
A direct splitting method for nonsmooth variational inequalities

J. Y. Bello Cruz∗ R. Dı́az Millán†

July 19, 2013

Abstract

In this paper, we propose a direct splitting method for solving nonsmooth variational inequality
problems in Hilbert spaces. The weak convergence is established, when the operator is the sum of two
point-to-set and monotone operators. The proposed method is a natural extension of the incremental
subgradient method for nondifferentiable optimization, which explores strongly the structure of the op-
erator using projected subgradient-like techniques. The advantage of our method is that any nontrivial
subproblem must be solved, like the evaluation of the resolvent operator. The necessity to compute
proximal iterations is the main difficult of others schemes for solving this kind of problem.

Keywords: Monotone variational inequalities, Maximal monotone operators, Splitting method, Projec-
tion methods.
Mathematical Subject Classification (2008): 90C47, 49J35.

1 Introduction

First of all, we introduce the notation. The inner product in the Hilbert space H is denoted by ⟨·, ·⟩ and the
norm induced by the inner product by ∥ · ∥. For C a nonempty, convex and closed subset of H, we define
the orthogonal projection of x onto C by PC(x), as the unique point in C, such that ∥PC(x)− y∥ ≤ ∥x− y∥
for all y ∈ C. Recall that an operator T : dom(T ) ⊆ H ⇒ H is monotone if, for all (x, u), (y, v) ∈ Gr(T ),
we have ⟨x− y, u− v⟩ ≥ 0, and it is maximal if T has no proper monotone extension in the graph inclusion
sense.

In this paper, we introduce a direct method for solving nonsmooth variational inequality problem for
T and C, where T is point-to-set and sum of two maximal monotone operators, i.e, T = T1 + T2 where
Ti : dom(Ti) ⊆ H ⇒ H for i = 1, 2 and C ⊆ dom(T1) ∩ dom(T2). The variational inequality problem for T
and C consists in:

Find x∗ ∈ C such that ∃u∗ ∈ T (x∗), with ⟨u∗, x− x∗⟩ ≥ 0 ∀x ∈ C. (1)

The solution set of problem (1) is denoted by S∗.
This problem has been a classical subject in economics, operations research and mathematical physics;

see [2, 4, 14]. It is closely related with many problems of nonlinear analysis, such as optimization, com-
plementarity and equilibrium problems and finding fixed points; see [2, 12, 33, 19]. An excellent survey of
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methods for variational inequality problems can be found in [11]. Many methods have been proposed to
solve problem (1), with T point-to-point; see [15, 17, 20, 21, 31, 32], and for T point-to-set; see [5, 16, 23].

Here we are interested in methods that explore the structure of T . These kind of methods are called
splitting, since which each iteration involves only the individual operators, T1 or/and T2, but not the sum
T1 + T2.

The variational inequality problems are related with the inclusion problems, in fact, when the feasible set
is the whole space, the problem (1) becomes to the inclusion problem, i.e., find x∗ ∈ H such that 0 ∈ T (x∗).
In the case that the operator T = T1+T2 have been proposed many algorithms solving this special inclusion
problem; see [28, 34, 30, 25, 22, 26, 24, 36]. However in all of them, the resolvent operator (I + αT1)

−1

or/and (I + αT2)
−1, α > 0, must be evaluated in each iteration. It is important to mention that this

proximal-like iteration is a nontrivial problem, which demands a hard work in the computational point of
view. Our algorithm avoids this difficulty replacing it by subgradient-like projection steps, for which the
computational cost is negligible compared with proximal-like step. This represent a significative advantage
in the implementation and theoretical sense.

This work is inspired by the incremental subgradient method for nondifferentiable optimization, proposed
in [27] and it uses a similar idea exposed in [6, 8]. For the case of one operator is known that a natural
extension of the subgradient iteration (one step) fails for monotone operators; see [8, 9]. However, as will
shown, an extra step is an option in order to prove the weak convergence of the sequence generated by the
proposed algorithm.

This paper is organized as follows. The next section provides some preliminary results that will be used
in the remainder of this paper. The direct Algorithm A is presented in Section 3 and Subsection 3.1 contains
the convergence analysis of the algorithm. Finally in fourth section, the final remarks are presented.

2 Preliminaries

In this section, we present some definitions and results that are needed for the convergence analysis of the
proposed method. First, we state two well known facts on orthogonal projections.

Lemma 1. Let C be any nonempty closed and convex set in H. For all x, y ∈ H and all z ∈ C, the following
properties hold:

i) ∥PC(x)− PC(y)∥ ≤ ∥x− y∥.

ii) ⟨x− PC(x), z − PC(x)⟩ ≤ 0.

Proof. See Lemma 1.1 and 1.2 in [35].

We next deal with the so called quasi-Fejér convergence and its properties.

Definition 1. Let C be a nonempty convex and closed subset of H. A sequence {xk} is said to be quasi-Fejér
convergent to C, if and only if, for all x ∈ C, there exist k0 ≥ 0 and a summable sequence {δk} ⊂ R+, such
that

∥xk+1 − x∥2 ≤ ∥xk − x∥2 + δk,

for all k ≥ k0.

This definition originates in [10] and has been further elaborated in [18]. A useful result on quasi-Fejér
sequences is the following.
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Proposition 1. If {xk} is quasi-Fejér convergent to C then:

i) {xk} is bounded;

ii) for each x ∈ C, {∥xk − x∥} converges;

iii) if all weak cluster point of {xk} belong to C, then the sequence {xk} is weakly convergent.

Proof. See Proposition 1 in [1].

Now, we remind one property on quasi-Fejér sequences, which will be useful for proving that the sequence
generated by our algorithm converges weakly to some point belong to S∗.

Lemma 2. If {xk} is quasi-Fejér convergent C, then {PC(x
k)} is strongly convergent.

Proof. See Lemma 2 in [6].

We also need the following results on maximal monotone operators and monotone variational inequalities.

Lemma 3. Let T : H → P(H) be a maximal monotone operator and C a closed and convex set. Then S∗,
if nonempty, is closed and convex.

Proof. See Lemma 2.4(ii) in [7].

The next lemma will be useful for proving that all weak cluster points of the sequence generated by our
algorithm belong to S∗.

Lemma 4. If T : H → P(H) is maximal monotone, then

S∗ = {x ∈ C : ⟨v, y − x⟩ ≥ 0 , ∀ y ∈ C, ∀ v ∈ T (y)}. (2)

Proof. See Lemma 3 in [29].

Finally, we need the following elementary result on sequence averages.

Proposition 2. Let {pk} ⊂ H be a sequence strongly convergent to p̃. Take nonnegative real numbers ζk,j
(k ≥ 0, 0 ≤ j ≤ k) such that limk→∞ ζk,j = 0 for all j and

∑k
j=0 ζk,j = 1 for all k. Define

xk :=
k∑

j=0

ζk,jp
j .

Then, {xk} also converges strongly to p̃.

Proof. See Proposition 3 in [6].
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3 A splitting direct method

Our algorithm requires an exogenous sequence {αk} ⊂ R++ satisfying

∞∑
k=0

αk = ∞,

∞∑
k=0

α2
k < ∞. (3)

This selection rule has been considered several times in the literature; see, for instance, [1, 3, 13, 6, 8, 9].
The algorithm is defined as:

Algorithm A

Initialization step: Take x0 ∈ C. Define z0 := x0 and σ0 := α0.

Iterative step: Given xk, zk and σk. Compute:

yk = PC

(
zk − αkw

k
1

)
(4)

and
zk+1 = PC

(
yk − αkv

k
2

)
, (5)

where wk
1 ∈ T1(z

k) , vk2 ∈ T2(y
k). Set xk+1 as

xk+1 =

(
1− αk+1

σk+1

)
xk +

αk+1

σk+1
zk+1, (6)

with σk+1 := σk + αk+1.

Stop criteria: If zk+1 = yk = zk, then stop.

We assume the following boundedness property for the operators T1 and T2.
Assumption H: There exists a positive scalar M such that

∥u∥ ≤ M, ∀u ∈ Ti(z
k) ∪ Ti(y

k), i = 1, 2 ∀k. (7)

This assumption holds automatically in finite-dimensional spaces, when dom(T1) = dom(T2) = H or
C ⊂ int(dom(T1) ∩ dom(T2)). We also mention that Assumption H is required in the analysis of [27] for
proving convergence of the incremental subgradient method and in others similar schemes; see [6, 9].

3.1 Convergence analysis

We start with the good definition of the stoping criteria.

Proposition 3. If Algorithm A stop in the step k, then zk ∈ S∗.

Proof. If zk+1 = yk, then using Lemma 1(ii) in (5) we have, ⟨yk − αkv
k
2 − yk, x − yk⟩ ≥ 0 for all x ∈ C,

hence, ⟨vk2 , yk − x⟩ ≤ 0. Moreover, if zk = yk imply, using again Lemma 1(ii) in (4), that, ⟨wk
1 , y

k − x⟩ ≤ 0,
for all x ∈ C. Then, ⟨vk, x− yk⟩ ≤ 0 for all x ∈ C and vk = wk

1 + vk2 ∈ T (yk), showing that yk ∈ S∗.

From now on, we assume that Algorithm A generates infinite sequences. We present an important
algebraic property on the auxiliary sequence {zk} obtained by the Algorithm A.
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Proposition 4. Let {zk} be the auxiliary sequence generated by the Algorithm H. Then, for each (x, u) ∈
Gr(T ), with x ∈ C, there exists a constant L > 0 such that,

∥zk+1 − x∥2 ≤ ∥zk − x∥2 + Lα2
k − 2αk⟨u, zk − x⟩, (8)

for all k.

Proof. For each x ∈ C, take u ∈ T (x), such that u = u1 + u2, with u1 ∈ T1(x) and u2 ∈ T2(x). Choosing M
like in Assumption H, we have

∥zk+1 − x∥2 =
∥∥PC

(
yk − αkv

k
2

)
− PC(x)

∥∥2 ≤
∥∥(yk − αkv

k
2

)
− x

∥∥2
≤ ∥yk − x∥2 +M2α2

k − 2αk ⟨vk2 , yk − x⟩
≤ ∥yk − x∥2 +M2α2

k − 2αk ⟨u2, y
k − x⟩

= ∥PC

(
zk − αkw

k
1

)
− PC(x)∥2 +M2α2

k − 2αk⟨u2, y
k − x⟩

≤ ∥zk − x∥2 + 2M2α2
k − 2αk

(
⟨u2, y

k − x⟩+ ⟨u1, z
k − x⟩

)
= ∥zk − x∥2 + 2M2α2

k − 2αk⟨u, zk − x⟩ − 2αk⟨u2, y
k − zk⟩

≤ ∥zk − x∥2 + 2M2α2
k − 2αk⟨u, zk − x⟩+ 2αk∥u2∥∥yk − zk∥

≤ ∥zk − x∥2 + (2M2 +M∥u2∥)α2
k − 2αk⟨u, zk − x⟩,

where we used Lemma 1(i) in the first inequality, the monotonicity of T2 in the third one, Lemma 1(i) and
the monotonicity of T1 in the fourth one, and the last inequality come from

∥yk − zk∥ = ∥PC

(
zk − αkw

k
1

)
− PC

(
zk

)
∥ ≤ αkM, (9)

using Assumption H and Lemma 1(i). Defining L = 2M2 + 2M∥u2∥, we get (8).

From now on S∗ is nonempty. We prove the quasi-Fejér property on the auxiliary sequence {zk} generated
by Algorithm A.

Proposition 5. The auxiliary sequence {zk} generated by Algorithm A is quasi-Fejér convergent to S∗ and
bounded.

Proof. Take x̄ ∈ S∗. Thus, there exists ū ∈ T (x̄) such that

⟨ū, x− x̄⟩ ≥ 0 ∀x ∈ C. (10)

By Proposition 4, with x = x̄ and u = ū, and using that zk ∈ C for all k, we have

∥zk+1 − x̄∥2 ≤ ∥zk − x̄∥2 + Lα2
k − 2αk⟨ū, zk − x̄⟩ ≤ ∥zk − x̄∥2 + Lα2

k.

Establishing that {zk} is quasi-Fejér convergent to S∗. The boundedness of {zk} follows from Proposition
1(i).

Corollary 1. Let {xk} be the sequence generated by Algorithm A. Then,

i) xk =
1

σk

k∑
i=0

αiz
i, for all k;
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ii) {xk} is bounded.

Proof.

(i) We proceed by induction on k. For k = 0, we have x0 = z0 by definition. By hypothesis of induction
assume that

xk =
1

σk

k∑
i=0

αiz
k. (11)

Since σk+1 = σk + αk+1, we get

xk+1 =
σk

σk+1
xk +

αk+1

σk+1
zk+1.

By (11) and the above equation, we have

xk+1 =
1

σk+1

k∑
i=1

αiz
i +

αk+1

σk+1
zk+1 =

1

σk+1

k+1∑
i=0

αiz
i,

proving the assertion.

(ii) Using Proposition 5 and Proposition 1(i), we have the boundedness of {zk}. We may assume that there
exists R > 0 such that ∥zk∥ ≤ R, for all k. By the previous item,

∥xk∥ ≤ 1

σk

k∑
i=0

αi∥zi∥ ≤ R,

for all k.

Now we prove that the clusters points of the sequence generated by Algorithm A belong to the solution set.

Theorem 1. All weak cluster points of {xk} belong to S∗.

Proof. Take any x ∈ C and u ∈ T (x). Rewriting (8) in Proposition 4, we get,

∥zi+1 − x∥2 − ∥zi − x∥2 − Lα2
i ≤ 2αi⟨u, x− zi⟩, (12)

for all i. Now summing (12), from i = 0 to i = k, and dividing by σk, we have

1

σk

k∑
i=0

(
∥zi+1 − x∥2 − ∥zi − x∥2 − Lα2

i

)
≤ 2

⟨
u,

1

σk

k∑
i=0

αi(x− zi)

⟩
.

Using Corollary 1(i) and define S :=
∑∞

i=0 α
2
i , we get

∥zk+1 − x∥2 − ∥z0 − x∥2 − LS

σk
≤ 2⟨u, x− xk⟩, (13)

for all k.
Let x̄ be any weak cluster of {xk}, that exist, by Corollary 1(ii). Since {zk} is bounded and limk→∞ σk =

∞, then taking limits in (13), over any weak convergent subsequence to x̄, we have ⟨u, x − x̄⟩ ≥ 0 for all
x ∈ C and u ∈ T (x). By Lemma 4, x̄ belongs to the solution set. Hence, all cluster points of {xk} belong to
S∗.
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Finally, we prove our main result.

Theorem 2. Define x∗ = limk→∞ PS∗(zk). Then, either S∗ ̸= ∅ and {xk} converges weakly to x∗, or S∗ = ∅
and limk→∞ ∥xk∥ = ∞.

Proof. Assume that S∗ ̸= ∅ and define pk := PS∗(zk). Note that pk, the orthogonal projection of zk onto
S∗, exists since the solution set S∗ is nonempty by assumption, and closed and convex by Lemma 3. By
Proposition 1, {zk} is quasi-Fejér convergent to S∗. Therefore, it follows from Lemma 2 that {PS∗(zk)} is
strongly convergent. Set

x∗ := lim
k→∞

PS∗(zk) = lim
k→∞

pk. (14)

By Corollary 1(ii), {xk} is bounded and by Theorem 1 each of its weak cluster points belong to S∗. Let
{xik} be any weakly convergent subsequence of {xk}, and let x̄ ∈ S∗ be its weak limit. It suffices to show
that x̄ = x∗ for establishing the weak convergence of {xk}.

By Lemma 1(ii) we have that ⟨x̄− pj , zj − pj⟩ ≤ 0 for all j. Let ξ = sup0≤j≤∞ ∥zj − pj∥. Since {zk} is
bounded by Proposition 5, we get that ξ < ∞. Using Cauchy-Schwarz,

⟨x̄− x∗, zj − pj⟩ ≤ ⟨pj − x∗, zj − pj⟩ ≤ ξ ∥pj − x∗∥, (15)

for all j. Multiplying (15) by
αj

σk
and summing from j = 0 to k, we get from Corollary 1(i),⟨

x̄− x∗, xk − 1

σk

k∑
j=0

αjp
j

⟩
≤ ξ

σk

k∑
j=0

αj∥pj − x∗∥. (16)

Define
ζk,j :=

αj

σk
(k ≥ 0, 0 ≤ j ≤ k).

It follows from the definition of σk, that limk→∞ ζk,j = 0 for all j and
∑k

j=0 ζk,j = 1 for all k. Using (14)

and Proposition 2 with pk =
∑k

j=0 ζk,jp
j = 1

σk

∑k
j=0 αjp

j , we have

x∗ = lim
k→∞

pk = lim
k→∞

1

σk

k∑
j=0

αjp
j , (17)

and

lim
k→∞

1

σk

k∑
j=0

αj∥pj − x∗∥ = 0. (18)

Taking limits in (16) over the subsequence {ik}, and using (17) and (18), we get ⟨x̄− x∗, x̄− x∗⟩ ≤ 0,
implying that x̄ = x∗.

If S∗ = ∅, then by Theorem 1 no subsequence of {xk} can be bounded, and hence limk→∞ ∥xk∥ = ∞.
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4 Final Remarks

We present a direct splitting method for nonsmooth variational inequality, where the operator is a sum of two
monotone operators. In the proposed scheme we do not evaluate the resolvent of any individual operator,
which represents an important advantage. As a matter for future research we leave the issue of finding the
stepsizes though an Armijo-type line search instead of defining them exogenously, at least in the smooth
case, i.e., when T is point-to-point.
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