∈P

Xp(ω)

pz
+RX(ω)(z). (55)

Proof. The condition |Xp| ≤ Cpα implies that
∑

p∈P
Xp(ω)

px
is absolutely convergent on

the half plane H1+α for all ω ∈ Ω. Therefore the product
∏

p∈P
(
1 + Xp

pz

)
is absolutely

convergent in H1+α and hence never vanishes in this half plane for all ω ∈ Ω ([5], chapter

VII, sub. 5). This implies that ζX is analytic in H1+α for all ω ∈ Ω, since is defined to

be the inverse of this product. Also the absolute convergence of this product together

Theorem A.15 implies that for all ω ∈ Ω and z ∈ H1+α

1

ζX(z)
=
∞∑
k=1

µX(k)

kz
=
∏
p∈P

(
1 +

Xp

pz

)
.

Thus both 1/ζX and ζX are analytic functions in H1+α for all ω ∈ Ω and this proves i.

and ii.

iii. Since ζX(ω)(z) 6= 0 for all z ∈ H1+α and all ω ∈ Ω and that a half plane is a

simply connected region, Theorem A.17 implies that for each ω ∈ Ω exists a branch of

the logarithm log∗ ζX(ω) : H1+α → C. For each realization we can construct a branch

coinciding with the canonical logarithm of the real function 1/ζX(ω)

∣∣
R

. In fact let x =

1 + α + ε for some ε > 0. Observe that

|Xp|
px
≤ Cpα

px
≤ 1

px−α−
1
2

=
1

p
1
2

+ε
< 1.

Thus the Taylor expansion log(1+y) =
∑∞

m=1(−1)m+1 ym

m
for |y| < 1, gives for each prime

p:

log

(
1 +

Xp

px

)
=

∞∑
m=1

(−1)m+1
Xm
p (ω)

mpmx
. (56)



Partial Sums of the Random Möbius Function 43

Claim A.1. The double series RX(ω)(z) =
∑

p∈P
∑∞

m=2(−1)m+1X
m
p (ω)

mpmz
converges abso-

lutely in H 1
2

+α and
∑

p∈P
∑∞

m=1(−1)m+1X
m
p (ω)

mpmz
converges absolutely on H1+α. Moreover

RX �δ 1 in H 1
2

+α+δ.

Proof of the Claim: Let z = x+ iy and decompose:

RX(z) =
∑
√
p<C

∞∑
m=2

(−1)m+1
Xm
p (ω)

mpmz
+
∑
√
p≥C

∞∑
m=2

(−1)m+1
Xm
p (ω)

mpmz
.

For
√
p < C we use that |Xp| ≤ 1 and hence for each z ∈ H0:∣∣∣∣ ∑√

p<C

∞∑
m=2

(−1)m+1
Xm
p (ω)

mpmz

∣∣∣∣ ≤ C2

∞∑
m=2

1

2mx
=

C2

2x(2x − 1)
. (57)

For
√
p ≥ C we use that |Xp| ≤ Cpα and hence for each z ∈ H 1

2
+α:∣∣∣∣ ∑√

p≥C

∞∑
m=2

(−1)m+1
Xm
p (ω)

mpmz

∣∣∣∣ ≤ ∑
√
p≥C

∞∑
m=2

(
C

px−α

)m
= C2

∑
√
p≥C

1

px−α(px−α − C)

�x,C

∑
√
p≥C

1

p2(x−α)
<∞. (58)

Thus RX(ω) converges absolutely in H 1
2

+α and since
∑

p∈P
Xp
pz

converges absolutely in

H1+α we conclude that
∑

p∈P
∑∞

m=1(−1)m+1X
m
p (ω)

mpmz
also converges absolutely on H1+α. To

conclude, (57) and (58) implies:

RX �δ 1 in H 1
2

+α+δ

finishing the proof of the Claim A.1.

End of the proof of iii. By (54), (56) and Claim A.1 we have for each x > 1+α respectively:

− log ζX(ω)(x) = log
∏
p∈P

(
1 +

Xp

pz

)
=
∑
p∈P

log

(
1 +

Xp

px

)
=
∑
p∈P

Xp

px
+RX(x).
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Also, Claim A.1 implies that RX is analytic in H 1
2

+α and z 7→
∑

p∈P
Xp
pz

is analytic in

H1+α. Hence the random function − log∗ ζX : H1+α × Ω→ C given by

− log∗ ζX(ω)(z) =
∑
p∈P

Xp

pz
+RX(z)

is analytic for all ω and satisfies for each real x > 1 + α:

1

ζX(ω)(x)
= exp(− log∗ ζX(ω)(x)).

Assuming by contradiction that for some z0 ∈ H1+α

1

ζX(ω)(z0)
6= exp(− log∗ ζX(ω)(z0)),

we have that gω := 1
ζX(ω)

− exp(− log∗ ζX(ω)) is a non constant analytic function in H1+α

and hence by Theorem A.16 the zeros of gω are isolated. Since the function 1
ζX(ω)

and

exp(− log∗ ζX(ω)) are analytic and equal in the line segment (1 + α,∞) we have that

gω(x) = 0 for all x > 1 + α which contradicts the fact that the zeros of gω are isolated.

Thus we conclude that gω = 0 for all ω ∈ Ω, finishing the proof of Proposition 54.
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6 (1961), pp. 221–254.

[7] P. Erdös and M. Kac, The Gaussian law of errors in the theory of additive

number theoretic functions, Amer. J. Math., 62 (1940), pp. 738–742.

[8] A. Granville and K. Soundararajan, Pretentious multiplicative functions

and an inequality for the zeta-function, Anatomy of integers, volume 46 of CRM

Proc. Lecture Notes, pages 191–197. Amer. Math. Soc., Providence, RI, 2008.

[9] G. Halász, On random multiplicative functions, in Hubert Delange colloquium

(Orsay, 1982), vol. 83 of Publ. Math. Orsay, Univ. Paris XI, Orsay, 1983, pp. 74–

96.

[10] A. Harper, On the limit distributions of some sums of a random multiplicative

function, arXiv:1012.0207, (2010).

[11] B. Hough, Summation of a random multiplicative function on numbers having

few prime factors, Math. Proc. Cambridge Philos. Soc., 150 (2011), pp. 193–214.

[12] Y.-K. Lau, G. Tenenbaum, and J. Wu, On mean values of random multi-

plicative functions, Proc. Amer. Math. Soc., 141 (2013), pp. 409–420.
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