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Abstract

The current work consists in two parts, both of them related to the study of the fractal
geometry.

The first part focuses on showing that the Lagrange and the Markov dynamical spec-
trum has a non-empty stable interior. First, we study the Lagrange and the Markov
dynamical spectrum for diffeomorphisms in surface that have a horseshoe with Hausdorff
dimension greater than 1 and the property V. We show that for a “large” set of real
functions on the surface and for a diffeomorphism with a horseshoe associated and Haus-
dorff dimension greater than 1, with the property V', both, the Lagrange and the Markov
dynamical spectrum have persistently non-empty interior. Then, we find hyperbolic sets
for the geodesic flow of surfaces of pinched negative curvature and finite volume, with
Hausdorff dimension close to 3. Associated with this hyperbolic set, we find a horseshoe
of Hausdorff dimension close to 2 for Poincaré map. Finally, we prove that the Lagrange
and the Markov dynamical spectrum (associated to geodesic flow) have persistently non-
empty interior.

The second part focuses on showing that the Marstrand’s thoerem is true in surfaces
simply connected and non-positive curvature.

Keywords: Lagrange and Markov dynamical spectrum, Horseshoe, Hausdorff dimen-
sion, pinched curvature negative, Poincaré map, persistently non-empty interior, the
Marstrand’s theorem.
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Chapter 1

Introduction

Regular Cantor set on the line play a fundamental role in dynamical systems and notably
also in some problems in number theory. They are defined by expansive maps and have
some kind of self similarity property: Small parts of them are diffeomorphic to big parts
with uniformly bounded distortion (see precise definition in section 2.2). Some back-
ground on the regular Cantor sets with are relevant to our work can be found in [CF89],
[PT93], [MYO01] and [MY10].

An example intimately related to our work (cf. [CF89]), is the following: Given an irra-
tional number «, according to Dirichlet’s theorem the inequality |a — g‘ < q% has infinite

rational solutions g. Markov and Hurwitz improved this result, proving that, for all irra-

1
V542

p
q

tional «, the inequality ‘oz - £l < has infinitely many rational solutions g.
Meanwhile, fixed « irrational can expect better results, which leads us to associate with

each a, its best constant of approximation (Lagrange value of «/) is given by

1
a— P < has infinite rational solutions P }
q| kg q
= limsup |g(ge — p)| ™" € RU {+00}.
P,g—>00

p,q€EN
Then, always holds that k() > v/5. Consider the set
L={k(a):a € R\ Q and k(o) < oo}
known as Lagrange Spectrum (for properties of L cf. [CF89]).

kla) = Sup{k>0:

In 1947 Marshall Hall (cf.[Hal47]) proved that the regular Cantor set C'(4) the real number
of [0, 1] whose continued fraction only appears coefficients 1,2, 3,4, then

C4)+C4) =[V2—1,4V2-1)].

Put « irrational in continued fractions by a = [ag,aq,...], for n € N, defined «,, =
lan, apit,...] and B, = [0,an-1,0pn_2,...], then using continued fractions techniques is
proved that

k(o) = limsup(ay, + Br)-

n—oo



With this latter characterization Lagrange spectrum and from of Hall’s result it follows
that L D [6,+00) of Hall’s ray of the Lagrange spectrum.

In 1975, G. Freiman (cf. [Fre75] and [CF89]) proved some difficult results showing that
the arithmetic sum of certain (regular) Cantor sets, related to continued fractions contain
intervals, and used them to determine the precise beginning of Hall’s ray (The biggest
half-line contained in L) which is

2221564096 + 283748+/462
491993569

= 452782956616 . . .

There are several characterizations of the Lagrange spectrum. We will give some of them
that are of interest to our work.

Let’s begin with the following dynamic interpretation:
Let ¥ = (N*)Z and 0: ¥ — ¥ the shift defined by o((an)nez) = (ans1)nez. If f: 2 = R
is defined by f((an)nez) = ao + Bo = [ao, a1,...] +[0,a_1,a_o,...], then

n—oo

L= {hmsup F(o"(0) 0 € z} .

Another interesting set is the Markov Spectrum defined by

neZ

M = {sup F(o"(0) 0 € z} .

This last interpretation in terms of shift admits a natural generalization of Lagrange and
Markov spectrum in the context of hyperbolic dynamics (at least in dimension 2, which
is our interest).

We will define the Lagrange and Markov dynamical spectrum as follows. Let ¢: M? — M?
be a diffeomorphism with A € M? a hyperbolic set for ¢. Let f: M? — R be a continuous
real function, then the Lagrange Dynamical Spectrum is defined by

n—oo

L(f.A) = {limsupf(so”(x)) e A} |

and the Markov Dynamical Spectrum is defined by

M(7.0) = {sup () s € A}
ne

Using techniques of stable intersection of two regular Cantor sets whose sum of Hausdorff

dimension is greater than 1, found in [MYO01] and [MY10], we obtain the first result of

this work (cf. Chapter 2; more precisely Theorem 3).



Theorem: Let A be a horseshoe associated to a C*-diffeomorphism o such that HD(A) >
1. Then there is, arbitrarily close to ¢ a diffeomorphism o and a C*-neighborhood W of

o such that, if Ay denotes the continuation of A associated to ¢ € W, there is an open
and dense set Hy, C C*(M,R) such that for all f € Hy,, we have

int L(f,Ay) # 0 and int M(f, Ay) # 0,

where intA denotes the interior of A.

There is also a geometric interpretation of the Lagrange spectrum which is the main focus
of our work (cf. [CF89]). Consider the modular group, SL(2,Z); that is, the set of all
2 X 2 integer matrices with determinant equal one, and PSL(2,7Z) the projectivization of
SL(2,7Z). Given any V € SL(2,Z), V = (‘; Z) we define the associated transformation
by V(z) = 2t Note that if W = AV with A € Z*, then V(z) = W(2).

cz+d”®

Remember that for an irrational number « the Lagrange value of « is

k(a) = sup{k : |g(ga — p)| < k! for infinitely many (p,q) = 1}.
We note that if (p,q) = 1, there exist integers p’,¢" such that ¢'p — p'q = 1, so for
V=(2")eSL2Z) and V(z) = =2 we have

—qz+p

k(o) = sup{k : [V (00) — V()| = |g(ga — p)| < k= for infinitely many V € SL(2,Z)}.

Let H? be of upper half-plane model of the real hyperbolic plane, with the Poincaré metric,
and let N := H?/PSL(2,Z) the modular orbifold. Let e be an end of H?/PSL(2,Z) ( cf.
[HP02| and [PP10]), define the asymptotic height spectrum of the pair (N, e) by

LimsupSp(N,e) = {lim sup ht.(vy(t)) : v € SM}

t—o00

where ht, is the height associated to the end e of N, defined by

hte(x) = lim d(x,T'(t)) —t,

t—+o00

being I' a ray that defines the end e.

Using the latter interpretation of the Lagrange spectrum, the asymptotic height spectrum
LimsupSp(N, e) of the modular orbifold N is the image of the Lagrange spectrum by the
map ¢ — log & (see for instance [[HP02] theorem 3.4]). Marshall Hall (cf. [Hal47]) showed
that the Lagrange spectrum contains the interval [¢, +00) for some ¢ > 0. The maximal
such interval [u,+o00) (which is closed as the Lagrange is closed (cf. [CF89])). The
Hall’s ray was determined by Freiman [Fre75] (cf. also Sloane [Slo]). The geometric
interpretation of Freiman’s result in our context is that LimsupSp(N,e) contains the
maximal interval [u, +00) with

2221564096 + 283748+/462
1= log ~ 0.817 .
2 - 491993569



In 1986, similar results were obtained by A. Haas and C. Series (cf. [HS86]) to the quotient
of H? by a fuchsian group of SL(2,R). In particular Hecke group G, defined by

B 1 2cosm/q 0 —1
(3 ). (1 7)) s

In the same year, Andrew Haas [Haa86] obtained results in this direction for hyperbolic
Riemann surfaces. Then 11 years later, in 1997, Thomas A. Schmidt and Mark Sheigorn
(cf. [SS97]) proved that Riemann surfaces have Hall’s ray in every cusp. Recently, (in
2012) P. Hubert, L. Marchese and C. Ulcigrai (cf.[HMU12]) showed that there exist Hall’s
rays in Teichmiiller dynamics, more precisely in moduli surfaces, using renormalization.

All results mentioned above are on surfaces; let us see a bit of what is know in dimension
greater than or equal to 3, for generalizations of both the Lagrange spectrum and Markov
spectrum.

In fact: The classical Markov spectrum can also be expressed as (cf. [CF89])

M = { inf \f(z, )| f(z,y) = ax® + bry + cy?® with b2—4ac:1}. ()
(z,y)€Z2\(0,0)

We could think of the following natural generalization of Markov spectrum:
Let B(zx) = lel.jgn bijzix;, bij = bj; be a real non-degenerate indefinite quadratic form

in n variables and let us denote by ®,, the set of all such forms. Let d(B) denote the
determinant of the matrix (b;;). Let us set

m(B) = inf B(z)| and B)= ——71F7-.
B)= e o P #(B) |d(B)]
Let M, denote u(®,), Grigorii A. Margulis in [Mar] showed that for n > 3 and € > 0,
then the set M, N (e, +00) is a finite set. Since the Lagrange spectrum L, satisfies that
L C M (cf. [CF89]), then M contains the Hall’s ray, but by the foregoing and (x) implies
this phenomenon only happens in n = 2.

Returning to the geometry, let M be a complete connected Riemannian manifold with
sectional curvature at most —1 and let e be an end; we defined the Lagrange and Markov
Spectra respectively by

LimsupSp(M, e) = {lim sup ht.(y(t)) : v € SM}

t—o00

and

MaxSp(M,e) = {suphte(’y(t)) Ly € SM} :

teR

In this case, J. Parkkonen and F. Paulin [PP10], using purely geometric arguments showed
the following theorems:



Theorem If M has finite volume, dimensionn > 3 and e is an end of M, then MaxSp(M, e)
contains the interval [4.2,4+00].

Theorem(The Ubiquity of Hall’s rays) If M has finite volume, dimension n > 3 and e
is and end of M, then LimsupSp(M,e) contains the interval [6.8, 4+00].

These last two theorems can be true in the constant negative curvature 2-dimensional
case, in [[PP10] page 278] J. Parkkonen and F. Paulin expected to be false in variable
curvature and dimension 2.

Inspired in this last expectation is based our second part of work: There is hope that the
two previous theorems be true for variable negative curvature in 2-dimensional case. In
contrast with the work of J. Parkkonen and F. Paulin [PP10], we use purely dynamical
arguments, Theorem 3, the techniques of [MYO01] and [MY10] for regular Cantor set and
combinatorial techniques similar to [MPVO01]. More precisely we prove the following the-
orems (cf. Chapter 4):

Let M be a complete noncompact surface M with metric ( ,) and such that the Gaussian
curvature is bounded between two negative constants and the Gaussian volume is finite.
Denote by Kj; the Gaussian curvature, thus there are constants a,b > 0 such that

—a’ < Ky < -b<0.

Let ¢ be the vector field in SM defining the geodesic flow of the metric ( ,), (here SM
denotes the unitary tangent bundle of M).

Theorem: Let M be as above, let ¢ be the geodesic flow, then there is X a vector field
sufficiently close to ¢ such that

intM(f, X)#0 and intL(f, X) # 0

for a dense and C*-open subset U of C*(SM,R). Moreover, the above holds for a neigh-
borhood of {X} x U in X' (SM) x C*(SM,R), where X*(SM) is the space of C' wvector
field on SM.

The previous result can be extended by the following Theorem, which requires more so-
phisticated techniques:

Theorem: Let M be as above, then there is a metric g close to { , ) and a dense and
C?-open subset H C C*(SM,R) such that

intM(f,¢,) # 0 and intL(f, ¢,) # 0

where ¢4 is the vector field defining the geodesic flow of the metric g.

(see Definition 8 for M(f, X) and L(f, X)).

10



Working the problem of two-dimensional spectra, is also motivated by the reason that
none of the above references (related to the geometric spectra), has mentioned the ex-
pression “Cantor set”. But the problem of finding intervals in the classical Lagrange and
Markov spectra, is closely related to the study of the fractal geometry of Cantor sets, for
this reason we believe that fractal geometry of Cantor set could be the key to solve the
problems about dynamical Lagrange and Markov spectra associated to geodesic flows in
negative curvature. In fact, the techniques used in [MYO01], [MY10] and the theorems
stated above show that this is possibly.

It is worth noting that other students of IMPA, as R. Mane [Mn97] and G. Contreras
[Con10], also obtained interesting results related to the geodesic flow, they developed
techniques of dynamical systems and differential geometry.

Another important related theorem of fractal geometry was proved by Marstrand in 1954
(cf. [Marb4], also cf. [PT93] page 64); it is as follows:

Theorem[Marstrand] Let K C R? be such that HD(K) > 1 and mp: R?* — R be the or-
thogonal projection on the line of direction 6. Then ma(K) has positive Lebesgue measure
for almost every 0 € (—m/2,7/2) (in the Lebesgue measure sense).

Making a simple observation on the geometry of the previous theorem, we get (cf. Chap-
ther 5) a geometric Marstrand’s theorem, using techniques of potential theory, that is:
changing the canonical metric of R?, for a metric of nonpositive curvature.

Theorem|[Geometric Marstrand] Let M be a Hadamard surface, let K C M and p € M,
such that HD(K) > 1, then for almost every line I coming from p, m(K) has positive
Lebesgue measure, where m; is the orthogonal projection on .

Then using Hadamard’s theorem (cf. [PadCO08]), the theorem can be stated as follows:
Theorem Let R? be with a metric g of non-positive curvature, let K C R? with HD(K) >

1, then for almost every 0 € (—m/2,7/2), we have that m(my(K)) > 0, where my is the
projection with the metric g on the line ly, of initial velocity vy = (cos,sinf) € T,R2.

11



Part 1

Lagrange and Markov Dynamical
Spectra: For (Geodesic Flows in
Surfaces with Negative Curvature.
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Chapter 2

The Lagrange and Markov
Dynamical Spectrum

Contents

2.1 The “Large” Subset of CL(M,R) . . . . . .. ... .. ... ... 15

2.2 Regular Cantor Set and Expanding Maps Associated to a
Horseshoe . . . . . . . . . . . i i i ittt 20
2.2.1 Regular Cantor Set . . . . . . ... ... 20
2.2.2 Expanding Maps Associated to a Horseshoe . . . . . . . .. .. 20
2.3 The Interior of the Spectrum . ... ............... 22
2.3.1 Intersections of Regular Cantor Sets . . . . ... .. ... ... 29

2.4 The Image of the Product of Two Regular Cantor Sets by a
Real Function and Behavior of the Spectrum ... ... ... 31

Let ¢ : M — M be a diffeomorphism on a compact 2-manifold and let A be a basic
set for . That is A a compact, invariant, hyperbolic set which is transitive and contains
a dense subset of periodic orbits. Moreover, A has local product structure or, equivalently,
A is the maximal invariant set in some neighbourhood of it. We suppose that A is not

just a periodic orbit, in which case we say that A is not trivial.

Definition 1. Let f : M — R be any continuous function, then the dynamical Markov

spectrum associated to (f,\) is defined by

neL

M) = {swp o) o 4}

and the dynamical Lagrange spectrum associated to (f, A) by

2(7:) = {imsup (" (o)) s 2}

n—oo

14



Observation: Of the definition 1 we have that L(f,A) C M(f,A) for any f € C°(M,R).
In fact:
Let a € L(f, A), then there is o € A such that a = limsup f(¢"(zo)), since A is a compact

n—+o00
set, then there is a subsequence (¢ (xq)) of (¢"(x¢)) such that klim ©"* (o) = yo and
— 400

a = limsup f(p"(z0)) = lim f(¢™ (x0)) = f(v0)-

n—-+4o0o

Affirmation: f(yo) > f(¢"(vo)) for all n € Z, otherwise, suppose there is ny € Z such

that f(yo) < f(¢™ (o)), put € = f(¢™(yo)) — f(v0), then, as f is a continuous function,
then there is a neighborhood U of y, such that

[ (o) + g < f(¢™(2)) for all z € U.

Thus, since @™ (xg) — %o, then there is kg € N such that ™ (zq) € U for k > ky,
therefore,

€
f(vo) + 5= F(p™0F ™ (1)) for all k > k.

This contradicts the definition of a = f(yo).

In this section we show that for a “large” C'-functions, the sets M (f, A) and L(f, A) have
non empty interior.

2.1 The “Large” Subset of C''(M, R)

A “Large” set in the following sense.

Theorem 1. The set
H,={feCYMR): #M;(A) =1 and for z€ My(A), Df.(E¥") #0}
is open and dense, where My(A) ={z € A: f(2) > f(y) VyeA}

The purpose of this section is to prove the previous theorem.

From the local product structure, we know that for z, 2’ € A sufficiently close, W*(x) and
Ws(2') have a unique point of intersection and that this point also belongs to A.

We say that x is a boundary point of A in the unstable direction, if x is a boundary
point of W¥(z) N A, i.e. if x is an accumulation point only from one side by points in
W(x)NA. If z is a boundary point of A in the unstable direction, then, due to the local
product structure, the same holds for all points in W?*(z) N A. So the boundary points
in the unstable direction are local intersections of local stable manifolds with A. For
this reason we denote the set of boundary points in the unstable direction by d;,A. The
boundary points in the stable direction are defined similarly. The set of these boundary
points is denoted by 9, A.

15



The following theorem is due to S. Newhouse an J. Palis (cf. [PT93, pp170]).

Theorem [PN] For a basic set A as above there is a finite number of (periodic) saddle

points pi,...,py such that
AN (U WS@;)) = O,A.

Similarly, there is a finite number of (periodic) saddle points py, ..., py. — such that

AN (U W“(ﬁ)) = LA
Moreover, both O;A and 0,A are dense in A.

A consequence of this theorem and local product structure is:
Corollary 1. The set 0,A N O, A is dense in A.

Proof. Remember that d;A and 0, A are dense in A, so it suffices to prove that d;A N o, A
is dense in O\, in fact:

Let 6 > 0, of the definition of local product structure. Let z € 9;A, then for all 0 < r < ¢,
there is w, € 9,A with d(z,w,) < r, is easy to see the local product structure that the
point W2(z) N W (w,) € 0sA N 9, A, and is close to z if r is small. O

Given f € C°(M,R), denote Mp(A) ={z€ A: f(z) > f(y) Yy€ A}

Remember that Ty M = E° & E* is the splitting in the definition of hyperbolicity.
Lemma 1. The set
' ={fe€C*MR): there is z € My(A) and Df.(E?") # 0}
is dense in C*(M,R).
Before doing proof we introduce the concept of Morse functions (cf. [Hir76]).

Definition 2. Let f: M — R, C", r > 2 is a Morse function, if for all x € M such that
Df, =0 we have that
D?f(0): T,M x T,M — R

is nondegenerate, i.e. if D*f(0)(v,w) =0 for all w € T,M implies v = 0. Denote this set
by M .

Theorem: The set of Morse functions is open and dense in C*(M,R), r > 2.

If f is a Morse function, then Crit(f) = {x € M : Df, = 0} is a discrete set. In particular,
since A is a compact set, we have that # (Crit(f) N A) < occ.

16



Proof of Lemma 1. By theorem above let’s show simply that @7’ is dense in .#. Let
f1 € A, then # (M, (A) N Crit(f)) < oo, so we can find f € #, C*-close to f; such that
M (A) N Crit(f) = (0. Therefore, if z € M;(A), we have Df,(E?) # 0 or Df,(E") # 0.
If both Df,(E?) and Df,(E") are nonzero, then f € o’

In other case, suppose that Df,(E¢) = 0 and D f,(E") # 0, then there are C*-neighborhood
V of f and neighborhood U of z, such that if x € UN A and g € V, then Dg,(e¥) # 0.

Let € > 0 be small, such that the fundamental neighborhood of f,
Vi(f) ={g:de2(f,9) <e} CV.

Let U, C U neighborhood of z such that d(f(x), f(2)) < €/2, and by Corollary 1 there
is 2 € U, N (O,ANO,N). Let ., € C?*(M,R) a C*-function such that o, is C?-close to
the constant function 1, in fact, de2(p,,1) < € and ¢, = 1 in M \ U, and satisfies the
following properties:

L. 902’(2> Z 1;
2. flo) = f(Z)+e> () —@u(x) > flz)— f(2) forall z e UN (A\ {2'});
3. D‘PZ’(ei’) 4 _DfZ’(e§’)5

where e}, € E} is unit vector.

Thus, consider the function g., = f + ¢, — 1 is C2?-close to f and by the property 2 we
have g./(2') > g (x) for all z € U, N (A \ {Z'}).

If x € A\ U, then by the property 1 and 2, follows that

9 (2) = f() + 0 (2) =1 2> f(2) + 9 (2) =1 > f(2) = f(2) + () = 1 = gu(x).

Moreover, since de2(g.r, f) < €, then g, € V.(f), thus Dg..(e%) # 0 and the property 3
we have that g, € &',

Case Df.(e*) = 0 and Df,(E%) # 0 is obtained analogously a function C?-close to f
and in &7’
This concludes the proof of Lemma.

[]

Lemma 2. Let f € CYM,R) and z € M;(A) such that Df,(E$") # 0, then z €
OsA N O,A.

Proof. Using local coordinates in z, we can assume that we are in U C R? containing 0.
The hypothesis of the lemma implies that Df, # 0, i.e. f(z) is a regular value of f,
then o := f~1(f(z)) is a C'-curve transverse to W*(z) and W¥(z) in z, also, the gradient
vector V f(z) is orthogonal a « in 2.

Let U be a small neighborhood z, then a subdivided into two regions U, say Uy, Us (see
Figure 2.1). Now suppose that V f(z) is pointing in the direction of Uy, then in the region
I,II,I11,1V and V, (see Figure 2.1), there are no points of A, in fact:
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Figure 2.1: Localization of z € My(A)

As the function increases in the direction of the gradient, then in the regions I'1, [ and
IV, there are no points of A, because z € M¢(A).

If there are points in I of A, then by the local product structure, there are points in 17
of A, which we know can not happen.

Analogously, if there are points in V' of A, then there are points in IV of A, which we
know can not happen.

In conclusion, the only region where there are points of A is VI, so z € d,A N 9, A.
]

Remark 1. Since, C*(M,R), 1 < s < oo is dense in C"(M,R), 0 < r < s, then the
Lemma 1 implies that &' is dense in C*(M,R).

Lemma 3. The set
Hy={f € C*(M,R) : #M;(A) =1 and for z€ M;(A), Df.(EZ") #0}
is dense in C*(M,R), therefore dense in C'(M,R).

Proof. By Lemma 1, it is sufficient to show that H; is dense in A'.

Let f € A’, then thereis z € My(A) such that Df,(e3") # 0. Take U a small neighborhood
of z. Thus, given € > 0 small, consider the function ¢, € C*(M,R) such that ¢, is C*-close
to constant function 1, also . = 1in M \ U, ¢.(z) = 1+ € and z is a single maximum of

e Also, @, g2> lase— 0.

Define g. = f + ¢ — 1, clearly g, g f as e = 0, since z € My(A) we have g.(z) =
f(2) +pe(2) =1 > f(z) + ¢(z) =1 = g(x) for all x € A, this is z € M, (A) and
#M, (A) =1.

Also, D(g.).(e5*) = Df.(e>*) # 0, that is, g. € H;. O
Lemma 4. The set

Hy,={f € C'(M,R): #M;(A) =1 and for z€ My(A), Df.(EZ") #0}

1S open.
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Proof. Let f € H, and z € M(A) with Df.(e") # 0, where eZ* € E>" is a unit
— (Vf(2) ") = DE(2") > 0 and Vf(2) is

vector, respectively. Suppose that 05"
627

the gradient vector of f at z.

(If we have to, Df,(es) > 0 and Df,(e¥) < 0, we consider the basis {e?, —e%} of T, M or

vice versa).

0

Let U C C*(M,R) an open neighborhood of f such that, for all g € U we have 5 sgu > 0.
ez

The set {e%,e%} is basis of T, M. Let

z) Z

V={veTl.M:v=a.e+bes, a,b,>0}.

Let v € V'\ {0}, then %(z) = Dg.(v) > 0, for any g € U. Since by Lemma 2 we have
v

that z € ;A N 9, A, this implies that, there is an open set U of z such that g(z) > g(z),
forallge U and all z € UN A\ {z}.

Let € > 0 such that |f(z) — f(z)| > 5 for z € A\ U. Let
1 €
vi(f) = {9 e C'OLR): If gl < g and||DF — Dyll.. < £}

a fundamental neighborhood of f, then we claim that, for all g € Ve (f), the set My(A) C
U. In fact: Let x € A\ U, then

19(2) —g()] = lg(2) = f(2) + f(2) — g(z) — f(x) + f(2)]
> f(2) = f(x) = lg(2) = f(2)] = |g(x) — f(z)]
= 2771

Suppose that, there is z, € M,(A) N (A \ U), then

§2|g(z>—f<z)l > |g(2) — g(2g) + f(zg) = f(2)] = 9(29) — ()]
= g(zg) — 9(2) + f(2) = f(29) — |9(zg) — [(2)]
S f,€_€_5€
- 4 2 8 8

This is a contradiction. Therefore, we have the assertion.
Consider the open set Uy = U N Ve(f), then clearly, Uy C H,. O

Now we are in condition to prove Theorem 1

Proof of Theorem 1. Since, H; C H, and by Lemma 3 the set H; is dense in C' (M, R),
then H, C C'(M,R) is dense and open in C*'(M,R). O
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2.2 Regular Cantor Set and Expanding Maps Asso-
ciated to a Horseshoe

2.2.1 Regular Cantor Set

Let A be a finite alphabet, B a subset of A2, and X the subshift of finite type of AZ with
allowed transitions B. We will always assume that g is topologically mixing, and that
every letter in A occurs in Xp.

An expansive map of type ¥ is a map g with the following properties:

(i) the domain of g is a disjoint union Ul(a, b). Where for each (a,b), I(a,b) is a
B
compact subinterval of I(a) := [0, 1] x {a};

(ii) for each (a,b) € B, the restriction of g to I(a,b) is a smooth diffeomorphism onto
I(b) satisfying |Dg(t)| > 1 for all t.

The regular Cantor set associated to g is the maximal invariant set
K= g"<UI(a,b)>.
n>0 B

Let X be the unilateral subshift associated to 3. There exists a unique homeomorphism
h: ¥} — K such that

h(a) € I(ap), for a = (ag,a,...) €Xg and hoo=goh,

where, o : 3F — St is defined as follows 07 ((an)n>0) = (@ny1)n>0. For (a,b) € B, let

fap = [9l1a)] -

This is a contracting diffeomorphism from I(b) onto I(a,b). If a = (ag,- - ,a,) is a word
of ¥, we put

fg = fao,a1 ©---0 fanfl,an

this is a diffeomorphism from I(a,) onto a subinterval of I(ay) that we denote by I(a),
with the property that if z in the domain of f, we have that

fa(2) = h(ah™'(2)).

2.2.2 Expanding Maps Associated to a Horseshoe

Let ¢ be a diffeomorphism of class C? on a surface M, and A is a horseshoe of . Consider
a finite collection (R, ).ea of disjoint rectangles of M, which are a Markov partition of A
(cf. [Shu86]). The set B C A? of admissible transitions consist of pairs (ag, a;) such that
p(Ra) N Ra, 7 0.

So we can define the following transition matrix B which induces the same transitions

that B C A2
bij=1if o(R)NR;#0, by;=0 otherwise, for (i,j) € A%
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There is a homeomorphism II: X5 — A such that, the following diagram commutes

Yp—"=Xp

poll=1Iloo.

Given z,y € A, we denote by N, (z,y, B) the number of admissible strings for B of length
n + 1, beginning at x and ending with y. Then the following holds

Nu(z,y, B) = by,

In particular, since ¢l is transitive, then given x,y € A always exists a increasing se-
quence containing arithmetic progression n;(x,y) > 0 such that

No(a) (.9, B) = bp™) > 0.

The dynamics of ¢ on A is topologically conjugate to sub-shifts X defined by B.

Put
WA (A, R) = (¢ (| Ra)
weR) = o (U Ra)

There is a 7 > 1 and a collection of C"-submersions (7, : R, — I(a))qea, satisfying the
following properties:

If 2,2 € Ryy N o~ (Ry,) and m,,(2) = m,,(2'), then we have

o (9(2)) = Ta, (9(2))-

In particular, the connected components of W*(A, R) N R, are the level lines of m,. Then
we define a mapping g* of class C" (expansive of type ¥p) by the formula

9" (4o (2)) = Tay (9(2))

for (ag,a1) € B, 2 € Ry, N~ (R4, ). The regular Cantor set K defined by ¢g“, describes
the geometry transverse of the stable foliation W*(A, R). Moreover, there exists a unique
homeomorphism h*: 3 — K" such that

h*(a) € I(ag), for a = (ag,ay,...) € XY and h* oot = g“oh",

where o1: 3 — X is defined as follows o ((ap)n>0) = (@ni1)n>0-

Given a finite word a = (ao, - - - , ay), denote f' as in previous section, such that
o (2) = h"(a(h") 7 (2)).
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Analogously, we can describe the geometry transverse of the unstable foliation W*(A, R),
using a regular Cantor set K*® define by a mapping ¢° of class C” (expansive of type Xp).
Moreover, there exists a unique homeomorphism A*: ¥y — K* such that

hi(a) € I(ap), fora=(...,a1,a0) € ¥y and h®ooc~ = g°oh’,

where 07 : Xy — Xj, is defined as follows 0~ ((an)n<0) = (an-1)n<o-
Given a finite word a = (a_n,- -+ , o), denote f; as in previous section, such that

fa(z) =1 ((R*) " (2)a).

2.3 The Interior of the Spectrum
Recall that the set
H,={feC"MR): #M;(A) =1 for z € M(A), Df.(E.**) #0}

is open and dense.
Let f € H, and )y € My(A), then by Lemma 2 we have that ), € ;A N J,A, by
Theorem [PN], we have that there are p,q € A periodic points such that

xy € Wi p) NW*(q).

Suppose that z); & per(p), that is, p # ¢. Assume that p and ¢ have the symbolic
representation

("'7&17.."a'r’a/l’."’ar’.") and (...’b]-’...’bs’bl,-..’bs’..-)

respectively.
So, there are [ symbols c1, - -+ , ¢ such that z,; is symbolically of the form
H_l<xM) = ( 7bl7'” 7bsab17'“ 7bsvcl7'“ yCtytnt 5 Cy A1yttt Apy A1, 7a7“7'“)

where ¢; is the zero position of I ().

Let s € N sufficiently large and ¢ = (—=Gss -+ ,q0, "+ ,qs) a admissible word such that
v € Ry = Ni—_,¢ *(Ry,), as in the Figure 2.2, and let U be an open set such that
UNA=A\R,, then we define

A= ﬂ ©"(U).

nez
Take d € A, call d = (- ,d_p,--- ,do, - ,dyp, - -) the symbolic representation. For
no € N, let d,, = (d_pn,, -+ ,dn,) an admissible finite word. Denote the cylinder
Cg,?o ={we A% :w; =d; for i =—ng, -+ ,ng}. Then, the set
CSjOVB =Yg mC;‘,?O ={weXp:w;=d; for i =—ng, -+ ,n}

is not empty and contains a periodic point.
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U

Figure 2.2: Removing the maximum point

Let no(do, b1) := ko and ng(a,, d;) := jo the minimum of ny(do, b1) and ny(a,, d;), respec-
tively. So, b’;gbl > 0and b}, > 0, therefore there are admissible strings e = (e1, -+, €x,—1)
and f = (f1, -+, fjo—1) joined dy with b; and a, with dy, respectively.

Let £ € N, k > max{ng(x,y) : (z,y) € A?}, then given the word (ay,--- ,a,) and
(b1, - ,bs), we defined the word

(a1,---,ar)k=£a1,---,ar, ...... ,ah'-',arl
k—t‘irmes
and
(51,--',bs)k=(b1,---,bs, ...... ,b1,~--,bs)J.
TV
k—times
Put the word
o = ((bh Jbs)kacla"' y Ctyt ot 7Cl,(a17"‘ 7a7")k)7

where ¢; is the zero position of the word «.
So, fixed the words e and f, we can define the following application, defined for all
S C’gjo , by

Al) = (- ,o_1,70,€1, g1, (b1, - - 7bs)k701,“‘ ,
y Cty ot acla<a1a"' 7a1”)k7f1"" 7.fjo—17x17$27"')'
Given a finite word a = (ay,- - ,a,), denote by |a| = n, the length of the word a. Then,

since k > max{ng, jo}, we have

lel, | f| < la| =k(s+r)+1.

where e = (e1,-- ,ex—1) and f = (f1,---, fj,—1). It is easy to see that for all z €
e, N II-'(A), we have
sup f(o"(A(2)) = f(A(@)) (2.1)
ne
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where f = f oIl In fact:
Observe that o!=*F+o=1(A(z)) € Wi(o(z)) and o~ tFshtho—1(A(z)) € Wi(z) and
3 3

xz € ITI7Y(A). Since M;(A) = {zp} and le],|f| < |a], we have the desired (2.1).

Suppose now that xp; € Per(y), then there is a finite word a = (ay,--- ,a,,) such
that T4 (xp) = (- ,a,a, -+ ,a,--+). Let k, d and C;‘:O ., be as above. Also, there are
admissible strings ¢’ = (ef,--- e}, ) and f' = (f{,--- , f},) joined dy with a; and a,, with

dy, respectively.
So, we can define the following application, defined for all x € Cg:o 5 by

A(Q) = ( 7$—1ax076,17"' aeinov(ah"' aam)kaf{7"' ’f7/'07x17x2a"')'
Note that [¢/[,|f'] < km = |a"|, so there is a finite number of positions py,...,p
k—times
! 7 % N o/
€a, -, a4 ;- QJQ?"'JQi
~— ~—
p1 2

such that for each x € Cg:o , NII7Y(A) there is p; such that

sup f (0" (A(z))) = f(o” (A(z)))- (2.2)

neL

Put, IT7!(x) = z, define the set

A= {z e (ANICE ) sup f(o"(A(z) = f(o™(A(2)))}-

neEL

Thus,

l
Anticy ) =JAx (2.3)

The equation (2.3) implies that there is ig € {1,...,1} such that A; is open in A N
H(C(Z?O )5 SO

HD(AN ey )= HD(A;,). (2.4)

On A;, we have (2.2) for i = ig.
The next objective is to show that A = ITo A o II"! extends to a local diffeomorphism.

First we show that A extends to a local diffeomorphism in stable and unstable mani-
folds of d, W _.(d) and W} (d).

As A is symbolically the product g x X7, put g the finite word (8 = eaf). By the
previous section, we have that for

" € Wig(d)N A, then f5(z") € W*(d)NA and (TI7'(f3(=")))" = BT (=),
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also
v* € Wi (d) A, then f3(2°) € Wi(d)NA and (H_l(fg(xs)))_ = (I (%)) B.
The position zero of 117! (cp_'m*l (fg(xs))), is equal to () = ey, this is

(I (™7 (£52)))g = (B0 = (T (5 (")) -

So, we can define the bracket
[ (f5 @) T (7P (F32))] = (M) B (T (") " = A [T (@), T (@)

Note that for z*, z* sufficiently close to d the bracket [IT7!(x*), IT7!(x*)] is well defined.
As II is a morphism of the local product structure, then

[£5"), 077 (f5(@)] = ([ (f () T (077 (f3(2))])
= II(A[O M (z"), 0" (2%)]) = AlzY, 2. (2.5)

Put A, (z*) = fi(z") and Ay (2%) = @ 1L f5(2%)), therefore, Alz®, 2°] = [Ay(2%), Ay(z®)].

Thus, we have the following lemma.

Lemma 5. If ¢ is a C%-diffeomorphism, then A extends to a local C'-diffeomorphism
defined in neighborhood Uy of d.

Proof. As ¢ is a C?-diffeomorphism of a closed surface, then the stable and unstable
foliations of the horseshoe A, #*(A) and .#“(A) can be extended to C! invariant foliations
defined on a full neighborhood of A. Also, if ¢ is a C*-diffeomorphism, then J5 and fg
are at least C', then by (2.5) we have the result. O

An immediate consequence of this Lemma ?? and the (2.1) (in the case that z) €

(OsANO,A) \ Per(yp)) is:
Corollary 2. If z € AN Uy, then sup,, (" (A(2))) = f(A(z)).

This Corollary implies that f(A(ANU,)) C M(f,A).

Another consequence of this Lemma 5 and the (2.2) (in the case that x) € Per(y))
1s:

Corollary 3. If z € A;,, then sup,c; f(0"(A(z))) = f(pPo (A(x))).
This Corollary implies that f(gPo(A(z))) € M(f,A).

Remark 2. The local diffeomorphism A depend of f, moreover for f € H,, we have
Df.,,(e2%) #£ 0, so this property is true in neighborhood of xyr, so there is x € Uy such

TM

Y then

S, u . . 1 814 s
that DfA(a:)(eg(m)) # 0 and since by construction of A, we have that pE | € Xy

there is x € Uy such that V(f o A)(z) Jf e3™.
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Now we will prove the same for the Lagrange spectrum.

First suppose that x,; ¢ Pery. Then, using the above notation, let z € AQH(C’QLO ) and
nQ,

M (x) = (- @y, @0, 5 Ty, oo+ ), let ng(x,2_;) == m; be such that 7% > 0,
then there is admissible string E; = (ef,--- el ) joined x; with z_; the length |E;| =

So, we can define the following application, defined for all z € C’ZZSO’B by

Al(g) = ( o ,._'L'3,Eg,[L’_g,l'_27l’_1,$0,B,1'1,[L‘Q,EQ,ﬁL‘_Q,I'_l,.To,ﬁ,l'l,El,l'_l,l’o,
7671:17E17x—17x0767x17x27E27x—27x—17I0767$17x27I37E37I—37'H)
where [ = eaf.

Therefore, it is easy to see that for all z € C’g:o LN II-(A), we have

limsup f (0" (A (2))) = f(Az)) (2.6)

n—o0

where f =111 o f oIl In fact:
Remember that |e|, |f|,[E] < |af for all i > 1 and M (A) = {xy}, then

limsup f(o"(A;(z))) = sup Flo™(Ai(z)))

n—oo
where ny, is such that (o™ (A;(z)))" = (¢, -, (a1, yan)®, fi-++, fijo—1,- - ), that is,
the positive part of o™ (A;(z)), begins with (¢, -+, ¢, (a1, - -+, a,)¥), where ¢; = o and
a=((by, -+ ,b)* e, e, ,a, (ar, -+, a,)F). Therefore, there is a subsequence Nk,

with ng, — 00, as j — oo such that

sup f(o™(As(z))) = lim f(o™ (Ay(z))).

Jj—00
By construction of A;, it is true that

lim o™i (A1 (z)) = A(z),

Jj—o0
where A(z) is defined as before.

Therefore,

lim sup f(a"(/h@))) = JE(A(&))

n—oo

As an immediate consequence (in the case that xpr € O;A N O,A \ Per(p)) we have.

Corollary 4. If x € ANU,, then

limsup f(¢"(A,(z))) = f(A(x)), where Ay =TloAjoIl!,

n—o0

This Corollary implies that f(A(A N Uy)) C L(f, A).
Analogously, as in (2.2) in the case x); € Per(y) we have
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Corollary 5. If z € A;,, then limsup, .. f(¢"(A1(x))) = f(ePio(A(z))).
This Corollary implies that f (P (A(A;,))) € L(f, A).

Remark 3. Let ¢ be a C%-diffeomorphism, and A a horseshoe associate to ¢, denoted
TAM = E* @ E" the splitting of the definition of hyperbolicity of A, then A is locally the
product of two reqular Cantor sets K*, K".

Lemma 6. If A is a horseshoe associated to a C?-diffeomorphism ¢ and HD(A) > 1,
then HD(A == (] ¢"(U)) > 1.

neZ

The equation (2.4) implies that

Corollary 6. Assuming the Lemma 6, we have HD(A;,) > 1.

Remark 4. By Corollary 6, 5 and 3 we can assume that if f € H,, then xp € (O;AN
Ou\) \ Per(p). Therefore, henceforth we assume that xp € 0sA N O, A\ Per(y).

Recalling that, as ¢ is a C*-diffecomorphism, A is locally the product of stable and unsta-
ble regular Cantor set, K* x K". Then the previous lemma will be a consequence of the
following lemma.

Let K be a regular Cantor set, with expanding map @ and Markov partition R =

k
{Ky,-- ,Kx} and K = ﬂ @D‘"(U K;), consider the transition matrix A = (ai;)kxk
n>0 i=1
associated to the partition R, define by

STl 0 fY(K)NK; =0

Given a finite word admissible of length m, b = (by,- - ,by,), such that ay,
associate the interval I = I, N ¢~ (L,) N ¢~ 2(Ly,) - -- N~V (1,, ).

= 1, we

Lemma 7. Let K be a regular Cantor set, with expanding map ¥ and Markov partition

k

R={Ky, -, K} and K = m w’”(U K;). Given a finite word admissible of arbitrarily
n>0 =1

large length m, b= (by,- -+ ,by), then there is € > 0 small, such that

k
HD(K,) > HD(K) — €, where K, = (v ™"(|JKi\ L).
n>0 i=1

Proof. Let R = {Ky, -+, Ky} be a Markov partition for K and, for n > 2. Let R"
denote the set of connected components of ¢_(”_1)(Ki), K; € R. For R € R" take
Mg = inf [(¢") |g| and A, g = sup |(¢¥"™)'|r|. Define ay,, 5, > 0 by

> (Apr) ™™ =C and Y (Aur) =1

ReR™ ReR"™
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In [PT93, pg. 69-70], was shown that, HD(K) > «, and d(K) < f,, where d(K) is
a box dimension. Let a be such that A, g < a\, g, for all n > 1 and R € R" and
A =inf |[¢'| > 1, then
HD(K)loga + logC

nlog\ —loga

Bn_ang

Put A, = sup A\, g and B, = inf A\, g, then
RER™ ReR™

(#RMB, " > " (Ag) " = 1> (#RMA,™

ReR™

which implies that
log #R > 6, > log #R '
log B, log A,
We can do the above for the regular Cantor set K;. Note that I, is a element of Markov
partition R™ = \/" ' ¥ "R. Let Ry = (\/'—y ¥ "R) \ I, a Markov partition for .
Without loss of generality, the numbers A\, g, Ay g, @n; Bn, An, B, will be called A, g,
AR, O, B, An, By, for K. Clearly, 3, > f,.

Analogously, for Ry denote the set of connected components of Y= =D(), T € Ry we
have

log #Ry} >G> log #Ry

log B, log 4,

Therefore,
. (| Ry
b= o > BT BTG
log A, log B,

As, #R" ~ #(R)" = k", #RI ~ #(Ry)" = (k™ — 1)" and A, ~ \", B, ~ A"™, this
implies that

8, _nlogk nlog(k™—1) log
T nlog A nmlogh  \ mlog\ |’

Since 8, — HD(K) and 3, — HD(K,).
This completes the proof of Lemma. O

Proof of Lemma 6. Apply the previous Lemma to K® and K* and then use the fact
that for regular Cantor sets, it is true that the Hausdorff dimension of the product is the
sum of the Hausdorff dimensions (cf. [PT93)). O

Note that by Lemma 6 and the local structure of A, we have HD(A N Uy) > 1.
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2.3.1 Intersections of Regular Cantor Sets

Let r be a real number > 1, or r = +00. The space of C" expansive maps of type X
(cf. Section 2.2.1), endowed with the C” topology, will be denoted by €%, . The union

Qy = U (2%, is endowed with the inductive limit topology.
r>1

Let ¥~ = {(0n)n<0, (0i,0;11) € B for i < 0}. We equip X~ with the following ultrametric
distance: for 8 # 0 € 37, set
1 if (9() 7’é 50;

d(8,8) =

[I(@ A B)| otherwise

where Q/\Ez (O_pn,y ..., 0p) if 5,j =0_; for 0 <j <nand 0 .1 #0_,1.
Now, let § € ¥7; for n > 0, let " = (0_,,,...,6), and let B(8") be the affine map from
I(0™) onto I(6y) such that the diffeomorphism k% = B(6") o fg» is orientation preserving.

We have the following well-known result (cf. [Sul87]):

Proposition. Let r € (1,+00), g € 5.

1. For any § € X7, there is a diffeomorphism k% € Diff " (1(6)) such that k& converge
to k¢ in Diﬁf([(@o)), for any v < r, uniformly in 6. The convergence is also
uniform in a neighborhood of g in 1%, .

2. If r is an integer, or r = +oo, k& converge to k% in Diff,(I(6y)). More precisely,
for every 0 < j <r —1, there is a constant C; (independent on ) such that

| D7 log D [ky o (k)71 (z)| < G5|1(6™)].
It follows that  — k% is Lipschitz in the following sense: for 0y = 50, we have

’Dj log D[k o (K2)~] (x)‘ < C;d(,9).

Let r € (1,+0o0]. For a € A, denote by P"(a) the space of C"-embeddings of I(a) into R,
endowed with the C” topology. The affine group Af f(R) acts by composition on the left

on P’ (a), the quotient space being denoted by P’ (a). We also consider P(a) = U P"(a)

r>1
and P(a) = U P’ (a), endowed with the inductive limit topologies.
r>1

Remark 5. In [MY01] is considered P"(a) for r € (1,+00], but all the definitions and
results involving P"(a) can be obtained considering r € [1,+00].

Let A = (6, A), where § € ¥~ and A is now an affine embedding of I(6,) into R. We

have a canonical map

A — P =JP ()
(0,A) — Aok? (€ P"(6y)).
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Now we assume we are given two sets of data (A, B, >, g), (A’,B',¥, ¢') defining regular
Cantor sets K, K.

We define as in the previous the spaces P = U P(a) and P’ = U P(a’).
A A

A pair (h, 1), (h € P(a),h € P'(a’)) is called a smooth configuration for K(a) = KNI(a),
K'(d') = K'n I(d’). Actually, rather than working in the product P x P’, it is better to
go to the quotient () by the diagonal action of the affine group Af f(R). Elements of @)
are called smooth relative configurations for K(a), K'(a’).

We say that a smooth configuration (h, ') € P(a) x P(d’) is

o linked if h(I(a)) MK (I(a)) # 0;

e intersecting if h(K(a)) N A (K(a')) # 0, where K(a) = K N I(a) and K(d') =
Knl(d);

e stably intersecting if it is still intersecting when we perturb it in P x P’, and we
perturb (g,¢') in Qg X Qs .

All these definitions are invariant under the action of the affine group, and therefore make
sense for smooth relative configurations.

As in previous, we can introduce the spaces A, A’ associated to the limit geometries of
g, ¢’ respectively. We denote by C the quotient of A x A’ by the diagonal action on the left
of the affine group. An element of C, represented by (0, A) € A, (§',A") € A, is called
a relative configuration of the limit geometries determined by 6, §’. We have canonical
maps

Ax A — PxP
C — Q@

which allow to define linked, intersecting, and stably intersecting configurations at the
level of A x A" or C.

Remark: For a configuration ((6, A), (¢, A’)) of limit geometries, one could also consider
the weaker notion of stable intersection, obtained by considering perturbations of g, ¢’ in
Qs x Qs and perturbations of (6, A), (§', A’) in A x A’. We do not know of any example
of expansive maps ¢, ¢, and configurations (6, A), (¢', A") which are stably intersecting
in the weaker sense but not in the stronger sense.

We consider the following subset V' of Qy x Qs . A pair (g,g’) belongs to V if for any
(0, A), (¢, A)] € A x A’ there is a translation R, (in R) such that (R, o Ao k2 A’ o k')
is a stably intersecting configuration.
Theorem [cf. [MYO1]]:
1. 'V is open in Qs X Qsr, and V N (QY X Q) is dense (for the C>-topology) in the
set {(g,9'), HD(K) + HD(K') > 1}.
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2. Let (g,9") € V.. There exists d* < 1 such that for any (h,h') € P x P’, the set
I, ={t € R, (R; o h, 1) is a stably intersecting smooth configuration for (g,g')}
is (open and) dense in
T ={teR,(R;oh,N) is an intersecting smooth configuration for (g,g')}

and moreover HD(Z—ZI,) < d*. The same d* is also valid for (§,g’) in a neighbor-
hood of (g,4") in Qs X Qsy.

2.4 The Image of the Product of Two Regular Can-
tor Sets by a Real Function and Behavior of the
Spectrum

Theorem 2. Let K, K' are two reqular Cantor sets with expanding map g, ¢'. Suppose
that HD(K) + HD(K') > 1 and (g,¢') € V. Let f be a C'-function f: U — R with
K x K' Cc U C R? such that, in some point of K x K' its gradient is not parallel to any
of the two coordinate axis, then

intf(K x K') # 0.

Proof. By hypothesis, and by continuity of df, we find a pair of periodic points pi, po of
K and K, respectively, with addresses a, = ajaya;... and @, = asasas..., where a; and a,
are finite sequences, such that df (p;, p2) is not a real multiple of dz nor of dy. There are
increasing sequences of natural number (my), (ng) such that the intervals Iy and I

defined by the finite words a]"* and ag*, satisfy

I my
’|[1 |‘ € (C™,C) for some C > 1.
ay®
of
oy . 5, (01,1
Thus, we can assume that ‘1*171; — A€ [C7,C] as k — oo, define \ := _—ay< ! 2))\

29

‘Z—J;(pl,pz) '
Put k% (K N1 m) := kg, and k% (K01, ) = kg for k large. As (K, K') € V, then there
is ¢ € R such that (kg,, 5‘k/@2 +t) have stable intersection, therefore there is neighborhood
Ul(ka,, ky,) of (kg,, kg,) and a C'-neighborhood W(Az +1t) of Az +t (by Remark 5) such
that

KNh(K') # 0 for any h € W and (K, K’) € U.
Observe that the map k% o ¢"™*: K N [Q;”k: — kg, is almost homothety, i.e.
if By:[0,1] — [g;"k affine map orientation-preserving, then k% o g™ o B, is C*-close to
the identity I: [0,1] — [0, 1].
Analogously, the map k%20(g’)" : K’ ﬁfg;k — k’% is almost homothety (in the same sense).
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Let 2 € kg, N (AL +1t), then
@ ag

z—1

w = (wy,wy) = ((k;% 0 g™ ) H(z2), (K% o (¢/)"™*)~? ( 5 )) € (KN 1me) x (K'N L)

So, we can suppose that, df (wq,ws) is not a real multiple of dx nor of dy, in particular
df (wy,wy) # 0, then there is « the level line of f(wy,ws), this is, « = f~1(f(wy,ws)), is
a submanifold of U.

Therefore, by the implicit function theorem, there is a neighborhood U,, of wy and C'-
function ¢ defined in U,,, such that

f€W),y) = flwy,wa).

g_g];(wh w2)

5 (w1, wg)
by an affine map, to the map Az + t.

Note that &' (wp) = — , then ¢

Iny 18 C'-close, up to a composition on the left
22

Now consider a vertical segment l,,, = {(wy,ws + s) : |s| < €}, for € > 0 small, such that
if p € Be(wy,wq) := {w: ||z — p|| <€}, then Vf(p) ff e; fori=1,2.

Let & be a C'-diffeomorphisms defined in a neighborhood of wy, such that f(&(x),z) =
f(wy,we + s), we can assume that the domain of & is Uy, .

Call & = &, clearly, we have that &, is Cl-close of & is a continuous family. Suppose
that for s small, & is Cl—clgse to &, therefore C'-close up to a composition on the left by
an affine map, to the map A\x +¢.

Thus, kg, N &s(kg,) # 0, let 2 € kg, N &s(kg ), then

wy = (W, wg) = (K 0 g™) 7 (2,), (k%2 0 (¢/)"™) 7" (61(24))) € (K N L) x (KN ).

We are interested in the image of w, by f, in fact

of . T . ~
flw,) = %(pl,pz) <w1 — >\w2> +C.
As z, varies continuously with s, then have the results. ]

The following example show that the property V in the Theorem 2 is fundamental.

Example: Consider the regular Cantor set K, := 1,5 % " (K1 U Kj), where

= if veK;:=[0,52];
() =
—Zr+ &= if ze K= [H2 ]
Since, HD(K,) = —bglz’i) (cf. [PT93]). Then, if « < 1/2, then HD(K,) > 1/2 and for
2

1/3 < @ < 1/2 hold that K, — K, has measure zero (cf. [Mor99]).
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Moreover, HD(K, x K,) > 1 and f(x,y) = x — y, satisfies the hypothesis of previous
Theorem, but for 1/3 < a < 1/2 we have that

int f(K, x K,)=10.

Corollary 7. Let ¢ be a C?-diffeomorphism, and A a horseshoe associate to o, suppose
that K?, K" satisfy the hypotheses of theorem above, put

Ay = {f € C*(M,R) : Iz = (2%,2") € A such that Vf(z) }yes* }.
Then, for all f € Ax, we have intf(A) # .

It is easy to prove that A, given the above Corollary is an open and dense set in C' (M, R).

A fundamental result due to Moreira-Yoccoz in [MY10] on the existence of elements in V'
associated to the pairs regular Cantor sets (K*, K*) defined by ¢°, ¢g* where ¢g° describes
the geometry transverse of the unstable foliation W*(A, R) and g* describes the geometry
transverse of the stable foliation W*(A, R) given in the section 2.2.2 is the following:

Theorem|cf. [MY10]] Suppose the sum of the Hausdorff dimensions of the Cantor regular
set K¢, K" defined by g*, 9" are > 1. So, if the neighborhood U of o in Dif f>(M) is
sufficiently small, there is an open and dense U* C U such that for ¢ € U* the corre-
sponding pair of expanding applications (g,g’) belongs to V.

Definition 3. Let ¢ be a C?-diffeomorphism ¢ with a horseshoe A of HD(A) > 1, the
pair (@, \) is said to have the property V', if the pair of expanding map (g°, g*) associated
to pair of reqular Cantor sets (K*, K*) associate to (p,A) is in V.

The previous theorem implies that given a horseshoe Ay associate to diffeomorphism g
with HD(Ag) > 1, there is a diffeomorphism ¢ close to ¢q with a horseshoe A (Hyperbolic
Continuation of Ag), such that (¢, A) satisfies the hypotheses of Corollary 7 for all f € Aj.

We use the above results to show that the Markov and Lagrange spectra has non-empty
interior.

Given a pair (p, A) of a diffeomorphism ¢ and a horseshoe associate to ¢ with HD(A) > 1,
In the section 2.1 ( cf. Lemma 4 and Theorem 1) was defined the open dense set H, in
CY(M,R) by

H,={feCYMR): #M;(A) =1 for z€ Mi(A), Df.(e*) #0}.

Remember that A is a sub-horseshoe of A as in Lemma 6 with HD(A) > 1 and
HD(ANUy) > 1, then by theorem [MY10], there is a diffeomorphism ¢y close to ¢, and
horseshoe A associate to ¢y and sub-horseshoe ]\0 C Ay with H D(/~\0) > 1 and such that
Ao (we are perturbing the sub-horseshoe) satisfies the hypotheses of Theorem 2.

Given f € H,,, we can define fl%( f) alocal diffeomorphism, in coordinates given by the
stable and unstable foliation, we can write, Ay, (f)(z,y) = (AL (f)(z), A2 (f)(y)) (see
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(2.5)) as in the section 2.3.

Note that, it f € H,,, Let d € Ay close to d and Uj is a small neighborhood of d. Then,
by Remark 2 there is x € Uy such that V(f o A, (f))(z) } €5%, where é;* are the unit

x )

vectors in stable and unstable bundle of hyperbolic set Ag, respectively. So, the function
foA, (f) € Ay, Therefore, by Corollary 7

int(f o Agy (1)) (Ao NUZ) # 0. (2.7)

Then, as in Corollary 2, we have that

sup f (5 (Ag (f)(2)) = (f 0 Agy (f)) (@)

neEZ

for all # € Ag N U;. This implies that (f o A,,(f))(Ao N U;) € M(f,Ag). Thus, by (2.7)
we have that int M (f, Ag) # 0.

By Corollary 4 and 5 we have the analogue to the Lagrange spectrum. Thus, we have the
following theorem.
Then, as in Corollary 2, we have that

sup f (5 (A, (f)(2)) = (f 0 Agy (f)) (@)

nez

for all # € Ag N U;. This implies that (f o A, (f))(AgNU;) € M(f, A). Thus, by (2.7)
we have that int M (f, Ag) # 0.

Theorem 3. Let A be a horseshoe associated to a C*-diffeomorphism ¢ such that HD(A) >
1. Then there is, arbitrarily close to ¢ a diffeomorphism oy and a C*-neighborhood W of
o such that, if Ay denotes the continuation of A associated to ¢ € W, there is an open
and dense set Hy, C C*(M,R) such that for all f € Hy, we have

intL(f,Ay) # 0 and int M (f, Ay) # 0.

where intA denotes the interior of A.
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Chapter 3
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We will work with a complete noncompact surface M such that the Gaussian curvature
is bounded between two negative constants and the Gaussian volume is finite. Denote by
K the Gaussian curvature, thus there are constants a,b > 0 such that

—a? < Ky < —b? <0
Next we will be considering some theorems that will be used in our arguments.

Definition 4. Let X, Xy be metric spaces with metrics dy and ds respectively, a sequence
of maps f; + X1 — Xo, i = 1,2, .... is said to be uniformly bi-Lipschitz if there exists a
C > 1 such that

C_ldl(‘ray) < dQ(fl(x)v fl<y)> < Cdl(x7y>
forallz,y € X1 andv=1,2,...; a C' > 1 for which the relation holds is called a uniform
bi-Lipschitz constant for the sequence.

Definition 5. A subset S of a metric space X is said to be incompressible if for any
nonempty open subset ) of X and any sequence f; of uniformly bi-Lipschitz maps from
Q onto (possibly different) open subsets of X, the subset

Nz £71(S)

has the same Hausdorff dimension as X.
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The following theorem was proved by S.G. Dani (cf. [Dan86] and [DV89])

Theorem: Let M be a complete noncompact Riemannian manifold such that all the sec-
tional curvatures are bounded between two negative constants and the Riemannian volume
is finite. Let p € M and S, the space of unit tangent vectors at p, let C' be the subset of
Sy consisting of all elements w such that the geodesic rays starting at p in the direction u
is a bounded subset of M. Then C' is an incompressible subset of S,.

In other words, let M be a manifold as in the theorem and consider the geodesic flow
corresponding to M, defined on the unit tangent bundle, i.e.,

SM ={(p,u) :pe M,ueS,}

equipped with the usual Riemannian metric. Then, the above theorem implies the fol-
lowing result on the dynamics of the flow.

Corollary: Let the notation be as above and let C' be the subset of SM consisting of all
elements (p,u) whose orbit under the geodesic flow is a bounded subset of SM, then C
is a subset of SM, which has Hausdorff dimension equal to the dimension of SM, with
respect to the distance induced by the Riemannian metric.

In particular, if M is a surface, then HD(C) = dim(SM) = 2(2) — 1 = 3.
Consider now a family of bounded open subsets indexed by R, with the following proper-
ties:
1. If o < B, then Q, C Qg.
2. Q, /N SM, thisis, | ] Qo = SM.
acR

For example, Q, = B,(p), the ball of radius o and center p.
Let

o RxSM —s SM
(t,z) > ¢'(x)

be the geodesic flow.

Put Q, = ﬂ #' (), then we have the following statement:
teR

ccl Qo
a€eR

where C' is given in the previous Corollary.

In fact, let x € C, then there exists a compact set K, such that the orbit of z, O(z) C

K, C Q,, for some «, € R, this implies that ¢'(x) € Q,, for all ¢t € R, therefore x € Q,,
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and the statement is proved.

Let «, be a sequence in R such that o, — o0 as n — oo and @, < auy1, then
Qq, C since €2, C € Hence

Qn+1) Qn+1°

CcC D 6%,
n=1

where € is the closure of Q. Since HD(C) = 3, then sup,, H D(ﬁan) = 3, therefore there

exists n such that HD(S,, ) is very close to 3.

Definition 6. [cf. [CL77]]
Let M be a C* manifold of dimension m. A C" foliation of dimension n of M is a C"
atlas F on M which is mazimal with the following properties:

o If (Uyp) € F then p(U) = Uy x Uy C R™ x R"™™ where Uy and Uy are open disks
i R™ and R™™™ respectively.

o If (U, o) and (V,¢) € F are such that U NV # 0, then the change of coordinates
map oot p(UNV) = (UNV) is the form, ¥ o o~ x,y) = (hi(z,y), ha(y)).
We say that M s foliated by F, or that F is a foliated structure of dimension n
and class C" on M.

The charts (U, ¢) € F will be called foliation charts. Let F be a C" foliation of dimen-
sion n, 0 < n < m, of a manifold M™. Consider a local chart (U, ) of F such that
o(U) =U; x Uy CR" x R"™. The set o 1(U; x {c}), ¢c € Uy are called plaques of U,
or else plaques of F. Fixing ¢ € Uy, the map f = o' /U, x {c¢} : Uy x {¢} - Uisa C"
embedding, so the plaques are connected n-dimensional C” submanifolds of M. Further
if o and § are plaques of U then a N B =0 or a = .

A path of plaques of F is a sequence ay, ..., ay of plaques of F such that a; Nejq # 0 for
{1,...,k}. Since M is covered by plaques of F, we can define on M the following equiva-
lence relation: ”"pRq if there exists a path of plaques aq, ..., with p € a1, ¢ € a;”. The
equivalence class of the relation R are called leaves of F.

A classic result due to D. Anosov (cf. [Ano69], [K1i82] and [KH95]) states that for complete
manifolds of curvature bounded between two negative constants, the geodesic flow ¢ on
S M is Anosov, that is, there exists a continuous splitting T'(SM) = E*®¢d E*", invariant
under the derivative of the flow D¢ on T'(SM), such that ¢ is the subbundle spanned
by the direction of geodesic flow, D¢ exponentially expands E**, and D¢ exponentially
contracts £*°, that is, there are constants C,c¢ > 0, A > 1 such that

|D¢'(x)| = eXz|  if z€E*™ and t>0,
|D¢'(z)| < CAX'|z| if z€F* and t>0.
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The subbundles E* and E"* are known to be uniquely integrable. They are tangent to
the strong stable foliation (W**) and strong unstable foliation (W"*).

Now notice that A := €, is compact and ¢'-invariant, and since ¢! is an Anosov flow on
SM, A is hyperbolic set for geodesic flow ¢'.

3.1 Cross-sections and Poincaré Maps

This section is adapted from [AP10] Chapter 6.

Now let ¥ be a cross-section to the flow, that is a C'-embedded compact disk transverse
a ¢ at every point z € X: We have T.X & (¢(z)) = T.SM (recall that (¢(z)) is the
1-dimensional subspace {s¢(z) : s € R}). For every x € ¥ we define W*(z,¥) to be the
connected component of W (z) NY that contains x. This defines a foliation F%, of ¥ into
codimension 1 submanifolds of class C' (cf. [AP10]).

Remark 6. Given any cross-section ¥ and a point x in its interior, we may always find
a smaller cross-section also with x in its interior and which is the image of the square
0,1] x [0,1], by a C? diffeomorphism h that sends horizontal lines inside leaves of F%.
Thus, the cross section that we consider are those that are image of the square [0, 1] x [0, 1]
by a C? diffeomorphism h that sends horizontal lines inside leaves of Fs. In this case, we
denote by int(X) the image of (0,1) x (0,1) under the above-mentioned diffeomorphism,
which we call the interior of

3.1.1 Hyperbolicity of Poincaré Maps

Let Z = (JX; be finite union of cross-sections to the flow ¢' and let R: £ — = be a
Poincaré map or the map of first return to =, R(y) = ¢"*™ (y), where t,(y) correspond to
the first time that the orbits of y € = encounter =.

The splitting E** @& ¢ & E"* over Uy neighborhood of A defines a continuous splitting
E$ @ EY of the tangent bundle T3 with ¥ € {¥;};, defined by

Es(y) = E;°NT,% and Ex(y) = E,*NT,% (3.1)
where Ep° = E5° @ (4(y)) and B = EJ* @ (¢(y)).
We now show that for a sufficiently large iterated of R, R", then (3.1) define a hy-

perbolic splitting for transformation R™ on the cross-sections, at last restricted to A.

Remark 7.

1. In what follows we use K > 1 as a generic notation for large constants depending only
on a lower bound for the angles between the cross-sections and the flow direction, and on
upper and lower bounds for the norm of the vector field on the cross-sections.

38



2. Let us consider unit vectors, e° € E3° and €, € E5,(x), and write

¢(x)
lo() I

Since the angle between E2° and ¢(x), L(E2*, ¢(x)) is greater than or equal to the angle
between E* and ES*, Z(E2°, ES"), because ¢(x) € ES* and the latter is uniformly bounded
from zero, we have |a;| > k for some k > 0 which depends only on the flow. It is clear
from (8.2) and the fact that the above angle is uniformly bounded from zero.

SS S
e’ =aze, + b,

(3.2)

A
Let 0 < XA < 1 be, then there is ¢; > 0 such that \'* < %)\ and A" < e take n,
such that t,(z) = Y i  ti(x) > t; for all z € =, where #;(z) is such that Ri(z) =

¢ (R (x).
So, we have the following proposition:

Proposition 1. Let R: = — = be a Poincaré map and n as before. Then DRI (ES(x)) =
E$,(R™(z)) at every v € ¥ € {¥;}; and DRI (E¢(x)) = E&(R™(z)) at every v € ANX
where R"™(z) € ¥’ € {¥; }.

Moreover, we have that

IDR"|mg || < A and [ DR[| > 5
at every v € 3 € {%;},.
Proof. The differential of the map R™ at any point x € X is given by
DR™x) = Pra(y 0 D¢ |1 5,

where Pgn(y) is the projection onto Trn(,) %’ along the direction of ¢p(R™(x)).

Note that E%, is tangent to XN W O W¥(z, X). Since the center stable manifold W (x)
is invariant, we have invariance of the stable bundle:

DR™(x)(Eg(x)) = B (R"(x)).
Moreover, for all x € 3 we have

D¢ @(Eg(x)) C D(ES) = By,

since Prn(q) is the projection along the vector field, it sends Eg, ) to Ey, (R™(x)).

This proves that the unstable bundle is invariant restricted to A, that is, DR™(z)(E%(x)) =
E%(R"(x)), because has the same dimension 1.

Next we prove the expansion and contraction statements. We start by noting that

HPRn(x)H < K, with K > 1, then we consider the basis {Iligll’e;} of E2, where e}

is a unit vector in the direction of F¢(z) and ¢(x) is the direction of flow. Since the flow
direction is invariant, the matrix of D¢'|E" relative to this basis is upper triangular:
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[¢(R" ()|

le@n ¥
D¢tn(x)| Beu =
0 a
this is due to fact that D¢ (p(z)) = ¢(¢ @ () = ¢(R™()).
Then,
IDR™ (@)esll = || Pra@) (Do (x))es|| = ||aekne|| = la|

LA g,

= KR ()

To prove that HDR”
and write as in (3.2)

1 1
> _)\ftn(a:) > K73)\7t1 -
= K3 = )

EE(I)H < A, let us consider unit vectors, e* € E** and €5 € Ei(x),

e — g8 4 b2
o)l
We have |a,| > k for some £ > 0 which depends only on the flow.

¢(R"(x))
o)

= HPR" Dﬁbt" ())és

- | ‘

z%n<Dwn<>>(%(@ o)
bz

Then, since Prn(y) ( > = 0 we have that

|DR"(x)é

|

)

1 : @) () (o5 )

@] || 7@ (P <”(x \wxmﬂ

_ 1 : ) (1) (655 — § (R (7))
|a%”(¢(”<)b%@(meH

< T De@)er)] < Tane < Ty <y (3.3)

3.2 Good Cross-Sections

For each x € A = Q,,, we can take cross-section in z, and using a tubular neighborhood
construction in each cross-section ¥, we linearize the flow in an open set Uy, = ¢(=59) (intX)
for a small € > 0, containing = the interior of the cross section.

This provides an open covering of the compact set A by tubular neighborhoods.

We let {Uy, :i=1,2,....1} be a finite covering of A, this is

l l
Ac|JUs, = oo (ints). (3.4)
=1 =1

Using a result on the differentiability of the strong stable foliation, we can choose these
cross-sections ¥; in such a way that they do not intersect.
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Now introduce the tools to prove the above claims.
The following result is due to Morris W. Hirsch & Charles C. Pugh (cf. [HP75]).

Theorem(Smoothness Theorem)

Let M be a complete surface with Gaussian curvature bounded between two negative con-
stants, then the Anosov splitting T(SM) = E* & ¢ & E*™™ for the geodesic flow is of class
C'. In particular, the strong stable foliations and strong unstable foliations are of class

ch.

Let F*¢ the strong stable foliations and F““ the strong unstable foliations, this is F'(x) =
W(z) for i = ss,uu, are foliations of dimension one. Then we have the following Lemma.

Lemma 8. Let x € SM and L be a C'-embedded curve of dimension one, containing T
and transverse to the foliation F*°, then the set

Sp=JF*(2)

z€L

contains a surface S, that is C'-embedded, which contains x in the interior and if L is
transverse to the foliation W then, S, is transverse to the geodesic flow.

Proof. Let (U,¢) be a chart of the foliation F**, with € U, since the dimension of
foliation F** is equal to 1 and dim(SM) = 3, there are disks U; C R and U, C R? such
that ¢ : U — U; x Uy, put Il : U; x Uy — Us the projection on the second coordinate.
Let f = II, o ¢ function of class C*, clearly f is a submersion.

Now f(L) C Us, is a C''-submanifold of dimension one, in fact, suppose that Dy, (v) =
(w,(0,0)) € R x R? then v € T,F*(z), indeed, let a(t) be any curve in U, such
that a( ) = x and &/(0) = v, put p(x) = (z1,22) and @(a(t)) = (a1(t), as(t)), there-
fore a;(0) = x; for i = 1,2 and o{(0) = w, a4(0) = (0,0), then Dgo;l (w,(0,0)) =

(z)
d -
S @),

chart (U, ) ¢ 1 (a1(t),as(t)) = ¢ (a1 (t),z2) C F*(x) and since = 1(a1(0), a2(0)) =
o (21, 29) = x, then

2(t)) |t=0, where &1 (t) = x1 + tw and as(t) = 9, by the properties of the

v =Dy, (w,(0,0)) = — ¢ (a1(t), Ga(t)) =0 € ToF™ (),

dt

as wanted.

Let B : (—¢,¢) = SM a C'-embedding on L in some y € L N U, with 3(0) = y, then as
L is transverse to the foliation F*° and demonstrated above, we have

(foB)(t) = D(I2) (s (Desr) (B'(t) # 0

for all ¢, as L is a C''-embedded, then the above implies that f(L) is a C*-submanifold of
Us.
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Now since f is a submersion and f(L) is a submanifold, then f~!(f(L)) is a C''-submanifold
of SM, with the following property, if z € f(L), then f~(z) = o} (II;*(2)) = ¢~ (U, x
{z}) = F**(y) N U where z = f(y) and y € L, and follows the Lemma.

[l

In particular, taking L = W*¥(x) with e given by the stable and unstable manifolds

theorem, we call S, := X,.

Note that an analogous Lemma holds for the foliation F"*.

Without loss of generality we can assume that X, is diffeomorphic to the square [0, 1] x
[0,1], put ¥, = X, with the horizontal lines [0,1] x 1 being mapped to stable sets
We(y,3,) = W*(y) N E,. The stable-boundary 9°% is the image of [0, 1] x {0, 1}, the
unstable-boundary 0“¥ is the image of {0,1} x [0, 1].

Therefore we have the following definition.

Definition 7. A cross sections is said 6-Good Cross-Section for some 6 > 0, if
satisfies the following:

AANS,08) > 6 and d(ANS, %) > §

where d is the intrinsic distance in X, (see Figure 3.1).
A cross-section which is §-Good Cross-Section for some 6 > 0 is said a Good Cross-

Section-GCS.

L ~_
— ~

7" s-boundary

—
o
</

\

|

‘ |

\

|

\ ‘ \

\ J ~ l\\ \
‘ ~ ~ \

1 | h 8 _u-boundary

\

|

|

|

Figure 3.1: Good Cross-section

Lemma 9. Let ¥ be a §-Good Cross-Section, then given 0 < §' < 0 there is a §'-Good
Cross-Section X' C int(X) and such that 0¥’ N I¥ = ().
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Proof. Call v;, i = 1,2,3,4 the C'-curves which form the boundary of 3. Let 7/ be a
C'-curve contained in ¥ and satisfies d(v;, ) = ¢ for any = € 7, (see Figure 3.2).
Therefore A N Y is contained in the region bounded by the curves ;" in 3. Now consider
the C'-curves v/ C ¥ with the property d(v;,z) = ¢ for any x € 7/, then the region
bounded by the curves 7} is a ¢’-Good Cross-Section, ¥’ C ¥ (see Figure 3.2).

Figure 3.2: Reduction of GCS

]

Now we prove that for any x € A there exists a Good Cross-Section which contains x for
some § > 0.

We use the following result (cf. [Ano69], [Pat99] and [[K1i82] chapter 3]).

We know that, since there are a,b > 0 such that —a? < Kj; < —b* < 0 where Ky,
os the sectional curvature of M and volume of M is finite, then the non wandering set
Q(¢") = SM. Since the geodesic flow is Anosov, the spectral decomposition theorem
implies the geodesic flow is transitive, then for any (z,v) € SM, Wes(x,v) = SM and
Wew(z,v) = SM. Thus, we have the following Lemma.

Lemma 10. For any x € A there exist points x* ¢ A and x=— ¢ A in distinct connected
components of W5 (z) — {x}.

Proof. Let © € A, suppose otherwise there would exists a whole segment of the strong
stable manifold entirely contained in A and containing z in the interior, called the seg-

ment of v, without loss of generality, we can assume that W25 (z) C . Now take t; a

sequence such that t, — oo as k — oo, then as A is a compact set, we can assume that
¢ () >y e Nask — .

Let us prove now that W#(y) C A, in fact:

Let z € W*(y), as W*(y) = U@ " (Wi (4" (y)), then there is T > 0, such that

loc

T (z) € W2 (¢T (y)), by Stable Manifold Theorem W;s (47 (y)) is accumulated by points

loc loc

Wis (¢4 +1)(z)) for large k. Let k be sufficiently large such that (—t; + 7) < 0 and
Wi (o) () € ¢t FT)(y) € A, as well A is a invariant set and v C A, hence as A

loc

is closed, we have that W5 (47 (y)) C A, this implies z € A, this proves the assertion.
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The above statement implies that A D W (y) = J,cg W**(¢'(y)), in fact:

Let w € W¢(y), then there is t; € R such that, w € W*(¢'(y)), hence there is T > 0
such that ¢7 (w) € Wss(¢™(y)), then ¢" " (w) € Wi\ (¢ (y)) for r > 0, so we
can assume that 7'+ tg > 0, therefore

o0 (w) = ¢~ T (G (w)) € o~ TH (W (970 (y))) € W*(y) C A,

since A is invariant, then w € A, this implies that W(y) C A and by the previous

observations SM = Wes(y) C A and this is a contradiction.
This concludes the proof of Lemma. O

Similarly, we have,

Lemma 11. For any y € A there exist points y©= ¢ A and y~ ¢ A in distinct connected
components of W*(x) — {z}.

Proof. Similarly to Lemma 10. O]
Lemma 12. Let x € A, then there is § > 0 and a 0-Good Cross-Section 33 at x.

Proof. Fix € > 0 as in the Stable Manifold Theorem, and consider the cross section >,
given by the Lemma 8 containing a segment of W2*(z) and W**(x) with x in the interior,
by the Lemma 10 and Lemma 11, we may find points ¥ ¢ A in each of the connected
components of W2(z) N'Y, and points 2 ¢ A in each of the connected components
of W (x) N'¥,. Since A is closed, there are neighborhoods V* of % and Vi of z*
respectively disjoint from A (see Figure 3.3).

Figure 3.3: First step to construct GCS for x € A

In Figure 3.3, it can happen that V*, Vli enclose a region homeomorphic to a square, in
this case there is nothing to be done.
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If this is not the case in the first instance, we prove that the above can be obtained.

Let ¢ be a sequence, such that ¢, — +00 as k — 400 and ¢~ (z) — y € A as k — 400,
then by Lemma 10, there are y* in each of the connected components of W2*(y) such
that y* ¢ A and there are neighborhoods J* of y* respectively with J* N A = 0.

Now for z € W*(x), we have

(¢~ (2),y) < d(¢7"(2), ¢ (x)) + d(¢~"(x),y)

converges to zero as k — 00, using the continuity of W?*(z) with x € SM, given by the
Stable Manifold Theorem, we have for sufficiently large k, say k > ko, W5(¢ " (2)) is
close to WSS( ), for all z € W““(x), this implies that J* N W (¢~ (z)) # 0. Hence,

€

there are zi € (J* N W33 (¢ (2))), for all z € W(z), (see Figure 3.4).

- W )
e (¥)

+
Wo

— Wi(@) with z e W)

Figure 3.4: Second step to construct GCS for x € A

We want to see now that for sufficiently large k, ¢'(J*) and V= has the property of
enclosing a region homeomorphic to a square. In fact Consider the points w; in J*
i=1,2 as in F1gure 3.4, with d(wy,wy) > 0, let 74> C JT a segment joining w; with

that contains x; and transverse to st(gb tk(x)), it suffices to prove that ¢ (yi?)
has length greater than or equal to e for sufficiently large k, now we can assume that

w;” € W (¢~ (x)) for i = 1,2, then
d(¢" (=), 0" (2)) = Kextrd(w, w])

and for k > kg the expression on the right in the above inequality is greater than equal
to € as desired.

Note also that as z;” € W#(¢~ " (z2)), for all z € W**(z) then
d(¢™(27), 2) = d(@"™ (), 9" (¢7%)(2)) < Ke Mrd(z, ¢~ (2))

< Ke Mk,
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for all z € W (x).

So for sufficiently large k, say k > k the expression on the right in the above inequality is
very small, so that ¢ (J*) cross Vi and is close to W"*(z). Analogously, one can obtain
ko such that ¢*(J~) cross Vi* and is close to W*(z) for k > k.

On the other hand, we know that there is zi- € JENW?((¢7%(2)) # 0 for any z € W**(z)
respectively. Hence, for sufficiently large ko, ¢'o(J) and ¢ (J~) crossing V*. More-
over, ¢ (z) € Wy, (2) N @™ (JF) € W(2) N Mo (JF) C By N ¢l (JF) for any
z € W (z) with ¢t (J*) N A = (), then the open sets V;* and ¢ (J*) have the desired
property.

Let 3% be a segment of W**(zF) contained in Vli respectively, take kg large enough such
that the endpoints of A%, B for i = 1,2 is contained in ¢ (J*), (see Figure 3.4). Let
n* be a C'-curve transverse to the foliation F*° contained in ¢o(J*) N Y, and joining
BE with B, respectevely. Finally, good cross-section it is the section determined by the
curves % and n*, (see Figure 3.5).

B +
1 Good Cross-Section

- Zo

W (x)

Figure 3.5: The construction of GCS for z € A using positive iterated

And this concludes the proof of the Lemma. O
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Remark 8. Note that if k > ko, is as in the proof of the Lemma 12, this is, we have the
Figure 3.5, then for k' > k > ko, we have the same Figure 3.5, but the open ¢t (J*), has
diameter much greater than €, (see Figure 3.6).

Figure 3.6: Small GCS

Remark 9. In the proof of Lemma 12, we could consider an accumulation point ¢*(x) for
t >0, and get the same result, but in this case crossed V*, consequently satisfies Remark
8 in this case, (see Figure 3.7).
Wg'x)
k'>kK

Figure 3.7: The construction of GCS for x € A using negative iterated

Given x € A = Q,,, from now on, we call X, the Good Cross-Section given by the
previous Lemma associated to x.

Corollary 8. Given x,y € A, if the interior of the Good Cross-Sections £, and 2, given
in the Lemma 12 intersect transversal to foliation F*°, that is, (int(X,) Nint(X,)) h F**,
then int(X;) Nint(3,) is an open set of ¥, and E,,.
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Proof. Let v C int(X3,) Nint(X,) a Cl-curve transverse to F*%, then for all z € v, there
are 2’ € W*(x) and v € W**(y) such that z € W*(2') N3, and z € W**(y') N X, then
there is 6 > 0 such that the set

B =|JW;*(2) Cint(S,) Nint(S,)
zEey
Thus we have the Corollary. [

Remark 10. Suppose that X1, Xy are GCS and Xy NXy # 0, but int¥, Nint¥s = 0, then
as both are GCS, there are two GCS E C X; foriv=1,2 such that 21 N 22 0 with

2 2
AN o ints) = An o (intS). (3.5)

=1 =1

In fact:

By Lemma 9, there are two GCS, Y, C int(%;) such that 9%, NI, =0 fori =1, 2, as
intY,NintSy = 0, then $1N%y = 0, also the Lemma 9 implies that ANint(%;) Cint(%;),
thus we have A Nint(X;) = ANint(X;) and as A is ¢' invariant, then

AN (int () = ¢ (A Nint (%)) = ¢V (A Nint(X;)) = AN ¢ (int(5;)).
Therefore we have (3.5).

So, we can assume that if two GCS has nonempty intersections, then their interiors have
nonempty intersection.

3.3 Separation of GCS

At each point of x € A, we can find a Good Cross-Section ¥, as in Lemma 12. Since
A is a compact set then as in (3.4), there are a finite number of points x; € A, putting
Yo, =2 fori=1,..., ], we have

l

l
AC U o208 (ints;) C | J oo (intsy) = J Us,. (3.6)
=1

i=1

Lemma 13. If X,NY; # 0 for some i,j € {1,...1}, 3; and ; as in the Corollary 8, then
there is &' > 0 such that ¢°(3;,) NS, =0 for all0 < § < §'.

Proof. Suppose otherwise, then for all n sufficiently large, there is 2] € ¥, such that
¢%(z?) € X;. Since ¥; is a compact set, we can assume that z7' converge to z; as n tends
to infinity, then ¢ (2') converge to z; as n tends to infinity, this implies that z; € 3, N%;.
Suppose that z; € int);, as the vector field which generates the geodesic flow has no
singularities, then by the Tubular Flow Theorem, there are » > 0 and 1 > 0 such that
B,.(z;) the open ball of radius r and center z; satisfies
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¢'(Br(2) N3;) N 55 =10
forall 0 <t <.
Then by the Corollary 8, we have (B, (z)NX;)\ {2} C X;, take n large enough such that
z" € By(z)NY; and = <1, so o (27) ¢ ¥; which is a contradiction.

Suppose now that z; € 0%;, then we can find a new GCS E;- D Y; as in the Lemma
12 and such that z; € intX}, so ¥; and X} behave as in the previous case and again to
obtain a contradiction. Thus we conclude the Lemma. O

The following Lemma proves that the GCS in (3.6) can be taken disjoint if all possible
intersections of ¥; with X, are in the hypothesis of the Corollary 8.

I

Lemma 14. Assuming (3.6) there are GCS S; such that A C Ugb(_ﬁ’e)(ii) with the
i=1

property X; N X; =0 for alli,j € {1,...,1}.

Proof. We will do the proof by induction on . If [ = 1, is clearly true. For | = 2, can
happen two cases:

1. ¥, N, = 0, in this case take %), = %, for k = 1, 2.
2. X1 Ny # 0 and intd; NintXy = 0, then by Remark 10 and (3.5) have the desired.

3. int(X;) Nint(X;) # 0, then by the Lemma 13, for 0 < § < ¢’ and 0 < §, by (3.6)
putting X1 = ¢°(%;), clearly ¢°(X;) is a GCS and as § < £, then ¢(722) (%) C
¢(=<9(3,) and satisfies the Lemma.

Suppose the Lemma is true for all £ < [ and we show to hold for k£ = [. In fact: Suppose
that given any number k < [ of GCS as in (3.6) there are a number k < [ of new GCS
such that

k

k
s 22 (=) c o 9(Sn) (3.7)

s=1

and i, N iir = for s,r € {1, ..., k}.
Note also by Remark 10, we can suppose that, ¥; N X; = 0 < d(3;,X;) = 0;; > 0, where
d is the distance between the two cross-section.

Statements:
L IfX;NY; =0 and X NY; # 0, then there is 6 > 0 such that ¢°(3;) N Xy = () and
P () NE; = 0. In fact:

Let ¥j be such that X; N X # 0, then take § < min{d;;, 5§} in Lemma 13 such
that ¢°(3%;) N Xy = 0. Moreover, if 2 € ¢°(3;) N Y;, then ¢~°(2) € %; and
d(¢70(2),2) = 8] < &;; = d(%;, %), which is absurd, therefore ¢°(%;) N X; = 0.
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2. Given @ € {1,...,1}, call B; = {j : ¥, N X; # 0}, then there is § > 0 such that
¢°(X;) NX; =0 for all j. In fact:
If r ¢ B;, then d(X;,%,) = 0; > 0, then by Lemma 13 for each s € B;, there is
0y < min{rréiBn Oirs g} such that ¢%(%;) N X, = () and by the choice of d,, we also

have to ¢% (X;) N, = 0 for any r ¢ B;.

So for § = m}gn 0, we have the statements.
SE€EDL;

Fix the GCS Xy, suppose that #({j : £; N X, # 0} := Cy) <1 — 1, then from statements
2 above, there is § such that ¢°(2;) N X; = () for all j # 1, then by induction hypothesis

applied to {¥; : j # 1}, we obtain new GCS ¥, and satisfy (3.7) and calling ¢°(2;) = S,
the set ij : 7 =1,..., 1 satisfies the Lemma.

Note that since d(il, Y;) = 61; > 0 for all j # 1, then ZN]j may be obtained such that
d(31,%;) > 0.

Suppose now that #C; = [, then for all j # 1 there is §; > 0 given by the Lemma
13, such that ¢'(X)NE; =0 forall 0 < ¢ <, put 0 < § < mln{n;l{l 9, g}, therefore
J

¥, = $°(%), satisfies YN ¥; = 0 for all j # 1. Considering {§1,22, sy 2}, we have
#{j :X; N3y # 0} <1—1, as done previously, we have the result of Lemma. ]

Let 3, ¥ are GCS as in the Lemma 12 with ¥ N Y’ # (), suppose that ¥ N ¥’ is non-
transverse to F°%, then since 3, 3 are transverse to flow, then we can assume that ¥ and
Y intersect transversely.

Suppose now that two GCS X, 3 as in the Lemma 12 intersect transversely, then >, h >’
is a finite number of C'-curve ~; for i = 1, ...,k and by Corollary 8 these curves is con-
tained in a finite number of leaves of F* N X, say F*(z;) N X, with z; € F*(z) N3,
fori=1,.. k.

Let X; be surface contained in ¥, containing F**(2;) Y, and saturate by F**, i.e. there
is a interval I; contained in F“*(x) and centered in z; such that

¥ = U Foz)Nny, fori=1,...,k

zel;

with 3, NS, = 0 for i # j.

Note that if F*5(z;) N3, N A = () for some 7, then since A is a compact set there is an
open set U; containing F*%(z;) N X, and U; N A = (), therefore ¥, is subdivided into two
GCS X! and X2, such that X7 and Y’ satisfies the above for r = 1, 2.

This implies that without loss of generality we can assume that for any ¢ € {1,..., k} there
is p; € F*(z;) N3, N A (see Figure 3.8).
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Figure 3.8: Separation of GCS

So, we have the following Lemma.

Lemma 15. If ¥, and X' are two GCS as in the Lemma 12 which intersect transversely,
let v C S, NY, F¥(z) N, and S fori = 1,...,k as above. Given § >0, 0 < § < 5
with € as in (3.6). Then there are GC'S Y C Y containing F**(z;) N, such that 3,
is subdivided into 2k + 1 GCS disjoint, including ; for i € {1,...,k}, denoted by X7 the
complement of the set Ule i in the subdivision above of X, and such that

1. #E)NY =0 foralli € {1,...k} and &' NY =0 for any & € S#.
2. B (S) NG (5,) =0 fori#j and ¢°(3) NSy =0 for alli € {1,....k}.
3.

AN ¢33 (int(3,)) C AN Ud) —&©) <¢‘5 (int (3 ) U P23 (int (%))

yex?

Proof.
Given § < £ small, by transversality we have ¢°(Fjs(z) N X,) N X' = 0, also
¢ (Fs(z:) ﬂ YN ¢5( 55 (2;)NE,) = 0 for i # j. So, by continuity of ¢°, for each i there

is an interval I; C I; C F"(z) centered in z; such that the surface

z ETZ'

satisfies ¢°(5;) N Y = @ for any i and ¢°(3;) N ¢5<§j) = () for i # j.
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We can assume that for any ¢ € {1, ..., k} there is p; € F**(z;) N X, NA. Consider F““(p;),

loc\P

then by Remark 9 we can find open sets V;" and V,~ in each side of F*“(p;) sufficiently
close to F;%(p;) and diameter sufficiently large and VjE N A = (. Denoted by VjE the

loc

projection by the flow of V over ¥, respectively. Therefore, by Remark 9 we can take
V* such that Vi N, C E and VjE ¥, crosses Y, (see Figure 3.8). Using V;i we can

7

construct the GCS E such that Z C 3; and satisfies 1 and 2 of Lemma.

To prove 3 note simply that § < £ and AN¢(~22)(int(S,)) = ¢~ 22 (ANint(X,)), which
is a consequence of A be 1nvar1ant by the flow (see Remark 10). O]

Remark 11. Let X" be a_GCS as in the Lemma 12 such that ¥, N X" = 0. Taking
§ < d(%,,%"), we have ¢°(S;)NY" =0 for anyi € {1,....k}, ¥ as in Lemma 15,

Now remember (3.6)

l l l

Ac o2 (ints;) c (oo (intDy) = | Us,.

i=1 =1 i=1

In the Lemma 14 was proved that the GCS in (3.6) can be taken disjoint if all possible
intersections of ¥; with X, are in the hypothesis of the Corollary 8.

Now we will prove that the GCS in (3.6) can be taken disjoint, even if some of them
intersect transversely.

Lemma 16. LetX; be a GCS as in 3.6, let B; = {j : ¥; h X;}. Then, 3; can be subdivided
in a finite number of GOS {5 : s = 1,...,m} and for each s there is 0 < 0, < § such that

1. ¢%(3) N, =0 for any j € B; and ¢> (X3) N ¢’ (53) = 0 for s # 5.

2. An | o2 (i) cAm(U¢55 (int (= UU¢(“ (int(¢* (2 ))))

jeB;U{i} JEB;

Proof. The proof is by induction on #B;.

The case #B; = 1 is true by the Lemma 15. Suppose true for #B; < ¢ and we prove for
#B,; = q, in fact:

Let £ € B;, then by Lemma 15, given 0 < d < £, there are a finite number of GCS

{i; C Xp:re{l, rk}} such that

|

QSN =0, also ¢*(S5)NE; = 0 for any r, BN =0 for any X € &7 (3.8)

Tk

AN B (int(Sy) c An | ol (dﬁ (int(S)) ) U ¢C9int(®) | (3.9)

r=1 EEE#

Zk# as in Lemma 15.
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Consider now the set of GCS X, U{%; : j € B; \ {k}}U{(b‘s(f)Z) cred{l, ...,rk}} uUx¥, for
this new set of GCS, we have # B; < ¢, therefore by the induction hypothesis, the Lemma
is true for {¥;: 7 € B; U{i} \ {k}} and by (3.8) and (3.9) we have the Lemma. O

Remark 12. Let X, be a GCS as in (3.6) such that ¥, N Y; =0, then by Remark 11, d5
can be taken less than d(%;,%,), so ¢%(X5)NX, =0 for any s € {1,...,m}.

!
Let 33; be GCS as in (3.6) where A C U =52 (int(%;)). We can assume that the possible
i=1
intersections of int(X;) with int(X;) are as in Corollary 8 or transverse. Then

Lemma 17. There are GCS il such that
m(l) _
A c oM (int (%))
i=1

with iz N ij = Q)

Proof. If all the possible intersections are as in Corollary 8 and the result follows from
Lemma 14. Then, we can suppose that there is ¢, such that B; = {j : ¥; h X;} # 0.
Without loss of generality, assume that By # (). The proof is by induction on [ in (3.6).
For [ =1 ok.

The Lemma 15 implies the case [ = 2.

Suppose true for k < [ and we prove for k = [, in fact:

Fix ¥y, call T = {j : ¥, intersect ¥ as in Corollary 8 }, then by statement 2 in the proof
of Lemma 14, there is 0 < ¢ < § small, such that #°(X1)NX; =0 for any j € Ty.

Consider now the GCS ¢°(%;) as in Lemma 12, call still By = {j : ¢°(2;) h ;} then by
Lemma 16, ¢°(X;) can be subdivided in a finite number of GCS {33 : s = 1,...,m} and
for each s there is 0 < d, < § such that holds 1 and 2 of Lemma 16. Also by Remark 12
we can assume that ¢%(35) NY; = @ for any s € {1,...,m} and any j € Ty \ {1}.

Now take the set {3, :j € T3\ {1}} U{E,: k€ By}, as # (11 \ {1} U By) < [, then by
the induction hypothesis there are GCS X; such that

n(l)

AN (0@ nt(Sh)) c An (e (int(S)) (3.10)

1€T1UB1\{1} i=2

Since ¢% (33)NY; = @ for any j € Ty U By \ {1} and any s € {1,...,m}, then the f]j may
be taken such that ¢%(35) NY; = () for any s € {1,...,m} and any i € {2,...,n(l)}.
So, by 2 of Lemma 16 and (3.10) we have that

A=An{Jo ED(int(%)) c AN <U ¢t (int(3;)) U 9 (int(¢6(21)))) =

=2

=AN ( U o220 nt(z))u | 622 (int(S))) U (int(¢°(51)))

jEB1 Jjen\{1}
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n(l) k

c AN [ (o @ (int(S) U 62 (int(¢™(55)))

1=2 s=1

This concludes the proof of Lemma.

3.4 Global Poincaré Map

!

Let R: = — = be a Poincaré map as in the section 3.1.1 with = = U >, where Y; are
i=1

GCS and 3, NY; = 0 for ¢ # j. We are going to show that, if the cross-section of Z are

d-Good Cross-Section (GCS), we have the invariance property

R (Ws(x, %)) C W5(R™(z),%),

for some n sufficiently large.
Given X , ¥ € E we set X(X), = {r € ¥ : R"(x) € ¥’} the domain of the map R"from
Y to Y.

Remember relation (3.3) from the proof of proposition 1, the tangent direction to each
W (z,X) is contracted at an exponential rate || DR"(z)eés|| < Ce #(®) with C = £ and
g =—logA>0.

Suppose that the cross-sections in = are 6-GCS. Take n such that ¢,(z) > ¢; as in propo-
sition 1 with t; satisfying

Ce P sup {I(W*(x,%)) ;2 € X} < and Ce P < 1.

Lemma 18. Let n be satisfying the above. Given §-Good Cross-Sections, ¥, %" € {¥;}; if
R™: (X)), — X' defined by R™(2) = ¢'"*)(2). Then,

1. RM(W*(z, X)) C WH(R™(x),%) for every x € X(X'),,, and also
2. d(R"(y),R"(2)) < 3d(y, z) for every y,z € W*(z,%) and x € 2(¥'),.

We let {Uy, : i =1,...,1} be a finite cover of A, as in the Lemma 17 where ¥; are GCS,
and we set T3 to be an upper bound for the time it takes any point z € Uy, to leave
this tubular neighborhood under the flow, for any ¢ = 1, ...,[. We assume without loss of
generality that t; > Tj.

To define the Poincaré map R, for any point z in one of the cross-sections in

l
i=1

Let t; be as in the Lemma 18 and consider R"™. If the point z never returns to one of the
cross-sections, then the map R is not defined at z. Moreover, by the Lemma 18, if R™ is

(1]
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defined for x € ¥ on some X € =, then R is defined for every point in W#*(x,¥). Hence,
the domain of R™|¥ consists of strips of . The smoothness of (¢,7) — ¢'(z) ensure
that the strips

S, = {2z € R(z) € ¥}

have non-empty interior in X for every »,¥’ € =.

Note that R is locally smooth for all points x € int¥ such that R(z) € int(Z), by the
!

Tubular Flow Theorem and the smoothness of the flow, where int(=Z) = U intd;. Denote

i=1

!
= = U@jZi for j = s, u.
i=1
Lemma 19. The set of discontinuities of R in Z\ (0°ZU 0"Z) is contained in the set of
point © € =\ (0°Z U O"E) such that, R(x) is defined and belongs to (0°Z U 0“E).

Proof. Let x be a point in ¥\ (0°X U 0% for some ¥ € =, not satisfying the condition,
then R(x) is defined and R(z) belongs to the interior of some cross-section >'. By the
smoothness of the flow we have that R is smooth in a neighborhood of x in . Hence,
any discontinuity point for R must be in the condition of the Lemma. O

Let D; C ¥, be the set of points sent by R" into stable boundary points of some Good
Cross-Section of = is such that the set

Lj = {Ws(a:, E]) T e D]},

by Lemma 18, we have L; = D;. Let B; C ¥, be the set of points sent by R" into
unstable boundary points of some Good Cross-Section of Z=.
Denote

L= J Wi,)UB; and T = JT;U(FEUIE).

ZED]'

Then, in the complement =\ I' of I', R" is smooth. Observe that if € D; for some
j €{1,....1}, then

R"(W*(z,%;)) C 0°Y for some X' € E.
We know that *ZNA = (), then R"(W*(z,%;))NA = (). This implies that W*(z, 3;)NA =
() for all z € D;. Moreover, if z € B;, then R"(x) € 9"¥’ for some ¥’ € Z, we know that
O“ZEN A = (), this implies that B; N A = ). Therefore, I'; N A =0 for all j € {1,...,{}, so
rNA=0.

Clearly, if z € ANEZ, then R(x) is defined and R(z) € int(Z).
Let x € ANYE;, then x € ¥, \ (I'; UO°E; U 0"Y,) and R"(z) is defined and R"(z) € £;NA

for some i € {1,...,1}. The above implies that A N|J'_, ¥; is an invariant set for R" and
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by Proposition 1, A N Ui:1 YJ; is hyperbolic set for R™ and since A N U2:1 Y); is invariant
for R, then AN U§:1 >; is hyperbolic for R, and

AﬂUZ cﬂR—”U

ne”L i=1

3.5 Hausdorff Dimension of (,_, R, )

Now we are going to estimate of HD(AN U§:1 ).
Lemma 20. The set A satisfies
!
AclJe (YR ™AN ) UqStAmUE UgbfﬂR—"U
teR  nez i=1 teR teR  nez

Proof. Remember that A C |J\_, Uy, where U; = ¢(=9(int%;). Let z € A, then there
is 7, such that z = ¢*=(z) with € int(¥;.). This implies z € AN |J_, % and
R(z) € int(¥;) for some j and R(z) € int(Z). Analogously, R™(x) € int(=Z), this is
R*(z) € AnU_, % for all n € Z. Hence, = € Mnez RTHAN (U_, %)), therefore

2 € 0" (Muea RMAN (Ui 20)- m
Lemma 21. The Hausdorff Dimension of AN (Ui:1 %) and [,z R*”(Uéz1 ¥.;) satisfies,

D([\R™ Uz )>HD Am(LZJEi))zHD(A)—l

nez i=1
and thus HD(AN (U\_, 2)) ~ 2.
Proof. Take a bi-infinite sequence

<ty <l <. .<tyg<ti<..lp<..

such that |ty — tr41| < @ with « is very small, then
A C U ot (AN (Uis 20) = Uil A
since HD(A) ~ 3 and HD(A) < sup, HD(A}), then there exists ko such that

D(Ay,) ~ 3.
For av very small, the map
(U (A n(U_, EZ)> X [tk,tes1] — Ag defined by
(z,t) — ¢'(v)

is Lipschitz, we see this since ¢ = (b/(/\ﬁ(Ui: 500) %[t b where ¢/(U§:12i)X[tk,tk+1] is a

diffeomorphism, for |t;,1 — tx| < @ and « very small.
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Therefore, HD(A) ~ HD(Ay,) < HD((A nU., zl-) % [the toon])s call Ty = [ty o], we
have the following affirmation:

Affirmation: The following inequality is true,

l l
HD((AN| %) x I) < HD(AN | %) + D(1y)

i=1 i=1
where D is a upper box counting dimension of I; defined by

Ns (T
D(I;) = limsup —log s(Lx)
6—0 _log(S

and Ns(I;) is the smallest number of sets of diameter at most ¢ which can cover I (cf.
[Fal85]), is easy to see that D(I) =1 for all k, then

HD(A) ~ HD<<A N Ué:l 22) X [tkovtko-i-l]) < HD(A n Ui:l ZZ) + D<Ik0) =
HDANUL_, %) + 1.

Hence, HD(ANJ\_, %) ~ 2. O
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Chapter 4

Markov and Lagrange Spectrum For
Geodesic Flow
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Let M be a complete noncompact surface M such that the Gaussian curvature is bounded
between two negative constants and the Gaussian volume is finite. Denote by K, the
Gaussian curvature, thus there are constants a,b > 0 such that

—a® < Ky < =b* <0.
Definition 8. Let X be a complete vector field on SM and f € C°(SM,R), then the
dynamical Markov spectrum associated to (f, X) is defined by

M7, X) = {sup S (0)) s € 521

teR

and the dynamical Lagrange spectrum associate to (f, X) by

L(f, X) = {limsup F(XH2) x € SM}

t—o0

where X'(z) is the integral curve of the field X in x.
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4.1 The Interior of Spectrum for Perturbations of ¢

Let ¢ be the vector field defining the geodesic flow.

The objective of this section is to prove the following theorem.

Theorem 4. Let M be as above, let ¢ be the geodesic flow, then there is X a vector field
sufficiently close to ¢ such that

intM(f,X) # 0 and intL(f, X) # ()

for a dense and C*-open subset U of C*(SM,R). Moreover, the above holds for a neigh-
borhood of {X} x U in X' (SM) x C*(SM,R), where X*(SM) is the space of C' wvector
field on SM.

To prove this theorem we use the results of Chapter 2, 3 and a construction of obtaining

property V' of Section 2.3.1, found in [MY10].

In chapter 3 it was proven that there are a finite number of C*-GCS, ¥; pairwise disjoint
and such that the Poincaré map R (map of first return) of = := U§:1 )3

R:Z—EZ
satisfies:
® (),cz R7"(2) := A is hyperbolic set for R.

e HD (ﬂ R—"(E)> ~ 2.

neZ
We can assume without loss of generality that the GCS X; are C*°-GCS.

4.1.1 The Family of Perturbation

Now we describe the family of perturbations of R for which we can find the property V
of Section 2.3.1 (cf. [MY10] page 19).

Let R be a Markov partition of A =, ., R7"(Z).
Is selected once and for all a constant cop > 1. For all 0 < p < 1, then we denote R(p) the
set of words a of R such that ¢y~ 'p < |I(a)| < cop (cf. 2.2.2).

We consider a partition Ry of A in rectangle whose two sides are approximately sized
p*/™. A rectangle denotes here a part of A consisting of points with itinerary prescribed
for a certain time interval; a word of R, which prescribes the route is associated with sald
rectangle. Among the rectangles on R, preserves only those for which no word in R(pzm)
appears no more than once in the associated word. Called R; the set of associated words.

For each a € Ry denotes R(a) the associated rectangle; construct a vector field X, having
the following properties:
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e On R(a), X, is constant, the size of the order of approximately p'*/™ directed the
unstable direction;

e X, is the size p!/™ in the C™/%-topology.

Clearly, the condition latter ensures that time one of the flow of X is, if m is large and p
small, in a neighborhood of id=z beforehand prescribed in C*°-topology.

We equip 2 = [—1, +1]%1 the normalized Lebesgue measure; for w € €, let

Xy = —cXZw(g)Xg,
R = Rod¥,

where ®* denotes the time one of the flow X,,. Note that the “sum” in the definition of
X, has at each point of | J R(a) at most one nonzero term.

4.1.2 Realization of the Perturbation

In [MY10] was proved that for cy large enough, appropriately chosen, there are many
parameters w such that (R%, A,) has the property V' (cf. Definition 3), where A,, is the
continuation of the hyperbolic set A for R%.

Lemma 22. Let R be as above and w € §) and the vector field X,,, then there is a vector
field G, sufficiently close to ¢ such that R% is the Poincaré map, (map of first return) to
= by the flow of G,.

Proof. The argument is made on the R(a) with R(a) € R;. Fix w € Q = [-1,+1]f%]
w = (w(a))aeer,, then on sufficiently small neighborhood of R(a) in = is defined the field
vector —Cxw,X, = Y,.

Now we can extend this vector field in a neighborhood of R(a) in SM as follows:
Suppose that R(a) C ¥ € =, let 8, > 0 such that ¢*(V,) N (Z\ X;) =0 for all ¢ € [0, 5,),
where V, D R(a) neighborhood of R(a) in ¥ and such that Y, is defined and Y, = 0 in

¥\ Va, put 17& = gb[o’ﬁi)(Vg) is a neighborhood of R(a) in SM, this neighborhood can be
seen as V, x [0, B,).
Define the vector field Y, on V, by

Ya(#'(2)) = Do (Ya(2)).
Let ¢, be a smooth real function defined in V, x [0, 3,) such that

1 iV, x [0,2);
Pa = .
0 inV, x [2%,8,)
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Put the vector field Z, = QOQ?Q defined in V, x [0, 8,). Note that by definition

Z,=0 in B x[0,8)\V,x [0, 62“) (4.1)

We will describe the relation between the time one diffeomorphism of Z, say ®z, and the
time one diffeomorphism of Yy, say ®y, in V,. In fact:

Let 0<to< 22 z2¢ V,, take a(t) an integral curve of the vector field Y, with a(0) =
contained in Vg, then we consider the curve n(t) = ¢ («(t)), therefore, as ¢, (n(t)) =
we have

W(t) = Dggiy(a/(t)) = Do,y (Yal(a(t)))

= Ya(¢"(a(1)) = Ya(n(t) = ¢aYa(n(t)) = Za(n(t)).

So,

D, (0"(2)) = ¢ (Py,(2)) (4.2)

Ba
4

D(®z,)et(x) (0(0'(2))) = ¢ (¢' (Dy,(2))) for z €V,

where ¢ is the vector field defining the geodesic flow.
Note that 7, = @y, in Vg, call hy := Pz, , then

Varying to € [0, =) and differentiating the equation (4.2) with respect to to, implies

Ba
). (4.3)

Put the vector field G,(z) = (Dhg);al(x) (¢(hy(x))) for € V,, then by (4.2) and (4.3) we
have -

D(hq)er(»(6(¢'(2))) = ¢ (¢ (ha(2))) for (z,1) € Vu x [0,

Gu(z) = ¢(x) for any z €V, x [0, &)
And by (4.1)
Gule) = 6(x) forany =€ 2 [0,6)\ Ve x [0.2),
These las‘;j two relations implies that G, is a smooth field that coincides with ¢ outside of
Vo x [, %).

Let 3(t) be the geodesic ¢ (h,(z)) with 2 € V,, define a(t) = h;'(5(t)), then

Q) = (Dhy)3h (B(6) = (Dho)3h (S((1)))
- (Dhg)f:
this «(t) is an integral curve of G, in z.

Since G, = ¢ outside of neighborhood of V, x [%, %) in SM, then the integral curve of

vector field G, passing by z coincides with the orbit of geodesic flow of h,(z) outside of
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neighbourhood V, x [f 71) of zin SM.

In particular, denoting Rg, : = — = the Poincaré map of vector field G4, we have that if
z € R(a) and h,(z) € (R(a)) then

(Rohy) (2) = Ra,(2).

Now for each R(a) € Ry we can assume that suppY, = {z : Y,(x) = 0} the support vector
field Y,, are disjoint, so for each R(a) € R the vector field G, can be constructed such
that the sets supp,G, = {z € SM : G4(2) # ¢(2)} are disjoint.

Define the smooth vector field

Go(z) if z € suppysGa;

Gu(z) =
¢(z)  otherwise
and satisfies
R* =R od* =TRg,,
where R¢, is the Poincaré map of vector field G,. O

Remark 13. Note that since X, is small size, then taking B, sufficiently small, then G,
can be constructed can be constructed close to ¢, therefore G, is close to ¢.

The following Lemma is combinatorial and will be used to show the Lemma 24.

Lemma 23. Let A = (a;;)1<ij<n @ matriz such that a;; € {0,1} for any i, j and
{(i,7)  aij = 1} > n?, then tr(AF) > (%)k for all k > 2.

Remember that if B = (b;;)1<;j<n 1S a square matrix, then tr(B) = Y | b; denotes the
trace of B.

Proof.
Thereis X C {1,2,...,n} with | X| > 2 such that, for any i € X, [{j < n:a; =1} > 2.
In fact: If there are more of hnes 1n the matrix, each with at least RS null entries, the

number of null entries of the matrlx is greater that G5, therefore |{(z J) =1} <
2 n?2 _ 99n hich i d
n 106 = T00. Which is a contradiction.

Analogously, there is Y C {1,2,...,n} with |Y| > % such that, for any j € Y,
Let Z =X NY, we have |Z] 2?—3—1—?—3—71:4?”. If 7,7 € Z, then

- In
(A=Y apay > Y apay=|anBx M,
r=1 r€A;NB;

where A; ={j <n:q;=1}and B; = {i <n:a; =1}
we will show by induction that if 7,7 € Z, then

N e k—1
AU > — =lE .n for all &k > 2.
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In fact:

n

(AM),; = Z(Ak)ir-arj > Z(Ak)ir.arj >1Z\{reZ:a,;= O}\é <§> : nht

r=1 rez 5 5

L (4n_n 4 3\ k_1>43’“,€
= \5 "10/)5\5) " 5\5/)

since {r € Z : a,; = 0} < 5. Thus, for all k£ > 2

]

Remark 14. Suppose that the matriz A as in Lemma 23, is the matriz of transitions
for a regular Cantor set K with Markov partition R = {Ry, Ra,--- Ry} by intervals of
size approximately €. Since for each k > 2, denote by afj the element ij of the matrix
AFwhich represents the numbers of transitions of size k + 1 of i for j, moreover these
transitions represent intervals of size €1,

As the matriz A satisfies the Lemma 23, then there exists a subset B of {1,2,--- N} such
that that submatriz A = (a;j) fori,j € B has all nonzero entries, so each transition R;R;
with 1,7 € B is admissible.

Put the regular Cantor set

K:={-R;Rj, R /R, € B}C K.

Thus,

k k
HD(E) ~ i jen Qi , log (%) K (logN —log2)
—logektl = —logektl — k41 —loge

~ HD(K).

Therefore, HD(K) ~ HD(K).

The following Lemma says as is the behavior of the horseshoe A when it is intersected by
a finite number of C''-curves.

Lemma 24. Intersection of curves with A
Let a; be a finite numbers of C'-curves, i € {1,...,m}, then for all ¢ > 0 there are
sub-horseshoe A%, A% of A such that A" N a; =0 for any i € {1,...,m} and

HD(K?)> HD(K®) — ¢ and HD(K") > HD(K") — ¢,

where K3, K°® are of reqular Cantor set that describe the geometry transverse of the
unstable foliation W*(AL), W*(A) respectively, and K*, K* are of reqular Cantor set
that describe the geometry transverse of the stable foliation W*(AY), W*(A) respectively.
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We will prove for the Cantor set stable, for the unstable Cantor set is analogous.
Before starting with the proof of Lemma we introduce some definitions and observations.

Let us fix Markov partition R of A as above, call K* the regular Cantor set associate to
A as in the section 2.2 and sub-section 2.2.2.

Given R(a) € R for a = (a;,,- -+ ,a;,) denote |a;,, - ,a; | the diameter of the projection
in W, of R(a) by F* (see sub-section 2.2.2 in the construction of K*). Fix a,, a, such
that the pair (a,, as) is admissible.

Let € > 0, we have the following definition.

Definition 9. A piece (a;,,--- ,a;.) (in the construction of K*®) is called e-piece if
lai, - a;, | <eandlay,, - a;, || > €

Put
X, = {e-piece (a;,, -+ ,a; )i =sand iy =71} = {61, ...,0n}.

with N ~ ¢~% where d, = HD(K?).
Note now that 6; 0;, is a admissible word, thus, we define the set
K(X) =100, 0, /0, € X} CK°.

Since for regular Cantor set, the Hausdorff dimension (H D(.)) is equal to box dimension
(d(.)), then d, = HD(K?®) > d(K(X.)) and d(K(X.)) < =X since 6; is a covering of

loge

diameter less that e, therefore HD (K (X,)) is close to HD(K*®) = d.

We can assume that the finite family a only has a unique curve, we still call «. Divide
the family as curves a, in curves that are graphs of C*-functions of W*(A) on W*(A) or
from W*(A) on W*(A), (cf. sub-section 2.2.2 for definition of W**(A)).

Denote by Iy, the interval associated with 6; in the construction of K*, let C' > 1 such
that

Cle < |y, < Ce.
For each Iy,, with 6; = (a;,,- - ,a;,), we associate the interval transposed Ij, (associated

to the word (a;,,--- ,a;)) in the construction of K* (unstable Cantor set). Then, since
A is horseshoe there exists n > 1 such that

Lo, |" < |Lp| < |Lo, 7.

Proof of Lemma 24.

- In the first case (graph of a C'-function from W*(A) on W*(A)), in this case, consider
the image P of Iy, by this function, then C and € can be take such that |P| < C?%. Let
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P’ C P, the largest interval of the construction of K" contained in P, then iterating
forward the interval P’, we obtain an interval J in W*(A) with |.J| < (C?€)'/7, then

(026)1/77

ds
— éeds(l/n_l) .
€

#{]QitfgiCJ}SC(

Thus,

#{(Iy,, I},) : Iy, x T is cut by the curve a} < e = Ce®=(/17D = Ceds(l/n72) =25,
J J

- In the second case (graph of a C'-function from W*(A) on W*(A)), in this case, consider

the image K of I}, then, |K| < c|I},| < ¢(Ce)'/7, (K is the image by a C'-function), so

we have analogously

#{Ip - I, C K} < Ce(/n=1),
And

4L (Ip,, I}:) - Iy, x Iy is cut by the curve a} < e 4Ceb=1/m=1) = Ced:(1/n=2) =25,
J J
Note that e 2= ~ N? = total number of transitions 6,0;.

We say that 00y is a prohibited transition iff the curve « intersects the rectangle Iy, x I ét .
1%

Consider the admissible word 60,005 with 60;,0;,0;,0s € X,, this word generates an in-
terval of size €* in the construction of K*.

We say that 0;0,0,0; is a prohibited word, if within there is a prohibited transition 00y

Denote by PW the set of the prohibited words 6;0;6,65;. We want to now estimate |PW|.
In fact: |I,||I5]| ~ € ~ 272" then there is ¢ < 2n such that |I,| ~ 27" and |Ig| ~ 272"
Thus, #{1,} ~ (271)~% = 2! and #{I3} ~ (2-=V))=d: = 22n=Dds therefore for some
constant y > 1 (as in the first part of the proof), we have that

|PW| S X<2n>2tds2(2n—t)ds€ds(1/77—2) S 2X log E—leds(l/n—él) < 6_4ds
the last inequality is by 2y loge /7 <« 1.
Then, the total of prohibited words 0;0;0,0, is much less than e 4 ~ N* the total of the

words 0,0;0.0;.
Consider A = (ag jyk.s) for (4,7), (k,s) € {1,..., N}* the matrix defined by

1 if 6,0;0,05 is not prohibited;

A(i,j),(s,k) =
0 if 6,0;0,0, is prohibited for some 80y .
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by the previous we have #{a(iyj)(&k) DG (s k) = 1} > %Nﬁ, so by Lemma 23 holds that
the trace of matrix A™, tr(A™), satisfies

N2\™
tr(A™) > (7> for any m > 2.

This implies that there are many transitions not prohibited.

Thus, there exists a subset B of N? such that, the submatrix A= (@i jy(k,s)) for
(i,7), (k,s) € B has all nonzero entries, so each transition 0,6,6,6, with (4, j), (k,s) € B
is not prohibited.

Put éij = 910] for (Z,]) € B.
Define K the regular Cantor set

K o= {0350, -+~ 01 -+ / (insjr) € BY C K.

Moreover, by Remark 14 we have HD(K) ~ K(X.) ~ HD(K?).

Consider the sub-horseshoe of A defined by A, := (1, ., R" <U(m)€B éw) Since, K5 = K
the stable regular Cantor set, described by geometry transverse of the unstable foliation
WH*(A?), then by the above we have that

HD(KS) ~ HD(K®).
And by definition of A% we have that A Na = 0.

4.1.3 Regaining the Spectrum
Given F € C°(SM,R), we can define the function mazF,: = — R by

P t
mazxFy(z) = ti(z)rg%Hx) F(¢'(2))

where t_(z),t, (z) are such that R™!(x) = ¢!-@(z) and R(x) = ¢™+@) ().

Note that this definition depends on the geodesic flow ¢!, or equivalently the vector field
¢. Note also that maxF}y is always a continuous function, even if F' is C*°, maxFy can
be only a continuous function. In what follows we try to give some “differentiability” to
mazxF, at least for F € C*(SM,R) (see Lemma 25).

Consider the set
O ={F € C*(SM,R) : mazF(z) = F(¢')(x)) and t_(x) < t(z) < ty(z) for all x € =}.

The set O is open and dense subset of C*(SM,R).
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Let 2 € int(X) with ¥ € = such that R(z) = ¢'=(z) € int(Z), by The Large Tubular Flow
Theorem, there exists a neihgborhood U, C ¥ of x a diffeomorphism ¢: U, X (—¢,t,+¢€) —
@(Upx(—€,ty+e€)) C SM such that Do, 4(0,0,1) = ¢(¢(z,t)). Moreover, as the elements
of the Markov partition are disjoint, has small diameter and A is compact, then, we can
suppose that there is a finite number an open set U,, such that U,,NU,, = §and A C J Uy,
for some z; € A. Denote ¢;: Uy, X (—€,t,, +€) = ¢; (Uy, X (—€,t,, +€)) C SM such that
(DSOi)(Z’t)(Oa 0, 1) = QS(SOZ(Z? t))

Remark 15. Let F' € O, consider the function f(x1,xq,x3) = F o p;(x1, T2, x3), we want
to see the behavior of the critical points of F' o 80i|{z}x(—e,tz+e)- Let & be small reqular
value of 5—3{3(21,2’2,23), then fs(x1,x9,23) = f(x1,22,23) — dx3 has 0 as regular value,

2]

~1
S0 (Tﬁ,) (0) := Ss is a surface. Later we want this surface does not contain an open

consisting of orbits of the flow.
Also, observe that if (0,0,1) € T,Ss for z = (21, 22, 23), then D <8—£‘;> (0,0,1) = 0, this

19}
mplies that 232 (=) = 0 L 2d5(2) = 0§, so the critical point
implies tha 8_x§(z) =050, z€qx: @(x) = 0¢, so the critical points of fs|(zyx(—et.+e)

can not be non-degenerate.

Lemma 25. There ezists a dense B, C C(SM,R) and C*-open such that given 3 > 0,
then for any F € By there are sub-horseshoe AR of A with HD(K}) > HD(K®) —
B, HD(K%) > HD(K") — 8 (as in Lemma 24) and a Markov partition R:" of AR,
respectively, such that the function mazF|znpse € CY{EN R, R), where Kp", K% as
. Lemma 24.

Proof. We prove the Lemma for A3, for A% is analogue.
Let '€ C*(SM,R) and f = F o p; as above, by Remark 15, we want to perturb f by a

fs such that {z : a—:{j‘;(z) = O} and {z . Ll (2) = O} are surface and

7] ox3
Ofs 9 fs
Js(z;) = {Z : 8—%(2) = O} M {z ; a2 (2)=0,. (4.4)
In fact: 522
Let 0 be small regular value of %, put fs(z1,xe,23) = f(x1,29,23) — % — cx3, SO
3

{z L 24 (2) = O} .= Sy is surface for all ¢ € R. Therefore, consider the function <ﬂ (5x3> 15,

8$§ dr3
g—gf; — dx3 restrict to §5, thus taking ¢ small a regular value of (ngB — 5963) |§5’ so, we have
that fs satisfies (4.4). Thus, by Remark 15 the surface {z ; g—iz(z) = 0} does not contain

an open consisting of orbits of the flow. Call «,, the projection of curve Js(z;) along to
the flow on ¥. Thus, considering the finite family of curve a := {a,}, then by Lemma
24, given $ > 0 small there is a sub-horseshoe A, such that

HD(KS) > HD(K*) — 3

and A, Na; = 0.
For x € A, holds that the critical points of fs|{z}x(—et,+¢) are non-degenerates and there-
fore finite. Thus, the critical points are locally graphs of a finite number of functions 15,
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that is, locally {(x1, x, ¥;(21,22));1 < 5 < k}.
Since we want the function maz fs be C*, we have to rid of the points (x1,x3) such that
for k # j

fs(@1, w2, ¥(w1, 2)) = fs(1, T2, i1, 22)).
In fact:
Let ggj(z1,2) = fs(x1, 22, 0j(x1,22)) — fs(x1, T2, Yi(x1, 22)) and let v > 0 small regular
value of g, for all j # k. Take £ a C*°-function close to the constant function 0 and equal
to v in neighborhood of {z = ¥;(x1,z2)} and 0 outside. So, the function f5 + £ is close to
fs. Define the function

gzj(x17372) = (fs + &) (1, 22, i (w1, 22)) — (fs + &) (@1, x2, Yr(1, 72)) = gj(21, 22) — -

Then, we have that v;; := (g;;)~'(0) is a curve in U; C X. So, consider of finite family of
curves I' = {v,ij}, then by Lemma 24 there is a sub-horseshoe Ar of A, such that

HD(K{) > HD(KS) — 8 > HD(K®) — 28. (4.5)

As the tube U; x (—¢,t,, + €) are disjoint and each is defined a function f} + £ close to
f = F o ;, then we have define a function G € O C C*(SM,R) close to F, with the
following properties:

-G = fs+& on U;x (—e€, t,,+€) and G = F outside of neighborhood of J; (U; X (—¢,t,, + €)).
-Take a Markov partition Rpr of Ar with diameter small, then marGy|zng, is a Cl-
function.

The above holds by construction of G, which satisfies that the critical point of G| (g} x (e tote)
is a unique point for x € Ry, since G € O, we have the second item.

Note that by construction of GG, we have that

0G 0*G .
—— (21, 2o, Vi (21, 22)) = 0 and —— (21, 22, Yp(21,22)) # 0 in U; N Rr.

And this condition implies that, if H is C? close to G, then there exists @Zk C'-close to
1, and holds

OH ~ 0*H ~ .
(21, 22, Vi (21, 22)) = 0 and —— (21, 22, Yi(21,22)) # 0 in U; N Rr.

This last condition implies that there is a single maximum of H \{(ml,m)}x(,E,t(mwwﬂ), thus
maxyH|znpg, is a C'-function. O

Keeping the notation of the previous Lemma we have:

Corollary 9. The above property is robust in the following sense: If X is a vector field
C*'-close to ¢, then By = Bx and for any F € By, holds that maxFx € C*(ZN RE", R).

Proof. As time t, of return of x € = to = by the flow ¢ is bounded, so for any vector field
X sufficiently C'-close to ¢, then for € = the orbits ¢!(z) and X*(z) of the vector field
¢ and X respectively, are close.

Let ¢, ¢ be diffeomorphism given by The Large Tubular Flow Theorem (for ¢ and X,
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respectively, as above), let ' € C*°(SM,R), then Foyp, Fog are C°-close, moreover %Fo
¢(x) = DF,5) D,(0,0,1) = DF,)(¢(p(x))) and g-F o ¢(x) = DFpD,(0,0,1) =
DFj3,)(X(¢(x))), since ¢ is C'-close of X, then F o @|{(z; 22)1x(ap) i C*-close of F o

Pli@r )< (ab)-

Suppose that F' € By, then by Lemma 25 there is a horseshoe Ap of A and Markov
partition Rp of Ap such that mazFy|zng, is C*, thus by construction in proof of Lemma
25 we have that mazFx|zng, is C. ]

The following proposition is found in ([MY10, pg. 21]).

Proposition 2. Let A be a horseshoe and let L C A an invariant proper subset of A.
Then, for all € > 0, there is a sub-horseshoe A C A such that AN L =0 and

HD(K) > HD(K) — ¢,

where, K, K are of reqular cantor set that describe the geometry transverse of the stable

foliation W*5(A), W#(A), respectively.

Proof of theorem 4. Let F € By, A7 and R}" as in Lemma 25 with
HD(K:") > HD(K*") — 3.

Put L = A% N A% C A$% a R-invariant set, then by Proposition 2 (applied to R™'),
there is a sub-horseshoe ;A% of A% such that 1A% N L = 0, that implies 1A% N A% = (.
Moreover,

HD(K3) > HD(K3) — 8> HD(K®) — 28.

Define the sub-horseshoe Ap of A by Ap := 1A% UAY%, denote this by Ap := (1A%, A},
put Rp := R} U R% and consider the open and dense set

Hi(R,Ap) ={f € CYENRp,R) : #M;(Ap) =1 for z € My(Ar), DR.(eJ") #0}.

as in the Section 2.3. N
Let f € Hi(R,Ap), then there is a unique z; € M;(Ap). Let Ap be a sub-horseshoe of
Ap as in Section 2.3, such that HD(Ap) ~ HD(Ap) and z; ¢ Ap.

Since 1A% N AY% = (), we can suppose that zy € 1A%, thus as in Section 2.3, let 1&‘;
sub-horseshoe of 1A% and z; ¢ 1A%, then

Ar = (AL, AR).
Moreover, since HD(K®) + HD(K") = HD(A) ~ 2 and f is small, then
HDGK3) + HD(KY) > 1,

Where 1[? % is of regular cantor set that describe the geometry transverse of the unstable
foliation W"(;A%).
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Hence, by [MY1] it is sufficient perturb ;A% as in sub-section 4.1.1, to obtain property
V' (see Definition 3). Let w € Q such that (R%, ﬁ%) has the property V', where ﬁ% =
(1£Q, A%) and 1£H is the continuation of the hyperbolic set A, for R%, thus by Lemma
22, R® = Rgq,, then (Rea,, Z%) has the property V so by Theorem 3 we have that

it M(f,A%) # 0 and intL(f, A%) # 0,
for any f € H1(R,Ap).

Now by Corollary 9 the function mazFg, |=n RL.URY. ) is O, using local coordinates as in
Remark 15 respect to the field G, we can find g € C'(Z,R) such that

marFa,|znrsury) (T1, T2, ¥3) + g(21, 22) € Hi(R, AF).

Put h(zy, 72, 23) = F(x1, 72, 23) + g(v1, 2), then marhg, = marFg, +9 € Hi(R,Ar).
Therefore, since M (h, A%) = {supnez hRe, () x € ﬁ%} C M(h,Gy). So,

intM(h, Gy) # 0.

Analogously, L(h, A%) C L(h, Gy,), therefore intL(h, Gy) # 0. O

An important observation is that the vector field G, is not necessarily a geodesic field for
some Riemannian metric near the initial Riemannian metric.

In the next section will prove a version of Theorem 4, but where the vector field X is the
geodesic field to some Riemannian metric near the initial Riemannian metric.

4.2 The Interior of Spectrum for Geodesic Flow

The main problem to obtain X in Theorem 4 as being a geodesic field is independence in
the perturbation of the diffeomorphism R, to obtain property V (see Definition 3), i.e.,
in the proof of Theorem 4 we could perturb R in each R(a) € Ry without affecting the
dynamics out.

If we want perturb R to obtain property V and still be an application of first return of
the geodesic flow for Riemannian metric near the initial Riemannian metric. We must
keep in mind that upsetting a metric in a neighborhood of a point in the manifold M,
then we affect the metric (of Sasaki in SM) in the points of the fiber of the neighborhood
perturbed, that is, if the metric is perturbed in U, then the Sasaki metric is perturbed
in 771 (U), where m: SM — M is the canonical projection 7(z,v) = x. Therefore, if we
want to perturb R in R(a) C R; as an application of first return of a geodesic flow, then
such perturbation is not necessarily independent of R(a).

So what we do is obtain a sub-horseshoe A of A with HD(A) > 1 and such that the

perturbation in the metric, induces a perturbation in R as an application of a first return
of the geodesic flow for a metric near and that the perturbation be independent.
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4.2.1 The Set of Geodesics With Transversal Self-Intersection

Let (zg,v9) € SM such that the geodesic m(¢!(zg,v0)) = Yy, (t) (With 7,,(0) = z¢ and
Yo (0) = vo) has a point of transversal self-intersection, that is, there is ¢y € R such that
¢" (20, v0) € T (x0) and {vy, 7, (to)} is basis of T, M.

Remark: Since the Liouville measure is invariant by the geodesic flow and we are assum-
ing that M have finite volume, then the set of geodesics with transverse self-intersection
is not empty.

Let £ be a section transverse to flow and to the fiber 7~!(x), define the following function

f: LxR —M
((z,v),t) — 7(¢'(z,0))

with f((x,v0),0) =z and f((xg,v0),t0) = xo, let Iy, I}, are small intervals containing 0
and o respectively. Denoted fo = flzx1, and fi, = flex, -
Let ¢: Uy C T,,M — U,, normal coordinates in zy, where U,, is neighborhood of z,
that is, let {ej,es} be orthonormal basis of T, M and p(z1,22) = p(z161 + T2€2) =
erpy, (T1€1 + T2€2).
We define

H: L x I, x Iy — Vo C Ty, M

‘(t))y H ((z,v),t,s) = (cp_l o fto) ((x,v),t)— (go_l o fo) ((x,v), s) satisfies H((xq,vo), to,0) =
Then,

oH _ 9 fio
E((l’OaUO);tO;O) - (Dgp 1)ft0((x0,uo),t0) (0_;((3:07@0)71:0))

= (Dexpyy )ay (11, (t0)) = 7, (to)

the last equality is due to the fact that (Dexp,)s, = Id: T,y M — T, M identity of
T,,M. Also,

0H _ dfo
E((ﬂﬁoavo%to?o) = —(D™) po(o0).0) <g((l’oavo)70))
= —(Deapyy ) (14,(0)) = —(Deapy) )z (vo)
= —1Up.
Since {—vo,7,,(to)} are linearly independent, then, % is an isomorphism, therefore by

the Implicit Function Theorem, there is and open U, of (x, vp) in £ and a difeomorphism
§: Ur = Vigo,0) with Vi, o) open set containing (¢, 0) in R xR and H ((y, w),&(y, w)) = 0.
Without loss of generality we can assume that Vi, o) = Iy, X Iy and

f(ya U}) = (51 <y7 ’LU), £2<y7 w)),

with &; close to ty and &; close to 0, this implies
eapy, (m(¢7 ) (y, w))) = expy) (m(6%=0) (y, w))),
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so m(¢8 @) (y,w)) = m(¢2W) (y,w)) equivalently 7, (& (y, w)) = 7w(&(y, w)), where
T(¢'(y, w)) = y(t) for any (y,w) € Up.
Consider the new section transverse to flow

Up = {0 ) (y,w) : (y,w) € U}
Note that & (zo,v9) = to and &(zo,v9) = 0, s0 (z9, vo) € Up.

Let (z,v) € Ug, then there exists a unique (y,w) € Uy such that (z,v) = ¢2®) (y, w),
so there exist a unique & (y, w) such that

z=m(z,0) = w(¢2W(y,w)) = 7" (y, w))

- T (¢£1(y,w)*£z(y,w) (¢52(y’w)(y,w)))
= 7 (" (w,v),

where n(y, w) = & (y, w) — &(y, w) is close to t.

This implies that for any (z,v) € U, there is n(y, w) such that ¢"¥*)(z,v) € 7~(z) and
{v,7,(n(y,w))} are linearly independent.

Denote (HPTSI := Has a Point of Transverse Self-Intersection) and (LI := Linearly
Independent), from the above we have that the set,

S = {(z,v) € SM : 3 t(x,v) such that ~,(t) HPTSI in ~,(¢t(z,v))}

{(z,v) € SM : 3 t(z,v) such that v,(t(z,v)) =2 and {v,~,(t(z,v))} are LI}
is a submanifold of SM of dimension 2.
Put S, = {(z,v) : 3 |t(z,v)] <n and ~,(t) HPTSIin ~,(t(x,v)) }, Sp C Spy1. Given

(x,v) € S,, there is a neighborhood U of (z,v) in S such that U C S,1, therefore we
can consider that &S, is a surface, submanifold of SM.

4.2.2 Perturbation of the Metric

In Lemma 17 was proven that there are GCS ¥; such that

m(l)
A C o (int(%)),
=1

with Ez N Ej = (Z)
Then, the hyperbolic set A =, ., R"(J,; 2i) where R is the Poincaré map (map of first
return) of | J, 3; := =, satisfies by Lemma 21 that d :== HD(A) ~ 2.

The next purpose is to prove the following Lemma:
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Lemma 26. Let Ay C A a sub-horseshoe with 0 < HD(A;) := X < 1, then there exists
another sub-horseshoe Ay of A with the following properties:

1. Ay N Ay =10 and HD(KY) ~ HD(K"), where Ky, K" are the regular Cantor sets
that describe the geometry transverse of the unstable foliation W*(Ay), W3 (A), re-
spectively.

2. A1 and As are independent, i.e., there are Markov partitions Ry and Ry of Ay and
Ay, respectively, such that

Tr, NTr, =0 for any Ry € Ry and Ry € Ry,
where Tr, = {¢*(x) : x € Ry and 0 < t < t(z)} and 7r, = 7 (7(Ry)).

Proof. Consider a Markov partition S8 of A for squares of side € (remember that R is
conservative). Then, we have approximately e~¢ squares, where d = HD(A). Consider
now the set %Al of €= squares determined by A;.

We say that a square R; € R is prohibited for R; € R, if Tk, N 75, # 0. Observe also
that, each square prohibits at most ¢! other squares. Thus, each square of &An prohibit
at most € - ¢! < €73/2 call these prohibited square and denote by fa,. Therefore, we
have > [e~? — ¢7%/2] := N squares non prohibited.

The idea now is to understand what happens in the maximal invariant of these remaining
squares.

Let {6;,...,0n} be the words associate with the remaining squares, which generate in-
tervals of length ¢ in W*(A), in the construction of the unstable regular Cantor set.
Without loss of generality we can assume that the transitions 0;0; is admissible for all
i,j € {1,...,N}. A transition 6,6, is said prohibited, if there exists R € R, inside 0,6,

Since the interval in W*(A) generated by the word a3 has length ~ €2, then #{af} ~ N.
Also as the size of each word 6; is ~ loge™? ~ log N (because d > 3/2), then each R € Ra,
(prohibited square) prohibits < kN log N transitions. So we have in total < ke%/2N log N
prohibited transition, where k£ > 1 is constant.

Affirmation : ¢ #2Nlog N < Ce @43/ ]oge™! < N? = O(e72?), for some constant
C>0.

In fact: Since d > 3/2, then

6—3/2(€—d _ 6—3/2) log(e*d _ 6—3/2)

¢ (@+3/2) Jog 1 =4,

i lime—>0
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—(d+3/2) 1pg ¢! —d _ .—3/2
€ og € ) € €
=T =0 and lim,_,q — V= 1.

i lime—>0

The previous affirmation says that the number of prohibited transitions is less than the
total number of transitions. So, we consider the following matrix A for i,5 € {1,..., N}

1 if 6,0; is not prohibited;
CLZ']' =
0 if 0,0; is prohibited for some R € Ra,

By the previous we have #{a;; : a;; = 1} > %N 2 so by Lemma 23 holds that the trace
of matrix A™, tr(A™) satisfies

N m
tr(A™) > (E) for any m > 2.

This implies that there are many transitions not prohibited.

Thus, there exists a subset B C {1, ..., N} such that, the submatrix A= (a;j) fori,j € B
has all nonzero entries, so each transition 6;0; with ¢, j € B is not prohibited. Therefore,
the sub-horseshoe Ay = (), ., R"(U,cp 0:) satisfies the conditions 1 and 2 of lemma.

m

Now we create independence in the perturbation of R using the sub-horseshoe A;.

Fix n € N large and let S,, be as in the subsection 4.2.2. Since the transversality condition
is open and dense, then we can suppose that the GCS ¥; are transverse to surface S,,.
This last implies that a,, := |J,2; M S, is a finite family of smooth curves. Now by
Lemma 24 applied to the family of curves o, and the sub-horseshoe A;, we have that
given € > 0 there are sub-horseshoe A of A; such that Af Na = for any a € «,, and

HD(KS) > HD(K}) — e, (4.6)
where K, K7 are of regular Cantor sets that describe the geometry transverse of unstable
foliation W*(A§), W*(Ay), respectively.

Observe also that A; in Lemma 26 can be take such that
HD(K7}) ~ 1/4. (4.7)

Remark 16. By definition of Aj, we can take a Markov partition Ry such that for
each R, € Ry there is a neihgborhood U, of R, with the property R™(U,) N1y, = O for
0<r<inf, Y, ti(z) <n, v €U, and RI(z) = ¢pXi=0t®(z), where U, is the closure of
U, and 1y, = 71 (n(U,)).

Let Mo = {Ry,..., Ry} a Markov partition by squares of side €!/? of A§ as in Remark 16.
Note that since R is conservative, then the Markov partition Ry, generates N interval of
size € in W*¥(A§) and W*(A}) (in the construction of stable and unstable regular Cantor
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set). We call {6y, ...,0x} the words associate to the intervals generated by Rg in W*(A§)
(in the construction of stable regular Cantor set). We said that the word 6; prohibits
the word 6, if Ty, N 7y, # . Define Py, = {6; : 0; is prohibited by 6;}, then there is
a constant C' > 0 such that #P), < CNY2 Let a < 1/2 and 0 < § < 1/10, without
loss of generality we can assume that the transitions ¢;0; is admissible. Given 6;, denote
Py, = {0y, - O, (i)} the set of prohibited words by 6;.

Definition 10. We say that 0; prohibits the transition 00y, if within 005, appears some
word 0,,;) € Pp,.

Lemma 27. Let L = {i : 6, prohibited more than 0N transitions of type 0,0; or 6;0;},
then #L < ON.

Proof. From the definition of Aj and Remark 16, we can assume that if §; prohibited the
transition 6; Qj, then there is a unique 0,,;) € P, within 6;0;. Each word 6; prohibited no
more than C' word, this is |Py,| < C for any 6;. Also, there is m’ such that the number
of possible beginnings with m letters of a word 0;, is greater than or equal to A\, where
3/2 > A > 1 is uniform in m and A > 1000,

Given a word 6;, then the proportion of 6; such that the transition 6,0, is prohibited and
such that the m first letters of §; with m > m’ is

1 1
= Z P ZAJ‘lOO( A1)<E‘

m>m’

O

Lemma 28. Let f: {1,...,[N®|} = Xy :={01,...,0n}\{6; : 7 € L} a random function,
then the cardinal of the image f, [Imf| > 3N with probability 1 — On(1).

Proof. Given P C Xy with cardinality |P| = [ N®], then

#{g: 1, [N°)} = P} < [P = BN} |

IA

VAN
TN TN T
o | & ol
!
ks
N——
_°
| — |
DN | —
2
Q
_
=
3

l1—a [N [e4
< <2|XN|TN°‘> < | X |
and | X | is the total number of functions f. O
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The following question arises: Given f: {1,...,[N%]} — Xy a random function, we want
to know the probability of the transition f(j)f(r) be prohibited by f(i)?

In fact: Given ¢ € {1,...,[N®]}, such that f(i) prohibited 6,0,

a f(@ B
7\ 7\ 7\

7 N N N
- -
TV TV
0 0,

Then, #{afB} ~ N and since #{P;;} < CN'2 so
#{0,0, : 0,0, is prohibited by f(i)} < CN'2N.

Therefore, given f: {1,...,[N*]} — Xy a random function, then the probability of the
transition f(j)f(r) be prohibited by f(i) is

CNY2N _ C
(1—0)2N1/2

P ( f(j)f(r) be prohibited the transition f(z)) < BN (4.8)
N

So, since av < 1/2, then the expected number of prohibited transitions is

C C N2
a3 _ )2 =) < 2
< (N%) TN (1_5)2]\7%_@(]\[ ) < ( 5 ) < |Imf|°.

That is, the expected number of prohibited transitions is < [Im f]2.

We consider the complete regular Cantor set K (Imf) and consider A = (a;;) for i,j €
{1,...,|[Imf|} the matrix defined by

1 if 0,0; is not prohibited;
aij =
0 if 6,0; is prohibited for some 8, € Imf

By the previous we have #{a;; : a;; = 1} > 2-[Imf[?, so by Lemma 23 holds that the
trace of matrix A™, tr(A™), satisfies

tr(A™) > (@)m > <[]\f]>m for any m > 2.

This implies that there are many transitions not prohibited.

Thus, there exists a subset B of Imf such that, the submatrix A= (a;;) for i, j € B has
all nonzero entries, so each transition ¢,0; with 6;,0; € B is not prohibited.

Put K the regular Cantor set
K:={" 1050505y 5050 /eji € B} C K*.
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Moreover, by Remark 14

HD(R) ~ log [Imf] - log(N)® —log 2

—loge —loge
Thus,

HD(K) ~ aHD(K}).
Consider the sub-horseshoe of A§ defined by Aj := m R"(Usepb;). Since, Kj = K the

nez
stable regular Cantor set, described by THE transverse geometry of unstable foliation

W*"(Aj3), then by the above we have that
HD(K?) ~ aHD(KY). (4.9)

As HD(A) ~ 2, then HD(K") ~ 1, then by Lemma 26 the sub-horseshoe A, satisfies
that Ay N A3 =0 and HD(KY) ~ 1. Also, combining the equations (4.6), (4.7) and (4.9)
we have that HD(K3) ~ ai. Therefore, since a can be take equal to % — 4e, with € > 0
small, then HD(K3) ~ £ — €, thus

HD(KY) + HD(K3) > 1.

From section 4.1, we described the family of perturbations given in [MY1 page 19-20], in
which it is possible to obtain the property V' (see Definition 3).

In [MY10] is proved that if R is a diffeomorphism with two horseshoe A,, As disjoint,
we can perturb R in a Markov partition of Az without altering the dynamics in Ay as in
the section 4.1 and such that the new dynamics has a horseshoe with the property V' (see
Definition 3). Let us now make the perturbation R in the Markov partition {6; : i € B}
of As. Call this partition of fRs.

Let 7,5 € B, since 6;0; is not prohibited, then 7(7y,) N 7(0;) = 0. This implies that,
if we perturb of metric g in 7(6;), then this perturbation is independent, i.e, the dynam-
ics of R in 6; for 7 # i not changed. Also, the dynamic of R in Markov partition of A,
given Lemma 26 also does not change. We want to perturb of metric g in a neighborhood
of m(6;) for i € B. Since the diameter of 6; is sufficiently small, we can assume that (6;)
is contained in a normal coordinate system, i.e., there is a point p € w(6;), an orthonormal
basis {e1,es} of T,M and open set U C T,M such that the function

defined by ¢(x,y) = exp,(re; + yes) is a diffeomorphism and 7 (6;) C U;.

Let g;;(x,y) denote the components of the metric g in the chart (¢, U). Let o (x,y) be
a continuous family of C'*° real function with support contained U, C'*°-close to constant
function 0 and o°(z,y) = 0.

We can define a new Riemannian metric g by setting

(9)o0(x,y) = goolz,y) +a”(z,y)
(9)ij(x,y) = gii(x,y) (i,5) # (0,0).
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For w small, the rectangles 6; are transverse to geodesic flow ;¢! of g, so denote RY the
Poincaré map of the geodesic flow ;¢,. Define the following application ®¥ on 6; by

OY(x,v) := R oRY(x,v) for (x,v) € 6.

Lemma 29. If (x,v) € W (z) with z € As, then ®¥(z,v) ¢ W5 (2) for w # 0 small.
Proof. Since R(W%(2)) C Wi (R(z)), it suffices see that Ry (z,v) & WE(R(2)). O

We define the new metric g, on M close to the metric g by

g¥(x) ifzeU;

gu(r) =
g otherwise

Put ®¥(z,v) := ®¥(z,v) if (z,v) € 6;. This Lemma implies that the perturbation of R,
given by R o & satisfies the condition on the family of perturbation to get the property
V' (cf. subsection 4.1.1).

Let us apply Lemma 25 to Ay and Az, we find a set dense By, € C*(SM,R), C*-open,
such that given € > 0, then for any F' € By, there are sub-horseshoes A7 of Az and
A% of Ay with HD(K3) > HD(K3) — e and HD(K}) > HD(KY) — € (as in Lemma
24), also there are Markov partitions R3“ of ALY, respectively, such that the function
mazF|znpe € CH(EN RE*,R). Since Ay N Az = (), the above implies that Aj. N AL = ()
and

HD(A%) + HD(AR) > 1.

Hence, by [MY1] it is sufficient perturb A%, as in subsection 4.1.1, to obtain property V'
(see Definition 3). By Lemma 29 there is w small such that (R™, A%) has the property
V', where A% = ((A%)", A%) and (A%)™ is the continuation of the hyperbolic set A% for
R™.

Continuing analogously as in the proof of Theorem 4, we have the following theorem:

Theorem 5. Let M be as above, then there is a metric gy close to g and a dense and
C?-open subset H C C?*(SM,R) such that for any f € H,

where ¢g4, is the vector field defining the geodesic flow of the metric go.
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Part 11

Geometric Marstrand
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Chapter 5

The Marstrand Theorem in
Nonposisive Curvature
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5.1 Introduction

Consider R? as a metric space with a metric d. If U is a subset of R2, the diameter of U
is |U] = sup{d(z,y) : z,y € U} and, if U is a family of subsets of R?, the diameter of U
is defined by
|U|| = sup |U].
Ue u

Given s > 0, the Hausdorff d-measure of a subset K of R? is

ms(K) = lim inf E |U|?
e—0 U covers K
Ull<e” veu

In particular, when d is the Euclidean metric and s = 1, then m = m; is the Lebesgue mea-
sure. It is not difficult to show that there exists a unique dy > 0 for which my(K) = +oo if
d < dy and mq(K) = 0if d > dy. We define the Hausdorff dimension of K as HD(K) = dy.
Also, for each 6 € R, let vy = (cos@,sinf), Ly the line in R? through of the origin con-
taining vg and m : R? — Ly the orthogonal projection.
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In 1954, J. M. Marstrand [Mar54] proved the following result on the fractal dimension of
plane sets.

Theorem[Marstrand]: If K C R? such that HD(K) > 1, then m(m(K)) > 0 for
m-almost every 6 € R.

The proof is based on a qualitative characterization of the “bad” angles 6 for which
the result is not true.

Many generalizations and simpler proofs have appeared since. One of them came in
1968 by R. Kaufman, who gave a very short proof of Marstrand’s Theorem using meth-
ods of potential theory. See [Kau68] for his original proof and [PT93], [Fal85] for further
discussion. Another recent proof of the theorem (2011), which uses combinatorial tech-
niques is found in [LM11].

In this article, we consider M a simply connected surface with a Riemannian metric
of non-positive curvature, and using the potential theory techniques of Kaufman [Kau68],
we show the following more general version of the Martrand’s Theorem.

The Geometric Marstrand Theorem: Let M be a Hadamard surface, let K C M
and p € M, such that HD(K) > 1, then for almost every line | coming from p, we have
m(K) has positive Lebesque measure, where m is the orthogonal projection on [.

Then using the Hadamard’s theorem (cf. [PadC08]), the theorem above can be stated as
follows:

Main Theorem: Let R? be with a metric g of non-positive curvature, let K C R? be
with HD(K) > 1, then for almost every 0 € (—m/2,m/2), we have that m(me(K)) > 0,
where g is the orthogonal projection with the metric g on the line lg, of initial velocity
vy = (cosf,sinf) € T,R?.

5.2 Preliminaries

Let M be a Riemannian manifold with metric ( , ), aline in M is a geodesic defined for all
parameter values and minimizing distance between any of its points, that is, v : R — M
is a isometry. If M is a manifold of dimension n, simply connected and non-positive
curvature, then the space of lines leaving of a point p can be seen as a sphere of dimension
n— 1. So, in the case of surfaces the set of lines agrees with S* in the space tangent T, M
of the point p. Therefore, in each point on the surface the set of lines can be oriented and
parametrized by (—g, g} Therefore, we can talk about almost every line in the point
with the Lebesgue measure using the above identification (cf. [BH99]). In the conditions
above, Hadamard’s theorem states that M is diffeomorphic to R™, (cf. [PadCO08]).

Moreover, given a geodesic triangle AABC' with sides , BC and AC' denote by ZA the
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angle between geodesic segments AB and A_C’, then the law of cosines says
|BC|? > |AB|* + |AC|? — 2|AB||AC| cos LA,
where |le7| is the distance between the points i, j for i, 7 € {A, B,C}.

Gauss’s Lemma: Let p € M and let v,w € B.(0) € T,T,M ~ T,M and M > q = exp,v.
Then,

(d(expy)ov, d(expy)yw), = (v, W), .

5.2.1 Projections

Let M be a manifold simply connected and of non-positive curvature. Let C' be a complete
convex set in M. The orthogonal projection (or simply ‘projection’) is the name given to
the map m: M — C constructed in the follows, (cf. [BH99, pp 176]).

Proposition 3. The projection 7 satisfies the following properties:
1. For any x € M there is a unique point w(x) € C such that d(x,n(z)) = d(z,C) =
inf,cc d(z,y).
2. If g is in the geodesic segment [z, 7(x)], then m(zo) = m(x).

3. Givenz ¢ C,yeC andy# (), then Ly (z,y) > 7.
4. x — 7(x) is a retraction on C.
Corollary 10. Let M, C be as above and define do(x) := d(x,C), then

1. d¢ is a conver function, this is, if a(t) is a geodesic parametrized proportional to
arc length, then

de(a(t)) < (1 —t)de(a(0)) + tdoa(l) para t € [0,1].

2. For all x,y € M, has |do(z) — de(y)| < d(z,y).

3. The restriction of dc the sphere of center x and radius v < dc(z) reaches the inf in
a unique point y with
de(z) = de(y) +r

Here we consider R? with a Riemannian metric g, such that the curvature Kp» is non-
positive, i.e., Kgz < 0. Recall that a line v in R? is a geodesic defined for all param-
eter values and minimizing distance between any of its points, that is, v: R — R? and
d(y(t),~(s)) = |t — s|, where d is the distance induced by the Riemannian metric g, in
other words, a parametrization of v is a isometry. Then, given x € R? 3! (¢,) such that
7y (z) = y(t;), then without loss of generality we may call 7, (z) = t,.

Fix p € R? and put {e;,es} a positive orthogonal basis of T,R?, i.e., the basis {e;,es}
has the induced orientation of R?. Then, call v; = (cost,sint) in coordinates the unit

vector (cost)e; + (sint)es € T,R?. Denote by [; the line through p with velocity vy, given
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by l:(s) = exppsv; and by m the projection on l;. Then, given 6 € [0, 27), we can define
7:[0,27) x T,R* — R by the unique parameter s such that my(exp,w) = exp, svy i.e.,
(0, w) := my(w) and

mo(expyw) = exp,m (0, w)vy.

5.3 Behavior of the Projection =

In this section we will prove some lemmas that will help to understand the projection 7.

5.3.1 Differentiability of 7 in § and w.
Lemma 30. The projection w is differentiable in 0 and w.

Proof. Fix w and call ¢ = exp,oyw = expyw. Let o, (t) C T,R? such that expyo,(t) =
v, (t), where 7, is the line such that 7,(0) = p and 7/ (0) = v, then, for all v € S, 3! ¢,
such that d(q,7,(R)) = d(q,v,(t,)) and satisfies

<d(ewpq)av(tv)(a;(tv)) d(equ av(tv > - <’7’U exp‘J)Olu(tu)(aU(tU))> = 0
By Gauss Lemma, we have

10 ) /
2815 ”av( )H (tv) = <C¥U(tv)7av(tv)> =0.

We define the real function

n:S'" x R—R
10
w0 = 5ol

we have 7(v,t) € C* and satisfies 1(vo, t,,) = 0, also 2n(v,t) = %8—2 IERGIE

Put g(t) = ||au,(t)|%, then Sn(vo, to) = 1g"(to). Also, g(t) = d(gq, Y, (t t))* is differen-
tiable and has a global minimum at t,,, as Kg2 < 0, ¢ is convex. In fact, for s € [0, 1]

glsz+ (1 —3s)y) = d(q, v (sz+ (1 —8)y))* < (sd(g, 70 (x)) + (1 = 5)d(q, V0 ()))
< sd(q, Y0, (2))* 4+ (1= 5)d(q, 7 (y))* = sg(x) + (1 — s)g(y)

™

by the law of cosines and using the fact é7rw()(t())((17 Yo (t)) = 5 at the point of projection

(g, Yoo (b ))* + Ay (tu) s Yoo (1)) < g, 70 (1))?

equivalently

g(tuy) + (£ = tu)* < g(1).

Therefore, as ¢(t,,) = 0, then ¢’ (t,,) > 0. This implies 2 5t (vo, to) # 0 and by Theorem of
Implicit Functions, there is an open U containing (v, t,,), a open V' C S! containing v
and £ : V — R, a class function C*° with £(vg) = t,, such that

{(v,t) eU :n(v,t) =0} <= {v eV :t=¢(w)}.
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If n(v,&(v)) = 0 implies w(v, q) = £(v) is differentiable, in fact it is C*°. The above shows
that 7 is differentiable in 6.

Analogously, is proven that 7 is differentiable in w.
O

Let w € T,R?*\ {0} and put 6, € [0,27) such that w and vsy are orthogonal, that is
<w,v%> = 0, where the (, ) is the inner product in T,R* and the set {w,vy.} is a
positive basis of T,R%.

Lemma 31. The projection w satisfies,

or
O () = — ]

Moreover, there exists € > 0 such that, for all w

om 1 07
— (0,w) < —3 ||lw] and 20

- <
Jull < 2 (6,w) <

<awﬁsnwm

whenever |0 — Q,Lﬂ <.

Before proving Lemma 31 we will seek to understand the function 7 (6, w).

Let m, be the projection on the line ly generated by the vector vy in T,R?, in this case,
T, (w) = ||wl cos(arg(w) — 8), where arg(w) is the argument of w with relation to e; and
the positivity of basis {e, e2}.

Now using the law of cosines

d(p, o ewpyw))? + d(ewpyw, mo(eap,w))? < ||wl* = m, (w)? + d(m, (w)va, w)?,

Since, K < 0, then d(exp,w, mg(exp,w)) > d(w, mg(w)vg) > d(w, m, (w)vy).
Joining the previous expressions we obtain

d(p, mo(expyw))* < m, (w)? = mp(w)? < m, (W)
Thus, since mp(w) has the same sign as m,(w), then

0 = m(w) <m,(w) = |lw] cos(arg(w) — 0); (5.1)
0 = mp(w) > m,(w) = ||wl| cos(arg(w) — 0).

7T9(”LU)

7o (W)

IN IV

Proof of Lemma 31.
As (w,05) = 0, then arg(w) — 655 = /2, thus 7(65,w) = 0 = ||w|| cos(r/2). Moreover,
as m(05 — h,w) > 0 and 7(6;; + h,w) <0 for h > 0 small, then

(0 —h,w) _ |lw]cos (arg(w) — (65 — 1))
h - h

and

(05 + h,w) - |wl| cos (arg(w) — (65 + h))
h - h
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If h — 0 in the two previous inequalities we have

om .
= (0, w) < —|lw| sin(arg(w) — 0,,) = — [Jw]|
00
and p
T :
O (0 w) > — ol sin(arg(w) — ) = — ]
Therefore,
on, |
5g 0w w) = = |l (5.3)
Moreover, for A > 0 small and by the equation (5.2), we have
on 10%n
L _ L 10T a1 2
(0, + h,w) = 50 — (0, w)h + 5920 (0, w)h* 4+ r(h)

V

> wllcos (arg(w) — (6, + 1))

0 10 9
= ||wl| <% cos(0 — arg(w))|gsh + 35% cos(0 — arg(w))|gs h” + R(h)) .

The above inequality implies that

T p1 o 0? 2
> — — 1 .
829(9 w)h® +r(h) > ||w|| (829 cos(f — arg(w))|gL h™ + R(h))
2 82
Since 50 cos(f — arg(w))|gL = O(;hen %(0L w) > 0. Analogously, using 7(0> — h, w)
and equation (5.1) we have that %(9l w) < 0. So,
520 (9 w) = 0. (5.4)

Using Taylor’s expansion of third order for w(0 + h,w) and h > 0, the equations (5.2)
3

and (5.4) and the fact that 9 cos(f — arg(w))|p. = 1, implies that

036
Pr h3 h?
839(9L ) 6 +T’3(h) > E+R3(h)
Thus,
Pr
@(%aw) > 1. (5.5)

on
EquationS (5.4) and (5.5) implies that, for any w € T,R? the function %( w) has a

minimum in § = 6L, therefore there is €; > 0 such that

on
— <
ol < &

The lemma will be proved if we show the following statements:

—(6,w) forall [0—6,|<e. (5.6)
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1. There is 6; > 0, such that for all ||w| > 1,

1
g—g(@,w) < ~3 |w|, whenever |6 — 6| < 4.
In fact: Let 1/2 > 8 > 0, then by continuity of g—g, there is ; such that
or on
: Iy on _om o
if |0 —6,|<0d1, then 86(9’w> ae(ew,w)<ﬁ.
on 1
Thus, %(Q,w) < B = [Jw|| < =35 [Jw|| for any ||w]| > 1.
2. There is €5 > 0, such that for all ||w| =1 and ¢ € [0, 1]

1
%(Qtw) < _it’ whenever |0 — 6| < €.

In fact: Suppose by contradiction that for all n € N, there are wy,, t,,, 0,, [|[w,| =1
such that |9$n — 9n| < % and g—g(@n,tnwn) > —%tn. Without loss of generality, we
can assume that w, — w, 6, — 9$ and t, — t. If t # 0, the above implies a
contradiction. Thus, suppose that ¢t = 0, then consider the C'-function H (0, t,w) =

92(0,tw), then 22 (6,0, w) = — |lw| = —1. Since H is C", then
H 9n7tn7 n . H 07 t7 . H 0n7tn7 n
lim H(On, tn, wn) :hmw = -1<-1/2 < lim w
n—00 th t—0 t n—00 tn

Which is absurd, so the assertion 2 is proved.

Take € = min{ey, €9, 01 }, then by the equation (5.6) and the statements 1 and 2 we have the
second part of Lemma 31. The third part is analogous, just consider that gQTg(Qi, w) = 0.
So we conclude the proof of Lemma. O

t
Lemma 32. Let w # 0 and 0 # 0, then lim o (t) # 0.

t—0+ t

proof. Suppose that lim, o+ M =0, put w(t) = expytw, let v(t) € T,y»R?* the unit
vector such that expy, s s(t)v(t) = mg(expytw) for some s(t) > 0. Let J(t) € Tyyp)R? such
that exp,J(t) = p, that is J(t) = —d(expp)w,w. Then, putting a(t) the oriented angle

between v(t) and J(t) (cf. Figure 5.1).

By the law of cosines and using that d(p, w(t)) = ||J(t)|| = t||w] for ¢ > 0, and my(tw) =
d(p, me(w(t))), we obtain

mo(tw)? = (0] + d(w(t), ma(w(t)))? = 2 |I0)]| d(w(t), mo(w(t))) cosa(t).
S (ORI 0))

t—0+ t

= B, then dividing by #?* and when ¢ — 0 we have

2

t

0= (lim M) > |w|® + B* - 2|jw|| B lim cosa(t)
t—0+ t t—0+

> |lw|® + B = 2lw]| B = (Jw| - B)* > 0.
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Figure 5.1: Convergence of geodesics

Thus, we conclude that B = ||w|| and lim cos a(t) = 1. Therefore, lim a(t) = 0, this
t—0 t—0
implies the following geodesic convergence
t—0t —w
exPy(ySv(t) — e:r;ppsm,
given that w(t) — 0 and v(t) — — iy when ¢ — ot.
Moreover, by definition of s(¢), we have that
<d (eoPu®) a0 V(8> 4 2P ey Ue)>7re(tw)v9 -

when ¢ — 07 and using the fact that d(exp,)o = I, where I is the identity of T,R?, we

conclude that <_LH’ U9> = 0 and this is a contradiction as 6 # ... O

[[w

Now we subdivide T,R? in three regions: Consider € given by the Lemma 31, then

3 3 3
R, = {w € TPRQ: the angle Z(w,e;) < g — 56 and Z(w,ey) > ; + 56} :
T 3 57 3
R, = {w € TpRzz the angle 1 + 2 < ZL(w,e1) < T 56} :
3 3 7 3
Ry = {w € TPRZ: the angle Zﬁ + 56 < Z(w,ey) < Zﬁ = 56} )

1

For w € T,R?, putting a> = 01 — € and @ = 0L + ¢, where € is given in Lemma 31.

Lemma 33. For the function mg(w) we have that

1. (a) There is Cy > 0 such that for all w € Ry with ||w|| = 1 and all t € [0,1] we
have
mo(tw) > Cit for 6 € [0,a5] U [as, 7.
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(b) There is C] > 0 such that for all w € Ry with |[w] > 1

mo(w) > Cf for 0 €[0,a5] U [as, ).

2. (a) There is Cy > 0 such that for all w € Ry with ||w| = 1 and all t € [0,1] we
have

mp(tw) > Cot for 6 € Eﬂ,ai] U [di,%r} :

(b) There is C, > 0 such that for all w € Ry with [|Jw|| > 1
! 3 € ~1
mo(w) > Cy for 0 € 1 G U lay, —=m| .

3. (a) There is C5 > 0 such that for all w € Ry with ||w|] = 1 and all t € [0,1] we
have

4 w4
(b) There is C4 > 0 such that for all w € Ry with |Jw|| > 1

mo(tw) > Cst for 0 € Fw,ai] U {dL 97‘(':| .

me(w) > Cy for 6 € Eﬂ,aﬂ U {éi, %71‘:| :

We prove the part 1, the parts 2 and 3 are analogous.

proof.
(a) By contradiction, suppose that for all n € N the existe w,, with |w,| =1, ¢, € [0, 1]
and 0, € [0, ay; |U[ay, 7] such that m, (t,w,) < 1, ||w,]]. We can assume that w, — w,
0, — 0 € [0,at] U [at, 7] and t, — t as n — oo. If t # 0, then since for w € R,
and 0 € [0,a] U [al, 7], mp(tw) > 0, we have 0 < mp(tw) < 0, so @ = 0 and this is a
contradiction, because 6 € [0, az] U [a, 7] and € is fixed.

If ¢t = 0, consider the C'-function F(6,t,w) = my(tw), then

F F
0= lim (enatnawn) — lim (H,t,w)7
n—00 tn t—0 t
F(0,t,w)

by Lemma 32 we know that lim

lim # 0, and this is a contradiction with the above,
—

so (a) is proven.

(b) Since - = 0L for t > 0 and mp(w) > mp(:2:) for ||w|| > 1, then is sufficient to

[[wl]

prove that there is Cf > 0 such that for all w € Ry with ||w]|| =1
mo(w) > O for 6 €[0,a]U[a, 7.

Assume tha contrary, that is for any n € N there are w, € Ry, 0, € [0,a;; | U [ag, , 7]
with ||w,|| = 1, such that 0 < 7, (w,) < L. We can assume that w, — w and 6, — 0 €
0,at] U [at, 7] as m — oo, then the above implies that mp(w) = 0, that is, § = 0, this is

absurd with 6 € [0,al] U [al, 7). O
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5.3.2 The Bessel Function Associated to my(w)

For w € TpR2 consider the Bessel function

jw(z):/owcos(zm(w))dﬁ.

Observe that we can consider mo(w) as a periodic function in 6 of period 27. Moreover,
Ju(2z) has the following properties:

B 27 2m+t
2. Ju(z) = / cos(zmg(w))dl = / cos(zmg(w))d for any t € R.
0 ¢

3. As myir(exp,(w)) = —mg(exp,(w)), then

m+t 2w+t 2w+t
/ cos(zmpw)df = / cos(zmg_rw)dh = / cos(—zmgw)dl
t ™ ™

+t +t

2w+t
= / cos(zmg(w)db,

+t

Thus,

Jw(z) =2 /t7r cos(zmp(w))dl = 2J¢ (2). (5.7)

Remark 17. To fix ideas we consider

t = 0 for we Ry;

3
t = v for w € Ry;
5
t = vl for w € Rs.
Proposition 4. For any w € T,R? we have that / Ju(2)dz < .

proof. We divide the proof in three parts.

1. If w € Ry, in this case, by Remark 17 and equation (5.7) is it suffices to prove the
Lemma for J2(z) := J,(2).

2. If w € Ry, in this case, by Remark 17 and equation (5.7) is it suffices to prove the
Lemma for Jo™*(2).

3. If w € Rs, in this case, by Remark 17 and equation (5.7) is it suffices to prove the
Lemma for Jo™*(2).
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We will prove 1, the proof of 2 and 3 are analogous. In fact: Since J,(z) = J,(—z), then

/_ : Ju(2)dz =2 /0 " u2)dz,

o0
s0, the proof is reduced to prove that / Ju(2)dz < oo.
0
Let w € Ry and x > 0, then

[ auerts = [7 [ costemtunazas = [" =g

B wsm(amrg( ) sin(zmp(w)) (s 2 (.
_/0 o /%—m)() o = I (z) + I2 ().

The next step is to estimate I (z) and I2(z).

IL(x) = /0 " sinfeo(w)) 4y / iw sinfeo(w)) 4 (5.8)

71'9(21)) W@(w)

where a = 0 —e.
Now, by Lemma 33.1 we have that if € [0,a], then for ||w| < 1, m(w) > C} ||wl|| and
for ||w|| > 1, mp(w) > CY.

Since, sin(zxmp(w)) < 1, then the first integral on the right side (5.8) is bounded in x. In
fact:

at . Lw if 0< H'U)” S 1,
/ *sin(emo(w)) o o fO (5.9)
o mo(w) & it fuf> 1.

Now we estimate the second integral on the right side of (5.8).

Put f,(0) = me(w), then f,(0) = 0 and f, (0 ) > 0 for § < 0. Moreover, recall

that by Lemma 31, 9%(65, w) = — [|w|| # 0, then f/,(6;;) # 0, and

% sin(zme(w)) L Julei)  gin (xs) L Jwloi) gin (xs)
Iy S =T A L
where gy, (s) = f,(f,'(s)) is C*.

Now by definition of s, if s € [0, fu(al)], then f;'(s) € [0,a:]. Thus by Lemma 31
we have

— [[wl] < gu(s) < —% lwl|for all s € [0, fu(az)]. (5.11)

For large x
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2777 . T 2r/x ;
_/ sin (xs)ds _ _/ sin (xs)ds _/ sin (xs)ds
0o 59a(s) 0 $9a(s) wfe 59a(s)

Since sin (zs) > 0 in [0, E] then

_/”S n(s) ;o o / Vs — 2 /Smyd (5.12)
0 59als ||wH [lwl]

2w /x _:
As well —sin (zs) > 0 for s € [Z,2%], then —/ o (xs)ds < 0. So, by (5.12)
/x Sgw(S)
= sin (xs / sin y
— < dy. (5.13)
/0 sguls) = Tl
L
Let n € N such that n < WCZ—W <n+1, then
7r

/f“’( w) sin (zs) /2; sin (z iy 1/ S sin (z
sn(rs),, >
0 59w (8) 0 SGu(s 2k SGuw (S

If 2777” < fulal) < @, then sin (xs) > 0 and by Lemma 31, we have

fulab)
ds + / sin (5) ;.

2mn SGw(s)

sin (xs) sin (xs) _ 2sin(xs) 2sin (xs) _ 2xsin (xs)

slwl| = sgu(s) = sl sllwll -~ Jwll2wn
This implies

fwla) o fula) g fu(azy)
_/ sin (xs)ds < / xsin (zs) gs < " / sin (2s)ds
2 2 21mn

2 5gu(s) 2 lw] e [w]| mn

(9= 50 = g (e 1)
L 2 (27T(n+1)_1>_ 2 1

[wll X 27 lwlf n

fu(azy)
In the case that f,(as) > M then — / Sin ($S>d5 <0, so

) 5, (5

/fw(ai) sin (q:s)d 2 in (q;s)d < T m(2n+1) 2mn
— S p— R
2nn SGw(s) - mentd)  Sg,(s) T ||lwl| 2mn T T
11
Jw|[
In any case, we have
fuw(az) 2 1
/ sin (ws) oo 2 1 (5.14)
i sgu(s) = Twlln
k=n—1 2m(k+1) | ( )
= sin (s
Now we only need to estimate Z
et Jome 5gu(s)

Put s¢ = 2’;—’“, then
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2m(k+1) | 2w (k+1) . 2w (k+1) 1 1
/ S111 (QUS) dS — / mds + / Sin (.CES) ( — ) dS.
e sl S g™ T 0 509wl

The first integral on the right term of the above equality is zero.

Now we estimate the second integral on the right side of the above equation.

2
By Lemma 31 we have g, (s)gw(s0) > HZZH , also ssg > (%)2
1 1 2
Thus, < 5 :26 5+ Moreover,
$509w () guw(S0) |w||* w2k
|S0gw(50) = $gw(s)] = [(s0 = $)gw(s0) + 5(gu(s0) = gu(s))]
< so = sl |gw(s0)| + $]9w(s) — guw(s0)]

IN

|s — s (!gw(SD)I +s  sup \9;(5)!> } by Lemma 31
)

5€[0, fw(azk

S R )
7 ol (14 2”7”)

”wH (1 + fw( ))

< Zwl
< - = [l (1+ flw])

IN

i
2

IN

as, fu(at) < |lw||. Therefore,

1 1 _ 39w (8) — S0gw(S0)

2(1+ [lwl)) (=

Sgw(3> Sogw(SO) 8309w(5)9w(30)
Then,
27 (k+1)
= sin(xs) 2(1+Jjw|) fxN [(2n(k+1) 27k 41+ lw|) (1
sin(as) [ o 204wl 7y BN 1y
2k 5Guw(S) mllw|  \k? x x ] k?
Therefore,

27 (k+1)

Lo G

k=n—1 27r(k+1)

Z / sin

where A(||w]]) =

k=n—1

< 2

k=

k=n—1

1
< A(||lw|) Z = (515)
k=

Since Y7, 7z = a < oo and put b = [ S‘Zy then the equations (5.13), (5.14), and
(5.15) imply

Ful@) in(zs) 2 2 1
— ds < ——b+ ——— + A([|w]])a. (5.16)
/0 59u(s) [l Jwl[n



Thus, by the equation (5.8), (5.9), (5.10), and (5.16) we have

m 2 2 1
+ —b+ —+ A([lw|)a if 0<[w| <1;
Cilw|  lwl|™ flwl|n
I(x) < (5.17)
2 2 1 )
C’ + Tw ”b—I— H— + A(J|w||)a it |wl| > 1.

Completely analogous using a;- instead of a> and taking n’ such that
—w < fulat) < — 2“” , we also obtain

T 2 2 1

+ b+ — + A(JJw|])e if 0 < Jw|| <1,
, Cilw|  Nwl ™ [Jw] n/

I(z) < , - (5.18)
T )
ﬁ—i-mb—i-m;—i—A(HwH)a if HwH > 1.

1

Since n,n’ — 0o as * — oo, then (5.17) and (5.18) implies

27 4
b+ 2A(||w]))a if 0< |lw|]| <1;
o0 Chlwll  (Jwl]
/ T (2)dz < (5.19)
’ T b 2A(wla i > 1
w if Jjw )
cr H I
Thus, we conclude the proof of Proposition 4. n
. . 3w 5T o
Put j; =0, 5o = 1 and jz = i then it is also easy to see that for w € R;,
2T 4
b+ 2A(||w])a if 0< |lw|] <1;
oo Cillwll  Jlwl]
/ Jit(2)dz < (5.20)
0 27r .
oot 2Adule i > L

i = 2,3, where C;, C] are given in Lemma 33.

5.4 Proof of the Main Theorem

As in the Kaufman’s proof of Marstrand’s theorem (cf. [Kau68]), we use the potential
theory.
Put d = HD(K) > 1, assume that 0 < My(K) < oo and for some C' > 0, we have

mq(K N B,(z)) < Cr?

for x € R? and 0 < r < 1 (cf. [Fal85]). Let u be the finite measure on R? defined by
p(A) = mg(KNA), Aameasurable subset of R?. For —F < 6 < %, let us denote by p the
(unique) measure on R such that [ fdug = [ (f o mg)du for every continuous function f.
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The theorem will follow, if we show that the support of 1y has positive Lebesgue measure
for almost all 6 € (-7, 2) since this support is clearly contained in my(K). To do this we
use the following fact.

Lemma 34. (cf. [PT93, pg. 65]) Let n be a finite measure with compact support on R

and
fzzpd
7(p) = 7 / n(x),

for p € R () is the fourier transform of n). If 0 < f (p)|2dp < oo then the support
of m has positive Lebesque measure.

Proof of the Main Theorem.
We now show that, for almost any 6 € (—g, g), [lg is square-integrable. From the defini-

tions we have
= o [ [ rdpat@idnnty) = o [ [ erer - duudue

as Ty (u) = —7r9(u), then

o () + |fiosn(p / / cos (p(mp(v) — mp(u)))dja(w) ().
And so

/02” o (p)|?d0 = %/Ozw//cos(p(m(v) — 7o(u)))dp(w)dp(v)do
N %// (/0277 cos(p(mo(v) —m)(U)))de) dp(uw)dp(v).

Observe now that for all > 0 and for all u,v there are L € N and w(u, v) such that

/gc /2” cos(p(ma () — 74(v)))dBdp < L

w(u,v) can be taken such that d(p,w) = d(u,v) So we have for x > 0

L vt

s / o(p)Pd0dp < dp‘dm Jdp(v) =

/ Totua P )dp‘du //{w<1}

—I+11 (5.21)

2

cos(xmy(w(u, v))dep‘

dpu(u)da(v).

Follows

S

T >dp\ () (v)
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By (5.7) and Remark 17

L= //{||w||>1} / wlp )dp’du( Jau(v) :g//{”w”“}”&
N QZ//nwnn}mR

Now by (5.19) and (5.20), we have

//{w|>1}ﬂR ( Wi_ub+214(||w||)a> dp(u)dp(v).

ez <p>dp] dp(u)dp(v)

| <p>dp' dp(u)dp(v).

If Jw|| > 1, then W < 1 and A(||lw]]) = 1|T:J|TUH) < 8, moreover, as the support of the
measure ;4 X 4 is contained in K x K which is compact, then
1
I1<6 <27r max { o } +2b + 16a) w(K)?. (5.22)

We now estimate /7, in fact: By (5.7) and Remark 17,

= //{w<1} / )dp‘du Z//||w||<1}ﬂR
- QZ//MQ}HR

Now by (5.19) and (5.20), we have

1= QZ/ / T (c Tl + T ||b+2A(”””>) plu)dp(v)

/ / o ((max { 20 } +4b+ 8a> H_;H + 8a> dp(u)dp(v).  (5.23)

Remember that ||w(u,v)|| = d(u,v), then

//|w||<1} ||w|| //d(uv)<1}

Now, for some 0 < 5 < 1

| <p>dp1 () dy(v)

| <p>dp\ () dp(v).

IN

(o)

d - B n—1
/{wllsu d(u, v) wlv) Z/B”<d(uv)<6n1 d(u,v) <2 BT (B (w)
CZB Bn 1
CZB_d(ﬁd_l)" with d > 1
n=1
- 1 C
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Therefore,

1 ) C
//{Ilwllgl} mdﬂ<u>du<v> < n® )6 — pgd’

Also, // A8dp(u)dp(v) < 8ap(K)* < oo.
|w[|<1}

Using these last two inequalities and the equation (5.23) we have that

reo((mefZhomise) SC o vsnr). o

Using Fubini, the by equations (5.21), (5.22) and (5.24) we have
1
} + 20 + 16a> w(K)* +

27
/ / p’dpd9<f+fl<6<27rmax c

((max{zc }—I—4b+8a) 3 Cﬂd +8CL;L(K)2> < 0.

Therefore, / |6 (p)|*dp < oo for almost all § € (—%,%).

—00

If exists 0 € (-2, g) suchthat/ \fig(p)|?dp = 0, then/ |90(x)|2da::/ |fi(p)Pdp =

0 where p(z / e“Prig(p)dp. This implies that ¢ = 0 almost every where, but
\/ 2m
due = pdzx. This is ue(R f_oo ¢(z)dr = 0 and this implies that u(R?) = 0, this

contradicts the fact that d—measure of Haussdorff of K is positive.
The result follows of Lemma 34, in the case 0 < my(K) < oo.
In the general case, we take 0 < mg(K’') < oo with 1 < d < d and K’ C K (cf.

[Fal85]). Then, by the same argument 7y(K”) has positive measure for almost all 6, and
since mp(K") C mp(K), then the same is true for my(K). O
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