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1 Introduction

Consider the optimization problem with equality and nonnegativity constraints

minimize f(x)
subject to h(x) = 0, x ≥ 0,

(1.1)

where the objective function f : IRn → IR and the constraints mapping h : IRn → IRl are
twice differentiable. As is well known, problems with general inequality constraints can be
cast in the form of (1.1) introducing auxiliary slack variables.

Let L : IRn × IRl → IR be the (partial) Lagrangian of the problem (1.1), including only
the equality constraints:

L(x, λ) = f(x) + 〈λ, h(x)〉.

Then stationary points and associated Lagrange multipliers of the problem (1.1) are charac-
terized by the Karush–Kuhn–Tucker (KKT) optimality system

∂L

∂x
(x, λ)− µ = 0, h(x) = 0, µ ≥ 0, x ≥ 0, 〈µ, x〉 = 0, (1.2)

with respect to x ∈ IRn, λ ∈ IRl and µ ∈ IRn. By M(x̄) we denote the set of Lagrange
multipliers associated with a stationary point x̄ of the problem (1.1), that is, the pairs (λ, µ)
satisfying (1.2) for x = x̄.

Recall that the basic sequential quadratic programming (SQP) method for problem (1.1)
is the following iterative procedure [1, 11]; see also [20, Chapter 4]. Given a current primal-
dual iterate (xk, λk, µk) ∈ IRn× IRl× IRn, the next iterate (xk+1, λk+1, µk+1) is computed as
a stationary point and associated Lagrange multipliers of the quadratic programming (QP)
subproblem

minimize 〈f ′(xk), x− xk〉+
1

2

〈
∂2L

∂x2
(xk, λk)(x− xk), x− xk

〉
subject to h(xk) + h′(xk)(x− xk) = 0, x ≥ 0.

(1.3)

By the perturbed SQP (pSQP) framework we mean a set of relations that consists of certain
structured perturbations of the KKT conditions of the QP subproblem (1.3); the precise
description will be given in Section 2. This framework has been developed in [17, 16, 7]
and it proved useful for analyzing, in a unified manner, a number of different Newtonian
and Newton-related algorithms for constrained optimization (truncated and augmented La-
grangian modifications of SQP itself, sequential quadratically constrained quadratic pro-
gramming, and linearly constrained Lagrangian methods, to mention some of the applica-
tions); see [20, Chapter 4]. In this paper we continue this line of reasoning and show that
in addition to the above, local convergence properties of the inexact restoration methods
[22, 21, 23, 3, 10, 8, 4] and of composite-step SQP methods [26, 24], [6, Section 15.4], can
also be derived from the pSQP theory.

The paper is organized as follows. In Section 2 we formally state the pSQP framework
and summarize its convergence properties. Section 3 considers an “exact restoration” scheme,
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which is not a practical algorithm but rather serves as a natural first step to the analysis of
inexact restoration methods, presented in Section 4. Inexact restoration methods have been
receiving much attention in recent years; see [22, 21, 23, 3, 10, 8, 4]. Our considerations
are related to the local framework of [3]. We establish local superlinear convergence of
inexact restoration by embedding it within the pSQP framework of Section 2. The main
difference of our results when compared to [3] is the following. Our analysis requires the strict
Mangasarian–Fromovitz constraint qualification and the second-order sufficient optimality
condition, and as part of the analysis we establish solvability of the iteration subproblems
(i.e., that relevant solutions exist and thus the method is well-defined). By contrast, the
analysis in [3] does not use these assumptions (in fact, does not use any regularity conditions
at all), but solvability of subproblems is not proven but assumed. Thus our results and those
in [3] are different in nature, and can be considered complementary to each other. That said,
in Section 5 we show that without assuming any constraint qualifications, the existence of
suitable subproblem solutions in the inexact restoration framework is at least questionable.

Section 6 suggests a similar treatment via pSQP framework of composite-step SQP meth-
ods [6, Section 15.4] (recall that the composite-step approach serves as the basis for the
trust-region globalization strategies of SQP). In comparison with the rate of convergence
results in [6, Theorems 15.4.15, 15.4.24], we obtain local superlinear convergence under a
weaker constraint qualification, namely, the strict Mangasarian–Fromovitz constraint qualifi-
cation instead of the linear independence one. Moreover, in [6, Theorems 15.4.15, 15.4.24] it
is assumed that the pure (exact) SQP step is taken whenever it is accepted by the trust-region
rule, while our analysis demonstrates that superlinear convergence can be preserved even if
the SQP step is computed only approximately, assuming that the inexactness is appropriately
controlled.

We conclude this section with some notation and definitions that will be used in our
analysis. Throughout the paper, for a vector y of any dimension and an index set I, the
notation yI stands for the subvector of y with components yi, i ∈ I.

For a given stationary point x̄ ∈ IRn of the problem (1.1) and an associated Lagrange
multiplier (λ̄, µ̄) ∈ IRl × IRn, set

A = A(x̄) = {i = 1, . . . , m | x̄i = 0}, N = N(x̄) = {1, . . . , n} \A(x̄),

A+ = A+(x̄, µ̄) = {i ∈ A(x̄) | µ̄i > 0}, A0 = A0(x̄, µ̄) = {i ∈ A(x̄) | µ̄i = 0}.

As defined in [19], (λ̄, µ̄) ∈ M(x̄) is referred to as a noncritical Lagrange multiplier if
there exists no triple (ξ, η, ζ) ∈ IRn × IRl × IRn, with ξ 6= 0, satisfying the system

∂2L

∂x2
(x̄, λ̄)ξ + (h′(x̄))Tη − ζ = 0, h′(x̄)ξ = 0, ξA+ = 0,

ζA0 ≥ 0, ξA0 ≥ 0, ζiξi = 0, i ∈ A0,
ζN = 0.

(1.4)

We refer the reader to [14, 15, 18, 19, 12, 13] and [20, Chapter 7] for the role this notion plays
in convergence properties of algorithms, stability, error bounds, and other issues. Here, we
only mention that noncriticality is equivalent to the local Lipschitzian error bound for the
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KKT system (1.2) of the problem (1.1) in terms of its natural residual, and to the upper-
Lipschitzian behaviour of solutions of the KKT system (1.2) under canonical (right-hand
side) perturbations. Also, it can be easily seen that the multiplier is necessarily noncritical
if the following second-order sufficient optimality condition (SOSC) holds:〈

∂2L

∂x2
(x̄, λ̄)ξ, ξ

〉
> 0 ∀ ξ ∈ C(x̄) \ {0}, (1.5)

where
C(x̄) = {ξ ∈ IRn | h′(x̄)ξ = 0, ξA ≥ 0, 〈f ′(x̄), ξ〉 ≤ 0}

is the critical cone of the problem (1.1) at x̄. It is also clear that noncriticality of a multiplier
is a weaker assumption than the SOSC (1.5), i.e., there may well exist (and often do exist)
noncritical multipliers that do not satisfy (1.5).

Recall that the strict Mangasarian–Fromovitz constraint qualification (SMFCQ) is said to
hold at a stationary point x̄ of the problem (1.1) if the Lagrange multiplier (λ̄, µ̄) associated
to x̄ exists and is unique. As we shall not need the algebraic characterization of this condition,
we do not state it here (the reader may consult [25], for example). Recall that SMFCQ is
implied by the linear independence constraint qualification (LICQ). For the problem (1.1),
LICQ can be seen to be equivalent to saying that the vectors (h′j(x̄))N , j = 1, . . . , l, are
linearly independent.

2 The perturbed SQP framework

We can state the iteration subproblem of the basic SQP method (1.3) for the problem (1.1)
as

minimize f(x) + 〈f ′(x), ξ〉+
1

2

〈
∂2L

∂x2
(x, λ)ξ, ξ

〉
subject to h(x) + h′(x)ξ = 0, x+ ξ ≥ 0,

(2.1)

so that for a current iterate (xk, λk, µk) ∈ IRn×IRl×IRn, the next iterate is (xk+1, λk+1, µk+1),
where xk+1 = xk + ξk, ξk is a stationary point of the problem (2.1) with (x, λ, µ) =
(xk, λk, µk), and (λk+1, µk+1) is an associated Lagrange multiplier.

Then the iteration subproblem of the pSQP framework [16], when specialized for the
problem setting of (1.1), has the form of perturbed KKT conditions of the problem (2.1).
Specifically,∥∥∥∥f ′(x) +

∂2L

∂x2
(x, λ)ξ + (h′(x))T(λ+ η)− µ− ζ + ω1((x, λ, µ), (ξ, η, ζ))

∥∥∥∥ ≤ χ1(x, λ, µ),

‖h(x) + h′(x)ξ + ω2((x, λ, µ), ξ)‖ ≤ χ2(x, λ, µ),

µ+ ζ ≥ 0, x+ ξ ≥ 0, 〈µ+ ζ, x+ ξ〉 = 0.
(2.2)

Here ω1 : (IRn × IRl × IRn)× (IRn × IRl × IRn)→ IRn and ω2 : (IRn × IRl × IRn)× IRn → IRl

are functions characterizing structural perturbations of the KKT system of the basic SQP
subproblem (2.1), while χ1 : IRn × IRl × IRn → IR+ and χ2 : IRn × IRl × IRn → IR+ are some
forcing functions controlling additional inexactness allowed when solving the structurally
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perturbed SQP subproblems. In particular, if ω1 ≡ 0 and ω2 ≡ 0 then (2.2) represents
solving the usual SQP subproblems (2.1), perhaps approximately (exactly if further χ1 ≡ 0
and χ2 ≡ 0). Otherwise, it is the functions ω1 and ω2 that define each specific algorithm
within the pSQP framework (they represent “the difference” between the pure SQP iteration
and that of the given algorithm). We note that in general, in the last line of (2.2) the
inequality constraints in primal variables can be perturbed too (in (2.2) they are not), see
[16, 17]; but complementarity relations have to be maintained exactly. We do not need
the extra generality of perturbing inequality constraints for the applications in this paper.
Note also that for simple bounds as in the current setting, exact complementarity can be
maintained employing active-set methods for subproblems, or by using simple “purification
procedures”, like the one proposed in [16]. For a current iterate (xk, λk, µk) ∈ IRn×IRl×IRn,
the next pSQP iterate is (xk+1, λk+1, µk+1) = (xk + ξk, λk + ηk, µk + ζk), where (ξk, ηk, ζk)
satisfies (2.2) with (x, λ, µ) = (xk, λk, µk).

For a priori local convergence analysis of pSQP (i.e., where the existence of the iterative
sequence and its convergence are not given but have to be proven), one needs to assume that
ω2 is smooth with respect to the last variable, and for all (x, λ, µ) ∈ IRn × IRl × IRn and
(ξ, η, ζ) ∈ IRn × IRl × IRn it holds that

ω1((x, λ, µ), (ξ, η, ζ)) =
∂Ψ

∂ξ
((x, λ, µ), (ξ, η, ζ)), (2.3)

where Ψ : (IRn × IRl × IRn)× (IRn × IRl × IRn)→ IR,

Ψ((x, λ, µ), (ξ, η, ζ)) = ψ((x, λ, µ), ξ) + 〈λ+ η, ω2((x, λ, µ), ξ)〉, (2.4)

with some function ψ : (IRn × IRl × IRn)× IRn → IR which is smooth with respect to the last
variable. Observe that in this case the system (2.2) with χ1(·) ≡ 0 and χ2(·) ≡ 0 coincides
with the KKT system of the problem

minimize f(x) + 〈f ′(x), ξ〉+
1

2

〈
∂2L

∂x2
(x, λ)ξ, ξ

〉
+ ψ((x, λ, µ), ξ)

subject to h(x) + h′(x)ξ + ω2((x, λ, µ), ξ) = 0, x+ ξ ≥ 0,

which is the perturbed version of the SQP subproblem (2.1).
Let the mapping Φ : IRn × IRl × IRn → IRn × IRl × IRn be defined by

Φ(u) =

(
∂L

∂x
(x, λ, µ), h(x), x

)
,

where u = (x, λ, µ) ∈ IRn×IRl×IRn, and let N(u) stand for the normal cone to IRn×IRl×IRn
+

at u. Furthermore, define the multifunction Ω from (IRn × IRl × IRn) × (IRn × IRl × IRn) to
the subsets of IRn × IRl × IRn by

Ω(u, v) = ω(u, v) + Θ(u),

where v = (ξ, η, ζ),

ω(u, v) = (ω1((x, λ, µ), (ξ, η, ζ)), ω2((x, λ, µ), ξ)),
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and
Θ(u) = Θ1(u)×Θ2(u)× {0}

with

Θ1(u) = {θ1 ∈ IRn | ‖θ1‖ ≤ χ1(x, λ, µ)}, Θ2(u) = {θ2 ∈ IRl | ‖θ2‖ ≤ χ2(x, λ, µ)}.

With these mappings at hand, the iteration subproblem (2.2) of pSQP can be seen as the
generalized equation (GE)

Φ(uk) + Φ′(uk)(u− uk) + Ω(uk, u− uk) +N(u) 3 0,

which is the iteration subproblem of the inexact Josephy-Newton method for GEs developed
in [17]. Then, under the appropriate assumptions on the perturbation terms ψ and ω2, the
following local superlinear convergence result for pSQP can be derived from [17, Theorem 2.1];
see [20, Chapter 4] for details. We note that Theorem 2.1 below is similar to the statement in
[16], but with somewhat weaker smoothness requirements on perturbation terms. Its proof
is also similar to [16]; see [20].

Theorem 2.1 Let f : IRn → IR and h : IRn → IRl be twice differentiable in a neighbourhood
of x̄ ∈ IRn, with their second derivatives being continuous at x̄. Let x̄ be a solution of
the problem (1.1), satisfying the SMFCQ and the SOSC (1.5) for the associated Lagrange
multiplier (λ̄, µ̄) ∈ IRl × IRn. Furthermore, let a function ψ : (IRn × IRl × IRn) × IRn → IR
and a mapping ω2 : (IRn × IRl × IRn)× IRn → IRl possess the following properties:

(i) ψ is continuous at ((x̄, λ̄, µ̄), ξ) and ω2(·, ξ) is continuous at (x̄, λ̄, µ̄), for every ξ ∈ IRn

close enough to 0.

(ii) ψ and ω2 are differentiable with respect to ξ in a neighbourhood of ((x̄, λ̄, µ̄), 0) and
twice differentiable with respect to ξ at this point.

(iii) ∂ψ
∂ξ and ∂ω2

∂ξ are continuous at ((x̄, λ̄, µ̄), 0), and there exists a neighbourhood of 0 in

IRn such that ∂ω2
∂ξ ((x, λ, µ), ·) is continuous on this neighbourhood for all (x, λ, µ) ∈

IRn × IRl × IRn close enough to (x̄, λ̄, µ̄).

(iv) The equalities

ω2((x̄, λ̄, µ̄), 0) = 0,
∂ψ

∂ξ
((x̄, λ̄, µ̄), 0) = 0,

∂ω2

∂ξ
((x̄, λ̄, µ̄), 0) = 0

hold, and for the function Ψ defined by (2.4) it holds that〈
∂2Ψ

∂ξ2
((x̄, λ̄, µ̄), (0, 0, 0))ξ, ξ

〉
≥ 0 ∀ ξ ∈ C(x̄).
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Assume further that the following estimates hold as (x, λ, µ) ∈ IRn × IRl × IRn tends to
(x̄, λ̄, µ̄) and as (ξ, η, ζ) ∈ IRn × IRl × IRn tends to zero:

ω2((x, λ, µ), ξ) = o(‖ξ‖+ ‖(x− x̄, λ− λ̄, µ− µ̄‖), (2.5)

∂Ψ

∂ξ
((x, λ, µ), (ξ, η, ζ)) = o(‖(ξ, η, ζ)‖+ ‖(x− x̄, λ− λ̄, µ− µ̄‖), (2.6)

χj(x, λ, µ) = o(‖(x− x̄, λ− λ̄, µ− µ̄‖), j = 1, 2. (2.7)

Then there exist ε > 0 and δ > 0 such that for any starting point (x0, λ0, µ0) ∈ IRn ×
IRl × IRn satisfying

‖(x0 − x̄, λ0 − λ̄, µ0 − µ̄)‖ ≤ ε, (2.8)

if a sequence {(xk, λk, µk)} ⊂ IRn× IRl× IRn satisfies, for each k = 0, 1, . . ., the system (2.2)
with ω1 defined in (2.3) and Ψ defined in (2.4), and also satisfies

‖(xk+1 − xk, λk+1 − λk, µk+1 − µk)‖ ≤ δ, (2.9)

then this sequence converges to (x̄, λ̄, µ̄), and the rate of convergence is superlinear. More-
over, under the stated assumptions, ε > 0 and δ > 0 can be chosen in such a way that for
any (x0, λ0, µ0) ∈ IRn× IRl× IRn satisfying (2.8) there exists at least one sequence satisfying,
for each k = 0, 1, . . ., the relations (2.2) and (2.9).

In addition, the rate of convergence is quadratic if the second derivatives of f and h
are locally Lipschitz-continuous with respect to x̄, and if (2.5)–(2.7) can be replaced by the
estimates

ω2((x, λ, µ), ξ) = O(‖ξ‖2 + ‖(x− x̄, λ− λ̄, µ− µ̄‖2),

∂Ψ

∂ξ
((x, λ, µ), (ξ, η, ζ)) = O(‖(ξ, η, ζ)‖2 + ‖(x− x̄, λ− λ̄, µ− µ̄‖2),

χj(x, λ, µ) = O(‖(x− x̄, λ− λ̄, µ− µ̄‖2), j = 1, 2.

Theorem 2.1 is, of course, a rather general technical statement. For its applications
to specific algorithms, such as truncated and augmented Lagrangian modifications of SQP,
sequential quadratically constrained quadratic programming, and linearly constrained La-
grangian methods, see [17, 16]. In the next sections, we shall proceed to inexact restoration
and composite-step SQP, the subjects of the present paper. But before that, we state an a
posteriori primal rate of convergence result for pSQP, established in [7]. Here, convergence
of the iterative (primal-dual) sequence is given (or already established via Theorem 2.1), and
at issue is the rate of convergence of the primal part of the sequence. Recall that in gen-
eral, superlinear convergence of primal-dual sequence does not imply any rate for the primal
sequence separately [2, Exercise 14.8].

We are now given iterative sequences linked by the perturbed KKT conditions of SQP
subproblems (1.3) as follows:

f ′(xk) +
∂2L

∂x2
(xk, λk)(xk+1 − xk) + (h′(xk))Tλk+1 − µk+1 + ωk1 = 0,

h(xk) + h′(xk)(xk+1 − xk) + ωk2 = 0,

µk+1 ≥ 0, xk+1 ≥ 0, 〈µk+1, xk+1〉 = 0,

(2.10)
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where ωk1 ∈ IRn and ωk2 ∈ IRl are the perturbation terms. Again, in general the part invloving
inequality constraints (here represented by xk+1 ≥ 0) can be perturbed too, but we do not
need this generality for applications to algorithms in this paper. The following statement is
an adaptation of the results in [7] to the problem setting of (1.1), i.e., to the set of relations
(2.10).

Theorem 2.2 Let f : IRn → IR and h : IRn → IRl be twice differentiable in a neigh-
bourhood of x̄ ∈ IRn, with their second derivatives being continuous at x̄. Let a sequence
{(xk, λk, µk)} ⊂ IRn × IRl × IRn satisfy, for each k, the system (2.10) with some ωk1 ∈ IRn,
ωk2 ∈ IRl; let this sequence be convergent to (x̄, λ̄, µ̄) where x̄ is a stationary point of the
problem (1.1), with an associated Lagrange multiplier (λ̄, µ̄) ∈ IRl × IRn being noncritical.

If
πC+(x̄, µ̄)(ω

k
1 ) = o(‖xk+1 − xk‖+ ‖xk − x̄‖),

where
C+(x̄, µ̄) = {ξ ∈ IRn | h′(x̄)ξ = 0, ξ′A+

= 0},

and
ωk2 = o(‖xk+1 − xk‖+ ‖xk − x̄‖),

as k →∞, then the rate of convergence of {xk} is superlinear.

3 Exact restoration

It is instructive to consider first an “exact restoration” method; it is not a practical algo-
rithm but rather a motivation for inexact restoration methods and a natural first step to
their analysis. In particular, it is the exact restoration that defines the associated class of
methods within the pSQP framework (i.e., it defines structural pertubations relative to SQP),
while inexact restoration can be regarded simply as solving the subproblems of the method
approximately in some sense.

Algorithm 3.1 Choose (x0, λ0, µ0) ∈ IRn × IRl × IRn and set k = 0.

1. If (xk, λk, µk) satisfies the KKT system (1.2), stop.

2. (Feasibility phase.) Compute πk as a projection of xk onto the feasible set of the
problem (1.1), i.e., a global solution of the subproblem

minimizeπ ‖π − x‖
subject to h(π) = 0, π ≥ 0

(3.1)

for x = xk.

3. If (πk, λk, µk) satisfies the KKT system (1.2), stop.
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4. (Optimality phase.) Compute xk+1 and (ηk, µk+1) as a stationary point and an asso-
ciated Lagrange multiplier of the subproblem

minimizex L(x, λ)
subject to h′(π)(x− π) = 0, x ≥ 0

(3.2)

for π = πk, λ = λk.

5. Set λk+1 = λk + ηk.

6. Increase k by 1 and go to step 1.

For a given x ∈ IRn, let π̄(x) be a projection of x onto the feasible set of the problem
(1.1), computed as at the feasibility phase of Algorithm 3.1 solving the problem (3.1). In
order to formally apply Theorem 2.1, we need to assume that π̄(·) is a fixed single-valued
function. As the feasible set is not convex, the projection onto it need not be unique, in
general. However, an algorithm used to solve (3.1) follows its internal patterns and computes
one specific projection. It is further reasonable to assume that, if at some future iteration
a projection of the same point needs to be computed again (however unlikely this might
be from a practical viewpoint), the algorithm would return the same result. With this in
mind, considering that π̄(·) is a single-valued function is justified for all practical purposes.
In Theorem 3.1 below this assumption is stated more formally.

Then the next primal iterate xk+1 can be seen as xk + ξk, where ξk is a stationary point
of the following counterpart of the problem (3.2):

minimizeξ L(x+ ξ, λ)
subject to h′(π̄(x))(x+ ξ − π̄(x)) = 0, x+ ξ ≥ 0

(3.3)

with x = xk, λ = λk. For the next dual iterate (λk+1, µk+1) it holds that λk+1 = λk + ηk,
where (ηk, µk+1) is a Lagrange multiplier associated with ξk.

To place the exact restoration scheme above within the pSQP framework so that the
needed assumptions on the perturbation terms be satisfied, we shall replace (3.3) by the
(related) subproblem

minimizeξ L(x+ ξ, λ)− 〈λ, h′(π̄(x))ξ〉
subject to h′(π̄(x))(x+ ξ − π̄(x)) = 0, x+ ξ ≥ 0,

(3.4)

still with x = xk, λ = λk. It can be directly verified that stationary points ξk+1 of the
problems (3.3) and (3.4) coincide, and the associated multipliers are of the form (ηk, µk+1)
and (λk+1, µk+1), with λk+1 = λk + ηk, respectively. Thus, for the purposes of convergence
analysis, we can deal with the modified subproblems (3.4). It turns out that this allows to
apply Theorem 2.1 if for (x, λ, µ) ∈ IRn × IRl × IRn and ξ ∈ IRn we take

ψ((x, λ, µ), ξ) = ψ((x, λ), ξ)

= L(x+ ξ, λ)− 〈λ, h′(π̄(x))ξ〉 − f(x)− 〈f ′(x), ξ〉 − 1

2

〈
∂2L

∂x2
(x, λ)ξ, ξ

〉
= L(x+ ξ, λ)−

〈
∂L

∂x
(x, λ), ξ

〉
− 1

2

〈
∂2L

∂x2
(x, λ)ξ, ξ

〉
−〈λ, (h′(π̄(x))− h′(x))ξ〉 − f(x), (3.5)
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ω2((x, λ, µ), ξ) = ω2(x, ξ) = h′(π̄(x))(x+ ξ − π̄(x))− h(x)− h′(x))ξ. (3.6)

Let x̄ ∈ IRn be a stationary point of the problem (1.1), and (λ̄, µ̄) ∈ IRl× IRn be an asso-
ciated Lagrange multiplier. Evidently, ‖π̄(x)−x‖ ≤ ‖x− x̄‖ for any x ∈ IRn and any solution
π̄(x) of the problem (3.1). In particular, π̄(x) → x̄ = π̄(x̄) as x → x̄. Employing the mean-
value theorem, one can directly verify that under the appropriate smoothness assumptions on
f and h, the function ψ and the mapping ω2 defined by (3.5), (3.6) possess all the properties
required in Theorem 2.1 with χj(·) ≡ 0, j = 1, 2. We omit the technical details as they
are completely routine, and only mention that for Ψ((x, λ, µ), (ξ, η, ζ)) = Ψ((x, λ), (ξ, η))
defined according to (2.4) it holds that

∂2Ψ

∂ξ2
((x̄, λ̄), (0, 0)) = 0,

and

∂Ψ

∂ξ
((x, λ), (ξ, η)) =

∂L

∂x
(x+ ξ, λ)− ∂L

∂x
(x, λ)− ∂2L

∂x2
(x, λ)ξ + (h′(π̄(x))− h′(x))Tη

= o(‖ξ‖) +O(‖η‖‖x− x̄‖), (3.7)

ω2(x, ξ) = (h′(π̄(x))− h′(x))ξ + h(π̄(x))− h(x)− h′(π̄(x))(π̄(x)− x)

= O(‖ξ‖‖x− x̄‖+ ‖x− x̄‖2) (3.8)

as (x, λ) → (x̄, λ̄) and (ξ, η) → (0, 0). Moreover, under stronger smoothness assumptions,
the first estimate can be sharpened as follows:

∂Ψ

∂ξ
((x, λ), (ξ, η)) = O(‖ξ‖2 + (‖ξ‖+ ‖η‖)‖x− x̄‖). (3.9)

Applying Theorem 2.1, we now obtain conditions for local superlinear convergence of Algo-
rithm 3.1.

Theorem 3.1 Let f : IRn → IR and h : IRn → IRl be twice differentiable in a neighborhood
of x̄ ∈ IRn, with their second derivatives continuous at x̄. Let x̄ be a stationary point of the
problem (1.1), satisfying SMFCQ and the SOSC (1.5) for the associated Lagrange multiplier
(λ̄, µ̄) ∈ IRl × IRn. Assume that if xk = xj for any two iteration indices k and j, then step 2
of Algorithm 3.1 computes πk = πj.

Then there exist ε > 0 and δ > 0 such that for any starting point (x0, λ0, µ0) ∈ IRn ×
IRl × IRn satisfying

‖(x0 − x̄, λ0 − λ̄, µ0 − µ̄)‖ ≤ ε, (3.10)

if a sequence {(xk, λk, µk)} ⊂ IRn × IRl × IRn generated by Algorithm 3.1 satisfies

‖(xk+1 − xk, λk+1 − λk, µk+1 − µk)‖ ≤ δ (3.11)

for each k = 0, 1, . . ., then this sequence converges to (x̄, λ̄, µ̄), and the rate of convergence is
superlinear. Moreover, ε > 0 and δ > 0 can be chosen in such a way that for any starting point

9



(x0, λ0, µ0) ∈ IRn× IRl× IRn satisfying (3.10), there exists at least one sequence conforming,
for each k = 0, 1, . . ., to Algorithm 3.1 and the condition (3.11).

In addition, the rate of convergence is quadratic provided the second derivatives of f and
h are locally Lipschitz-continuous with respect to x̄.

Also, an a posteriori result regarding primal superlinear convergence of Algorithm 3.1
now follows readily from Theorem 2.2. Note that the needed assumption is noncriticality of
the multiplier, weaker than the SOSC (1.5).

Theorem 3.2 Let f : IRn → IR and h : IRn → IRl be twice differentiable in a neighborhood
of x̄ ∈ IRn, with their second derivatives being continuous at x̄. Let x̄ be a stationary point
of problem (1.1), and let (λ̄, µ̄) ∈ IRl × IRn be an associated noncritical Lagrange multiplier.
Let an iterative sequence {(xk, λk, µk)} ⊂ IRn × IRl × IRn generated by Algorithm 3.1 be
convergent to (x̄, λ̄, µ̄).

Then the rate of convergence of {xk} is superlinear.

Proof. According to the discussion above, for each k it holds that (xk+1, λk+1, µk+1) =

(xk + ξk, λk + ηk, µk + ζk), where (ξk, ηk, ζk) satisfies the system (2.2) with ω1((x, λ, µ),
(ξ, η, ζ)) = ω1((x, λ), (ξ, η)) defined by (2.3) and the first equality in (3.7), with ω2 defined
by (3.6), and with χ1(·) ≡ 0 and χ2(·) ≡ 0. Therefore, the set of relations (2.10) holds for
each k, where according to (3.7), (3.8),

ωk1 = ω1((xk, λk), (xk+1 − xk, λk+1 − λk))
= o(‖xk+1 − xk‖) +O(‖λk+1 − λk)‖‖xk − x̄‖)
= o(‖xk+1 − xk‖+ ‖xk − x̄‖),

ωk2 = ω2(xk, xk+1 − xk)
= O(‖xk+1 − xk‖‖xk − x̄‖+ ‖xk − x̄‖2)

= o(‖xk+1 − xk‖+ ‖xk − x̄‖)

as k →∞. Theorem 2.2 now implies the assertion.

4 Inexact restoration

Clearly, solving the subproblems (3.1) and (3.2) in Algorithm 3.1 exactly would be too costly,
in most cases simply impossible. The main question of this section is what kind of inexactness
can be allowed when solving these subproblems, so that the local convergence and rate of
convergence properties of Algorithm 3.1 would remain valid. To that end, we now consider
the following framework which we refer to as the inexact restoration method.

Algorithm 4.1 Choose functions ϕ0, ϕ1, ϕ2 : IR+ → IR+. Choose (x0, λ0, µ0) ∈ IRn× IRl×
IRn and set k = 0.
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1. If (xk, λk, µk) satisfies the KKT system (1.2), stop.

2. (Feasibility phase.) Compute πk ∈ IRn satisfying

‖h(π)‖ ≤ ϕ0(‖h(x)‖), π ≥ 0. (4.1)

for x = xk.

3. If (πk, λk, µk) satisfies the KKT system (1.2), stop.

4. (Optimality phase.) Compute xk+1 and (ηk, ζk) satisfying∥∥∥∥∂L∂x (x, λ) + (h′(π))Tη − µ− ζ
∥∥∥∥ ≤ ϕ1

(∥∥∥∥∂L∂x (π, λ)− µ
∥∥∥∥) , (4.2)

‖h′(π)(x− π)‖ ≤ ϕ2

(∥∥∥∥∂L∂x (π, λ)− µ
∥∥∥∥) , (4.3)

µ+ ζ ≥ 0, x ≥ 0, 〈µ+ ζ, x〉 = 0 (4.4)

for π = πk, λ = λk, and µ = µk.

5. Set λk+1 = λk + ηk, µk+1 = µk + ζk.

6. Increase k by 1 and go to step 1.

In the analysis below it will be further assumed that πk computed at the feasibility phase
of Algorithm 4.1 is within a controllable distance from xk. Specifically, in addition to (4.1),
we shall require that

‖π − x‖ ≤ K‖(x− x̄, λ− λ̄, µ− µ̄)‖ (4.5)

for some K > 0 independent of (x, λ, µ). In practice, this can be achieved, e.g., by approx-
imately solving the subproblem (3.1), or by other feasibility restoration strategies. In [3],
instead of (4.5) the following stronger condition is employed

‖π − x‖ ≤ K̃‖h(x)‖ (4.6)

with some K̃ > 0, which certainly implies (4.5) with K = `K̃ if h is Lipschitz-continuous
with respect to x̄ with constant ` > 0. Moreover, as a practical implementation of (4.6), in
[3] it is suggested to fix K̃ > 0 as a parameter of the algorithm, and to compute πk as an
approximate solution of the subproblem

minimizeπ ‖h(π)‖2
subject to ‖π − x‖ ≤ K̃‖h(x)‖, π ≥ 0

for x = xk. The approximate solution is supposed to satisfy the constraints of this subproblem
and the condition (4.1). However, the difficulty with this approach is that for a given K̃, the
approximate solution of this kind does not necessarily exist, in which case the algorithm in
[3] simply declares failure at the feasibility phase. To that end, below we do not employ (4.6)
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as an actual constraint of the feasibility subproblem of the algorithm, but rather use (4.5) as
an ingredient of the analysis.

In [3] it is also assumed that (xk+1, ηk, ζk) computed at the optimality phase of Algo-
rithm 4.1 lies within a controllable distance from (πk, 0, 0): in addition to (4.2), (4.3), it is
required that

‖(x− π, η, ζ)‖ ≤ K̃
∥∥∥∥∂L∂x (π, λ)− µ

∥∥∥∥ . (4.7)

(In [3] Lagrange multipliers for nonnegativity constraints are not used, but otherwise (4.7)
essentially corresponds to the constructions in [3].) In practice, this can be achieved by
approximately solving the subproblem (3.2), perhaps with some additional constraints; see
[3]. However, this additional control can be needed under the relaxed or removed constraint
qualifications only. Under the assumptions of Theorem 3.1, it will be enough to assume that
(xk+1, ηk, ζk) is simply not too far from (πk, 0, 0).

Employing (4.1)–(4.4), by the same transformations as in Section 3, an iteration of Al-
gorithm 4.1 can be seen as solving (2.2) with ω1 defined by (2.3), where ψ is given by (3.5),
with ω2 defined by (3.6), and with

χ1(x, λ, µ) = ϕ1

(∥∥∥∥∂L∂x (π(x, λ, µ), λ)− µ
∥∥∥∥) , (4.8)

χ2(x, λ, µ) = ϕ2

(∥∥∥∥∂L∂x (π(x, λ, µ), λ)− µ
∥∥∥∥) , (4.9)

where π(x, λ, µ) is the point selected at the feasibility phase of the algorithm. Observe that
for any (x, λ, µ) ∈ IRn× IRl× IRn, the point x̄ satisfies both (4.1) and (4.5) with any K ≥ 1,
and hence, can be selected as π(x, λ, µ) at the feasibility phase of the algorithm. Therefore,
π(x, λ, µ) with the needed properties always exists.

Similarly to the case of exact restoration, we can reasonably assume that if step 2 of
Algorithm 4.1 is applied at equal primal-dual points on different iterations then the same
result is produced. In particular, π(·) is a fixed single-valued function.

By differentiability of h at x̄, we conclude that

h(x) = h(x)− h(x̄) = O(‖x− x̄‖) (4.10)

as x→ x̄. Moreover, by twice differentiability of f and h at x̄, taking into account (4.5), we
obtain that∥∥∥∥∂L∂x (π(x, λ, µ), λ)− µ

∥∥∥∥ ≤ ‖µ− µ̄‖+

∥∥∥∥∂L∂x (π(x, λ, µ), λ)− ∂L

∂x
(x̄, λ̄)

∥∥∥∥
= ‖µ− µ̄‖+O(‖(π(x, λ, µ)− x̄, λ− λ̄)‖)
= ‖µ− µ̄‖+O(‖x− x̄‖) +O(‖(π(x, λ, µ)− x, λ− λ̄)‖)
= O(‖(x− x̄, λ− λ̄, µ− µ̄)‖) (4.11)

as (x, λ, µ)→ (x̄, λ̄, µ̄).
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Theorem 4.1 Under the assumptions of Theorem 3.1, suppose that if (xk, λk, µk) = (xj , λj ,
µj) for any two iteration indices k and j, then step 2 of Algorithm 4.1 computes πk = πj.

Then for any functions ϕ0, ϕ1, ϕ2 : IR+ → IR+ such that ϕ0(t) = o(t), ϕ1(t) = o(t)
and ϕ2(t) = o(t) as t → 0, and any K ≥ 1, there exist ε > 0 and δ > 0 such that for
any starting point (x0, λ0, µ0) ∈ IRn × IRl × IRn satisfying (3.10), if an iterative sequence
{(xk, πk, λk, µk)} ⊂ IRn × IRn × IRl × IRn generated by Algorithm 4.1 satisfies, for each
k = 0, 1, . . ., the relations

‖πk − xk‖ ≤ K‖(xk − x̄, λk − λ̄, µk − µ̄)‖ (4.12)

and (3.11), then this sequence converges to (x̄, λ̄, µ̄), and the rate of convergence is super-
linear. Moreover, ε > 0 and δ > 0 can be chosen in such a way that for any starting point
(x0, λ0, µ0) ∈ IRn× IRl× IRn satisfying (3.10), there exists at least one sequence conforming,
for each k = 0, 1, . . ., to Algorithm 4.1 and satisfying (3.11) and (4.12).

In addition, the rate of convergence is quadratic if the second derivatives of f and h
are locally Lipschitz-continuous with respect to x̄, and if ϕ0(t) = O(t2), ϕ1(t) = O(t2) and
ϕ2(t) = O(t2) as t→ 0.

Proof. Combining (4.8), (4.9) with (4.10), (4.11), and taking into account the assumptions

regarding ϕ0, ϕ1 and ϕ2, we obtain that

χj(x, λ, µ) = o(‖(x− x̄, λ− λ̄, µ− µ̄)‖), j = 1, 2,

as (x, λ, µ)→ (x̄, λ̄, µ̄). Moreover, if ϕ0(t) = O(t2), ϕ1(t) = O(t2) and ϕ2(t) = O(t2), then

χj(x, λ, µ) = O(‖(x− x̄, λ− λ̄, µ− µ̄)‖2), j = 1, 2.

Observe now that all the considerations in Section 3 remain valid if we replace π̄(x) by
π(x, λ, µ) (with the evident modifications of estimates (3.7)–(3.9), where one should replace
‖x− x̄‖ by ‖(x− x̄, λ− λ̄, µ− µ̄)‖). This follows from (4.1), (4.5), and (4.10), implying, in
particular, that π(x, λ, µ)→ x̄ = π(x̄, λ̄, µ̄) and

h(π(x, λ, µ)) = o(‖h(x)‖) = o(‖x− x̄‖)

as (x, λ, µ)→ (x̄, λ̄, µ̄).
The needed results now follow by applying Theorem 2.1.

5 Inexact restoration and degenerate problems

As already mentioned in Section 1, the analysis in [3] does not assume any constraint qualifi-
cation (CQ), and the primal-dual solution (even the primal part) does not have to be isolated.
In fact, the analysis in [3] is actually quite similar to that in [9] for the abstract Newtonian
framework for GE problems with nonisolated solutions. In particular, relations (3)–(7) in [3]
give a version of the inexact restoration method subproblem, combined with the stabilizing
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localization conditions (4.6) and (4.7). However, in [3] solvability of subproblems is not es-
tablished – it is assumed that subproblems have solutions satisfying the needed localization
conditions; see [3, Theorem 2.3]. The discussion that follows is intended to demonstrate
that without CQs, this property of subproblems’ solvability with the required localization of
solutions is at least questionable.

To apply the general convergence result from [9], we need the conditions (4.1) and the set
of relations ∥∥∥∥∂L∂x (x+ ξ, λ) + (h′(π))Tη − µ− ζ

∥∥∥∥ ≤ ϕ1

(∥∥∥∥∂L∂x (π, λ)− µ
∥∥∥∥) , (5.1)

‖h′(π)(x+ ξ − π)‖ ≤ ϕ2

(∥∥∥∥∂L∂x (π, λ)− µ
∥∥∥∥) (5.2)

µ+ ζ ≥ 0, x+ ξ ≥ 0, 〈µ+ ζ, x+ ξ〉 = 0 (5.3)

(cf. (4.2)–(4.4)) to have a solution (π, ξ, η, ζ) satisfying

‖(ξ, η, ζ)‖ = O(‖x− x̄‖+ dist((λ, µ),M(x̄))). (5.4)

In particular, the above at least must hold, as it is implied by (4.6) and (4.7). Quite remark-
ably, such a triple always exists – just take π = x̄, ξ = x̄−x, and (η, ζ) such that (λ+η, µ+ζ)
is the projection of (λ, µ) ontoM(x̄). Therefore, the inexact restoration scheme actually ad-
mits one-step termination at an exact primal-dual solution even when localization conditions
are imposed. The problem, of course, is that this view of the inexact restoration scheme
would not have much to do with reality, as finite termination cannot be expected for any
reasonable algorithm. In the case of inexact restoration perhaps even more so, as the method
consists of the two subsequent phases, and for finite termination one has to obtain the exact
primal solution x̄ as πk at the feasibility phase, which does not even involve the objective
function f ! Also, it appears that in order to formally apply the iterative framework of [9],
one has to follow the line of the analysis giving Theorem 4.1. Specifically, it is more practical
to consider any π(x, λ, µ) satisfying (4.1) and (4.5), and to ask whether there exists (ξ, η, ζ)
satisfying (5.1)–(5.4), with π = π(x, λ, µ). The next example demonstrates that without any
CQ, the answer to this question is in general negative. More precisely, by means of sensitivity
theory for optimization problems it can be shown that under some reasonable assumptions,
the primal estimate in (5.4) can be achieved, but the dual one is problematic.

Example 5.1 Let n = 2, l = 1, f(x) = (x2
1 + x2

2)/2, h(x) = (x1 − x2
2)x2

2. Then x̄ = 0 is a
solution of the problem (1.1), M(x̄) = IR × {0}, all the multipliers are noncritical and even
satisfy the SOSC.

Let x = π = µ = (t2, t) with t > 0 (observe that this x = π is feasible), and let λ = 0.
Then

∂L

∂x
(π, λ)− µ = 0,

and (4.2)–(4.4) take the form

ξ1 + ηt2 − ζ1 = 0, ξ2 − 2ηt3 − ζ2 = 0, t2 + ξ1 − 2t(t+ ξ2) + t2 = 0, (5.5)
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t2 + ζ1 ≥ 0, t2 + ξ1 ≥ 0, (t2 + ζ1)(t2 + ξ1) = 0,
t+ ζ2 ≥ 0, t+ ξ2 ≥ 0, (t+ ζ2)(t+ ξ2) = 0.

(5.6)

If t+ξ2 = 0 then, by (5.6), the last equality in (5.5) cannot hold, and therefore, t+ξ2 > 0,
t+ ζ2 = 0.

If t2 + ξ1 = 0, then from (5.5) we derive that ξ2 = −t/2, η = 1/(4t2)→∞ as t→ 0, and
hence, (5.4) cannot hold.

If t2 + ξ1 > 0 then, by (5.6), t2 + ζ1 = 0, and by (5.6), η = 1/(1 + 4t2)→ 1 as t→ 0, and
(5.4) cannot hold again.

6 Composite-step SQP

As is well known (see, e.g., [6]), the exact SQP step defined by the subproblem (2.1) can
be decomposed into the following two phases. The normal phase consists of finding πk as a
point satisfying the linearized equality constraints

h(x) + h′(x)(π − x) = 0 (6.1)

for x = xk. This is followed by the tangential phase, where one computes xk+1 and
(λk+1, µk+1) as a stationary point and an associated Lagrange multiplier of the QP sub-
problem

minimizez

〈
f ′(x) +

∂2L

∂x2
(x, λ)(π − x), z − π

〉
+

1

2

〈
∂2L

∂x2
(x, λ)(z − π), z − π

〉
subject to h′(x)(z − π) = 0, z ≥ 0

for x = xk, π = πk, and λ = λk.
One can readily see that the result of this two-phase iteration is exactly the same as

that of the SQP iteration, so this is merely an interpretation of the latter. However, this
decomposition is crucially useful in the context of trust-region globalization strategies for
SQP, as it allows to avoid possible infeasibility of subproblems when an additional trust-
region constraint is added in (1.3) (i.e., when (1.3) itself is feasible but its solutions may lie
outside of the trust-region around the current iterate xk, imposed for globalization purposes).
We refer the reader to [6, Section 15.4] for details. We also note that some extra requirements
may appear at the normal phase, such as nonnegativity of π, or the requirement that π is
the projection of x onto the set given by the linearized constraints (thus the name “normal
phase”; see [6, Section 15.4.4]). These requirements can be needed for designing globally
convergent algorithms, but they are not needed for the local convergence analysis via the
pSQP framework given below. Note also that the subproblems of both phases need not
be solved exactly; moreover, solving them exactly would certainly be wasteful. In fact,
satisfying some appropriate mild model reduction conditions does the job for establishing
global convergence [6, Section 15.4]. As for local convergence, the conditions and rules for
updating the trust-region parameter allow to expect that under some natural assumptions,
and perhaps employing second-order corrections, the trust-region radius is locally constant for
the tail of the sequence [6, Section 15.4.4]. Then, under the assumptions in question, the trust-
region constraint is locally inactive and thus does not interfere with the local convergence
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analysis of composite-step SQP without trust-region. Implicitly assuming this, we next study
which perturbations in both phases of this two-phase interpretation of SQP do not destroy
its local superlinear convergence.

We now state the inexact composite-step SQP method, allowing for inexactness in both
the normal and the tangential phases.

Algorithm 6.1 Choose functions ϕ0, ϕ1, ϕ2 : IR+ → IR+. Choose (x0, λ0, µ0) ∈ IRn× IRl×
IRn and set k = 0.

1. If (xk, λk, µk) satisfies the KKT system (1.2), stop.

2. (Normal phase.) Compute πk ∈ IRn satisfying

‖h(x) + h′(x)(π − x)‖ ≤ ϕ0

(∥∥∥∥(∂L∂x (x, λ)− µ, h(x)

)∥∥∥∥) (6.2)

for x = xk, λ = λk, and µ = µk.

3. (Tangential phase.) Compute z = xk+1 and (u, v) = (λk+1, µk+1) satisfying∥∥∥∥f ′(x) +
∂2L

∂x2
(x, λ)(z − x) + (h′(x))Tu− v

∥∥∥∥ ≤ ϕ1

(∥∥∥∥(∂L∂x (x, λ)− µ, h(x)

)∥∥∥∥) , (6.3)

‖h′(x)(z − π)‖ ≤ ϕ2

(∥∥∥∥(∂L∂x (x, λ)− µ, h(x)

)∥∥∥∥) , (6.4)

v ≥ 0, z ≥ 0, 〈v, z〉 = 0 (6.5)

for x = xk, π = πk, λ = λk, and µ = µk.

4. Increase k by 1 and go to step 1.

Observe further that all the derivatives in Algorithm 6.1 are computed at xk, unlike
for exact and inexact restoration schemes, where all the derivatives are computed at πk

produced by the feasibility phase. One consequence of this is that the inexact composite-step
SQP method does not give rise to any structural perturbations of the basic SQP, other than
those coming from (6.2): as will be seen below, all the other perturbations can be naturally
interpreted as truncations of the SQP iteration.

Indeed, for (x, λ, µ) ∈ IRn × IRl × IRn set

ω2(x, λ, µ) = −h(x)− h′(x)(π(x, λ, µ)− x), (6.6)

where π(x, λ, µ) is the point selected at the normal phase of the algorithm. Observe that π
satisfying (6.1) (and even more so (6.2)) always exists if rankh′(x) = l.

Comparing (6.3)–(6.5) with the corresponding relations in (2.2) it is now evident that an
iteration of Algorithm 6.1 can be seen as solving (2.2) with ω1 identically equal to zero, and
ω2 defined in (6.6) (which agrees with taking ψ identically equal to zero as well), and with

χ1(x, λ, µ) = ϕ1

(∥∥∥∥(∂L∂x (x, λ)− µ, h(x)

)∥∥∥∥) ,
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χ2(x, λ, µ) = ϕ2

(∥∥∥∥(∂L∂x (x, λ)− µ, h(x)

)∥∥∥∥) .
Moreover, the needed properties of ω2 readily follow from (6.2) and (6.6), and similarly to
Theorem 4.1, we immediately obtain the following local superlinear convergence result for
the inexact composite-step SQP method.

Theorem 6.1 Under the assumptions of Theorem 3.1, suppose that if (xk, λk, µk) = (xj , λj ,
µj) for any two iteration indices k and j, then step 2 of Algorithm 6.1 computes πk = πj.

Then for any functions ϕ0, ϕ1, ϕ2 : IR+ → IR+ such that ϕ0(t) = o(t), ϕ1(t) = o(t)
and ϕ2(t) = o(t) as t → 0, there exist ε > 0 and δ > 0 such that for any starting point
(x0, λ0, µ0) ∈ IRn × IRl × IRn satisfying (3.10), if an iterative sequence {(xk, λk, µk)} ⊂
IRn×IRl×IRn is generated by Algorithm 6.1 and satisfies (3.11) for each k = 0, 1, . . ., then this
sequence converges to (x̄, λ̄, µ̄), and the rate of convergence is superlinear. Moreover, ε > 0
and δ > 0 can be chosen in such a way that for any starting point (x0, λ0, µ0) ∈ IRn×IRl×IRn

satisfying (3.10), there exists at least one sequence conforming, for each k = 0, 1, . . ., to
Algorithm 6.1 and satisfying the condition (3.11).

In addition, the rate of convergence is quadratic if the second derivatives of f and h
are locally Lipschitz-continuous with respect to x̄, and if ϕ0(t) = O(t2), ϕ1(t) = O(t2) and
ϕ2(t) = O(t2) as t→ 0.

Algorithm 6.1 covers both the Vardi-like approach [26] to composite-step trust-region
SQP methods (where ϕ0 is supposed to be identically equal to zero; see [6, Section 15.4.1]),
as well as Byrd–Omojokun-like methods (where ϕ0 is allowed to be nonzero; see [24] and
[6, Section 15.4.2]). The corresponding rate-of-convergence results in [6, Theorems 15.4.15,
15.4.24] assume that the pure SQP step is taken whenever possible (i.e., whenever it can be
accepted by the trust-region and model reduction rules). Theorem 6.1 demonstrates that
in fact there is no need to perform the SQP step exactly in order to preserve superlinear
convergence. As for Celis–Dennis–Tapia-like approaches (see [5] and [6, Section 15.4.3]),
these are not really composite-step methods: they only involve truncation in the linearized
equality constraints part; therefore, they can be embedded into the pSQP framework directly.
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