A direct splitting method for nonsmooth variational inequalities

J. Y. Bello Cruz^{*} R. Díaz Millán[†]

July 19, 2013

Abstract

In this paper, we propose a direct splitting method for solving nonsmooth variational inequality problems in Hilbert spaces. The weak convergence is established, when the operator is the sum of two point-to-set and monotone operators. The proposed method is a natural extension of the incremental subgradient method for nondifferentiable optimization, which explores strongly the structure of the operator using projected subgradient-like techniques. The advantage of our method is that any nontrivial subproblem must be solved, like the evaluation of the resolvent operator. The necessity to compute proximal iterations is the main difficult of others schemes for solving this kind of problem.

Keywords: Monotone variational inequalities, Maximal monotone operators, Splitting method, Projection methods.

Mathematical Subject Classification (2008): 90C47, 49J35.

1 Introduction

First of all, we introduce the notation. The inner product in the Hilbert space \mathcal{H} is denoted by $\langle \cdot, \cdot \rangle$ and the norm induced by the inner product by $\|\cdot\|$. For C a nonempty, convex and closed subset of \mathcal{H} , we define the orthogonal projection of x onto C by $\mathcal{P}_C(x)$, as the unique point in C, such that $\|\mathcal{P}_C(x) - y\| \leq \|x - y\|$ for all $y \in C$. Recall that an operator $T : dom(T) \subseteq \mathcal{H} \rightrightarrows \mathcal{H}$ is monotone if, for all $(x, u), (y, v) \in Gr(T)$, we have $\langle x - y, u - v \rangle \geq 0$, and it is maximal if T has no proper monotone extension in the graph inclusion sense.

In this paper, we introduce a direct method for solving nonsmooth variational inequality problem for T and C, where T is point-to-set and sum of two maximal monotone operators, i.e, $T = T_1 + T_2$ where $T_i : dom(T_i) \subseteq \mathcal{H} \rightrightarrows \mathcal{H}$ for i = 1, 2 and $C \subseteq dom(T_1) \cap dom(T_2)$. The variational inequality problem for T and C consists in:

Find
$$x^* \in C$$
 such that $\exists u^* \in T(x^*)$, with $\langle u^*, x - x^* \rangle \ge 0 \quad \forall x \in C.$ (1)

The solution set of problem (1) is denoted by S^* .

This problem has been a classical subject in economics, operations research and mathematical physics; see [2, 4, 14]. It is closely related with many problems of nonlinear analysis, such as optimization, complementarity and equilibrium problems and finding fixed points; see [2, 12, 33, 19]. An excellent survey of

^{*}Federal University of Goiás, Goiás, Brazil, e-mail: yunier@impa.br

 $^{^{\}dagger}$ Federal Institute of Education, Science and Technology, Goiás, Brazil, e-mail: rdm@impa.br

methods for variational inequality problems can be found in [11]. Many methods have been proposed to solve problem (1), with T point-to-point; see [15, 17, 20, 21, 31, 32], and for T point-to-set; see [5, 16, 23].

Here we are interested in methods that explore the structure of T. These kind of methods are called splitting, since which each iteration involves only the individual operators, T_1 or/and T_2 , but not the sum $T_1 + T_2$.

The variational inequality problems are related with the inclusion problems, in fact, when the feasible set is the whole space, the problem (1) becomes to the inclusion problem, i.e., find $x^* \in \mathcal{H}$ such that $0 \in T(x^*)$. In the case that the operator $T = T_1 + T_2$ have been proposed many algorithms solving this special inclusion problem; see [28, 34, 30, 25, 22, 26, 24, 36]. However in all of them, the resolvent operator $(I + \alpha T_1)^{-1}$ or/and $(I + \alpha T_2)^{-1}$, $\alpha > 0$, must be evaluated in each iteration. It is important to mention that this proximal-like iteration is a nontrivial problem, which demands a hard work in the computational point of view. Our algorithm avoids this difficulty replacing it by subgradient-like projection steps, for which the computational cost is negligible compared with proximal-like step. This represent a significative advantage in the implementation and theoretical sense.

This work is inspired by the incremental subgradient method for nondifferentiable optimization, proposed in [27] and it uses a similar idea exposed in [6, 8]. For the case of one operator is known that a natural extension of the subgradient iteration (one step) fails for monotone operators; see [8, 9]. However, as will shown, an extra step is an option in order to prove the weak convergence of the sequence generated by the proposed algorithm.

This paper is organized as follows. The next section provides some preliminary results that will be used in the remainder of this paper. The direct Algorithm A is presented in Section 3 and Subsection 3.1 contains the convergence analysis of the algorithm. Finally in fourth section, the final remarks are presented.

2 Preliminaries

In this section, we present some definitions and results that are needed for the convergence analysis of the proposed method. First, we state two well known facts on orthogonal projections.

Lemma 1. Let C be any nonempty closed and convex set in \mathcal{H} . For all $x, y \in \mathcal{H}$ and all $z \in C$, the following properties hold:

- *i*) $||P_C(x) P_C(y)|| \le ||x y||.$
- *ii)* $\langle x P_C(x), z P_C(x) \rangle \leq 0.$

Proof. See Lemma 1.1 and 1.2 in [35].

We next deal with the so called quasi-Fejér convergence and its properties.

Definition 1. Let C be a nonempty convex and closed subset of \mathcal{H} . A sequence $\{x^k\}$ is said to be quasi-Fejér convergent to C, if and only if, for all $x \in C$, there exist $k_0 \ge 0$ and a summable sequence $\{\delta_k\} \subset \mathbb{R}_+$, such that

$$||x^{k+1} - x||^2 \le ||x^k - x||^2 + \delta_k,$$

for all $k \geq k_0$.

This definition originates in [10] and has been further elaborated in [18]. A useful result on quasi-Fejér sequences is the following.

Proposition 1. If $\{x^k\}$ is quasi-Fejér convergent to C then:

- i) $\{x^k\}$ is bounded;
- ii) for each $x \in C$, $\{\|x^k x\|\}$ converges;
- iii) if all weak cluster point of $\{x^k\}$ belong to C, then the sequence $\{x^k\}$ is weakly convergent.

Proof. See Proposition 1 in [1].

Now, we remind one property on quasi-Fejér sequences, which will be useful for proving that the sequence generated by our algorithm converges weakly to some point belong to S^* .

Lemma 2. If $\{x^k\}$ is quasi-Fejér convergent C, then $\{P_C(x^k)\}$ is strongly convergent.

Proof. See Lemma 2 in [6].

We also need the following results on maximal monotone operators and monotone variational inequalities.

Lemma 3. Let $T : \mathcal{H} \to \mathcal{P}(\mathcal{H})$ be a maximal monotone operator and C a closed and convex set. Then S^* , if nonempty, is closed and convex.

Proof. See Lemma 2.4(ii) in [7].

The next lemma will be useful for proving that all weak cluster points of the sequence generated by our algorithm belong to S^* .

Lemma 4. If $T : \mathcal{H} \to \mathcal{P}(\mathcal{H})$ is maximal monotone, then

$$S^* = \{ x \in C : \langle v, y - x \rangle \ge 0, \forall y \in C, \forall v \in T(y) \}.$$

$$(2)$$

Proof. See Lemma 3 in [29].

Finally, we need the following elementary result on sequence averages.

Proposition 2. Let $\{p^k\} \subset \mathcal{H}$ be a sequence strongly convergent to \tilde{p} . Take nonnegative real numbers $\zeta_{k,j}$ $(k \geq 0, 0 \leq j \leq k)$ such that $\lim_{k\to\infty} \zeta_{k,j} = 0$ for all j and $\sum_{j=0}^{k} \zeta_{k,j} = 1$ for all k. Define

$$x^k := \sum_{j=0}^k \zeta_{k,j} p^j.$$

Then, $\{x^k\}$ also converges strongly to \tilde{p} .

Proof. See Proposition 3 in [6].

3 A splitting direct method

Our algorithm requires an exogenous sequence $\{\alpha_k\} \subset \mathbb{R}_{++}$ satisfying

$$\sum_{k=0}^{\infty} \alpha_k = \infty, \qquad \sum_{k=0}^{\infty} \alpha_k^2 < \infty.$$
(3)

This selection rule has been considered several times in the literature; see, for instance, [1, 3, 13, 6, 8, 9]. The algorithm is defined as:

Algorithm A

Initialization step: Take $x^0 \in C$. Define $z^0 := x^0$ and $\sigma_0 := \alpha_0$.

Iterative step: Given x^k , z^k and σ_k . Compute:

$$y^{k} = \mathcal{P}_{C}\left(z^{k} - \alpha_{k}w_{1}^{k}\right) \tag{4}$$

and

$$z^{k+1} = \mathcal{P}_C\left(y^k - \alpha_k v_2^k\right),\tag{5}$$

where $w_1^k \in T_1(z^k)$, $v_2^k \in T_2(y^k)$. Set x^{k+1} as

$$x^{k+1} = \left(1 - \frac{\alpha_{k+1}}{\sigma_{k+1}}\right) x^k + \frac{\alpha_{k+1}}{\sigma_{k+1}} z^{k+1},\tag{6}$$

with $\sigma_{k+1} := \sigma_k + \alpha_{k+1}$.

Stop criteria: If $z^{k+1} = y^k = z^k$, then stop.

We assume the following boundedness property for the operators T_1 and T_2 . Assumption H: There exists a positive scalar M such that

$$\|u\| \le M, \qquad \forall u \in T_i(z^k) \cup T_i(y^k), \quad i = 1, 2 \quad \forall k.$$

$$\tag{7}$$

This assumption holds automatically in finite-dimensional spaces, when $dom(T_1) = dom(T_2) = \mathcal{H}$ or $C \subset int(dom(T_1) \cap dom(T_2))$. We also mention that Assumption H is required in the analysis of [27] for proving convergence of the incremental subgradient method and in others similar schemes; see [6, 9].

3.1 Convergence analysis

We start with the good definition of the stoping criteria.

Proposition 3. If Algorithm A stop in the step k, then $z^k \in S^*$.

Proof. If $z^{k+1} = y^k$, then using Lemma 1(ii) in (5) we have, $\langle y^k - \alpha_k v_2^k - y^k, x - y^k \rangle \ge 0$ for all $x \in C$, hence, $\langle v_2^k, y^k - x \rangle \le 0$. Moreover, if $z^k = y^k$ imply, using again Lemma 1(ii) in (4), that, $\langle w_1^k, y^k - x \rangle \le 0$, for all $x \in C$. Then, $\langle v^k, x - y^k \rangle \le 0$ for all $x \in C$ and $v^k = w_1^k + v_2^k \in T(y^k)$, showing that $y^k \in S^*$. \Box

From now on, we assume that Algorithm A generates infinite sequences. We present an important algebraic property on the auxiliary sequence $\{z^k\}$ obtained by the Algorithm A.

Proposition 4. Let $\{z^k\}$ be the auxiliary sequence generated by the Algorithm H. Then, for each $(x, u) \in Gr(T)$, with $x \in C$, there exists a constant L > 0 such that,

$$\|z^{k+1} - x\|^2 \le \|z^k - x\|^2 + L\alpha_k^2 - 2\alpha_k \langle u, z^k - x \rangle,$$
(8)

for all k.

Proof. For each $x \in C$, take $u \in T(x)$, such that $u = u_1 + u_2$, with $u_1 \in T_1(x)$ and $u_2 \in T_2(x)$. Choosing M like in Assumption H, we have

$$\begin{aligned} \|z^{k+1} - x\|^2 &= \|\mathcal{P}_C\left(y^k - \alpha_k v_2^k\right) - \mathcal{P}_C(x)\|^2 \le \|\left(y^k - \alpha_k v_2^k\right) - x\|^2 \\ &\le \|y^k - x\|^2 + M^2 \alpha_k^2 - 2\alpha_k \langle v_2^k, y^k - x \rangle \\ &\le \|y^k - x\|^2 + M^2 \alpha_k^2 - 2\alpha_k \langle u_2, y^k - x \rangle \\ &= \|\mathcal{P}_C\left(z^k - \alpha_k w_1^k\right) - \mathcal{P}_C(x)\|^2 + M^2 \alpha_k^2 - 2\alpha_k \langle u_2, y^k - x \rangle \\ &\le \|z^k - x\|^2 + 2M^2 \alpha_k^2 - 2\alpha_k \left(\langle u_2, y^k - x \rangle + \langle u_1, z^k - x \rangle\right) \right) \\ &= \|z^k - x\|^2 + 2M^2 \alpha_k^2 - 2\alpha_k \langle u, z^k - x \rangle - 2\alpha_k \langle u_2, y^k - z^k \rangle \\ &\le \|z^k - x\|^2 + 2M^2 \alpha_k^2 - 2\alpha_k \langle u, z^k - x \rangle + 2\alpha_k \|u_2\| \|y^k - z^k\| \\ &\le \|z^k - x\|^2 + (2M^2 + M \|u_2\|) \alpha_k^2 - 2\alpha_k \langle u, z^k - x \rangle, \end{aligned}$$

where we used Lemma 1(i) in the first inequality, the monotonicity of T_2 in the third one, Lemma 1(i) and the monotonicity of T_1 in the fourth one, and the last inequality come from

$$\|y^{k} - z^{k}\| = \|P_{C}\left(z^{k} - \alpha_{k}w_{1}^{k}\right) - P_{C}\left(z^{k}\right)\| \le \alpha_{k}M,\tag{9}$$

using Assumption H and Lemma 1(i). Defining $L = 2M^2 + 2M||u_2||$, we get (8).

From now on S^* is nonempty. We prove the quasi-Fejér property on the auxiliary sequence $\{z^k\}$ generated by Algorithm A.

Proposition 5. The auxiliary sequence $\{z^k\}$ generated by Algorithm A is quasi-Fejér convergent to S^* and bounded.

Proof. Take $\bar{x} \in S^*$. Thus, there exists $\bar{u} \in T(\bar{x})$ such that

$$\langle \bar{u}, x - \bar{x} \rangle \ge 0 \quad \forall x \in C.$$
 (10)

By Proposition 4, with $x = \bar{x}$ and $u = \bar{u}$, and using that $z^k \in C$ for all k, we have

$$||z^{k+1} - \bar{x}||^2 \le ||z^k - \bar{x}||^2 + L\alpha_k^2 - 2\alpha_k \langle \bar{u}, z^k - \bar{x} \rangle \le ||z^k - \bar{x}||^2 + L\alpha_k^2.$$

Establishing that $\{z^k\}$ is quasi-Fejér convergent to S^* . The boundedness of $\{z^k\}$ follows from Proposition 1(i).

Corollary 1. Let $\{x^k\}$ be the sequence generated by Algorithm A. Then,

i)
$$x^k = \frac{1}{\sigma_k} \sum_{i=0}^k \alpha_i z^i$$
, for all k;

ii) $\{x^k\}$ is bounded.

Proof.

(i) We proceed by induction on k. For k = 0, we have $x^0 = z^0$ by definition. By hypothesis of induction assume that

$$x^k = \frac{1}{\sigma_k} \sum_{i=0}^k \alpha_i z^k.$$
(11)

Since $\sigma_{k+1} = \sigma_k + \alpha_{k+1}$, we get

$$x^{k+1} = \frac{\sigma_k}{\sigma_{k+1}} x^k + \frac{\alpha_{k+1}}{\sigma_{k+1}} z^{k+1}$$

By (11) and the above equation, we have

$$x^{k+1} = \frac{1}{\sigma_{k+1}} \sum_{i=1}^{k} \alpha_i z^i + \frac{\alpha_{k+1}}{\sigma_{k+1}} z^{k+1} = \frac{1}{\sigma_{k+1}} \sum_{i=0}^{k+1} \alpha_i z^i,$$

proving the assertion.

(ii) Using Proposition 5 and Proposition 1(i), we have the boundedness of $\{z^k\}$. We may assume that there exists R > 0 such that $||z^k|| \leq R$, for all k. By the previous item,

$$\|x^k\| \le \frac{1}{\sigma_k} \sum_{i=0}^k \alpha_i \|z^i\| \le R,$$

for all k.

Now we prove that the clusters points of the sequence generated by Algorithm A belong to the solution set.

Theorem 1. All weak cluster points of $\{x^k\}$ belong to S^* .

Proof. Take any $x \in C$ and $u \in T(x)$. Rewriting (8) in Proposition 4, we get,

$$z^{i+1} - x\|^2 - \|z^i - x\|^2 - L\alpha_i^2 \le 2\alpha_i \langle u, x - z^i \rangle,$$
(12)

for all *i*. Now summing (12), from i = 0 to i = k, and dividing by σ_k , we have

$$\frac{1}{\sigma_k} \sum_{i=0}^k \left(\|z^{i+1} - x\|^2 - \|z^i - x\|^2 - L\alpha_i^2 \right) \le 2 \left\langle u, \frac{1}{\sigma_k} \sum_{i=0}^k \alpha_i (x - z^i) \right\rangle.$$

Using Corollary 1(i) and define $S := \sum_{i=0}^{\infty} \alpha_i^2$, we get

$$\frac{\|z^{k+1} - x\|^2 - \|z^0 - x\|^2 - LS}{\sigma_k} \le 2\langle u, x - x^k \rangle, \tag{13}$$

for all k.

Let \bar{x} be any weak cluster of $\{x^k\}$, that exist, by Corollary 1(ii). Since $\{z^k\}$ is bounded and $\lim_{k\to\infty} \sigma_k = \infty$, then taking limits in (13), over any weak convergent subsequence to \bar{x} , we have $\langle u, x - \bar{x} \rangle \ge 0$ for all $x \in C$ and $u \in T(x)$. By Lemma 4, \bar{x} belongs to the solution set. Hence, all cluster points of $\{x^k\}$ belong to S^* .

Finally, we prove our main result.

Theorem 2. Define $x^* = \lim_{k \to \infty} P_{S^*}(z^k)$. Then, either $S^* \neq \emptyset$ and $\{x^k\}$ converges weakly to x^* , or $S^* = \emptyset$ and $\lim_{k \to \infty} \|x^k\| = \infty$.

Proof. Assume that $S^* \neq \emptyset$ and define $p^k := P_{S^*}(z^k)$. Note that p^k , the orthogonal projection of z^k onto S^* , exists since the solution set S^* is nonempty by assumption, and closed and convex by Lemma 3. By Proposition 1, $\{z^k\}$ is quasi-Fejér convergent to S^* . Therefore, it follows from Lemma 2 that $\{P_{S^*}(z^k)\}$ is strongly convergent. Set

$$x^* := \lim_{k \to \infty} P_{S^*}(z^k) = \lim_{k \to \infty} p^k.$$
(14)

By Corollary 1(ii), $\{x^k\}$ is bounded and by Theorem 1 each of its weak cluster points belong to S^* . Let $\{x^{i_k}\}$ be any weakly convergent subsequence of $\{x^k\}$, and let $\bar{x} \in S^*$ be its weak limit. It suffices to show that $\bar{x} = x^*$ for establishing the weak convergence of $\{x^k\}$.

By Lemma 1(ii) we have that $\langle \bar{x} - p^j, z^j - p^j \rangle \leq 0$ for all j. Let $\xi = \sup_{0 \leq j \leq \infty} ||z^j - p^j||$. Since $\{z^k\}$ is bounded by Proposition 5, we get that $\xi < \infty$. Using Cauchy-Schwarz,

$$\langle \bar{x} - x^*, z^j - p^j \rangle \le \langle p^j - x^*, z^j - p^j \rangle \le \xi \, \|p^j - x^*\|,\tag{15}$$

for all j. Multiplying (15) by $\frac{\alpha_j}{\sigma_k}$ and summing from j = 0 to k, we get from Corollary 1(i),

$$\left\langle \bar{x} - x^*, x^k - \frac{1}{\sigma_k} \sum_{j=0}^k \alpha_j p^j \right\rangle \le \frac{\xi}{\sigma_k} \sum_{j=0}^k \alpha_j \|p^j - x^*\|.$$

$$(16)$$

Define

$$\zeta_{k,j} := \frac{\alpha_j}{\sigma_k} \quad (k \ge 0, \quad 0 \le j \le k).$$

It follows from the definition of σ_k , that $\lim_{k\to\infty} \zeta_{k,j} = 0$ for all j and $\sum_{j=0}^k \zeta_{k,j} = 1$ for all k. Using (14) and Proposition 2 with $p^k = \sum_{j=0}^k \zeta_{k,j} p^j = \frac{1}{\sigma_k} \sum_{j=0}^k \alpha_j p^j$, we have

$$x^* = \lim_{k \to \infty} p^k = \lim_{k \to \infty} \frac{1}{\sigma_k} \sum_{j=0}^k \alpha_j p^j,$$
(17)

and

$$\lim_{k \to \infty} \frac{1}{\sigma_k} \sum_{j=0}^k \alpha_j \| p^j - x^* \| = 0.$$
(18)

Taking limits in (16) over the subsequence $\{i_k\}$, and using (17) and (18), we get $\langle \bar{x} - x^*, \bar{x} - x^* \rangle \leq 0$, implying that $\bar{x} = x^*$.

If $S^* = \emptyset$, then by Theorem 1 no subsequence of $\{x^k\}$ can be bounded, and hence $\lim_{k \to \infty} ||x^k|| = \infty$.

4 Final Remarks

We present a direct splitting method for nonsmooth variational inequality, where the operator is a sum of two monotone operators. In the proposed scheme we do not evaluate the resolvent of any individual operator, which represents an important advantage. As a matter for future research we leave the issue of finding the stepsizes though an Armijo-type line search instead of defining them exogenously, at least in the smooth case, i.e., when T is point-to-point.

ACKNOWLEDGMENTS

The authors would like to thank CNPq. Research for this paper was partially supported by PROCAD-nf - UFG/UnB/IMPA and by project CAPES-MES-CUBA 226/2012 "Modelos de Otimização e Aplicações". The second author was supported by his scholarship for his doctoral studies, granted jointly by CNPq and CAPES.

References

- Alber, Ya.I., Iusem, A.N., Solodov, M.V. On the projected subgradient method for nonsmooth convex optimization in a Hilbert space. *Mathematical Programming* 81 (1998) 23-37.
- [2] Aubin, J.E. L'Analyse non linéaire et ses motivations économiques. Masson, Paris, (1984).
- [3] Alber, Ya.I. Recurrence relations and variational inequalities. Soviet Mathematicheskie Doklady 27 (1983) 511-517.
- Baiocchi, C., Capelo, A. Variational and Quasivariational Inequalities. Applications to Free Boundary Problems. Wiley, New York (1988).
- [5] Bao, T.Q., Khanh, P.Q. A projection-type algorithm for pseudomonotone nonlipschitzian multivalued variational inequalities. Nonconvex Optimization and Its Applications 77 (2005) 113-129.
- [6] Bello Cruz, J.Y., Iusem, A.N. An explicit algorithm for monotone variational inequalities. *Optimization* 61 (2012) 855-871.
- [7] Bello Cruz, J.Y., Iusem, A.N. A strongly convergent direct method for monotone variational inequalities in Hilbert spaces. *Numerical Functional Analysis and Optimization* **30** (2009) 23-36.
- [8] Bello Cruz, J.Y., Iusem, A.N. Convergence of direct methods for paramonotone variational inequalities. *Computational Optimization and Application* 46 (2010) 247-263.
- Bello Cruz, J.Y., Iusem, A.N. Full convergence of an approximate projection method for nonsmooth variational inequalities. *Mathematics and Computers in Simulation* (2010), doi: 10.1016/j.matcom.2010.05.026
- [10] Ermoliev, Yu.M. On the method of generalized stochastic gradients and quasi-Fejér sequences. Cybernetics 5 (1969) 208-220.
- [11] Facchinei, F., Pang, J.S. Finite-dimensional Variational Inequalities and Complementarity Problems. Springer, Berlin (2003).

- [12] Fang, S.C., Petersen, E.L. Generalized variational inequalities. Journal of Optimization Theory and Applications 38 (1982) 363-383.
- [13] Fukushima, M. A Relaxed projection for variational inequalities. *Mathematical Programming* 35 (1986) 58-70.
- [14] Harker, P.T., Pang, J.S. Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications, *Mathematical Programming* 48 (1990) 161-220.
- [15] Iusem, A.N. On some properties of paramonotone operators. Journal of Convex Analysis 5 (1998) 269-278.
- [16] Iusem, A.N., Lucambio Pérez, L.R. An extragradient-type method for non-smooth variational inequalities. Optimization 48 (2000) 309-332.
- [17] Iusem, A.N., Svaiter, B.F. A variant of Korpelevich's method for variational inequalities with a new search strategy. *Optimization* 42 (1997) 309-321; Addendum *Optimization* 43 (1998) 85.
- [18] Iusem, A.N., Svaiter, B.F., Teboulle, M. Entropy-like proximal methods in convex programming. Mathematics of Operations Research 19 (1994) 790-814.
- [19] Kinderlehrer, D., Stampacchia, G. An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980).
- [20] Khobotov, E.N. Modifications of the extragradient method for solving variational inequalities and certain optimization problems. USSR Computational Mathematics and Mathematical Physics 27,5 (1987) 120-127.
- [21] Korpelevich, G.M. The extragradient method for finding saddle points and other problems. Ekonomika i Matematcheskie Metody 12 (1976) 747-756.
- [22] Konnov, I.V. Splitting-type method for systems of variational inequalities. Computers and Operations Research 33 (2006) 520-534.
- [23] Konnov, I.V. Combined Relaxation Methods for Variational Inequalities. Springer-Verlag, Berlin, 2001.
- [24] Lassonde, Marc., Nagesseur, Ludovic. Extended forward-backward agorithm. Journal of Mathematical Analysis and Applications 403 (2013) 167-172.
- [25] Lions, P.L., Mercier, B. Splitting algorithms for the sum of two nonlinear operators. SIAM of Journal Numerical Analysis. 16 (1979) 964-979.
- [26] Moudafi, Abdellatif. On the convergence of splitting proximal methods for equilibrium problems in Hilbert spaces. Journal of Mathematical Analysis and Applications 359 (2009) 508-513.
- [27] Nedic, A., Bertsekas, D. Incremental subgradient methods for nondifferentiable optimization SIAM Journal of Optimization, 12 (2001), 109-138.
- [28] Passty, G.B. Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. Journal of Mathematical Analysis and Applications 72 (1979) 383-390.

- [29] Shih, M.H., Tan, K.K. Browder-Hartmann-Stampacchia variational inequalities for multi-valued monotone operators. *Journal of Mathematical Analysis and Applications* **134** (1988) 431-440.
- [30] Solodov, M. V., Svaiter, B.F. A hybrid approximate Extragradient-Proximal Point Algorithm using the enlargement of a maximal monotone operator. *Set-Valued Analysis* 7 (1999) 323-345.
- [31] Solodov, M.V., Svaiter, B.F. A new projection method for monotone variational inequality problems. SIAM Journal on Control and Optimization **37** (1999) 765-776.
- [32] Solodov, M.V., Tseng, P. Modified projection-type methods for monotone variational inequalities. SIAM Journal on Control and Optimization 34 (1996) 1814-1830.
- [33] Todd, M.J. The Computations of Fixed Points and Applications. Springer, Berlin (1976).
- [34] Tseng, P. A modified forward-backward splitting method for maximal monotone mappings. SIAM on Journal Control Optimization. 38 (2000) 431-446.
- [35] Zaraytonelo, E. H. Projections on convex sets in Hilbert space and spectral theory. in Contributions to Nonlinear Functional Analysis, E. Zarantonello, ed., Academic Press, New York (1971) 237-424.
- [36] Zhang, Hui, Cheng, Lizhi. Projective splitting methods for sums of maximal monotone operators with applications. *Journal of Mathematical Analysis and Applications* **406** (2013) 323-334.