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Introduction

It is classically known in the 2-dimensional setting the correspondence that exists be-

tween conformal geometry and complex analysis on a surface, i.e. there is a well estab-

lished ‘dictionary’ between both theories. In attempting a higher dimensional analogue,

we consider over an oriented Riemannian 4-manifold M the bundle of compatible com-

plex structures, the so called Twistor Space of M denoted by Z. It is a 6-dimensional

manifold which comes endowed with a canonical almost-complex structure. Twistor

Theory concerns with transforming questions about the differential geometry of M into

questions about the complex geometry of Z. The fundamental example of this theory

is given by the following theorem, due to Penrose:

Theorem 1 ([Pen], [AHS]) Let M be an oriented Riemannian 4-manifold and Z its

twistor space. Then the almost-complex structure on Z is integrable (i.e. Z becomes a

complex manifold) if and only if the Weyl curvature tensor W of the metric on M is

anti-self-dual with respect to the Hodge-star operator, i.e. ∗W = −W .

Metrics satisfying the property above stated are called Anti-Self-Dual metrics. Extra

information about the geometry of M provides us extra information about the holo-

morphic structure of Z and viceversa. The most important feature about the twistor

space Z is that it supports a real analytic family of projective lines (the fibres of the

projection Z →M), known as the twistor lines.

The link between 4-dimensional Riemannian geometry and 3-dimensional complex

geometry given by the theorem above is called the Penrose Transform. It has several and

remarkable applications. Recall that every finitely presentable group is the fundamental

group of a compact smooth 4-manifold. Theorem 1, combined with a result of Taubes

[Tau] about the existence of anti-self-dual metrics, has as consequence that such a group
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is also the fundamental group of a compact complex 3-manifold (a twistor space). There

is no known proof of this fact using complex geometry techniques. Since the fundamental

groups of complex algebraic manifolds satisfy highly non-trivial constraints, twistor

spaces open up a new world of complex transcendental manifolds. In fact, a theorem

of Hitchin [Hit2] asserts that the only compact anti-self-dual manifolds with Kählerian

twistor spaces are the round sphere S4 (in which Z = CP 3) and the reverse-oriented

projective plane CP 2 with the Fubini-Study metric (where Z is given by the flag manifold

F3). On the other hand, in the context of Mathematical Physics, the solutions of many

field equations on an anti-self-dual manifold, notably the Yang-Mills equations, can be

translated into holomorphic data on the twistor space. Also, in Four-manifold Topology,

the Donaldson’s polynomial invariants of a 4-manifold M , in the anti-self-dual case,

give no more information than is already contained in the holomorphic structure of Z.

Motivated by these variety of results involving anti-self-dual manifolds, we are interested

in the following problem:

Problem 1 To find explicit anti-self-dual metrics on 4-manifolds, i.e. to solve the anti-

self-dual equation ∗W = −W .

The results of Taubes and others about the existence of anti-self-dual metrics are based

on deep results of the qualitative theory of non-linear elliptic PDEs, as the outcome of

a large and very difficult theory. Thus, it will be of great interest finding anti-self-dual

metrics by using alternative methods. When the geometric structure of M is invariant

by a free action of the group SU2 , the lifted action of SU2 on Z induces a family of

meromorphic connections on the twistor lines [Hit1]. The connection varies as the lines

vary, but the monodromy remains the same. A family of connections with constant

monodromy is called an isomonodromic deformation. The differential equation that

determines the behaviour of an isomonodromic deformation is the Painlevé VI equation:

d2y

dx2
=

1

2

(
1

y
+

1

y − 1
+

1

y − x

)(
dy

dx

)2

−
(

1

x
+

1

x− 1
+

1

y − x

)
dy

dx

+
y(y − 1)(y − x)
x2(x− 1)2

(
α+ β

x

y2
+ γ

x− 1

(y − 1)2
+ δ

x(x− 1)

(y − x)2

)
,

where α, β, γ, δ are parameters. It turns out that, by using twistor methods, we can go

from complex analysis back to differential geometry and obtain explicit anti-self-dual
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metrics from explicit solutions of Painlevé VI equation. In analogy with the work of

Hitchin [Hit1], in this work we obtain the following result:

Theorem 2 For λ ∈ R\{0} given, let y be a real solution of the Painlevé VI equation

with parameters (α, β, γ, δ) =
(

1
2
(1− 2λ)2,−2λ2 , 2λ2 , 1

2
(1− 4λ2)

)
, defined on the in-

terval (a, b). Then, for {µ1, µ2, µ3} an orthonormal basis of S U2, the metric

g =
(x− 1) dµ2

1

λ2 + u2u3 − y−x
2x(y−1)

(λ2 − u2
2)−

x(y−1)
2(y−x)

(λ2 − u2
3)

− x dµ2
2

λ2 + u1u3 + y−x
2(x−1)y

(λ2 − u2
1) + (x−1)y
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(λ2 − u2

3)

+
dµ2

3

λ2 + u1u2 − x(y−1)
2(x−1)y

(λ2 − u2
1)−

(x−1)y
2x(y−1)

(λ2 − u2
2)

+
dx2

2x(x− 1)
,

is an ASD metric on SU2 × (a, b), where

u1 =
1
4λ
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(
dy

dx

)2

− x− 1
y − x

(
1− 2λ

2λ
y − 1

2
x

)
dy

dx

− 1− 2λ

2
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u3 =
1
4λ

x(x− 1)
y(y − 1)
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dy

dx
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− 1− 2λ

2λ

dy

dx
+

(1− 2λ)2

4λ
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Hitchin’s list of Einstein anti-self-dual metrics founded in [Hit1] corresponds to solu-

tions of the Painlevé VI equation above with λ = 1
4
. Thus, in the search of new explicit

examples of anti-self dual metrics we must consider other values for λ. As part of this

work we obtain a couple of new explicit examples:
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Theorem 3 The solutions of

−y2(2y − 3)± 2y(y − 1)
√
y(y − 1) = x ,

satisfies the Painlevé VI equation with parameters (α, β, γ, δ) =
(

9
32
,− 1

32
, 1

32
, 15

32

)
, i.e.

λ = 1
8
. They generate anti-self-dual metrics which are not Einstein.

The first part of this work is devoted to the theory of connections over fiber bundles

(the so called Gauge Theory) and to the self-duality phenomena that arises in this

context when the base space is a Riemannian 4-manifold. We develop here all the

rudiments necessaries for the study of twistor spaces to be realized in the subsequent

chapters. Standard references for Gauge Theory are [KoNo] and [DFN]. Self-duality

theory can be found in [DoKr] and [FrMo]. However, there is some full-detailed accounts

here (which are useful in other parts of this work) that are not present in these references.

The second part deals with the theory of twistor spaces and their properties. Classical

proofs of Theorem 1 involves rather sophisticated concepts and details, like projective

spinors and group representations in tensorial algebras, to give an example. Thus, we

consider that it is worth to provide a more elementary (though more extensive) proof.

This is done here. This part concludes by describing a procedure for retrieve the anti-

self-dual structure on a 4-manifold in terms of its twistor space. This procedure is

known as the Reverse Penrose Transform. It is of fundamental importance for finding

anti-self-dual metrics in the last part of this work.

The last part of this work establishes the link before mentioned between anti-self-dual

metrics and solutions of Painlevé VI equation. The study of SU2-invariant anti-self-dual

metrics is developed here (based in the reference [Hit1]) and full details are given. This

part finishes with the proof of Theorem 2 and Theorem 3.
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Chapter 1

Gauge Theory and Self-Duality

1.1 Connections

1.1.1 Definitions and Fundamental Facts

Let G be a Lie group with identity element e and Lie algebra G. Denote by Ad the

adjoint representation of G in AutG: Ad(g).X = g.X.g−1. Denote by ωMC the Maurer-

Cartan form of G, i.e. the only left-invariant 1-form on G with values in G such that

(ωMC)e is the identity linear map Id : TeG → G (in other words, (ωMC)gX = g−1.X).

Let M be a smooth manifold and let π : P → M (or simply P ) be a smooth principal

G-bundle over M . As usual, TpP denotes the tangent space of P at p, T v
p P denotes

the vertical tangent space of P at p (i.e. the tangent space of the fibre π−1(π(p)) at

the point p) and Ωk
M(E) denotes the space of the k-forms on M with values in a vector

bundle E (the case k = 0 is just the space of sections of E).

A connection A on P can be defined in three equivalent ways:

(1) As a distribution of ‘horizontal’ subspaces HA ⊂ TP transverse to the fibres of

π (i.e. for each p ∈ P we have a decomposition TpP = T v
p P ⊕ (HA)p) which is

preserved by the right-action of G on P .

(2) As a ‘connection form’ on P , i.e. a 1-form ωA on P with values in G satisfying the

following properties:

7



(a) For any p ∈ P the embedding Lp : G→ P given by Lp(g) = p.g is such that

L∗pωA = ωMC.

(b) The right-multiplication by G transforms the 1-form ωA in the same way that

it transforms the Maurer-Cartan form ωMC, i.e. via the adjoint representation:

(R∗
gωA)pX = Ad(g−1).((ωA)pX) = g−1.(ωA)pX.g.

(3) As a covariant derivative ∇A on a vector bundle πE : E → M associated to

P and to a linear (locally faithful) representation G
ρ−→ AutV for some vector

space V . In other words, E is the vector bundle with fibre V whose transition

functions are the same as those of P after composing with ρ and ∇A is a linear map

∇A : Ω0
M(E) → Ω1

M(E) satisfying the Leibniz rule ∇A(f.s) = f.∇As + df.s, ∀f ∈
C∞(M), s ∈ Ω0

M(E). This covariant derivative must be compatible with the

induced ‘G-structure’ on E in the following sense: the action G× V → V induces

in a natural way an application P × V → E. By considering this application

P × V → E as an ‘action’ itself, the G-compatibility condition of ∇A means

that the induced ‘orbits’ Ov := {p.v, p ∈ P} must be preserved by the parallel

transport of ∇A.

We see the equivalence of these three viewpoints as follows:

To go from (1) to (2) we define (ωA)p : TpP → G as the composition

TpP
πv−→ T v

p P
(d(Lp)e)−1

−−−−−−→ G ,

where the application πv is the vertical projection corresponding to the decomposition

TpP = T v
p P ⊕ (HA)p of (1). The verification for ωA of properties (a) and (b) of (2) is a

straightforward computation.

To go from (2) to (1) we consider ωA ∈ Ω1
P (G) as in (2) and for any p ∈ P we

define (HA)p = Ker(ωA)p. Since L∗pωA = ωMC, the restriction of (ωA)p to T v
p P is an

isomorphism on G, therefore TpP = T v
p P ⊕ (HA)p. From the naturality of the pull-back

it follows that Rg takes Ker(ωA)p on Ker(R∗
gωA)pg. On the other hand, property (b)

gives us Ker(R∗
gωA)pg = Ker(Ad(g).(ωA)pg) = Ker(ωA)pg. So, Rg takes (HA)p on (HA)pg

and therefore HA is a connection in the sense of (1).
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It is not hard to see that the process (2)→(1) is the inverse process of (1)→(2) and

vice versa.

In order to establish the identification (2)↔ (3), we shall see what happens at the

particular case of the trivial bundle P = M ×G:

Let ωA ∈ Ω1
M×G(G) be a connection on M × G in the sense of (2) and let p = (x, h)

be any point of M ×G.

Applying the property (a) in p we have for any g ∈ G and τ ∈ TgG,

(ωMC)g(τ) = (L∗pωA)g(τ) = (ωA)(x,hg)(0, dLh(τ)) .

In particular, taking p = (x, e), we obtain

(ωA)(x,g)(0, τ) = (ωMC)g(τ) . (1.1)

Applying the property (b) in p we have for any g ∈ G and X ∈ Tp(M ×G),

(R∗
gωA)pX = g−1.(ωA)pX.g .

In particular, taking p = (x, e),X = (v, 0), v ∈ TxM and observing that (R∗
gωA)(x,e)(v, 0) =

(ωA)(x,g)(v, 0), we obtain (ωA)(x,g)(v, 0) = g−1.(ωA)(x,e)(v, 0).g. Consider the inclusion

i : M →M ×G, i(x) = (x, e) and define A ∈ Ω1
M(G) as A := i∗ωA . The last expression

can thus be written as

(ωA)(x,g)(v, 0) = g−1.Ax(v).g . (1.2)

Putting (1.1) and (1.2) together, we obtain for any p = (x, g) ∈M ×G and (v, τ) ∈
T(x,g)(M ×G) the formula

(ωA)(x,g)(v, τ) = (ωMC)g(τ) + g−1.Ax(v).g . (1.3)

Thus, all the data of the connection ωA on M ×G is determined by the 1-form A on

M . So we get an identification

{Connection forms on M ×G} ←→ Ω1
M(G) (1.4)
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by taking ωA on i∗ωA = A in one direction and by noticing, in the other direction, that

for any A ∈ Ω1
M(G) the 1-form (ωA)(x,g)(v, τ) := (ωMC)g(τ) + g−1.Ax(v).g on M × G is

actually a connection form.

On the other hand, for a given linear locally faithful representation G
ρ−→ AutV , the

vector bundle E associated to M × G and to this representation is the trivial bundle

M × V . This representation also induces the Lie algebra inclusion G
dρe
↪−→ EndV , and

from now on we shall identify G with its image in EndV via dρe. From this inclusion, we

can construct for each A ∈ Ω1
M(G) a covariant derivative ∇A on M × V as ∇A := d+A,

where A is considered as an element of Ω1
M(EndV ), d is the usual differential operator

and a section s ∈ Ω0
M(M × V ) is considered as a vector-valued function s : M → V ,

so ∇As = ds + A.s. It is straightforward to verify that ∇A is linear and satisfies the

Leibniz rule, so ∇A is in fact a covariant derivative. It can be proved by means of parallel

transport arguments that for A ∈ Ω1
M(EndV ), the more restrictive condition A ∈ Ω1

M(G)
is equivalent to ∇A = d + A be compatible with the G-structure on M × V . Also, it is

not hard to see by using the Leibniz rule that for a covariant derivative ∇ on M × V
and for f ∈ C∞(M) we have (∇−d)(f.s) = f.(∇−d)(s), so (∇−d) : Ω0

M(V )→ Ω1
M(V )

actually defines a 1-form A ∈ Ω1
M(EndV ) by setting for any (x0, v0) ∈ TM and s0 ∈ V ,

Ax0(v0).s0 := (∇s)x0(v0)− dsx0(v0), where s is any section such that s(x0) = s0. If the

G-compatibility condition is imposed on ∇, we have already noticed that this implies

A ∈ Ω1
M(G).

We have therefore obtained an identification

Ω1
M(G)←→ {G-compatible covariant derivatives on M × V } (1.5)

taking A on ∇A = d+ A in one direction and ∇ on A = ∇− d in the other direction.

Everything we have done above allows us to establish the correspondence (2)↔ (3)

for the case of the trivial bundle P = M ×G and will enable us to establish the corre-

spondence (2)↔(3) for the general case:

To go from definition (2) to (3), we take ωA ∈ Ω1
P (G) as in (2), a given linear locally

faithful representationG
ρ−→ AutV and the respective associated vector bundle E. Define

10



the covariant derivative ∇A on E locally: for any local trivialization ϕα : Uα× G → P

defined on an open set Uα ⊂ M , the 1-form ϕ∗αωA ∈ Ω1
Uα×G(G) is a connection form on

the trivial bundle Uα× G. On behalf of the identification (1.4) above we can consider

the 1-form A
α ∈ Ω1

Uα
(G) associated to ϕ∗αωA and define the covariant derivative ∇A on

E in the associated trivialization ϕα : Uα× V → E as

∇A,α := d+ A
α

. (1.6)

In order to prove that the covariant derivative ∇A : Ω0
M(E)→ Ω1

M(E) is a globally well-

defined operator, we shall consider the two local trivializations ϕα : Uα× G → P and

ϕβ : Uβ×G→ P and prove that ∇A,α and ∇A,β actually define the same operator ∇A by

finding the relationship between A
α

and A
β

in Uα∩ Uβ :

According to formula (1.3), for the connection forms ϕ∗αωA and ϕ∗βωA we have the

expressions

(ϕ∗αωA)(x,g)(v, τ) = (ωMC)g(τ) + g−1.A
α

x(v).g ,

for any p = (x, g) ∈ Uα×G, (v, τ) ∈ T(x,g)(Uα×G), and

(ϕ∗βωA)(y,h)(u, σ) = (ωMC)h(σ) + h−1.A
β

y(u).h ,

for any q = (y, h) ∈ Uβ×G, (u, σ) ∈ T(y,h)(Uβ×G).

Thus, in Uα∩ Uβ we have

A
β

y(u) = (ϕ∗βωA)(y,e)(u, 0) = ((ϕ−1
α ϕβ)

∗(ϕ∗αωA))(y,e)(u, 0) ,

where the application ϕ−1
α ϕβ : (Uα∩Uβ)×G→ (Uα∩Uβ)×G is of the form (ϕ−1

α ϕβ)(y, h) =

(y, ϕβα(y).h) for some ϕβα : Uα∩ Uβ → G. So,

A
β

y(u) = ((ϕ−1
α ϕβ)

∗(ϕ∗αωA))(y,e)(u, 0) = (ϕ∗αωA)(y,ϕβα(y))(u, d(ϕβα)y(u))

= (ωMC)ϕβα(y)(d(ϕβα)y(u)) + ϕβα(y)
−1.A

α

y (u).ϕβα(y)

= ϕβα(y)
−1.d(ϕβα)y(u) + ϕβα(y)

−1.A
α

y (u).ϕβα(y) .

Hence

A
β

= ϕ−1
βα .dϕβα + ϕ−1

βα .A
α

.ϕβα . (1.7)
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Formula (1.7) is known as change of gauge formula. We say that A
β

was obtained from

A
α

after performing a ‘change of gauge’.

Now it only remains to prove that for a given covariant derivative ∇ : Ω0
M(E) →

Ω1
M(E) and for the associated trivializations ϕα : Uα× V → E and ϕβ : Uβ× V → E,

the relationship in Uα∩ Uβ between the 1-forms A
α ∈ Ω1

Uα
(G) and A

β ∈ Ω1
Uβ

(G), the

1-forms associated by the identification (1.5) to the local representations ∇α and ∇β of

∇ in Uα × V and Uβ × V , is the same as in formula (1.7):

In Uα × V we have for s ∈ Ω0
Uα

(Uα × V ),

(∇αs)x(v) = ϕ−1

α (∇(ϕαs)x(v)) .

In Uβ × V we have for r ∈ Ω0
Uβ

(Uβ × V ),

(∇βr)y(u) = ϕ−1

β (∇(ϕβr)y(u)) .

It follows that in (Uα∩ Uβ)× V ,

∇βr = (ϕ−1

β ϕα).(∇α(ϕ
−1

α ϕβ)r) .

Therefore

∇βr = ϕ−1
βα .∇α(ϕβα.r) ,

with ϕβα : Uα∩ Uβ → G
ρ−→ AutV . From ∇α = d + A

α
with A

α ∈ Ω1
Uα

(EndV ) and

∇β = d+ A
β

with A
β ∈ Ω1

Uβ
(EndV ), the last equation becomes

dr + A
β

.r = ∇βr = ϕ−1
βα .∇α(ϕβα.r) = ϕ−1

βα .(d.(ϕβα.r) + A
α

.(ϕβα.r))

= ϕ−1
βα .(dϕβα.r + ϕβα.dr + A

α

.ϕβα.r) = ϕ−1
βα .dϕβα.r + dr + ϕ−1

βα .A
α

.ϕβα.r .

So

A
β

= ϕ−1
βα .dϕβα + ϕ−1

βα .A
α

.ϕβα ,

as in (1.7).

Thus, in the process (2)→(3) the local covariant derivatives ∇A,α match to form the

global covariant derivative ∇A. This covariant derivative ∇A is in fact a G-compatible

one because the property of G-compatibility is a local property and we have already

noticed in the local case that this property is equivalent to the condition A
α ∈ Ω1

Uα
(G),
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which is the case.

Conversely, to go from (3) to (2), for a covariant derivative ∇A on E we can define a

1-form ωA on P with values in EndV locally (according to (1.3)) as

(ωA,α)(x,g)(v, τ) := (ωMC)g(τ) + g−1.A
α

x(v).g

for p = (x, g) ∈ Uα×G and (v, τ) ∈ T(x,g)(Uα×G), where A
α

:= ∇A,α − d.
On behalf of we have done above, the local connection forms ωA,α actually define a

global 1-form ωA on P with values in EndV which satisfies conditions (a) and (b) of (2).

Moreover, from the G-compatibility condition for ∇A we have already observed that the

local forms A
α

actually have values in G, so ωA also has values in G and therefore ωA is

in fact a connection form on P .

There is a fourth approach for a connection, which is an extension of our first ap-

proach:

(4) Given a vector bundle πE : E → M associated to P and to a linear representa-

tion G
ρ−→ AutV , a connection A can be thought as a distribution of horizontal

subspaces HE

A ⊂ TE transverse to the fibres of πE. This distribution HE

A must

be compatible with the G-structure on E in such a way integral curves of HE

A are

always contained in orbits of P × V → E.

It will be important later to establish how we arrive to this definition of a connection

from definition (1) and definition (3):

In order to obtain this definition from definition (1), let s0 ∈ E be fixed and let

p0 ∈ P and v0 ∈ V be such that P × V → E maps (p0, v0) to s0 . Consider the

application

Rv0 : P −→ E

p 7−→ p . v0 ,

and define (HE

A)s0 := d(Rv0)p0(HA) . It is readily seen that the definition of (HE

A)s0 is

independent of the choice of p0 and v0. Also, since the image of integral curves of HA

are integral curves of HE

A , clearly HE

A satisfies the required conditions.
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Now, to obtain such a connection from definition (3), consider ∇A a G-covariant

derivative on E, s0 ∈ E and x0 := πE(s0). Define (HE

A)s0 as the set of tangent vectors at

s0 of curves in E obtained by parallel transport of s0 along curves in M passing through

x0. In a local trivialization ϕα : Uα× V → E , the equation of the curve s : (−ε, ε)→ V

with s(0) = s0 (s0 such that ϕ
−1

α (s0) = (x0, s0)) obtained by parallel transport along

γ : (−ε, ε)→ Uα , (γ(0), γ′(0)) = (x0, v0) , is

(∇A,αs)γ(t)(γ
′(t)) = s′(t) + A

α

γ(t)(γ
′(t)).s(t) = 0 .

Therefore, the tangent vector (γ′(0), s′(0)) ∈ T(x0,s0)(Uα×V ) = Tx0Uα×V is of the form

(v0,−A
α

x0
(v0).s0). Thus, in this local trivialization, (HE

A)s0 can be expressed as

(HE

A,α)(x0,s0) = {(v,−Aα

x0
(v).s0) ; v ∈ Tx0Uα} , (1.8)

i.e. as the graphic of the linear application

Tx0Uα−→ V

· 7→ −Aα

x0
(·).s0 .

It is easy to see from this expression that the distribution (HE

A) satisfies the required

conditions.

1.1.2 The Space of Connections and the Action of the Gauge

Group

Let us begin by modelling the space of connections of a bundle on a manifold. Once

the equivalence between the given definitions of a connection was already established,

we shall use the most convenient one depending on the situation.

Notice that so far we have not yet shown that connections exist at all, however it

can be easily proved by considering a connection according to definition (2): the iden-

tification (1.4) gives us a lot of connection forms on the trivial bundle M ×G, as many

as the space Ω1
M(G). A connection form ωA on an arbitrary principal bundle P can be

obtained by choosing arbitrarily local connection forms ωA,α on each of the local trivi-

alizations ϕα : Uα× G → P and by gluing all of them together via a partition of unity

14



{λα} subordinate to the covering {Uα} of M : ωA =
∑

α

λαωA,α. It is not hard to see that

the 1-form ωA satisfies properties (a) and (b) of (2), so ωA is in fact a connection form

on P .

In order to model the space of connections, we shall consider a connection according

to definition (3), i.e. we suppose given a vector bundle E associated to a principal

bundle P on M and to a linear (locally faithful) representation G
ρ−→ AutV , and a

connection will be a G-covariant derivative ∇A on E. Denote by AdP (or by AdE)

the adjoint bundle of P , i.e. the Lie algebra bundle associated to P and the adjoint

representation Ad of G in AutG. Observe that this bundle can be seen as a subbundle

of EndE because the Lie algebra inclusion G
dρe
↪−→ EndV induces in a natural way a Lie

algebra bundle inclusion AdE ↪→ EndE.

Once connections do in fact exist, let ∇0 be a fixed G-covariant derivative on E.

Considering another G-covariant derivative ∇A on E, we observe by using the Leibniz

rule that the difference (∇A −∇0) : Ω0
M(E)→ Ω1

M(E) satisfies

(∇A −∇0)(f.s) = f.(∇A −∇0)(s) for any f ∈ C∞(M) .

Hence (∇A−∇0) actually defines a 1-form a ∈ Ω1
M(EndE) by setting for any (x0, v0) ∈

TM and s0 ∈ Ex0
(the fibre of E on x0), ax0(v0).s0 := (∇As)x0(v0)− (∇0s)x0(v0), where

s is any section of E such that s(x0) = s0.

In local coordinates we have

∇A,α −∇0,α = (d+ A
α

)− (d+ A
α

0 ) = A
α − Aα

0 = aα ,

so since A
α
, A

α

0 ∈ Ω1
Uα

(G) we have aα ∈ Ω1
Uα

(G), therefore a actually lies in Ω1
M(AdE)

and ∇A = ∇0 + a.

Conversely, for each a ∈ Ω1
M(AdE) we can define a linear operator ∇A : Ω0

M(E) →
Ω1

M(E) on E by setting∇A := ∇0+a. It is straightforward to verify that∇A is a covariant

derivative on E and since in local coordinates we have A
α

= A
α

0 +aα then A
α ∈ Ω1

Uα
(G),

therefore ∇A is compatible with the G-structure on E.

Thus, for a G-covariant derivative ∇0 on E fixed we have obtained an identification

{G-covariant derivatives on E} ←→ Ω1
M(AdE) (1.9)
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taking ∇A on a = ∇A −∇0 in one direction and a on ∇A = ∇0 + a in the other direction.

In particular, the space of G-connections on E is an affine space whose underlying vector

space is the infinite-dimensional space Ω1
M(AdE).

Next we shall describe the action of the group of bundle automorphisms on the

space of connections. Observe that Ω0
M(AutE), the set of vector bundle automorphisms

u : E → E, is a group and acts on the space of covariant derivatives on E (which will

be denoted by C(E)) via the pull-back transformation:

Ω0
M(AutE)× C(E) −→ C(E)

(u ,∇A) 7−→ ∇u(A)

where ∇u(A)s := u.∇A(u−1.s), ∀s ∈ Ω0
M(E).

It is readily seen that ∇u(A) is in fact a covariant derivative. However, if ∇A is a

G-covariant derivative we cannot say the same about ∇u(A) for any u in general. In order

to preserve the space of G-covariant derivatives, u must preserve the G-structure on E

first, i.e. it must leave fixed the ‘orbits’ Ov = {p.v, p ∈ P} of the ‘action’ P × V → E.

From now on we shall restrict our attention to this type of automorphisms on E. To

accomplish this, consider the adjoint representation ad ofG in AutG: ad(g).h = g.h.g−1.

Denote by adP (or by adE) the group bundle with fibre G associated to P and to this

representation, its space of sections Ω0
M(adE) is called the gauge group of E. The

homomorphism G
ρ−→ AutV induces in a natural way a group bundle map adE →

AutE (which is also denoted by ρ). By considering the homomorphism Ω0
M(adE) →

Ω0
M(AutE) (still denoted by ρ) we can see the elements of the gauge group Ω0

M(adE) as

elements of Ω0
M(AutE). According to this point of view, it can be proved passing to local

coordinates that the elements of Ω0
M(adE) preserve the G-structure on E. In particular,

noting that the action of Ω0
M(AutE) on C(E) preserves the parallel transport operation

(i.e. denoting by T γ
A : Eγ(0) → Eγ(1) the parallel transport of ∇A along γ : [0, 1] → M ,

for any u ∈ Ω0
M(AutE) we have T γ

u(A).u = u.T γ
A ), it follows easily according to definition

(3) that the elements of the gauge group Ω0
M(adE) preserve the space of G-covariant
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derivatives on E (which will be denoted by CG(E)). So we have an action

Ω0
M(adE)× CG(E) −→ CG(E)

(u ,∇A) 7−→ ∇u(A)

where the elements of Ω0
M(adE) are seen as elements of Ω0

M(AutE).

The expression ∇u(A)s = u.∇A(u−1.s) is not an explicit expression for ∇u(A) in terms

of ∇A and u. In order to obtain such an expression, passing to local coordinates we have

∇u(A),αs = u.∇A,α(u
−1.s) = u.(d(u−1.s) + A

α

.u−1.s)

= u.(u−1.ds+ d(u−1).s+ A
α

.u−1.s) = ds+ u.d(u−1).s+ u.A
α

.u−1.s

= ds− du.u−1.s+ u.A
α

.u−1.s = ds− (du− u.Aα

).u−1.s

= ∇A,αs− A
α

.s− (du− u.Aα

).u−1.s

= ∇A,αs− (A
α

.u+ du− u.Aα

).u−1.s = ∇A,αs− (du+ [A
α

, u]).u−1.s ,

so

∇u(A),α = ∇A,α − (du+ [A
α

, u]).u−1 . (1.10)

On the other hand, since E is the vector bundle associated to P and to the representation

G
ρ−→ AutV , it follows easily that EndE is the vector bundle associated to P and to the

representation of G in Aut(EndV ) given by the composition

G
ρ−→ AutV

Ad−→ Aut(EndV )

T 7−→ (S 7→ T.S.T−1) .

It also follows easily that the Lie algebra homomorphism induced by this representation

is the composition

G
dρe
↪−→ EndV

d(Ad)Id−−−−→ End(EndV )

T 7−→ (S 7→ [T, S]) .

Thus, according the equivalence between the given definitions of a connection, we obtain

a G-covariant derivative on EndE (still denoted by ∇A) which is locally expressed in

function of the local forms A
α ∈ Ω1

Uα
(G) of ∇A on E as

∇A,α := d+ [A
α

, . ] . (1.11)
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In particular, since Ω0
M(AutE) ⊂ Ω0

M(EndE), for sections in E we obtain from equation

(1.10) that

∇u(A),α = ∇A,α − (du+ [A
α

, u]).u−1 = ∇A,α −∇A,αu .u
−1 .

Therefore, we have globally the formula

∇u(A) = ∇A −∇Au .u
−1 . (1.12)

1.2 Curvature

In this section we shall define another fundamental concept in gauge theory: the curva-

ture of a connection.

For a covariant derivative ∇A : Ω0
M(E) → Ω1

M(E), we shall extend the ordinary de

Rham complex

Ω0
M

d−→ Ω1
M

d−→ . . .
d−→ Ωk

M

d−→ Ωk+1
M . . . ,

to a complex of the form

Ω0
M(E)

dA−→ Ω1
M(E)

dA−→ . . .
dA−→ Ωk

M(E)
dA−→ Ωk+1

M (E) . . . ,

where the operators dA are uniquely determined by the properties:

(1) dA = ∇A on Ω0
M(E),

(2) dA(ω ∧ θ) = (dAω) ∧ θ + (−1)kω ∧ dθ, ∀ω ∈ Ωk
M(E), θ ∈ Ωl

M .

(The wedge product ∧ : Ωk
M ×Ωl

M → Ωk+l
M extends in a natural way to ∧ : Ωk

M(E)×
Ωl

M → Ωk+l
M (E)).

We proceed to define the operators dA as follows: consider the trivialization ϕα :

Uα×V → E, a chart ψα : Uα → Rn, the local basis {e1, e2, . . . , en} of tangent vectors for

Uα which comes from the canonical basis of Rn via the chart ψα and {dx1, dx2, . . . , dxn}
the dual basis of {e1, e2, . . . , en}. Define dA : Ωk

M(E) → Ωk+1
M (E) in the trivialization

ϕα : Uα× V → E as dA,α(s.dxi1∧ . . . ∧ dxik) := ∇A,αs ∧ dxi1∧ . . . ∧ dxik and extend linearly.

It is readily seen that the local operators dA,α : Ωk
Uα

(V ) → Ωk+1
Uα

(V ) satisfy property

(2) and (using this fact) that these operators commute with the pull-back operation, so
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the definition of dA,α does not depend on the chart ψα : Uα → Rn chosen and the local

operators dA,α match to form the global operator dA which obviously satisfy properties

(1) and (2). The unicity of the family of operators dA : Ωk
M(E) → Ωk+1

M (E) satisfying

(1) and (2) can be proved by induction on k.

Unlike the case of the de Rham complex, it is not necessarily true that the operators

dA satisfy dAdA = 0. Instead the Leibniz rule for dA tell us that the operator dAdA :

Ω0
M(E) → Ω2

M(E) in fact can be seen as a tensor: for f ∈ C∞(M) and s ∈ Ω0
M(E) we

have

dAdA(f.s) = dA(df.s+ f.∇As) = dA(df ∧ s+ f ∧∇As)

= ddf ∧ s+ (−1)df ∧∇As+ df ∧∇As+ f ∧ dA∇As

= f.dAdAs .

Thus, dAdA : Ω0
M(E)→ Ω2

M(E) actually defines a 2-form FA ∈ Ω2
M(EndE) by setting

for any x0 ∈ M , v0, w0 ∈ Tx0
M and s0 ∈ Ex0

, (FA)x0(v0, w0).s0 := (dAdAs)x0(v0, w0),

where s is any section of E such that s(x0) = s0 (more briefly, dAdAs = FA.s). This

2-form FA is called the curvature of the connection ∇A. Recalling that the inclusion

G
dρe
↪−→ EndV induces the vector bundle inclusion AdE ↪→ EndE, we shall see later that

in fact FA ∈ Ω2
M(AdE).

Now we shall obtain the expression of the curvature with respect to local coordi-

nates for E and for M : let ϕα : Uα× V → E, ψα : Uα → Rn, {e1, e2, . . . , en} and

{dx1, dx2, . . . , dxn} be as before. For a local section s ∈ Ω0
Uα

(V ) denote by ∇is the

covariant derivative of s in the direction ei, ∇is := (∇A,αs)(ei), thus ∇A,αs =
∑

i

∇is dxi.

In these local coordinates we have

dA,αdA,αs = dA,α∇A,αs = dA,α(
∑

i

∇is dxi) =
∑

i

∇A,α(∇is) ∧ dxi

=
∑

i

(
∑

j

∇j(∇is) dxj) ∧ dxi =
∑
i,j

∇j∇is dxj ∧ dxi

=
∑
i<j

(∇i∇js−∇j∇is) dxi ∧ dxj =
∑
i<j

[∇i ,∇j]s dxi ∧ dxj . (1.13)
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On the other hand, from∇A,α = d+A
α

we have∇i = ∂
∂xi

+A
α
(ei), and denoting A

α
(ei)

by A
α

i we can obtain an expression for [∇i ,∇j] in terms of the ‘connection matrices’ A
α

i :

[∇i ,∇j]s = (∇i∇js−∇j∇is) = (
∂

∂xi

+ A
α

i )(
∂s

∂xj

+ A
α

j s)− (
∂

∂xj

+ A
α

j )(
∂s

∂xi

+ A
α

i s)

=
∂2s

∂xi∂xj

+ A
α

i .
∂s

∂xj

+
∂(A

α

j s)

∂xi

+ A
α

i A
α

j s

− ∂2s

∂xj∂xi

− Aα

j .
∂s

∂xi

− ∂(A
α

i s)

∂xj

− Aα

jA
α

i s

= A
α

i .
∂s

∂xj

+
∂A

α

j

∂xi

.s+ A
α

j .
∂s

∂xi

− Aα

j .
∂s

∂xi

− ∂A
α

i

∂xj

.s− Aα

i .
∂s

∂xj

+ [A
α

i , A
α

j ].s

=
∂A

α

j

∂xi

.s− ∂A
α

i

∂xj

.s+ [A
α

i , A
α

j ].s

=

(
∂A

α

j

∂xi

− ∂A
α

i

∂xj

+ [A
α

i , A
α

j ]

)
.s ,

so

[∇i ,∇j] =
∂A

α

j

∂xi

− ∂A
α

i

∂xj

+ [A
α

i , A
α

j ] . (1.14)

Combining everything we have done above with the equality dAdAs = FA.s, we obtain

the local expression of the curvature FA:

FA,α =
∑
i<j

[∇i ,∇j] dxi ∧ dxj =
∑
i<j

(
∂A

α

j

∂xi

− ∂A
α

i

∂xj

+ [A
α

i , A
α

j ]) dxi ∧ dxj .

In particular, since the connection matrices A
α

i ∈ G, we have FA,α ∈ Ω2
Uα

(G), so in

fact FA ∈ Ω2
M(AdE).

Next, we shall see how the curvature varies with the connection. Let ∇A be a G-

covariant derivative on E. According to (1.9), any other G-covariant derivative can be

written in the form ∇A+a := ∇A + a for some a ∈ Ω1
M(AdE). In order to obtain FA+a in

function of FA and a, passing to local coordinates we have

FA+a,α =
∑
i<j

[(∇A+a)i , (∇A+a)j] dxi ∧ dxj ,
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and in this setting we write aα =
∑

i

aα

i dxi. Then, according to (1.14),

[(∇A+a)i , (∇A+a)j] =
∂

∂xi

(A
α

j + aα

j )−
∂

∂xj

(A
α

i + aα

i ) + [A
α

i + aα

i , A
α

j + aα

j ]

= (
∂A

α

j

∂xi

− ∂A
α

i

∂xj

+ [A
α

i , A
α

j ])

+(
∂aα

j

∂xi

− ∂aα
i

∂xj

) + [A
α

i , a
α

j ]− [A
α

j , a
α

i ] + [aα

i , a
α

j ]

= [(∇A)i , (∇A)j] + (
∂aα

j

∂xi

− ∂aα
i

∂xj

) + [A
α

i , a
α

j ]− [A
α

j , a
α

i ] + [aα

i , a
α

j ] .

So,

FA+a,α = FA,α +
∑
i<j

(
∂aα

j

∂xi

− ∂aα
i

∂xj

) dxi ∧ dxj

+
∑
i<j

[A
α

i , a
α

j ] dxi ∧ dxj −
∑
i<j

[A
α

j , a
α

i ] dxi ∧ dxj +
∑
i<j

[aα

i , a
α

j ] dxi ∧ dxj

= FA,α + daα +
∑
i<j

[A
α

i , a
α

j ] dxi ∧ dxj +
∑
i>j

[A
α

i , a
α

j ] dxi ∧ dxj

+
1

2

∑
i<j

[aα

i , a
α

j ] dxi ∧ dxj +
1

2

∑
i>j

[aα

i , a
α

j ] dxi ∧ dxj

= FA,α + daα +
∑
i,j

[A
α

i , a
α

j ] dxi ∧ dxj +
1

2

∑
i,j

[aα

i , a
α

j ] dxi ∧ dxj .

Combining the Lie algebra multiplication [ , ] : AdE × AdE → AdE with the wedge

product ∧ : Ωk
M × Ωl

M → Ωk+l
M we obtain the product [ , ] : Ωk

M(AdE) × Ωl
M(AdE) →

Ωk+l
M (AdE). So, considering this product we have

FA+a,α = FA,α + daα +
∑

j

[
∑

i

A
α

i dxi , a
α

j ] ∧ dxj +
1

2
[
∑

i

aα

i dxi ,
∑

j

aα

j dxj]

= FA,α +
∑

j

daα

j ∧ dxj +
∑

j

[A
α

, aα

j ] ∧ dxj + 1
2
[aα, aα]

= FA,α +
∑

j

(daα

j + [A
α

, aα

j ]) ∧ dxj + 1
2
[aα, aα]

= FA,α +
∑

j

∇A,αa
α

j ∧ dxj + 1
2
[aα, aα] = FA,α + dA,αa

α + 1
2
[aα, aα] .
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Therefore globally we obtain the formula

FA+a = FA + dAa+ 1
2
[a, a] . (1.15)

As an application of this formula, we can derive the Second Bianchi Identity for

the curvature: dAFA = 0. We proceed as follows: consider the local covariant derivatives

∇A,α and d, use (1.15) to obtain

FA,α = Fd+Aα = Fd + dA
α

+ 1
2
[A

α

, A
α

]

= dd+ dA
α

+ 1
2
[A

α

, A
α

]

= dA
α

+ 1
2
[A

α

, A
α

] . (1.16)

Thus,

dA,αFA,α = dFA,α + [A
α

, FA,α] = d(dA
α

+ 1
2
[A

α

, A
α

]) + [A
α

, dA
α

+ 1
2
[A

α

, A
α

] ]

= 1
2
d([A

α

, A
α

]) + [A
α

, dA
α

] + 1
2
[A

α

, [A
α

, A
α

] ]

= 1
2
([ dA

α

, A
α

] + (−1)[A
α

, dA
α

]) + [A
α

, dA
α

] + 1
2
[A

α

, [A
α

, A
α

] ]

= 1
2
([ dA

α

, A
α

] + [dA
α

, A
α

])− [dA
α

, A
α

] + 1
2
[A

α

, [A
α

, A
α

] ]

= 1
2
[A

α

, [A
α

, A
α

] ] .

Finally,

[A
α

, [A
α

, A
α

] ] = [
∑

i

A
α

i dxi , [
∑

j

A
α

j dxj ,
∑

k

A
α

kdxk ] ]

=
∑
i,j,k

[A
α

i , [A
α

j , A
α

k ] ] dxi ∧ dxj ∧ dxk

=
∑

i<j<k

([A
α

i , [A
α

j , A
α

k ] ] + [A
α

j , [A
α

k , A
α

i ] ] + [A
α

k , [A
α

i , A
α

j ] ]

−[A
α

i , [A
α

k , A
α

j ] ]− [A
α

j , [A
α

i , A
α

k ] ]− [A
α

k , [A
α

j , A
α

i ] ]) dxi ∧ dxj ∧ dxk .

Then, from the Jacobi identity for the Lie multiplication, [A
α
, [A

α
, A

α
] ] = 0.

Thus, combining everything we have

dAFA = 0 , (1.17)
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as asserted. In local coordinates, this identity becomes dFA,α = [FA,α , A
α
].

We finish this section by describing how the curvature transforms under bundle

automorphisms. Given u ∈ Ω0
M(adE) we have

Fu(A).s = du(A)(du(A)s) = u.dA(u−1.du(A)s)

= u.dA(u−1.u.dA(u−1s)) = u.dA(dA(u−1s))

= u.FA.u
−1.s .

Therefore

Fu(A) = u.FA.u
−1 , (1.18)

i.e. the curvature transforms as a tensor under bundle automorphisms. In particular the

space of connections with zero curvature, called flat connections, is preserved by the

gauge group. There is another class of connections, satisfying a weaker condition than

vanishing of the curvature, that are still preserved by the action of the gauge group.

Such connections are known as self -dual connections and they will be studied in the

next section.

1.3 Self-Duality and Hodge Theory

We need some preliminaries of linear algebra. Let V be an oriented real vector space

of dimension n and 〈 , 〉 an inner product on V . Denote by ΛkV the space of k-forms on

V . It is already known that 〈 , 〉 induces an isomorphism between V and its dual space

V ∗, and the inner product on V induces via this isomorphism an inner product on V ∗,

which is also denoted by 〈 , 〉.
We can then obtain an inner product on all the spaces ΛkV (which is still denoted

by 〈 , 〉) that satisfies and is uniquely determined by the property

〈α1∧ . . . ∧αk , β1∧ . . . ∧ βk 〉 = det(〈αi , βj 〉)i,j
, ∀αi , βj ∈ Λ1V . (1.19)

We proceed to define this inner product as follows: considering {β1, . . . , βn} a basis for

V ∗, the k-forms

βi1∧ . . . ∧ βik with 1≤ i1<i2< . . . <ik≤n
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constitute a basis for ΛkV . Define then

〈 βi1∧ . . . ∧ βik , βj1∧ . . . ∧ βjk
〉 := det(〈 βil , βjm 〉)l,m

and extend bilinearly on ΛkV .

In order to prove that this definition does not depend on the basis {β1, . . . , βn} cho-

sen, it suffices to prove that our definition of 〈 , 〉 satisfies (1.19). This last statement is

proved by observing that (1.19) holds when all the entries of this equality are consti-

tuted by elements of the basis {β1, . . . , βn} and that equality (1.19) is preserved after

performing linear operations in each of its entries. The same kind of arguments allows

us to conclude that our definition of 〈 , 〉 is also symmetric. Finally, for the positivity

condition of 〈 , 〉, we observe that for an orthonormal basis {b1, . . . , bn} of V , its dual

basis {db1, . . . , dbn} is an orthonormal basis of V ∗ and more generally (using (1.19)) the

basis

{dbI := dbi1∧ . . . ∧ dbik ; I = (i1, . . . , ik) with 1≤ i1<i2< . . . <ik≤n}

satisfies 〈 dbI , dbJ 〉 = δIJ , so 〈 , 〉 is actually positive definite on ΛkV .

Next, for 0 ≤ k ≤ n we shall define the linear Hodge-star operator

∗ : ΛkV → Λn−kV

which can be obtained by comparing the inner product on the forms with the wedge

product, i.e. (as before) the ∗-operator can be defined and is uniquely determined by

satisfying the property

α ∧∗β = 〈α , β 〉 dµ, ∀α, β ∈ ΛkV , (1.20)

where dµ is the (oriented) volume element of V .

We define then the ∗-operator in the following way: considering the orthonormal

basis {b1, . . . , bn} of V , define for each element of the orthonormal basis {dbi1∧ . . . ∧ dbik ,
1≤ i1<i2< . . . <ik≤n} of ΛkV the ∗-operator as

∗(dbi1∧ . . . ∧ dbik) := dbj1∧ . . . ∧ dbjn−k
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(where the indices j1, . . . , jn−k are selected such that bi1 , . . . , bik , bj1 , . . . , bjn−k
is a positive

basis of V ), and extend linearly on ΛkV .

Again, in order to prove that this definition does not depend on the orthonormal

basis {b1, . . . , bn} chosen, it suffices to prove that our definition of the ∗-operator satisfies

(1.20), because once it happens we have immediately that

∗(dbi1∧ . . . ∧ dbik) = dbj1∧ . . . ∧ dbjn−k

for any orthonormal basis {b1, . . . , bn} of V . Since (1.20) holds for α, β elements of the

form dbi1∧ . . . ∧ dbik and equality (1.20) is preserved after performing linear operations in

each of its entries, then equality (1.20) holds for any α, β ∈ ΛkV .

We remark that the composition

∗∗ : ΛkV → ΛkV

consists simply of the multiplication by the factor (−1)k(n−k), because they are needed

k(n−k) transpositions to pass from the ordering bi1 , . . . , bik , bj1 , . . . , bjn−k
to the ordering

bj1 , . . . , bjn−k
, bi1 , . . . , bik .

Also observe that ∗ is actually a linear orthogonal transformation, because by the

property (1.20) for α, β ∈ ΛkV ,

〈∗α ,∗β 〉 dµ = ∗α ∧∗∗β = (−1)k(n−k)∗α ∧ β = β ∧∗α = 〈 β , α 〉 dµ = 〈α , β 〉 dµ ,

so 〈∗α ,∗β 〉 = 〈α , β 〉.

We shall need later to know how the ∗-operator is affected by a conformal change of

the metric 〈 , 〉 on V : let 〈 , 〉1 and 〈 , 〉2 = λ2〈 , 〉1 be two conformal metrics on V , and let

∗1 and ∗2 be their respective Hodge-star operators. Observe that if {b1, . . . , bn} is a posi-

tive 〈 , 〉1-orthonormal basis of V then { 1
λ
b1, . . . ,

1
λ
bn} is a positive 〈 , 〉2-orthonormal basis

of V and {λdb1, . . . , λdbn} is a 〈 , 〉2-orthonormal basis of Λ1V . Therefore, {λkdbi1∧ . . . ∧ dbik ,

1≤ i1<i2< . . . <ik≤n} is a 〈 , 〉2-orthonormal basis for ΛkV and

∗2(λ
kdbi1∧ . . . ∧ dbik) = λn−kdbj1∧ . . . ∧ dbjn−k

= λn−k.∗1(dbi1∧ . . . ∧ dbik) .

Hence in ΛkV ,

∗2 = λn−2k.∗1 . (1.21)
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Now we shall consider the particular case when V is a four-dimensional vector space.

In this case the ∗-operator on the space of the 2-forms,

∗ : Λ2V → Λ2V

satisfies ∗2 = Id, so we can consider the subspaces of the self -dual and anti-self -dual

forms in Λ2V ,

Λ+V := {ω ∈ Λ2V ; ∗ω = ω} and Λ−V := {ω ∈ Λ2V ; ∗ω = −ω},

to be the ±1 eigenspaces of ∗. Clearly any ω ∈ Λ2V can be expressed as

ω = 1
2
(ω + ∗ω) + 1

2
(ω − ∗ω)

with 1
2
(ω + ∗ω) ∈ Λ+V and 1

2
(ω − ∗ω) ∈ Λ−V , so we have the decomposition

Λ2V = Λ+V ⊕ Λ−V

which is invariant by ∗. This decomposition is indeed orthogonal because for α ∈ Λ+V

and β ∈ Λ−V we have

〈α , β 〉 = 〈∗α ,∗β 〉 = 〈α ,−β 〉 = −〈α , β 〉 ,

so 〈α , β 〉 = 0.

Selecting a positive orthonormal basis {b1, b2, b3, b4} for V , it is straightforward to

verify that{
1√
2
(db1 ∧ db2 + db3 ∧ db4),

1√
2
(db1 ∧ db3 + db4 ∧ db2),

1√
2
(db1 ∧ db4 + db2 ∧ db3)

}
(1.22)

constitutes an orthonormal basis for Λ+V , and{
1√
2
(db1 ∧ db2 − db3 ∧ db4), 1√

2
(db1 ∧ db3 − db4 ∧ db2), 1√

2
(db1 ∧ db4 − db2 ∧ db3)

}
(1.23)

constitutes an orthonormal basis for Λ−V .

We conclude by remarking that if 〈 , 〉1 and 〈 , 〉2 = λ2〈 , 〉1 are two conformal metrics

on V and ∗1 : Λ2V → Λ2V , ∗2 : Λ2V → Λ2V are their respective Hodge-star operators

then according to (1.21) we have ∗1 = ∗2, i.e. in the four-dimensional case the Hodge-

star operator on the 2-forms and therefore the self-dual and anti-self-dual spaces are
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conformally invariant objects.

Finally we can pass to the manifold situation. Here Mn is an oriented smooth

manifold with a Riemannian metric 〈 , 〉. In this context, for any 0 ≤ k ≤ n, all we have

done above can be carried to each of the fibres of the vector bundle Λk
M of k-forms on M ,

so 〈 , 〉 induces a metric on the vector bundles Λk
M and we can consider the Hodge-star

operator as a vector bundle map

∗ : Λk
M → Λn−k

M ,

or as a linear operator defined on Ωk
M (the space of sections of Λk

M),

∗ : Ωk
M → Ωn−k

M .

More generally, for a given vector bundle E on M we can extend the definition of the

Hodge-star operator to the bundle of k-forms on M with values in E to obtain a vector

bundle map

∗ : Λk
M(E)→ Λn−k

M (E)

which can be defined and is uniquely determined by satisfying the property

∗(s.ω) = s.∗ω , for all s ∈ E and ω ∈ Λk
M

(from a more technical viewpoint, since Λk
M(E) = Λk

M ⊗ E, the Hodge-star operator in

this context is defined as ∗ ⊗ id). We also have the linear operator induced on Ωk
M(E)

(the space of sections of Λk
M(E)),

∗ : Ωk
M(E)→ Ωn−k

M (E) .

Now, supposing that M is 4-dimensional, the decomposition of the 2-forms on M into

self-dual and anti-self-dual parts gives us the vector bundle decomposition

Λ2
M = Λ+

M ⊕ Λ−M , (1.24)

and more generally, given E a vector bundle on M , the vector bundle decomposition

Λ2
M(E) = Λ+

M(E)⊕ Λ−M(E) . (1.25)
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In particular, we have also the vector space decompositions Ω2
M = Ω+

M ⊕ Ω−
M and

Ω2
M(E) = Ω+

M(E)⊕ Ω−
M(E).

A connection A on E is said to be self -dual (resp. anti-self -dual) and called a SD

connection (resp. an ASD connection) if for the decomposition FA = F+
A + F−

A of the

curvature of A obtained from the splitting Ω2
M(AdE) = Ω+

M(AdE)⊕Ω−
M(AdE) we have

F−
A = 0 (resp. F+

A = 0).

This notion of self-duality, which a priori depends on the Riemannian metric 〈 , 〉
on M , is in fact a conformally invariant notion (i.e. it only depends on the conformal

class of 〈 , 〉), as we have already noticed. Also, for u ∈ Ω0
M(adE) it is readily seen that

∗Fu(A) = u.(∗FA).u−1. In particular F+
u(A) = u.F+

A .u
−1 and F−

u(A) = u.F−
A .u

−1, so the

spaces of SD and ASD connections are preserved by the action of the gauge group.
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Chapter 2

Twistor Spaces and the Penrose

Transform

It is classically known in the 2-dimensional setting the correspondence that exists be-

tween conformal geometry and complex analysis on a surface, i.e. there is a well estab-

lished ‘dictionary’ between both theories. The Penrose Transform is the 4-dimensional

analogous of this correspondence, where the conformal structure of a 4-manifold is en-

coded in the holomorphic structure of its ‘Twistor space’. In this chapter we will develop

the rudiments of this theory.

2.1 A Glimpse of Riemannian Geometry. The Special

Four-Dimensional Case

Let us begin with some general considerations in the n-dimensional case, so for the

time being M is an oriented smooth n-manifold with a Riemannian metric 〈 , 〉. In this

setting, according to chapter 1 we can consider the tangent bundle TM as a SOn - vector

bundle on M , the Levi-Civita connection of M (which will be denoted simply by ∇)

as a SOn - covariant derivative on TM and the curvature tensor (which in this context

is denoted by R) as an element of Ω2
M(AdTM ).

Recall that the bundle AdTM is the Lie algebra bundle (with fibre the Lie al-
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gebra SOn) on M whose transition functions are the same as those of TM (seen as

a SOn - vector bundle) after composing with the adjoint representation Ad : SOn →
AutSOn , and that there is a natural Lie algebra bundle inclusion AdTM ↪→ EndTM .

Since SOn is just the Lie algebra of skew-symmetric n × n matrices, it is readily seen

that the bundle AdTM , considered as a sub-bundle of EndTM , is simply the bundle

of skew-symmetric endomorphisms of TM .

A local trivialization ϕα : Uα×Rn → TM of the tangent bundle ofM as a SOn - vector

bundle consists of the choice of a local positive orthonormal frame field {b1, . . . , bn} of

tangent vectors on Uα. Still denoting by ∇ the local representation of the Levi-Civita

connection in ϕα and by A the associated local matrix connection, for a local vector

field s we have, according (1.6),

∇bi
s := (∇s)(bi) =

∂s

∂bi
+ A(bi).s .

In particular

∇bi
bj = A(bi).bj ,

and defining

Γi
jk := 〈∇bi

bj, bk〉 = 〈A(bi).bj, bk〉 (2.1)

we have

∇bi
bj =

∑
k

Γi
jk bk ,

where A(bi) =
(
Γi

jk

)
j,k
∈ SOn , so Γi

jk = −Γi
kj . Notice that our ‘symbols’ Γi

jk do not

agree with the usual Christoffel symbols of Riemannian Geometry. This justifies the

classical calculations presented below (of course adapted to our context).

Since we are dealing with the Levi-Civita connection, we have a local expression for

the Lie bracket of vector fields in M as a function of the coefficients Γi
jk :

[bi, bj] = ∇bi
bj −∇bj

bi =
∑

k

(Γi
jk − Γj

ik) bk . (2.2)

Now, about the curvature tensor R, in a similar way to the computations carried out in

(1.13) we have

Rij := R(bi, bj) = [∇bi
,∇bj

]−∇[bi,bj ] .
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Thus, denoting ∂
∂bi

simply by ∂i , we get

Rij(bk) = ∇bi
(∇bj

bk)−∇bj
(∇bi

bk)−∇[bi,bj ]bk

= ∇bi
(
∑

s

Γj
ksbs)−∇bj

(
∑

s

Γi
ksbs)−

∑
s

(Γi
js − Γj

is)∇bsbk

=
∑

s

Γj
ks∇bi

bs +
∑

s

∂iΓ
j
ks bs −

∑
s

Γi
ks∇bj

bs −
∑

s

∂jΓ
i
ks bs −

∑
s

(Γi
js − Γj

is)∇bsbk

=
∑

s

Γj
ks∇bi

bs −
∑

s

Γi
ks∇bj

bs +
∑

s

(∂iΓ
j
ks − ∂jΓ

i
ks) bs −

∑
s

(Γi
js − Γj

is)∇bsbk .

Therefore

Rijkl := 〈Rij(bk), bl〉 = ∂iΓ
j
kl − ∂jΓ

i
kl +

∑
s

(Γj
ksΓ

i
sl − Γi

ksΓ
j
sl)−

∑
s

(Γi
js − Γj

is)Γ
s
kl . (2.3)

On the other hand, from a more global point of view, for an inner product vector

space (V, 〈 , 〉) there is a natural isomorphism

{Skew-symmetric endomorphisms of (V, 〈 , 〉) } ←→ Λ2V (2.4)

taking S on ωS := 〈S . , . 〉. This isomorphism extends in a natural way to a vector

bundle isomorphism

AdTM
S 7→〈S . , . 〉←−−−−→ Λ2

M . (2.5)

These considerations enables us to see the curvature tensor R (or any other similar

tensor, as the Weyl tensor W ) as a 2-form on M with values in the vector bundle of

2-forms on M or, more conveniently, as a vector bundle endomorphism

R : Λ2
M → Λ2

M ,

which is completely determined by the relations

〈R(dbi ∧ dbj), dbk ∧ dbl〉 = Rijkl .

We conclude from the Bianchi relations Rijkl = Rklij (see [Be] § 1.85e) that R is actu-

ally a symmetric endomorphism.
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Now we can move to the four-dimensional situation. The special feature in dimension

four is the orthogonal decomposition (1.24) of the 2-forms on M in their self-dual and

anti-self-dual parts,

Λ2
M = Λ+

M ⊕ Λ−M .

This decomposition yields the decomposition

End Λ2
M = End Λ+

M ⊕ Hom(Λ+
M ,Λ

−
M)⊕ Hom(Λ−M ,Λ

+
M)⊕ End Λ−M ,

such that (with respect to the subspaces Λ+
M ,Λ−M) a tensor T = T1⊕T2⊕T3⊕T4 ∈ End Λ2

M

has the block matrix form

T =

(
T1 T3

T2 T4

)
.

The good news in four dimensions arise by noticing that in this setting the Weyl curva-

ture tensor W turns out to have a diagonal block matrix form,

W =

(
W+ 0

0 W−

)
,

whereW+ andW− correspond to the splitting Ω2
M(AdTM ) = Ω+

M(AdTM )⊕Ω−
M(AdTM )

as in (1.25). The full curvature tensor R also has a simple block matrix form:

R =

(
W++ s

12
Id B

BT W−+ s
12

Id

)
, (2.6)

where s is the usual scalar curvature and B is the traceless Ricci tensor (in an unusual

guise). See ([Be] § 1.128) for further reference and details.

2.2 The Bundle of Orthogonal Complex Structures

Let (V, 〈 , 〉) be an inner product vector space of dimension n = 2m. An orthogonal

complex structure on (V, 〈 , 〉) is an endomorphism J ∈ EndV that preserves the in-

ner product 〈 , 〉 and satisfies J2 = −Id. It is clear that J automatically induces a

structure of complex vector space on V , where J acts as the multiplication by the

complex scalar i. The tensor J also induces an orientation on V by choosing any
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complex basis {µ1, µ2, . . . , µm} of V and by declaring as a positive basis the real basis

{µ1, Jµ1, µ2, Jµ2, . . . , µm, Jµm}. Since J2 = −Id we have J−1 = −J and since J is or-

thogonal we have J−1 = J T. In particular J T = −J , so an orthogonal complex structure

is always a skew-symmetric endomorphism.

Again, in the four-dimensional case, the self-duality phenomena gives us some special

features: it turns out that if (V, 〈 , 〉) is an oriented inner product 4-dimensional vector

space, the correspondence (2.4) identifies in particular the set of orthogonal complex

structures on V inducing the given orientation with the 2-sphere S√2(Λ
+V ), the set of

the self-dual forms with
√

2 norm. This fact is resumed in the following diagram:

{Skew-symmetric endomorphisms of (V, 〈 , 〉) } �S 7→〈S . , . 〉- Λ2V

{
Orthogonal complex structures on (V, 〈 , 〉)

inducing the given orientation

}∪

6

� - S√2(Λ
+V )

∪

6

(2.7)

We shall remain in the four-dimensional setting. Consider a positive orthonormal

basis {b1, b2, b3, b4} for V . Skew-symmetric endomorphisms of V will be considered as

skew-symmetric 4× 4 matrices with respect to this basis. Define

w1 := db1 ∧ db2 + db3 ∧ db4 ,

w2 := db1 ∧ db3 + db4 ∧ db2 , (2.8)

w3 := db1 ∧ db4 + db2 ∧ db3 .

We have from (1.22) that {w1,w2,w3} constitutes an orthogonal vector basis for Λ+V

with ‖w1‖=‖w2‖=‖w3‖=
√

2. In this setting the identification (2.7) between orthogonal

complex structures and self-dual 2-forms becomes
0 −y1 −y2 −y3

y1 0 −y3 y2

y2 y3 0 −y1

y3 −y2 y1 0

←→ (y1w1 + y2w2 + y3w3) , (2.9)

with y2
1 + y2

2 + y2
3 = 1.
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From now on, in virtue of (2.4), we shall consider skew-symmetric endomorphisms

and 2-forms as being the same. Observe that for an orthogonal complex structure J

and for a skew-symmetric endomorphism A we have

[A, J ] = (d(Ad)Id.A)(J) ∈ TJ(S√2(Λ
+V )) ⊂ Λ+V , (2.10)

because for any orthogonal automorphism T of V the automorphism AdT.J = TJT−1

is an orthogonal complex structure, i.e. TJT−1 ∈ S√2(Λ
+V ).

Consider the matrix form of the skew-symmetric endomorphism A,

A =


0 −a12 −a13 −a14

a12 0 −a23 a42

a13 a23 0 −a34

a14 −a42 a34 0

 ,

and J = y1w1+y2w2+y3w3 as in (2.9). After some calculation, we obtain the expression

of [A, J ] as a 2-form:

[A, J ] = ((a13 + a42)y3 − (a14 + a23)y2)w1 (2.11)

+((a14 + a23)y1 − (a12 + a34)y3)w2 + ((a12 + a34)y2 − (a13 + a42)y1)w3 .

Since TJ(S√2(Λ
+V )) = {τ ∈ Λ+V ; 〈 τ, J 〉 = 0}, we have 〈 [A, J ] , J 〉 = 0 .

As a final observation, note that the spaces of skew-symmetric endomorphisms of V

and orthogonal complex structures on V are conformally invariant objects, i.e. they

do not change when considering the metrics 〈 , 〉1 and 〈 , 〉2 = λ2〈 , 〉1 on V . However,

the isomorphism (2.4) is not conformally invariant.

All we have done above can be carried to the manifold setting, working simultane-

ously on each tangent space. So let M be an oriented smooth Riemannian 4-manifold.

The bundle of orthogonal complex structures on the tangent spaces of M inducing the

given orientation is called the Twistor Space of M and is denoted by ZM or simply

Z. We have already remarked that the bundle Z (as well as AdTM , Λ+
M and Λ−M) only

depends on the conformal structure of M and that for each prefered choice of a metric

in the conformal class we have, extending (2.7), a bundle isomorphism between Z and
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the 2-sphere bundle S√2(Λ
+
M) :

AdTM �S 7→〈S . , . 〉- Λ2
M

Z
∪

6

�J 7→〈J. , . 〉- S√2(Λ
+
M)

∪

6
(2.12)

In particular, Z is a 6-dimensional manifold.

We know that, unlike the 2-dimensional case, an oriented 4-manifold M do not need

to have any globally defined almost-complex structures at all. However, its twistor space

Z carries a natural almost-complex structure which only depends on the conformal

structure of M , and the integrability condition for this almost-complex structure is

encoded in the conformal part of the curvature of M . An explanation of all of this will

be done in the next section.

2.3 The Penrose Construction

In this section we shall proceed with the construction, due to R. Penrose (see [Pen]), of

a natural almost-complex structure on the twistor space ZM of an oriented Riemannian

4-manifold M . It turns out that the obstruction to the integrability of this complex

structure lies in W+, the self-dual part of the Weyl curvature tensor of M .

The starting point for this construction is to consider the horizontal distribution

H ⊂ T (AdTM ) induced by the Levi-Civita connection ∇ of M on the vector bundle

AdTM , according (4) in pg. 13 . Recall that there is a natural inclusion Z ↪→ AdTM

and notice that for J ∈ Z we have HJ ⊂ TJZ (in other words, H preserves Z), because

the parallel transport in EndTM preserves both orthogonal linear transformations and

skew-symmetric endomorphisms. Thus, H can be also seen as the horizontal distribution

induced by ∇ on the bundle Z.

The next step consists in to identify Z with the sphere bundle S√2(Λ
+
M) according

(2.12). It is not hard to see that the diagram (2.12) preserves the parallel transport on

each bundle involved. Therefore the horizontal distribution on the bundle Λ2
M induced

by ∇ can be identified with H and, as before, it preserves Λ+
M , S√2(Λ

+
M) and can be
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also seen as the horizontal distribution induced on these bundles. In this way, given

Jx a point in Z (i.e. Jx is an orthogonal complex structure on TxM), we have the

decomposition

TJxZ = TJx(S√2(Λ
+
M)) = TJx(S√2

(
Λ+

M

)
x
)⊕HJx , (2.13)

where S√2(Λ
+
M)x is the fibre of S√2(Λ

+
M) on x .

The final step of the construction consists in to observe that the subspaces of TJxZ
arising in the decomposition (2.13) admit natural complex structures:

The projection π : Z →M induces an isomorphism π∗ : HJx → TxM . Therefore, we

can carry the complex structure Jx on TxM through π∗ to obtain a complex structure

on HJx . On the other hand, choosing {b1, b2, b3, b4} a positive orthonormal basis of TxM

and declaring the basis {w1,w2,w3} (defined in (2.8)) a positive basis for (Λ+
M)x makes

Λ+
M an oriented vector bundle. Therefore the sphere S√2(Λ

+
M)x , seen as an orientable

surface in the 3-dimensional euclidean vector space (Λ+
M)x , carries an almost-complex

structure which is given in each tangent space by the vector cross product in (Λ+
M)x with

the outward unit normal vector to the sphere. In other words, for Jx ∈ S√2(Λ
+
M)x and

τ ∈ TJx(S√2(Λ
+
M)x) , the almost-complex structure is given by 1√

2
Jx××××××××× τ .

Thus, the almost-complex structure on Z is defined as an endomorphism J of TZ
whose restriction to the subspaces TJx(S√2(Λ

+
M)x) and HJx is given as above.

At this point is good to remark that the almost-complex structure J defined on Z
is actually conformally invariant, though the distribution H is not. This fact will be

proved in the next section. In particular, the obstruction to the integrability of J can

be encoded in the conformal structure of M , as is described in the following theorem:

Theorem 2.3.1 (Penrose [Pen], [AHS]) Let M be an oriented Riemannian 4-manifold

and Z its twistor space. Then the almost-complex structure J on Z is integrable (i.e. Z
becomes a complex manifold) if and only if the Weyl curvature tensor W of M satisfies

W+ = 0 .

Classical proofs of Theorem (2.3.1) (like [AHS] or [Be] § 13.46) involves rather so-

phisticated concepts and details. Thus, we consider that it is worth to provide a more

elementary (though more extensive) proof. This will be done in the next section.
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An oriented Riemannian 4-manifold (M, 〈 , 〉) whose Weyl tensor W satisfies W+ = 0

is called an anti-self-dual manifold. The metric 〈 , 〉 is called an ASD metric, and its

conformal equivalence class is called an ASD conformal structure. Since the Weyl tensor

W ∈ Λ2
M(AdTM ) and the decomposition Λ2

M(AdTM ) = Λ+
M(AdTM ) ⊕ Λ−M(AdTM )

are conformally invariants, any metric within an ASD conformal structure is clearly an

ASD metric. From now on, we shall consider the twistor space Z of an anti-self-dual 4-

manifold M as a complex 3-manifold. The twistor space, as a complex manifold, carries

an extra structure which is settled in the next theorem:

Theorem 2.3.2 ([Be] § 13.63) The twistor space Z of an anti-self-dual 4-manifold M

satisfies the following properties:

(1) The fibres of π : Z → M are holomorphic curves in Z . Each is a rational curve

CP 1 whose normal bundle in Z is isomorphic to O(1)⊕O(1) .

(2) Z possesses a free antiholomorphic involution (real structure) ι̇ : Z → Z which

in each fibre corresponds to the classical antiholomorphic involution z 7→ −1/z on

the Riemann sphere CP 1 ' C .

The fibres of π : Z → M are called the twistor lines of Z . The antiholomorphic

involution ι̇ : Z → Z in the preceding theorem restricted to the fibre corresponding to

x ∈ M is nothing but the antipodal map on the sphere S√2(Λ
+
M)x . The proof that this

involution is in fact antiholomorphic readily follows from a direct computation in local

coordinates using formula (2.14) of section (2.4) below. A proof of property (1) will be

given in section (2.5).

It turns out that the properties of Theorem (2.3.2) completely characterize Z as a

twistor space. This is provided by the following converse to Theorem (2.3.1):

Theorem 2.3.3 (Penrose [Pen]) Let Z be a complex 3-manifold such that

(1) Z is fibred by projective lines whose normal bundles are isomorphic to O(1)⊕O(1) .

(2) Z possesses a free antiholomorphic involution ι̇ which transforms each fibre to

itself.

Then Z is the twistor space of some anti-self-dual 4-manifold M .
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The manifold M in the preceding theorem is nothing but the space of fibres of Z.

We shall describe in section (2.5) how to obtain the ASD conformal structure on M

which inverts the Penrose construction above.

Putting Theorems (2.3.1) and (2.3.3) together, we see that there is a well-defined

correspondence between ASD 4-manifolds M up to conformal diffeomorphisms and com-

plex 3-manifolds Z as in Theorem (2.3.3) up to structure-preserving biholomorphisms.

This correspondence is known as the Penrose Transform.

Finally, we have already commented that natural geometrical properties of the 4-

manifold M are often reflected in equally natural holomorphic properties of the twistor

space Z. Some relevant cases of this correspondence are illustrated in the theorem

below:

Theorem 2.3.4 ([Hit1]) Let Z be the twistor space of an anti-self-dual 4-manifold M .

Then:

(1) An Einstein metric in the conformal class of M is defined by a holomorphic section

θ of Ω
1,0

Z (K
−1/2

) which is compatible with ι̇ and restricts to a non-zero form on

each fibre of Z .

(2) An scalar-flat Kähler metric in the conformal class of M is defined by a holomor-

phic section s of K
−1/2

compatible with ι̇ and non-zero on each fibre of Z .

(3) A hypercomplex structure in the conformal class of M is defined by a holomorphic

projection p : Z → CP 1 compatible with ι̇ and for which p is an isomorphism on

each fibre of Z .

Here K
−1/2

is a distinguished square root of the anticanonical bundle K−1 of Z .

2.4 Proof of Penrose Theorem

2.4.1 Computation of the Nijenhuis Tensor

Our proof of Theorem (2.3.1) relies on the computation of the Nijenhuis tensor N of

the almost-complex manifold (Z,J):

N(X, Y ) = [JX,JY ]− J[JX, Y ]− J[X,JY ]− [X, Y ] ,

38



where [ ,] denotes the Lie bracket for vector fields (the notation is slightly different of

the matrix Lie bracket [ , ]). By the Newlander-Niremberg Theorem [NeNi], the vanish-

ing of the tensor N implies that the almost-complex structure J on Z is induced by a

(unique) honest complex structure.

In accomplishing this, consider a local trivialization ϕα : Uα × R4 → TM of the

tangent bundle of M as a SO4 - vector bundle, i.e. choose a local positive orthonormal

frame field {b1, b2, b3, b4} of tangent vectors on Uα . This trivialization induces the local

trivialization ϕα : Uα × Λ+R4 → Λ+
M of the bundle of self-dual forms, which takes

the local positive orthonormal frame { 1√
2
w1,

1√
2
w2,

1√
2
w3} of Λ+

M (defined in (2.8)) on

the standard orthonormal basis of self-dual forms of R4 . Since Z ⊂ Λ+
M and ϕα is a

diffeomorphism of Uα × Λ+R4 on an open set in Λ+
M , we can carry the calculus of the

Nijenhuis tensor to the manifold Uα × Λ+R4 :

For x ∈ Uα and J = y1w1 + y2w2 + y3w3 ∈ S√2(Λ
+
M)x a complex structure in TxUα ,

the point p = (x, J) ∈ S√2(Λ
+
M) has coordinates (x1, x2, x3, x4, y1, y2, y3) in Uα × Λ+R4 .

Observe that {b1, b2, b3, b4,w1,w2,w3}, via the identification ϕα, constitutes an orthog-

onal vector basis of TxUα ⊕ Λ+R4 = T(x,J)(Uα × Λ+R4). Notice also that [bi,wj] = 0

and [wi,wj] = 0 .

Adopting the notation of section (2.1) and considering skew-symmetric endomor-

phisms and 2-forms as being the same, the horizontal distribution H on AdTM = Λ2
M

can be expressed in this local trivialization, according (1.8) and (1.11), as

H(x,J) = {(v,−[A(v), J ]) ; v ∈ TxUα} .

In this way, a vector v + τ ∈ TxUα ⊕ Λ+R4 = T(x,J)(Uα × Λ+R4) decomposes as

(v − [A(v), J ]) + ([A(v), J ] + τ) ∈ H(x,J) ⊕ Λ+R4 = T(x,J)(Uα × Λ+R4) ,

because according (2.10) we have [A(v), J ] ∈ Λ+R4. We also have from (2.10) that

〈 [A(v), J ] , J 〉 = 0, so 〈 τ, J 〉 = 0⇔ 〈 [A(v), J ] + τ, J 〉 = 0. Therefore

T(x,J)(Uα × S√2(Λ
+R4)) = TxUα ⊕ TJ(S√2(Λ

+R4)) = H(x,J) ⊕ TJ(S√2(Λ
+R4)) .

Thus, we finally arrive to a local formula for the complex structure J:
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For v + τ ∈ TxUα ⊕ TJ(S√2(Λ
+R4)) we have

J(v + τ) = J(v − [A(v), J ]) + J([A(v), J ] + τ)

= (Jv − [A(Jv), J ]) + 1√
2
J ××××××××× ([A(v), J ] + τ) (2.14)

= Jv +
(
−[A(Jv), J ] + 1√

2
J ××××××××× [A(v), J ] + 1√

2
J ××××××××× τ

)
in TxUα ⊕ TJ(S√2(Λ

+R4)).

In order to determine the tensor N, we only need to compute the values of N(bi, bj)

and N(bi, τ), where τ is a tangent vector field in S√2(Λ
+R4). In fact, by re-ordering the

terms of the basis {b1, b2, b3, b4}, we only need to compute the values of N(b1, b2) and

N(b1, τ) .

So consider the matrix form of A(bi) and J in the basis {b1, b2, b3, b4} (see (2.9)),

A(bi) =


0 −Γi

12 −Γi
13 −Γi

14

Γi
12 0 −Γi

23 Γi
42

Γi
13 Γi

23 0 −Γi
34

Γi
14 −Γi

42 Γi
34 0

 , J =


0 −y1 −y2 −y3

y1 0 −y3 y2

y2 y3 0 −y1

y3 −y2 y1 0

 .

We have already seen in (2.11) that the expression of [A(bi), J ] as a 2-form is

[A(bi), J ] = ((Γi
13 + Γi

42)y3 − (Γi
14 + Γi

23)y2)w1

+((Γi
14 + Γi

23)y1 − (Γi
12 + Γi

34)y3)w2 + ((Γi
12 + Γi

34)y2 − (Γi
13 + Γi

42)y1)w3 .

Thus, after some calculation, the vector cross product 1√
2
J ××××××××× [A(bi), J ] has the expression

1√
2
J ××××××××× [A(bi), J ] = ((Γi

12 + Γi
34)(y

2
2 + y2

3)− (Γi
13 + Γi

42)y1y2 − (Γi
14 + Γi

23)y1y3)w1

+((Γi
13 + Γi

42)(y
2
1 + y2

3)− (Γi
12 + Γi

34)y1y2 − (Γi
14 + Γi

23)y2y3)w2

+((Γi
14 + Γi

23)(y
2
1 + y2

2)− (Γi
12 + Γi

34)y1y3 − (Γi
13 + Γi

42)y2y3)w3 .

Therefore, according formula (2.14),

Jb1 = Jb1 + (−[A(Jb1), J ] + 1√
2
J ××××××××× [A(b1), J ])

= y1b2 + y2b3 + y3b4 + (−y1[A(b2), J ]− y2[A(b3), J ]− y3[A(b4), J ] + 1√
2
J ××××××××× [A(b1), J ])

= y1b2 + y2b3 + y3b4 + C11w1 + C12w2 + C13w3 . (2.15)
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Where the explicit expressions for C11, C12, C13 are

C11=(Γ 1
12+Γ 1

34+Γ 3
14+Γ 3

23)y2
2+(Γ 1

12+Γ 1
34−Γ 4

13−Γ 4
42)y2

3+(Γ 2
14+Γ 2

23−Γ 1
13−Γ 1

42)y1y2−(Γ 1
14+Γ 1

23+Γ 2
13+Γ 2

42)y1y3+(Γ 4
14+Γ 4

23−Γ 3
13−Γ 3

42)y2y3

C12=(Γ 1
13+Γ 1

42−Γ 2
14−Γ 2

23)y2
1+(Γ 1

13+Γ 1
42+Γ 4

12+Γ 4
34)y2

3−(Γ 1
12+Γ 1

34+Γ 3
14+Γ 3

23)y1y2+(Γ 2
12+Γ 2

34−Γ 4
14−Γ 4

23)y1y3+(Γ 3
12+Γ 3

34−Γ 1
14−Γ 1

23)y2y3

C13=(Γ 1
14+Γ 1

23+Γ 2
13+Γ 2

42)y2
1+(Γ 1

14+Γ 1
23−Γ 3

12−Γ 3
34)y2

2+(Γ 3
13+Γ 3

42−Γ 2
12−Γ 2

34)y1y2+(Γ 4
13+Γ 4

42−Γ 1
12−Γ 1

34)y1y3−(Γ 1
13+Γ 1

42+Γ 4
12+Γ 4

34)y2y3

In the same way,

Jb2 = Jb2 + (−[A(Jb2), J ] + 1√
2
J ××××××××× [A(b2), J ])

= −y1b1 + y3b3 − y2b4 + (y1[A(b1), J ]− y3[A(b3), J ] + y2[A(b4), J ] + 1√
2
J ××××××××× [A(b2), J ])

= −y1b1 + y3b3 − y2b4 + C21w1 + C22w2 + C23w3 .

Where the explicit expressions for C21, C22, C23 are

C21=(Γ 2
12+Γ 2

34−Γ 4
14−Γ 4

23)y2
2+(Γ 2

12+Γ 2
34−Γ 3

13−Γ 3
42)y2

3−(Γ 1
14+Γ 1

23+Γ 2
13+Γ 2

42)y1y2+(Γ 1
13+Γ 1

42−Γ 2
14−Γ 2

23)y1y3+(Γ 3
14+Γ 3

23+Γ 4
13+Γ 4

42)y2y3

C22=(Γ 1
14+Γ 1

23+Γ 2
13+Γ 2

42)y2
1+(Γ 2

13+Γ 2
42+Γ 3

12+Γ 3
34)y2

3+(Γ 4
14+Γ 4

23−Γ 2
12−Γ 2

34)y1y2−(Γ 1
12+Γ 1

34+Γ 3
14+Γ 3

23)y1y3−(Γ 2
14+Γ 2

23+Γ 4
12+Γ 4

34)y2y3

C23=(Γ 2
14+Γ 2

23−Γ 1
13−Γ 1

42)y2
1+(Γ 2

14+Γ 2
23+Γ 4

12+Γ 4
34)y2

2+(Γ 1
12+Γ 1

34−Γ 4
13−Γ 4

42)y1y2+(Γ 3
13+Γ 3

42−Γ 2
12−Γ 2

34)y1y3−(Γ 2
13+Γ 2

42+Γ 3
12+Γ 3

34)y2y3

For a tangent vector field τ(y) = τ1(y)w1 + τ2(y)w2 + τ3(y)w3 in S√2(Λ
+R4), i.e. τ

satisfies τ1y1 + τ2y2 + τ3y3 = 0, we have according (2.14),

Jτ = 1√
2
J ××××××××× τ

= 1√
2
(y1w1 + y2w2 + y3w3)××××××××× (τ1w1 + τ2w2 + τ3w3)

= (τ3y2 − τ2y3)w1 + (τ1y3 − τ3y1)w2 + (τ2y1 − τ1y2)w3 . (2.16)

Now, in order to compute the Lie bracket [Jb1, b2], recall that we have [bi,wj] = 0,

[wi,wj] = 0 and there exists the following formula (cf. [dCa] pg. 27):

[fX, gY ] = fg[X, Y ]+ f
∂g

∂X
Y − g ∂f

∂Y
X .

Thus, denoting ∂i := ∂
∂bi

, we have

[Jb1, b2] = [y1b2, b2]+ [y2b3, b2]+ [y3b4, b2]+ [C11w1, b2]+ [C12w2, b2]+ [C13w3, b2]

= y2[b3, b2]+ y3[b4, b2]− ∂2C11w1 − ∂2C12w2 − ∂2C13w3 .

Since N is a tensor, we only need to know his value at the point p = (x, J). Thus,

to simplify calculations, let us suppose that the frame {b1, b2, b3, b4} is chosen to be
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geodesic at x, i.e. ∀ i, j we have ∇bi
bj (x) = 0. So, at the point x, formulas (2.1), (2.2)

and (2.3) reduce to

Γi
jk(x) = 0 .

[bi, bj](x) = 0 .

Rijkl(x) = ∂iΓ
j
kl(x)− ∂jΓ

i
kl(x) . (2.17)

Therefore, at the point p we have

[Jb1, b2](p) = −∂2C11(p)w1 − ∂2C12(p)w2 − ∂2C13(p)w3 .

It follows that

J[Jb1, b2](p) = 1√
2
J ××××××××× (−∂2C11(p)w1 − ∂2C12(p)w2 − ∂2C13(p)w3)

= (∂2C12 y3 − ∂2C13 y2)(p)w1

+(∂2C13 y1 − ∂2C11 y3)(p)w2 + (∂2C11 y2 − ∂2C12 y1)(p)w3 .

Analogously, we obtain

[Jb2, b1](p) = −∂1C21(p)w1 − ∂1C22(p)w2 − ∂1C23(p)w3 .

So,

J[Jb2, b1](p) = 1√
2
J ××××××××× (−∂1C21(p)w1 − ∂1C22(p)w2 − ∂1C23(p)w3)

= (∂1C22 y3 − ∂1C23 y2)(p)w1

+(∂1C23 y1 − ∂1C21 y3)(p)w2 + (∂1C21 y2 − ∂1C22 y1)(p)w3 .

On the other hand,

[Jb1,Jb2](p) = [C11w1 + C12w2 + C13w3 ,−y1b1 + y3b3 − y2b4 ](p)

−[C21w1 + C22w2 + C23w3 , y1b2 + y2b3 + y3b4 ](p)

= (∂1C11 y1 − ∂3C11 y3 + ∂4C11 y2 + ∂2C21 y1 + ∂3C21 y2 + ∂4C21 y3)(p)w1

+(∂1C12 y1 − ∂3C12 y3 + ∂4C12 y2 + ∂2C22 y1 + ∂3C22 y2 + ∂4C22 y3)(p)w2

+(∂1C13 y1 − ∂3C13 y3 + ∂4C13 y2 + ∂2C23 y1 + ∂3C23 y2 + ∂4C23 y3)(p)w3 .
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Finally, we have already done all the necessary computation for determine the Nijenhuis

tensor at p :

N(b1, τ)(p) = [Jb1,Jτ](p)− J[Jb1, τ](p)− J[b1,Jτ](p)− [b1, τ](p)

= [Jb1,Jτ](p)− J[Jb1, τ](p)

= [ y1b2 + y2b3 + y3b4 , (τ3y2 − τ2y3)w1 + (τ1y3 − τ3y1)w2 + (τ2y1 − τ1y2)w3 ](p)

−J[ y1b2 + y2b3 + y3b4 , τ1w1 + τ2w2 + τ3w3 ](p)

= (−(τ3y2 − τ2y3)b2 − (τ1y3 − τ3y1)b3 − (τ2y1 − τ1y2)b4) (p)

−J(−τ1b2 − τ2b3 − τ3b4)(p)

= − ((τ3y2 − τ2y3)b2 + (τ1y3 − τ3y1)b3 + (τ2y1 − τ1y2)b4) (p)

+(τ1J(b2) + τ2J(b3) + τ3J(b4))(p)

= − ((τ3y2 − τ2y3)b2 + (τ1y3 − τ3y1)b3 + (τ2y1 − τ1y2)b4) (p)

+(τ1(−y1b1 + y3b3 − y2b4) + τ2(−y2b1 − y3b2 + y1b4) + τ3(−y3b1 + y2b2 − y1b3))(p)

= 0 .

On the other hand,

N(b1, b2)(p) = [Jb1,Jb2](p)− J[Jb1, b2](p)− J[b1,Jb2](p)− [b1, b2](p)

= [Jb1,Jb2](p)− J[Jb1, b2](p) + J[Jb2, b1](p)

= ((∂1C11+∂2C21)y1+(∂4C11+∂3C21+∂2C13−∂1C23)y2+(−∂3C11+∂4C21−∂2C12+∂1C22)y3)(p)w1

+((∂1C12+∂2C22−∂2C13+∂1C23)y1+(∂4C12+∂3C22)y2+(−∂3C12+∂4C22+∂2C11−∂1C21)y3)(p)w2

+((∂1C13+∂2C23+∂2C12−∂1C22)y1+(∂4C13+∂3C23−∂2C11+∂1C21)y2+(−∂3C13+∂4C23)y3)(p)w3

= N1(b1, b2)(p)w1 +N2(b1, b2)(p)w2 +N3(b1, b2)(p)w3 .

Since the quantities Cµν are expressed as a function of the symbols Γi
jk and the

coordinates (y1, y2, y3), the calculation of the coefficients Ni(b1, b2)(p) is straightforward

(but extensive): each of the coefficients Ni(b1, b2)(p) can be expressed in the form

Ni(b1, b2)(p) =
∑

j+k+l=3

Nijkl(x) y
j
1y

k
2y

l
3 .

At this point the special matrix form (2.6) of the curvature tensor R arises: a direct

43



computation (re-ordering the terms after simplifying) and formula (2.17) gives:

N1300 = 0 .

N1210 = 0 .

N1201 = 0 .

N1120 = (∂1Γ
3
14 − ∂3Γ

1
14) + (∂1Γ

4
13 − ∂4Γ

1
13) + (∂1Γ

3
23 − ∂3Γ

1
23) + (∂2Γ

3
13 − ∂3Γ

2
13)

+(∂4Γ
2
14 − ∂2Γ

4
14) + (∂1Γ

4
42 − ∂4Γ

1
42) + (∂4Γ

2
23 − ∂2Γ

4
23) + (∂2Γ

3
42 − ∂3Γ

2
42)

= R1314 +R1413 +R1323 +R2313 +R4214 +R1442 +R4223 +R2342

= 2(R1314 +R1323 +R4214 +R4223)

= 2R(db1 ∧ db3 + db4 ∧ db2 , db1 ∧ db4 + db2 ∧ db3)

= 2R(w2,w3) = 2W (w2,w3)

= 2W+(w2,w3) .

N1102 = (∂3Γ
1
14 − ∂1Γ

3
14) + (∂4Γ

1
13 − ∂1Γ

4
13) + (∂3Γ

1
23 − ∂1Γ

3
23) + (∂3Γ

2
13 − ∂2Γ

3
13)

+(∂2Γ
4
14 − ∂4Γ

2
14) + (∂4Γ

1
42 − ∂1Γ

4
42) + (∂2Γ

4
23 − ∂4Γ

2
23) + (∂3Γ

2
42 − ∂2Γ

3
42)

= −R1314 −R1413 −R1323 −R2313 −R4214 −R1442 −R4223 −R2342

= −N1120 = −2W+(w2,w3) .

N1021 = (∂1Γ
2
13 − ∂2Γ

1
13) + (∂1Γ

3
12 − ∂3Γ

1
12) + (∂1Γ

2
42 − ∂2Γ

1
42) + (∂4Γ

2
12 − ∂2Γ

4
12)

+(∂3Γ
4
13 − ∂4Γ

3
13) + (∂1Γ

3
34 − ∂3Γ

1
34) + (∂3Γ

4
42 − ∂4Γ

3
42) + (∂4Γ

2
34 − ∂2Γ

4
34)

= R1213 +R1312 +R1242 +R4212 +R3413 +R1334 +R3442 +R4234

= 2(R1213 +R1242 +R3413 +R3442)

= 2R(db1 ∧ db2 + db3 ∧ db4 , db1 ∧ db3 + db4 ∧ db2)

= 2R(w1,w2) = 2W (w1,w2)

= 2W+(w1,w2) .
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N1003 = (∂1Γ
2
13 − ∂2Γ

1
13) + (∂1Γ

3
12 − ∂3Γ

1
12) + (∂1Γ

2
42 − ∂2Γ

1
42) + (∂4Γ

2
12 − ∂2Γ

4
12)

+(∂3Γ
4
13 − ∂4Γ

3
13) + (∂1Γ

3
34 − ∂3Γ

1
34) + (∂3Γ

4
42 − ∂4Γ

3
42) + (∂4Γ

2
34 − ∂2Γ

4
34)

= R1213 +R1312 +R1242 +R4212 +R3413 +R1334 +R3442 +R4234

= N1021 = 2W+(w1,w2) .

N1012 = (∂2Γ
1
14 − ∂1Γ

2
14) + (∂4Γ

1
12 − ∂1Γ

4
12) + (∂2Γ

1
23 − ∂1Γ

2
23) + (∂3Γ

2
12 − ∂2Γ

3
12)

+(∂4Γ
3
14 − ∂3Γ

4
14) + (∂4Γ

1
34 − ∂1Γ

4
34) + (∂4Γ

3
23 − ∂3Γ

4
23) + (∂3Γ

2
34 − ∂2Γ

3
34)

= −R1214 −R1412 −R1223 −R2312 −R3414 −R1434 −R3423 −R2334

= −2(R1214 +R1223 +R3414 +R3423)

= −2R(db1 ∧ db2 + db3 ∧ db4 , db1 ∧ db4 + db2 ∧ db3)

= −2R(w1,w3) = −2W+(w1,w3) .

N1030 = (∂2Γ
1
14 − ∂1Γ

2
14) + (∂4Γ

1
12 − ∂1Γ

4
12) + (∂2Γ

1
23 − ∂1Γ

2
23) + (∂3Γ

2
12 − ∂2Γ

3
12)

+(∂4Γ
3
14 − ∂3Γ

4
14) + (∂4Γ

1
34 − ∂1Γ

4
34) + (∂4Γ

3
23 − ∂3Γ

4
23) + (∂3Γ

2
34 − ∂2Γ

3
34)

= −R1214 −R1412 −R1223 −R2312 −R3414 −R1434 −R3423 −R2334

= N1012 = −2W+(w1,w3) .

N1111 = 2((∂1Γ
4
14 − ∂4Γ

1
14) + (∂1Γ

4
23 − ∂4Γ

1
23) + (∂2Γ

3
14 − ∂3Γ

2
14) + (∂2Γ

3
23 − ∂3Γ

2
23)

+(∂3Γ
1
13 − ∂1Γ

3
13) + (∂3Γ

1
42 − ∂1Γ

3
42) + (∂2Γ

4
13 − ∂4Γ

2
13) + (∂2Γ

4
42 − ∂4Γ

2
42))

= 2(R1414 +R1423 +R2314 +R2323 −R1313 −R1342 −R4213 −R4242)

= 2(R(db1 ∧ db4 + db2 ∧ db3 , db1 ∧ db4 + db2 ∧ db3)

−R(db1 ∧ db3 + db4 ∧ db2 , db1 ∧ db3 + db4 ∧ db2))

= 2(R(w3,w3)−R(w2,w2)) = 2(W (w3,w3)−W (w2,w2))

= 2(W+(w3,w3)−W+(w2,w2)) .

In order to compute more easily the values of N2jkl, observe that N(b1, b2)(p) ∈
Tp(Uα × S√2(Λ

+R4)) = TxUα ⊕ TJ(S√2(Λ
+R4)), so 〈N(b1, b2)(p) , J 〉 = 0, i.e.

N1(b1, b2)(p) y1 +N2(b1, b2)(p) y2 +N3(b1, b2)(p) y3 = 0 . (2.18)
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The left side of (2.18) is a polynomial in the variables (y1, y2, y3), so

N2030 = 0, because the coefficient of y4
2 is N2030 .

N2300 = 0, because the coefficient of y3
1y2 is N1210 +N2300 .

N2120 = 2W+(w1,w3), because the coefficient of y1y
3
2 is N1030 +N2120 .

N2210 = −2W+(w2,w3), because the coefficient of y2
1y

2
2 is N1120 +N2210 .

Again, direct calculation gives:

N2111 = 0 .

N2102 = (∂1Γ
2
14 − ∂2Γ

1
14) + (∂1Γ

4
12 − ∂4Γ

1
12) + (∂1Γ

2
23 − ∂2Γ

1
23) + (∂2Γ

3
12 − ∂3Γ

2
12)

+(∂3Γ
4
14 − ∂4Γ

3
14) + (∂1Γ

4
34 − ∂4Γ

1
34) + (∂3Γ

4
23 − ∂4Γ

3
23) + (∂2Γ

3
34 − ∂3Γ

2
34)

= R1214 +R1412 +R1223 +R2312 +R3414 +R1434 +R3423 +R2334

= 2(R1214 +R1223 +R3414 +R3423)

= 2R(db1 ∧ db2 + db3 ∧ db4 , db1 ∧ db4 + db2 ∧ db3)

= 2R(w1,w3) = 2W (w1,w3)

= 2W+(w1,w3) .

N2012 = (∂3Γ
1
14 − ∂1Γ

3
14) + (∂4Γ

1
13 − ∂1Γ

4
13) + (∂3Γ

1
23 − ∂1Γ

3
23) + (∂3Γ

2
13 − ∂2Γ

3
13)

+(∂2Γ
4
14 − ∂4Γ

2
14) + (∂4Γ

1
42 − ∂1Γ

4
42) + (∂2Γ

4
23 − ∂4Γ

2
23) + (∂3Γ

2
42 − ∂2Γ

3
42)

= −R1314 −R1413 −R1323 −R2313 −R4214 −R1442 −R4223 −R2342

= −2(R1314 +R1323 +R4214 +R4223)

= −2R(db1 ∧ db3 + db4 ∧ db2 , db1 ∧ db4 + db2 ∧ db3)

= −2R(w2,w3) = −2W (w2,w3)

= −2W+(w2,w3) .
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N2201 = (∂1Γ
3
13 − ∂3Γ

1
13) + (∂1Γ

3
42 − ∂3Γ

1
42) + (∂4Γ

2
13 − ∂2Γ

4
13) + (∂4Γ

2
42 − ∂2Γ

4
42)

+(∂4Γ
1
14 − ∂1Γ

4
14) + (∂4Γ

1
23 − ∂1Γ

4
23) + (∂3Γ

2
14 − ∂2Γ

3
14) + (∂3Γ

2
23 − ∂2Γ

3
23)

= R1313 +R1342 +R4213 +R4242 −R1414 −R1423 −R2314 −R2323

= R(db1 ∧ db3 + db4 ∧ db2 , db1 ∧ db3 + db4 ∧ db2)

−R(db1 ∧ db4 + db2 ∧ db3 , db1 ∧ db4 + db2 ∧ db3)

= R(w2,w2)−R(w3,w3) = W (w2,w2)−W (w3,w3)

= W+(w2,w2)−W+(w3,w3) .

N2021 = (∂1Γ
4
14 − ∂4Γ

1
14) + (∂1Γ

4
23 − ∂4Γ

1
23) + (∂2Γ

3
14 − ∂3Γ

2
14) + (∂2Γ

3
23 − ∂3Γ

2
23)

+(∂2Γ
1
12 − ∂1Γ

2
12) + (∂2Γ

1
34 − ∂1Γ

2
34) + (∂4Γ

3
12 − ∂3Γ

4
12) + (∂4Γ

3
34 − ∂3Γ

4
34)

= R1414 +R1423 +R2314 +R2323 −R1212 −R1234 −R3412 −R3434

= R(db1 ∧ db4 + db2 ∧ db3 , db1 ∧ db4 + db2 ∧ db3)

−R(db1 ∧ db2 + db3 ∧ db4 , db1 ∧ db2 + db3 ∧ db4)

= R(w3,w3)−R(w1,w1) = W (w3,w3)−W (w1,w1)

= W+(w3,w3)−W+(w1,w1) .

N2003 = (∂1Γ
3
13 − ∂3Γ

1
13) + (∂1Γ

3
42 − ∂3Γ

1
42) + (∂4Γ

2
13 − ∂2Γ

4
13) + (∂4Γ

2
42 − ∂2Γ

4
42)

+(∂2Γ
1
12 − ∂1Γ

2
12) + (∂2Γ

1
34 − ∂1Γ

2
34) + (∂4Γ

3
12 − ∂3Γ

4
12) + (∂4Γ

3
34 − ∂3Γ

4
34)

= R1313 +R1342 +R4213 +R4242 −R1212 −R1234 −R3412 −R3434

= R(db1 ∧ db3 + db4 ∧ db2 , db1 ∧ db3 + db4 ∧ db2)

−R(db1 ∧ db2 + db3 ∧ db4 , db1 ∧ db2 + db3 ∧ db4)

= R(w2,w2)−R(w1,w1) = W (w2,w2)−W (w1,w1)

= W+(w2,w2)−W+(w1,w1) .

Finally, equation (2.18) gives us:

N3003 = 0, because the coefficient of y4
3 is N3003 .

N3300 = 0, because the coefficient of y3
1y3 is N1201 +N3300 .

N3111 = 0, because the coefficient of y1y2y
2
3 is N1012 +N2102 +N3111 .
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N3102 = −2W+(w1,w2), because the coefficient of y1y
3
3 is N1003 +N3102 .

N3120 = −2W+(w1,w2), because the coefficient of y1y
2
2y3 is N1021 +N2111 +N3120 .

N3021 = 2W+(w2,w3), because the coefficient of y2
2y

2
3 is N2012 +N3021 .

N3201 = 2W+(w2,w3), because the coefficient of y2
1y

2
3 is N1102 +N3201 .

N3030 = W+(w1,w1)−W+(w3,w3), because the coefficient of y3
2y3 is N2021 +N3030 .

N3210 = W+(w2,w2) − W+(w3,w3), because the coefficient of y2
1y2y3 is N1111 +

N2201 +N3120 .

N3012 = W+(w1,w1)−W+(w2,w2), because the coefficient of y2y
3
3 is N2003 +N3012 .

This ends the proof of Theorem (2.3.1).

2.4.2 The Conformal Invariance of J

The computations realized in section (2.4.1) enables us to prove the conformal invari-

ance of J : let (M, 〈 , 〉) be an oriented Riemannian 4-manifold, 〈 , 〉
λ

= λ2〈 , 〉 a metric

conformal to 〈 , 〉 and Jλ the almost-complex structure on Z associated to 〈 , 〉
λ
. Fixing

a point (x, J) ∈ Z, observe that if {b1, b2, b3, b4} is a local positive 〈 , 〉-orthonormal

basis of tangent vectors, then {bλ
1, b

λ
2, b

λ
3, b

λ
4} is a local positive 〈 , 〉

λ
-orthonormal basis of

tangent vectors and {wλ
1,w

λ
2,w

λ
3} is a local positive 〈 , 〉

λ
-orthonormal basis of self-dual

forms, where bλ
i := 1

λ
bi and wλ

i := λ2wi .

It is readily seen that if a self-dual form τ ∈ (Λ+
M)x has coordinates (τ1, τ2, τ3) with

respect to {w1,w2,w3} and coordinates (τ λ
1 , τ

λ
2 , τ

λ
3 ) with respect to {wλ

1,w
λ
2,w

λ
3}, then

τ λ
i = 1

λ2 τi . However, the complex structure J on TxUα, seen as a self-dual form, has the

same coordinates (y1, y2, y3) with respect to the basis {w1,w2,w3} and {wλ
1,w

λ
2,w

λ
3} .

It happens because the isomorphism between skew-symmetric endomorphism and 2-

forms changes with the metric according to λ2. Thus, from formula (2.16) we obtain

Jλ(τ) = J(τ) . It only rests to prove the invariance of Jb1, by re-ordering the basis

{b1, b2, b3, b4} the result follows for the other indices. Observe that formula (2.15) ex-

presses Jb1 as a function of the coordinates (y1, y2, y3) of J and the symbols Γi
jk. These

symbols depend intimately on the orthonormal frame {b1, b2, b3, b4} and the Levi-Civita

connection of 〈 , 〉 according (2.1). Notice that in this formula is not assumed that the

frame {b1, b2, b3, b4} is geodesic at x . In particular, if {b1, b2, b3, b4} is geodesic at x we
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have Jb1 = Jb1 . Denote by Γi
jk the symbols of the Levi-Civita connection of 〈 , 〉

λ
asso-

ciated to the 〈 , 〉
λ
-orthonormal frame {bλ

1, b
λ
2, b

λ
3, b

λ
4}. Now, if we assume that the frame

{b1, b2, b3, b4} is geodesic at x with respect to 〈 , 〉, then we have according [Hit3] that

the values of Γi
jk at x are given by the formula

Γi
jk(x) =

1

λ2(x)
(δik ∂jλ(x)− δij ∂kλ(x)) , (2.19)

where δij denotes the Kronecker symbol (δij = 1 if i = j, δij = 0 otherwise).

Thus, a direct calculation of formula (2.15) applied to the metric 〈 , 〉
λ

(with the

symbols Γi
jk as in (2.19)) and to the almost-complex structure Jλ gives us

Jλ(bλ

1) = Jbλ

1 .

In particular Jλ(b1) = Jb1 = Jb1 , so J is conformally invariant.

Let us conclude this section with a final remark which will be useful in the next chap-

ter. Let (M, 〈 , 〉) be an oriented Riemannian 4-manifold and f : M → M a conformal

orientation-preserving diffeomorphism. Observe that for x ∈ M and Jx an orthogonal

complex structure on TxM , f̃(Jx) := dfx Jx (dfx)
−1 is an orthogonal complex structure

on Tf(x)M . Thus, a conformal diffeomorphism f on M has a natural lifting to a dif-

feomorphism f̃ : Z → Z on its twistor space. This diffeomorphism in fact preserves

the almost-complex structure J on Z. In order to prove this, observe that since f is a

conformal diffeomorphism we have already proved that Jf = J, where Jf is the almost-

complex structure on Z associated to the push-forward metric f∗〈 , 〉. On the other

hand, since f : (M, 〈 , 〉) → (M, f∗〈 , 〉) is clearly an isometry and all of the objects in

the Penrose construction (section (2.3)) are preserved by isometries, we conclude that

f̃ takes J on Jf : f̃∗ J = Jf . Therefore f̃∗ J = J, i.e. f̃ preserves J.

In particular, if M is anti-self-dual then f̃ : Z → Z is a biholomorphism that

preserves the twistor lines and the real structure ι̇ on Z.

2.5 Reversing the Penrose Construction

In this section we shall describe a procedure for retrieve the anti-self-dual conformal

structure on a 4-manifold in terms of its twistor space, inverting thus the Penrose con-
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struction of section (2.3).

Let us begin by considering M an oriented smooth 4-manifold with a fixed conformal

structure and π : Z → M its twistor space. For each point x ∈ M , denote by `x the

twistor line on x. Observe that from a vector v ∈ TxM we can obtain in a natural way a

smooth section ṽ of N = TZ|`x/T`x (the normal bundle of `x in Z), whose value at each

point p ∈ `x is given by the ‘inverse’ of the mapping π∗p : TpZ → TxM evaluated at

v. In fact, since a metric g in the conformal class of M induces a distribution H ⊂ TZ
transverse to the twistor lines, this section ṽ can be realized as a section ṽ g of TZ|`x ,

where ṽ g(p) = (π∗p|Hp)
−1(v).

When the conformal structure on M is anti-self-dual, it turns out that all of the

objects presented above have very special properties. It is described in the following

theorem:

Theorem 2.5.1 If the conformal structure on M is anti-self-dual (i.e Z is a complex

manifold), then we have

(1) The sections ṽ are in fact holomorphic, i.e. ṽ ∈ H0(`x, N). Furthermore, given a

metric g in the conformal class of M we have ṽ g ∈ H0(`x, TZ|`x). Thus, H|`x is

a holomorphic subbundle of TZ|`x isomorphic to N .

(2) The real structure ι̇ on Z induces a real structure (C-antilinear involution) ι̇∗ on

H0(`x, N), which leaves the sections ṽ invariant. Conversely, if a section σ ∈
H0(`x, N) is real invariant then σ = ṽ for some v ∈ TxM .

(3) The complexification of the linear correspondence v 7→ ṽ induces an isomorphism

T C
x M

∼−→ H0(`x, N) that preserves the respective real structures. Thus, TxM is a

real form of H0(`x, N).

(4) Every non-zero section σ ∈ H0(`x, N) vanishes in at most one point of `x. Sections

coming from TxM are nowhere vanishing.

(5) The metric g on TxM induces a quadratic form g̃ on H0(`x, N) whose null cone

C = {σ ∈ H0(`x, N), g̃(σ, σ) = 0} is constituted by the sections σ ∈ H0(`x, N)

that vanishes at some point of `x.
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The proof of item (1) of Theorem (2.5.1) is much at the same spirit of Theorem

(2.3.1), working in local coordinates, using formulas (2.14) and (2.15), and considering

a geodesic frame at x to simplify the calculations. Each of items (2)-(5) can be proved

using the previous one.

As a corollary, let us prove item (1) of Theorem (2.3.2), i.e. N ' O(1)⊕O(1) : by a

classical result of Grothendieck [Gro], every holomorphic bundle over CP 1 is isomorphic

to a direct sum of powers of the tautological line bundle. Thus, N ' O(a) ⊕ O(b) for

some a, b ∈ Z. From item (4) above we conclude that in fact a, b ≤ 1 (otherwise, if

a ≥ 2 say, the bundle O(a) admits non-zero holomorphic sections vanishing in at least

two points). On the other hand, from item (3) above we have dimCH
0(`x, N) = 4, so

the only possibility left is a = b = 1, proving the result.

Now, with Theorem (2.5.1) in hand, we proceed to reverse the Penrose construction.

Let Z be a complex 3-manifold as in Theorem (2.3.3), i.e. it satisfies the following

properties:

(1) Z is fibred by projective lines whose normal bundles are isomorphic toO(1)⊕O(1) .

(2) Z possesses a free antiholomorphic involution ι̇ which transforms each fibre to

itself.

Consider M the space of fibres of Z, so M is a smooth 4-manifold. For each x ∈ M

denote by `x the fibre on x and for each v ∈ TxM denote by ṽ the section of N =

TZ|`x/T`x associated to v (it is only smooth a priori). Observe from (1) that the normal

bundle N of `x has the property H1(`x, N) = 0. Thus, by a theorem of Kodaira [Kod],

the space M of projective lines in Z having the above normal bundle is a non-singular

complex manifold whose tangent space at a point x ' `x is canonically isomorphic to

the space of holomorphic sections of N . As consequence of this fact we have

(1) M has complex dimension 4.

(2) The sections ṽ are in fact holomorphic, i.e. ṽ ∈ H0(`x, N).

(3) We have an inclusion M ⊂M whose differential map at x ∈ M is given precisely

by the correspondence v 7→ ṽ .

51



(4) The real structure on Z induces a real structure on M of which M is the fixed

point set.

(5) For a point x ∈ M , the complexification of the correspondence v 7→ ṽ induces an

isomorphism T C
x M

∼−→ H0(`x, N) that preserves the real structures. Thus, TxM is

a real form of H0(`x, N).

(6) The ‘null cone’ C = {σ ∈ H0(`x, N), σ(p) = 0 for some p ∈ `x} is real (i.e.

C = C). It also has no real points (i.e. elements of TxM) other than 0.

Concluding our procedure, since by hypothesis N ' O(1) ⊕ O(1), a section σ ∈
H0(`x, N) consists of a pair of linear functions (az + b, cz + d) in an affine parameter z

on CP 1. The vanishing of σ at some point is therefore given by the quadratic condition

ad − bc = 0. Thus, C defines a quadratic form on H0(`x, N) up to a scalar multiple,

which restricts to a real quadratic form on TxM because C is real according (6). Again,

according (6), C has no real points, so this quadratic form on TxM defined up to a

scalar multiple is in fact positive definite. This is the conformal structure on M that we

are looking for.

Proving that this conformal structure is anti-self-dual and inverts the Penrose con-

struction is by no means an easy task and it will not be done here (for a complete proof

see [Be] § 13.69). Everything we have done above will suffice for the applications in the

next chapter.
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Chapter 3

ASD Metrics and the Painlevé VI

Equation

In this chapter we shall use the Penrose Transform to establish a link between ASD

conformal structures on 4-manifolds and solutions of the Painlevé VI equation in the

complex plane,

d2y

dx2
=

1

2

(
1

y
+

1

y − 1
+

1

y − x

)(
dy

dx

)2

−
(

1

x
+

1

x− 1
+

1

y − x

)
dy

dx
(3.1)

+
y(y − 1)(y − x)
x2(x− 1)2

(
α+ β

x

y2
+ γ

x− 1

(y − 1)2
+ δ

x(x− 1)

(y − x)2

)
,

where α, β, γ, δ are parameters. This is done with the purpose of obtaining explicit

ASD metrics on a 4-manifold from explicit solutions of the Painlevé VI equation. The

conformal structures on a 4-manifold which are amenable to this approach are those

which admit SU2 as a symmetry group, with certain generic properties.

3.1 The Twistor Approach to SU2-invariant ASD

Conformal Structures

The basic geometrical object we shall focus on is an oriented 4-manifold M with an

anti-self-dual conformal structure preserved by a (left) action of the Lie group SU2 ,

SU2 ×M −→M ,
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all of the orbits being 3-dimensional. Since this group is compact, we can, if required,

take it to preserve a metric in the conformal equivalence class (which is of course an

ASD metric). Since SU2 preserves the conformal structure on M , we have already seen

in the final remark of section (2.4.2) that the natural lift of this action to an action on

the twistor space Z,

SU2 ×Z - Z

SU2 ×M
?

- M

?

preserves the complex structure, the real structure ι̇ and the twistor lines. In particular,

each element of the Lie algebra S U2 defines a holomorphic vector field on Z . Thus,

once the complexification of the Lie algebra S U2 is identified with SL2(C) (the Lie

algebra of the complex Lie group SL2(C)), we have a homomorphism of holomorphic

vector bundles:

α : SL2(C)×Z −→ TZ .

This homomorphism α is compatible with the real structures on Z and SL2(C). If α(a)

denotes the vector field on Z defined by a ∈ SL2(C) then

ι̇∗α(a) = α(a) , (3.2)

where the complex conjugation on SL2(C) is induced from the identification S U C
2 =

SL2(C), i.e. a := −a∗. The homomorphism α is also compatible with the SU2-action

on Z in the following way:

g∗α(a) = α(gag−1) , (3.3)

for all a ∈ SL2(C) and g ∈ SU2 . The trivial vector bundle SL2(C) × Z and the

tangent bundle TZ are both 3-dimensional. If we fix {µ1, µ2, µ3} a basis of S U2 , the

determinant of the homomorphism α with respect to this basis and local holomorphic

basis of TZ defines a holomorphic section detα of the line bundle detTZ = K−1, the

anticanonical bundle of Z. The homomorphism α fails to be an isomorphism in the set

Y where detα = 0, which is a SU2-invariant set by (3.3). Again, detα is compatible

with the real structure on Z in the following sense: if p ∈ Z and U is a neighborhood of

p then the value of detα at p with respect to the local basis induced by a holomorphic
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chart ϕ : U ↪→ C3 is the complex conjugate value of detα at ι̇(p) with respect to the

local basis induced by the holomorphic chart ϕ ◦ ι̇ : ι̇(U) ↪→ C3. Therefore the zero set

Y is real invariant. Since the tangent bundle of a twistor line ` is isomorphic to O(2)

and its normal bundle N is isomorphic to O(1)⊕O(1) (cf. Theorem (2.3.2)), we have

K−1|` = detTZ|` = det(T`⊕N) ' O(4).

In particular, Y is always non-empty and has degree 4 on each twistor line. Thus from

the real invariance we have that detα is either identically zero on a twistor line, vanishes

with multiplicity 2 at a pair of antipodal points, or vanishes non-degenerately at four

points, forming antipodal pairs.

The (non-generic) case detα ≡ 0 on Z has already been developed in [Hit1], so from

now on we shall restrict ourselves to the case where α is generically an isomorphism. In

particular, for a generic twistor line we have a non-trivial intersection with the divisor

Y . The (non-generic) case where Y meets a generic twistor line in two double points

has also been treated in [Hit1], so here we shall focus on the (generic) case where Y

meets a generic twistor line in four simple points. On the complement of Y , α is an

isomorphism. We set

A := −α−1 : T (Z\Y ) −→ SL2(C)×Z\Y .

Thus A is a holomorphic 1-form on Z\Y with values in SL2(C) and can therefore be

considered as a SL2(C)-connection on the trivial vector bundle C2×Z\Y . It is just this

connection which establishes the link we have mentioned above between ASD metrics

and the Painlevé VI equation. We shall see all of this with more detail in the next

sections.

Let us conclude this section with a final remark which will be useful later. Recall

that for a point p ∈ Z\Y , the image of αp is the whole tangent space TpZ. It is not true

anymore for a point p ∈ Y . Since we have an action SU2 × Z → Z with 3-dimensional

real orbits, for every point of Z the image of α contains at least three real independent

directions, so the rank of α is at least 2 in each point. In fact, since we are supposing that

Y is an analytic hypersurface of Z, we soon realize that for a point p in the smooth part
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of Y , the image of αp is the tangent space TpY . It is because the orbit of a point p ∈ Y
is all contained in Y , so αp takes S U2 (and hence SL2(C)) inside TpY . On the other

hand, dimC αp(SL2(C)) = dimC TpY = 2. Therefore we conclude αp(SL2(C)) = TpY ,

as asserted.

3.2 Isomonodromic Deformations along the Twistor

Lines

We shall proceed to describe the connection A defined in the last section more carefully.

The striking point about this connection is that it is in fact a flat connection. There is a

natural reason to arrive at this conclusion. If the SU2-action extends to a holomorphic

SL2(C)-action on Z, then Y is simply the union of lower-dimensional orbits and Z\Y
is an open orbit SL2(C)/Γ for some discrete closed subgroup Γ ⊂ SL2(C). So there is

an action-preserving isomorphism

SL2(C)× SL2(C)/Γ - SL2(C)/Γ

SL2(C)×Z\Y
?

- Z\Y
?

from which we can obtain A looking at the action SL2(C) × SL2(C)/Γ → SL2(C)/Γ .

Now, for a Lie group G and a discrete closed subgroup Γ the left action G×G/Γ→ G/Γ

is such that the associated homomorphism α : G × G/Γ → T (G/Γ) is actually an iso-

morphism and A = −α−1 : T (G/Γ)→ G×G/Γ is of the form A(X) = −X.g−1, which is

simply the usual Maurer-Cartan form ωMC(X) = g−1.X after a change of gauge. Since

the Maurer-Cartan form is classically known to be flat (the zero-curvature equation

dA + 1
2
[A ,A] = 0 for ωMC becomes the Maurer-Cartan equation, see [KoNo]), we are

done. In the general setting, though we have no more a holomorphic action on Z, we

soon realize that the calculations for the vanishing of the curvature tensor dA+ 1
2
[A ,A]

work the same as in the holomorphic case.

The connection A becomes singular on Y . In fact, since we are supposing that Y

meets generically the twistor lines in four simple points, A has a simple pole along (the
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smooth part of) Y . In order to proof this, observe that if α is represented in local

coordinates by the holomorphic 3×3 matrix B then locally A has the form

A = −α−1 = − B∨

detB
, (3.4)

where B∨ denotes the transpose of the matrix of cofactors of B. Thus, since in a generic

twistor line detB has non-degenerate zeros only, A has a simple pole along Y .

We have therefore on the twistor space Z a meromorphic SL2(C)-connection with

a simple pole along Y . We can restrict it to a generic twistor line to obtain a flat

meromorphic connection on CP 1 with simple poles at {x1, x2, x3, x4}, the points xi being

the intersection with Y . In particular we have a holonomy (monodromy) representation

π1(CP 1\{x1, x2, x3, x4})→ SL2(C)

of A restricted to each generic twistor line. In principle, any meromorphic connection

on Z with a pole along Y induces a flat meromorphic connection when restricted to a

generic twistor line, but the essential fact about A concerns its (global) flatness feature:

it turns out that for a connected family of twistor lines in Z, each of which meets Y

transversally, the monodromy representation of A restricted to each line of the family

is the same. This assertion is clearly true because since A is flat on Z\Y we have the

holonomy representation of A,

π1(Z\Y )→ SL2(C) .

Thus, restricted to a generic twistor line the monodromy representation factors as

π1(CP 1\{x1, x2, x3, x4}) ↪→ π1(Z\Y )→ SL2(C) .

In a connected family of generic twistor lines, the homotopy class of the inclusion of

the punctured projective line in Z\Y is unchanged, so the first homomorphism is inde-

pendent of the twistor line in the family. Since the second homomorphism is fixed, the

monodromy representation in the family is therefore unchanged.

Such a family of connections with fixed monodromy is called an isomonodromic

deformation. In a more general setting, we consider a meromorphic GLm(C)-connection
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on the vector bundle Cm × CP 1 with simple poles at {x1, x2, . . . , xn}:

A =
n∑

i=1

Ai

z − xi

dz ,

the Ai’s being m×m matrices. An isomonodromic deformation

A(x1, . . . , xn) =
n∑

i=1

Ai(x1, . . . , xn)

z − xi

dz (3.5)

for (x1, x2, . . . , xn) ∈ U ⊂ Cn, is a family with constant monodromy. According to [Mal],

such a family necessarily satisfies the following set of equations known as the Schlesinger

equations :

dAi +
∑
j 6=i

[Aj , Ai]
dxj − dxi

xj − xi

= 0 , 1 ≤ i ≤ n . (3.6)

We shall see in the next section that the Schlesinger equations (3.6) arise in our context

essentially as a restatement of the flatness property of A. We shall also see how the

Painlevé VI equation (3.1) can be readily derived from them.

3.3 Relation with Painlevé VI

3.3.1 Deformations of Connections with Logarithmic Poles

There is another special feature of the connection A that will be important for us: the

nature of its singularity along Y . In fact, A has a logarithmic singularity along Y . This

means that the connection A, seen as a meromorphic 1-form on Z, has a simple pole

along Y whose residue vanishes as a 1-form restricted to it. This is equivalent to say

that in a local coordinate system (z, w1, w2) of Z where Y is defined by {z = 0}, A has

the form

A = M
dz

z
+N1 dw1 +N2 dw2 ,

with the matrices M , N1, N2 being holomorphic through Y . We proceed to prove our

assertion. We consider then a local coordinate system (z, w1, w2) of Z where Y is defined
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by {z = 0} and let {µ1, µ2, µ3} be a basis of S U2. The matrix

B =


b11 b12 b13

b21 b22 b23

b31 b32 b33

 ,

is the local matrix representation of α. We observe from the last remark of section (3.1)

that b11, b12, b13 vanish non-degenerately along Y . According to equation (3.4), the

matrix

− B∨

detB
= − 1

detB


b∨11 b∨21 b∨31

b∨12 b∨22 b∨32

b∨13 b∨23 b∨33

 ,

is the local matrix representation of A. Seeing A as a meromorphic 1-form on Z, it has

locally the expression

A = − 1

detB

(
(b∨11µ1 + b∨12µ2 + b∨13µ3)dz

+ (b∨21µ1 + b∨22µ2 + b∨23µ3)dw1 + (b∨31µ1 + b∨32µ2 + b∨33µ3)dw2

)
.

Its residue along Y is, up to a non-vanishing function,

ResYA = (b∨11µ1+b
∨
12µ2+b

∨
13µ3)dz+(b∨21µ1+b

∨
22µ2+b

∨
23µ3)dw1+(b∨31µ1+b

∨
32µ2+b

∨
33µ3)dw2 .

Since the quantities b∨21, b
∨
22, b

∨
23, b

∨
31, b

∨
32, b

∨
33 vanish along Y (e.g. b∨21 = b13b32 − b12b33),

the restriction ResYA |Y clearly vanishes, as asserted.

Next, we shall consider holomorphic deformations of a twistor line ` in Z, i.e.

parametrized families of lines

f : CP 1 × U → Z

that contain ` and with the property that all of the lines of the deformation meet Y

transversally. Since Y meets each line of such a deformation in four points, there exists

a cross-ratio x defined on each line. We choose now a deformation f in such a way this

cross-ratio x works as the deformation parameter, which varies in U ⊂ C. Performing
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a Möbius transformation on the lines if necessary, we can take f such that f(0), f(1),

f(x), f(∞) are the points of intersection with Y . Observe also that the cross-ratio of

four points forming antipodal pairs in S2 ' CP 1 is always real, so the twistor lines of

Z correspond to real points of U .

Pulling back the connection A on Z, we obtain a SL2(C)-connection f ∗A on CP 1×U
with a pole along the divisors z = 0, z = 1, z = x, z =∞. Define

Λ1(x) := Res 0(f
∗A |CP 1×{x}) ,

Λ2(x) := Res 1(f
∗A |CP 1×{x}) , (3.7)

Λ3(x) := Resx(f
∗A |CP 1×{x}) ,

Λ4(x) := Res∞(f ∗A |CP 1×{x}) = −Λ1(x)− Λ2(x)− Λ3(x) .

Because the singularity is logarithmic, it is readily seen that the meromorphic rest

R = f ∗A−
(
Λ1(x)

dz

z
+ Λ2(x)

dz

z − 1
+ Λ3(x)

dz − dx
z − x

)
is in fact holomorphic through z = 0, z = 1, z = x, z = ∞. Since every holomorphic

1-form on CP 1 × U necessarily has the form R(x) dx with R(x) holomorphic, then

f ∗A = Λ1(x)
dz

z
+ Λ2(x)

dz

z − 1
+ Λ3(x)

dz − dx
z − x

+R(x) dx , (3.8)

the matrices Λ1, Λ2, Λ3 and R being in SL2(C).

Finally, we observe that a change of gauge

Ω 7→ S.Ω.S−1 − dS.S−1 ,

with S = S(x) ∈ SL2(C), transforms f ∗A into

f̃ ∗A = Λ̃1(x)
dz

z
+ Λ̃2(x)

dz

z − 1
+ Λ̃3(x)

dz − dx
z − x

+ R̃(x) dx ,

where Λ̃i(x) = S(x).Λi(x).S
−1(x) and R̃(x) = S(x).R(x).S−1(x)− S ′(x).S−1(x). Thus,

once the differential equation S ′(x) = S(x).R(x) on U is solved, there exists a SL2(C)-

automorphism u on C2 × (CP 1 × U) such that f ∗A assumes the canonical form

uf ∗A = A1(x)
dz

z
+ A2(x)

dz

z − 1
+ A3(x)

dz − dx
z − x

. (3.9)
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It is from this canonical expression for f ∗A that we obtain the Schlesinger equations

(3.6): the zero-curvature condition d(uf ∗A) + 1
2
[uf ∗A , uf∗A] = 0 is readily seen to be

equivalent to the following system of equations

dA1

dx
=

1

x
[A1 , A3] ,

dA2

dx
=

1

x− 1
[A2 , A3] , (3.10)

dA3

dx
= −1

x
[A1 , A3]−

1

x− 1
[A2 , A3] .

This system, according (3.5), is nothing but the Schlesinger system associated to the

isomonodromic deformation property of the family of connections

Ax(z) dz =
(A1(x)

z
+
A2(x)

z − 1
+
A3(x)

z − x

)
dz . (3.11)

The Schlesinger differential equations (3.10) are the analytical key to finding SU2-

invariant ASD conformal structures. We shall be able to write down ASD metrics in

terms of the matrices A1, A2, A3, as we shall see in section (3.4).

3.3.2 The Painlevé VI Equation as an Isomonodromic De-

formation Equation

Let us proceed to derive the Painlevé VI equation (3.1) from system (3.10). First, in

search of conserved quantities, we observe that the last equation of (3.10) is equivalent

to

A1 + A2 + A3 = −A4 = const. (3.12)

We take advantage of this for remove A3 from system (3.10), obtaining thus the reduced

system

dA1

dx
= −1

x
[A1 , A2 + A4] , (3.13)

dA2

dx
= − 1

x− 1
[A2 , A1 + A4] .

From (3.10) we also obtain

d

dx
(detA1) = tr

(dA1

dx
.A−1

1

)
detA1

=
1

x
tr ([A1 , A3].A

−1
1 ) detA1 =

1

x
tr (A1.A3.A

−1
1 − A3) detA1 = 0 .
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Thus detA1, and similarly detA2 and detA3, are conserved quantities. Let ±λ1, ±λ2,

±λ3 and ±λ4 be the eigenvalues of the matrices A1, A2, A3 and A4 respectively. Since

detAi = −λ2
i , we have then that λ1, λ2, λ3 and λ4 are constant parameters. So the

conserved quantities for the reduced system (3.13) are

detA1 = −λ2
1 ,

detA2 = −λ2
2 , (3.14)

det (A1 + A2 + A4) = det (−A3) = −λ2
3 .

Since the identity det (A+B) = detA+detB−tr (AB) holds in SL2(C), we can replace

the last equality of (3.14) by

trA1A2 + trA1A4 + trA2A4 = λ2
3 − λ2

1 − λ2
2 − λ2

4 , (3.15)

which will be more useful for our purposes.

From now on, let us suppose λ4 6= 0 and let us work in a basis of C2 where the

constant matrix A4 takes the diagonal form
 
−λ4 0

0 λ4

!
. In this basis, the component

(1, 2) of the matrix Ax(z) =
A1(x)

z
+
A2(x)

z − 1
+
A3(x)

z − x
in (3.11) writes down as

Ax(z)12 =
w(x)(z − y(x))
z(z − 1)(z − x)

,

where

w(x) = −xA1(x)12 − (x− 1)A2(x)12 ,

y(x) =
xA1(x)12

xA1(x)12 + (x− 1)A2(x)12

.

The function y(x) is indeed the function on which we will focus our attention. The

reason for this is resumed in the theorem below:

Theorem 3.3.1 :

(1) A1, A2, A3 ∈ SL2(C) satisfy Schlesinger equations (3.10)~�
y(x) satisfies Painlevé VI equation (3.1) with parameters

(α, β, γ, δ) =
(

1
2
(1− 2λ4)

2,−2λ2
1 , 2λ2

2 ,
1
2
(1− 4λ2

3)
)
.
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(2) The matrices A1, A2, A3 can be retrieved as functions of y and the parameters

{λ1, λ2, λ3, λ4} .

The proof of Theorem (3.3.1) is not difficult, but requires several computations.

Some account can be founded in [JiMi]. In order to be able to perform our original task

of finding ASD metrics from solutions of Painlevé VI, we shall need explicit formulas

for the matrices A1, A2, A3 in terms of y. Thus, we consider that it is worth to provide

a proof of Theorem (3.3.1) and to do some calculations.

First, let us parametrize the matrices A1(x) and A2(x) in the following way:

Ai(x) =

 ui(x) vi(x)

λ2
i − u2

i (x)

vi(x)
−ui(x)

 .

Therefore we have

w = −xv1 − (x− 1)v2 , (3.16)

y =
xv1

xv1 + (x− 1)v2

.

Another quantities that will appear naturally in the calculations are

µ = u1 + u2 , (3.17)

ν = −x(y − 1)u1 − (x− 1)yu2 .

In these new variables, after some calculation the first integral (3.15) can be written as

λ4 µ = − ν2

x(x− 1)y(y − 1)
+ (y − x)

(
λ2

1

(x− 1)y
− λ2

2

x(y − 1)

)
+ λ2

3 − λ2
4 . (3.18)

On the other hand, each matrix equation of the reduced system (3.13) provides us with

two scalar equations. Choosing the components (1, 1) and (1, 2) of both equations, after

some calculation we get the following system

du1

dx
=
Z

x
, (3.19)

du2

dx
= − Z

x− 1
, (3.20)

dy

dx
=

(1− 2λ4)y(y − 1)− 2ν

x(x− 1)
, (3.21)

w−1dw

dx
= −(1− 2λ4)

y − x
x(x− 1)

, (3.22)
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where

Z =

(
1

x(y − 1)
+

1

(x− 1)y

)
ν2

y − x
+

2νµ

y − x
− λ2

1

x(y − 1)

(x− 1)y
+ λ2

2

(x− 1)y

x(y − 1)
. (3.23)

Now we differentiate both sides of (3.21) with respect to x, apply (3.17), (3.19) and

(3.20) to obtain the intermediate result

d2y

dx2
= − 2

x(x− 1)(y − x)

(
(y − x)Z − 2νµ− 2λ4 y(y − 1)µ+

(dy
dx
− 1
)
ν (3.24)

+
1

2
(y − x)

(
(2λ4 − 1)(2y − 1) + (2x− 1)

)dy
dx

)
.

Finally, by using (3.23) for eliminate Z, (3.18) for eliminate µ and (3.21) for eliminate

ν from (3.24), we arrive to the differential equation satisfied by y(x):

d2y

dx2
=

1

2

(
1

y
+

1

y − 1
+

1

y − x

)(
dy

dx

)2

−
(

1

x
+

1

x− 1
+

1

y − x

)
dy

dx
(3.25)

+
y(y − 1)(y − x)
x2(x− 1)2

(
(1− 2λ4)

2

2
− 2λ2

1

x

y2
+ 2λ2

2

x− 1

(y − 1)2
+

1− 4λ2
3

2

x(x− 1)

(y − x)2

)
,

it is the Painlevé VI equation (3.1).

Let us complete the proof of Theorem (3.3.1). Once y is known by integration of

(3.25), w is calculated by integrating (3.22) and ν by using (3.21). Therefore we can

obtain v1 and v2 from (3.16). On the other hand, µ is given by the first integral (3.18)

and once µ and ν are known, u1 and u2 are easily calculated from (3.17). Since the

matrices A1, A2 and A3 are directly obtained from {u1, v1} and {u2, v2}, we are done.

Explicit formulas for A1, A2 and A3 in terms of y are given below:

Ai(x) =

 ui(x) vi(x)

λ2
i − u2

i (x)

vi(x)
−ui(x)

 ,

where

v1 = −y
x
e
−(1−2λ4)

Z
y − x

x(x− 1)
dx
,

v2 =
y − 1

x− 1
e
−(1−2λ4)

Z
y − x

x(x− 1)
dx
,

v3 = − y − x
x(x− 1)

e
−(1−2λ4)

Z
y − x

x(x− 1)
dx
,
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u1 =
1

4λ4

x(x− 1)2

(y − 1)(y − x)

(
dy

dx

)2

− x− 1
y − x

(
1− 2λ4

2λ4
y − 1

2
x

)
dy

dx
− 1− 2λ4

2
y(y − 1)
y − x

+
1
λ4

(x− 1)y
y − x

[
(1− 2λ4)2

4
y(y − 1)
x(x− 1)

− (y − x)
(

λ2
1

(x− 1)y
− λ2

2

x(y − 1)

)
− (λ2

3 − λ2
4)
]

,

u2 = − 1
4λ4

x2(x− 1)
y(y − x)

(
dy

dx

)2

+
x

y − x

(
1− 2λ4

2λ4
(y − 1)− 1

2
(x− 1)

)
dy

dx
+

1− 2λ4

2
y(y − 1)
y − x

− 1
λ4

x(y − 1)
y − x

[
(1− 2λ4)2

4
y(y − 1)
x(x− 1)

− (y − x)
(

λ2
1

(x− 1)y
− λ2

2

x(y − 1)

)
− (λ2

3 − λ2
4)
]

,

u3 =
1

4λ4

x(x− 1)
y(y − 1)

(
dy

dx

)2

− 1− 2λ4

2λ4

dy

dx

+
1
λ4

[
(1− 2λ4)2

4
y(y − 1)
x(x− 1)

− (y − x)
(

λ2
1

(x− 1)y
− λ2

2

x(y − 1)

)
− λ2

3

]
.

This completes the proof of Theorem (3.3.1).

3.4 Retrieving the ASD Conformal Structure

3.4.1 SU2-invariant Metrics in Diagonal Form

Finally, we are ready to obtain explicit ASD metrics from explicit solutions of Painlevé

VI equation. Coming back to our original setting, we have an oriented 4-manifold M

with an ASD conformal structure preserved by an action of SU2 with 3-dimensional

orbits. The manifold M is therefore topologically locally a product

M ' SU2/Γ× (a, b) ,

for some finite subgroup Γ ⊂ SU2. We may take the conformal structure to be defined

by an invariant metric g and thus on each orbit it is a left invariant metric. Hence g is

given by an inner product Bt on the Lie algebra S U2 for each t ∈ (a, b) parametrizing

the set of orbits. Furthermore, if the parametrization of the set of orbits is done via a

unit vector field normal to the orbits, then the metric on SU2/Γ× (a, b) has the form

g = Bt + dt2.

65



Using a standard orthonormal basis {µ1, µ2, µ3} of S U2 , we have

Bt =
3∑

i,j=1

bij(t) dµi ⊗ dµj .

If the basis {µ1, µ2, µ3} can be chosen such that the matrix (bij(t)) is diagonal for all

t ∈ (a, b), then we say that g can be put in diagonal form:

g = b21(t) dµ
2
1 + b22(t) dµ

2
2 + b23(t) dµ

2
3 + dt2. (3.26)

This is precisely the class of SU2-invariant ASD metrics that we shall be able to explicit

in this work. We can obtain extra information about the twistor space when the metric

can be put in diagonal form. However some preliminaries are needed. In the twistor

setting, we have the homomorphism α : SL2(C) × Z → TZ and the connection A =

−α−1 : T (Z\Y ) → SL2(C) × Z\Y introduced in section (3.1). Let ` be a twistor line

in Z. The choice of an identification ` ' CP 1 allows us to write the restriction to ` of

the connection A under the form

A =

(
Λ1

z − x1

+
Λ2

z − x2

+
Λ3

z − x3

+
Λ4

z − x4

)
dz , (3.27)

where ` ∩ Y = {x1, x2, x3, x4}. Notice that the matrices Λ1, Λ2, Λ3, Λ4 do not depend

on the identification ` ' CP 1 chosen since the residues are naturally invariant. So, each

x ∈M defines a 4-tuple Λ1(x), Λ2(x), Λ3(x), Λ4(x) in accordance with (3.27) (the same

4-tuple already found in (3.7)). As seen in chapter 2, for x ∈ M the corresponding

twistor line `x is given by the sphere S√2(Λ
+
M)x . The real structure ι̇ on Z arises from

the antipodal map on `x . Recall that S√2(Λ
+
M)x can be thought of as the 2-dimensional

sphere embedded in the 3-dimensional euclidean space (Λ+
M)x . If we now choose the

identification of `x with CP 1 ' C given by the standard stereographic projection, the

antipodal map becomes z 7→ −1/z . Thus, when `x intersects Y transversally, the real

invariance of Y yields

`x ∩ Y = {x1,−1/x1, x2,−1/x2} .

Hence the connection A restricted to `x can be written as

A =

(
Λ1(x)

z − x1

+
Λ2(x)

z + 1/x1

+
Λ3(x)

z − x2

+
Λ4(x)

z + 1/x2

)
dz .
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Therefore, at a point z ∈ CP 1\{x1,−1/x1, x2,−1/x2} ,

α

(
Λ1(x)

z − x1

+
Λ2(x)

z + 1/x1

+
Λ3(x)

z − x2

+
Λ4(x)

z + 1/x2

)
= −d/dz .

The compatibility of α with respect to ι̇ and to the conjugation a = −a∗ on SL2(C)

imposes nontrivial relations on the matrices Λi(x). It follows from identity (3.2) and

the equality above that

Λ2(x) = −Λ∗
1(x) , Λ4(x) = −Λ∗

3(x) .

Because the matrices Λi(x) are conjugate to the Schlesinger matrices Ai(x) considered

in (3.9)-(3.10), it follows that they have the same eigenvalues. Thus,

λ2
2 = λ

2

1 , λ2
4 = λ

2

3 . (3.28)

Also, A is a meromorphic differential on CP 1 so that the sum of the residues must be

zero. Therefore we obtain

Λ1(x)− Λ∗
1(x) + Λ2(x)− Λ∗

2(x) = 0 .

Finally, considering the SU2-action on the twistor space Z, it follows from equality (3.3)

that

Λi(gx) = gΛi(x)g
−1 , (3.29)

for all x ∈ M and g ∈ SU2 . In particular the eigenvalues λi are constant along the

orbits in M and therefore constant in M by the results of section (3.3.2).

The following result gives us an extra relation on the matrices Λi when the conformal

structure can be put in diagonal form.

Theorem 3.4.1 ([Hit1]) Let M be a SU2-invariant anti-self-dual 4-manifold with 3-

dimensional orbits such that detα is non-degenerate. If the conformal structure can be

put in diagonal form, then the matrices Λ1, Λ2, Λ3, Λ4 are conjugate, i.e.

λ2
1 = λ2

2 = λ2
3 = λ2

4 = λ2 ∈ R .
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(Note that once the square of the eigenvalues are assumed to be equal, it follows from

(3.28) that they are real).

Observe that the statement above is of local nature so that, to prove it, we can

suppose thatM = SU2/Γ×(a, b). Actually we can indeed suppose thatM = SU2×(a, b).

Identifyng SU2 with the group of unit quaternions, and thanks to (3.29), it is enough

to prove the theorem at a point x ∈ M of the form x = (1, t). For these points we

proceed as follows. Suppose that the conformal structure has diagonal form for some

basis {µ1, µ2, µ3} of S U2 (orthonormal with respect to the standard inner product).

Performing a conjugation on SU2 if necessary, we can suppose {µ1, µ2, µ3} = {i, j, k}.
Now consider the action of Z2 × Z2 on M = SU2 × (a, b) induced by the conjugation

action of the quaternion group {±1,±i,±j,±k}. It fixes x and, for example, i acts

on the Lie algebra by conjugation sending (i, j, k) to (i,−j,−k). This action clearly

preserves the metric (3.26), as do the corresponding actions of j and k. Taking the

orthonormal basis {b1(t)i , b2(t)j , b3(t)k , d/dt}, the group Z2 × Z2 acts on the tangent

space TxM via the diagonal matrices


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

 ,


−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

 ,


−1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1

 .

Therefore, as seen in section (1.3) of chapter 1, we conclude that Z2 × Z2 acts on the

3-dimensional space (Λ+
M)x via the diagonal matrices


1 0 0

0 1 0

0 0 1

 ,


−1 0 0

0 −1 0

0 0 1

 ,


−1 0 0

0 1 0

0 0 −1

 ,


1 0 0

0 −1 0

0 0 −1


with respect to the orthogonal basis

{w1,w2,w3} =
{

di ∧ dj

b1(t)b2(t)
+

dk ∧ dt

b3(t)
,

di ∧ dk

b1(t)b3(t)
− dj ∧ dt

b2(t)
,

dj ∧ dk

b2(t)b3(t)
+

di ∧ dt

b1(t)

}
.

So, apart from the vectors ±wi , each orbit in S√2(Λ
+
M)x = `x has lenght 4. The right

action of {±1,±i,±j,±k} on M is isometric and commutes with the left multiplication,
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therefore preserving the twistor space and the SU2-action on it. Thus, this right action

preserves α as well as the divisor Y and the connection A. Since the divisor Y is

SU2-invariant, it is also preserved by Z2 × Z2. In particular, the intersection `x ∩ Y
is preserved by this group, although the set `x ∩ Y is not pointwisely fixed by it. For

a generic x ∈ M , the twistor line `x intrersects Y in four distinct points. The group

Z2×Z2 acts transitively on these points unless some of the vectors ±wi belongs to `x∩Y .

However, in this case, the only possibility is to have `x ∩ Y = {wi,wj,−wi,−wj}. In

particular, since these points form the vertices of a square, their cross-ratio is −1. We

shall be able to prove in the next section that the cross-ratio of the four points `x ∩ Y
is non-constant in M . So for x ∈ M generic, the group Z2 × Z2 acts transitively on

the four points `x ∩ Y . The left multiplication acts on the residues Λi by conjugation

and the right action of {±1,±i,±j,±k} preserves the residues, thus Z2×Z2 acts on the

residues by conjugation. Since the singularities of A in `x are fully permuted by this

action, we obtain the desired result.

3.4.2 The Cross-Ratio as Parameter for the Orbits

Consider the SU2-action on the twistor space Z. This action maps one twistor line `

biholomorphically to another `′ and, since the divisor Y is invariant, makes the intersec-

tions ` ∩ Y and `′ ∩ Y correspond. If we take a point x ∈ M such that the twistor line

`x meets Y transversally, the same holds in a neighboorhood of x. Moreover, because

the SU2-invariance of Y , this property remains true in a neighborhood SU2/Γ × (a, b)

of the orbit of x. Thus, for each x ∈ SU2/Γ× (a, b), the cross-ratio x of the four points

`x ∩ Y defines a function on SU2/Γ× (a, b) which, by projective invariance, is constant

along the orbits. Recall that for a twistor line ` the points of ` ∩ Y occurs in antipo-

dal pairs, therefore the function x is in fact a real function. So the idea is to use this

cross-ratio x to parametrize the set of orbits in M (and hence the manifold M itself).

Thus, considering M as a real submanifold of M (where M is the deformation space

of lines introduced in section (2.5)), this would enable us to immediately relate the

parametrization in question with the deformation of lines discussed in section (3.3.1).

Since the cross-ratio x has a holomorphic extension to a neighborhood of SU2/Γ× (a, b)

in M, it suffices that x is a non-constant function to allow us to obtain the desired
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parametrization.

Let us prove then that x is, in fact, a non-constant function. Let ` be a twistor line

on Z that meets Y transversally. According to section (2.5), the tangent space of M at

` is given by the space H0(`,N), where N is the normal bundle TZ|`/T` . Observe that

if a section σ ∈ H0(`,N) is represented by a deformation f : CP 1 × U → Z of ` that

preserves the cross-ratio x, then we have (after reparametrizing the lines by a Möbius

transformation) that the intersection with Y is given by the horizontals f(0), f(1), f(x),

f(∞). Thus, the derivative f ′ ∈ H0(`, TZ|`) is tangent to Y at `∩ Y and σ is therefore

realized by such a section. However, not every section σ ∈ H0(`,N) possesses this

property. Indeed, if a section σ ∈ H0(`,N) can be realized as a section of H0(`, TZ|`)
that is tangent to Y at ` ∩ Y , it can be proved that σ = α(a) for some a ∈ SL2(C).

Thus, since dimC SL2(C) = 3 and dimCH
0(`,N) = 4, the cross-ratio x is non-constant

along directions not coming from SL2(C). Proving the characterization above demands

some effort. Begin by recalling that the homomorphism α : SL2(C) × Z → TZ is an

isomorphism on the complement of Y . At a smooth point p ∈ Y , the image of αp is TpY ,

as it was observed in the final remark of section (3.1). Since ` meets Y transversally,

this means that the composition β = π ◦ α,

SL2(C)
α−→ TZ|`

π−→ N ,

is surjective. This surjection β allows us to define a natural cohomological obstruction

to the problem of finding a representant of σ ∈ H0(`,N) as a section of H0(`, TZ|`) that

is tangent to Y at ` ∩ Y . This obstruction lies in H1(`, T ` ⊗ I`∩Y ), where T` ⊗ I`∩Y

is the sheaf of sections of the tangent bundle T` that vanish at ` ∩ Y . Observe also

that the kernel of β is a line bundle of degree −degN = −2, so we have a short exact

sequence of sheaves

0→ O(−2)→ SL2(C)
β−→ N → 0.

Moreover, α maps the kernel O(−2) isomorphically to the sheaf T` ⊗ I`∩Y . From the

long exact cohomology sequence we have

0→ SL2(C)
β−→ H0(`,N)

δ−→ H1(`,O(−2))→ 0.
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But, under the isomorphism O(−2) ' T` ⊗ I`∩Y , it is readily seen that the boundary

map δ provides precisely the obstruction described above. It finishes the proof.

Let us close this section by deriving the mentioned parametrization. Consider a point

x ∈M and SU2/Γ×(a, b) a neighborhood of the orbit of x. Recall from Theorem (2.5.1)

that the space H0(`x, N) is spanned by the normal sections associated to the elements

of T C
x M , i.e. to the elements a of the Lie algebra S U C

2 = SL2(C) and to the vector field

d/dt on (a, b). Moreover, the normal section associated to an element a ∈ SL2(C) is

realized by the vector field α(a). Therefore, the cross-ratio is non-constant along d/dt.

So let Σ ⊂M be a local holomorphic disc tangent to d/dt at x. Consider the inverse of

the cross-ratio x : Σ→ C,

f = x−1 : U = x(Σ)→M . (3.30)

It corresponds to the deformation of lines discussed in section (3.3.1). Observe that the

real points of U correspond to the intersection Σ ∩M , which is transverse to the orbits

in M . Thus, we can use this transverse section Σ∩M to obtain a local parametrization

M ' SU2/Γ× (a, b), where the parameter x ∈ (a, b) represents the cross-ratio of `x ∩ Y
and possesses f as holomorphic extension.

3.4.3 The Explicit Expression of a SU2-invariant ASD Metric

The expression for the metric g on M with respect to the local parametrization M '
SU2/Γ× (a, b) constructed above is

g = Bx + Tx ⊗ dx+ cx dx
2 ,

where for each x ∈ (a, b), Bx is an inner product and Tx is a 1-form on the Lie algebra

S U2. In the twistor setting, recall that A = −α−1 : T (Z\Y )→ SL2(C)×Z\Y identifies

the tangent bundle TZ with the trivial bundle SL2(C) × Z on Z\Y . So we shall use

this identification to describe tangent vectors and, according section (2.5), determine

the conformal class of g by only considering the generic sections of H0(`,N) which does

not vanish at Y . Take f : CP 1 × U → Z as in (3.30) and normalize the lines such that
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f(0), f(1), f(x), f(∞) are the points of intersection with Y . Thus, according formula

(3.8),

f ∗A = Λ1(x)
dz

z
+ Λ2(x)

dz

z − 1
+ Λ3(x)

dz − dx
z − x

+R(x) dx ,

the tangent vector to a twistor line is identified with

f∗(d/dz) =
Λ1(x)

z
+

Λ2(x)

z − 1
+

Λ3(x)

z − x
= Λx(z) .

The normal section associated to d/dx acquires the form

f∗(d/dx) = −Λ3(x)

z − x
+R(x) ,

and, of course, for a ∈ SL2(C) the normal section α(a) is identified with −a. Thus, a

normal section σ ∈ H0(`,N) has the form

σ(z) = −a− r
(Λ3(x)

z − x
−R(x)

)
, a ∈ SL2(C) , r ∈ C .

The null cone g(σ, σ) = 0 is given by

Bx(a, a) + Tx(a)r + cxr
2 = 0 . (3.31)

Also, according Theorem (2.5.1), a section σ ∈ H0(`,N) is a null vector if exists z ∈ CP 1

such that

−a− r
(Λ3(x)

z − x
−R(x)

)
= sΛx(z) , (3.32)

for some s ∈ C.

Recall that the matrices Λi(x) and the Schlesinger matrices Ai(x) are conjugate, for

such a reason they will make their appearance later. For the time being, let us proceed

to evaluate Bx and Tx. Note that, for z ∈ CP 1 fixed, the section σ given by a = Λx(z)

and r = 0 satisfies condition (3.32), so

Bx(Λx(z),Λx(z)) = 0

for all z ∈ CP 1. But,

Bx(Λx(z),Λx(z)) =
B11(x)

z2
+

B22(x)
(z − 1)2

+
B33(x)
(z − x)2

+ 2
B12(x)
z(z − 1)

+ 2
B13(x)
z(z − x)

+ 2
B23(x)

(z − 1)(z − x)
,
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where Bij(x) = Bx(Λi(x),Λj(x)). Thus, we obtain

Bx(Λ1(x),Λ1(x)) = Bx(Λ2(x),Λ2(x)) = Bx(Λ3(x),Λ3(x)) = 0 , (3.33)

Bx(Λ1(x),Λ2(x)) = −1

x
Bx(Λ1(x),Λ3(x)) =

1

x− 1
Bx(Λ2(x),Λ3(x)) .

If Bx(Λi(x),Λj(x)) = 0 for all i, j, since B is non-degenerate, we must have Λ1(x),

Λ2(x), Λ3(x) null and proportional. But then the complex dimension of the null cone

is 2, which is a contradiction. So, since we are interested in the conformal class, we can

normalize g in order to have

Bx(Λ1(x),Λ2(x)) = 1 ,

Bx(Λ1(x),Λ3(x)) = −x , (3.34)

Bx(Λ2(x),Λ3(x)) = x− 1 .

In particular, {Λ1(x),Λ2(x),Λ3(x)} constitutes a basis of SL2(C). Now, for r, s and z

fixed, take a defined by the equation (3.32) and substitute in the equation of the null

cone (3.31) to obtain

Bx

(
r
(Λ3(x)

z − x
−R(x)

)
+ sΛx(z), r

(Λ3(x)

z − x
−R(x)

)
+ sΛx(z)

)
− Tx

(
r
(Λ3(x)

z − x
−R(x)

)
+ sΛx(z)

)
r + cxr

2 = 0 ,

for all r, s and z. Since Bx(Λx(z),Λx(z)) = 0 and Bx(Λ3(x),Λ3(x)) = 0, this equation

reduces to(
2
Bx(Λ3(x),Λx(z))

z − x
− 2Bx(R(x),Λx(z))− Tx(Λx(z))

)
rs

+
(
Bx(R(x), R(x)) + Tx(R(x)) + cx −

2Bx(R(x),Λ3(x)) + Tx(Λ3(x))

z − x

)
r2 = 0 .

Therefore,

Bx(R(x), R(x)) = −Tx(R(x))− cx , (3.35)

Bx(R(x),Λ3(x)) = −Tx(Λ3(x))

2
, (3.36)
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and using (3.34), we obtain

−2
x

z(z − x)
+ 2

(x− 1)

(z − 1)(z − x)

− 2Bx(R(x),Λ1(x)) + Tx(Λ1(x))

z
− 2Bx(R(x),Λ2(x)) + Tx(Λ2(x))

z − 1
= 0 ,

so

Bx(R(x),Λ1(x)) = 1− Tx(Λ1(x))

2
, (3.37)

Bx(R(x),Λ2(x)) = −1− Tx(Λ2(x))

2
. (3.38)

With these informations in hand, we can eliminate R(x) from the discussion by pro-

ceeding as follows. Observe that equations (3.35)-(3.38) are equivalent to

g(d/dx+R(x), d/dx+R(x)) = 0 , (3.39)

g(d/dx+R(x),Λ1(x)) = 1 , g(d/dx+R(x),Λ2(x)) = −1 , g(d/dx+R(x),Λ3(x)) = 0 .

Thus,

Γ (x) = R(x) +
1

2x
Λ1(x) +

1

2(x− 1)
Λ2(x) +

2x− 1

2x(x− 1)
Λ3(x) ,

satisfies g(d/dx+ Γ (x),Λi(x)) = 0, i.e.

g(d/dx+ Γ (x), a) = 0 , for all a ∈ SL2(C) .

In particular, Γ (x) is real (i.e. Γ (x) ∈ S U2) and the vector field d/dx+ Γ (x) is normal

to the orbits in M . On the other hand, from (3.39) we obtain

g(d/dx+ Γ (x), d/dx+ Γ (x)) = − 1

2x(x− 1)
.

Thus, parametrizing the space of orbits in M via an integral curve of d/dx+ Γ (x), the

metric acquires the form

g = B̃x −
dx2

2x(x− 1)
,

where B̃x is conjugate to Bx.
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Summarizing, the information so far collected about g consists of the above expres-

sion together with the fact that in a suitable basis {Λ̃1(x), Λ̃2(x), Λ̃3(x)} of SL2(C) we

have

B̃x =


0 1 −x
1 0 x− 1

−x x− 1 0

 .

Also we have the property that the matrices Λ̃1(x), Λ̃2(x), Λ̃3(x) are conjugate to the

Schlesinger matrices A1(x), A2(x), A3(x) and, furthermore, the diagonalization of B̃x

depends only on the conjugacy class of Λ̃1(x), Λ̃2(x), Λ̃3(x) . Then for the case where the

metric can be put in diagonal form, an explicit expression for g can be obtained. This

can be carried out as follows: the diagonalization of B̃x is given by the roots of

det(B̃x − tI) = 0 ,

where I(a, b) = −1
2
tr ab is the inner product on S U2 . Since we are supposing that g

can be put in diagonal form, Theorem (3.4.1) provides us

trA2
1 = trA2

2 = trA2
3 = 2λ2 .

The expression of I in the basis {Λ̃1(x), Λ̃2(x), Λ̃3(x)} is therefore

I = −1

2


2λ2 tr Λ̃1Λ̃2 tr Λ̃1Λ̃3

tr Λ̃1Λ̃2 2λ2 tr Λ̃2Λ̃3

tr Λ̃1Λ̃3 tr Λ̃2Λ̃3 2λ2

 = −1

2


2λ2 trA1A2 trA1A3

trA1A2 2λ2 trA2A3

trA1A3 trA2A3 2λ2

 .

So a direct calculation of det(B̃x − tI), using identity (3.15)

trA1A2 + trA1A3 + trA2A3 = −2λ2 ,

leads us to

det(B̃x−tI) = 2
(
1 + t(λ2 + 1

2
trA1A2)

)(
−x+ t(λ2 + 1

2
trA1A3)

)(
x− 1 + t(λ2 + 1

2
trA2A3)

)
.

Therefore B̃x is given by the formula

B̃x =
(x− 1) dµ2

1

λ2 + 1
2
trA2A3

− x dµ2
2

λ2 + 1
2
trA1A3

+
dµ2

3

λ2 + 1
2
trA1A2

,
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for some orthonormal basis {µ1, µ2, µ3} of S U2 .

Thus, by using the explicit expressions for A1, A2, A3 obtained at the end of section

(3.3.2), we finally arrive to

Theorem 3.4.2 For λ ∈ R\{0} given, let y be a real solution of the Painlevé VI equa-

tion (3.1) with parameters (α, β, γ, δ) =
(

1
2
(1− 2λ)2,−2λ2 , 2λ2 , 1

2
(1− 4λ2)

)
, defined

on the interval (a, b). Then, for {µ1, µ2, µ3} an orthonormal basis of S U2, the metric

g =
(x− 1) dµ2

1

λ2 + u2u3 − y−x
2x(y−1)

(λ2 − u2
2)−

x(y−1)
2(y−x)

(λ2 − u2
3)

− x dµ2
2

λ2 + u1u3 + y−x
2(x−1)y

(λ2 − u2
1) + (x−1)y

2(y−x)
(λ2 − u2

3)

+
dµ2

3

λ2 + u1u2 − x(y−1)
2(x−1)y

(λ2 − u2
1)−

(x−1)y
2x(y−1)

(λ2 − u2
2)

+
dx2

2x(x− 1)
,

is an ASD metric on SU2 × (a, b), where

u1 =
1
4λ

x(x− 1)2

(y − 1)(y − x)

(
dy

dx

)2

− x− 1
y − x

(
1− 2λ

2λ
y − 1

2
x

)
dy

dx

− 1− 2λ

2
y(y − 1)
y − x

+
(1− 2λ)2

4λ

y2(y − 1)
x(y − x)

− λ
y − x

x(y − 1)
,

u2 = − 1
4λ

x2(x− 1)
y(y − x)

(
dy

dx

)2

+
x

y − x

(
1− 2λ

2λ
(y − 1)− 1

2
(x− 1)

)
dy

dx

+
1− 2λ

2
y(y − 1)
y − x

− (1− 2λ)2

4λ

y(y − 1)2

(x− 1)(y − x)
− λ

y − x

(x− 1)y
,

u3 =
1
4λ

x(x− 1)
y(y − 1)

(
dy

dx

)2

− 1− 2λ

2λ

dy

dx
+

(1− 2λ)2

4λ

y(y − 1)
x(x− 1)

− λ
(y − x)2

x(x− 1)y(y − 1)
− λ .

Let us point out that focusing attention on real solutions of the Painlevé VI equation

does not confine us to any specific ‘smaller’ group of them. In fact, when the paremeters

of the Painlevé VI equation are all real, the condition for a solution to be real depends

solely on the initial values (they all have to be real). Hence we are actually considering

solutions of the Painlevé VI equation in full generality.
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3.5 Some New Examples

Set

PVI (α, β, γ, δ) [y] =
d2y

dx2
− 1

2

(
1

y
+

1

y − 1
+

1

y − x

)(
dy

dx

)2

+

(
1

x
+

1

x− 1
+

1

y − x

)
dy

dx

− y(y − 1)(y − x)
x2(x− 1)2

(
α+ β

x

y2
+ γ

x− 1

(y − 1)2
+ δ

x(x− 1)

(y − x)2

)
.

Thus, the Painlevé VI equation can be denoted as PVI (α, β, γ, δ) [y] = 0. Let us consider

the special case of PVI given by the parameters (α, β, γ, δ) =
(

r2θ2

2
,− θ2

2
, θ2

2
, 1−θ2

2

)
.

The interest in this case arises from the fact that, when θ = 1
1+r

, we recover the same

equation obtained in our previous discussion of ASD metrics with λ = 1
2(1+r)

. Also, for

these values of the parameters, we have the following useful decomposition

PVI
(

r2θ2

2
,− θ2

2
, θ2

2
, 1−θ2

2

)
[y] = PVI (0, 0, 0, 1

2
) [y] (3.40)

− θ2

2

y(y − 1)(y − x)
x2(x− 1)2

(
r2 − x

y2
+

x− 1

(y − 1)2
− x(x− 1)

(y − x)2

)
.

In particular, we may search special explicit solutions of PVI
(

r2θ2

2
,− θ2

2
, θ2

2
, 1−θ2

2

)
that

happen to annihilate both summands on the right-hand side of the equation above. In

this direction we have the following result:

Theorem 3.5.1 Let Cr be the curve given by r2 − x

y2
+

x− 1

(y − 1)2
− x(x− 1)

(y − x)2
= 0.

(1) For r = 1, the curve C1 has three irreducible components: y2−x = 0, y2−2y+x = 0

and y2 − 2yx + x = 0. The respective solutions y = ±
√
x, y = 1 ±

√
1− x and

y = x±
√
x(x− 1) are also solutions of PVI (0, 0, 0, 1

2
). Hence they are solutions

of PVI
(

θ2

2
,− θ2

2
, θ2

2
, 1−θ2

2

)
for every value of θ.

(2) For r = 3, the curve C3 has two irreducible components: 3y2 − 2y − 2yx + x = 0

and 3y4 − 4y3 − 4y3x + 6y2x − x2 = 0. The first one leads us to solutions which

do not satisfy PVI (0, 0, 0, 1
2
). The second one leads us to the solutions

−y2(2y − 3)± 2y(y − 1)
√
y(y − 1) = x ,

which do satisfy PVI (0, 0, 0, 1
2
). Hence they are solutions of PVI

(
9θ2

2
,− θ2

2
, θ2

2
, 1−θ2

2

)
for every value of θ.
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Again, the proof of Theorem (3.5.1) amounts to straightforward computation. The

calculus for determine the irreducible components of C3 and verify if they are solutions

of PVI (0, 0, 0, 1
2
) is huge. In the ASD case, the solutions of (1) for θ = 1

2
(i.e. λ = 1

4
)

already appears in Hitchin’s work [Hit1] about ASD Einstein metrics. Nevertheless, the

solutions of (2) for θ = 1
4

(i.e. λ = 1
8
) yields ASD metrics that are not Einstein and

therefore are not captured by Hitchin’s list.

In order to obtain new explicit examples of ASD metrics, it would be useful to know

if Theorem (3.5.1) holds for other values of r. So we would like to close this work by

posing the following question:

For what values of r, there is an irreducible component of the curve

r2 − x

y2
+

x− 1

(y − 1)2
− x(x− 1)

(y − x)2
= 0 that satisfies PVI (0, 0, 0, 1

2
)?

The above question may sound slightly näıve in the sense that the study of the left-hand

side of decomposition (3.40) seems more involved than the individual analysis of each

summand in the right-hand side. Yet, Theorem (3.5.1) provides a partial affirmative

answer to our question indicating that the mentioned decomposition might have more

subtle implications.
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