
Interior Hybrid Proximal Extragradient Methods for the Linear

Monotone Complementarity Problem.

Abstract

We present new infeasible path-following methods for linear monotone complementarity prob-
lems based on Auslander, Tebboulle, and Ben-Tiba’s log-quadratic barrier functions. The central
paths associated with these barriers are always well defined and, for those problems which have a
solution, convergent to a pair of complementary solutions. Starting points in these paths are easy
to compute. The theoretical iteration-complexity of these new path-following methods is derived
and improved by a strategy which uses relaxed hybrid proximal-extragradient steps to control the
quadratic term. Encouraging preliminary numerical experiments are presented.

1 Introduction.

In this work we are concerned with the Linear Monotone Complementarity Problem (LMCP). Interior
point methods are efficient tools for solving this class of problems (see, for example, [13, 19, 16, 14,
20, 29, 27] and the references therein). Among these methods, feasible path-following interior point
methods are based on the central path. The primal (logarithmic) central path for the LMCP assigns
to each λ > 0 the solution of the original problem perturbed by λ−1 times the gradient of the
logarithmic barrier, while the primal-dual central path is obtained by a reformulation of the primal
central path.

Feasible primal and primal-dual path-following interior point methods for the LMCP generate
sequences of points in suitable neighborhoods of the primal and primal-dual central paths, respec-
tively. These iterates shall be feasible and positive. However, when the solution set of the LMCP
is unbounded, neither these feasible and positive points nor the central path do exist [15, 11]. Even
if the solution set is bounded and such points do exist, sometimes the computation of the first one,
to be used as initial iterate, is expensive. Several methods were proposed for dealing with these two
issues, such as infeasible interior point methods [17, 30, 22] and non interior point methods [9, 10].

We address these two issues considering infeasible path-following methods based on log-quadratic
barrier functions. These barrier functions were proposed by Auslander, Teboulle, and Ben-Tiba [1, 2],
in the context of generalized proximal point methods for monotone complementarity problems. In
the context of path-following methods, one of the advantages of using these barrier functions is that
the associated central paths are always well defined. Another practical advantage is that starting
points in suitable neighborhoods of these central paths are easy to construct.

In the complexity analysis of “pure” path following methods for log-quadratic barriers, the dis-
tance to the solution set appears multiplicatively in the complexity estimation, and in our prelimi-
nary numerical experiments on such methods the quadratic term seems to slow down the algorithms.
These problems are circumvented by combining classical path-following steps with (relaxed) hybrid
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proximal extragradient steps [24] that push the base point of the quadratic term closer to the solu-
tion set. In our preliminary numerical tests, this combination improves the performance of infeasible
path-following methods based on log-quadratic barriers as compared with those that do not updated
the base point of the quadratic term.

This paper is organized as follows. In Section 2 we introduce some notations, define the log-
quadratic central path, define an error measure, and analyze centering and predictor Newton steps.
In Section 3 we discuss the advantages and disadvantages of “pure” path-following schemes based on
log-quadratic barriers. In Section 4 we discuss the application of the hybrid proximal extragradient
method to our specific problem. In Sections 5 and 6 we present and study two interior hybrid proximal
extragradient algorithms, and in Section 7 we present some numerical results. In the Appendix we
present some properties of log-quadratic central paths.

The notation used in this work is standard. In particular, ‖ · ‖ denotes the quadratic norm in Rn;
given a non-empty, closed, and convex set C ⊂ Rn and a point x ∈ Rn, d(x,C) = miny∈C ‖x − y‖
denotes the distance of x to C, PC(x) denotes the Euclidean projection of x on C, and NC denotes the
normal cone operator of C; btc stands for the greatest integer smaller or equal than t; T : Rn ⇒ Rn
denotes a point-to-set operator T ; given a vector, say for example, u, U denotes a diagonal matrix
with components of vector u in the main diagonal, e indicates vector (1, 1, . . . , 1); r1 = O(r2) indicates

that
|r1|
|r2|

is bounded above for some constant.

2 The Log-Quadratic Central Path.

In this section we review the definition of the Linear Monotone Complementarity Problem, introduce
a family of log-quadratic central paths for this problem, and adapt the classical tools of path-following
methods for these central paths.

The Linear Monotone Complementarity Problem (LMCP) is that of finding x ∈ Rn such that

x ≥ 0, Mx+ b ≥ 0, 〈x,Mx+ b〉 = 0, (1)

given M ∈ Rn×n a positive semi-definite matrix, b ∈ Rn, and the notation x ≥ 0 meaning that all
components of x are non-negative. From now on S∗ will denote the solution set of the LMCP (1) and
S∗CP the set of pairs of complementary solutions, that is, all pairs (x, y) with x ∈ S∗ and y = Mx+b.

The (logarithmic) central path assigns to each λ > 0 the point x(λ) solution of the problem

x > 0, λ(Mx+ b)−∇

[
n∑
i=1

log xi

]
= 0,

where x > 0 means that x ∈ Rn++. The addition of a quadratic-regularization term to the logarithmic
barrier function in the above equation yields the new problem: Find x such that

x > 0, λ(Mx+ b) +∇
[
ν

2
‖x− x̄‖2 −

n∑
i=1

log xi

]
= 0, (2)

where x̄ is an arbitrary point and λ > 0, ν > 0. Introducing variable y = λ−1x−1 we can reformulate
(2) as:

x > 0, y > 0, λ(Mx+ b− y) + ν(x− x̄) = 0,

λXy − e = 0. (3)
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The log-quadratic central path for problem (1) assigns to each λ > 0 the point
(
x(λ; ν, x̄), y(λ; ν, x̄)

)
solution of (3). This curve depends also on ν and x̄; therefore, strictly speaking, we have a family
of log-quadratic central paths. Alternatively, one could consider the log-quadratic central path as
a function of λ, ν, and x̄. Since the left hand-side of the equality in (2) is, as a function of x > 0,
maximal monotone and strongly monotone, this equation has a unique solution, which proves well-
definiteness of the log-quadratic central path. Additional properties of log-quadratic central paths
are discussed in the Appendix.

Now we extend the path-following methodology to the log-quadratic central path. LetR1(x, y;λ, ν)
and R2(x, y;λ) denote the residuals of system (3) at (x, y) ∈ Rn × Rn, that is,

R1(x, y;λ, ν, x̄) = λ(Mx+ b− y) + ν(x− x̄), (4)

R2(x, y;λ) = λXy − e. (5)

We define the error measure

δν,x̄(x, y;λ) =
‖R1(x, y;λ, ν)‖

ν1/2
+ ‖R2(x, y;λ)‖, (6)

and, for β ∈ [0, 1], the associated β-neighborhood of the log-quadratic central path,

Nβ,ν,x̄ =
{

(x, y) ∈ Rn++ × Rn++ | δν,x̄(x, y;λ) ≤ β, for some λ > 0
}
.

The next lemma analyzes how an increment in λ affects the residuals and the error measure above
defined.

Lemma 2.1. Consider λ > 0, ν > 0, x̄ ∈ Rn, (x, y) ∈ Rn × Rn. If ρ ≥ 0 and λ′ = λ(1 + ρ), then

R1(x, y;λ′, ν, x̄) = (1 + ρ)R1(x, y;λ, ν, x̄)− ρν(x− x̄), (7)

R2(x, y;λ′) = (1 + ρ)R2(x, y;λ) + ρe, (8)

δν,x̄(x, y;λ′) ≤ δν,x̄(x, y;λ) + ρ

(
δν,x̄(x, y;λ) + ν1/2‖x− x̄‖+

√
n

)
. (9)

Proof 2.2. The definition of λ′ and the definitions (4) and (5) yield, after algebraic manipulations,
relations (7) and (8). Inequality (9) follows from (7), (8), definition (6), and triangle inequality.

The next technical lemma will be used in the analysis of Newton steps in β-neighborhoods of the
log-quadratic central path.

Lemma 2.3. Take λ > 0, ν ′ > 0, x̄ ∈ Rn, and (x, y) ∈ Rn++ × Rn++. The linear system[
λM + ν ′I −λI

λY λX

] [
dx

dy

]
=

[
b1
b2

]
.

has a unique solution for any b1, b2 ∈ Rn. If, additionally,

δν′,x̄(x, y;λ) ≤ β < 1,

then
0 < 1− β ≤ λxiyi ≤ 1 + β, i = 1, . . . , n (10)

and

ν ′‖dx‖2 + λ‖Dxdy‖ ≤ 〈dx, b1〉+
‖b2‖2

2(1− β)
. (11)
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Proof 2.4. Since M is positive semi-definite, λ > 0, ν ′ > 0, x > 0 and y > 0, the matrix of
coefficients of the linear system is non-singular. Hence, dx and dy are well defined.

Suppose that δν,x̄(x, y;λ) ≤ β < 1. The bounds for λxiyi follow immediately from relations
|λxiyi − 1| ≤ ‖λXy − e‖ ≤ β, i = 1, 2, . . . , n, and triangle inequality.

Multiplying the first block of equations on the linear system by vector dx and using the positive
semi-definiteness of M we conclude that

ν ′‖dx‖2 − λ〈dx, dy〉 ≤ 〈dx, b1〉.

Observe that

λ‖Dxdy‖ ≤ λ
n∑
i=1

|dxi d
y
i | ≤

λ

2

(
n∑
i=1

yi
xi

(dxi )2 +
xi
yi

(dyi )
2

)

=
λ

2
‖(X−1Y )1/2dx + (X−1Y )−1/2dy‖2 − λ〈dx, dy〉

=
1

2
‖(λXY )−1/2b2‖2 − λ〈dx, dy〉 ≤

1

2(1− β)
‖b2‖2 − λ〈dx, dy〉,

using in the second equality the definition of (dx, dy) and in the last inequality the bounds on λxiyi,
i = 1 . . . , n. To end the proof, add the above inequalities.

From now on in this section we will consider

λ > 0, ν > 0, x̄ ∈ Rn, (x, y) ∈ Rn++ × Rn++, (12)

and (dx, dy) will denote the solution of the linear system[
λM + σ1νI −λI

λY λX

] [
dx

dy

]
= −

[
R1(x, y;λ, ν, x̄) + (σ1 − 1)ν(x− x̄)

R2(x, y;λ) + (1− σ2)e

]
, (13)

where σ1 ∈ (0, 1] and σ2 ∈ [0, 1] are given parameters. Observe that (13) defines a generic (perturbed)
Newton iteration for system (3). Define also

(xα, yα) = (x+ αdx, y + αdy), α ∈ [0, 1]. (14)

In the rest of this section we will consider

β1 ∈ (0, 2/3), β2 =
β2

1

2(1− β1)
. (15)

Due to the above assumptions β1 > β2. These parameters will be used to define outer and inner
neighborhoods of the log-quadratic central path. In the next proposition we prove that a centering
step at a point (x, y) ∈ Nβ1,ν,x̄ generates a new point in Nβ2,ν,x̄.

Proposition 2.5 (Centering step). Take σ1 = σ2 = 1. Consider λ, ν, x̄, and (x, y) as in (12), β1

and β2 as in (15), and (dx, dy) as in (13). If

δν,x̄(x, y;λ) ≤ β1,

then
x+ dx > 0, y + dy > 0, δν,x̄(x+ dx, y + dy;λ) ≤ β2. (16)

4



Proof 2.6. From (4), (5), (13), and (14) it follows

R1(xα, yα;λ, ν, x̄) = (1− α)R1(x, y;λ, ν, x̄),

R2(xα, yα;λ) = (1− α)R2(x, y;λ) + α2λDxdy, ∀α ∈ [0, 1],

which, combined with definition (6) and triangle inequality, yield

δν,x̄(xα, yα;λ) ≤ (1− α)δν,x̄(x, y;λ) + α2‖λDxdy‖.

From the definition of (dx, dy) and Lemma 2.3, with ν ′ = ν, β = β1, b1 = R1(x, y;λ, ν, x̄), and
b2 = R2(x, y;λ), it follows

λ‖Dxdy‖ ≤ 〈dx, b1〉 −
ν‖dx‖2

2
+
‖b2‖2

2(1− β)

≤ ‖b1‖
2

2ν
+
‖b2‖2

2(1− β)
≤ 1

2(1− β)

(
‖b1‖
ν1/2

+ ‖b2‖
)2

≤ β2
1

2(1− β1)
,

using in the second inequality Cauchy-Schwartz inequality, in the third inequality relation 0 < β < 1
and simple algebraic manipulations, and in the last inequality definition (6) and the first assumption.
Thus, it holds

δν,x̄(xα, yα;λ) ≤ (1− α)β1 + α2 β2
1

2(1− β1)
, ∀α ∈ [0, 1]. (17)

Taking α = 1 in (17) and using the definition of β2 we obtain the third inequality in (16). The right
hand-side of (17) is a convex function in variable α, which takes values smaller than 1 for α = 0
and α = 1. Thus,

δν,x̄(xα, yα;λ) < 1, ∀α ∈ [0, 1],

and, from Lemma 2.3, it follows that each component of vector Xαyα remains positive for α ∈ [0, 1].
Since (x0, y0) = (x, y) > 0 and the components of vector (xα, yα) are continuous in α, we conclude
that (x+ dx, y + dy) = (x1, y1) > 0, which ends the proof of (16).

The next technical lemma is an auxiliary result to be used in the analysis of the predictor/affine
scaling step.

Lemma 2.7. Take σ2 = 0 and σ1 ∈ (0, 1]. Consider λ, ν, x̄, and (x, y) as in (12), (dx, dy) as in
(13), and (xα, yα) as in (14). If λ′ = λ(1 + ρ), with ρ ≥ 0, then

δν,x̄(xα, yα;λ′) ≤(1 + ρ)(1− α)δν,x̄(x, y;λ) +
∣∣α(1 + ρ)(1− σ1)− ρ

∣∣ ν1/2‖x− x̄‖

+ α
∣∣(1 + ρ)(1− σ1)− ρ

∣∣ ν1/2‖dx‖+ (1 + ρ)α2‖λDxdy‖
+ |ρ− (1 + ρ)α|

√
n.

Proof 2.8. Direct combination of (4), (5), (13), and (14) yields

R1(xα, yα;λ, ν, x̄) = (1− α)R1 + α(1− σ1)ν(x− x̄) + α(1− σ1)νdx,

R2(xα, yα;λ) = (1− α)R2 − αe+ α2λDxdy.
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Now, using (7) and (8), with x = xα and y = yα, it follows

R1(xα, yα;λ′, ν, x̄) = (1 + ρ)R1(xα, yα;λ, ν, x̄)− ρν(xα − x̄)

= (1 + ρ)(1− α)R1 + (α(1 + ρ)(1− σ1)− ρ) ν(x− x̄)

+ α ((1 + ρ)(1− σ1)− ρ) νdx,

R2(xα, yα;λ′) = (1 + ρ)R2(xα, yα;λ) + ρe

= (1 + ρ)(1− α)R2 + (1 + ρ)α2λDxdy + (ρ− (1 + ρ)α) e.

To end the proof use definition (6), the above expressions for the residuals, and triangle inequality.

In the next proposition we analyze the predictor/affine scaling step, which is a Newton step aimed
at getting Xy = 0. This step is used to accelerate the reduction of the duality gap; however, in most
cases, this Newton step do not preserve positivity, and a relaxed step shall be used instead. Since
our penalization/regularization parameter is λ, instead of the duality gap, we include in the analysis
a particular scheme for updating this parameter.

Proposition 2.9 (Predictor/Affine scaling step). Take σ2 = 0 and σ1 ∈ (0, 1]. Consider λ, ν, x̄,
and (x, y) as in (12), (dx, dy) as in (13), (xα, yα) as in (14), and β1 and β2 as in (15). If

δν,x̄(x, y;λ) ≤ β2

and

ρα =
α

1− α
, λα = (1 + ρα)λ, α ∈ [0, α∗], where α∗ =

σ1(β1 − β2)

5(β2 + ν1/2‖x− x̄‖+
√
n)2

,

then
xα > 0, yα > 0, δν,x̄(xα, yα;λα) ≤ β1. (18)

Proof 2.10. Take any α ∈ [0, α∗] ⊂ [0, 1/2]. Note from the definitions that it hold

(1 + ρα)(1− α) = 1, ρα = (1 + ρα)α ≤ 2α, |1− σ1 − α| ≤ 1, ∀α ∈ [0, α∗].

Combining the above relations with Lemma 2.7 it follows

δν,x̄(xα, yα;λα) ≤ β2 + ρασ1ν
1/2‖x− x̄‖+ ραν

1/2‖dx‖+ ραα‖λDxDye‖

≤ β2 + 2α
(
ν1/2‖x− x̄‖+ ν1/2‖dx‖+ ‖λDxDye‖

)
. (19)

Let b1 = λ(Mx+ b− y) + σ1ν(x− x̄), b2 = λXy, R1 = R1(x, y;λ, ν, x̄), and R2 = R2(x, y;λ). From
the definition of (dx, dy), Lemma 2.3, and Cauchy-Schwartz inequality it follows

σ1ν‖dx‖2 + λ‖Dxdy‖ ≤ 〈dx, b1〉+
‖b2‖2

2(1− β)
≤ 1

2

(
σ1ν‖dx‖2 +

‖b1‖2

σ1ν

)
+
‖b2‖2

2(1− β2)
,

which, combined with relations β2 ∈ [0, 1) and σ1 ∈ (0, 1], yields

σ1ν‖dx‖2

2
+ λ‖Dxdy‖ ≤ ‖b1‖

2

2σ1ν
+
‖b2‖2

2(1− β2)
≤ 1

2σ1(1− β2)

(
‖b1‖2

ν
+ ‖b2‖2

)
. (20)
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Hence,

ν1/2‖dx‖+ λ‖Dxdy‖ =

(
ν1/2‖dx‖ − σ1ν‖dx‖2

2

)
+

(
σ1ν‖dx‖2

2
+ λ‖Dxdy‖

)
≤ 1

2σ1
+

1

2σ1(1− β2)

(
‖b1‖2

ν
+ ‖b2‖2

)
=

1

2σ1
+

1

2σ1(1− β2)

(
‖R1 + (1− σ1)ν(x− x̄)‖2

ν
+ ‖R2 + e‖2

)
≤ 1

2σ1
+

1

2σ1(1− β2)

(
‖R1|
ν1/2

+ ‖R2‖+ (1− σ1)ν1/2‖x− x̄‖+
√
n

)2

≤ 1

2σ1
+

1

2σ1(1− β2)

(
β2 + ν1/2‖x− x̄‖+

√
n
)2
, (21)

using in the first inequality relation t − σ1t
2/2 ≤ 1/(2σ1), ∀ t ∈ R, and (20), in the second inequal-

ity triangle inequality and simple algebraic manipulations, and in the last inequality (6), the first
assumption, and relation σ1 ∈ (0, 1]. Combining (19) and (21) we obtain

δν,x̄(xα, yα;λα) ≤ β2 + 2α

(
ν1/2|x− x̄‖+

1

2σ1
+

(
β1 + ν1/2‖x− x̄‖+

√
n
)2

2σ1(1− β)

)

≤ β2 +
5α

σ1

(
β2 + ν1/2‖x− x̄‖+

√
n
)2
,

where in the last inequality we used relations σ1 ∈ (0, 1], β2 ≤ 2/3, and t + 3t2/2 ≤ 5t2/2, ∀t ≥ 1,
together with simple algebraic manipulations. The third relation in (18) follows immediately from
the above inequality and the definition of α∗. Since δν,x̄(xα, yα;λα) < 1, ∀α ∈ [0, α∗], the first two
relations in (18) can be proved using similar arguments as those used in Proposition 2.5 to prove the
first two relations in (16).

3 Advantages and Disadvantages of Pure Path-Following Methods
Based on the Log-Quadratic Barrier.

In this section we show that it is easy to obtain initial iterates in β2-neighborhoods of log-quadratic
central paths. However, as we also show, a basic, pure path-following method for the log-quadratic
barrier has a serious drawback: the distance of x̄ to the solution set appears multiplicatively in the
complexity estimation. Practical implications of this theoretical result are discussed in the end of
this section.

As previously discussed, the log-quadratic central path for problem (1) is always well defined. A
practical advantage of the log-quadratic barrier is that starting points in β-neighborhoods are easy
to compute. Next we present two procedures for computing starting points: Choose ν > 0 and ρ ∈ R
and
procedure 1: define

x̄ = ρe, x0 as the positive solution of − x−1 + ν(x− x̄) = 0,

if ‖Mx0 + b‖ 6= 0, λ0 =
β2ν

1/2

‖Mx0 + b‖
, y0 =

1

λ0
(x0)−1; (22)
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procedure 2: define

x0 = |ρ|e, λ0 = 1, y0 = (x0)−1, x̄ = x0 +
1

ν

(
Mx0 + b− (x0)−1

)
. (23)

It is easy to verify that δν,x̄(x0, y0;λ0) ≤ β2 in both procedures. Observe that these initializations
are generic and do not take in to account particularities of the problem at hand. So, in a specific
setting, better choices may be available.

Now we discuss a basic short-step path-following algorithm for the log-quadratic barrier, LQ1.

LQ1 algorithm (a basic short-step method for the log-quadratic barrier).

Initialization: Take β1 ∈ (0, 2/3), β2 = β2
1/2(1 − β1), and ν > 0. Consider λ0 > 0, x̄ ∈ Rn and

(x0, y0) > 0, such that δν,x̄(x0, y0;λ0) ≤ β2.

Iterations: For k = 0, 1, . . .

(step k)

1. Set λk+1 = max
{
λ > 0 | δν,x̄(xk, yk, λ) ≤ β1

}
, (update λ)

2. Compute (dx, dy), the solution of the linear system (centering step)[
λk+1M + νI −λk+1I
λk+1 Y

k λk+1X
k

] [
dx

dy

]
= −

[
R1(xk, yk;λk+1, ν, x̄)

R2(xk, yk;λk+1)

]
,

and set
(xk+1, yk+1) = (xk + dx, yk + dy).

The above algorithm is being discussed to show that a “pure” path-following method for the
log-quadratic central path is not efficient. Therefore, we will present a summary analysis of its
complexity. Using induction in k, Proposition 2.5, Lemma 2.3, and Lemma 9.1 it is easy to prove
that

1. the above algorithm is well defined,

2. xk > 0, yk > 0, δν,x̄(xk, yk;λk) ≤ β2, ∀ k ∈ N,

3. {λk} is an increasing sequence,

4. setting Hk = max
{
ν1/2β2 + ν‖xk − x̄‖, (1 + β2)n

}
it holds

‖Mxk + b− yk‖ ≤ Hk

λk
, 〈xk, yk〉 ≤ Hk

λk
,

5. if the LMCP (1) has solutions, then the sequence {(xk, yk)} is bounded.

Thus, the complexity of the LQ1 algorithm for attaining ε-feasibility and ε-complementarity depends
on how fast (λk) grows. From Lemma 2.1 (see (9)) it follows

λk+1

λk
≥ 1 +

β1 − β2

β2 + ν1/2‖xk − x̄‖+
√
n
. (24)

Hence, we need to bound ν1/2‖xk − x̄‖.
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In the rest of the section we will assume that the LMCP (1) has solutions. From item 5 above
and (24) it follows that

λk →∞, as k →∞.

From this relation, item 2 above, and Lemma 9.3 it follows that all the accumulation points of
{(xk, yk)} are pairs of complementary solutions. Hence,

lim inf
k→∞

‖xk − x̄‖ ≥ τ = d(x̄, S∗),

which, combined with (24), item 4 above, and a standard complexity analysis (see, for example, [28,
Theorem 3.2]), yields a complexity estimation not better than

O
(
ν1/2τ +

√
n
)

log2

(
ν1/2τ + n

λ0ε

)
, (25)

to reach ε-feasibility and ε-complementarity. Thus, if ‖xk− x̄‖ (which lim inf is bounded by d(x̄, S∗))
is too large, it may slows down the growth of λk, deteriorating the performance of the algorithm.

In accordance with these theoretical reasonings, in our preliminary numerical tests the LQ1
algorithm had a poor performance as compared to: a combination of a similar method with an
extragradient scheme (see Section 5) and the infeasible method of Roos et.al. [22]. These numerical
tests are are summarized in Table 1, in Section 7. Similar considerations and results hold for LQ2,
a pure short-step path-following predictor-corrector algorithm for the log-quadratic barrier.

4 The Hybrid Proximal Extragradient Step.

Our aim in this section is to bound ν1/2‖xk − x̄‖ by applying (in the variable x̄) relaxed steps of the
hybrid proximal-extragradient method proposed in [25, 24, 26].

Consider the maximal monotone point-to-set operator

F̂ : Rn ⇒ Rn, F̂ (x) = Mx+ b+NRn+(x).

The LMCP (1) is equivalent to the monotone inclusion problem: find x∗ ∈ Rn such that

0 ∈ F̂ (x∗). (26)

The proximal point method [21] is a classical algorithm for finding zeros of maximal monotone
operators. Applied to problem (26), in its exact formulation, it generates iteratively a sequence {xk}
by solving, in each iteration, the problem: given ck > 0 and xk ∈ Rn, find xk+1 ∈ Rn such that

0 ∈ ckF̂ (xk+1) + xk+1 − xk.

The classical inexact version of the proximal point method requires summable errors.
The hybrid proximal extragradient method (HPE) [24] is a modification of the classical proximal

point method that uses, instead, a relative error tolerance. The constructive nature of the error
tolerance of the HPE method will allow us to use (relaxed) steps of this methods in our scheme.
First we discuss the error tolerance of the HPE method. A generic iteration of the proximal point
method is: find x such that

0 ∈ cF̂ (x) + x− x̄,

9



which can be reformulated as the proximal system: find (x,w) ∈ Rn × Rn such that

w ∈ F̂ (x), cw + x− x̄ = 0. (27)

The inclusion in (27) will be relaxed using the concept of ε-enlargement of a maximal monotone
operator [5]. Given ε ≥ 0, the ε-enlargement of F̂ is the operator F̂ [ε] : Rn ⇒ Rn

F̂ [ε](x) =
{
w | 〈w − w′, x− x′〉 ≥ −ε, ∀x′ ∈ D(F̂ ), w′ ∈ F̂ (x′)

}
.

As F̂ is maximal monotone, it holds F̂ (x) ⊂ F̂ [ε](x), ∀ ε ≥ 0, x ∈ Rn, with equality for ε = 0 (for
other properties and applications see [6, 7, 4]). Following [24], we say that a pair (x,w) ∈ Rn × Rn
is an approximate solution of (27), with error tolerance η ∈ [0, 1), if for some ε ≥ 0 it hold

w ∈ F̂ [ε](x), ‖cw + x− x̄‖2 + 2cε ≤ η‖x− x̄‖2. (28)

Next we recall a key property of approximate solutions of (27), which is the basis of the proximal
extragradient algorithm presented in [24]. Since we will consider algorithms in which the iter-
ates remain in β-neighborhoods of the central path, we will analyze under-relaxed hybrid proximal-
extragradient steps.

Lemma 4.1. Consider c > 0, η ∈ [0, 1), and x̄ ∈ Rn. If x, w, and ε satisfy (28) and

x̄(θ) = x̄− θcw, θ ∈ [0, 1],

then, for any x∗ solution of (26),

‖x∗ − x̄(θ)‖2 ≤ ‖x∗ − x̄‖2 − θ(1− η2)‖x− x̄‖2. (29)

Proof 4.2. In [24, Lemma 2.3] it was proved that, under the above assumptions, (29) holds for
θ = 1. Since this inequality holds trivially for θ = 0 and the norm square is convex, (29) holds for
any θ ∈ [0, 1].

Lemma 4.1 shows how to use approximate solutions of (27) in the sense of (28) for displacing
x̄ along direction −w and towards the solution set. This lemma also estimates how much smaller
is the square of the distance to the solution set of the “displaced” x̄θ as compared to x̄. This
quantitative estimation will be used in our complexity analysis to bound the number of relaxed
hybrid extragradient steps in our scheme.

Now we recall how the duality gap of a pair (x, y) ≥ 0 is related with F̂ [ε].

Lemma 4.3. If (x, y) ∈ Rn+ × Rn+ and ε ≥ 〈x, y〉, then

Mx+ b− y ∈ F̂ [ε](x).

Proof 4.4. See [8, Lemma 2.2], using that D(F̂ ) = Rn+.

In the next proposition we prove that a pair (x, y) in the inner neighborhood of a log-quadratic
central path, with a “large” value of ν1/2‖x− x̄‖, provides an inexact solution of (27) in the sense of
(28). We also present a relaxation parameter θ̂ for performing an under-relaxed hybrid extragradient
step, in variable x̄, as described in Lemma 4.1, which keeps (x, y) in the outer neighborhood of the
(updated) log-quadratic central path. In the last part of the proposition we evaluate the rightmost
term of inequality (29) for θ = θ̂.
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Proposition 4.5. Take β2, β1 ∈ [0, 1], with β2 < β1. Consider λ, ν, x̄, and (x, y) as in (12).
Suppose that

δν,x̄(x, y;λ) ≤ β2, (4n+ 1) ≤ ν‖x− x̄‖2, (30)

and define

w = Mx+ b− y, ε =
(1 + β2)n

λ
, c =

λ

ν
, η =

√
1 + β2

2
.

Then
w ∈ F̂ [ε](x), ‖cw + x− x̄‖2 + 2cε ≤ η2‖x− x̄‖2. (31)

Moreover defining

x̄(θ̂) = x̄− θ̂ cw, θ̂ =
β1 − β2

2ν1/2‖x− x̄‖
it holds

0 ≤ θ̂ ≤ 1, δν,x̄(θ̂)(x, y;λ) ≤ β1, (32)

and

θ̂(1− η2)‖x− x̄‖2 ≥ (1− β2)(β1 − β2)
√

4n+ 1

4ν
. (33)

Proof 4.6. From the first inequality in (30), definition (6), and Lemma 2.3 it follows

‖λw + ν(x− x̄)‖
ν1/2

≤ β2, 〈x, y〉 ≤ (1 + β2)n

λ
.

The first relation in (31) follows from the second above inequality and Lemma 4.3. From the first
above inequality, the definitions of c and ε, and the second inequality in (30) it follows

‖cw + x− x̄‖2 + 2cε ≤ β2
2

ν
+

2(1 + β2)n

ν
≤ (1 + β2)(4n+ 1)

2ν
≤ (1 + β2)

2
‖x− x̄‖2,

where in the second inequality we used the assumption β2 ≤ 1 and simple algebraic manipulations.
The second relation in (31) follows from the above inequalities and the definition of η.

The first inequality in (32) follows from the assumptions on β1 and β2 and the second inequality
in (30). Note that

R1(x, y;λ, ν, x̄(θ̂)) = λ(Mx+ b− y) + ν(x− x̄(θ̂))

= λ(Mx+ b− y) + ν(x− x̄) + θ̂λ(Mx+ b− y)

= (1 + θ̂)
(
λ(Mx+ b− y) + ν(x− x̄)

)
− νθ̂(x− x̄).

The second residual R2(x, y;λ) does not depend on x̄; therefore, using (6) it follows

δν,x̄(θ̂)(x, y;λ) =
‖R1(x, y;λ, ν, x̄(θ̂))‖

ν1/2
+ ‖R2(x, y;λ)‖

≤ (1 + θ̂)‖R1(x, y;λ, ν, x̄)‖
ν1/2

+ ‖R2(x, y;λ)‖+ θ̂ν1/2‖x− x̄‖

≤ (1 + θ̂)δν,x̄(x, y;λ) + θ̂ν1/2‖x− x̄‖ ≤ β2 + θ̂
(
β2 + ν1/2‖x− x̄‖

)
,

which, combined with the definition of θ̂, proves the second inequality in (32).
Inequality (33) follows from the definitions of θ̂ and η and the second inequality in (30).
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Observe in the above proposition that, after the relaxed hybrid extragradient step, (x, y) ∈
Nβ1,ν,x̄θ̂ Thus, for β1 and β2 as in (15), one centralizing full Newton step is enough to return to
Nβ2,ν,x̄θ̂ , the inner neighborhood of the updated log-quadratic central path.

5 An Interior Hybrid Proximal Extragradient Algorithm.

In this section we present an algorithm for the LMCP (1), which is based on the combination of a
short-step path-following scheme for the log-quadratic barrier with an hybrid proximal extragradient
scheme. If the solution set of the LMCP (1) is non-empty, the algorithm performs a finite number of
proximal extragradient steps and generates bounded sequences, with all their accumulation points in
the set of pairs of complementary solutions. The extragradient steps control the quadratic regular-
ization terms, and prevent the distance of point x̄ to the solution set from appearing multiplicatively
in the complexity estimation of the algorithm. For the initialization of the algorithm we could use
any of the procedures described in (22) and (23). The algorithm will be denoted as the short-step
interior-hybrid proximal extragradient (IHPE1) algorithm.

IHPE1 algorithm

Initialization: Take β1 ∈ (0, 2/3), β2 = β2
1/2(1 − β1), and ν > 0. Consider λ0 > 0, x̄0 ∈ Rn, and

(x0, y0) > 0, such that δν,x̄0(x0, y0;λ0) ≤ β2.

Iterations: For k = 0, 1, . . .

(step k)

1. (a) If ν‖xk − x̄k‖2 < 4n+ 1, then set (interior point: update λ)

λk+1 = max
{
λ > 0 | δν,x̄k(xk, yk, λ) ≤ β1

}
,

x̄k+1 = x̄k.

(b) Else, set (relaxed hybrid proximal extragradient step)

x̄k(θ) = x̄k − θλk
ν
wk, where wk = Mxk + b− yk,

θk = max
{
θ ∈ [0, 1] | δν,x̄k(θ)(x

k, yk, λk) ≤ β1

}
,

x̄k+1 = x̄k(θk),

λk+1 = λk.

2. Compute (dx, dy), the solution of the linear system (centering step)[
λk+1M + νI −λk+1I
λk+1 Y

k λk+1X
k

] [
dx

dy

]
= −

[
R1(xk, yk;λk+1, ν, x̄

k+1)

R2(xk, yk;λk+1)

]
,

and set

(xk+1, yk+1) = (xk + dx, yk + dy).
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To simplify the analysis of the algorithm we define

ĥ =
(1− β2)(β1 − β2)

√
4n+ 1

2ν
, ρ̂ =

β1 − β2

β2 +
√

4n+ 1 +
√
n
. (34)

In the next result we prove that the algorithm IHPE1 is well defined and generates sequences in
β2-neighborhoods of certain log-quadratic central paths; also, we analyze the outcomes of steps 1.(a)
and 1.(b).

Theorem 5.1. The algorithm IHPE1 is well defined;

xk > 0, yk > 0, λk > 0, δν,x̄k(xk, yk;λk) ≤ β2, ∀ k ∈ N; (35)

and

i) if at iteration k an interior point step 1.(a) is performed, then

λk+1 ≥ λk(1 + ρ̂),

ii) if at iteration k a relaxed hybrid proximal extragradient step 1.(b) is performed, then for any x∗

solution of the LMCP (1)
‖x̄k+1 − x∗‖2 ≤ ‖x̄k − x∗‖2 − ĥ.

Proof 5.2. First observe that the initialization condition of β1 and β2 is the same condition consid-
ered in (15) and

0 < β2 < β1 < 1.

We prove the first part of the theorem by induction. Assume that the algorithm is well defined up
to any index i < k and that (35) holds for index k. In view of (35) and the above inequalities, step
1 (which is either 1.(a) or 1.(b)) is well defined and

xk > 0, yk > 0, λk+1 > 0, δν,x̄k+1(xk, yk;λk+1) ≤ β1.

Hence, from Lemma 2.3 it follows that step 2 is well defined. From the above inequalities, the
definition of step 2, and Proposition 2.5 we conclude that

xk+1 > 0, yk+1 > 0, λk+1 > 0, δν,x̄k+1(xk+1, yk+1;λk+1) ≤ β2,

which means that (35) holds for k + 1. To conclude the induction proof, observe that (35) holds for
k = 0.

To prove i), assume that step 1.(a) is performed at iteration k, which means that

ν1/2‖xk − x̄k‖ <
√

4n+ 1,

and the algorithm increases parameter λk. Using (35), Lemma 2.1 (relation (9)), with x = xk,
y = yk, x̄ = x̄k, and λ = λk, and the above inequality it follows that

λk+1 = (1 + ρk)λk, with ρk ≥
β1 − β2

β2 + ν1/2‖xk − x̄k‖+
√
n
≥ ρ̂ > 0,

which ends the proof.
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To prove ii), let x∗ be a solution of (1) and suppose that step 1.(b) is performed at iteration k,
which means that √

4n+ 1 ≤ ν1/2‖xk − x̄k‖.

Define

εk =
(1 + β2)n

λk
, ck =

λk
ν
, η =

√
1 + β2

2
, θ̂k =

β1 − β2

2ν1/2‖xk − x̄k‖
.

Using (35), the above inequality, and Proposition 4.5, with x = xk, y = yk, λ = λk, and w = wk, it
follows that

wk ∈ F̂ [εk](xk), ‖ckwk + xk − x̄k‖2 + 2ckεk ≤ η2‖xk − x̄k‖2, θ̂k ≤ θk ≤ 1.

Therefore, using the above relations and Lemma 4.1 we conclude that

‖x∗ − x̄k+1‖2 = ‖x∗ − x̄k(θk)‖2 ≤ ‖x∗ − x̄k‖2 − θk(1− η2)‖xk − x̄k‖2

≤ ‖x∗ − x̄k‖2 − θ̂k(1− η2)‖xk − x̄k‖2

≤ ‖x∗ − x̄k‖2 − ĥ,

where the last inequality follows from (33).

In the next result we bound the number of hybrid extragradient steps of algorithm IHPE1 and
study its global convergence.

Theorem 5.3. If S∗, the solution set of the LMCP (1), is non empty, then

i) at most K relaxed hybrid proximal extragradient steps 1.(b) are performed, where

K =

⌊
d(x̄0, S∗)2

ĥ

⌋
,

ii) the sequence {1/λk} converges Q-linearly to zero as k → +∞,

iii) the sequence {(xk, yk)} is bounded and its accumulation points are pairs of complementary solu-
tions of the LMCP (1).

Proof 5.4. To prove i), let be x∗ ∈ S∗ and let kj , j = 1, . . . ,m, denote the indexes corresponding to
the first m hybrid steps. From ii) of Theorem 5.1 it follows

‖x̄kj+1 − x∗‖2 ≤ ‖x̄kj − x∗‖2 − ĥ, j = 1, . . . ,m.

Since x̄k does not change at the interior-point iterations, x̄kj+1 = x̄kj+1 for j = 1, . . . ,m− 1. Thus,
adding the above inequalities and taking x∗ as the projection of x̄0 in S∗ (which is a non-empty,
closed, and convex set) we obtain

0 ≤ ‖x̄km+1 − x∗‖2 ≤ ‖x̄0 − x∗‖2 −mĥ = d(x̄0, S∗)2 −mĥ,

which proves that m ≤ K, ending the proof of i).
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From i), the definition of step 1.(a), and i) of Theorem 5.1 it follows that for k large enough step
1.(a) is performed and

ν1/2‖xk − x̄k‖ <
√

4n+ 1, x̄k+1 = x̄k, λk+1 ≥ λk(1 + ρ̂).

Therefore, ii) holds, the sequence {x̄k} assumes a finite number of distinct values, and the sequence{
xk
}

is bounded. Note that for any k,

Mxk + b− yk +
ν

λk
(xk − x̄k) = 0, ‖λkXkyk − e‖ ≤ β2. (36)

From the first above relation, the boundedness of the sequences {x̄k} and {xk}, and ii) it follows that
the sequence {yk} is bounded. We just proved that the sequences {x̄k} and {(xk, yk)} are bounded.
Combining this result with the above equation, ii), and the first two inequalities in (35) we conclude
that all the accumulation points of the sequence {(xk, yk)} are pairs of complementary solutions.

In the next result we present a complexity analysis of the algorithm IHPE1. To this purpose,
given ε > 0, we define an ε-solution of the LMPC as a pair (x, y) ≥ 0 satisfying

‖Mx+ b− y‖ ≤ ε, 〈x, y〉 ≤ ε. (37)

Theorem 5.5. Take ε > 0. Define H = max
{

(1 + β2)n, ν1/2
√

4n+ 1
}

and let ĥ and ρ̂ be defined
as in (34). Set

K(ε) = 1 +

⌊(
1 +

1

ρ̂

)
log2

(
H

λ0ε

)⌋
+

⌊
d
(
x̄0, S∗

)2
ĥ

⌋
. (38)

If the LMCP (1) has solutions, then algorithm IHPE1 generates an ε-solution after at most K(ε)
iterations.

Proof 5.6. Define k as the iteration in which the algorithm performs its k̃-th interior point step
1.(a), where

k̃ = 2 +

⌊(
1 +

1

ρ̂

)
log2

(
H

λ0ε

)⌋
.

Since in each iteration either one interior step or one hybrid step is performed, from i) of Theorem
5.3 and (38) it follows that

k ≤ k̃ +

⌊
d
(
x̄0, S∗

)2
ĥ

⌋
= K(ε) + 1.

To end the proof it suffices to prove that (xk, yk) satisfy (37).
Since parameter λ(·) does not change in the hybrid extragradient steps, using i) of Theorem 5.1,

the above definition of k, and the definition of the interior point step 1.(a) we have

λk ≥ λ0(1 + ρ̂)k̃−1, ν1/2‖xk − x̄k‖ <
√

4n+ 1. (39)

Relations (36) and (39) yield

‖Mxk + b− yk‖ =
ν

λk
‖xk − x̄k‖ < ν1/2

λk

√
4n+ 1 ≤ H

(1 + ρ̂)k̃−1λ0

.
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The last relation in (35), Lemma 2.3, and (39) yield

〈xk, yk〉 ≤ (1 + β2)n

λk
≤ H

(1 + ρ̂)k̃−1λ0

.

Using the definition of k̃ and inequality ln(1 + h) ≥ h/(1 + h), ∀h ≥ 0, it follows that

H

(1 + ρ̂)k̃−1λ0

≤ ε,

which, combined with the above inequalities, implies that (xk, yk) is an ε-solution of the LMCP (1).
Therefore, the IHPE1 algorithm finds an ε-solution after at most K(ε) iterations.

To compare the IHPE1 algorithm with the LQ1 algorithm (presented in Section 3), consider, for
example, x̄0 = 0 and the initialization procedure described in (22). With these initializations, the
complexity estimate (25) for LQ1 yields the bound

O

((
ν1/2d(0, S∗) +

√
n
)

log2

(
(ν1/2d (0, S∗) + n)‖Mx0 − b‖

ν1/2ε

))
, (40)

while the complexity estimate for IHP1, presented in Theorem 5.5, yields the bound

O

(
√
n log2

(
(ν1/2√n+ n)‖Mx0 − b‖

ν1/2ε

)
+
νd (0, S∗)2

√
n

)
,

which improves the main term of (40).
We end this section showing that, as a direct consequence of Theorem 5.5, we can verify the

existence of a solution in some regions.

Proposition 5.7. Take ε > 0. Let H be defined as in Theorem 5.5 and let ρ̂ and ĥ be as define in
(34). Set

Kε = 1 +

⌊(
1 +

1

ρ̂

)
log2

(
H

λ0ε

)⌋
.

If no ε-solution is found by the algorithm IHPE1 after K̂ > Kε iterations, then the LMCP (1) has
no solution on the ball B(x̄0, r), with

r =

√
(K̂ −Kε)ĥ.

Proof 5.8. Assume that there exists a solution of the LMCP (1) on the ball B(x̄0, r). This is
equivalent to

d(x̄0, S
∗)2 ≤ (K̂ −Kε)ĥ,

and also to

Kε +

⌊
d(x̄0, S∗)2

ĥ

⌋
< K̂.

From the inequality above, applying i) of Theorem 5.5, we conclude that before K̂ iterations an
ε-solution is found.
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6 A Predictor-Corrector Interior-Hybrid Proximal Extragradient
Algorithm.

In this section we present an algorithm that combines an interior, short-step, predictor-corrector
path-following scheme with an hybrid proximal extragradient scheme. This algorithm will be de-
noted as the predictor-corrector interior hybrid proximal extragradient (IHPE2) algorithm. For the
initialization of the algorithm we can use any of the procedures described in (22) and (23).

IHPE2 algorithm

Initialization: Take β1 ∈ (0, 2/3), β2 = β2
1/2(1 − β1), ν > 0, and σ1 ∈ (0, 1]. Consider λ0 > 0,

x̄0 ∈ Rn, and (x0, y0) > 0, such that δν,x̄0(x0, y0;λ0) ≤ β2.

Iteration: For k = 0, 1, . . .

(step k)

1. (a) If ν‖xk − x̄k‖2 < 4n+ 1, then (interior point: predictor/affine-scaling step)

compute (dx, dy), the solution of the linear system[
λkM + σ1νI −λkI

λkY
k λkX

k

] [
dx

dy

]
= −

[
λk(Mxk + b− yk) + σ1ν(xk − x̄k)

λkX
kyk

]
.

Set

(xα, yα) = (x, y) + α(dx, dy), ρα =
α

1− α
, λα = λ(1 + ρα),

αk = max
{
α ∈ [0, 1] | (xα, yα) > 0, δν,x̄k

(
xα, yα;λ(1 + ρα)

)
≤ β1

}
,

(xk, yk) = (x(αk), y(αk)) ,

λk+1 = λ(αk),

x̄k+1 = x̄k.

(b) Else, set (relaxed hybrid proximal extragradient step)

x̄k(θ) = x̄k − θλk
ν
wk, where wk = Mxk + b− yk,

θk = max
{
θ ∈ [0, 1] | δν,x̄kθ (xk, yk, λk) ≤ β1

}
,

x̄k+1 = x̄k(θk),

λk+1 = λk.

2. Compute (dx, dy), the solution of the system (interior point: corrector/centering step)[
λk+1M + νI −λk+1I
λk+1Y

k λk+1X
k

][
dx

dy

]
= −

[
R1(xk, yk;λk+1, ν, x̄

k+1)

R2(xk, yk;λk+1)

]
,

and set

(xk+1, yk+1) = (xk + dx, yk + dy).
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Analogous results to Theorems 5.1, 5.3, and 5.5 and Proposition 5.7 can be proved for the IHPE2
algorithm using Proposition 2.9 and similar reasonings as those used in the analysis of the IHPE1.
For the sake of brevity we skip these results and just present its complexity estimation.

Theorem 6.1. Take ε > 0. Define H = max
{

(1 + β2)n, ν1/2
√

4n+ 1
}

, ρ̄ =
σ1(β1 − β2)

5(β2 +
√

4n+ 1 +
√
n)2 ,

and let ĥ be defined as in (34). Set

K̂(ε) = 1 +

⌊(
1 +

1

ρ̄

)
log2

(
H

λ0ε

)⌋
+

⌊
d
(
x̄0, S∗

)2
ĥ

⌋
. (41)

If the LMCP (1) has solutions, then algorithm IHPE2 reaches an ε-solution after at most K̂(ε)
iterations.

7 Numerical Tests.

We test the algorithms considering LMCPs as in (1) defined by operators of the form

F : Rn+m → Rn+m, F (x, s) =

[
0 −At
A 0

] [
x

s

]
+

[
c
−b

]
.

where A ∈ Rn×n, b ∈ Rm and c ∈ Rn. These LMCPs arise from the KKT optimality conditions for
linear programming problems in the standard form:

min ctx
s.t. Ax ≥ b,

x ≥ 0.

(42)

As testing problems we consider the well known example of Beale [12] and some problems of
small size of the Netlib library. We reduced all the problems to the standard form (42) using the
procedure described in Appendix D of [23]. We got the best results using parameters β1 = .64 and
β2 defined as in (15) and, for algorithm IHPE2, σ1 = 0.4, and the initialization procedure (22), with

x̄0 = −n.25e and ν = 1
‖x̄0‖

. As stopping rule we used

|ctxk − btyk|
1 + |ctxk|

+
‖Axk − b− vk‖1

1 + ‖b‖1
+
‖Atsk − c− uk‖1

1 + ‖c‖1
≤ 10−8,

where y = (u, v) denotes dual variable in the primal-dual formulation of the LMCP.
We implemented in MATLAB the two hybrid interior-extragradient algorithms IHPE1 and IHPE2.

Also we implemented their corresponding “pure interior” versions, that do not use the proximal ex-
tragradient step, denoted by LQ1 and LQ2. We implemented a modified version of the algorithm
IHPE2, indicated by IHPE2+, that allows over-relaxed centering steps, and proved to be more effi-
cient. The convergence and complexity analysis of this last algorithm can be carried out in a similar
way as for the algorithm IHPE2. Also, we implemented the infeasible interior-point algorithm of
Roos et.al described in [22], with parameters (in the notation of the authors) θ = 1/n and τ = 1/8.

In Table 1 we present the dimensions of each solved problem, denoted by n, and the number of
iterations required by each of the algorithms to satisfy the stopping rule. Between parenthesis we
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Table 1:
Name n Roos LQ1 IHPE1 LQ2 IHPE2 IHPE2 +

Beale 7 186 300 300 (0) 101 101 (0) 70 (0)

Afiro 51 1449 2116 1008 (71) 785 370 (71) 246 (51)

Sc50b 78 2397 2215 1260 (51) 781 428 (52) 290 (42)

Sc50a 78 2364 2289 1253 (58) 794 431 (58) 281 (42)

Adlittle 138 4437 > 5000 4004 (2263) > 5000 2826 (2257) 1793 1363

Share2b 162 > 5000 1306 1306 (0) 329 329 (0) 213 (0)

Sc105 163 > 5000 4130 1933 (122) 1537 710 (122) 426 (80)

Stocfor1 165 > 5000 > 5000 3202 (1346) > 5000 1952 (1347) 1553 (793)

Share1b 253 > 5000 > 5000 4534 (1738) > 5000 2663 (1680) 1916 (1112)

Sc205 317 > 5000 > 5000 3170 (414) > 5000 1316 (42) 957 (253)

present the number of extragradient steps performed by algorithms IHPE1, IHPE2, and IHPE2+.
The notation > 5000 indicates that the algorithm was stopped after reaching 5000 iterations. Note
that at each iteration algorithms LQ1 and IHPE1 solve one Newton system, while algorithms LQ2,
IHPE2, and IHPE2+ solve two Newton systems.

As expected, these short-steps algorithms, confined to tight neighborhoods of the log-quadratic
central path, are not efficient. However, we observed that using the proximal-extragradient improved
the performance of the pure interior point algorithms. The hybrid algorithms, in particular the
algorithm IHPE2+, showed the best behavior. We must point out that in our numerical tests,
using other starting procedures, the algorithm of Roos matched the best performance of the hybrid
algorithms, showing a more robust behavior in relation to the selection of the initial iterate.

8 Conclusions.

In this work we developed infeasible short-steps path-following algorithms for solving the LMCP
(1). For this purpose, we define and study central paths associated to log-quadratic barriers. These
paths are well defined and, whenever the solution set is not empty, convergent to a pair of comple-
mentary solutions. To improve the theoretical and practical performance of “pure” path-following
algorithms based on log-quadratic barriers, we devised hybrid algorithms using the machinery of the
HPE method for finding zeros of maximal monotone operators. Encouraging preliminary numeri-
cal experiments were presented. Extension of these ideas to devise similar algorithms for solving
Nonlinear Monotone Complementarity Problems and more efficient long-step path-following HPE
algorithms for solving the LMCP is object of further research.

9 Appendix

In this section we present the main features of the log-quadratic central path. For this purpose, we
need some previous definitions and technical results.

Define the sets

I = {i | x̂i > 0 for some (x̂, ŷ) ∈ S∗CP } , J = {j | ŷj > 0 for some (x̂, ŷ) ∈ S∗CP } . (43)
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and the affine subspace

ŜCP = {(x, y) |Mx+ b− y = 0, xj = 0, j ∈ {1, . . . , n}\I, yi = 0, i ∈ {1, . . . , n}\J} . (44)

The following relations are well known [18]:

S∗CP ⊂ ŜCP , 〈x̂, ŷ〉 = 0 ∀ (x̂, ŷ) ∈ ŜCP .

Lemma 9.1. Take β ≥ 0, ν̄ > 0, τ > 0, and x̄ ∈ Rn. If the LMCP (1) has solutions, then the set

L(β, ν̄, τ, x̄) = {(x, y) > 0 | δν,x̄(x, y;λ) ≤ β, for some λ, ν such that ν ≥ ν̄, λ ≥ τν}

is bounded.

Proof 9.2. Take β ≥ 0, ν̄ > 0, τ > 0 and x̄ ∈ Rn. Let λ ∈ R, ν ∈ R and (x, y) ∈ Rn × Rn be such
that ν ≥ ν̄, λ ≥ τν and δν,x̄(x, y;λ) ≤ β. Define

r = λ(Mx+ b− y) + ν(x− x̄), a = λXy. (45)

In view of relation δν,x̄(x, y;λ) = ‖r‖/ν1/2 + ‖a− e‖ ≤ β, it follow

‖r‖
ν
≤ β

ν1/2
≤ β

ν̄1/2
, ‖a‖ ≤ β +

√
n. (46)

Take (x̂, ŷ) ∈ ŜCP . Since M is positive semi-definite, we have

〈y +
1

λ
(r − ν(x− x̄))− ŷ, x− x̂〉 = 〈Mx−Mx̂, x− x̂〉 ≥ 0.

Multiplying by λ and rearranging terms we obtain

〈a, e〉 ≥ 〈ν(x− x̄)− r, x− x̂〉+ 〈x̂, λy〉+ 〈ŷ, λx〉. (47)

Assuming additionally that (x̂, ŷ) ≥ 0, that is (x̂, ŷ) ∈ S∗CP , it follows

〈a, e〉 ≥ 〈ν(x− x̄)− r, x− x̂〉 =
ν

2

(∥∥x̄− x+
r

ν

∥∥2
+ ‖x− x̂‖2 −

∥∥x̄− x̂+
r

ν

∥∥2
)
, (48)

which, combined with the assumption on ν, implies that

‖x− x̂‖2 ≤
∥∥x̄− x̂+

r

ν

∥∥2
+

2

ν̄
〈a, e〉.

From (45), the assumptions on λ and ν, and triangle inequality it follows

‖y‖ = ‖Mx+ b+
ν

λ

(
x− x̄− r

ν

)
‖ ≤ ‖Mx+ b‖+

1

τ
‖x− x̄− r

ν
‖.

Since the above inequalities hold for any (x, y) ∈ L(β, ν̄, τ), it follows from these relations and (46)
that there exist C1 > 0 and C2 > 0 such that

‖x‖ ≤ C1, ‖y‖ ≤ C2, ∀ (x, y) ∈ L(β, ν̄, τ),

which ends the proof.
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In the next result, in the spirit of Lemma 4.2 of [3], we characterize the limit points of some
sequences of points of a β-neighborhood of a log-quadratic central path. Its proof is based on the
techniques presented in [18].

Lemma 9.3. Take β ∈ [0, 1). Let {(xk, yk, λk, νk)} ⊂ R2n
++ × R2

++ be such that

δνk,x̄(xk, yk;λk) ≤ β, ∀k ∈ N. (49)

Define

rk = λk(Mxk + b− yk) + νk(x
k − x̄), ak = λkX

kyk, k ∈ N. (50)

If the LMCP (1) has solutions and

λk −→ +∞, νk −→ ν̄ > 0, rk −→ r, ak −→ a, (51)

then the sequence
{

(xk, yk)
}

converges to a pair of complementary solutions.

Proof 9.4. From Lemma 9.1 it follows that {(xk, yk)} is a bounded sequence. Let (x∗, y∗) be an
accumulation point of

{
(xk, yk)

}
. Trivially (x∗, y∗) ≥ 0. Dividing (50) by λk and taking limits

(along suitable subsequences), when k → +∞, it follows

Mx∗ + b− y∗ = 0, 〈x∗, y∗〉 = 0.

Thus, (x∗, y∗) ∈ S∗CP . To end the proof it suffices to prove that this accumulation point is unique.

Note that (47) holds, with a = ak, x = xk, y = yk, λ = λk, r = rk, and ν = νk, for any k ∈ N.
Hence, from this relation and the definition of ak it follows

〈ak, e〉 ≥ 〈νk(xk − x̄)− rk, xk − x̂〉+
∑
i∈I

(ak)i
x̂i

(xk)i
+
∑
j∈J

(ak)j
ŷj

(yk)j
, ∀ (x̂, ŷ) ∈ ŜCP , ∀ k ∈ N. (52)

From (49) and Lemma 2.3 it follows that (1−β)e ≤ ak ≤ (1+β)e, ∀ k ∈ N. Thus, making k → +∞,
we obtain

0 < (1− β)e ≤ a.

Taking limits in (52), using the above inequality and the definitions of I and J we conclude that

x∗i > 0, ∀ i ∈ I, y∗j > 0, ∀ j ∈ J.

and

〈a, e〉 ≥ 〈ν̄(x∗ − x̄)− r, x∗ − x̂〉+
∑
i∈I

ai
x̂i
x∗i

+
∑
j∈J

aj
ŷj
y∗j
, ∀ (x̂, ŷ) ∈ ŜCP .

The right-hand side of the above relation is a linear function in variables x̂ and ŷ, bounded above on
the affine subspace ŜCP . Therefore, it must be constant on ŜCP . Since (x∗, y∗) ∈ ŜCP , it holds

0 = 〈ν̄(x∗ − x̄)− r, x∗ − x̂〉+
∑
i∈I

ai
x̂i − x∗i
x∗i

+
∑
j∈J

aj
ŷj − y∗j
y∗j

, ∀ (x̂, ŷ) ∈ ŜCP .
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Convexity of function φ(t) = − ln t and the above relation yield∑
i∈I
−ai ln x̂i +

∑
j∈J
−aj ln ŷj ≥

∑
i∈I
−ai lnx∗i +

∑
j∈J
−aj ln y∗j + 〈ν̄(x∗ − x̄)− r, x∗ − x̂〉

=
∑
i∈I
−ai lnx∗i +

∑
j∈J
−aj ln y∗j

+
ν̄

2

(
‖x̄− x∗‖2 + ‖x̂− x∗‖2 − ‖x̄− x̂‖2

)
+ 〈r, x̂〉 − 〈r, x∗〉.

Thus, (x∗, y∗) is a solution of the convex programming problem

minh(x, y) =
∑
i∈I
−ai lnxi +

∑
j∈J
−aj ln yj − 〈r, x〉+

ν̄

2
‖x− x̄‖2

s.t. (x, y) ∈ S∗CP . (53)

Since h is a strictly convex function, the above convex programming problem has a unique solution,
which implies the convergence of the sequence.

We end this section presenting the main features of the log-quadratic central path.

Proposition 9.5. For any ν > 0 and x̄ ∈ Rn, the log-quadratic central path

λ 7→
(
x(λ; ν, x̄), y(λ; ν, x̄)

)
is well defined and differentiable in parameter λ. Moreover, if the LMCP (1) has solutions, then

i) for any ν̄ > 0 and τ > 0, the set{(
x(λ; ν, x̄), y(λ; ν, x̄)

)
| ν ≥ ν̄, λ

ν
≥ τ

}
is bounded,

ii) if λ → +∞ and ν → ν̄ > 0, then (x(λ; ν, x̄), y(λ; ν, x̄)) converges to the unique solution of the
convex programming problem

min h(x, y) =
∑
i∈I
− lnxi +

∑
j∈J
− ln yj +

ν̄

2
‖x− x̄‖2

s.t. (x, y) ∈ S∗CP ,

iii) if λ → +∞, ν → +∞ and ν
λ
→ 0, then (x(λ; ν, x̄), y(λ; ν, x̄)) converges to the pair of comple-

mentary solutions (x∗, y∗) = (PS∗(x̄),Mx∗ + b).

Proof 9.6. For any λ > 0 and ν > 0, the operator

T(λ,ν) : Rn++ → Rn, T(λ,ν)(x) = λ(Mx+b)+∇
[
ν

2
‖x− x̄‖2−

n∑
i=1

log xi

]
= λ(Mx+b)+ν(x− x̄)−x−1
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is a strongly monotone, maximal monotone operator. Hence, there exist a unique x(λ, ν; x̄) > 0,
solution of the equation T(λ,ν)(x) = 0. Differentiability of x(λ, ν; x̄) on parameter λ > 0 follows from
the fact that ∂xT(λ,ν)(x) = λM + νI +X−2 is non-singular, for all x > 0, and the implicit function
theorem. From relation

y(λ, ν; x̄) = Mx(λ, ν; x̄) + b+
(ν
λ

) (
x(λ, ν; x̄)− x̄

)
, λ > 0,

it follows the well definiteness, uniqueness, and differentiability in parameter λ of the dual log-
quadratic central path.

Since δν,x̄ ((x(λ; ν, x̄), y(λ; ν, x̄);λ) = 0, i) follows directly from Lemma 9.1.

Consider arbitrary sequences of positive parameters {λk} and {νk} and let xk = x(λk, νk; x̄),
yk = y(λk, νk; x̄), ∀ k ∈ N. The following hold

rk = λk(Mxk + b− yk) + νk(x
k − x̄) = 0, ak = λkX

kyk = e, ∀ k ∈ N. (54)

To prove ii), assume that

λk → +∞, νk → ν̄ > 0.

From (54) and Lemma 9.3 it follows the convergence of {(xk, yk)} to the (unique) solution of the
convex programming problem (53) (with r = 0 and a = e), which ends the proof.

To prove iii), assume that

λk → +∞, νk → +∞, νk
λk
→ 0,

From i) it follows that {(xk, yk)} is a bounded sequence. Let (x∗, y∗) be an accumulation point of
{(xk, yk)}. Trivially (x∗, y∗) ≥ 0. Dividing (54) by λk and taking limits, along suitable subsequences,
we obtain

Mx∗ + b− y∗ = 0, 〈x∗, y∗〉 = 0. (55)

Thus, (x∗, y∗) ∈ S∗CP . To end the proof it suffices to prove that this accumulation point is unique.
Using (48), with a = e, r = 0, x = xk, y = yk, and ν = νk, it follows

n ≥ νk
2

(
‖x̄− xk‖2 + ‖xk − x̂‖2 − ‖x̄− x̂‖2

)
, ∀ x̂ ∈ S∗.

Dividing the above relation by νk and taking limits, along suitable subsequences, we obtain

‖x̄− x̂‖2 ≥ ‖x̄− x∗‖2 + ‖x̂− x∗‖2, ∀ x̂ ∈ S∗.

Hence, x∗ is the (unique) Euclidean projection of x̄ on the (closed and convex) solution set of the
LMCP (1), which implies the convergence of x(λ, ν; x̄) to PS∗(x̄). The convergence of y(λ, ν; x̄)
follows immediately from the first relation in (55).
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