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Tese submetida ao programa de Pós-graduação da Associação do Instituto
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e nos dá todo respaldo para os estudos, sempre sendo prestativos para
qualquer solicitação.
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Introdução

Estamos interessados em estudar estruturas de Poisson em variedades
Fano. Veremos que estudar tais estruturas implica em estudar estruturas
de Poisson quadráticas em Cn. Estas estruturas aparecem naturalmente
em uma grande quantidade de exemplos, tais como as álgebras de Sklyanin
e grupos de Lie-Poisson.

Um dos motivadores para estudarmos sobre este tema é o artigo de
Polishchuk [20]. Neste artigo, foram definidas estruturas de Poisson em
esquemas e boa parte do artigo foi uma tradução das propriedades básicas
de estruturas de Poisson para a linguagem de geometria algébrica. A outra
parte do artigo foi aplicações destas idéias para resolver problemas con-
cretos. Dentre estes problemas, foi proposto estudar estruturas de Poisson
não degeneradas em que o conjunto singular é um divisor de cruzamento
normal e foi provado que a estrutura de Poisson define uma folheação de
codimensão 1 em cada uma das componentes irredut́ıveis do conjunto sin-
gular e, se a variedade ambiente for P2n, n ≥ 2, o conjunto singular possui
pelo menos 2n− 1 componentes irredut́ıveis.

Nesta tese, generalizamos este resultado de Polishchuk e provamos.

Teorema A. Seja X uma variedade Fano de dimensão 2n, n ≥ 2, com
grupo de Picard ćıclico. Suponha que Π é uma estrutura de Poisson não
degenerada em X cujo conjunto singular de Π é reduzido e a cruzamentos
normais. Então X é o espaço projetivo P2n e o conjunto singular consiste
de 2n+ 1 hiperplanos em posição geral.

Concentraremos nossos estudos para provar este teorema em variedades
de dimensão 4. Ao estudarmos em dimensão superiores, nos restringiremos
à interseção de duas hipersuperf́ıcies que estão no conjunto singular da es-
trutura de Poisson. Veremos que se escolhermos bem as hipersuperf́ıcies,
teremos uma estrutura de Poisson não degenerada nesta interseção com
singularidades tipo cruzamento normal e será posśıvel aplicar indução.

Para provarmos o teorema em dimensão 4, utilizaremos o resultado de
Kobayashi e Ochiai em [15], sobre caracterização do espaço projetivo. É
sabido que para cada variedade Fano X de grupo de Picard ćıclico, associa-
se um ı́ndice i(X), que é um número inteiro e positivo. Eles provaram que,
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8 INTRODUÇÃO

se X é uma variedade de dimensão 4, i(X) ≤ 5 e i(X) = 5 se e somente
se X é P4. A prova do Teorema A será excluindo os ı́ndices anteriores.

É bem conhecido que a distribuição induzida pela estrutura de Pois-
son Π, cujo o conjunto singular Sing Π tem codimensão ≥ 2, é uma dis-
tribuição involutiva e possui fibrado canônico trivial. Em [17], Loray,
Pereira e Touzet classificaram folheações com fibrado canônico trivial
em variedades Fano de dimensão 3 com grupo de Picard ćıclico. Jun-
tando alguns resultados desta classificação e mais o fato que, sob nossas
hipóteses, a folheação induzida no conjunto singular é sempre logaŕıtmica,
conseguiremos excluir cada um dos ı́ndices anteriores da variedades Fano.

Alertamos ao leitor que distinguiremos folheação de Poisson com dis-
tribuição de Poisson (na literatura, as duas nomenclaturas são tratadas
como iguais). Ver obeservação 2.4 do caṕıtulo 2 para maiores detalhes.

A famı́lia encontrada no teorema A é não vazia e cada elemento da
famı́lia é conhecida, na literatura, como estrutura de Poisson diagonal.

O segundo teorema da tese é:

Teorema B. Se tomarmos deformações suficientemente pequenas de
uma estrutura de Poisson diagonal genérica em P2n, então as estruturas
de Poisson resultantes ainda são estruturas de Poisson diagonais em P2n.

A idéia da prova deste Teorema é usar o campo divergente da estru-
tura de Poisson e ver que, genericamente, este campo divergente tem parte
linear “quase” não ressonante. Utilizamos resultados conhecidos de de-
formação formal de campos e, com algumas contas, veremos propriedades
locais no conjunto singular da estrutura de Poisson deformada. Tais pro-
priedades locais serão suficientes para provar que a estrutura de Poisson
resultante é ainda diagonal.

Estudamos também um exemplo de estrutura de Poisson Π de posto 2
em Pn+1 (ver seção 4 do caṕıtulo 4 para o exemplo). O principal problema
de estudar uma estrutura de Poisson de posto baixo é que, ao perturbar tal
estrutura, a tendência é que o posto aumente. O exemplo que estudamos
tem uma propriedade bem peculiar:

Teorema C. Π é um ponto regular do espaço de estruturas de Poisson
em Pn+1. Mais ainda, se Πε é um perturbado de Π, então Πε possui as
mesmas propriedades de Π. Ver teorema C da seção 4 do caṕıtulo 4 para
um enunciado mais preciso.

A idéia da prova deste Teorema é descrever o espaço tangente da estru-
tura de Poisson de Π e, com a descrição obtida, verificar que a estrutura de
Poisson resultante terá posto 2 e concluiremos que deformar tal estrutura
de Poisson é o mesmo que deformar a folheação de Poisson. Com uma
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simples aplicação do resultado de Cukierman e Pereira em [8], obtem-se o
Teorema.

A tese será dividida em quatro caṕıtulos.
No caṕıtulo Teoria local, daremos várias definições equivalentes de es-

truturas de Poisson e as propriedades básicas destas estruturas. A primeira
definição dada é a mais intuitiva e que também nos permite fazer as contas
e a última definição dada é ótima sob a perpectiva da geometria algébrica.
Definiremos o campo divergente de uma estrutura de Poisson e algumas
propriedades conhecidas sobre tal campo. Faremos também um breve
resumo sobre o que já se sabe sobre estudo local de estruturas de Poisson.

No caṕıtulo Teoria global, falaremos de aspectos globais das estru-
turas de Poisson. Definiremos distribuição de Poisson, folheação de Pois-
son, noção de subvariedades e subvariedades fortes de Poisson, módulos de
Poisson, conexão de Poisson e o conjunto singular da estrutura de Poisson.

Falaremos também de estruturas de Poisson Π em espaços projetivos.
Daremos uma representação para Π tanto em coordenadas homogêneas
como em carta afim. E veremos que, em coordenadas homogêneas, Π é
uma estrutura de Poisson quadrática.

Daremos alguns exemplos de folheações em Pn que são induzidas por
estruturas de Poisson e exemplos de folheações em Pn que não são induzido
por estruturas de Poisson. Veremos algumas restrições no feixe tangente
de uma folheação de Poisson.

O caṕıtulo Estruturas de Poisson não-degenerada em variedade
Fano é o mais importante desta tese. O objetivo final é provar o Teorema
A. Para isso, falaremos de variedades Fano com grupo de Picard ćıclico;
definiremos o ı́ndice de uma variedade Fano; enunciaremos os resultados
que serão importantes para esta tese sobre tais variedades, dentre eles, o
teorema de Kobayashi e Ochiai (ver [15]) e veremos algumas propriedades
básicas de folheações em variedades Fano.

Enunciaremos o resultado de Polishchuk sobre estruturas de Poisson
não degenerada com singularidade tipo cruzamento normal e falaremos de
algumas propriedades de folheações induzidas pela estrutura de Poisson
em variedades Fano. Veremos que, sob nossas hipóteses, a folheação de
Poisson induzida no conjunto singular de um estrutura de Poisson é sempre
logaŕıtmica.

Juntando tudo o que foi feito, começamos de fato a provar o teorema A.
Começamos excluindo os casos de ı́ndice ≤ 3 e veremos que o complicado
será exclusão do ı́ndice 3. Para excluir este caso, provaremos que, sob nos-
sas hipóteses, cada componente irredut́ıvel do conjunto singular possui um
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campo global tangente à folheação de Poisson induzida no conjunto sin-
gular. Cada componente irredut́ıvel do conjunto singular é uma variedade
Fano de dimensão 3 e, utilizando a classificação de Loray, Pereira e Touzet
em [17], verificamos que as folheações logaŕıtmicas nestas variedades não
possui subfolheação de dimensão 1. E portanto uma contradição, pois
sabemos que a folheação de Poisson é, sob nossas hipóteses, logaŕıtmica.

Para excluir o ı́ndice 4, utilizamos o teorema de Kobayashi e Ochiai,
que nos garante que a variedade é uma hiperquádrica em P5 e estudamos
singularidades isoladas de folheações logaŕıtmicas. Provamos que nos ca-
sos que estamos interessados, a folheação sempre possuirá singularidades
isoladas e que cada uma delas estará na interseção de três componentes
do conjunto singular da estrutura de Poisson. Utilizando a geometria das
folheações logaŕıtmicas e as restrições obtidas pela existência da estrutura
de Poisson, obtemos uma contradição. Basicamente, o motivo de tal con-
tradição será que o conjunto singular possuirá no máximo 4 componentes
irredut́ıveis. E com isto, conclúımos que a variedade Fano é o espaço
projetivo.

Para terminar a demonstração do teorema, utilizamos exatamente a
mesma idéia no caso em que excluimos a quádrica para concluir que o
conjunto singular são cinco hiperplanos em posição geral.

No caṕıtulo Deformações do colchete de Poisson em espaços
projetivos, dedicamos à prova dos Teoremas B e C. Começamos o
caṕıtulo definindo o que seria uma deformação de estrutura de Poisson em
uma variedade projetiva. Falaremos também da relação entre a cohomolo-
gia de Poisson e deformação de estrutura de Poisson. Depois, começamos
a provar o Teorema B.

Para provar o Teorema, estudaremos numa vizinhança de alguns pon-
tos singulares “especiais” da estrutura de Poisson (onde a estrutura de
Poisson tem posto 0). Utilizaremos o campo divergente e resultados já
bem conhecidos de perturbação formal de campos. Com as equações obti-
das do divergente do perturbado da estrutura de Poisson, teremos uma
descrição completa do conjunto singular do perturbado da estrutura de
Poisson na vizinhança dos pontos singulares ”especiais”. Pela descrição
local, conseguimos provar que é a união de 2n+ 1 hiperplanos.

Depois de provarmos o Teorema B, computaremos, com as descrições
obtidas, o segundo grupo de cohomologia da estrutura de Poisson. Este
grupo descreve o espaço tangente do espaço dos conjuntos da estrutura de
Poisson.

Quanto ao Teorema C, começamos dando o exemplo de estrutura de
Poisson Π no espaço projetivo que iremos estudar. Vemos que a folheação
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induzida tem feixe tangente totalmente decompońıvel. Para provar o Teo-
rema, descreveremos o espaço tangente em Π do conjunto de estruturas
de Poisson e, com esta descrição, veremos que a dimensão de folheação
de Poisson de qualquer pequena perturbação de Π é 2. Concluiremos que
deformar a estrutura de Poisson é o mesmo que deformar a folheação in-
duzida e utilizaremos os resultados de estabilidade obtidas por Cukierman
e Pereira em [8].





Introduction

We are interested in studying Poisson structures on Fano varieties. We
will see that to study such structures is the same as to study quadratic
Poisson structures in Cn. Quadratic Poisson structures appear naturally
in a great amount of important examples, such as Sklyanin algebra and
Lie-Poisson group.

Polishchuk’s paper [20] motivates us to study Poisson structures. In
his article, it was defined Poisson structures in schemes and part of the ar-
ticle consists in a translation of the basic properties of Poisson brackets in
the language of algebraic geometry. The other part of the article consists
of applications of the ideas developed to solve concrete problems. Among
them, it was studied nondegenerate Poisson structures such that the sin-
gular locus consists of a divisor with normal crossing singularity and it
was proved that the Poisson structure induces a codimension 1 foliation
in each of the irreducible component of the singular loci of the Poisson
structure and, if the variety is the projective space P2n, the singular set
has at least 2n− 1 irreducible components.

In this thesis, we generalized this result of Polishchuk, proving the
following Theorem.

Theorem A. Let X be a even dimensional, dim X ≥ 4 Fano variety
with cyclic Picard group. Suppose that Π is a nondegenerate Poisson
structure on X such that the singular locus of Π is reduced smooth normal
crossing. ThenX is the projective space P2n and the singular locus is 2n+1
hyperplanes in general position.

The difficult part is to prove the Theorem in dimension 4. Because
when we study in greater dimension, if we restrict ourselves in the inter-
section of two well chosen hypersurfaces which are in the singular set of
Poisson structure, we have a nondegenerate Poisson structure there such
that the singular loci are a divisor in normal crossing and we are able to
use induction.

So as to prove the Theorem in dimension 4, we make use of a result of
Kobayashi and Ochiai (see [15]), about a characterization of the projective
space. For each Fano variety X with cyclic Picard group, we can associate
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14 INTRODUCTION

an index i(X), which is a positive integer, and they proved that, if the
dimension of X is 4, then i(X) ≤ 5 and i(X) = 5 if and only if X is P4.
The proof of Theorem A consists in excluding the other index.

It is a well known fact that the involutive distribution induced by
the Poisson structure Π has trivial canonical bundle whenever SingPi
has codimension ≥ 2. In [17], Loray, Pereira and Touzet classified the
foliations with trivial canonical bundle in Fano threefolds with cyclic
Picard group. We will see that, under our hypothesis, the foliation induced
in the singular set of the Poisson structure is always logarithmic.

We warn the reader that, in this thesis, we will distinguish Poisson
foliations with Poisson distributions (in the literature, they are treated as
the same). See remark 2.4 of chapter 2 for details.

The family we found in Theorem A is nonempty and each element of
the family is known, in the literature, as diagonal Poisson structure.

The second Theorem of this thesis is:

Theorem B. If we take sufficiently small deformations of a generic
diagonal Poisson structure in P2n then the resulting Poisson structures are
still diagonal Poisson structures in P2n.

The idea behind the proof of this Theorem is to use the curl vector
field induced by Poisson structure and see that, generically, this vector
field has linear part “almost” non-resonant. We make use of some well
known results about formal deformation of vector fields and, with some
computations, we will see some local properties in the singular set of the
deformed Poisson structure. Such properties will be sufficient to prove
that the resulting Poisson structure is still diagonal.

We also study an example of rank 2 Poisson structure Π in Pn+1 (see
chapter 4, section 4 for the example). The main problem of studying low
rank Poisson structures is that, if we deform such structures, we expect
that its rank grows up. Our example has a very nice property.

Theorem C. Π is a regular point of the space of Poisson structure
in Pn+1. Moreover, if Πε is a perturbation of Π, then Πε has the same
properties as Π. See Theorem C of the chapter 4, section 4 for a more
precise description of this Theorem.

The idea to prove this Theorem is to describe the tangent space in Π
of the space of Poisson structures in Pn+1 and, with the description, we
verify that the deformed Poisson structure has rank 2 and we conclude
that deforming Π is the same as deforming the Poisson foliation induced
by Π. A simple application of the main result of Cukierman and Pereira
in [8], we prove the Theorem.
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We split this thesis in 4 chapters. We will give a brief description of
each one of them.

In the chapter Local theory, we give many equivalent definitions of
Poisson structures and we study the basic properties of these structures.
The first definiton is more intuitive and it is very good to work in a local
system of coordinates and the last definition is good under the perspective
of algebraic geometry. We define the curl vector field and we give some
known properties about this vector field. In this chapter, we also give a
brief resume what is known about local study of Poisson structures.

In the chapter Global theory, we talk about the global properties of
this theory. We define Poisson distribution, Poisson foliation, the notion
of Poisson subvarieties and Strong Poisson subvarieties, Poisson modules,
Poisson connection and the singular set of a Poisson structure.

Also, we talk about Poisson structures on projective spaces. We also
do the calculations of Poisson structures in homogeneous coordinates and
also in the chart of projective space. We will see that, in homogeneous
coordinates, such Poisson structures is always quadratic.

We also give some examples of foliations in Pn which come from Poisson
structures and we give some example of foliations in Pn which do not
come from any Poisson structure. We also see some restrictions about the
tangent sheaf of a Poisson foliation.

The chapter Nondegenerate Poisson structures on Fano vari-
ety is the most important of this thesis. The final objective is to prove
Theorem A. To do so, we talk about Fano varieties with cyclic Picard
group. We define the index of a Fano variety, we enunciate some impor-
tant results for this thesis about these varieties, such as Kobayashi-Ochiai
theorem (see [15]) and we see some basic properties of foliations in Fano
varieties.

We enunciate the theorem of Polishchuk about nondegenerate Poisson
structure such that the singular set is smooth normal crossing and we
talk about some properties of the Poisson foliation in the singular set
of the Poisson structures. We will see that, under our assumptions, in
the singular set of the Poisson structure, the Poisson foliation is always
logarithmic.

Then we join all the work done so far and we exclude some indexes of
Fano varieties. We start excluding Fano varieties with indexes ≤ 3 and
we see that the complicated case is the index 3. To exclude this case,
we prove that, under our assumptions, each irreducible component of the
singular loci of Poisson structure has a global vector field tangent to the
Poisson foliation induced in the singular loci. Each irreducible component
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of the singular loci is a Fano variety of dimension 3 and, by Loray, Pereira
and Touzet classification in [17], we verify that logarithmic foliations in
such varieties do not have subfoliations by curves. This is a contradiction,
because the Poisson foliation is, under our assumptions, logarithmic.

To exclude index 4, we use Kobayashi and Ochiai work, which says that
the variety is exactly a quadric in P5, and we study isolated singularities of
logarithmic foliations. We will see that, in the cases we are considering, the
foliation has isolated singularities and we prove that each of the isolated
singularities of the Poisson foliation is in the intersection of 3 components
of the singular loci of the Poisson structure. We make use of the geometry
of logarithmic foliations and the restrictions obtained by the existence of
a Poisson structure so as to get a contradiction. Basically, the reason we
get a contradiction is due to the fact that the singular set of the Poisson
structure has at most 4 irreducible components. This proves that the Fano
variety is the projective space.

To finish the proof of the Theorem, we use exactly the same idea when
we excluded the quadric to conclude that the singular loci of a Poisson
structure in P4 are five hiperplanes in general position.

In the chapter Deformation of Poisson brackets in projective
space, we prove the Theorems B and C. We begin the chapter defining
what a deformation of Poisson structure in the projective space is. We
also talk about the relation between Poisson cohomology and deformation
of Poisson structure. Then we start to prove the Theorem B.

In order to prove this Theorem, we study in a neighborhood of some
special singular points of the Poisson structure Π (this points are the one
where the rank of Π is 0). We use the curl vector field and some well known
results about formal deformations of vector fields. With the equations
obtained of the curl vector field of the deformed Poisson structure, we
have a complete description of the singular set of the deformed Poisson
structure in a neighborhood of each special singular point. With this local
description, we are able to prove that the singular set of deformed Poisson
structure is the union of 2n+ 1 hyperplanes.

After proving the Theorem B, we compute the second Poisson coho-
mology group of Π. This group describes the tangent space at Π of the
set of Poisson structure.

About Theorem C, we start giving the example of the Poisson structure
Π and we will see that the tangent sheaf of the Poisson foliation totally
splits. So as to prove the Theorem, we describe the tangent space of
Π of the set of Poisson structures and, with its description, we will see
that the dimension of the Poisson foliation of any small deformation of
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Π is 2. We conclude that deforming the Poisson structure is the same as
deforming the foliation induced by the Poisson structure and we can apply
the stability result of Cukierman and Pereira in [8].





CHAPTER 1

Local theory

1. Poisson structures

The goal of this section is to define and to review the basic properties
of Poisson structures and to introduce some natural constructions that
will be useful later on.

1.1. Definition and first examples. We will give the classical defi-
nition of Poisson structure. We are interested in the holomorphic category,
but Poisson structures could also be defined in other categories.

Definition 1.1. A holomorphic Poisson structure on a holomorphic
variety X is an C-bilinear antisymmetric operation

OX ×OX → OX
(f, g) 7→ {f, g}

which verifies the Jacobi identity

{{f, g}, h}+ {{h, f}, g}+ {{g, h}, f} = 0

and the Leibniz identity

{f, gh} = {f, g}h+ g{f, h}.

In other words, OX , equipped with {· , · }, is a Lie algebra whose Lie
bracket satisfies the Leibniz identity. This bracket {· , · } is called a Pois-
son Bracket. A variety equipped with such a bracket is called a Poisson
variety.

Remark 1.2. It is important to have in mind that X could be a
singular variety. In this chapter, every time that is said “let (x1, . . . , xn)
be a local system of coordinates”, it will be considered on a neighborhood
of a regular point of X.

Example 1.3. One can define a trivial Poisson structure on any variety
by putting {f, g} = 0 for all f, g local functions in X.
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20 1. LOCAL THEORY

Example 1.4. Take X = C2 with coordinates (x, y) and we consider
p : C2 → C an arbitrary holomorphic function. One can define a holomor-
phic Poisson structure on C2 by putting

{f, g} =

(
∂f

∂x

∂g

∂y
− ∂g

∂x

∂f

∂y

)
p.

An important example is the Poisson structure attached to any holo-
morphic symplectic manifold.

Definition 1.5. A symplectic manifold (M,ω) is a manifold M with
a nondegenerate closed differential 2-form ω, which is called symplectic
form.

The nondegeneracy of a holomorphic 2-form ω means that the corre-
sponding homomorphism

ω] :TM → T ∗M

X 7→ iXω

is an isomorphism.

Remark 1.6. By linear algebra, if the dimension of M is 2n, it is
possible to prove that ω in nondegenerate if and only if (ωn)x 6= 0 for
every x ∈M . Here, ωn means ω ∧ . . . ∧ ω, n times.

If f is a local function on a symplectic manifold (M,ω), then we define
its Hamiltonian vector field, denoted by Xf , as follows:

iXfω = −df.

We can also define on (M,ω) a natural bracket, called the Poisson bracket
of ω, as follows:

{f, g} = ω(Xf , Xg) = −Xg(f) = Xf (g).

Proposition 1.7. If (M,ω) is a holomorphic symplectic manifold,
then the bracket {f, g} = ω(Xf , Xg) is a Poisson structure on M .

Proof. The Leibniz identity follows from Xfg = fXg + gXf . Let
us show the Jacobi identity. Recall the following Cartan Formula for the
differential k-form η

dη (X1, . . . , Xk+1) =
k+1∑
i=1

(−1)i−1Xi

(
η(X1, . . . , X̂i, . . . , Xk+1)

)
+

∑
i≤i<j≤k+1

(−1)i+jη
(

[Xi, Xj], X1, . . . , X̂i, . . . , X̂j, . . . , Xk+1

)
,



1. POISSON STRUCTURES 21

where X1, . . . , Xk+1 are vector fields, and the hat means that the corre-
sponding entry is omitted. Applying Cartan’s formula to ω on Xf , Xg

and Xh, we get:

0 = dω(Xf , Xg, Xh)

= Xf (ω(Xg, Xh)) +Xg (ω(Xh, Xf )) +Xh (ω(Xf , Xg))

− ω ([Xf , Xg], Xh)− ω ([Xh, Xf ], Xg)− ω ([Xg, Xh], Xf )

= Xf{g, h}+Xg{h, f}+Xh{f, g}
+ [Xf , Xg](h) + [Xh, Xf ](g) + [Xg, Xh](f)

= {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}}+Xf (Xg(h))−Xg(Xf (h))

+Xh(Xf (g))−Xf (Xh(g)) +Xg(Xh(f))−Xh(Xg(f))

= 3({f, {g, h}}+ {g, {h, f}}+ {h, {f, g}}).
and this is sufficient to prove the proposition. �

Thus, any symplectic manifold is also a Poisson manifold, though the
converse is not true.

We will give more examples later, after we express the Poisson bracket
as 2-derivations.

1.2. Poisson tensor. Let X be a variety and q a positive integer.
We denote by Xq

X the sheaf of holomorphic q-derivations of X, i.e., the
sheaf Hom(Ωq

X ,OX), the dual of Ωq
X . If (x1, . . . , xn) is a local system of

coordinates at x ∈ X then Xq
X admits a linear basis consisting of the

elements of the form
∂

∂xi1
∧ . . . ∧ ∂

∂xiq
(x) with i1 < . . . < iq.

In other words, if Π ∈ H0(X,Xq
X) is holomorphic q-derivation, then, in

local coordinates, Π has the following expression

Π(x) =
∑

i1<...<iq

Πi1...iq

∂

∂xi1
∧ . . . ∧ ∂

∂xiq
(x).

If Π is a q-derivation and α is a differential q-form, which in a system
of coordinates are written as Π(x) =

∑
i1<...<iq

Πi1...iq
∂

∂xi1
∧ . . . ∧ ∂

∂xiq
(x)

and α(x) =
∑

i1<...<iq
αi1...iqdxi1 ∧ . . . ∧ dxiq(x), then the pairing 〈Π, α〉 is

defined by

〈Π, α〉 =
∑

i1<...<iq

Πi1...iqαi1...iq .

A simple check shows that it is independent of the choice of local coordi-
nates.
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Remark 1.8. One may think that Xq
X =

∧q(TX), but this is not
necessarily true. By definition, (Ωq

X)∗ = Xq
X and since X may be a singular

variety, it may happen
∧q TX 6= (Ωq

X)∗. We always have X1
X = TX and

we have a natural morphism
∧q TX → Xq

X for every q.

Example 1.9. Consider X = C2/Z2 defined by the equivalence rela-
tion (x, y) ∼ (−x,−y). The map C(u, v, w) → C(x, y) sending u, v, w to
x2, xy, y2 gives an isomorphism from X to the quadric uw = v2 in C3, a
surface which is singular at the origin. Consider the map σ : C2 → C2

sending (x, y) to (−x,−y). Then the tangent sheaf TX at the origin
can be identified with the set of germs of vector fields Z in C2 such
that σ∗Z = Z. So, if p = (0, 0) ∈ X, then (TX)p is generated by

{x ∂
∂x
, y ∂

∂x
, x ∂

∂y
, y ∂

∂y
} and the image of the morphism (

∧2 TX)p → (X2
X)pis

generated by {x2 ∂
∂x
∧ ∂

∂y
, xy ∂

∂x
∧ ∂

∂y
, y2 ∂

∂x
∧ ∂

∂y
}. But we note that the 2-

derivation Z = ∂
∂x
∧ ∂

∂y
satisfies σ∗Z = Z and it is not in the image of the

morphism above.

A holomorphic q-derivation Π will define a C-multilinear skewsymmet-
ric map from OqX to OX by the following formula:

Π(f1, . . . , fq) := 〈Π, df1 ∧ . . . ∧ dfq〉.
Conversely, we have:

Lemma 1.10. A C-multilinear map Π : OqX → OX arises from a holo-
morphic q-derivation if and only if Π is skewsymmetric and satisfies the
Leibniz rule:

Π(fg, f2, . . . , fq) = fΠ(g, f2, . . . , fq) + gΠ(f, f2, . . . , fq).

Proof. The “only if” part is straightforward. For the “if” part, we
just have to check that the value of Π(f1, . . . , fq)(x) depends only on
df1(x), . . . , dfq(x). Equivalently, we have to check that if df1(x) = 0 then
Π(f1, . . . , fq)(x) = 0. But this is a direct consequence of Leibniz rule. �

In particular, if {· , · } is a Poisson structure on X, then there exists a
unique 2-derivation Π, the Poisson tensor, such that

{f, g} = Π(f, g) = 〈Π, df ∧ dg〉.
If Π is a 2-derivation on X and (x1, . . . , xn) is a local system of coordinates,
we can write

Π =
∑
i<j

{xi, xj}
∂

∂xi
∧ ∂

∂xj
.

In order to study the Jacobi identity, we will use the following lemma.
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Lemma 1.11. For any holomorphic 2-derivation Π, one can associate
a 3-derivation Λ defined by

Λ(f, g, h) = {{f, g}, h}+ {{h, f}, g}+ {{g, h}, f}
where {f, g} denotes 〈Π, df ∧ dg〉.

Proof. It is clear that the right side of the formula above is C-linear
and antisymmetric. The Leibniz rule of the right side is a simple verifi-
cation based on the Leibniz rule {f1f2, g} = f1{f2, g} + {f1, g}f2 for the
bracket of the 2-derivation Π. �

Direct calculations in local coordinates show that

Λ(f, g, h) =
∑
i<j<k

(∮
ijk

∑
s

∂{xi, xj}
∂xs

{xs, xk}

)
∂

∂xi
∧ ∂

∂xj
∧ ∂

∂xk

where
∮
ijk
aijk means the cyclic sum aijk + ajki + akij.

Clearly, the Jacobi identity for Π is equivalent to the condition Λ = 0.
Thus we have:

Proposition 1.12. A 2-derivation Π =
∑

i<j{xi, xj}
∂
∂xi
∧ ∂

∂xj
ex-

pressed in terms of a given system of coordinates (x1, . . . , xn) is a Poisson
tensor if and only if it satisfies the following system of equation:∮

ijk

∑
s

∂{xi, xj}
∂xs

{xs, xk} = 0 (∀i, j, k)

In the next section, we give another interpretation of Jacobi identity
using the Schouten bracket.

1.3. Lie and Schouten brackets. If we write A =
∑

i ai
∂
∂xi

and

B =
∑

i bi
∂
∂xi

, the Lie Bracket of A and B is

[A,B] =
∑
i

(
ai
∑
j

∂bj
∂xi

∂

∂xj
− bi

∑
j

∂aj
∂xi

∂

∂xj

)
.

We change the notation and rewrite ∂
∂xi

as ζi and consider them as

formal variables. We define the multiplication ζiζj := ∂
∂xi
∧ ∂

∂xj
and we

have ζiζj = −ζjζi. We also ask that xiζj = ζjxi for arbitrary i and j.
So, we can write X =

∑
i aiζi and Y =

∑
i biζi and consider them

formally as functions of variables (xi, ζi), which are linear in the formal
variables (ζi). We can write [X, Y ] formally as

[A,B] =
∑
i

(
∂A

∂ζi

∂B

∂xi
− ∂B

∂ζi

∂A

∂xi

)
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If V =
∑

i1<...<ip
Vi1...ip

∂
∂xi1
∧ . . . ∧ ∂

∂xip
is a p-derivation, then we will

consider it as a homogeneous polynomial of degree p in the formal variables
(ζi):

V =
∑

i1<...<ip

Vi1...ipζi1 . . . ζip

Due to the anti-commutativity of (ζi), one must be careful about
the signs when dealing with multiplications and differentiations involv-
ing these formal variables. The differentiation rule we will adopt is as
follows:

∂(ζi1 . . . ζip)

∂ζip
:= ζi1 . . . ζip−1 .

Equivalently,

∂(ζi1 . . . ζip)

∂ζik
:= (−1)p−kζi1 . . . ζ̂ik . . . ζip .

If

A =
∑

i1<...<ip

Ai1...ip
∂

∂xi1
∧ . . . ∧ ∂

∂xip
=

∑
i1<...<ip

Ai1...ipζi1 . . . ζip .

is a p-derivation, and

B =
∑

i1<...<iq

Bi1...iq

∂

∂xi1
∧ . . . ∧ ∂

∂xiq
=

∑
i1<...<iq

Bi1...iqζi1 . . . ζiq .

is a q-derivation, we can define the bracket of X and Y as follows:

(1) [A,B] =
∑
i

(
∂A

∂ζi

∂B

∂xi
− (−1)(p−1)(q−1)∂B

∂ζi

∂A

∂xi

)
.

The bracket [A,B] is a homogeneous polynomial of degree p+ q− 1 in
the formal variables ζi, so it is a (p+ q − 1)-derivation.

Definition 1.13. If A is a p-derivation and B is a q-derivation, then a
(p+q−1)-derivation defined by the bracket [A,B] is called the Schouten
bracket of A and B.

We will list, without any proof, the basic properties of the Schouten
bracket. For the interested reader, we refer to [11], chapter 1.

Proposition 1.14. If A is a p-derivation, B is a q-derivation and C
is an r-derivation, then the Schouten bracket satisfies the following prop-
erties:

(1) Graded anti-commutative

[A,B] = −(−1)(p−1)(q−1)[B,A]
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(2) Graded Leibniz rule

[A,B ∧ C] = [A,B] ∧ C + (−1)(p−1)qB ∧ [A,C]

[A ∧B,C] = A ∧ [B,C] + (−1)(r−1)q[A,C] ∧B

(3) Graded Jacobi identity

(−1)(p−1)(r−1)[A, [B,C]] + (−1)(q−1)(p−1)[B, [A,C]]

+(−1)(r−1)(q−1)[C, [A,B]] = 0

(4) If X is a vector field and B is a q-derivation

[X,B] = LXB

where LX denotes the Lie derivative by X. In particular, if X
and B are two vectors field then the Schouten Bracket coincides
with their Lie bracket. If X is a vector field and B = f is a
function (i.e a 0-vector field) then we have

[X, f ] = X(f).

(5) If φ : (Cn, 0)→ (Cn, 0) is a biholomorphism, then

φ∗[A,B] = [φ∗A, φ∗B].

Note that item (5) of the last proposition shows that the computations
of [A,B] does not depend on the choice of local coordinates. It follows
that if X is a variety, we have a well defined C-bilinear map

[· , · ] : Xp
X × Xq

X → Xp+q−1
X

(A,B) 7→ [A,B].

The Schouten Bracket offers a very convenient way to characterize
Poisson structures.

Theorem 1.15. A 2-derivation Π is a Poisson tensor if and only if
the Schouten bracket of Π with itself vanishes:

[Π,Π] = 0.



26 1. LOCAL THEORY

Proof. Write Π =
∑

i<j{xi, xj}ζiζj and use the formula (1) to get

[Π,Π] =
∑
s

(
∂Π

∂ζk

∂Π

∂xk
+
∂Π

∂ζk

∂Π

∂xk

)
= 2

∑
s

(
∂Π

∂ζk

∂Π

∂xk

)
= 2

∑
i<j

(
{xi, xj}ζi

∂Π

∂xj
− {xi, xj}ζj

∂Π

∂xi

)
= 2

∑
i<j

k<l

(
{xi, xj}ζi

∂{xk, xl}
∂xj

ζkζl − {xi, xj}ζj
∂{xk, xl}
∂xi

ζkζl

)

= 2
∑
i<s
k<l

{xi, xs}
∂{xk, xl}
∂xs

ζiζkζl − 2
∑
s<j

k<l

{xs, xj}
∂{xk, xl}
∂xs

ζjζkζl

= 2
∑
i<s
k<l

{xi, xs}
∂{xk, xl}
∂xs

ζiζkζl − 2
∑
s<i
k<l

{xs, xi}
∂{xk, xl}
∂xs

ζiζkζl

= 2
∑
i
k<l

(∑
s

(
{xi, xs}

∂{xk, xl}
∂xs

ζiζkζl

))

= 2
∑
i<k<l

(∮
ikl

∑
s

{xi, xs}
∂{xk, xl}
∂xs

)
ζiζkζl,

then [Π,Π] = 0 if and only if
∮
ikl

∑
s{xi, xs}

∂{xk,xl}
∂xs

ζiζkζl = 0 (∀i, k, l). We
conclude the proof by Proposition 1.12. �

1.4. More examples. Expressing Poisson structures as 2-derivations
has some advantages to give examples, as we shall see.

Example 1.16. Let (X,ΠX) and (Y,ΠY ) be Poisson varieties. Then
their direct product M = X×Y can be equipped with the natural Poisson
structure ΠX + ΠY .

Example 1.17. Because there are no nontrivial 3-derivation on a two
dimensional variety S, any 2-derivation on S is a Poisson tensor.

Example 1.18. Choose arbitrary constants Πij. By Proposition 1.12,
we have that Π =

∑
Πijζiζj is a Poisson tensor on Cn. This structure is

called a constant Poisson structure.
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Example 1.19. Let V be a finite-dimensional vector space over C. A
linear Poisson structure on V is a Poisson structure on V for which the
Poisson bracket of two linear functions is again a linear function. Since
linear functions can be regarded as an element of V ∗, then the operation
(f, g) 7→ {f, g} restricted to the linear functions gives rise to an operation
[· , · ] : V ∗ × V ∗ → V ∗, which is a Lie algebra structure on V ∗.

Conversely, any Lie algebra structure on (V ∗, [· , · ]) determines a linear
Poisson structure on V . Indeed, choose a linear basis (e1, . . . , en) of V ∗.
We can view ei as an linear function xi on V ∗∗ = V . If [ei, ej] =

∑
ckijek,

ckij ∈ C, then we write {xi, xj} =
∑
ckijxk. Consider the 2-derivation

Π = {xi, xj}ζiζj, then the Jacobi identity for [· , · ] is equivalent to the
Jacobi identity for Π.

Thus, there is a natural bijection between finite-dimensional linear
Poisson structures and finite-dimensional Lie algebras.

Another natural example is the diagonal Poisson structure (see [11]).

Example 1.20. The diagonal Poisson structure on Cn is defined by:

Π =
∑
i<j

λijxixjζiζj, λij ∈ C.

We will study this example in detail later (see chapter 4, section 2).

1.5. The curl operator. Recall that, if A is a p-derivation and ω is
a holomorphic q-form, with q ≥ p, then the inner product of ω by A is a
unique (q − p)-form, denoted by iAω such that

〈iAω,B〉 = 〈ω,A ∧B〉
for any (q − p)-derivation B. If q < p, we put iAω = 0 by convention.
Similarly, when p ≥ q, we can define the inner product of a p-derivation A
by a q-form η to be a unique (p− q)-derivation, denoted by iηA such that

〈α, iηA〉 = 〈α ∧ η, A〉
for any (p− q)-form α.

Remark 1.21. We must be careful with the signs when dealing with
inner products. Note that if Π is a 2-derivation, then idfΠ(g) = Π(g, f).

Lemma 1.22. If f is a function and A a p-derivation then

idfA = [A, f ].

Proof. Just need to use induction on p and apply the graded Leibniz
property for the Schouten Bracket (Proposition 1.14). �
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Let Ω be a holomorphic volume form on a n-dimensional variety X.
Then, for every p = 0, 1, . . . , n, the map

Ω : Xp
X → Ωn−p

X

defined by Ω(A) = iA(Ω), is an OX-linear isomorphism from the space Xp
X

to Ωn−p
X . The inverse map will be denoted as Ω̂ : Ωn−p

X → Xp
X .

Denote by DΩ : Xp
X → Xp−1

X the linear operator defined by the compo-

sition DΩ = Ω̂ ◦ d ◦ Ω. Then we have the following commutative diagram

Xp
X

Ω //

DΩ

��

Ωn−p
X

d
��

Xp−1
X Ωn−p+1

X

Ω̂oo

Definition 1.23. The operator DΩ is called the curl operator with
respect to Ω. If A is a p-derivation, then DΩA is called the curl of A.

In a local system of coordinates (x1, . . . , xn) with Ω = dx1 ∧ . . .∧ dxn,
we have the following convenient formula

DΩA =
∑
i

∂2A

∂xi∂ζi
.

We can recover the Schouten bracket from the curl operator via Koszul
formula:

Theorem 1.24. If A is a p-derivation, B is a q-derivation and Ω is a
volume form then

[A,B] = (−1)qDΩ(A ∧B)− (DΩA) ∧B − (−1)qA ∧ (DΩB)

Proof. The proof is obtained by expanding (−1)qDΩ(A ∧B). �

Corollary 1.25. We have the following formula:

DΩ[A,B] = [A,DΩB] + (−1)b−1[DΩA,B].

Proof. Just expand the right side by the formula of the last theorem,
apply DΩ and use DΩ ◦DΩ = 0. �

Corollary 1.26. If Π is a Poisson tensor and Ω a volume form, then

[DΩΠ,Π] = 0 and L(DΩΠ)Ω = 0.

The vector field DΩΠ is called the curl vector field. Using the same
notation of the subsection 1.3, Let

Π =
∑
i,j,k,l

Πkl
ijxkxlζiζj
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be a quadratic Poisson structure (Πkl
ij ∈ C, Πkl

ij = Πlk
ij = −Πkl

ji). Its curl
vector field X = DΩΠ with respect to the volume form Ω = dx1∧ . . .∧dxn
is a linear vector field which has the following expression:

X =
∑
i,j,k

Πkl
ijxkζi

Recall that, if we change the coordinate system linearly, the corresponding
volume form will be multiplied by a constant function and, therefore, the
curl vector field, up to scalar, will not be changed. So we may write the
curl vector field as X = DΠ, without the reference to Ω.

If c1, . . . , cn are the eigenvalues of X, then Corollary 1.26 says that

(2)
n∑
i=1

ci = 0

Definition 1.27. If Π is a quadratic Poisson structure, then the eigen-
values of its linear curl vector field X = DΠ are called the eigenvalues of
Π. A quadratic Poisson structure is called non-resonant if its eigenvalues
c1, . . . , cn do not satisfy any relation of resonance other than (2). In other
words, if

∑n
i=1 αici = 0 with αi ∈ Z then α1 = . . . = αn.

One may argue that a “generic” (in a disputable sense) quadratic Pois-
son structure is nonresonant. The following proposition, due to Dufour
and Haraki, says that “generic” quadratic Poisson structures are diago-
nalizable in the sense of example 1.20.

Proposition 1.28. If the eigenvalues c1, . . . , cn of a quadratic Poisson
structure Π do not verify any relation of the type

ci + cj = cr + cs

with i < j and {r, s} 6= {i, j}, then Π is diagonalizable, i.e., there exists
a linear coordinate system in which Π is diagonal. In particular, nonres-
onant quadratic Poisson structures are diagonalizable.

Proof. Notice that the condition of the above theorem implies that
the eigenvalues c1, . . . , cn are pairwise different (for example, c1 = c2 leads
to c1 + c2 = c1 + c1). Thus the linear curl vector field X = DΠ is diago-
nalizable, i.e., there is a linear coordinate system in which X is diagonal:

X =
∑

cixi
∂

∂xi
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Then the equation [X,Π] = 0 can be written as

0 =

[∑
i

cixi
∂

∂xi
,
∑
r,s,u,v

Πuv
rsxuxv

∂

∂xr

∂

∂xs

]

=
∑
r,s,u,v

Πuv
rs (cu + cv − cr − cs)xuxv

∂

∂xr
∧ ∂

∂xs
,

whence Πuv
rs = 0 for {r, s} 6= {u, v}, hence the result. �

2. Normal forms

Given a Poisson manifold Π on X, we can associate to it a natural
homomorphism

Π] : Ω1
X → X1

X

α 7→ iαΠ

the contraction of 2-derivation by 1-forms (see remark 1.21 to recall the
convention adopted in this thesis).

For every x ∈ X, if f ∈ OX,x is a function, then the Hamiltonian
vector field of f is defined as Zf = Π](df) = {· , f}. The C-sheaf of all
Hamiltonian vector fields will be denoted by Ham(Π).

Lemma 1.29. The following identity holds:

[Zf , Zg] = −Z{f,g}
Proof.

[Zf , Zg](h) = Zf (Zg(h))− Zg(Zf (h))

= Zf ({h, g})− Zg({h, f})
= {{h, g}, f} − {{h, f}, g}
= {{f, g}, h} by Jacobi identity

= −Z{f,g}(h)

for every h ∈ OX,x. �

Since Π] is antysimmetric, we see that the rank of Poisson structure is
always even.

The map Π] : Ω1
X → X1

X defines naturally a holomorphic distribution
DΠ generated by the Hamiltonian vector fields. By simple linear algebra, if
rk(Π) = 2k then DΠ is a holomorphic distribution of dimension 2k. By the
lemma above, this distribution is involutive. We put this in a definition.



2. NORMAL FORMS 31

Definition 1.30. Let (X,Π) be a Poisson variety and x ∈ X. Then
the image (DΠ)x = Dx is called the characteristic space at x of the Poisson
structure. The dimension dim Dx is called the rank of Π at x, and
maxx∈X dim Dx is called the rank of Π. When rk Πx = dim X, we say
that Π is nondegenerate at x. If rk Πx does not depend on x, then Π is
called regular Poisson structure.

Example 1.31. In C2n with coordinates (x1, . . . , xn, y1, . . . , yn), con-

sider the constant Poisson structure
∑k

i=1
∂
∂xi
∧ ∂

∂yi
, with k ≤ n. It is a

regular Poisson structure of rank 2k. The case that k = n, this Poisson
structure is symplectic with ω =

∑n
i=1 dxi∧dyi. This symplectic structure

is the canonical one.

The characteristic space Dx admits a natural antisymmetric nonde-
generate bilinear scalar product: if X and Y are two vectors of Dx, then
we put

(X, Y ) := 〈β,X〉 = 〈Π, α ∧ β〉 = −〈Π, β ∧ α〉 = −〈α, Y 〉 = −(Y,X),

where α, β ∈ T ∗xX are two covectors such that X = Π](α) and Y = Π](β).
About local forms of symplectic structure, we have the so called Dar-

boux theorem.

Theorem 1.32. Let (M,ω) be a symplectic manifold and x ∈M . Then
there exists a neighborhood U of x and coordinates (x1, . . . , xn, y1, . . . , yn)
such that ω =

∑n
i=1 dxi ∧ dyi in U .

2.1. Weinstein Theorem. In this subsection, we prove the splitting
theorem of Weinstein [24], which says that locally a Poisson manifold is
a direct product of a symplectic manifold with another Poisson manifold
whose Poisson tensor vanishes at a point. This splitting theorem, together
with Darboux theorem, which is proved at the same time, gives us local
“good” coordinates for Poisson manifold. The proof we give of this theo-
rem can be found in [11], Theorem 1.4.5.

Theorem 1.33 (Splitting Theorem). Centered at any point x in a
Poisson manifold M , there are coordinates (x1, . . . xk, y1, . . . , yk, z1, . . . , z`)
such that

Π =
k∑
i=1

∂

∂xi
∧ ∂

∂yi
+
∑̀
i,j=1

ϕij(y)
∂

∂zi
∧ ∂

∂zj
and ϕij(0) = 0 .

Proof. Let N be a submanifold of M transverse to the distribution
in a neighborhood of x, i.e, TxN ⊕Dx = TxM .
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If Π(x) = 0 then k = 0 and there is nothing to prove. Suppose that
Π(x) 6= 0. Let x1 be a local function (defined in a small neighborhood
of x in M) which vanishes on N and such that dx1(x) 6= 0. Since Dx
is transversal to N , there is a Hamiltonian vector field Zg(x) ∈ Dx such
that 〈Z(x), dx1(x)〉 6= 0, or equivalently Zx1(g)(x) 6= 0. Then Zx1(x) 6= 0
and, since Zx1 is not tangent to N , there is a local function y1 such that
y1(N) = 0 and Zx1(y1) = 1 in a neighborhood of x, in other words,

{x1, y1} = 1

We see that Zx1 and Zy1 are linearly independent, because, if Zy1 = λZx1 ,
λ a function, then {x1, y1} = λZx1(x1) = 0. Moreover, we have

[Zx1 , Zy1 ] = −Z{x1,y1} = 0

Thus Zx1 and Zy1 are two linearly independent vector fields which com-
mute. By Frobenius theorem, we can find a local system of coordinates
(z1, . . . , zn) such that

Zx1 =
∂

∂z1

, Zy1 =
∂

∂z2

.

In the coordinates (z1, . . . , zn), we have {y1, zi} = Zy1(zi) = 0 and we
have {x1, zi} = Zx1(zi) = 0, for i = 3, . . . , n. Jacobi identity implies that
{x1, {zi, zj}} = {y1, {zi, zj}} = 0 for i, j ≥ 3. Hence {zi, zj} does not
depend of (x1, y1) for i, j ≥ 3.

Then, in the coordinates (x1, y1, z3, . . . , zn), Π has the form

Π =
∂

∂x1

∧ ∂

∂y1

+
∑
i,j≥3

ϕij(y)
∂

∂zi
∧ ∂

∂zj

The above formula implies that our Poisson structure is locally the product
of a canonical symplectic structure on the plane {(x1, y1)} with a Poisson
structure on a (n− 2)-dimensional manifold {(z3, . . . , zn)}. We prove the
theorem by induction on rank of Π at x. �

2.2. Linearization of Poisson structures. The local classification
question can be reduced, thanks to Weinstein splitting theorem, to the
study of Poisson structures Π vanishing at x, i.e, Π(x) = 0.

Let Π be a Poisson structure which vanishes at a point x. Denote by

Π = Π(1) + Π(2) + · · ·

the Taylor expansion of Π in a local coordinate system centered at x,
where Π(k) is a homogeneous 2-derivation of degree k. Recall that, the



2. NORMAL FORMS 33

terms of degree k of the equation [Π,Π] give

k∑
i=1

[
Π(i),Π(k+1−i)] = 0

In particular [Π(1),Π(1)] = 0, i.e., the linear part Π(1) of Π is a linear
Poisson structure. One says that Π is locally analytically (resp. formally)
linearizable if there exists a local analytic (resp. formal) diffeomorphism
φ (a coordinate transformation) such that φ∗Π = Π(1).

Definition 1.34. A finite-dimensional Lie algebra g is called analyti-
cally (resp. formally) nondegenerate if any analytic (resp. formal) Poisson
structure Π which vanishes at a point and whose linear part at that point
corresponds to g is analytically (resp. formally) linearizable.

There are many interesting results about non-degeneracy of g algebras.
We will cite some of them. We refer to [11], chapter 4, for the proofs.

Theorem 1.35. Any semisimple Lie algebra is formally and analyti-
cally nondegenerate.

The formal case was proved by Weinstein (1983) and the analytic case,
by Conn (1984).

The next theorem is due to Dufour and Zung.

Theorem 1.36. For any natural number n, the Lie algebra aff(n,C)
of affine tranformations of Cn is formally and analytically nondegenerate.

The next theorem, due to Dufour and Molinier, will be used in this
thesis to prove a technical Lemma 3.21.

Theorem 1.37. The direct product

aff(1,C)× · · · × aff(1,C)

of n copies of aff(1,C) is formally and analytically nondegenerate for any
natural number n.





CHAPTER 2

Global theory

1. Poisson structures on algebraic varieties

1.1. Poisson foliation. Let X be a variety. Denote by Xq
X = (Ωq

X)∗

the sheaf of q-derivations of X (see remark 1.8). A Poisson structure Π is
a holomorphic section Π ∈ H0(X,X2

X) such that [Π,Π] = 0. In this case,
we say that (X,Π) is a Poisson variety. If Πk 6= 0 and Πk+1 = 0, where Πk

is the k-th wedge power of Π, we say that the Poisson structure has rank
2k. For each p in X, let m be the biggest integer such that Πm(p) 6= 0.
We say that Π has rank 2m at p.

In local coordinates (x1, . . . , xn) of a neighborhood of a regular point
p ∈ X, we can write Π =

∑
ij{xi, xj}

∂
∂xi
∧ ∂

∂xj
. We will use the following

notation: Π(f, g) = Π(df ∧ dg) = {f, g}Π = {f, g}, if no confusion can
arise.

We denote by Π] : Ω1
X → X1

X the OX-linear anchor map defined by

Π](α)(β) = Π(β ∧ α)

A function f ∈ OX(U), where U is an open subset of X, naturally gener-
ates a vector field Zf = Π](df), the so called Hamiltonian vector field.
The C-sheaf of all Hamiltonian vector field is denoted by Ham(Π).

Definition 2.1. Let X be a variety with dim X = n. A singu-
lar holomorphic distribution D of codimension n − 2k consists of a
holomorphic global section of ω ∈ PH0(X,L∗ ⊗ Ωn−2k

X ), where L is a
line bundle. The singular set SingD of the distribution D consists of
points x ∈ X such that ω(x) = 0. A distribution D is involutive if
(ker ω)x := {Z ∈ (TX)x; iZω = 0} is involutive, i.e., if Z1, Z2 ∈ (kerω)x,
then [Z1, Z2] ∈ (ker ω)x.

A foliation F is an involutive distribution such that the singular set
SingF has codimension ≥ 2. Clearly, every involutive distribution D in-
duces a foliation, we call this process as saturation of the distribution.

We call TF := ker ω the tangent sheaf of F , its dual, denoted by
T ∗F , is called the cotangent sheaf of F . We call NF := TX/TF the
normal sheaf and its dual, denoted by N∗F , is the conormal sheaf.

35
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Remark 2.2. The normal sheaf NF is a line bundle if and only if the
foliation F is regular, i.e., SingF = ∅, but N∗F is always a line bundle
(see [3] Proposition 1.33).

If ω ∈ PH0(X,L∗ ⊗ Ω1
X) defines a codimension 1 foliation in X, the

involutivity of TF is equivalent to ω ∧ dω = 0 and we have L = N∗F .
Since H0(X,X2k

X ) = H0(X,K∗X⊗Ωn−2k
X ), a rank 2k Poisson vector field

Π induces a section ω ∈ H0(X,K∗X⊗Ωn−2k
X ). Let Zf and Zg be Hamilton-

ian vector fields in X, then, by Jacobi identity, [Zf , Zg] = −Z{f,g}, and so
ker ω is involutive.

Definition 2.3. The 2n− 2k-form ω ∈ H0(X,K∗X ⊗ Ωn−2k
X ) induced

by Π, where rk Π = 2k, is the Poisson distribution. The saturation of
the Poisson distribution is called Poisson foliation.

Remark 2.4. Usually, in the literature, the image of the anchor map
Π] : Ω1

X → TX is called the tangent sheaf of a Foliation by Symplectic
leaves. In this thesis, we do not consider this sheaf. We call the 2n− 2k-
form induced by Π the Poisson distribution and its saturation by Poisson
foliation.

Remark 2.5. If Π is a rank 2k Poisson structure in X, then Πk ∧
Zf = 0 for every Hamiltonian vector field Zf . In particular, at the points
where the Poisson distribution is regular, the tangent sheaf of the Poisson
foliation is composed by Hamiltonian vector field.

1.2. Poisson structures on projective spaces. Let us consider the
projective space Pn and denote φ : Cn+1\{0} → Pn the natural projection.
The following is a description of the Poisson tensors of Pn in homogeneous
coordinates.

Let TPn be the tangent sheaf on Pn and let R =
∑
xi

∂
∂xi

be the radial

vector field on Cn+1, let X1 be C-vector space consisting of linear vector
fields on Cn+1. Recall also the Euler exact sequence

(3) 0→ OPn → On+1
Pn (1)

P−→ TPn → 0.

Remember that we can identify H0(Pn,On+1
Pn (1)) with X1 and the first

map of the exact sequence above is the wedge product by the radial field
and the second map is the natural projection, which we denoted by P .
Remark that X1 consists of vector fields which are invariant under the
action of Cn+1 by homotheties.

Taking exterior products of (3), one obtains the exact sequence

0→ OPn ∧ On+1
Pn (1)→

2∧
On+1

Pn (1)
P−→

2∧
TPn → 0.
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Note that the first wedge product in the exact sequence above makes
sense, since we can identify OPn as a subsheaf of On+1

Pn (1). With the
natural identifications, OPn ⊆ On+1

Pn (1) is a subsheaf generated by the
radial vector field. Consider the following map

ξ : OPn ∧ On+1
Pn (1)→ TPn

R ∧X 7→ P (X),

where P is the morphism appearing in (3).
A simple check shows that this map is well defined and it is surjective.

Comparing the rank of both sheaves, we conclude that the map ξ is an
isomorphism (both have rank n).

So we have the following exact sequence

0→ TPn →
2∧
On+1

Pn (1)→
2∧
TPn → 0.

Let V ∈ H0(Pn,
∧2 TPn) be a 2-derivation on Pn. Since we have

H1(Pn, TPn) = 0, then V can be lifted to a section of Ṽ ∈ H0(Pn,On+1
Pn (1)).

By the exact sequences above and with the natural identifications, if
V ′ ∈ H0(Pn+1,

∧2On+1
Pn (1)) is another lifting of V , then there exists a

vector field X ∈ H0(Pn,On+1
Pn (1)), such that Ṽ = V ′ + X ∧ R, where

〈R〉 = OPn ⊆ On+1
Pn (1) is the radial vector field.

By the same arguments, we have the following exact sequence

0→
2∧
TPn →

3∧
On+1

Pn (1)
P−→

3∧
TPn → 0,

where the first map is the wedge product with the radial vector field.
Let Π ∈ H0(Pn,

∧2 TPn) be a Poisson bivector field on Pn and let

Π̃ ∈
∧2 X1 be a lifting of Π. In homogeneous coordinates Π̃ takes a form

Π̃ =
∑

aklijxkxl
∂

∂xi
∧ ∂

∂xj
.

We conclude that Π is a Poisson structure if and only if P ([Π̃, Π̃]) = 0,
where P :

∧3 X1 →
∧3 TPn is induced by the last map of (3).

The kernel of P :
∧3 X1 →

∧3 TPn is generated by the vector fields of
the form

X = Y ∧R,
where R is the radial field and Y belongs to

∧2 X1.
Consider the map DR :

∧•X1 →
∧•X1 defined by DR(Y ) = Y ∧ R.

So Π̃ defines a Poisson Bracket on Pn if and only if

DR[Π̃, Π̃] = 0.
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By Koszul formula (see Theorem 1.24 of chapter 1, we conclude that

DR(DΩ(Π̃ ∧ Π̃)− 2Π̃ ∧DΩ(Π̃)) = 0,

where Ω = dx0 ∧ . . . ∧ dxn.

Lemma 2.6. We have the following formula

DRDΩX +DΩDRX = (n+ d)X

where X is a homogeneous multiderivation such that the degree of the
coefficients is d.

Proof. By Koszul Formula, we have

DΩDRX = DΩ(X ∧R) =

= −[X,R]− (DΩX) ∧R +X ∧DΩR =

= (d− 1)X −DR(DΩX) + (n+ 1)X =

= (n+ d)X −DRDΩX.

and this concludes the lemma. �

Now, we can prove the following theorem due to Bondal (see [2])

Theorem 2.7. Let Π be a Poisson bracket on Pn. There exists a
unique lifting Π̃ of it on Cn+1 with the following properties:

(1) rk Π = rk Π̃

(2) DΩΠ̃ = 0

(3) [Π̃, Π̃] = 0

Proof. Let V be a lift of Π. By the last lemma, we can decompose

V = Π̃ + v′ with DΩΠ̃ = 0, DRv
′ = 0 and Π̃ is a lifting of Π (Π̃ is

1
n+2

DΩDRV and v′ is 1
n+2

DRDΩV ). Since Π is a Poisson Bracket in Pn,

we have DR[Π̃, Π̃] = 0 and, by Koszul formula, we have DΩ[Π̃, Π̃] = 0.

Using lemma above, we conclude that [Π̃, Π̃] = 0.

If rk Π = 2k, then Πk 6= 0 and Πk+1 = 0. So Π̃k 6= 0 and DRΠ̃k+1 = 0.

By induction, we can prove that DΩΠ̃k+1 = 0 and so, by lemma above, we

conclude that rk Π̃ = 2k. �

Now, we want to characterize a Poisson structure Π on the projective
space Pn with homogeneous coordinates (X0, . . . , Xn) by its restriction to
the affine subset U0 where X0 6= 0. Put

Pij =

{
Xi

X0

,
Xj

X0

}
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and write Π =
∑

i<j Πij
∂
∂Xi
∧ ∂

∂Xj
. Since ∂

∂X0
= −

∑
i
Xi
X0

∂
∂Xi

, then, by

Leibniz rule, we have

Pij =
X0

X3
0

Πij +
Xj

X3
0

Π0i −
Xi

X3
0

Π0j.

Hence, we conclude that

(1) X3
0Pij is polynomial for every i, j;

(2) X2
0 (XiPjk +XjPki +XkPij) is polynomial for every i, j, k.

Considering Pij as polynomial in the variables xi = Xi
X0

, these condi-
tions are equivalent to the following:

(1) deg Pij ≤ 3;
(2) deg (xiPjk + xjPki + xkPij) ≤ 3.

If we write Pij = Qij + Cij where deg Qij ≤ 2 and Cij are homogeneous
cubic polynomials, we have

xiCjk + xjCki + xkCij = 0

Note that from the formula of Pij and the fact that Πij are homoge-
neous quadratic polynomials, we conclude that the hyperplane x0 = 0 is
invariant by the Poisson distribution defined by Π if and only if Pij has
zero cubic part. Thus, we can extend any (nonhomogeneous) quadratic
Poisson structure in the affine space to the Poisson structure in the projec-
tive space of the same dimension such that the complementary hyperplane
is invariant by the Poisson distribution.

Example 2.8. The diagonal quadratic Poisson structure in Cn defined
in example 1.20 of chapter 1 extends to a Poisson structure in Pn.

1.3. Examples of foliations in the projective spaces induced
by Poisson structures. In this subsection, we give some examples of
foliations in Pn induced by Poisson structures and some examples of foli-
ations which are not induced by Poisson structures.

Example 2.9. There exists a natural bijection between Poisson struc-
ture in P2 and cubics in P2, because

∧2 TP2 = OP2(3) and every bivector
field in a surface is a Poisson bivector field.

The example above does not extend to P2n for every n ≥ 2. For
example, if Π is a nondegenerate Poisson structure in P4, then we have
Π∧Π ∈ H0(P4,OP4(5)) and so the zero locus of Π∧Π is a quintic. Is the
converse true? More precisely, given a quintic Q in P4, does there exist a
Poisson structure such that Π ∧ Π vanishes along Q?

Theorem A says no. There exist quintics in P4 which are not the
zero locus of Π ∧ Π where Π is a Poisson structure: any normal crossing
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hypersurface of degree 5 different from five hyperplanes in general position
cannot be the singular set of a nondegenerate Poisson structure in P2n.

Let D be a codimension q distribution in P2n+1 induced by the q-form
w ∈ H0(Pn,Ωq

Pn ⊗ L). We define the degree of D, denote by deg D, to
be the degree of the zero locus of i∗ω, where i : Pq → Pn is a linear
embedding of a generic q-plane. Since Ωq

Pq = OPq(−q − 1), it follows that
L = OPn(deg D + q + 1). In particular, if D is a Poisson distribution,
we have deg D = n − q. If F is a Poisson foliation, we conclude that
deg F ≤ n− q and the equality holds if and only if the singular set of the
Poisson distribution has codimension ≥ 2.

Definition 2.10. A holomorphic section ω ∈ H0(X,Ωq
X ⊗ L∗) is in-

tegrable if and only if satisfies the Plucker equations:

ivω ∧ ω = 0, where v is any (q − 1)-derivation

and the condition

ivω ∧ dω = 0, where v is any (q − 1)-derivation.

The distribution D is involutive if and only if ω ∈ H0(X,K∗X ⊗Ωn−2k
X )

is integrable.
A direct consequence of Koszul formula (see Theorem 1.24 of chapter

1) is the following:

Lemma 2.11. There exists a natural bijection between nontrivial Pois-
son structures in P3 and the pair (F , D), where F is a codimension 1 foli-
ation induced by an involutive distribution D with trivial canonical bundle
and D is the effective divisor where the distribution D is singular.

Proof. One side of the bijection is straitghtforward: for each Poisson
structure Π, we asssociate the Poisson distribution D. If cod SingD = 1,
we associate the divisor D = cod SingD and F is the Poisson foliation.

For each pair (F , D), we can associate ω ∈ H0(P3,Ω1
P3(4)) such that

ω∧dω = 0 is a involutive distribution: if ω′ is 1-form defining the foliation
F and D is given by the homogeneous polynomial f = 0, then ω = fω′.
We see that D is the effective divisor where the distribution D induced by
ω is singular. Since Ω1

P3(4) = Ω1
P3⊗K∗P3 =

∧2 TP3, then, for each ω, we can
associate to a bivector field Π. In local coordinates (x1, x2, x3), we have
iΠΩ = ω, where Ω = dx1 ∧ dx2 ∧ dx3. By the definition of curl operator,
we have iDΩΠΩ = dω. Since ω ∧ dω = 0, we have iDΩΠΩ ∧ iΠΩ = 0 and,
so, Ω ∧ i(DΩΠ)∧ΠΩ = 0. So (DΩΠ) ∧ Π = 0 and, by Koszul formula (see
Theorem 1.24 of chapter 1, we conclude that [Π,Π] = 0. �

Corollary 2.12. Every foliation in P3 with degree ≤ 2 comes from
a Poisson structure.
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The classification of foliation of degree ≤ 2 in P3 is well known (see [7]
and [17]). In dimension 4, we have:

Lemma 2.13. Any integrable 2-form ω ∈ H0(P4,Ω2
P4 ⊗OP4(5)) comes

from a Poisson structure.

The proof is exactly the same of the last lemma, we just need to observe
that, in P4, ω is integrable if and only if ω ∧ ω = 0 and ivω ∧ dω = 0 for
every v vector field in P4.

Corollary 2.14. Every codimension 2 foliation in P4 with degree ≤ 2
comes from a Poisson structure.

When the dimension of the variety gets bigger, it is harder to know if
a foliation comes from a Poisson structure. We do not even know if any
dimension 2 foliation with degree ≤ 2 comes from a Poisson structure.

Now, we want to determine a simple criteria if a codimension 1 fo-
liation F in P2n+1 with trivial canonical sheaf is attached to a Poisson
distribution.

Suppose that F admits an isolated singularity p. In local coordinates
(x1, . . . , x2n+1) of a neighborhood of p, F can be given by the 1-form
ω = A1dx1 + . . . A2n+1dx2n+1, where Ai are holomorphic function with
Ai(p) = 0. We define the Milnor number of F in p by

np = dimC
Op

(A1, . . . , A2n+1)
.

It is a standard check that np independs of the choice of local coordinates
and np is finite because p is an isolated singularity. We say that p is a
simple singularity if np = 1.

We need the following interpretation of Corollary 7.7 of [14].

Proposition 2.15. Let Π be a Poisson structure in Pn, n ≥ 3, and
suppose that the singular set of Poisson distribution has codimension ≥ 2.
If the Poisson foliation admits a simple isolated singularity at p ∈ X, then
Π(p) = 0, i.e., the rank of Π at p is 0.

Corollary 2.16. Let F be a codimension 1 foliation of degree 2n in
P2n+1, n ≥ 2 and suppose that F has a simple isolated singularity. Then
F is not attached to any Poisson structure in P2n+1.

Proof. Suppose that F is attached to a Poisson structure Π. Since
the degree of F is 2n, the singular set of the Poisson distribution D has
codimension ≥ 2. Let p be a simple isolated singularity of F , then by
proposition above, we have Π(p) = 0 and so in the local ring Op, we

have Π ∈ mp ⊗ (
∧2n TP2n+1)p, where mp is the maximal ideal of Op. We
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conclude that Πn ∈ mn
p ⊗ (

∧4 TP2n+1)p. In a local system of coordinates
(x1 . . . , x2n+1) at a neighborhood of p, the Poisson foliation is given by
ω = iΠnΩ, where Ω = dx1 ∧ . . . ∧ dx2n+1. So, p is not a simple singularity
of F , a contradiction. �

When we study codimension 1 foliations in Pn, n ≥ 3, we find many
works about irreducible components of the space of codimension 1 foli-
ations in Pn (see [5, 7, 8, 9], for example). In these works, it appears
naturally the so called logarithmic component. It is proved in [5] that if F
is a degree d foliation in Pn and if H is a smooth normal crossing divisor
of degree d+2 in Pn invariant by F (i.e., H is the Zariski closure of a finite
number of leaves of F), then H has at least two irreducible components
and F is a logarithmic foliation (see Lemma 3.19 of chapter 3 for a partial
proof). It is also proved (in the literature) that if F is a logarithmic foli-
ation of degree d and H is a smooth normal crossing divisor invariant by
F of degree d+ 2, then any small pertubation Fε admits a smooth normal
crossing hypersurface Hε of degree d + 2 and each irreducible component
of H and Hε are linearly equivalent. For example, if H is composed by 2
quadrics and d − 2 hyperplanes then Hε is composed by 2 quadrics and
d− 2 hyperplanes. In particular, a generic element F of the space of log-
arithmic foliations of degree d has a smooth normal crossing divisor H of
degree d+ 2 invariant by F .

Putting everything together, a logarithmic component of the space
of foliation of degree d is totally described by the smooth normal crossing
divisor H of degree d+2. Usually, it is denoted the logarithmic component
by Log, if H has at least 3 components, and Rat, if H has exactly two
components. For example, a generic element F ∈ Log(2, 1, 1) is a foliation
F which admits a smooth normal crossing divisor H of degree 4 composed
by a quadric and 2 hyperplanes and F is a degree 2 foliation. A generic
element F ∈ Rat(3, 3) is a foliation F which admits a smooth normal
crossing divisor of degree 6 composed by 2 cubics. In this case, F is a
degree 4 foliation.

In [9], it is proved that if F is a generic logarithmic foliation of degree
≤ n in Pn, then the singular set of F is composed by the intersection of
2 irreducible component of H and N isolated singularities counted with
proper multiplicity. Moreover, N = 0 if and only if H is composed only
by hyperplanes. So a direct consequence of Corollary 2.16 is

Corollary 2.17. In P5, a generic element in any of the irreducible
component Rat(5, 1), Rat(4, 2), Rat(3, 3), Log(3, 2, 1) of the space of de-
gree 4 foliation is not induced by a Poisson structure.
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Example 2.18. If we consider the projection from the last coordinate
φ : Pn+1 → Pn and if X̃ ∈ H0(Pn, TPn(1)) is a quadratic global vector
field in Pn. Thinking of X̃ as a foliation of dimension 1, we may pull
it back by φ, defining a foliation F of dimension 2 which is a Poisson
structure. In the chart x0 = 1, the vector field will be denoted by X
and the Poisson structure will be Π = ∂

∂xn+1
∧ X. Note that TF =

OPn+1(−1) ⊕ OPn+1(1), i.e., the tangent sheaf of the Poisson distribution
totally splits. This example will be studied in detail in the section 4 of
chapter 4.

2. Basic concepts

2.1. Degeneracy locus. In this subsection, we start defining, per-
haps, the most important subvariety of a Poisson variety, the so called
degeneracy locus.

Definition 2.19. Let (X,Π) be a Poisson variety. The 2kth degener-
acy locus of Π is the variety D2k(Π) where the morphism σ] : Ω1

X → TX
has rank ≤ 2k. If Π is a Poisson structure on X of rank 2k, we call
D2k−2(Π) the degeneracy locus. We will usually denote D2k−2(Π) by
Sing Π.

Remark 2.20. Consider the ideal I defined by the image of the mor-
phism

Ω2k+2
X

Πk+1
// OX .

D2k is the variety defined by
√
I.

Example 2.21. Consider the Poisson structure on X = C2n with coor-
dinates (x1, . . . , xn, y1, . . . , yn), n ≥ 3. And consider the Poisson structure

Π = x1
∂

∂x1

∧ ∂

∂y1

+ x2
∂

∂x2

∧ ∂

∂y2

+ x3
∂

∂x3

∧ ∂

∂y3

.

Denoting Hi = {xi = 0}, we see that it is a rank 6 Poisson structure
with:

D4(Π) = H1 +H2 +H3,

D2(Π) = H1 ∩H2 +H2 ∩H3 +H3 ∩H1,

D0(Π) = H1 ∩H2 ∩H3.

Note that the D4(Π) is invariant by Π and the Poisson distribution on
{x1 = 0} has singular set of codimension 1 on {x1 = 0}. Note that the
Poisson distribution induced on {x1 = 0} is not a Poisson foliation.
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In the next subsections, we will see some basic properties of the de-
generacy locus. We will prove that D2k(Π) is a strong Poisson subvariety.

2.2. Poisson and strongly Poisson subvarieties. This section is
devoted to give an important notion which is Poisson subvarieties.

Definition 2.22. Let (X, {· , · }X) and (Y, {· , · }Y ) be Poisson vari-
eties. A morphism φ : Y → X is a Poisson morphism if it preserves the
Poisson brackets, i.e., the pull-back morphism φ∗ : OX → φ∗OY satisfies

φ∗({f, g}X) = {φ∗f, φ∗g}Y .
We say that (Y, {· , · }Y ) ⊆ (X, {· , · }X) is a Poisson subvariety if

the inclusion i : Y → X is a Poisson morphism.

The following algebraic characterization of Poisson subvariety is due
to Polishchuk (see [20]).

Proposition 2.23. Let (X,Π) a Poisson variety, Y ⊆ X be a subva-
riety with ideal sheaf IY . Then the following are equivalent

(1) Y admits the structure of a Poisson subvariety;
(2) IY is a sheaf of Poisson ideals, i.e., {IY ,OX} ⊆ IY ;
(3) Z(IY ) ⊆ IY for all Z Hamiltonian vector field.

Proof. (1)⇔ (2). Consider the exact sequence

0→ IY → OX|Y → OY → 0.

We see that the bracket {· , · } : OX × OX → OX defines naturally a
bracket {· , · } : OX ×OY → OY if and only if {OX , IY } ⊆ IY .

(2) ⇔ (3). Note that if Z is a Hamiltonian vector field, there exists
a holomorphic function g such that Z = {· , g}. The equivalence between
(2) and (3) is immediate. �

In particular, we have:

Corollary 2.24. If Y ⊆ X is a Poisson subvariety, then every irre-
ducible component of Y is a Poisson subvariety.

We say that I ⊆ OX is a Poisson ideal if condition (2) of the item
above is satisfied, i.e., {I,OX} ⊆ I. We have the following lemma:

Lemma 2.25. The radical of a Poisson ideal is a Poisson ideal.

Example 2.26. If H = H1 + . . . + Hk is a smooth normal crossing
hypersurface in P4, with degree 5 and k ≥ 3, then there exists a rank
2 Poisson structure Π in P4 such that H is a Poisson subvariety. This
happens because Ω2

P4(logH) has global sections and Deligne theorem says
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that every global logarithmic 2-form is closed and we can apply Lemma
2.13. In particular, the hypothesis of nondegeneracy of Theorem A is
necessary.

Definition 2.27. A vector field Z in X is Poisson with respect to
Π if LZΠ = 0. We denote by Pois(Π) the C-sheaf consisting of Poisson
vector fields.

Lemma 2.28. If Π is a Poisson structure then

Ham(Π) ⊆ Pois(Π)

Proof. Given x ∈ X, if Z = {· , h}, h ∈ OX,x, then, by the identity

LZ(Π(α)) = (LZ(Π))α + Π(LZα), α ∈ (Ω2
X)x,

we have

(LZΠ)(f, g) = LZ(Π(f, g))− Π(LZ(df ∧ dg))

= LZ{f, g} − Π(diZ(df ∧ dg))

= {{f, g}, h} − Π(d(Z(f)dg)) + Π(d(Z(g))df)

= {{f, g}, h} − Π({f, h}, g) + Π({g, h}, f)

= {{f, g}, h}+ {{h, f}, g}+ {{g, h}, f} = 0

for every f, g ∈ OX,x. �

Note that, with the same proof, we have:

Lemma 2.29. A vector field Z is Poisson if and only if the following
identity holds:

Z{f, g} = {Z(f), g}+ {f, Z(g)}, ∀f, g ∈ OX,x.
Corollary 2.30. If Xf = {· , f} is a Hamiltonian vector field and Z

is a Poisson vector field, then LZXf = XZ(f) = {· , Z(f)}.
Proof. We have

(LZXf )(g) = LZ(Xf (g))−Xf (LZg)

= LZ{g, f} − {Z(g), f}
= {g, Z(f)} by the lemma above.

�

The corollary above says that the Poisson vector is not only an infini-
tesimal symmetry of the Poisson distribution, but it is also an infinitesimal
symmetry of Ham(Π).

We also observe that the inclusion Ham(Π) ⊆ Pois(Π) is strict in
general.
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Example 2.31. If Π = 0, then Ham(Π) = 0 and every vector field Z
is a Poisson vector field.

We have the following definition due to Gualtieri and Pym [14].

Definition 2.32. Let (X,Π) be a Poisson variety. A closed subvariety
Y of X is a strong Poisson subvariety if its ideal sheaf IY is preserved
by all (germs of) Poisson vector fields, i.e., if

Z(IY ) ⊆ IY
for all Z Poisson vector field.

Lemma 2.33. Let (X,Π) be a Poisson variety. If Y1 and Y2 are strong
Poisson subvarieties, then so are Y1 ∩ Y2 and Y1 ∪ Y2.

Proof. Simply notice that if Z is a vector field preserving the ideals
IY1 and IY2 defining Y1 and Y2, it also preserves IY1 + IY2 and IY1∩Y2 .
Apply this observation to Poisson vector fields. �

A Poisson ideal I ⊆ OX is said to be a strong Poisson ideal if Z(I) ⊆ I
for all Z Poisson vector field. We have the following simple lemma:

Lemma 2.34. The radical of a strong Poisson ideal is a strong Poisson
ideal.

Proposition 2.35. Let (X,Π) be a Poisson variety. Then for every
k, with 0 ≤ 2k ≤ dim X, the degeneracy loci D2k(Π) is a strong Poisson
subvariety of X.

Proof. Let I be the ideal sheaf of D2k(Π). We have the exact se-
quence

Ω2k+2
X

Πk+1
// I → 0

Let α ∈ Ω2k+2 and Z ∈ Pois(Π), we have to prove that Z(Πk+1α) ∈ I,
i.e., LZ(Πk+1α) ∈ I. We compute

LZ(Πk+1α) = (LZΠk+1)(α) + Πk+1(LZα)

= Πk+1(LZα)

since LZΠ = 0. To finish the proof of the proposition, we just need to
apply Lemma 2.34. �

The importance of the strong Poisson subvarieties is that they behave
very well with respect to Poisson modules, which we will now define.
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2.3. Poisson modules. Poisson modules naturally appear when we
study the geometry of Poisson varieties. We start defining what a Poisson
connection is.

Definition 2.36. Let (X,Π) be a Poisson variety and let E be a sheaf
of OX-modules. A Poisson connection on E is a C-linear morphism of
sheaves 5 : E → TX ⊗ E satisfying the Leibniz rule

5(fs) = Π](df)⊗ s+ f5s

for all f ∈ OX,x, s ∈ Ex and x ∈ X.

Recall that an usual connection on a sheaf E of OX-modules is given
by a C-linear morphism 5 : E → E ⊗ Ω1

X satisfying the Leibniz rule
5(fs) = df ⊗ s+ f5s. In a Poisson connection the roles of TX and Ω1

X

are interchanged.

Remark 2.37. If Π is a nonzero Poisson structure on X and let (E ,5)
be a Poisson connection, then 5 is nonzero. To see this, suppose that
5 = 0 and let f ∈ OX,x be a function. If s is any local section of E , then

0 = 5(fs) = Π](df)⊗ s+ f5s = Π](df)⊗ s,

this proves that Π = 0. A contradiction.

Using a Poisson connection, we may differentiate a section of E along
a 1-form: if α ∈ Ω1

X , we set

5αs = 5s(α).

The Poisson connection 5 is flat if

5d{f,g}s = (5df5dg −5dg5df )s

Definition 2.38. A Poisson module (E ,5) is a sheaf ofOX-modules
equipped with a flat Poisson connection.

Remark 2.39. If L is an invertible sheaf (i.e., a line bundle) equipped
with a Poisson connection5, and for x ∈ X, if s ∈ Lx, we obtain a unique
vector field vs ∈ (TX)x (depending on s) such that

5s = vs ⊗ s.

and 5 is flat if and only if vs is a Poisson vector field for every s ∈ Lx
and for every x ∈ X. This is a direct consequence of Lemma 2.29.

We are ready to prove the following lemma (see [14]):
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Lemma 2.40. Let (X,Π) be a Poisson variety and let (L,5) be an in-
vertible Poisson module. Then if Y ⊂ X is any strong Poisson subvariety
of X, the restriction (L|Y ,5|Y ) is a Poisson module on Y with respect to
the induced Poisson structure, i.e., the map

5|Y : L|Y → L|Y ⊗ TX|Y
lifts to

5|Y : L|Y → L|Y ⊗ TY

Proof. Consider the exact sequence,

0→ L|Y ⊗ TY → L|Y ⊗ TX|Y → (IY /I
2
Y )∗ ⊗ L|Y

Choosing a local trivialization s of L, we have

5s = vs ⊗ s

where vs is a Poisson vector field. Since Y is a strong Poisson variety, we
have vs(IY ) ⊂ IY , hence the image of vs⊗ s in (IY /I

2
Y )∗⊗L|Y is zero. �

Let (L,5) be a Poisson module on X and let E = E(L∗) be the total
space of L∗. We have OE = Sym(L) =

⊕∞
k=0 Lk. In [20], we can find:

Proposition 2.41. A flat Poisson connection 5 : L → TX ⊗ L
induces a homogeneous bracket {· , · }5 on Symk(L) by the following for-

mula:

{f, g}5 = {f, g}, ∀f, g local sections of OX
{f, s}5 = −5dfs

{fsn, gsm}5 = ({f, g}s+mg{f, s}5 − nf{g, s}5)sn+m−1

In particular, the projection E → X is a Poisson morphism.

Proof. The proof of Jacobi identity of {· , · }5 is just a tedious cal-

culations based on Lemma 2.29. �

If (E ,5) is a Poisson module, then E∗ inherits a natural Poisson con-

nection 5′ by the formula:

5′
df (φ) : E → OX

s 7→ φ(5dfs), where φ is a local section of E∗.

We see that 5′ is a flat Poisson connection.
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2.4. Modular connection. Whenever X is a smooth and irreducible
Poisson variety, there exists a natural Poisson module structure on the
canonical sheaf ωX = Ωn

X . For α ∈ Ω1
X and µ ∈ ωX , the connection is

defined by the formula

5mod

df µ = −Lσ](df)µ.

This connection is variously referred as the modular representation, the
Evens-Lu-Weinstein module or the canonical module.

Lemma 2.42. The modular connection 5mod
is flat, i.e., (ωX ,5

mod
)

is a Poisson module.

Proof. It is a simple computation

5mod

df
5mod

dg µ = Lσ](df)Lσ](dg)µ
= Lσ](df)(d(iσ](dg)µ))

= d(iσ](dg)Lσ](df)µ+ di[σ](df),σ](dg)]µ

= Lσ](dg)Lσ](df)µ− diσ]{f,g}µ

= 5mod

dg
5mod

df µ+5mod

d{f,g}µ

where f, g are local sections of OX . �

2.5. Polishchuk connection. We will see that a Poisson divisor de-
fines canonically a Poisson connection. This connection was defined by
Polishchuk (see [20]).

Definition 2.43. A divisor D in X is called Poisson divisor if each of
the irreducible component is a Poisson subvariety. We denote the set of
Poisson divisors by PDiv.

By Proposition 2.23, if f = {fi} is the section on OX(D) defining the
divisor D, then {OX , fi} ⊂ fiOX . In particular, we have the following
vector field

Xlog fi : OX → OX

g 7→ {g, fi}
fi

.

If D is a irreducible hypersurface, the vector field Xlog fi is a Hamil-
tonian vector field of Π away from D, but Xlog fi restricted to D is not
necessarily tangent to the Poisson distribution. For example, if we con-
sider the Poisson vector field in C4 defined by Π = x1

∂
∂x1
∧ ∂
∂x2

+ ∂
∂x3
∧ ∂
∂x4
.

We see that x1 = 0 is a strong Poisson subvariety and Xlog x1 = ∂
∂x2

, but

the Poisson structure induced in x1 = 0 is given by ∂
∂x3
∧ ∂

∂x4
.
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The proof we present of the proposition below can be found in [20].

Proposition 2.44. The group PDiv is isomorphic to the group of
isomorphism class of triples (L,5, s), where L is a line bundle, 5 is a
flat Poisson connection on L and s 6= 0 is a rational section of L which is
horizontal with respect to 5, i.e., 5s = 0.

Proof. Let D be a Poisson divisor, L = OX(D) and consider a Čech
representative for D, i.e., the collection of functions fi ∈ M(Ui) ⊗ L(Ui)
for some open covering Ui, such that gij = fi

fj
∈ O∗X(Ui ∩ Uj). Moreover,

D|Ui = {fi = 0}. The corresponding line bundle is trivialized over Ui, that
is, for each i there exists a nowhere vanishing section si ∈ L(Ui) such that
si = gijsj over the intersection. Now define the connection on L = OX(D)
by the formula 5(si) = −Xlog fi ⊗ si and extends via Leibniz rule. Then
the formula s|Ui = si

fi
gives a well-defined rational horizontal section of L.

Reciprocally, suppose we have a flat Poisson connection 5 on L and
a horizontal rational section s. Then trivializing L over an open covering
as above, we can write s = si

fi
for some rational functions fi. Now, the

condition 5s = 0 implies the equality 5si = −Xlog fi ⊗ si. It follows that
the divisor defined by {fi = 0} is a Poisson divisor. �

Let X be a smooth variety of dimension 2n and let Π be a nondegen-
erate Poisson structure on X. Then Πn ∈ H0(X,

∧2n TX) = H0(X,ω∗X)
is a nonzero section of ω∗X . The zero locus of Πn is a Poisson divisor and
we have the Polishchuk connection and the modular connection on ω∗X .
We have the following proposition due to Polishchuk.

Proposition 2.45. The divisor of degeneration of a nondegenerate
Poisson structure is a Poisson divisor. The connection on ωX is the mod-
ular connection.

Proof. Denote by 5mod
the modular connection ωX . Let α be a

rational n-form dual to Πn, i.e, Πn(α) = 1. Clearly, α defines the divi-

sor −D2n−2(Π). We just need to check that 5mod
(α) = 0. Recall that

LΠ](df)Π
n = 0, then, for any f local section of OX , we have

Πn(5mod

df α) = −Πn(LΠ](df)α)

= −LΠ](df)(Π
n(α)) + (LΠ](df)Π

n)α

= −LΠ](df)(1) = 0.

Since Πn(5mod

df α) = 0, we conclude that 5mod

df α = 0. This proves the
proposition. �



CHAPTER 3

Nondegenerate Poisson structures on Fano varieties

1. Introduction

This is the most important chapter of this thesis, which is devoted to
prove Theorem A. We restate it below for the convenience of the reader.

Theorem A. Let X be an even dimensional, dim X ≥ 4, Fano variety
with cyclic Picard group. Suppose that Π is a nondegenerate Poisson
structure on X such that the singular locus of Π is reduced smooth normal
crossing. ThenX is the projective space P2n and the singular locus is 2n+1
hyperplanes in general position.

The idea is to prove the Theorem in dimension 4 and observe that, in
the case of dimension ≥ 4, we can choose two hypersurfaces in the singu-
lar locus such that the induced Poisson structure is nondegenerate. We
prove that the intersection of these hypersurfaces is a Fano variety with
cyclic Picard group and the singular locus of the nondegenerate Poisson
structure induced in the intersection is smooth normal crossing. An in-
duction argument on the dimension of the Fano variety, together with
Kobayashi-Ochiai theorem (stated below), proves the Theorem A.

Theorem 3.1. Suppose that X is a Fano variety with PicX = Z and
dim X = n. Let i(X) = deg K∗X be the so called index of X. Then we
have i(X) ≤ n + 1. Moreover, i(X) = n + 1 if and only if X = Pn and
i(X) = n if and only if X is a hyperquadric on Pn+1.

In order to prove the Theorem in dimension 4, we use again Kobayashi-
Ochiai theorem. The proof of our Theorem will be excluding, case by case,
the index 1, 2, 3 and 4. Excluding the cases i(X) = 1 and i(X) = 2 are
quite simple. The complicated ones are the cases i(X) = 3 and i(X) = 4.

In order to exclude the case i(X) = 3, we study the Poisson foliation
induced in H, where H is an irreducible component of the singular locus
of the Poisson structure. We prove that there exist exactly 3 irreducible
components and, under our assumptions, the Poisson foliation in H is log-
arithmic and has trivial canonical sheaf. However, Polishchuk connection
induces a global vector field in H tangent to the Poisson foliation and the

51
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classification obtained by Loray, Pereira and Touzet in [17] says that log-
arithmic foliations with trivial canonical sheaf in Fano threefold of index
2 does not have any global vector field tangent to it. This contradiction
excludes the case i(X) = 3.

To exclude the case i(X) = 4, we make use the fact that X is a hy-
perquadric in P5 and compute all the Chern classes. Since, under our
assumptions, the Poisson foliation F is logarithmic and we prove that
F has an isolated singularity. Using the classification of Lie algebra in
dimension 4, this isolated singularity is always in 3 components of the
degeneracy loci of the Poisson structure. Using the geometry of a loga-
rithmic foliation and the fact that the singular loci of a nondegenerate
Poisson structure in the hyperquadric have, at most, 4 components, we
can get a contradiction. We conclude that the variety is P4.

The argument used to exclude the index 4 can be used, without any
extra effort, to prove that the singular loci of the Poisson structure in P4

is composed by 5 hyperplanes in general position. An inductive argument
proves that, under the assumptions of Theorem A, the singular loci of the
Poisson structure in P2n are 2n+ 1 hyperplanes in general position.

2. Fano varieties with cyclic Picard group

In this section, we gather some important results about nondegenerate
Poisson structures in Fano manifolds. We recall some definitions.

A Poisson structure in Π in X is said to be regular Poisson structure
if the rank of Π never drops, i.e., the Poisson distribution is a regular
Poisson foliation. If F is a k-dimensional foliation in X, we define the
canonical sheaf, KF := (

∧k T ∗F)∗∗. The canonical bundle is a line bundle
(see [3] Proposition 1.33). If the singular set of a Poisson distribution
has codimension ≥ 2, we have that KF is trivial by adjunction formula
KX = KF ⊗ (det N∗F)∗∗ and the fact that (det N∗F)∗∗ = KX .

We say that Π is a nondegenerate (or generically symplectic) Poisson
structure in X with dim X = 2n and n ≥ 2 if Πn 6= 0. The singular locus
of Π, denoted by Sing Π is, by definition, the set of points x ∈ X where
Πn(x) = 0.

A variety X is said to be a Fano variety if KX is anti-ample. We
are interested when X is a Fano variety with PicX = Z and Π is a
nondegenerate Poisson structure in X.

We start proving some general facts about foliations in Fano varieties
with cyclic Picard group.
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Definition 3.2. Let L ∈ PicX be a line bundle on X. If PicX = Z,
the integer number associated to L is called the degree of L, denoted by
deg L.

Lemma 3.3. There is no regular codimension 1 foliation F with trivial
canonical bundle in variety X with PicX = Z.

Proof. Suppose we have a regular foliation F in X. By Baum-Bott
formula, we have that c1(NF)n = 0. Since PicX = Z, we conclude that
c1(NF) = 0 and so NF = OX . A regular foliation F can be given by the
exact sequence

0→ N∗F → Ω1
X → T ∗F → 0,

in particular, H1(X,OX) = H0(X,Ω1
X) 6= 0. Since H1(X,OX)

H1(X,Z)
6= 0, then, by

the exponencial exact sequence

0→ H1(X,OX)

H1(X,Z)
→ PicX → H2(X,Z),

we have that PicX is not discrete. A contradiction. �

Proposition 3.4. Let F be a codimension 1 foliation on the Fano
variety X with PicX = Z. Then deg (NF)∗∗ > 0.

Proof. Suppose that deg N∗F ≥ 0. The case deg N∗F = 0 was done
in the last lemma. If deg N∗F > 0, then N∗F is ample, so (N∗F)m is
very ample and, in particular, h0(X, (N∗F)m) > 0. An OX-linear injec-
tion N∗F → Ω1

X defines, naturally, 0 → (N∗F)m → (Ω1
X)⊗m. In partic-

ular, h0(X, (Ω1
X)⊗m) > 0. Since X is Fano, according to [16], we have

h0(X, (Ω1
X)⊗m) = 0, a contradiction. This proves the proposition. �

About varieties with cyclic Picard group, recall the so called Lefschetz-
Grothendieck (see [13]).

Theorem 3.5. Let X be a nonsingular projective variety over C with
dim X ≥ 4 and let L be an ample line bundle on X. Let s ∈ H0(X,L) be a
global section of L and let H = Z(s) be the zero locus of s. If H is smooth,
then the natural restriction map PicX → PicH is an isomorphism.

In particular, we have:

Corollary 3.6. Let X be a a smooth variety with PicX = Z and
dim X ≥ 4. If H is a smooth hypersurface of X, then PicH = Z.

Lemma 3.7. Suppose (X,Π) is a generically symplectic Poisson Fano
manifold with PicX = Z, dim X ≥ 4, and suppose that the degeneration
locus Sing Π = H1∪ . . .∪Hk is smooth normal crossing hypersurface, then
Hi is Fano for every i.
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Proof. Let H1 be a smooth component of Sing Π. By Lefschetz-
Grothendieck’s theorem, we have PicH1 = Z. By Polishchuk’s theorem,
Π1 = Π|H1 defines a codimension one foliation on H1 and, so, we have the
inclusion Sing Π1 ⊆ (H2 ∪ . . . ∪Hk) ∩H1.

By the exact sequence

0→ N∗H1
→ Ω1

X|H1
→ Ω1

H1
→ 0;

the adjunction formula
N∗H1

= OH1(−H1)

and the fact that
KX = OX(−H1 − . . .−Hk),

we conclude
KH1 = −OH1(H2 + . . .+Hk)

To prove that H1 is Fano, we just need to prove that Hi ∩ H1 is
nonempty for some i 6= 1. But this is a direct consequence from the fact
that PicX = ZH, where H is an ample divisor in X and, so Hn 6= 0. �

Polishchuk proved the following (see [20]):

Theorem 3.8. Suppose that the degeneration locus Sing Π of a non-
degenerate Poisson structure Π ∈ H0(X,X2(X)) over a even dimensional
projective variety X is smooth normal crossing. Let H(k) be the set con-
sisting of points of X such that exactly k irreducible components of Sing Π
meet. Then

(1) The induced Poisson structure on each connected component of
H(k) is regular;

(2) 2n− 2k ≤ rk Π|H(k) ≤ 2n− k, where dimX = 2n.

With these results in mind, we can prove the following proposition:

Proposition 3.9. Let X be a Fano 2n-fold, n ≥ 2 and cyclic Picard
group. Let Π ∈ H0(X,X2

X) be a nondegenerate Poisson structure with
Sing Π = H1 ∪ . . . ∪ Hk smooth normal crossing. Let Π1 = Π|H1 be the
induced Poisson structure on H1, then

(1) Sing Π1 $ (H2 ∪ . . . ∪Hk) ∩H1

(2) Sing Π1 is non-empty.

Proof. We know that Sing Π1 ⊆ (H2∪ . . .∪Hk)∩H1 by Polishchuk’s
theorem 3.8. We have to prove that the inclusion is strict. Suppose that
Sing Π1 = (H2 ∪ . . . ∪ Hk)|H1 and so K∗H1

= OH1(Sing Π1), the Poisson
distribution DΠ1 defines the injection

0→ KH1 → Ω1
H1
.
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So, the conormal bundle of the Poisson foliation F induced by Π1 is given
by

N∗F = KH1 ⊗K∗H1
= OX .

This contradicts Proposition 3.4.
About item (2), as for Sing Π1 = ∅, Π1 defines a regular codimension 1

foliation F on H1 with KF trivial. By Lemma 3.3, we get a contradiction.
�

Corollary 3.10. Under the assumptions of Proposition 3.9, if we
have Sing Π = H1 ∪ . . . ∪Hk, then k ≥ 3.

Proof. If k = 1, then Π1 is a regular Poisson structure by Pol-
ishchuk’s theorem 3.8. So Sing Π1 = ∅. Contradicting Proposition 3.9
item (2). If k = 2, then Π1 must vanish on H2 ∩H1. But this contradicts
Proposition 3.9 item (1). �

We need the following lemma which is proved in section 4 (see Lemma
3.19).

Lemma 3.11. Let F be a codimension 1 foliation in the projective
variety X with PicX = Z. If H is a F-invariant smooth normal crossing
hypersurface, such that degOX(H) = deg (NF)∗∗, then F is logarithmic
and H can not be a smooth hypersurface.

Corollary 3.12. Under the assumptions of Proposition 3.9. If we
write Sing Π = H1 ∪ . . . ∪Hk, then the foliation F1 on H1 induced by the
Poisson structure is logarithmic. In particular, if k = 3, then the singular
set of a Poisson distribution has codimension ≥ 2.

Proof. Let D be the codimension one set of Sing Π1. Suppose that
D = (H2 ∪ . . . ∪Hm) ∩H1, with m < k. We have

N∗F1 = KH1 ⊗OH1(D) = −OH1(Hm+1 + . . .+Hk).

Since H = (Hm+1∪. . .∪Hk)∩H is F1-invariant smooth normal crossing
hypersurface with deg H = deg (NF1)∗∗, we have that F1 is logarithmic
by lemma above. The last part of the corollary is a direct consequence of
Proposition 3.9 item (1) and the lemma above. �

The next corollary is important for an inductive argument of Theorem
A, it is just a restatement of Proposition 3.9 item (2):

Corollary 3.13. Under the assumptions of Proposition 3.9, there
exists two irreducible components H1, H2 of Sing Π, such that the induced
Poisson structure Π|H1∩H2 is nondegenerate.
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3. Constraints on the index

We will give a very important step towards the proof of Theorem A.

Proposition 3.14. Let X be Fano four-fold with PicX = Z. Suppose
that we have a nondegenerate Poisson structure Π on X with singular set
Sing Π = H1 ∪ . . . ∪Hk smooth normal crossing, then i(X) ≥ 4.

To prove the proposition, we construct a global vector field in H1

tangent to the Poisson foliation in H1. To do so, we need the following
lemma.

Lemma 3.15. Let Π be a nondegenerate Poisson structure on X, with
dimX = 2n. Let H2 and H3 be strong Poisson subvarieties defining the
same line bundle, then H2 and H3 induces a vector field Z ∈ H0(X,TX)
which is a Hamiltonian vector field in X \ (H2 ∪H3).

Proof. Write L = OX(H2) = OX(H3) and consider the Polishchuk
connection 5 induced by H2 on L. If f = {fi}, g = {gi} ∈ H0(X,L)
defines the hypersurfaces H2 and H3 respectively, then

5f = 0, but 5g 6= 0.

To see this, first note that Xlog fi−Xlog gi 6= 0 because Π is a nondegenerate

Poisson structure and the hypersurfaces H2 and H3 are distincts, i.e, f
g

is

not constant. If we restrict to a trivialization Ui, we write f = f−1
i si and

g = g−1
i si. If 5f = 5g = 0, we have 5si = −Xlog gi ⊗ si = −Xlog fi ⊗ si.

So, Xlog fi −Xlog gi = 0. A contradiction.
Since H3 is a strong Poisson subvariety, we have that 5g restricted to

H3 is 0 (see lemma 2.40 of chapter 2), and, so, we can divide the global
section 5g ∈ H0(X,TX ⊗ L) by g, i.e.,

Z =
5g
g
∈ H0(X,TX)

is a global vector field on X. Note that Z is, locally, the vector field
Xlogfi −Xlog gi 6= 0. �

Recall Wahl’s theorem (see [23]):

Theorem 3.16. Let L be an ample line bundle on X. And suppose
that H0(X,TX ⊗ L∗) is nonzero, then X = Pn.

proof of the Proposition 3.14. Since K∗X = OX(H1 + . . .+Hk),
then, by Corollary 3.12, k ≥ 3. In particular, i(X) ≥ 3 and we just need
to exclude the case i(X) = 3 and k = 3.
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Since X is Fano with PicX = Z, we have H1 ∩ H2 ∩ H3 6= ∅. Let
Π1 = Π|H1 be the induced Poisson structure on H1. We have that H1

is a Fano threefold with PicH1 = Z. Since K∗H1
= OH1(H2|H1 + H3|H1)

and H1 ∩H2 ∩H3 6= ∅, we have, by Lefschetz-Grothendieck theorem (see
Theorem 3.5), i(H1) = 2, i.e., H1 is a Fano threefold with index 2.

By Corollary 3.12, the Poisson distribution on H1 has codimension 2
singular set.

Note that OX(H1) = OX(H2) = OX(H3), and i(Hi) = 2 for all i. By
Lemma 3.15, we have a global vector field Z in the variety X induced by
H2 and H3. Let Y = Z|H1 be a vector field in H1. Y is not zero since, by
Wahl’s theorem, Z cannot have a divisor as singular set. We have that Y
is Hamiltonian vector field in H1 \ (H2 ∪H3) and so Y is tangent to the
Poisson foliation F1 in H1.

Recall that the classification of Fano threefolds with index 2 is very
precise.

Theorem 3.17. Let X be a Fano 3-fold with K∗X = 2H. Then, X fits
in one of the following classes:

(1) H3 = 1. Hypersurface of degree 6 in P(1, 1, 1, 2, 3);
(2) H3 = 2. Hypersurface of degree 4 in P(1, 1, 1, 1, 2);
(3) H3 = 3. Cubic in P4;
(4) H3 = 4. Intersection of two quadrics in P5;
(5) H3 = 5. Intersection of Grassmannian Gr(2, 5) ⊂ P9 with a P6.

Moreover, The 3-folds falling in class (5) are all isomorphic. We denote
by X5.

Loray, Pereira and Touzet in [17] proved the following:

Theorem 3.18. Suppose that X is a Fano variety with index 2, then
H0(X,TX) 6= 0 if and only if X = X5. If F is a logarithmic foliation in
X5, then F does not admit a vector field tangent to F .

Continuing the proof of the proposition, we have that H1 is isomorphic
to X5, Y is tangent to the Poisson foliation F in H1, which is logarithmic
by Corollary 3.12. A contradiction.

So there is no nondegenerate Poisson structure on a Fano four-fold
with Pic = Z and i(X) = 3. This proves the proposition. �

Now, to prove Theorem A, we will need to study logarithmic foliations
on Q3. The main idea is to prove that logarithmic foliation on Q3 always
have isolated singularity and apply Polishchuk’s theorem.
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4. Logarithmic foliations

In this section, we study logarithmic foliations in a quadric Q3 and we
show that it always has isolated singularities in the cases we consider.

Let H = H1 ∪ . . . ∪Hk be a smooth normal crossing hypersurface on
a smooth variety X. We define the sheaf Ω1

X(logH) to be the sheaf of
meromorphic 1-form ω such that ω and dω have pole of order 1 along
H. If X is a projective variety, every element of Ω1

X(logH) is closed. If
p ∈ H1 ∩ . . . ∩Hm but p /∈ Hm+1 ∪ . . . ∪Hk, and if (x1, . . . , xn) are local
coordinates around p with {xi = 0} = Hi for i = 1, . . . ,m, then Ω1

X(logH)
is generated by the following linearly independent elements:{

dx1

x1

, . . . ,
dxm
xm

, dxm+1, . . . , dxn

}
i.e., we have the following exact sequence:

0→ Ω1
X → Ω1

X(logH)→
m⊕
i=1

OHi → 0,

where the last map is the residue map.
From this description, we see that Ω1

X(logH) ⊂ j∗Ω
1
U , U = X \ H,

j : U → X the inclusion, is the subsheaf of 1-forms with logarithmic
singularities along H.

We say that a codimension 1 foliation F on X is logarithmic with poles
in H = H1∪ . . .∪Hk if there exists ω meromorphic 1-form defining F such
that ω has pole along each Hi, i.e., a global section ω ∈ H0(X,Ω1

X(logH))

such that the image of ω in
⊕k

i=1OHi is nonzero on each i. Note that each
Hi is F -invariant.

By the description of Ω1
X(logH), if p is an isolated singularity of ω,

global section of Ω1
X(logH), then p is not in Hi for every i. In the section

2 of [9], they proved that if Hi is ample for each i, H = H1 ∪ . . . ∪ Hk

smooth normal crossing and if p is a nonisolated point of F , then p lies in
Hi ∩Hj for some i 6= j. Putting everything together, we conclude that, if
ω ∈ H0(X,Ω1

X(logH)) and each of Hi is ample, then ω has only isolated
singularities. In particular, if cn(Ω1

X(logH)) 6= 0, where n = dimX then
ω has at least one singularity.

We have the following lemma which was used in the other sections.

Lemma 3.19. Let F be a codimension 1 foliation in a projective va-
riety X with PicX = Z. If H is a F-invariant smooth normal crossing
hypersurface, such that degOX(H) = deg (NF)∗∗, then F is logarithmic
and H cannot be a smooth hypersurface.
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Proof. Let σ ∈ H0(X,Ω1
X⊗NF∗∗) be the holomorphic section defin-

ing F . We can look at σ as a global holomorphic section of Ω1
X⊗OX(−H)⊗

NF ⊗ OX(H), that is a meromorphic section ω of Ω1 ⊗ OX(−H) ⊗ NF
with simple pole (ω)∞ ⊆ H. Since OX(−H) ⊗ NF = OX by our hy-
pothesis, we just need to prove that ω is logarithmic. Let {f = 0} be a
local reduced equation of H, then, since H is invariant by F , we have that
df ∧ σ is identically 0 along H, i.e.,

df ∧ σ = fθ,

where θ is a holomorphic section of Ω2⊗NF . Hence df ∧σf = df ∧ω = θ
is a holomorphic section of Ω2. Since fω and df ∧ ω are holomorphic, we
conclude that fdω is holomorphic. This proves that ω is logarithmic.

Lemma 2.2 of [5] proves the well known fact that H can not be smooth.
We will not reproduce the prove here because it uses the theory of currents
and it is beyond the scope of this thesis. �

Now, the variety we consider is the quadric Q3 and F is a logarithmic
foliation on Q3. We only need to consider 3 possibilities for H.

(1) H = H1 + Z, where deg H1 = 1 and deg Z = 2;
(2) H = H1 +H2, where deg H1 = deg H2 = 1;
(3) H = H1 +H2 +H3, where deg H1 = deg H2 = deg H3 = 1.

Proposition 3.20. In notation above, in all of 3 cases, F has at least
one isolated singularity.

Proof. Let i : Q3 → P4 be the inclusion. We have the following exact
sequence:

0→ TQ3 → TP4
|Q3 → OQ3(2h|Q3)→ 0

since NP4|Q3 is OQ3(2h|Q3) by adjunction formula, where h is the hyper-
plane section of P4. We will abuse the notation and write h in the place
of h|Q3 = i∗h.

Since c(TP4
|Q3) = 1 + 5h + 10h2 + 10h3, OQ3(2h) = 1 + 2h and since

c(TQ3) = c(TP4
|Q3)/OQ3(2h), we have:

c(TQ3) = (1 + 5h+ 10h2 + 10h3)(1− 2h+ 4h2 − 8h3)

= 1 + 3h+ 4h2 + 2h3

we conclude that

c(Ω1
Q3) = 1− 3h+ 4h2 − 2h3.

If we are in the item (1) above, we have the following exact sequence:

0→ Ω1
Q3 → Ω1

Q3(logH)→ OH1 ⊕OZ → 0
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By the exact sequences

0→OQ3(−h)→ OQ3 → OH1 → 0

0→OQ3(−2h)→ OQ3 → OZ → 0,

we have that c(OH1) = 1 + h + h2 + h3 and c(OZ) = 1 + 2h + 4h2 + 8h3.
The product of these two expressions gives

c(OH1 ⊕OZ) = 1 + 3h+ 7h2 + 15h3.

Then,

c3(Ω1
Q3(logH)) = (c(Ω1

Q3)c(OH1 ⊕OZ))3

= ((1− 3h+ 4h2 − 2h3)(1 + 3h+ 7h2 + 15h3))3

= 4h3 = 8

If we are in item (2), then

c(OH1 ⊕OH2) = (1 + h+ h2 + h3)(1 + h+ h2 + h3)

= 1 + 2h+ 3h2 + 4h3

and

c3(Ω1
Q3(logH)) = (c(Ω1

Q3)c(OH1 ⊕OH2))3

= ((1− 3h+ 4h2 − 2h3)(1 + 2h+ 3h2 + 4h3))3

= h3 = 2 .

If we are in item (3), then

c(OH1 ⊕OH2 ⊕OH3) = (1 + h+ h2 + h3)2(1 + h+ h2 + h3)

= (1 + 2h+ 3h2 + 4h3)(1 + h+ h2 + h3)

= 1 + 3h+ 6h2 + 10h3

and

c3(Ω1
Q3(logH)) = (c(Ω1

Q3)c(OH1 ⊕OH2 ⊕OH3))3

= ((1− 3h+ 4h2 − 2h3)(1 + 3h+ 6h2 + 10h3))3

= 2h3 = 4.

This proves the proposition. �

To prove Theorem A, we will need a local study of nondegenerate
Poisson structure which will occupy the next section.
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5. Nondegenerate Lie algebra in dimension 4

We know that we have a natural bijection between linear Poisson struc-
tures on C4 and Lie algebras on (C4)∗ (see example 1.19 of chapter 1).

We have a complete classification of the Lie algebra structure in di-
mension 4 (see [6], Lemma 3) and, for our surprise, a simple check of
the classification shows that we have few nondegenerate linear Poisson
structures in C4.

We reproduce the table of linear Poisson structure in C4 for the con-
venience of the reader (ζi stands for ∂

∂xi
, as in Chapter 1, section 1.3).

g Poisson bracket Π

C4 0

n3(C)⊕ C x3ζ1ζ2

aff(C)⊕ C2 x1ζ1ζ2

r3(C)⊕ C x2ζ1ζ2 + (x2 + x3)ζ1ζ3

r3,λ(C)⊕ C x2ζ1ζ2 + (λx3)ζ1ζ3, λ ∈ C, 0 < |λ| ≤ 1

aff(C)× aff(C) x1ζ1ζ2 + x3ζ3ζ4

sl2(C)⊕ C x3ζ1ζ2 − 2x1ζ1ζ3 + 2x2ζ2ζ3

n4(C) x3ζ1ζ2 + x4ζ1ζ3

g1(α) x2ζ1ζ2 + x3ζ1ζ3 + αx4ζ1ζ4, α ∈ C∗

g2(α, β)
x3ζ1ζ2 + x4ζ1ζ3 + (αx2 − βx3 + x4)ζ1ζ4,

α ∈ C, β ∈ C∗ or α, β = 0

g3(α) x3ζ1ζ2 + x4ζ1ζ3 + α(x2 + x3)ζ1ζ4, α ∈ C
g4 x3ζ1ζ2 + x4ζ1ζ3 + x2ζ1ζ4

g5 (1
3
x2 + x3)ζ1ζ2 + 1

3
x3ζ1ζ3 + 1

3
x4ζ1ζ4

g6 x2ζ1ζ2 + x3ζ1ζ3 + 2x4ζ1ζ4 + x4ζ2ζ3

g7 x3ζ1ζ2 + x2ζ1ζ3 + x4ζ2ζ3

g8(α) x3ζ1ζ2 − (αx2 − x3)ζ1ζ3 + x4ζ1ζ4 + x4ζ2ζ3, α ∈ C∗

Classification of 4-dimensional Lie algebras.

Now we can state the following lemma.

Lemma 3.21. Let Π be a nondegenerate Poisson structure on a Fano
fourfold X with Sing Π = H1 ∪ . . . ∪ Hk smooth normal crossing hyper-
surface. Let F1 be the codimension 1 foliation on H1 induced by Poisson
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structure Π. If p is an isolated singular point of F1, then p is in three
components of Sing Π.

Proof. If p is a singular point of F1, then Π(p) = 0. Locally, this
means that Π ∈ mp ⊗ X2

X . In particular, Π ∧ Π ∈ m2
p ⊗ X4

X . Since
Sing Π is normal crossing, we can find local coordinates (x1, x2, x3, x4) in
a neighborhood of p = 0, such that Π ∧ Π = x1x2V , where V is a 2-
derivation. Write Π = Π1 + Π2 + . . . the Taylor series of Π. To prove the
lemma, we just need to check that Π1 ∧ Π1 = 0. A simple check of the
table 5 shows that Π1 ∧ Π1 6= 0 just in the cases aff(C) × aff(C), g6 and
g8(α). The last two cases are excluded because Sing Π is smooth normal
crossing. To exclude the first case, we use the Theorem 1.37 of chapter
1, which states that we can find coordinates (y1, . . . , y4), H1 = {y1 = 0}
such that

Π = y1
∂

∂y1

∧ ∂

∂y2

+ y3
∂

∂y3

∧ ∂

∂y4

.

In particular, the Poisson foliation induced on H1 is regular at p. This
proves the lemma. �

6. Excluding the quadric

The objective of this section is to prove the following:

Proposition 3.22. Let Π be a nondegenerate Poisson structure with
normal crossing singularity in the Fano fourfold X with cyclic Picard
group. Then i(X) 6= 4.

Proof. Let Π be a Poisson structure satisfying the hypothesis of the
proposition. Since i(X) = 4, the, by Theorem 3.1, X is a quadric Q4. Let
H be the positive generator of X, then H is Q3, since H is a hyperplane
section of P5 intersected with X.

Suppose that X admits a nondegenerate Poisson structure Π with
Sing Π = Y1 + . . . + Yk smooth normal crossing, then we have k = 3 or
k = 4. Suppose that k = 3. Since deg Y1 + deg Y2 + deg Y3 = 4, we have
that, after reordering the index, deg Y1 = deg Y2 = 1 and deg Y3 = 2. We
will rewrite Y2 = Q3, Y3|Q3 = Z and Y1|Q3 = H1 so as to keep a notation
of the section 4. If F is the logarithmic foliation on Q3 associated to
the Poisson distribution Π|Q3 , then we are in the situation number (1) of
last section and we have an isolated singularity p. By Lemma 3.21, we
have that p ∈ Y1 ∩ Y2 ∩ Y3 = Z ∩H1. A contradiction, since the isolated
singularities are never in the divisor of poles of a logarithmic foliation.

So k = 4 and we have that deg Y1 = deg Y2 = deg Y3 = deg Y4 = 1.
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Rewrite Y4 = Q3, Yi|Q3 = Hi for i = 1, 2, 3 and let Π4 = Π|Q3 be
the Poisson structure on Q3. By Proposition 3.20, we have only two
possibilities:

(1) Π4 has rank 0 along Hi for just one i, and we can suppose that
i = 3, i.e., Π4 defines a logarithmic foliation F along the divisor
H1 +H2 or

(2) Π4 defines a logarithmic foliation F along H1 +H2 +H3.

In both case we have an isolated singularity p. By Lemma 3.21, we see
that p ∈ H2 or p ∈ H1, a contradiction. �

We proved that a quadric does not admit a nondegenerate Poisson
structure with normal crossing singularity. By Proposition 3.14 and by
Kobayashi-Ochiai theorem 3.1, we proved.

Corollary 3.23. If X is a Fano fourfold with PicX = Z and Π is
a nondegenerate Poisson structure with normal crossing singularity then
X = P4.

Corollary 3.24. Suppose that X is a Fano variety with dim X = 2n,
n ≥ 2, PicX = Z and Π is a nondegenerate Poisson structure with normal
crossing singularity, then X = P2n.

Proof. The proof is by induction on n. For n = 2, it was proved in the
last corollary. Suppose the result true for n. IfX is Fano with cyclic Picard
group, dim X = 2(n+ 1) and suppose that Π is a nondegenerate Poisson
structure on X such that the singular locus Sing Π = H1∪H2∪ . . .∪Hk is
smooth normal crossing. By Corollary 3.13 and by Polishchuk’s theorem,
we have a nondegenerate Poisson structure on Y = H1 ∩ H2 and the
singular loci are smooth normal crossing contained in (H3∪ . . .∪Hk)∩Y .
Since Pic Y = Z, we have, by the induction hypothesis, Y = P2n, i.e.,
i(Y ) = 2n + 1. In particular, deg(H3 + . . . + Hk) = 2n + 1. So i(X) =
deg(H1 + . . . + Hk) ≥ 2n + 3. By Kobayashi-Ochiai theorem, we have
i(X) = 2n+ 3 and X = P2n+2. �

Note that, by the last line of the proof of the corollary, we have
deg H1 = deg H2 = 1. So we proved:

Corollary 3.25. Let Π be a nondegenerate Poisson structure in P2n

with smooth normal crossing singularity and Sing Π = H1 + . . .+Hk. Let
H1 and H2 be components of Sing Π such that Π induces a nondegenerate
Poisson structure on H1 ∩H2. Then H1 and H2 are hyperplanes.
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7. Proof of Theorem A

So, in order to prove the Theorem A, we need to study the singular
locus of a nondegenerate Poisson structure Π on P4. The idea is to prove
that if Sing Π is normal crossing then Sing Π is the union of 5-hyperplanes.
The result we discovered in this section was the motivation to conjecture
Theorem A. We start giving an example.

Example 3.26. Consider C2n with coordinates (x1, . . . , xn, y1, . . . , yn)
and let Π =

∑n
i=1 xiyi

∂
∂xi
∧ ∂

∂yi
. Then Π is a nondegenerate Poisson struc-

ture on C2n with singular locus Sing Π the hyperplanes xi = 0 and yi = 0.
We saw in the subsection 1.2 of chapter 2 that this quadratic Poisson
structure extends to P2n. Since deg K∗P2n = 2n + 1, we conclude that the
hyperplane at infinity is a component of the singular locus of Π.

Write Sing Π = H1 ∪ . . .∪Hk, the singular locus of Π in P4. We know
by Corollary 3.10 that k ≥ 3. Since deg Sing Π = 5, we have the following
possibilities:

(1) k = 3, H1 is a hyperplane and H2, H3 are quadrics;
(2) k = 3, H1, H2 are hyperplanes and H3 is a cubic;
(3) k = 4, H1, H2, H3 are hyperplanes and H4 is a quadric;
(4) k = 5 and all components are hyperplanes.

Excluding the cases (1) and (3) were done in the proof of the section
excluding the quadric. We just need to consider the Poisson foliation on
the quadric. The Poisson foliation is a generic element of Log(1, 1, 1),
Rat(1, 2) or Rat(1, 1). So there exists an isolated singularity and we can
apply Proposition 3.9, Lemma 3.21 and the fact that isolated singularity
cannot be at the invariant hypersurfaces of the logarithmic foliation and
this is a contradiction.

We just need to exclude the second item. So, consider the Poisson dis-
tribution D1 on H1 = P3. We have two possibilities: D1 has no divisorial
component on the singular locus or D1 has a divisor component. In the
second case, it cannot happen because we know that the associated folia-
tion F1 is logarithmic. So D1 is a foliation with trivial canonical bundle
which have a cubic and a hyperplane invariant, i.e., it is in the component
Rat(1, 3). A general element of this component has at least one isolated
singularity p (see [9]). By Lemma 3.21, we have that p ∈ H1 ∩H2 ∩H3.
A contradiction, since H1 ∩ H2 ∩ H3 is a curve contained in the singular
locus of D1, i.e., p cannot be an isolated singularity.

To finish the proof of Theorem A, we just need to use induction on the
dimension and apply the Corollary 3.25.



CHAPTER 4

Deformation of Poisson brackets on projective spaces

1. Deformation of Poisson structures and Poisson cohomology

Definition 4.1. We say that two Poisson structures Π and Π′ are
equivalent if there exists a λ ∈ C∗ such that Π = λΠ′. By Theorem 2.7
of chapter 2, the set of equivalent Poisson structures in Pn is given by
homogeneous quadratic Poisson structures Π in Cn+1 such that [Π,Π] = 0
and DΩΠ = 0. So it is an algebraic subset of P(

∧2 T (Cn+1)) which we will
denote by Λ.

Let Sk be the set of Poisson structure Π on Pn with rk Π = 2k. It is
an algebraic variety on the space P(

∧2(TCn+1)).
In the chart X0 = 1, we see that TΠΛ = {ξ ∈ (

∧2 TCn); [Π, ξ] = 0}
and if rk Π = 2k, then TΠS2k = {ξ ∈ TΠΛ; Πk ∧ ξ = 0}.

Let Π be a Poisson structure on a variety X. We say that Πε is a
deformation of Π if we can write Πε = Π + εΠ1 + ε2Π2 + . . ., where Πi are
biderivations (not necessarily Poisson) and we have [Πε,Πε] = 0, i.e., Πε

is a Poisson biderivation. In other words, Πε is in Λ and “near” to Π and
rk Πε ≥ rkΠ.

There exists a cohomological interpretation of Poisson deformation, we
will now describe, but first we need a simple lemma.

Lemma 4.2. If Π is a Poisson tensor, then for any multi-vector field
A, we have

[Π, [Π, A]] = 0

Proof. Just use the graded Jacobi identity. �

Let (X,Π) be a Poisson variety. Consider δ : X•X → X•X the C−linear
operator on the space of multi-vector fields on X, defined as follows

δ(X) = [Π, X]

The lemma says that δ is a differential operator in the sense that δ ◦δ = 0.
The corresponding differential complex (X•X , δ)

· · · −→ Xp−1
X

δ−→ Xp
X

δ−→ Xp+1
X −→ · · ·

65
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is called the Lichnerowics complex. The cohomology of this complex is
called Poisson Cohomology.

By definition, the Poisson cohomology groups of (X,Π) are the quo-
tient groups

Hp
Π(X) =

ker(δ : Xp
X −→ Xp+1

X )

Im(δ : Xp−1
X −→ Xp

X)

Remark 4.3. Poisson Cohomology can be very big, even infinite-
dimensional.

The zeroth Poisson cohomology group H0
Π(X) is the group of functions

f such that Zf = −[Π, f ] = 0. In the other words, H0
Π(X) is the space of

Casimir functions of Π, i.e., the space of first integrals of the associated
Poisson distribution.

The first cohomology group H1
Π(X) is the quotient of the space of

Poisson vector fields by the space of Hamiltonian vector fields. Poisson
vector fields are infinitesimal automorphisms of the Poisson structures,
while Hamiltonian vector fields may be interpreted as inner infinitesimal
automorphisms. Thus H1

Π(X) may be interpreted as the space of outer
inifinitesimal automorphism of Π.

The second Poisson cohomology group H2
Π(X) is the quotient space

of 2-vector fields ξ which satisfy the equation [Π, ξ] = 0 by the space of
2-vector fields of the type ξ = [Π, X]. If [Π, ξ] = 0 and ε is a formal
parameter, then v+ εξ satisfies the Jacobi identity up to term of order ε2

[Π + εξ,Π + εξ] = ε2[ξ, ξ] = 0 mod ε2

So one may view Π+εξ as an infinitesimal deformation of v in the space of
Poisson tensors. On the other hand, up to terms of order ε2, Π + ε[Π, X]
is equal to (φεX)∗Π, where φεX denotes the time-ε flow of X. Therefore,
Π + ε[Π, X] is a trivial deformation of Π up to an infinitesimal diffeomor-
phism. ThusH2

Π(X) is the quotient of the space of all possible infinitesimal
deformations of Π by the space of trivial deformations. In other words,
H2

Π(X) may be interpreted as the moduli space of formal infinitesimal
deformations of Π.

2. Theorem B

If Π is a nondegenerate Poisson structure on P2n, with 2n + 1 hy-
perplanes in general position as singular set (we will denote each hy-
perplane by Hi), then Π is a diagonal Poisson structure. To see this,
consider the homogeneous coordinates (X0 : . . . : X2n) in P2n such that
Hi = {Xi = 0}. In affine coordinates (x1, . . . , x2n), we have that Π
is a nonhomogeneous quadratic Poisson structure on C2n. If we write
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Π =
∑2n

i=2

∑
k,l

(
λklxkxl

∂
∂xi
∧ ∂

∂xj

)
+ ∂

∂x1
∧ X where X is a vector field,

then since H1 is a Poisson subvariety, i.e., Π|H1 is a bivector on H1, we

conclude that Π|H1 cannot have the component ∂
∂x1

, i.e., X|H1 = 0. This
means that x1 divides X. In other words, every time that occurs the
component ∂

∂x1
, we have that in fact occurs the component x1

∂
∂x1

. This
works for every coordinate xi and since Π is quadratic, we conclude that
Π =

∑
i,j λijxixj

∂
∂xi
∧ ∂

∂xj
, i.e., Π is diagonal.

A more geometric description of the diagonal Poisson structure can be
done in the following way: consider the universal cover φ : Cn → (C∗)n
defined by φ(x1, . . . , xn) = (ex1 , . . . , exn) and consider the constant Poisson
structure Π′ =

∑
i,j λij

∂
∂xi
∧ ∂

∂xj
. Then, with a simple check, we show that

Π = φ∗Π
′ =
∑

i,j λijxixj
∂
∂xi
∧ ∂

∂xj
.

Theorem B. If we take sufficiently small deformations of a generic
diagonal Poisson structure in P2n then the resulting Poisson structures are
still diagonal Poisson structures in P2n.

Proof. Let Hi = {Xi = 0} be the singular set of the diagonal
Poisson structure Π. In affine coordinates xi = Xi/X0, we write Π =∑

ij λijxixj
∂
∂xi
∧ ∂

∂xj
. In C2n, we have the natural volume form Ω =

dx1 ∧ . . . ∧ dx2n and the Poisson vector field DΩΠ. This vector field is
diagonal with 0 trace. Let c1, . . . , c2n be the eigenvalues of DΩΠ, then
c1 + . . .+ c2n = 0 and we say that Π is a nonresonant Poisson structure if
there is no other resonance relation (see definition 1.27 of chapter 1).

The set of traceless nonresonant vector fields is open on the set of
traceless vector fields, i.e., we have the following well known theorem

Theorem 4.4. Let X be a linear vector field in (C2n, 0) with isolated
singularity at 0. Suppose that trace of X is 0 and the eigenvalues of X at
0 are nonresonant. If Xε is a deformation of X, sufficiently near to X,
then there exists pε ∈ C2n near to 0 such that pε is an isolated singularity
of Xε. If the trace of Xε at pε is zero, then Xε has semisimple linear part
on a neighborhood of pε and the eigenvalues of Xε at pε are nonresonant.

We know that DΩΠ =
∑

i cixi
∂
∂xi

and suppose that Π is a nonresonant
diagonal Poisson structure. Let Πε be a deformation of Π. We can suppose
that DΩΠε is in a small neighborhood of DΩΠ. So, by theorem above,
DΩΠε has an isolated singularity at a point pε near to 0 and holomorphic
coordinates (y1, . . . , y2n) such that Xε = D′ΩΠε =

∑
c′iy
′
i
∂
∂yi

+ . . ., with

Ω′ = dy1 ∧ . . . ∧ dyn and
∑

i c
′
i = 0 is the only resonance of c′i.
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According to [18], we have a formal change of coordinates (y1, . . . , y2n),
such that pε is 0,

Xε =
∑
i

c′iyi
∂

∂yi
+
∑
i,j≥1

λij(y1 . . . y2n)jyi
∂

∂yi
, λij ∈ C.

We observe that Πε(0) = 0. To see this, write Πε =
∑

ij Πij
∂
∂yi
∧ ∂

∂yj

and, for example, expand the relation 0 = [Xε,Π] and look at the term
∂
∂y1
∧ ∂

∂y2
at the point 0. We see that it is exactly Π12(0)(c′1 + c′2). From

the nonresonance of c′i we deduce that Π12(0) = 0.
We claim that the hypersurfaces {yi = 0} are in the singular locus of

Π. To see this, write Πn = f(y1, . . . , y2n) ∂
∂y1
∧ . . .∧ ∂

∂y2n
with f(0) = 0. By

Koszul formula (Corollary 1.25 of chapter 1), we have [Xε,Π
n
ε ] = 0, then

0 = [Xε,Π
n
ε ] = [Xε, f ]

∂

∂y1

∧ . . . ∧ ∂

∂y2n

+ f

[
Xε,

∂

∂y1

∧ . . . ∧ ∂

∂y2n

]
=

(
2n∑
i=1

c′iyi
∂f

∂yi
+
∑
i,j≥1

λij(y1 . . . y2n)jyi
∂f

∂yi

)
∂

∂y1

∧ . . . ∧ ∂

∂y2n

+ 2nf.

(∑
i

c′i +
∑
ij

jλij(y1 . . . y2n)j

)
∂

∂y1

∧ . . . ∧ ∂

∂y2n

=

(
2n∑
i=1

c′iyi
∂f

∂yi
+
∑
i,j≥1

λij(y1 . . . y2n)jyi
∂f

∂yi

)
∂

∂y1

∧ . . . ∧ ∂

∂y2n

+ 2nf.

(∑
j

jλij(y1 . . . y2n)j

)
∂

∂y1

∧ . . . ∧ ∂

∂y2n

Restricting the equation above to the hypersurface y1 = 0 and expand-
ing f(y1, . . . y2n) = a0(y2, . . . y2n) + a1(y2, . . . y2n)y1 + . . ., the Taylor series
in y1, we have

2n∑
i=2

c′iyi
∂a0

∂yi
= 0

Since c′2, . . . , c
′
n are nonresonant, expanding a0(y2, . . . yn) = 0, we conclude

that a0(y2, . . . , y2n) is constant. Since Π(0) = 0, we have that a0(0) = 0
and y1 divides f . Similarly, we conclude that yi divides f for every i.

We note that we are in a neighborhood of the point p′ which is a
intersection of 2n components of Sing Πε, we remark that we had not
proved that the singular set of Πε is smooth normal crossing. We proved
that there exists 2n+1 points, p1, . . . , p2n+1, in general position, such that,
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for each i, there exists a neighborhood Ui of pi where Sing Πε, restricted to
Ui, has at least 2n components intersecting in pi. We conclude the proof
of the Theorem B with the following lemma.

Lemma 4.5. Let D be an effective divisor in Pk of degree k+1. Suppose
that D admits k + 1 points p1, . . . , pk+1 in general position, such that for
each i, there exists a neighborhood Ui of pi, where D restricted to Ui has
at least k components intersecting only at pi. Then D is the union of k+1
hyperplanes in general position.

Proof. First, we will do the case for k = 2, just to explain the idea.
Consider the line lij which joins the points pi, pj, 1 ≤ i < j ≤ 3. Since on
each neighborhood of pi, lij intersects D with multiplicity at least 2, we
conclude that (lij.D) ≥ 4 or lij is a component of D. Since deg D = 3, we
have that lij is a component of D. Since we have 3 lines, we conclude the
case k = 2.

For the general case, let H ' Pk−1 be the hyperplane defined by the
points p1, . . . , pk−1. At the point p1, let Z1, . . . , Zk be local components of
D passing through p1 and write Yi = Zi ∩H. We claim that Yi 6= Yj for
every i 6= j. To prove this, the interesting part is the case where Yi and
Yj are not H.

Suppose Yi = Yj for some i 6= j. For each q ∈ Yi, let lq be the line
joining pk and q. We have that (lq.D)q ≥ 2 and (lq.D)pk ≥ k. Looking at
the degree of Zi, we conclude that lq is invariant by Zi, for each q. By the
same argument, lq is invariant by Zj. The set V defined to be the union
of the lines lq intersected in a neighborhood U1 of p1 is a open subset of
Zi and Zj (counting dimension). By the irreducibility of Zi and Zj, we
conclude that Zi = Zj. This is a contradiction.

Note that it could happen that some Yi is exactly H. So, if D is a
divisor of degree k + 1 in Pk, then Dk−1 can be defined to be a divisor
in H of degree l, with l = k or l = k + 1, such that in each point pi for
1 ≤ i ≤ k, we have at least l − 1 local distincts irreducible components
of Dk−1 passing through pi, for each i. Such local irreducible components
are Yi.

Iterating the process above, we reach to the plane P2 generated by
p1, p2 and p3 and a divisor D2, deg D2 = l with 3 ≤ l ≤ k + 1 such that
in each point pi, for i = 1, 2, 3, there exists at least l − 1 local distincts
irreducible components of D2 passing through pi. Note that l = 3 if and
only if one of Yi is exactly H in the first process. We will prove that l = 3.

Let lij be the line joining the points pi and pj. Comparing the degrees,
we have that lij is a component of D2. Consider the effective divisor
D′ = D2− (l12 + l13 + l23). We have that deg D′ = l−3 with 3 ≤ l ≤ k+ 1
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and on each point pi, there exists at least l − 3 local distincts irreducible
components of D2 passing through pi. If l−3 > 0, consider, again, the line
lij joining the points pi and pj. Comparing the degrees, we conclude that
lij is a component of D′ for every i, j. Iterating this process, we conclude
that the lines joining pi and pj are the unique components of D2. So, in
each point pi, there exists exactly 2 local distinct irreducible components
of D2 passing through pi. This is sufficient to conclude that l = 3.

So we that that, say, Yk is exactly the hyperplane H. We can do the
same argument for any of k + 1 hyperplane Hi defined for k points pj,
1 ≤ j ≤ k + 1 to conclude that Hi is an irreducible component of D.

Comparing degrees, we conclude that D is the union of k + 1 hyper-
planes. �

So Πε is a Poisson structure in P2n with singular locus Sing Πε exactly
the union of 2n+ 1 hyperplanes in general position. We conclude that Πε

is a diagonal Poisson structure and we finish the proof of Theorem B. �

3. Computing the second Poisson cohomology

Let X be a variety and consider G = Aut(X), the group of automor-
phism of X, with the Whitney topology. Then G is a Lie group.

Consider g = Te(G). We have a natural isomorphism between g and
H0(X,TX) which we will describe.

Since G is a Lie group, we have, for each g ∈ G, the left translation
Lg : G→ G which maps h to gh and it is well known that we can identify
g with the left invariant vector fields X ∈ H0(G, TG), i.e., (Lg)∗X = X,
for every g. Consider the flow φt : G→ G of X. Since φt+s = φt ◦φs, then
it is a flow of a global vector field Z ∈ H0(X,TX). So for each element
α ∈ g, we associate a flow φαt : G→ G and, from this flow, we associate a
vector field Zα ∈ H0(X,TX).

Conversely, for each vector field Z ∈ H0(X,TX), we associate a flow
φt : G → G. We check that this flow is left invariant and, in particular,
we can associate to an element αZ ∈ g. A simple check shows that one
map is the inverse of the other.

The identification g ' H0(X,TX) is a Lie algebra morphism, with the
natural Lie brackets.

Let Π be a nonresonant Poisson diagonal vector field in P2n.
If we write Π =

∑
ij λijxixj

∂
∂xi
∧ ∂

∂xj
and if Πε is a small deformation

of Π, then Theorem B says that there exists an automorphism

φ : P2n −→ P2n

(x0, . . . , x2n) 7→ (y0, . . . , y2n)
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such that φ∗Πε =
∑

ij λ
′
ij(ε)xixj

∂
∂xi
∧ ∂

∂xj
, for some λij(ε) ∈ C, sufficiently

near from λij. We can see λij(ε) as holomorphic functions λij : C → C
with λij(0) = λij.

Since G = Aut(P2n) = PSL(2n + 1,C) is a connected Lie group and
H0(P2n, TP2n) ' sl(2n+ 1,C), we can find, under natural identifications,
a path α : [0, 1] → G which connects Id to φ and α(t + s) = α(t) ◦ α(s).
To see this, we use the well known fact that for every A ∈ G, there exists
an element B ∈ sl(2n + 1,C) such that A = expB and we just need to
take α(t) = exp tB.

Consider Π′ε =
∑

ij λij(ε)xixj
∂
∂xi
∧ ∂

∂xj
and let α : [0, 1]→

∧2 TP2n be

the path defined by α(t) = (1− t)Π + tΠ′ε that connects Π to Π′ε, i.e., we
have that Πt = Π + t(Π′ε − Π). We see that Πt is a Poisson structure for
every t and Π1 = Π′ε.

Consider the flow φs that connects Id to φ (note that φ∗Π
′
ε = Πε). So,

lim
s→0

φs∗Π
′
ε − Π′ε
s

= LXΠ′ = [Π′ε, X]

where X is the vector field associated to the flow φs. Taking s and ε so
small, we can suppose that s = ε+ h.o.t and we can write, infinitesimaly,

Πε − Π′ε = ε[Π′ε, X] + h.o.t.

Expanding λij(ε) in Taylor series, with λij(0) = λij, we have that
Π′ε = Π + ε(Π′ε − Π) = Π + ε

∑
ij cijxixj

∂
∂xi
∧ ∂

∂xj
+ h.o.t, and so

Πε = Π + ε([Π, X] + Π′′) + h.o.t.,

where Π′′ =
∑

ij cijxixj
∂
∂xi
∧ ∂

∂xj
.

A simple computation shows that Π′′ is not 0 in H2
Π(P2n) (we did this

calculation in section 4).
So, by the interpretation of the cohomology, we conclude that we have

a natural identification of H2
Π(P2n) with the set of diagonal structures with

the same singular locus as Π. This proves that dimH2
Π(P2n) = n(2n− 1).

We also note that if ΛΠ is the irreducible component of the space of
Poisson structure containing Π, then

dim ΛΠ = dimH2
Π(P2n) + dim sl(2n+ 1,C)− 1

= n(2n− 1) + (2n+ 1)2 − 2

= 6n2 + 3n− 1.
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4. Theorem C

In this section, we work on a specific example of rank 2 Poisson struc-
ture on Pn and we prove that it is stable under deformation.

Example 4.6. Consider the projection from the last coordinate φ :
Pn+1 → Pn and let X̃ ∈ H0(Pn, TPn(1)) be a quadratic vector field in
Pn. Thinking of X̃ as a foliation of dimension 1, we may pull it back by
φ, defining a foliation F of dimension 2 which is a Poisson structure. In
the chart x0 = 1, the vector field will be denoted by X and the Poisson
structure will be Π = ∂

∂xn+1
∧X. Note that TF = OPn+1(−1)⊕OPn+1(1),

i.e., the tangent sheaf of the Poisson foliation totally splits.

The Theorem we prove is:

Theorem C. For a very generic quadratic vector field X in Pn, con-
sider the Poisson structure Π = ∂

∂xn+1
∧X on Pn+1 and let Πε be a small de-

formation of Π. Then rk Πε = 2 and there exist coordinates (x′1, . . . , x
′
n+1)

and a quadratic vector field Xε such that Πε = ∂
∂x′n+1

∧Xε, where Xε does

not depend on ∂
∂x′n+1

nor x′n+1.

This Theorem is not trivial, because the rank of a small deformation
of Poisson structure can grow up as the following example shows.

Example 4.7. In P4 and in the coordinates X0 = 1, consider the rank
2 diagonal Poisson structure Π = x1x2

∂
∂x1
∧ ∂

∂x2
. We see that for any ε

small enough, the deformation Πε = x1x2
∂
∂x1
∧ ∂

∂x2
+ εx3x4

∂
∂x3
∧ ∂

∂x4
is a

small deformation of the Poisson structure Π and rank of Π is 4.

We will explain what properties of the quadratic vector field X we will
ask.

Definition 4.8. Let X be a holomorphic vector field in (Cn, 0) with
isolated singularity at the origin. We say that X is in the Poincaré’s
domain if the eigenvalues λi of the linear part of X at 0 are non-resonant
and 0 is not in the convex hull of (λ0, . . . , λn).

The Theorem 3.5 of [19] implies the following:

Theorem 4.9. A very generic homogeneous quadratic vector field has
only isolated singularities, one of the singularities satisfies the hypothe-
sis of the Poincaré’s Linearization theorem and the integral curves of the
vector fields xi

∂
∂xi

are Zariski dense in Pn.

The quadratic vector field of Theorem C has the properties of the
Theorem 4.9. Before starting the proof the Theorem C, we state the
well-known Poincarè’s Linearization theorem.
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Theorem 4.10. Let X be a holomorphic vector field in (Cn, 0) with
isolated singularity at the origin. If X is in the Poincaré’s domain, then
there exists a holomorphic change of coordinates (x1, . . . , xn) such that
X =

∑
i λixi

∂
∂xi

.

Proof of Theorem C. Let X be a quadratic vector field on Pn with
the hypothesis of the Theorem 4.9. Let Pn+1 99K Pn be the projection of
the last coordinate and Π the Poisson structure induced by X and the
projection.

We will work in the chart X0 6= 0, xi = Xi/X0, where (X0 : . . . :, Xn)
are the homogeneous coordinates of Pn+1. Note that X is a cubic vector
field in Cn.

If ξ ∈ TΠΛ then [Π, ξ] = 0. We want to prove that Π ∧ ξ = 0, i.e.,
TΠΛ = TΠS2 (see section 1 for the definition).

Writting ξ = α + ∂
∂xn+1

∧ β where α and β do not depend on ∂
∂xn+1

,

α is a polynomial bivector field with degree at most three, and β is a
polynomial vector field with degree at most three. We compute [Π, ξ] = 0,
using the graded Leibniz rule of the Schouten bracket:

0 = [Π, ξ] =

[
∂

∂xn+1

∧X, ξ
]

=
∂

∂xn+1

∧ [X, ξ]− ∂ξ

∂xn+1

∧X

=
∂

∂xn+1

∧ [X,α]− ∂ξ

∂xn+1

=
∂

∂xn+1

∧ [X,α]− ∂α

∂xn+1

∧X − ∂

∂xn+1

∧ ∂β

∂xn+1

∧X.

So, we have that ∂α
∂xn+1

∧X = 0. Recall the de Rham lemma

Lemma 4.11. Let X be a polynomial vector field in Cn and suppose
that cod SingX ≥ 3, then for every polynomial k-vector field ξ such that
ξ ∧X = 0, there exists a (k − 1)-vector field Y with ξ = X ∧ Y .

Since ∂α
∂xn+1

∧ X = 0, by the de Rham lemma 4.11, we conclude that
∂α

∂xn+1
= X∧Y , for some polynomial vector field Y . Comparing the degrees

of the polynomials, we conclude that ∂α
∂xn+1

= 0, and α does not depend on

xn+1. Looking at the terms with ∂
∂xn+1

in the expression above, we have

[X,α] =
∂β

∂xn+1

∧X.
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In particular, we have [X,α] ∧ X = 0 and since α does not depend on
∂

∂xn+1
nor xn+1, we can think of α as a bivector field in Cn. The key fact

is:

Proposition 4.12. If X satisfies the hypothesis of Theorem 4.9, then,
in notation above, there exists a homogeneous vector field Y such that
α = X ∧ Y .

Proof. By Poincarè’s Linearization theorem, write X =
∑

i λixi
∂
∂xi

in a neighborhood of the singularity. Consider the linear map ∆ : X2 → X2

which sends α to [X,α]. For every multi-index I, we have[
X,XI ∂

∂xi
∧ ∂

∂xj

]
= (< λ, I > −λi − λj)XI ∂

∂xi
∧ ∂

∂xj
.

Since λi are non-resonant, we conclude that ker(∆) is generated by
xixj

∂
∂xi
∧ ∂

∂xj
, as a C-vector space. Moreover, ker(∆) ∩ im(∆) = 0 and

ker(∆)⊕ im(∆) = X2.
Since [X,α] ∧ X = 0, by the de Rham Lemma 4.11, there exists a

vector field Z such that [X,α] = Z ∧X. Since
∑

i,j aijxixj
∂
∂xi
∧ ∂

∂xj
is not

in the image of ∆, we can choose Z such that the diagonal of the linear
part is identically zero, i.e., Z does not have the terms xi

∂
∂xi

, for all i.

Consider the application δ : X1 → X1 which sends Y to [X, Y ]. In
the same way, we can prove that ker δ is generated by the diagonal xi

∂
∂xi

,

im δ ∩ ker δ = 0 and im δ ⊕ ker δ = X1. So there exists Y ∈ X1 such that
[X, Y ] = Z. Then,

[X, Y ∧X] = [X, Y ] ∧X = Z ∧X = [X,α].

Since ker(∆) is generated by xixj
∂
∂xi
∧ ∂

∂xj
, we have

α = Y ∧X +
∑
ij

aijxixj
∂

∂xi
∧ ∂

∂xj
, aij ∈ C,

and

α ∧X =
∑
ij

aijxixj
∂

∂xi
∧ ∂

∂xj
∧X.

Suppose for example a12 6= 0, then the integral curve C defined by the
vector field x1

∂
∂x1

is tangent to the foliation defined by the bivector field∑
ij aijxixj

∂
∂xi
∧ ∂

∂xj
. In particular, for every point p ∈ C we have that∑

ij aijxixj
∂
∂xi
∧ ∂
∂xj

(p)∧X(p) = 0. Since the integral curve defined by the

vector field x1
∂
∂x1

is Zariski dense in Pn, we conclude that α ∧X = 0. We
finish the proof of the proposition by applying de Rham lemma 4.11. �
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So, if ξ ∈ TΠΛ, then ξ = X ∧ Y + ∂
∂xn+1

∧ β for some Y and β vector

fields. In particular, ξ ∧ Π = 0, i.e., ξ ∈ S2. So we proved that every
Poisson deformation Πε and Π have the same rank. Lef F be the Poisson
foliation induced by Π, then the Poisson foliation FΠε induced by Πε has
dimension 2. In particular FΠε is a small deformation of the foliation F .
In [8], Cukierman and Pereira proved the following theorem.

Theorem 4.13. Let F be a codimension q ≥ 2 foliation such that its
tangent sheaf totally split, if codSing(F) ≥ 3, then there exists a Zariski
open set U of the space of foliations, containing F such that for every
G ∈ U , TG ∼= TF .

Since the tangent sheaf TFΠ = OPn+1(1)⊕OPn+1(−1) splits, by Theo-
rem 4.13, we have TFΠε = OPn+1(1)⊕OPn+1(−1). So the Poisson foliation
is a direct sum of two foliations F1 and F2. The first one has degree 0 and
the second one has degree 2.

We can choose homogeneous coordinates (y0 : . . . : yn+1) of Pn+1 such
that F1 is given by ∂

∂yn+1
. If F2 is given by quadratic vector field Y , we can

choose Y in such way that Y does not depend on ∂
∂yn+1

. The integrability

condition shows that Y does not depend on yn+1 either.
So Y can be regarded as a quadratic vector field on Pn, with coordi-

nates (y0 : . . . : yn). This proves the Theorem C. �
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