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Abstract

We study the Veech flow with involution in the moduli space of zippered rectan-
gles and prove that it is exponentially mixing for a natural class of observa-
bles. Using this fact and the canonical SL(2,R)-action we conclude that the
Teichmüller flow is exponentially mixing for the Ratner class of observables,
restricted to an arbitrary connected component of each stratum of the moduli
space. This generalizes a result of Avila, Gouëzel, and Yoccoz, who considered
the case of strata of squares.
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fluxo de Teichmüller, por todos os conselhos (matemáticos ou não), por estar
dispońıvel quando precisei e por sempre ter uma palavra de ânimo que várias
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Introduction

In this work we analyze the dynamics of the Teichmüller flow on the moduli
space of quadratic differentials. This flow preserves the canonical volume on
each stratum of the moduli space. Moreover, after Masur and Veech, it is
ergodic on every connected component of strata, if one normalizes the norm of
the quadratic differentials. Our goal is to prove that this dynamical system also
exhibits fast loss of memory:

Theorem A. The Teichmüller flow is exponentially mixing, for observables
in the Ratner class, with respect to every ergodic component of the canonical
volume.

In the sequel we introduce the main notions involved in this statement and
review a number of important results on the dynamics of the Teichmüller flow.
Near the end of this introduction we discuss some of the ingredients in the proof.

Quadratic differentials

This notion is central to Teichmüller theory, where quadratic differentials are
seen to describe the ‘directions’ along which the conformal structure of a Rie-
mann surface can be deformed. Let us briefly explain this, referring the reader
to Ahlfors [Ah], Gardiner [G], Lehto [Le] for details and proofs.

Quadratic differentials: A quadratic differential q on a Riemann surface S
assigns to each point of the surface a complex quadratic form on the correspon-
ding tangent space, depending meromorphically on the point. Given any local
coordinate z on S, the quadratic differential may be written as qz = φ(z)dz2

where the coefficient φ(z) is a meromorphic function; then the expression qw =
φ′(w)dw2 with respect to any other local coordinate w is determined by

φ′(w) = φ(z)
(
dz

dw

)2

on the intersection of the domains. The norm of a quadratic differential is
defined by ‖q‖ =

∫
|φ| dz dz̄ (the integral does not depend on the choice of the

local coordinates). Quadratic differentials with finite norm are called integrable.
Each non-zero quadratic differential comes with a pair of transverse folia-

tions, Fh and Fv, defined as follows. The horizontal direction and the vertical
direction at a point z are defined by

qz(u) > 0 and qz(u) < 0

respectively. Integrating these directions, one obtains the horizontal foliation
Fh and the vertical foliation Fv, respectively. Zeros and poles of the differen-
tial, where this definition breaks down, correspond to singularities of the two
foliations. They are isolated points, since quadratic differentials are meromor-
phic.
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Half-translation surfaces: Each quadratic differential q induces a special
geometric structure on S, as follows. Near any non-singular point one can choose
adapted coordinates ζ for which the local expression of q reduces to qζ = dζ2.
Given any pair ζ1 and ζ2 of such adapted coordinates,

(dζ1)2 = (dζ2)2 or, equivalently, ζ1 = ±ζ2 + const . (1)

Thus, we say that the set of adapted coordinates is a half-translation atlas on the
complement of the singularities and S is a half-translation surface. In particular,
S\{singularities} is endowed with a flat Riemannian metric imported from the
plane via the half-translation atlas. The total area of this metric coincides
with the norm ‖q‖. Adapted coordinates ζ may also be constructed in the
neighborhood of each singularity zi such that

qζ = ζlidζ2

with |li| = order of the singularity (li > 0 at zeros and li < 0 at poles). Through
them, the flat metric can be completed with a conical singularity of angle equal
to π(li + 2) at zi.

A quadratic differential q is orientable if it is the square of some Abelian
differential, that is, some holomorphic complex 1-form ω. Notice that square
roots can always be chosen locally, at least far from the singularities, so that
orientability has mostly to do with having a globally consistent choice. In the
orientable case adapted coordinates may be chosen so that ωζ = dζ. Changes
between such coordinates are given by

dζ1 = dζ2 or, equivalently, ζ1 = ζ2 + const (2)

instead of (1). One speaks of translation atlas and translation surface in this
case. A point zi is a singularity of q, of order li, if and only if zi is a zero of
ω, of multiplicity mi, with li = 2mi. We shall be particularly interested in the
case when q is not orientable.

Teichmüller space: For simplicity, the Riemann surface S will be taken to
be compact. Let g be its genus. The Teichmüller space T (S) is the space of all
quasi-conformal homeomorphisms from S to any other Riemann surface, modulo
the equivalence relation that identifies f1 : S → R1 and f2 : S → R2 if and only
if f2◦f−1

1 is homotopic to some conformal homeomorphism h : R1 → R2. Recall
that an orientation preserving homeomorphism f : S → R is quasi-conformal if
it is differentiable at almost every point and the dilatation

κf (z) =
|∂zf |+ |∂z̄f |
|∂zf | − |∂z̄f |

(z).

is bounded. The supremum κ(f) = supz κf (z) is the global dilatation of f .
There is a natural distance in T (S), the Teichmüller metric, defined by

dT([f1], [f2]) =
1
2

inf
{

log κ(h) : h ∈ [f2 ◦ f−1
1 ]
}
.

The metric space (T (S),dT) is complete. Furthermore, T (S) has the structure
of a complex manifold of dimension 3g− 3 (dimension 1 if the genus g = 1) and
dT is a Finsler metric on this manifold.
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Teichmüller theorem: The Teichmüller theorem states that every equiva-
lence class includes some map, unique up to post-composition with a conformal
mapping, that minimizes the global dilatation in the class. Moreover, this ex-
tremal homeomorphism f admits a very precise description in terms of certain
quadratic differentials:

• there exist integrable quadratic differentials φ on S and ψ on R such that
f sends the horizontal foliation of φ to the horizontal foliation of ψ and
the vertical foliation of φ to the vertical foliation of ψ;

• moreover, in (horizontal, vertical) coordinates the map f has the form

f(x, y) =
(
etx, e−ty

)
for some constant t ∈ R.

In particular, zeros and poles of φ are mapped to zeros and poles of ψ preserving
the orders, the dilatation κf (z) ≡ e2|t|, and f is real analytic outside the zeros
and poles. One calls φ and ψ, respectively, the initial and final differentials of
f .

Teichmüller flow: Given any quasi-conformal map f : S → R and any inte-
grable quadratic differential ψ on the Riemann surface R, let φ be the pull-back
of ψ under f . By definition, φ is a quadratic differential for the conformal
structure pulled-back to S by the map f . For each number t ∈ R, define

µt = kt
|ψ|
ψ

with kt =
et − e−t

et + e−t
∈ (−1, 1).

Let gt : R→ Rt be a quasi-conformal homeomorphism such that

∂z̄gt(ξ) = µt(ξ)∂zgt(ξ).

In other words, µt is the Beltrami differential of gt. Then gt is an extremal map
in the sense of the Teichmüller theorem, with ψ as the initial differential and
some ψt as the final differential on Rt. Then [gt◦f ] is a curve in the Teichmüller
space T (S), and the pull-back φt of each ψt is a quadratic differential for the
conformal structure pulled-back to S by the map gt ◦ f . Then

T t :
(
[f ], φ

)
7→
(
[gt ◦ f ], φt

)
, t ∈ R,

defines a flow in the space Q(S) of pairs ([f ], φ) such that [f ] ∈ T (S) and φ
is an integrable quadratic differential for the conformal structure associated to
[f ].

From the definition we have that the Teichmüller flow preserves the norm of
quadratic differentials. The projection of each flow trajectory down to T (R) is
a geodesic relative to the Teichmüller metric: since gt is an extremal map,

dT([f ], [gt ◦ f ]) =
1
2

log κ(gt) =
1
2

log
1 + kt
1− kt

= t

for all t ∈ R. Thus, one often speaks of the Teichmüller geodesic flow. Observe
also that Q(S) is a fiber bundle over the Teichmüller space; in fact, it may be
interpreted as the cotangent bundle of T (S).
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Moduli spaces

We are particularly interested in the moduli space Qg of quadratic differentials
on Riemann surfaces of genus g ≥ 0. A crucial feature of Qg is that it is
naturally stratified according to the number and orders of the singularities, and
the strata have a rich geometric structure.

Mapping class group: The mapping class group (or modular group) of an
orientable manifold is the group of homotopy classes of orientation preserving
homeomorphisms of the manifold. In the case of compact Riemann surfaces eve-
ry homotopy class contains some quasi-conformal homeomorphism. The map-
ping class group Mod(S) acts on the Teichmüller space T (S) through

〈g〉[f ] = [f ◦ g−1],

where 〈g〉 is the homotopy class of g, and [f ] and [f ◦ g] are the Teichmüller
equivalence classes of f : S → R and f ◦ g : S → R, respectively. This action is
by isometries of the Teichmüller metric:

dT([f1 ◦ g], [f2 ◦ g]) =
1
2

inf{log κ(h) : h ∈ [f2 ◦ f−1
1 ]} = dT([f1], [f2]).

The quotient space T (S)/Mod(S) coincides with the moduli spaceMg of com-
plex structures on a surface of genus g. Indeed, let f1 : S → R1 and f2 : S → R2

represent the same point on Mg, that is, there exists a conformal homeomor-
phism h : R1 → R2. Then g = f−1

2 ◦h◦f1 is a quasi-conformal homeomorphism
of S and [f2] = 〈g〉[h ◦ f1] = 〈g〉[f1]. Conversely, if [f2] = 〈g〉[f1] = [f1 ◦ g−1]
for some quasi-conformal homeomorphism g, then there exists some conformal
homeomorphism h : R1 → R2. In particular, f1 and f2 represent the same point
in the moduli space Mg.

Similarly, the quotient of Q(S) by the mapping class group is identified
to the moduli space Qg of integrable quadratic differentials on a surface of
genus g, that is, the space of pairs (S, q) modulo the equivalence relation that
identifies (S1, q1) to (S2, q2) whenever there exists a conformal homeomorphism
f : S1 → S2 such that f∗q1 = q2. Both Mg and Qg are complex varieties with
the same dimensions as the complex manifolds T (S) and Q(S), respectively.
The quotient maps T (S)→Mg and Q(S)→ Qg have branching points, where
the target spaces fail to be manifolds.

Strata: Each moduli space Qg is naturally stratified according to the number
σ and orders l1, . . . , lσ of the zeros and poles. We abide to the usual convention
that each li ≥ 1 corresponds to a zero of multiplicity li whereas each lj ≤
−1 corresponds to a pole of order |lj |. A quadratic differential on a compact
manifold is integrable if and only if all poles are simple. So, in what follows we
always consider lj ∈ {−1}∪N. The orders of the singularities are related to the
genus of the surface through the Gauss-Bonnet formula

σ∑
i=1

li = 4g − 4. (3)

We denote byQg(l1, . . . , lσ, ε) the stratum of quadratic differentials having exac-
tly σ singularities, of orders l1 ≤ · · · ≤ lσ, where the additional variable ε
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distinguishes between orientable (ε = 1) and non-orientable (ε = −1) quadratic
differentials. As observed before, in the orientable case q = ω2 every li is even.
Then (3) becomes

σ∑
i=1

mi = 2g − 2, (4)

where the mi are the multiplicities of the zeros of the Abelian differential ω.

Affine structure: Each stratumQg(l1, . . . , lσ, ε) comes with a canonical struc-
ture of complex affine variety of dimension d = 2g+σ+(ε−3)/2. Let us explain
this, focussing on the orientable case ε = 1. Let ω0 be any Abelian differential
and Σ be the set of its singularities. By definition, the number of singularities
and their multiplicities are constant on the whole stratum. Thus, for Abelian
differentials in a neighborhood of ω0 we can try and view their singularities as
‘analytic’ continuations of the singularities of ω0, so that the singular sets are
all identified to Σ; if ω0 admits non-trivial symmetries (e.g. making some of its
singularities indistinguishable) these must first be ‘unraveled’ by going to some
finite covering of a neighborhood of ω0. Then we can consider the map

U → H1(S,Σ,C), ω 7→ [ω] (5)

assigning to each Abelian differential ω in a neighborhood U of ω0 (possibly up
to finite covering) the element it represents in the relative complex cohomology
of (S,Σ). The relative cohomology H1(S,Σ,C) is a complex vector space of
dimension d = 2g + σ − 1: for any choice {γj : j = 1, . . . , d} of a basis for the
homology H1(S,Σ,C), the corresponding period map

H1(S,Σ,C)→ Cd, [ω] 7→

(∫
γj

ω

)
j=1,...,d

(6)

is an isomorphism. The map (5) is a homeomorphism (at the finite covering
level), as long as U is small enough. Through these homeomorphisms we can
import the standard affine structure of H1(S,Σ,C) to the stratum, thus defining
the affine variety structure we announced.

Canonical volume: Let us consider the standard volume measure on the
space H1(S,Σ,C), normalized so that the integer lattice H1(S,Σ,Z) has covo-
lume 1. Pulling this volume measure back through the charts (5) one obtains
a canonical volume measure ν on each stratum Qg(l1, . . . , lσ, ε). This measure
is invariant under the Teichmüller flow and homogeneous, in the sense that the
multiplication by any constant c > 0 on the stratum has Jacobian ≡ cd. Thus, ν
induces a measure ν(1) on the subset Q(1)

g (l1, . . . , lσ, ε) of quadratic differentials
with norm 1 and this measure ν(1) is invariant under the restricted Teichmüller
flow.

Connected components: Somewhat surprisingly, strata are not all con-
nected. Kontsevich, Zorich [KZ] and Lanneau [L1, L3] have given a complete
catalogue of the connected components of, respectively, orientable and non-
orientable quadratic differentials, together with complete sets of invariants to
distinguish between all components. It turns out that there can be up to 3
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connected components in the orientable case and up to 2 connected components
in the non-orientable case.

Dynamics of the Teichmüller flow

The first main results on the dynamics of this flow were due to Masur and Veech,
motivated by its connections to the theory of interval exchange transformations.
Their approaches highlighted the principle that the Teichmüller flow orbit of a
quadratic differential encodes important information about the differential itself,
and its horizontal and vertical foliations. This fueled further interest on the
dynamical behavior of this flow and a lot of progress has indeed been obtained
in recent years, especially in the orientable setting.

Ergodicity theorem: Keane [Ke1, Ke2] conjectured that almost every in-
terval exchange transformation admits a unique invariant probability, namely,
normalized Lebesgue measure. Masur and Veech, independently, realized this
would follow if one could prove that the Teichmüller flow orbit of almost e-
very (orientable) quadratic differential returns infinitely many times to some
compact part of phase space. It is clear from the definition that the Teich-
müller flow leaves every stratum Qg(l1, . . . , lσ, ε) invariant. Then the subset
Q(1)
g (l1, . . . , lσ, ε) of quadratic differentials with unit norm is also invariant.

Moreover, as mentioned before, the canonical volume measure ν(1) on every
normalized stratum Q(1)

g (l1, . . . , lσ, ε) is also preserved by the Teichmüller flow.
Masur [M] and Veech [Ve2] proved that ν(1) is always finite and, using this fact,
went on to prove that the Teichmüller flow is ergodic on every connected com-
ponent of every Q(1)

g (l1, . . . , lσ, ε). This implies recurrence to compact parts of
phase space which, as mentioned before, leads to a proof of the Keane conjec-
ture.

An important refinement of the Masur-Veech theorem was obtained a few
years later by Kerckhoff, Masur, Smillie [KMS]. In particular, they showed that
the set of orbits with good recurrence properties contains a full (arc-length)
measure subset of every circle {eiθq : θ ∈ R} in the moduli space of quadratic
differentials. This had a number of applications including, for instance, the first
examples of ergodic polygonal billiards. In fact, one gets that a residual subset
of polygonal billiards are ergodic.

Lyapunov exponents: More recently, Avila, Viana [AV1, AV2, AV3] proved
that the Lyapunov spectrum of the Teichmüller flow in any stratum of Abelian
differentials is simple. It is well known that the Lyapunov exponents of the
Teichmüller flow have the form

{±2} ∪ {±1± νj : j = 2, . . . , g} ∪ {±1}, (7)

for numbers 1 ≥ ν2 ≥ · · · ≥ νg ≥ νg+1 = 0 that depend only on the connected
component of the stratum (by ergodicity). Zorich and Kontsevich conjectured
that all the inequalities in this last relation are strict, so that all the Lyapunov
exponents in (7) have multiplicity 1 (except for the trivial exponents ±1 whose
multiplicity is always one less than the number of singularities). Veech [Ve3]
noted that ν2 < 1 and so the Teichmüller geodesic flow T t is a non-uniformly
hyperbolic flow : all Lyapunov exponents are different from zero. More recently,
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Forni [F] proved that νg > 0. This settled case g = 2 of the conjecture and
also provided enough information on the dynamics of the Teichmüller flow that
Avila, Forni [AF] could use to settle another old problem: almost all interval
exchange transformations are weak mixing (or else irrational circle rotations).
Then Avila, Viana [AV1, AV2, AV3] used a general simplicity criterium for
linear cocycles to obtain the full statement of the Zorich-Kontsevich conjecture.
The corresponding statement for non-orientable strata has yet to be proven.

Asymptotic flag: The conjecture itself was motivated by Zorich’s discovery
of a surprising link between the Lyapunov spectra of the Teichmüller flow on
strata of Abelian differentials and the asymptotic distribution of geodesics on
typical translation surfaces. For each long geodesic γ on a translation surface
S, consider the element [γ] of the first homology H1(S,R) represented by the
closed curve one obtains when the endpoints of γ are joined by some segment
with uniformly bounded length. Zorich observed that the asymptotic behavior
of [γ] as the length of γ goes to infinity seems to be governed by a certain flag
in homology: computer evidence suggested that for almost every translation
surface and initial direction there are vector subspaces 0 < L1 < L2 < · · · <
Lg < H1(S,R) with dimLj = j and numbers 1 > η2 > · · · > ηg > ηg+1 = 0
such that the deviation of [γ] from each Lj is . |γ|ηj+1 . The case j = g just
means that [γ] remains within bounded distance from the subspace Lg as the
length goes to infinity. Moreover, Zorich [Z1, Z3] was able to reduce the proof of
this fact to the aforementioned conjecture that the Lyapunov spectrum of the
Teichmüller flow is simple (one gets ηj = νj for all j).

Exponential mixing

It is now well known that the Teichmüller flow is mixing on each ergodic com-
ponent: ∫

φ(ψ ◦ T t) dν(1) −
∫
φdν(1)

∫
ψ dν(1) → 0 (8)

for any L2 observables φ and ψ. This can be proven from the Masur-Veech
ergodicity theorem together with the fact that T t embeds into a certain volume
preserving SL(2,R) action on each stratum. A quick way to define this action
is by post-composition in the charts (5):

A · [ω] = [A ◦ ω]

for each A ∈ SL(2,R). The Teichmüller flow is just the restriction to the one-
parameter subgroup {(

et 0
0 e−t

)
: t ∈ R

}
Our main object of interest is the speed of mixing. As usual, estimates on
the speed of mixing are possible only if one consider fairly regular observable
functions. In our case this will be the so-called Ratner class.

Ratner class: This issue was first addressed by Avila, Gouëzel, Yoccoz [AGY],
who proved that the Teichmüller flow in the space of Abelian differentials is ex-
ponentially mixing: the convergence in (8) is exponentially fast for all observa-
bles functions in the Ratner class. An L2 function ξ : Q(1)

g (l1, . . . , lσ, ε)→ C is
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in the Ratner class if the map

S1 7→ L2(ν(1))
θ 7→ ξ ◦Rθ

is Hölder continuous, where Rθ is the rotation of angle θ ∈ S1. This is the case, in
particular, for all functions which are Hölder continuous along the fibers of Qg.
The reason to consider this particular class of observables is that exponential
mixing in the Ratner class is equivalent to the ‘spectral gap’ property for the
SL(2,R) action. The hard part of this equivalence is due to Ratner; see [AGY,
Appendix B] for a discussion and references.

Outline of the proof: Essentially all of the results mentioned previously
make important use of a combinatorial formalism that was initiated by Rauzy [R]
and Veech [Ve1] and perfected over the years. For instance, to each Abelian dif-
ferential one can associate a combinatorial object called extended Rauzy class.
Veech [Ve1, Ve3] observed that there is a one-to-one correspondence between
connected components of strata of Abelian differentials and extended Rauzy
classes, which is how he was led to discover the existence of non-connected
strata. Due, perhaps to the applications in the theory of interval exchanges,
this combinatorial formalism was developed quite more rapidly in the orientable
case (e.g. in [AGY], [AV3], [KZ]).

Our strategy for proving Theorem A starts from the observation that the
space of (non-orientable) quadratic differentials can be viewed as a subset of
the space of Abelian differentials with involution. Indeed, it is well known that
given any quadratic differential q on a Riemann surface S of genus g there exists
a double covering π : S̃ → S, branched over the singularities of odd order, and
there is an Abelian differential ω on the surface S̃ such that π∗(ω2) = q. In other
words, q lifts to an orientable quadratic differential on S̃. In this construction,

• to each zero of q with even multiplicity li ≥ 1 corresponds a pair of zeros
of ω with multiplicity mj = li/2;

• to each zero of q with odd multiplicity li ≥ 1 corresponds a zero of ω with
multiplicity mj = li + 1;

• to each pole of q with li = −1 corresponds a removable (that is, order 0)
singularity of ω.

The surface S̃ is connected if and only if q is non-orientable. Notice i∗(ω) = ±ω,
where i : S̃ → S̃ is the involution permuting the points in each fiber of the double
cover π.

Thus, we consider moduli spaces of Abelian differentials with involution and
a certain combinatorial marking. The combinatorial marking includes the order
of the zeros at the singularities, but also a distinguished singularity with a
fixed eastbound separatrix. This moduli space M is a finite cover of Qg where
SL(2,R) is still acting, and thus it is enough to prove the result on this space.

We parametrize the moduli space as a moduli space of zippered rectangles
with involution as follows. Choosing a convenient segment I inside the separa-
trix, we look at the first return map under the northbound flow to the union
of the I and its image under the involution. This map is an interval exchange

11



transformation with involution, and the original northbound flow becomes a sus-
pension flow, living in the union of some rectangles. The original surface can
be obtained from the rectangles by gluing appropriately. This construction can
be carried out in a large open set ofM (with complement of codimension 2, see
[Ve3]).

Once this combinatorial model is derived, one can view the Teichmüller flow
on M as a suspension flow over a (weakly) hyperbolic transformation, which
is itself a skew-product over a (weakly) expanding transformation, the Rauzy
algorithm with involution (RAI). We then consider some appropriate compact
subset of the domain of the RAI: the induced transformation is automatically
expanding and the Teichmüller flow is thus modelled on an “excellent hyperbolic
flow” in the language of [AGY]. Two properties need to be verified to deduce
exponential mixing: the return time should not be co homologous to locally
constant, and it should have exponential tails. The first property is transparent
from the zippered rectangle construction. The second depends essentially on
proving some distortion estimate. Both proofs of the distortion estimate in
[AGY] depend heavily on certain properties of the usual Rauzy induction (simple
description of transition probabilities for a random walk) which seem difficult
to generalize to our setting. We provide here an alternative proof which is less
dependent on precise estimates for the random walk.

1 Excellent hyperbolic semi-flows

In [AGY], an abstract result for exponential mixing was proved for the class
of so-called excellent hyperbolic semi-flows, following the work of Baladi-Vallée
[BV] based on the foundational work of Dolgopyat [D]. This result can be
directly used in our work. In this section we state precisely this result, which
will need several definitions.

By definition, a Finsler manifold is a smooth manifold endowed with a norm
on each tangent space, which varies continuously with the base point.

Definition 1.1. A John domain ∆ is a finite dimensional connected Finsler
manifold, together with a measure Leb on ∆, with the following properties:

1. For x, x′ ∈ ∆, let d(x, x′) be the infimum of the length of a C1 path
contained in ∆ and joining x and x′. For this distance, ∆ is bounded and
there exist constants C0 and ε0 such that, for all ε < ε0, for all x ∈ ∆,
there exists x′ ∈ ∆ such that d(x, x′) ≤ C0ε and such that the ball B(x′, ε)
is compactly contained in ∆.

2. The measure Leb is a fully supported finite measure on ∆, satisfying
the following inequality: for all C > 0, there exists A > 0 such that,
whenever a ball B(x, r) is compactly contained in ∆, Leb(B(x,Cr)) ≤
ALeb(B(x, r)).

Definition 1.2. Let L be a finite or countable set, let ∆ be a John domain,
and let {∆(l)}l∈L be a partition into open sets of a full measure subset of ∆. A
map T :

⋃
l ∆

(l) → ∆ is a uniformly expanding Markov map if

1. For each l, T is a C1 diffeomorphism between ∆(l) and ∆, and there exist
constants κ > 1 (independent of l) and C(l) such that, for all x ∈ ∆(l) and
all v ∈ Tx∆, κ ‖v‖ ≤ ‖DT (x) · v‖ ≤ C(l) ‖v‖.
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2. Let J(x) be the inverse of the Jacobian of T with respect to Leb. Denote by
H the set of inverse branches of T . The function log J is C1 on each set ∆(l)

and there exists C > 0 such that, for all h ∈ H, ‖D((log J) ◦ h)‖C0(∆) ≤ C.

Such a map T preserves a unique absolutely continuous measure µ. Its
density is bounded from above and from below and is C1.

Definition 1.3. Let T :
⋃
l ∆

(l) → ∆ be a uniformly expanding Markov map
on a John domain. A function r :

⋃
l ∆

(l) → R+ is a good roof function if

1. There exists ε1 > 0 such that r ≥ ε1.

2. There exists C > 0 such that, for all h ∈ H, ‖D(r ◦ h)‖C0 ≤ C.

3. It is not possible to write r = ψ + φ ◦ T − φ on
⋃
l ∆

(l), where ψ : ∆→ R
is constant on each set ∆(l) and φ : ∆→ R is C1.

If r is a good roof function for T , we will write r(n)(x) =
∑n−1
k=0 r(T

kx).

Definition 1.4. A good roof function r as above has exponential tails if there
exists σ0 > 0 such that

∫
∆
eσ0r dLeb <∞.

If ∆̂ is a Finsler manifold, we will denote by C1(∆̂) the set of functions
u : ∆̂ → R which are bounded, continuously differentiable, and such that
supx∈b∆ ‖Du(x)‖ <∞. Let

‖u‖C1( b∆) = sup
x∈b∆ |u(x)|+ sup

x∈b∆ ‖Du(x)‖ (9)

be the corresponding norm.

Definition 1.5. Let T :
⋃
l ∆

(l) → ∆ be a uniformly expanding Markov map,
preserving an absolutely continuous measure µ. A hyperbolic skew-product over
T is a map T̂ from a dense open subset of a bounded connected Finsler manifold
∆̂, to ∆̂, satisfying the following properties:

1. There exists a continuous map π : ∆̂→ ∆ such that T ◦π = π◦T̂ whenever
both members of this equality are defined.

2. There exists a probability measure ν on ∆̂, giving full mass to the domain
of definition of T̂ , which is invariant under T̂ .

3. There exists a family of probability measures {νx}x∈∆ on ∆̂ which is a
disintegration of ν over µ in the following sense: x 7→ νx is measurable,
νx is supported on π−1(x) and, for every measurable set A ⊂ ∆̂, ν(A) =∫
νx(A) dµ(x).

Moreover, this disintegration satisfies the following property: there exists
a constant C > 0 such that, for any open subset O ⊂

⋃
∆(l), for any

u ∈ C1(π−1(O)), the function ū : O → R given by ū(x) =
∫
u(y) dνx(y)

belongs to C1(O) and satisfies the inequality

sup
x∈O
‖Dū(x)‖ ≤ C sup

y∈π−1(O)

‖Du(y)‖ .
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4. There exists κ > 1 such that, for all y1, y2 ∈ ∆̂ with π(y1) = π(y2), holds

d(T̂ y1, T̂ y2) ≤ κ−1d(y1, y2).

Let T̂ be an hyperbolic skew-product over a uniformly expanding Markov
map T . Let r be a good roof function for T , with exponential tails. It is then
possible to define a space ∆̂r and a semi-flow T̂t over T̂ on ∆̂, using the roof
function r ◦ π, in the following way. Let ∆̂r = {(y, s) : y ∈

⋃
l ∆̂l, 0 ≤ s <

r(πy)}. For almost all y ∈ ∆̂, all 0 ≤ s < r(πy) and all t ≥ 0, there exists a
unique n ∈ N such that r(n)(πy) ≤ t+ s < r(n+1)(πy). Set T̂t(y, s) = (T̂ny, s+
t− r(n)(πy)). This is a semi-flow defined almost everywhere on ∆̂r. It preserves
the probability measure νr = ν⊗Leb/(ν⊗Leb)(∆̂r). Using the canonical Finsler
metric on ∆̂r, namely the product metric given by ‖(u, v)‖ := ‖u‖ + ‖v‖, we
define the space C1(∆̂r) as in (9). Notice that ∆̂r is not connected, and the
distance between points in different connected components is infinite.

Definition 1.6. A semi-flow T̂t as above is called an excellent hyperbolic semi-
flow.

Theorem 1.7 ([AGY]). Let T̂t be an excellent hyperbolic semi-flow on a space
∆̂r, preserving the probability measure νr. There exist constants C > 0 and
δ > 0 such that, for all functions U, V ∈ C1(∆̂r), for all t ≥ 0,∣∣∣∣∫ U · V ◦ T̂t dνr −

(∫
U dνr

)(∫
V dνr

)∣∣∣∣ ≤ C ‖U‖C1 ‖V ‖C1 e
−δt.

2 The Veech flow with involution

2.1 Rauzy classes and interval exchange transformations
with involution

2.1.1 Interval exchange transformations with involution

Let A be an alphabet on 2d ≥ 4 letters with an involution i : A → A and
let ∗ /∈ A. When considering objects modulo involution, we will use underline:
for instance the involution class of an element α ∈ A will be denoted by α ∈
A = A/i. An interval exchange transformation with involution of type (A, i, ∗)
depends on the specification of the following data:

Combinatorial data: Let π : A ∪ {∗} → {1, . . . , 2d + 1} be a bijection such
that neither i(Al) ⊂ Ar nor i(Ar) ⊂ Al, where Al = {α ∈ A, π(α) <
π(∗)} and Ar = {α ∈ Ar, π(α) > π(∗)}. The combinatorial data can be
viewed as a row where the elements of A∪ {∗} are displayed in the order
(π−1(1), . . . , π−1(2d+ 1)).

Length data: Let λ ∈ RA+ be a vector satisfying∑
π(α)<π(∗)

λα =
∑

π(α)>π(∗)

λα (10)

(it is easy to find such a vector λ).
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Let S = S(A, i, ∗) be the set of all bijections π as above.
The transformation is then defined as follows:

1. Let I ⊂ R be the interval (all intervals will be assumed to be closed at
the left and open at the right) centered on 0 and of length |I| ≡

∑
α∈A λα

(notice that |I| = 2
∑
α∈A λα).

2. Let π : A∪ {∗} → {1, . . . , 2d+ 1} be defined by π(∗) = 2d+ 2− π(∗) and
π(α) = 2d+ 2− π(i(α)).

3. Break I into 2d subintervals Iα of length λα, ordered according to π.

4. Rearrange the subintervals inside I in the order given by π.

Example 2.1. To simplify the notation, given a letter we will represent its image
by involution with an inverted letter (i.e. symmetric relatively to the horizontal
or the vertical direction).

A

B

D

C

BC A

B

D

D C A

D

C

A

B

Figure 1: Interval exchange transformation with involution.

As we can see in this example, the bottom row of letters is equal to the top
one rotated by 180 degrees around the central point of the interval. In fact, this
always occurs by definition of π.

2.1.2 Rauzy classes with involution

We define two operations, the left and the right on S as follows. Let α and β
be the leftmost and the rightmost letters of the row representing π, respectively.
If β 6= i(α) and taking β and putting it into the position immediately after i(α)
results in a row representing an element π′ of S, we say that the left operation
is defined at π, and it takes π to π′. In this case, we say that α wins and β loses.
Similarly, if α 6= i(β) and taking α and putting it into the position immediately
before i(β) results in a row representing an element π′ of S, we say that the
right operation is defined at π, and it takes π to π′. In this case, we say that β
wins and α loses.
Remark 2.2. Notice that β 6= i(α) and α 6= i(β) are equivalent conditions since
the involution i is a bijection. But to define left (respectively right) operation
we also ask that the row obtained after moving β (respectively α) represents an
element of S. So we can have either just one of the operations defined at some
permutation or both, as we can see in the next example.
Example 2.3. Given the permutation π defined in the example 2.1, both oper-
ations (left denoted by L and right denoted by R) are defined at π.

D

B D

C

C

∗ A

A

B
L

ttiiiiiiiiiiiiiiiii
R

**UUUUUUUUUUUUUUUUU

D

B D

B C

C

∗ A

A

D

B D

C

C

∗ A

A

B
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But the left operation is not defined at π′ = D

B D

B C

C

∗ A

A

. In fact,
if it was defined, we would have:

π′ = D

B D

B C

C

∗ A

A

L

y
π′′ = D

B D A

B C

C

∗ A

and the associated length vector λ′′ ∈ RA+, by condition (10), would satisfy
λ′′A = λ′′A + λ′′B + λ′′C + λ′′D, which is impossible, so π′′ /∈ S.

Consider an oriented diagram with vertices which are the elements of S and
oriented arrows representing the operations left and right starting and ending
at two vertices of S. We will say that such an arrow has type left or right,
respectively. We will call this diagram by Rauzy diagram with involution. A
path γ of length m ≥ 0 is a sequence of m arrows, a1, . . . , am, joining m + 1
vertices, v0, . . . , vm, respectively. In this case we say that γ starts at v0, it ends
at vm and pass through v1, . . . , vm−1. Let γ1 and γ2 be two paths such that
the end of γ1 is the start of γ2. We define their concatenation denoted by γ1γ2,
which also is a path. A path of length zero is identified with a vertex and if it
has length one we identify it with an arrow.

A Rauzy class with involution R is a minimal non-empty subset of S, which
is invariant under the left and the right operations, and such that any involu-
tion class admits a representative which is the winner of some arrow starting
(and ending) in R. Elements of Rauzy classes with involution are said to be
irreducible. We denote by S0 = S0(A) ⊂ S the set of irreducible permutations
and let Π(R) be the set of all paths.

Lemma 2.4. If π is irreducible then the left operation (respectively the right
operation) is defined at π if and only if there exists λ ∈ RA+ satisfying (10) such
that λα > λβ (respectively λβ > λα) where α and β are the leftmost and the
rightmost elements of π.

Proof. Assume that the left operation is defined at π and let π′ be the image
of π. Let λ′ ∈ RA+ be a vector satisfying

∑
π′(ξ)<π′(∗) λ

′
ξ =

∑
π′(ξ)>π′(∗) λ

′
ξ. Let

λ ∈ RA+ be given by λα = λ′α + λ′β and λξ = λ′ξ, ξ 6= α. Then λ satisfies (10)
and we have λα > λβ .

Assume that λα > λβ . Let λ′α = λα − λβ . Let π′(x) = π(x) for π(x) ≤
π(i(α)), π′(β) = π(i(α)) + 1 and π′(x) = π(x) + 1 for π(i(α)) < π(x) < 2d+ 1.
We need to show that π′ ∈ S.

Let Al = {π(ξ) < π(∗)}, Ar = {π(ξ) > π(∗)}, A′l = {π′(ξ) < π′(∗)},
A′r = {π′(ξ) > π′(∗)}. Notice that

∑
π′(ξ)<π′(∗) λ

′
ξ =

∑
π′(ξ)>π′(∗) λ

′
ξ, so i(A′l)

can not be properly contained or properly contain A′r. If i(A′l) = A′r, then
π′(i(α)) > π′(∗), so π(i(α)) > π(∗) as well. This implies that A′l = Al and
A′r = Ar, and since π ∈ S we have i(Al) 6= Ar.

2.1.3 Linear action

Given a Rauzy class R, we associate to each path γ ∈ Π(R) a linear map
Bγ ∈ SL(A,Z). If γ is a vertex we take Bγ = id. If γ is an arrow with winner α
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and loser β then we define Bγ · eξ = eξ for ξ ∈ A\{α}, Bγ · eα = eα + eβ , where
{eξ}ξ∈A is the canonical basis of RA. If γ is a path, of the form γ = γ1 . . . γn,
where γi are arrows for all i = 1, . . . , n, we take Bγ = Bγ1...γn = Bγn . . . Bγ1 .

2.2 Rauzy algorithm with involution

Given a Rauzy class R ⊂ S, consider the set

Sπ =

λ ∈ RA :
∑

π(α)<π(∗)

λα =
∑

π(α)>π(∗)

λα


We define

S+
π = Sπ ∩ RA+, ∆π = S+

π × {π}, ∆0
R =

⋃
π∈R

∆π.

Let (λ, π) be an element of ∆0
R. We say that we can apply Rauzy algorithm

with involution (RAI) to (λ, π) if λα 6= λβ , where α, β ∈ A are the leftmost and
the rightmost elements of π, respectively. Then we define (λ′, π′) as follows:

1. Let γ = γ(λ, π) be an arrow representing the left or the right operation at
π, according to whether λα > λβ or λβ > λα.

2. Let λ′ξ = λξ if ξ is not the class of the winner of γ, and λ′ξ = |λα−λβ | if ξ
is the class of the winner of γ, i.e., λ = B∗γ · λ′ (here and in the following
we will use the notation A∗ to the transpose of a matrix A).

3. Let π′ be the end of γ.

We say that (λ′, π′) is obtained from (λ, π) by applying RAI, of type left or right
depending on whether the operation is left or right. We have (λ′, π′) ∈ ∆0

R. In
this way we define a map Q : (λ, π) 7→ (λ′, π′) which is called Rauzy induction
map with involution. Its domain of definition is the set of all (λ, π) ∈ ∆0

R such
that λα 6= λβ (where α and β are the leftmost and the rightmost letters of π)
and we denote it by ∆1

R. The connected components ∆π ⊂ ∆0
R are naturally

labeled by elements of R and the connected components ∆γ of ∆1
R are naturally

labeled by arrows, i.e., paths in Π(R) of length 1.
We associate to (λ, π) and to (λ′, π′) two interval exchange transformations

with involution f : I → I and f ′ : I ′ → I ′, respectively. The relation between
(λ, π) and (λ′, π′) implies a relation between the interval exchange transforma-
tions with involution, namely, the map f ′ is the first return map of f to a
subinterval of I, obtained by cutting two subintervals from the beginning and
from the end of I with the same length λξ, where ξ is the loser of γ.

Let ∆n
R be the domain of Qn, n ≥ 2. The connected components of ∆n

R are
naturally labeled by paths in Π(R) of length n: if γ is obtained by following a
sequence of arrows γ1, . . . , γn, then ∆γ = {x ∈ ∆0

R : Qk−1(x) ∈ ∆γk , 1 ≤ k ≤
n}. Notice that if γ starts at π and ends at π′ then ∆γ = (B∗γ · S+

π′)× {π}.
If γ is a path in Π(R) of length n ending at π ∈ R, let

Qγ = Qn : ∆γ → ∆π.

Let ∆∞R =
⋂
n≥0 ∆n

R.
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Definition 2.5. A path γ is said to be complete if all involution classes α ∈ A
are winners of some arrow composing γ.

The concatenation of k complete paths is said to be k-complete.
A path γ ∈ Π(R) is positive if Bγ is given, in the canonical basis of RA+, by

a matrix with all entries positive.

Lemma 2.6. A (2d− 3)-complete path γ ∈ Π(R) is positive.

Proof. Let γ = γ1γ2 . . . γN where γi is an arrow starting at πi−1 and ending at
πi. Since γ is l-complete we also can represent it as γ = γ(1)γ(2) . . . γ(l) where
each γ(i) is a complete path passing through π

(i−1)
1 , . . . , π

(i−1)
n(i) , π

(i)
1 .

Let B∗γ(i)
be the matrix such that λ(i)

1 = B∗γ(i)
· λ(i+1)

1 . And let B∗(α, β, i)
be the coefficient on row α and on column β of the matrix B∗γ(i)

. Fix k < l. We
denote C∗(k) = B∗γ(1)

. . . B∗γ(k)
. Let C∗(α, β, k) be the coefficient on row α and

on column β of the matrix C∗(k). We want to prove that for all α, β ∈ A we
have C∗(α, β, l) > 0. For r ≥ 0 denote Ĉ(r) = B∗γ1 . . . B∗γr .

Since the diagonal elements of the matrices B∗γ̃ , where γ̃ is an arrow, are
one and all other terms are non-negative integers, we obtain that the sequence
C∗(α, β, k) is non-decreasing in k, thus:

C∗(α, β, k) > 0⇒ C∗(α, β, k + 1) > 0 (11)

Fix any α, β ∈ A. We will reorder the involution classes of A, as α =
α1, α2, . . . , αd = β with associate numbers 0 = r1 < r2 < . . . < rd such that

C∗(α1, αj , r) > 0 ∀r ≥ rj (12)

If α = β we take s = 1 and r1 = 0 and therefore we have (12). Otherwise
we choose the smallest positive integer r2 such that the winner of γr2 is α1 = α
and let α2 be the loser of the same arrow. Notice that α1 6= α2 by irreducibility,
and B∗(α1, α2, r2) = 1, hence C∗(α1, α2, r) > 0 for every r ≥ r2. This gives the
result for d = 2.

Now we will see the general case. Assume that α1, . . . , αj and r1, . . . , rj have
been constructed with β 6= αm for 1 ≤ m ≤ j. Let r′j be the smallest integer
greater than rj such that the winner of γr

′
j does not belong to {α1, . . . , αj} and

let rj+1 be the smallest integer greater than r′j such that the winner of γrj+1

is in {α1, . . . , αj}. Let αj+1 be the loser of γrj+1 . Then αj+1 is the winner of
γrj+1−1 and therefore αj+1 /∈ {α1, . . . , αj}. Thus, for some 1 ≤ m ≤ j we have
B∗(αm, αj+1, rj+1) = 1 and C∗(α1, αm, rj+1 − 1) > 0, since rj+1 > rm. Thus

C∗(α1, αj+1, r) > 0 ∀r ≥ rj+1.

Following this process, we will obtain αs = β Now, we will see how many
complete paths we need until define rd.

We need a complete path to define each rj and another one to define each
r′j , for 3 ≤ j ≤ d. And we need another complete path to define r2. Thus we
need at most 2(d− 2) + 1 = 2d− 3 complete paths composing γ to conclude it
is positive.
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2.3 Zippered rectangles

Let π be a permutation in a Rauzy class R ⊂ S0. Let Θπ ⊂ Sπ be the set of
all τ such that ∑

π(∗)<π(ξ)≤kr

τξ > 0 for all π(∗) < kr < 2d+ 1∑
kl≤π(ξ)<π(∗)

τξ < 0 for all 1 < kl < π(∗)
(13)

Observe that Θπ is an open convex polyhedral cone and we will see later it
is non-empty.

Given a letter α ∈ A, we define Mπ(α) = max{π(α), π(i(α))} and mπ(α) =
min{π(α), π(i(α))}.

Define the linear operator Ω(π) on RA as follows:

Ω(π)x,y =



2 if Mπ(x) < mπ(y),

−2 if Mπ(y) < mπ(x),

1 if mπ(x) < mπ(y) < Mπ(x) < Mπ(y),

−1 if mπ(y) < mπ(x) < Mπ(y) < Mπ(x),

0 otherwise.

(14)

If λ ∈ RA, then

(Ω(π) · λ)α =
∑

π(ξ)>π(i(α))

λξ −
∑

π(ξ)<π(α)

λξ. (15)

Suppose that π(α) < π(i(α)). Thus,

(Ω(π) · λ)i(α) =
∑

π(ξ)>π(α)

λξ −
∑

π(ξ)<π(i(α))

λξ =

∑
π(α)<π(ξ)≤π(i(α))

λξ +
∑

π(ξ)>π(i(α))

λξ −
∑

π(α)≤π(ξ)<π(i(α))

λξ −
∑

π(ξ)<π(α)

λξ =

= (Ω(π) · λ)α . (16)

The case π(i(α)) < π(α) is analogous. So, we conclude that (Ω(π) · λ)α =
(Ω(π) · λ)i(α) for all α ∈ A. Therefore Ω(π) is well-defined.

We define the vector w ∈ RA by w = Ω(π) · λ and the vector h ∈ RA by
h = −Ω(π) · τ . For each α ∈ A define ζα = λα + iτα.

Lemma 2.7. If γ is an arrow between (λ, π) and (λ′, π′), then w′ = Bγ · w.

Proof. We will consider the case when γ is a left arrow. The other case is
entirely analogous. Let α(l) and α(r) be the leftmost and the rightmost letters
in π, respectively. Thus α(l) is the winner and α(r) is the loser.

By definition,

w′α =
∑

π′(ξ)>π′(i(α))

λ′ξ −
∑

π′(ξ)<π′(α)

λ′ξ
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Since λ′α = λα for all α 6= α(l) and λ′α(l) = λα(l)−λα(r), it is easy to verify that:

w′α =
∑

π(ξ)>π(i(α))

λξ −
∑

π(ξ)<π(α)

λξ = wα if α 6= α(r).

And if α = α(r), by (16), we have:

w′α(r) =
∑

π′(ξ)>π′(i(α(r)))

λ′ξ −
∑

π′(ξ)<π′(α(r))

λ′ξ

=
∑

π′(ξ)>π′(α(r))

λ′ξ −
∑

π′(ξ)<π′(i(α(r)))

λ′ξ =
∑

π(ξ)>π(i(α(l)))

λξ −
∑

π(ξ)<π(i(α(r)))

λξ

=
∑

π(ξ)>π(i(α(l)))

λξ −
∑

π(ξ)<π(α(l))

λξ +
∑

π(ξ)>π(α(r))

λξ −
∑

π(ξ)<π(i(α(r)))

λξ

= wα(l) + wα(r)

Therefore, w′ = Bγ · w.

Let H(π) = Ω(π) · Sπ. According to the previous lemma, given a path
γ ∈ Π(R) starting at π and ending at π′, we have Bγ ·H(π) = H(π′).

Lemma 2.8. If π ∈ R and τ ∈ Θπ then h ∈ RA+.

Proof. Let α ∈ A. We have

hα =
∑

π(ξ)<π(α)

τξ −
∑

π(ξ)>π(i(α))

τξ.

Suppose π(α), π(i(α)) < π(∗):

hα =
∑

π(ξ)<π(α)

τξ −
∑

π(ξ)>π(i(α))

τξ =

=
∑

π(ξ)<π(α)

τξ −
∑

π(i(α))<π(ξ)<π(∗)

τξ −
∑

π(∗)<π(ξ)≤2d+1

τξ =

= −
∑

π(α)≤π(ξ)<π(∗)

τξ −
∑

π(i(α))<π(ξ)<π(∗)

τξ > 0.

Analogously, if π(α), π(i(α)) > π(∗) we have hα > 0.
Now we will suppose that π(α) < π(∗) < π(i(α)). In this case, we have:

hα =
∑

π(ξ)<π(α)

τξ −
∑

π(ξ)>π(i(α))

τξ =

=
∑

1≤π(ξ)<π(∗)

τξ −
∑

π(α)≤π(ξ)<π(∗)

τξ −
∑

π(∗)<π(ξ)≤2d+1

τξ +
∑

π(∗)<π(ξ)≤π(i(α))

τξ =

= −
∑

π(α)<π(ξ)<π(∗)

τξ +
∑

π(∗)<π(ξ)<π(i(α))

τξ > 0

So, h ∈ RA+.
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Lemma 2.9. If γ ∈ Π(R) is an arrow starting at π and ending at π′ then
(B∗γ)−1 ·Θπ ⊂ Θπ′ .

Proof. We will suppose that γ is a right arrow and the other case is entirely
analogous. Let τ ∈ Θπ and let α ∈ A be the winner and β ∈ A be the loser of
γ.

Notice we have τ ′ξ = τξ for all ξ ∈ A\{α}. Let m = π(i(α)). Notice that

hα = hi(α) =
∑

π(ξ)<π(i(α))

τξ −
∑

π(ξ)>π(α)

τξ =
∑

π(ξ)<m

τξ (17)

Suppose m < π(∗). Since π′(ξ) = π(ξ) for all ξ ∈ A such that π(ξ) ≥ m we
have that the first inequalities of (13) are satisfied and∑

kl≤π′(ξ)<π′(∗)

τ ′ξ =
∑

kl≤π(ξ)<π(∗)

τξ < 0 for all m < kl < π(∗)

Thus, it remains to prove the last inequalities to 1 < kl ≤ m. Let 1 < kl < m.
Since τ ′α = τα − τβ ,∑

kl≤π′(ξ)<π′(∗)

τ ′ξ =
∑

kl≤π(ξ)<π(∗)

τξ < 0 for all 1 < kl < m.

If kl = m, by (17)∑
m≤π′(ξ)<π′(∗)

τ ′ξ =
∑

m≤π(ξ)<π(∗)

τξ − τβ =
∑

2≤π(ξ)<π(∗)

τξ − hα < 0 (18)

Now suppose m > π(∗) This case is analogous to the first one. We will just
do the part corresponding to (18).∑

π′(∗)<π′(ξ)≤m−1

τ ′ξ =
∑

π(∗)<π(ξ)≤m−1

τξ − τβ = hα −
∑

2≤π(ξ)<π(∗)

τξ > 0

Thus τ ′ ∈ Θπ′ , as we wanted to prove.

Definition 2.10. Let Θ′π ⊂ Sπ be the set of all τ 6= 0 such that∑
π(∗)<π(ξ)≤kr

τξ ≥ 0 for all π(∗) < kr < 2d+ 1∑
kl≤π(ξ)<π(∗)

τξ ≤ 0 for all 1 < kl < π(∗)
(19)

Let γ ∈ Π(R) be a path starting at πs and ending at πe. In the same
way we showed that (B∗γ)−1 · Θπs ⊂ Θπe in the previous lemma, one sees that
(B∗γ)−1 ·Θ′πs ⊂ Θ′πe .

Definition 2.11. Let π ∈ Π(R) and α ∈ A. We say that α is a simple letter if
π(α) < π(∗) < π(i(α)) or if π(i(α)) < π(∗) < π(α). We say that α is a double
letter if π(α) and π(i(α)) are either both smaller or either both greater than
π(∗). If π(α), π(i(α)) < π(∗) we say that α is a left double letter or has left type,
otherwise we say that α is a right double letter or has right type.
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Lemma 2.12. If π is irreducible then Θ′π is non-empty.

Proof. By invariance and irreducibility, it is enough to find some π ∈ R such
that Θ′π is non-empty.

Given α, β ∈ A suppose we have π ∈ R with one of the two following forms:

· · α · · i(α) · β · i(β) · ∗ · · (20)

or

· · α · · β · i(α) · i(β) · ∗ · · (21)

We can define τ ∈ Θ′π by choosing τα = −τβ = 1 and τξ = 0 for all
ξ ∈ A\{α, β}.

Let us show that there exists some π ∈ R satisfying this property.
By definition of permutation in S, there exist at least one double letter of

each one of the types, i.e., there exist α, β ∈ A such that α is left double letter
and β is right double letter.

If there exists more than one double letter of both types, we can obtain
another irreducible permutation π′ which has at most one double letter of each
one of the types, as follows. First we apply left or right operations until we
obtain one double letter in the leftmost or the rightmost position, which is
possible by irreducibility. We will assume, without loss of generality, that such
a letter is at rightmost position. If there is at most one left double letter, we
take the permutation obtained to be π′. But, if there are more than one left
double letter, we apply right operations, until we find a permutation with just
one left double letter. Those right operations are well-defined since we have
more than one double letter of both types.

Suppose that α ∈ A is the unique left double letter. Then, if it is necessary,
we apply right operations until obtain π(α) = 1.

Let β ∈ A such that π(β) = 2d+ 1, i.e.,

α · · · i(α) · ∗ · · β

If β is simple applying the left operation we obtain a permutation of type (20)
or (21) depending on π(i(β)) > π(i(α)) or π(i(β)) < π(i(α)), respectively. If
β is double we apply the left operation until we obtain a simple letter in the
rightmost position of π and we are in the same conditions as in the previous
case.

Definition 2.13. Let us say that a path γ ∈ Π(R), starting at πs and ending
at πe, is strongly positive if it is positive and (B∗γ)−1 ·Θ′πs ⊂ Θπe .

Lemma 2.14. Let γ be a (4d− 6)-complete path. Then γ is strongly positive.

Proof. Let d = #A. Fix τ ∈ Θ′πs\{0}. Write γ as a concatenation of arrows
γ = γ1 . . . γn, and let πi−1 and πi denote the start and the end of γi. Let τ0 = τ ,
τ i = (B∗γi)

−1 · τ i−1. We must show that τn ∈ Θπn .

Let hi = −Ω(πi) · τ i. Notice that τ ∈ Θ′π0\{0} implies that h0 ∈ RA+\{0}.
Indeed, since τ ∈ Θ′π0 , for every ξ ∈ A, we have

∑
π0(∗)<π0(α)<π0(ξ) τα ≥ 0,∑

π0(ξ)<π0(α)<π0(∗) τα ≤ 0. Moreover, since τ 6= 0, there exist 1 ≤ kl ≤ π0(∗)
maximal and π0(∗) ≤ kr ≤ 2d + 1 minimal such that τ(π0)−1(kl) 6= 0 and
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τ(π0)−1(kr) 6= 0. Since π0 is irreducible, kr−kl < 2d−1. Remember that h0
ξ ≥ 0

for all ξ and the inequality is strict if π0(ξ) = kr + 1 and kr < 2d + 1 or if
π0(ξ) = kl − 1 and 1 < kl < π0(∗). Since hi = Bγi · hi−1 we can consider a
positive path γ1 . . . γi and then hi ∈ RA+.

Let πi(∗) ≤ kri ≤ 2d be maximal and 2 ≤ kli ≤ πi(∗) be minimal such that∑
πi(∗)<πi(ξ)≤k

τ iξ > 0 for all πi(∗) < k ≤ kri ,

∑
k≤πi(ξ)<πi(∗)

τ iξ < 0 for all kli ≤ k < πi(∗).

We claim that

1. If hi−1 ∈ RA+ then kri − πi(∗) ≥ kri−1− πi−1(∗) and πi(∗)− kli ≥ πi−1(∗)−
kli−1, in particular kri − kli ≥ kri−1 − kli−1;

2. If hi−1 ∈ RA+ and the winner of γi is one of the first kri−1 + 1 letters after
∗ in πi−1 then kri − kli ≥ min{kri−1 − kli−1 + 1, 2d− kli−1};

3. If hi−1 ∈ RA+ and the winner of γi is one of the last kli−1− 1 letters before
∗ in πi−1 then kri − kli ≥ min{kri−1 − kli−1 + 1, kri−1 − 2}.

Notice that 2 < πi(∗) < 2d for all i. Let us see that (1), (2) and (3) imply
the result, which is equivalent to the statement that krn − kln ≥ 2d − 2. Let us
write γ = γ(1) . . . γ(4d−7) where γ(j) is complete and each γ(j) = γsj . . . γej . By
Lemma 2.6, hk ∈ RA+ for k ≥ e2d−3. From the definition of a complete path,
for each j > 2d − 3, there exists ej < i1 ≤ ej+1 such that the winner of γi1 is
one of the letters in position m1 at πi1−1 such that πi1−1(∗) < m1 < krej + 1. It
follows that krej+1

− klej+1
≥ min{kri1−1 − kli1−1 + 1, 2d− kli1−1}, so

krej+1
− klej+1

≥ min{krej − k
l
ej + 1, 2d− klej}. (22)

In the same way there exists ej−1 < i2 ≤ ej such that the winner of γi2 is one
of the letters in position m2 at πi2−1 such that krej + 1 < m2 < πi2−1(∗). It
follows that krej − k

l
ej ≥ min{kri2−1 − kli2−1 + 1, kri2−1 − 2}, thus

krej − k
l
ej ≥ min{krej−1

− klej−1
+ 1, krej−1

− 2}. (23)

By (22) and (23), we see that:

krej+1
− klej+1

≥ min{krej−1
− klej−1

+ 2, 2d− (klej−1
− 1), (krej−1

+ 1)− 2, 2d− 2}.

Therefore, we obtain krn−kln = kre2d−3+2d−4
−kle2d−3+2d−4

≥ min{kre2d−3
−kle2d−3

+
2d− 2, 2d− (kle2d−3

− 2d− 4), (krej−1
+ 2d− 4)− 2, 2d− 2} = 2d− 2.

We now check (1), (2) and (3). Assume that hi−1 ∈ RA+, and that γi is a
right arrow, the other case being analogous. Let α be the rightmost letter of
πi−1 which is the winner of γi, and let β be the leftmost letter of πi−1 which is
the loser of γi.

Case 1: Suppose πi−1(i(α)) < πi−1(∗).
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If the winner of γi is not one of the kli−1 − 1 last letters in the left side
of ∗ in πi−1, then for every ξ ∈ A such that kli−1 ≤ πi−1(ξ) ≤ 2d + 1, we
have πi−1(ξ) = πi(ξ) and τ i−1

ξ = τ iξ for all kli−1 ≤ πi−1(ξ) ≤ 2d. Hence

kri − πi(∗) ≥ kri−1 − πi−1(∗) and πi(∗)− kli ≥ πi−1(∗)− kli−1.
If the winner α of γi appears in the k-th position counting from ∗ to the left

in πi−1 with kli−1 − 1 ≤ k < π(∗), then

∑
j≤πi(ξ)<πi(∗)

τ iξ =
∑

j≤πi−1(ξ)<πi−1(∗)

τ i−1
ξ < 0 for all k + 1 ≤ j < π(∗),

∑
j≤πi(ξ)<πi(∗)

τ iξ =
∑

j+1≤πi−1(ξ)<πi−1(∗)

τ i−1
ξ < 0 for all kli−1 − 1 ≤ j ≤ k − 1,

∑
k≤πi(ξ)<πi(∗)

τ iξ =
∑

2≤πi−1(ξ)<πi−1(∗)

τ i−1
ξ − hi−1

α ≤ −hi−1
α < 0,

which implies that πi(∗) − kli ≥ min{πi−1(∗) − 2, πi−1(∗) + 1 − kli−1}, hence
kri − kli ≥ min{kri−1 − kli−1 + 1, kri−1 − 2}.

This shows that (1) holds and (3) holds. Moreover, (2) also holds since its
hypothesis can only be satisfied if kri−1 = 2d.

Case 2: Suppose πi−1(i(α)) > πi−1(∗).
If the winner of γi is not one of the kri−1 + 1 first letters in the right side

of ∗ in πi−1, then for every ξ ∈ A such that 1 < πi−1(ξ) ≤ kri−1, we have
πi(ξ) = πi−1(ξ)−1 and τ i−1

ξ = τ iξ, so kri −πi(∗) ≥ kri−1−πi−1(∗) and πi(∗)−kli ≥
πi−1(∗)− kli−1.

If the winner α of γi appears in the k-th in πi−1 with πi−1(∗) < k ≤ kri−1 +1,
then ∑

πi(∗)<πi(ξ)≤j

τ iξ =
∑

πi−1(∗)<πi−1(ξ)≤j−1

τ i−1
ξ > 0 for all π(∗) ≤ j < k − 1,

∑
πi(∗)<πi(ξ)≤j

τ iξ =
∑

πi−1(∗)<πi−1(ξ)≤j

τ i−1
ξ > 0 for all k ≤ j ≤ kri−1 + 1,

∑
πi(∗)<πi(ξ)≤k−1

τ iξ = −
∑

2≤πi−1(ξ)<πi−1(∗)

τ i−1
ξ + hi−1

α ≥ hi−1
α > 0,

which implies that kri − πi(∗) ≥ min{kri−1 + 1 − πi−1(∗), 2d − πi−1(∗)}, hence
kri − kli ≥ min{kri−1 − kli−1 + 1, 2d− kli−1}.

This shows that both (1) and (2) holds. Moreover, (3) also holds since its
hypothesis can only be satisfied if kli−1 = 2.

Corollary 2.15. If π is irreducible then Θπ is non-empty.

Proof. Let γ ∈ Π(R) be a strongly positive path starting and ending at π, which
exists by Lemma 2.14. Then (B∗γ)−1 ·Θ′π ⊂ Θπ and by Lemma 2.12 the set Θ′π
is non-empty. Therefore Θπ is non-empty.

Given that Θπ is non-empty, it is easy to see that Θ′π ∪ {0} is in fact just
the closure of Θπ.
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2.3.1 Extension of induction to the space of zippered rectangles

Let γ ∈ Π(R) be a path starting at π and define Θγ satisfying:

B∗γ ·Θγ = Θπ.

If γ is a right arrow ending at π′, then Θγ = {τ ∈ Θπ′ |
∑
x∈A τx < 0}, and

if γ is a left arrow ending at π′, then Θγ = {τ ∈ Θπ′ |
∑
x∈A τx > 0}.

Thus, the map

Q̂γ : ∆γ ×Θπ → ∆π′ ×Θγ , Q̂γ(λ, π, τ) = (Q(λ, π), (B∗γ)−1 · τ)

is invertible. With this we define an invertible skew-product Q̂ over Q conside-
ring all Q̂γ for every arrow γ. So, we obtain a map from

⋃
(∆γ × Θπ) (where

the union is taken over all π ∈ R and all arrows γ starting at π) to
⋃

(∆π′×Θγ)
(where the union is taken over all π′ ∈ R and all arrows ending at π′). Denote
∆̂R =

⋃
π∈R(∆π ×Θπ).

Let (eα)α∈A be the canonical basis of RA. We will consider a measure in
∆̂R defined as follows.. Let {v1, . . . , vd} be a basis of Rd. We have a volume
form given by ω(v1, . . . , vd) = det(v1, . . . , vd). We want to define a volume
form in ∆̂R coherent with ω. Given the subspace Sπ define the orthogonal
vector vπ =

∑
π(x)<π(∗) ex−

∑
π(x)>π(∗) ex. We can view this vector like a linear

functional ψπ : Rd → R defined by ψπ(x) = 〈vπ, x〉. Now we define a form ωvπ

on Sπ such that ω = ωvπ ∧ψπ (where ∧ denotes the exterior product). We have
that ωvπ is a (d − 1)-form and it is well defined in the orthogonal complement
of ψπ (i.e., ψπ(Rd)⊥ = ker(ψπ) = Sπ). Notice that, given π, π′ ∈ R and a path
γ ∈ Π(R) joining π to π′, Bγ · vπ = vπ′ and

(B∗γ)−1 ·
(

vπ
〈vπ, vπ〉

)
− vπ′

〈vπ′ , vπ′〉
∈ Sπ′ .

So we have:

([(B∗γ)−1]∗ωv
′
π ) (u1, . . . , ud−1) = ωv

′
π
(
(B∗γ)−1 · u1, . . . , (B∗γ)−1 · ud−1

)
=
ω(vπ′ , (B∗γ)−1 · u1, . . . , (B∗γ)−1 · ud−1)

ψπ′(vπ′)

= ω

(
vπ′

〈vπ′ , vπ′〉
, (B∗γ)−1 · u1, . . . , (B∗γ)−1 · ud−1

)
= ω

(
vπ

〈vπ, vπ〉
, u1, . . . , ud−1

)
=
ω(vπ, u1, . . . , ud−1)

ψπ(vπ)
= ωvπ (u1, . . . , ud−1).

So, the pull-back of ωvπ′ is equal to ωvπ , i.e.,

[(B∗γ)−1]∗ωvπ′ = ωvπ .

Consider the volume form ωvπ and the corresponding Lebesgue measure
Lebπ on Sπ. So we have a natural volume measure m̂R on ∆̂R which is a
product of a counting measure on R and the restrictions of Lebπ on S+

π and
Θπ.

Let φ(λ, π, τ) = ‖λ‖ =
∑
α∈A λα. The subset fR ⊂ ∆̂R of all x such that

either
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• Q̂(x) is defined and φ(Q̂(x)) < 1 ≤ φ(x),

• Q̂(x) is not defined and φ(x) ≥ 1,

• Q̂−1(x) is not defined and φ(x) < 1.

is a fundamental domain for the action of Q̂: each orbit of Q̂ intersects fR

exactly once.
Let f(1)

R be the subset of fR such that A(λ, π, τ) = 1. Let m(1)
R be the

restriction of the measure m̂R to the subset f(1)
R .

2.3.2 The Veech flow with involution

Using the coordinates introduced before, we define a flow T V = (T Vt)t∈R on
∆̂R given by T Vt(λ, π, τ) = (etλ, π, e−tτ). It is clear that T V commutes with
the map Q̂. The Veech Flow with involution is defined by VF t : fR → fR,
VF t(x) = Q̂n(T Vt(x)).

Notice that the Veech flow with involution leaves invariant the space of
zippered rectangles of area one. So, the restriction VF t : f(1)

R → f(1)
R leaves

invariant the volume form which, as we will see later, is finite.

3 The distortion estimate

We will introduce a class of measures involving the Lebesgue measure and its
forward iterates under the renormalization map.

For q ∈ RA+, let Λπ,q = {λ ∈ S+
π : 〈λ, q〉 < 1}. Let νπ,q be the measure

on the σ-algebra of subsets of Sπ which are invariant under multiplication by
positive scalars, given by νπ,q(A) = Lebπ(A∩Λπ,q). If γ is a path starting at π
and ending at π′ then

νπ,q(B∗γ ·A) = Lebπ((B∗γ ·A) ∩ Λπ,q) = Lebπ′(A ∩ Λπ′,Bγ ·q) = νπ′,Bγ ·q(A).

We will obtain estimates for νπ,q(∆γ).
Let R ⊂ S0(A) be a Rauzy class, γ ∈ Π(R), let π and π′ be the start and

the end of γ, respectively. We denote Λγ,q × {π} = (Λπ,q × {π}) ∩∆γ , so that
B∗γ · Λπ′,Bγ ·q = Λγ,q.

Example 3.1. Let π = A

A B

∗ C

C

B, let γ be a left arrow and let π′ be the
end of γ, as in the next diagram.

π = A

A B

∗ C

C

B

L

y
π′ = A

A

B

B

∗ C

C

In Figure 2 we have representations of the sets Λπ,q, Λγ,q and Λπ′,Bγ ·q.

ForA′ ⊂ A non-empty and invariant by involution, let MA′(q) = maxα∈A′ qα
and M(q) = MA(q). Consider also mA′(q) = minα∈A′ qα and m(q) = mA(q).

If Γ ⊂ Π(R) is a set of paths starting at the same π ∈ R, we denote
ΛΓ,q =

⋃
γ∈Γ Λγ,q. Given Γ ⊂ Π(R) and γs ∈ Π(R) we define Γγs = {γ ∈ Γ : γs

is the start of γ}.
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1
qC

1
qA

OO

1
qC

1
qA

1
qB

1
qB+qA

Figure 2: Λπ,q and Λγ,q

We say that a vertice is simple or double depending whether it is labelled
by a simple or a double letter, respectively. Notice that Λπ,q is a convex open
polyhedron which vertices are:

• the trivial vertex 0;

• the simple vertices q−1
α eα, where α is simple;

• the double vertices (qα+qβ)−1(eα+eβ), where α, β are double and π(α) <
π(∗) < π(β) or π(β) < π(∗) < π(α).

A simple vertex v = q−1
α eα is called of type α and weight w(v) = qα, and a

double vertex v = (qα + qβ)−1(eα + eβ) is called of type {α, β} and of weight
w(v) = qα + qβ .

Example 3.2. Notice that the number of vertices of the polyhedrons which rep-
resent Λπ,q and Λγ,q, where γ is an arrow, can be different, and so, we obtain
different polyhedrons.

Let π = E

E

D

D

∗ A B

B

C

C A

be a permutation ang let γ be a right
arrow starting at π as in the next diagram:

π = E

E

D

D

∗ A B

B

C

C A

R

y
π′ =

E

D

D

∗ E A B

B

C

C A

In this case we observe that the polyhedrons Λπ,q and Λγ,q have different
different number of vertices, as we can see in the Figure 3.

An elementary subsimplex of Λπ,q is an open simplex whose vertices are also
vertices of Λπ,q, and one of them is 0. Notice that Λπ,q can be always written as
a union of at most C1(d) elementary simplices, up to a set of codimension one.

Example 3.3. Let π = B A C

C B

∗ D

A D

E

E

. In Figure 4 we have
a representation of the simplex associated to π and the respective elementary
subsimplices removing the vertice 0.
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Figure 3: Polyhedrons with different number of vertices.
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Figure 4: Simplex and subsimplices

A set of non-trivial vertices of Λπ,q is contained in the set of vertices of
some elementary subsimplex if and only if the vertices are linearly independent.
If α is simple then any elementary subsimplex must have a vertex of type α
and if α is double then any elementary subsimplex must have a vertex of type
{α, x} for some x 6= α with x double. If Λ is an elementary subsimplex with
simple vertices of type αi and double vertices of type {βj1 , ξj2} then νπ,q(Λ) =
k(π,Λ)

∏
q−1
αi

∏
(qβj1 +qξj2 )−1 where k(π,Λ) is a positive integer only depending

on vπ and on the types of the double vertices of Λ. In particular there is an
integer C2(d) such that k(π,Λ) ≤ C2(d).

Let γ ∈ Π(R) be an arrow starting at π and ending at π′. If Γ ⊂ Π(R) then
we define

Pq(Γ | γ) =
νπ′,Bγ ·q(ΛΓγ ,q)
νπ,q(Λγ,q)

and

Pq(γ |π) =
νπ′,Bγ ·q(Λγ,q)
νπ,q(Λπ,q)

.

We have that Pq(Γ | γ) = PBγ ·q(Γγ |π′).
We define a partial order in the set of paths as follows. Let γ, γs ∈ Π(R)

be two paths. We say that γs ≤ γ if and only if γs is the start of γ. A family
Γs ⊂ Π(R) is called disjoint if no two elements are comparable by the partial
order defined before. If Γs is disjoint and Γ ⊂ Π(R) is a family such that any
γ ∈ Γ starts by some element γs ⊂ Γs, then for every π ∈ R
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Pq(Γ |π) =
∑
γs∈Γs

Pq(Γ | γs)Pq(γs |π) ≤ Pq(Γs |π) sup
γs∈Γs

Pq(Γ | γs).

Lemma 3.4. There exists C3(d) < 1 with the following property. Let q ∈ RA+,
γ ∈ Π(R) be an arrow starting at π with loser β. If C ≥ 1 is such that qβ >
C−1M(q) then

Pq(γ |π) > C3(d)C−(d−1).

Proof. Let α be the winner of γ and let π′ be the end of γ. Let Λ be an elemen-
tary subsimplex of Λπ,q. We are going to show that there exists an elementary
subsimplex Λ′ ⊂ Bγ(Λ) of Λπ′,Bγ ·q such that Lebπ′(Λ′) ≥ C ′−1Lebπ(Λ), which
implies the result by decomposition.

We will separate the proof in four cases depending on whether the winner
and the loser are simple or double.

Suppose that α and β are simple. Let Λ be an elementary subsimplex of
Λπ,q. Then Λ′ = Bγ ·(Λπ,q∩Λ) is an elementary subsimplex of Λπ′,Bγ ·q. The set
of vertices of Λ′ differs from the set of vertices of Λ just by replacing the vertex
q−1
β eβ by (qα + qβ)−1eβ . It follows that Lebπ′(Λ′)/Lebπ(Λ) = qβ/(qα + qβ) >

1/(C + 1). By considering a decomposition into elementary subsimplices we
conclude that Pq(γ|π) = qβ/(qα + qβ) > 1/(C + 1).

Suppose that the winner is simple and the loser is double. Let Λ be an
elementary subsimplex of Λπ,q. Then Λ′ = Bγ · (Λπ,q ∩ Λ) is an elementary
subsimplex of ΛBγ ·q. The set of vertices of Λ′ differs from the set of vertices of
Λ just by replacing the vertices (qx+qβ)−1(ex+eβ) by (qα+qx+qβ)−1(ex+eβ).
It follows that Lebπ′(Λ′)/Lebπ(Λ) =

∏
(qx + qβ)/(qα + qx + qβ) > 1/(1 + C),

where the product is over all x such that Λ has a vertex of type {x, β}. Thus
Pq(γ|π) > 1/(C + 1).

If the winner is double and the loser is simple, let γ′ be the other arrow
starting at π. Analogous to the previous case, Pq(γ′ |π) =

∏
(qx + qα)/(qα +

qx+ qβ) <
∏(

1− qβ/(qα + qx + qβ)
)
< 2C/(1 + 2C), so Pq(γ|π) > 1/(1 + 2C).

Finally, suppose that the winner and the loser are both double. Let Λ be an
elementary subsimplex with Lebπ(Λ) ≥ Lebπ(Λπ,q)/C1(d). Let Z be the set of
vertices of Λ and let Z̃ ⊂ Z be the set of double vertices of type {qx, qβ} with
x 6= α. Notice that Bγ · (Z\Z̃) is a subset of the set of vertices of Λπ′,Bγ ·q. Since
Z\Z̃ is linearly independent, Bγ ·(Z\Z̃) is also. Thus there exists an elementary
subsimplex Λ′ of Λπ′,Bγ ·q whose set Z ′ of vertices contains Bγ · (Z\Z̃). Let
Z̃ ′ = Z ′\Bγ · (Z\Z̃). The weight of a vertice v ∈ Z\Z̃ is the same weight as the
weight of Bγ · v. Notice that each vertex of Z̃ has weight at least C−1M(q) and
each vertex of Z̃ ′ has weight at most 2M(Bγ · q) ≤ 4M(q). Thus

Lebπ′(Λ′)
Lebπ(Λ)

=
k(π′,Λ′)
k(π,Λ)

∏
v∈Z̃ w(v)∏
v∈Z̃′ w(v)

> C2(d)−1(4C)1−d.

Thus Pq(γ|π) > C1(d)−1C2(d)−1(4C)1−d.

The proof of the recurrence estimates is based on the analysis of the Rauzy
renormalization map. The key step involves a control on the measure of sets
which present big distortion after some long (Teichmüller) time.
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Theorem 3.5. There exists C4(d) > 1 with the following property. Let q ∈ RA+.
Then for every π ∈ R,

Pq(γ ∈ Π(R), M(Bγ ·q) > C4(d)M(q) and m(Bγ ·q) < M(q) |π) < 1−C4(d)−(d−1).

Proof. For 1 ≤ k ≤ d, let mk(q) = maxmA′(q) where the maximum is taken
over all involution invariant sets A′ ⊂ A such that #A′ = 2k. In particular
m = md. We will show that for 1 ≤ k ≤ d there exists D > 1 such that

Pq(γ ∈ Π(R), M(Bγ · q) > DM(q) and mk(Bγ · q) < M(q) |π) < 1−D−(d−1).
(24)

(the case k = d implies the desired statement). The proof is by induction on
k. For k = 1 it is obvious, by lemma 3.4. Assume that it is proved for some
1 ≤ k < d with D = D0. Let Γ be the set of minimal paths γ starting at π
with M(Bγ · q) > D0M(q). Then there exists Γ1 ⊂ Γ with Pq(Γ1 |π) > D

−(d−1)
1

and an involution invariant set A′ ⊂ A with #A′ = 2k such that if γ ∈ Γ1 then
mA′(Bγ · q) ≥M(q).

For γs ∈ Γ1, choose a path γ = γsγe with minimal length such that γ ends
at a permutation πe such that either the first or the last element of πe is an
element of A\A′. Let Γ2 be the collection of the γ = γsγe thus obtained. Then
Pq(Γ2 |π) > D

−(d−1)
2 and M(Bγ · q) < D2M(q) for γ ∈ Γ2.

Let Γ3 be the space of minimal paths γ = γsγe with γs ∈ Γ2 and M(Bγ ·q) >
2dD2M(q). Let Γ4 ⊂ Γ3 be the set of all γ = γsγe where all the arrows of γe have
as loser an element of A′. For each γs ∈ Γ2, there exists at most one γ = γsγe ∈
Γ4, and if Pq(Γ4 | γs) < 1

2d , it follows that Pq(Γ3\Γ4 |π) >
(
1− 1

2d

)
D
−(d−1)
2 . It

remains to prove that Pq(Γ4 | γs) < 1
2d .

Let γ = γsγe ∈ Γ4 such that γs ∈ Γ2. Let πe ∈ Π(R) be the end of γs and
let α and β be the winner and the loser of πe, respectively. By definition, we
have that α ∈ A\A′ and β ∈ A′. Besides, all losers of γe are in A′.

We claim that α is simple. Suppose this is not the case. Assume, without
lost of generality, πe(α) = 1 and πe(β) = 2d + 1. Applying RAI one time we
would obtain π′e(β) < π′e(∗) and to keep the same winner α we just can apply
RAI at most 2d − 4 times. But even if we could apply RAI those number of
times, we will have

M(Bγ · q) < (2d− 3)D2M(q) < 2dD2M(q)

what contradicts that γ ∈ Γ3. Then α is simple as we claim.
Suppose γ = γ1 . . . γn where γi ∈ Π(R) are arrows joining π(i−1)

e and π
(i)
e .

We have γs ∈ Γ2, so, to obtain M(Bγ · q) > 2dD2M(q) we need n ≥ 2d+ 1. We
also have Sπe = S

π
(i)
e

for all i ∈ {1, . . . , n}.
Let Λ = Λπe,Bγs ·q which is a finite union of elementary simplices Λj . Let

β0 = β and βi be the loser of π(i)
e for i = 0, . . . , n. For each i ∈ {0, . . . , n} if βi

is a simple vertex then all Λj has a vertex of type βi and if βi is double then

all Λj has a vertex of type {βi, x} for some x /∈ {α, βi}. Let Λ(n)
j = Bγe(Λj).

Notice that the type of vertices of Λ(n)
j coincides with type of vertices of Λj .

Let Z be the set of vertices of Λj and Z(n) be the set of vertices of Λ(n)
j . Then

Leb
π

(n)
e

(Λ(n)
j )

Lebπe(Λj)
=

∏
v∈Z w(v)∏
v∈Z(n) w(v)

(25)
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But M(Bγs · q) < D2M(q) and M(Bγ · q) > 2dD2M(q), so there is one term in
(25) which is less then 1

2d . Thus

Pq(Γ4 | γs) <
1
2d

Let γ = γsγe ∈ Γ3\Γ4. Let us show that mk+1(Bγ · q) > M(q), which implies
(24) with k + 1 in place of k and D = 2dD2. Assume that this is not the case.
In this case, the last arrow composing γe must have as loser an element of A′.
Moreover, no arrow composing γe has as winner an element of A′ (otherwise,
the loser β of the first such arrow does not belong to A′ and is such that
mA′∪{β}(Bγ · q) > M(q)). Let γe = γe,sγe,e where γe,s is maximal such that all
losers of γe,s are in A′. Then all losers in γe,s are distinct and M(Bγsγe,s · q) <
2D2M(q). Let γe,e = γe,1 . . . γe,l where γe,j = γe,j,sγe,j,e with γe,j,s and γe,j,e
non-trivial such that all the losers of γe,j,s are in A\A′ and all the losers of γe,j,e
are in A′. Let γj = γsγe,sγe,1 . . . γe,j , 0 ≤ j ≤ l. Notice that for each j, γe,j,e
has distinct losers, and the same winner α ∈ A\A′ which is also the last winner
of γe,j,s. Let β ∈ A\A′ be the last loser of γe,j,s. Then

M(Bγj+1 · q)−M(Bγj · q) ≤ Mβ(Bγj+1 · q)−Mβ(Bγj · q)

which implies that

(2d− 1)D2M(q) ≤ M(Bγ · q)−M(Bγs · q)

≤
∑

β∈A\A′
Mβ(Bγ · q)−Mβ(Bγs · q) ≤ dD2M(q)

which is a contradiction.

4 Recurrence estimates

Lemma 4.1. For every γ̂ ∈ Π(R), there exist M ≥ 0, ρ < 1 such that for every
π ∈ R, q ∈ RA+,

Pq(γ can not be written as γsγ̂γe and M(Bγ · q) > 2MM(q) |π) ≤ ρ.

Proof. Fix M0 ≥ 0 large and let M = 2M0. Let Γ be the set of all minimal paths
γ starting at π which can not be written as γsγ̂γe and such that M(Bγ · q) >
2MM(q). Any path γ ∈ Γ can be written as γ = γ1γ2 where γ1 is minimal with
M(Bγ1 · q) > 2M0M(q). Let Γ1 collect the possible γ1. Then Γ1 is disjoint, by
minimality. Let Γ̃1 ⊂ Γ1 be the set of all γ1 such that MA′(Bγ1 · q) ≥ M(q)
for all invariant involution set A′ ⊂ A non-empty. By Theorem 3.5, if M0 is
sufficiently large we have

Pq(Γ1\Γ̃1 |π) <
1
2
.

For πe ∈ R, let γπe be a shortest possible path starting at πe with γπe = γsγ̂.
Let πf be the end of γπe . If M0 is sufficiently large then

∥∥Bγπe∥∥ < 1
d−12M0−1.

It follows that if γ1 ∈ Γ1 ends at πe then

Pq(Γ | γ1) ≤ 1− PBγ1 ·q(γπe |πe).
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Let Λ ⊂ Λπe,Bγ1 ·q be an elementary subsimplex with

Lebπe(Λ) ≥
Lebπe(Λπe,Bγ1 ·q)

C1(d)
.

Choose an elementary subsimplex Λ′ of Λπf ,Bγ1γπe ·q, such that for all α ∈ A
there exists a vertice v′ of Λ′ of type α or of type {α, ξ} for some ξ ∈ A and
Lebπf (Λ′) ≥ Lebπf (Bγπe ·Λπe,Bγ1,q

)/C1(d). Let Z and Z ′ be the set of vertices
of Λ and Λ′, respectively. If furthermore γ1 ∈ Γ̃1 then

Lebπf (Λ′)
Lebπe(Λ)

=
k(πf ,Λ′)

∏
v∈Z w(v)

k(πe,Λ)
∏
v∈Z′ w(v)

≥ M(q)d−1

(22M0M(q))d−1
= 2−2(d−1)M0 .

So, PBγ1 ·q(γπe |πe) ≥ 2−2(d−1)M0 and Pq(Γ |π) ≤ 1− 2−2(d−1)M0−1.

Proposition 4.2. For every γ̂ ∈ Π(R), there exist δ > 0, C > 0 such that for
every π ∈ R, q ∈ RA+ and for every T > 1

Pq(γ can not be written as γsγ̂γe and M(Bγ · q) > TM(q) |π) ≤ CT−δ.

Proof. Let M and ρ be as in the previous lemma. Let k be maximal with
T ≥ 2k(M+1). Let Γ be the set of minimal paths γ such that γ is not of the
form γsγ̂γe and M(Bγ · q) > 2k(M+1)M(q). Any path γ ∈ Γ can be written as
γ1 . . . γk where γ(i) = γ1 . . . γi is minimal with M(Bγ(i) · q) > 2i(M+1)M(q). Let
Γ(i) collect the γ(i). Then the Γ(i) are disjoint. Moreover, by Lemma 4.1, for all
γ(i) ∈ Γ(i),

Pq(Γ(i+1) | γ(i)) ≤ ρ.

This implies that Pq(Γ |π) ≤ ρk. The result follows.

Remark 4.3. Notice that in the case of [AGY], they obtain a better recurrence
estimate. In fact, they obtain T−(δ−1) instead T−δ. But our estimate will be
enough.

5 Construction of an excellent hyperbolic semi-
flow

5.1 The Veech flow with involution as a suspension over
the Rauzy renormalization

Let Υ̂R be the subset of fR of all (λ, π, τ) with φ(λ, π, τ) = ‖λ‖ =
∑
α∈A λα = 1.

We denote by Υ̂π the connected components of Υ̂R. Consider Υ̂(1)
R = f(1)

R ∩ Υ̂R

and Υ̂(1)
π = f(1)

R ∩ Υ̂π. Let m̂(1)
R be the induced Lebesgue measure to Υ̂(1)

R .
We have that Υ̂(1)

R is transverse to the Veech flow with involution on f(1)
R

which is given by a certain iterate of the Rauzy induction with involution,
after applying the flow T Vt. We are interested in the first return map R̂ to
this section. The domain of R̂ is the intersection of Υ̂(1)

R with the domain of
definition of Q̂, and we have

R̂(λ, π, τ) = (erλ′, π′, e−rτ ′),
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where (λ′, π′, τ ′) = Q̂(λ, π, τ) and r = r(λ, π) = − log ‖λ′‖ = − log φ(Q̂(λ, π, τ))
is the first return time. Notice that the map R̂ is a skew-product R̂(λ, π, τ) =
(R(λ, π), e−rτ ′) over the non-invertible map R defined by R(λ, π) = (erλ′, π).
The map R̂ is called the Rauzy renormalization map with involution and it
preserves the measure m̂(1)

R . The renormalization map R̂ is an “invertible ex-
tension” of the map R.

We can see the Veech flow with involution as a suspension over the renor-
malization map R̂. In this suspension model, we lose the control of the orbits
which do not return to Υ̂(1)

R . However, this do not cause any problem to our
considerations because the set of such orbits has zero Lebesgue measure.

5.2 Precompact section

The suspension model for the Veech flow with involution presented above is
obtained over a discrete transformation R̂ which is not sufficiently hyperbolic.
In general, R̂ can not be expected to be uniformly hyperbolic, in fact, it does
not even have appropriate distortion properties. This is related to the fact that
the domain is not compact. The approach taken in [AGY] and other recent
works as [AF] and [AV3] is to introduce a class of suitably small (precompact
in Υ̂(1)

R ) sections, and to prove that the corresponding return maps have good
distortion properties.

So, we will choose a specific precompact section which is the intersection of
Υ̂(1)

R with (finite unions of) sets of the form ∆γ×Θγ′ . Let γ be a path starting at
πs and ending at πe. Precompactness in the λ direction is equivalent to having
B∗γ · (S

+

πe\{0}) ⊂ S
+
πs , which is a necessary condition if γ is a positive path.

To take care of both the λ and the τ direction, we have already introduced the
notion of strongly positive.

Let Π(π) ⊂ Π(R) be the set of paths starting and ending at the same π ∈ R.
Let π ∈ R and let γ∗ ∈ Π(π) be a strongly positive path. Assume further that
if γ∗ = γsγ = γγe then either γ = γ∗ or γ is trivial. We will say that γ∗ is neat.
If for example γ∗ ends by a left arrow and starts by a sufficiently long (at least
half the length of γ∗) sequence of right arrows then the last condition of being
neat is automatically satisfied.

Let Ξ̂ = Υ̂(1)
R ∩ (∆γ∗ ×Θγ∗) and let Ξ = Υ0

R ∩∆γ∗ . We will study the first
return map TbΞ to the section Ξ̂ under the Veech flow with involution. Notice
that the connected components of its domain are given by Υ̂(1)

R ∩ (∆γγ∗ ×Θγ∗),
where γ is either γ∗, or a minimal path of the form γ∗γ0γ∗ not beginning by
γ∗γ∗. The restriction of TbΞ to each connected component of its domain has the
expression

TbΞ(λ, π, τ) =

(
(B∗γ)−1 · λ
‖(B∗γ)−1 · λ‖

, π, ‖(B∗γ)−1 · λ‖(B∗γ)−1 · τ

)
.

and the return time function is given by

rbΞ(λ, π, τ) = rΞ(λ, π) = − log ‖(B∗γ)−1 · λ‖.

The map TbΞ(λ, π, τ) = (λ′, π, τ ′) is a skew-product over a non-invertible trans-
formation TΞ(λ, π) = (λ′, π).
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Analogously to the case of the renormalization map, the Veech flow with
involution can be seen as a suspension over TbΞ, with roof function rbΞ. But
considering this suspension model, we lose the control of many more orbits
which do not come back to Ξ̂. Still, due to ergodicity of the Veech flow with
involution, almost every orbit is captured by the suspension model.

5.3 Hyperbolic properties

The reason to choose the section Ξ̂ is because the transformation TbΞ has better
hyperbolic properties than transformations considering larger sections and we
can also describe easily the connected components of its domain.

Lemma 5.1. TbΞ is a hyperbolic skew-product over TΞ.

Recalling the definition 1.5, we observe that associated to a hyperbolic skew-
product we have: a probability measure ν̂ (which we chose as the normalized
restriction of m̂(1)

R to Ξ̂) and a Finsler metric ‖ · ‖bΞ (which we will choose
in order to obtain the hyperbolic properties we want from TbΞ). At first we
will introduce a complete Finsler metric on Υ̂(1)

π , and then we will consider its
restriction denoting it by ‖ · ‖bΞ. Since γ∗ is strongly positive, the section Ξ̂ is a
precompact open subset of Υ̂(1)

R , therefore Ξ̂ will have bounded diameter with
respect to such metric.

5.4 Hilbert metric

Now, we will introduce the Hilbert projective metric and state some of its pro-
perties which we will use after. This notion can be defined for a general convex
cone C in any vector space, but in our case we only need C = RA+.

We call the Hilbert pseudo-metric on R2
+ the function distR2

+
defined by

distR2
+

(x, y) = log max1≤i,j≤2
xiyj
xjyi

, for each x, y ∈ R2
+. Given a linear operator

B ∈ GL(2,R) such that B ·R2
+ ⊂ R2

+, we have distR2
+

(B ·x,B ·y) ≤ distR2
+

(x, y)
for all x, y ∈ R2

+, or equivalently, such that all coefficients of the matrix B are
non-negative, which means that B contracts weakly the Hilbert pseudo-metric.
In particular, the Hilbert pseudo-metric is invariant under linear isomorphisms
of R2

+.
In general, if we consider an open convex cone C ⊂ RA\{0} whose closure

does not contain any one-dimensional subspace of RA, we define the Hilbert
pseudo-metric on C by distC(x, y) = 0 if x and y are collinear and distC(x, y) =
distR2

+
(ψ(x), ψ(y)) where ψ is any isomorphism between the intersection of R2

+

and the subspace generated by x and y (this isomorphism exist since x and y

are not collinear). If C = RA+ then we define distC(x, y) = maxα,β∈A log
xαyβ
xβyα

.
Given two convex cones C and C ′ such that C ′ ⊂ C then distC(x, y) ≤

distC′(x, y), i.e., the inclusion map C ′ → C is a weak contraction of the respec-
tive Hilbert pseudo-metrics. But if the diameter of C ′ with respect to distC is
bounded by some M then we have an uniform contraction by some constant
δ = δ(M) < 1, i.e., distC(x, y) ≤ δ distC′(x, y).

It is clear that distC(x, y) = 0 if and only if there exists t > 0 such that
y = tx. If we restrict the Hilbert pseudo-metric on a convex cone C to the
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space of rays {tx : t ∈ R+} ⊂ C we have the Hilbert metric, which is a
complete Finsler metric.

5.5 Uniform expansion and contraction

Recall that Υ̂(1)
π is contained in ∆π×Θπ, which is a product of two convex cones.

In ∆π×Θπ, we have the product Hilbert pseudo-metric dist((λ, π, τ), (λ′, π, τ ′)) =
dist∆π ((λ, π), (λ′, π)) + distΘπ (τ, τ ′). Each product of rays {(aλ, π, bτ) : a, b ∈
R+} ⊂ ∆π × Θπ intersects transversely Υ̂(1)

R in a unique point. It follows that
the product Hilbert pseudo-metric induces a metric dist on Υ̂(1)

π . It is a complete
Finsler metric.

Lemma 5.2. Given π ∈ R, define ∆1
π = {(λ, π) ∈ ∆π : ‖λ‖ = 1}. Let

gπ : ∆1
π → ∆1

π be a functional defined by gπ(λ, π) =
(∑

β g
π
βλβ , π

)
, where

gπβ ≥ 0 for all β ∈ A. Then log gπ(λ, π) is 1-Lipschitz relative to the Hilbert
metric.

Proof. Given (λ, π), (λ′, π) ∈ ∆1
π, we have

gπ(λ, π)
gπ(λ′, π)

=

(∑
β g

π
βλβ , π

)
(∑

β g
π
βλ
′
β , π

) ≤ sup
β

(
λβ , π

)
(
λ′β , π

) ≤ edist∆π ((λ,π),(λ′,π)).

Thus log gπ(λ, π) is 1-Lipschitz with respect to dist∆π
.

Proof of Lemma 5.1. Let us first show that TΞ is a uniformly expanding Markov
map (the underlying Finsler metric being the restriction of dist∆π , and the
underlying measure Leb being the induced Lebesgue measure). It is clear that
Ξ is a John domain.

Condition (1) of Definition 1.2 is easily verified, except for the definite con-
traction of inverse branches. To check this property, we notice that an inverse
branch can be written as h(λ, π) =

(
B∗γ ·λ
‖B∗γ ·λ‖

, π
)

. Since γ∗ is neat, we can write
B∗γ = B∗γ∗B

∗
γ0

for some γ0. Thus h can be written as (the restriction of) the
composition of two maps ∆1

π → ∆1
π, h = h∗ ◦ h0, where h0 is weakly contrac-

ting and h∗ is uniformly contracting by precompactness of Ξ in ∆π (which is a
consequence of strong positivity of γ∗).

To check condition (2) of Definition 1.2, let h(λ, π) be an inverse branch of
TΞ.

Let V = {v ∈ Sπ :
∑
vα = 0} be the hyperplane tangent to ∆1

π at a point
(λ, π) ∈ ∆1

π. Since the coordinate π is fixed by h we can dismiss it. Thus
the simplified expression of h is h(λ) = B∗γ ·λ

‖B∗γ ·λ‖
. We will denote φ(B∗γ · λ) =

‖B∗γ · λ‖ =
∑
α,β(B∗γ)α,βλβ , where (B∗γ)α,β is the coefficient of B∗γ in the line α

and the column β. So,

Dh(λ) · v =
B∗γ · v

φ(B∗γ · λ)
−

B∗γ · λ
φ(B∗γ · λ)

∑
α

(
B∗γ · v

)
α

φ(B∗γ · λ)
.

So Dh(λ) = Pλ ◦ φ(B∗γ · λ)−1 ◦ B∗γ , where B∗γ : V → B∗γ · V , φ(B∗γ · λ)−1 is the
division by the scalar φ(B∗γ ·λ) on B∗γ ·V and Pλ : B∗γ ·V → V is the projection on
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V along the direction B∗γ ·λ. The Jacobian of h at (λ, π) is J ◦h(λ) = detDh(λ),
so,

log J ◦ h = log detPλ − (d− 2) log detφ(B∗γ · λ) + log detB∗γ
We want to prove that log J ◦ h is Lipschitz relative to the Hilbert metric.
We have that log detB∗γ is constant and, by lemma 5.2, log detφ(B∗γ · λ) is
1-Lipschitz. Now we have to verify what happens with log detPλ. We have that

detPλ =
〈n1, B

∗
γ · λ〉

〈n0, B∗γ · λ〉

where n0 and n1 are unit vectors in Sπ orthogonal to the hyperplanes V and B∗γ ·
V . Indeed, the vector n0 and the vector Bγ ·n1 are collinear with the orthogonal
projection of (1, . . . , 1) on Sπ. Note that n0 has non-negative coefficients, so,
neither Bγ · n0 and Bγ · n1 have. Once again by lemma 5.2, we have that each
log(〈ni, B∗γ · λ〉) is 1-Lipschitz. Therefore, log J ◦ h is d-Lipschitz with respect
to dist∆π .

To see that TbΞ is a hyperbolic skew-product over TΞ, one checks the condi-
tions (1-4) of Definition 1.5. Condition (1) is obvious, and condition (4) follows
from precompactness of Ξ̂ in ∆π ×Θπ as before. Since TbΞ is a first return map,
the restriction of m̂(1)

R to Ξ̂ is TbΞ-invariant. Its normalization is the probability
measure ν̂ of condition (2). In order to check condition (3), it is convenient
to trivialize Ξ̂ to a product (via the natural diffeomorphism Ξ̂ → Ξ × PΘγ∗ ,
where PV denotes the projective space of V ). Since ν̂ has a smooth density
with respect to the product of the Lebesgue measure on the factors, condition
(3) follows by the Leibniz rule.

Our results give the finiteness of the measure and the integrability of the
cocycle.

Proposition 5.3. The space f(1)
R has finite volume.

Proof. Consider the section Ξ̂. Notice that this section has positive measure
and almost every orbit return to Ξ̂. We have already mention the probability
measure ν̂ on Ξ̂, which is the normalized restriction of m̂(1)

R to Ξ̂.
We want to compute

∫bΞ log ‖(B∗γ)−1 · x‖ dν̂.
A connected component of the domain of TbΞ which intersects the set {x ∈

Ξ̂ : rbΞ(x) > T} is of the form (∆γ1 × Θγ2) ∩ Υ̂(1)
R where γ1 can not be written

as γsγ̂γe with γ̂ = γ∗γ∗γ∗γ∗, M(Bγ · q0) ≥ D−1T , where q0 = (1, . . . , 1) and
D = D(γ∗) is some constant.

The projection of ν̂|
(∆γ1×Θγ2 )∩bΥ(1)

R

on Υ(1)
R is absolutely continuous with a

bounded density, so

ν̂{x ∈ (∆γ1 ×Θγ2) ∩ Υ̂(1)
R : rbΞ(x) > T} ≤

CPq0(γ can not be written as γsγ̂γe and M(Bγ · q0) ≥ D−1T |π)

and the result follows by Proposition 4.2.

5.6 Properties of the roof function

Recall H(π) = Ω(π) · Sπ. As we have observed, given a path γ ∈ Π(π), H(π)
is invariant under the map Bγ . By Lemma 2.8, if τ ∈ Θπ then −Ω(π) · τ ∈ RA+
and by Corollary 2.15, Θπ is a non-empty set, so H(π) ∩ RA+ 6= ∅.
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Lemma 5.4. Let π be an irreducible permutation and γ ∈ Π(R). The subspace
H(π) has dimension greater than one.

Proof. Let A be a minimal double letter in the sense that A is a left double
letter and there is no double letter Z such that π(Z) < π(A) or π(i(Z)) < π(A).
Let B be a maximal double letter in the sense that B is a right double letter
and there is no double letter Z such that π(B) < π(Z) or π(B) < π(i(Z)).

We have that:

Sπ =
{
λ ∈ RA : λA = λB +

∑
εαλα

}
where εα = 0 if α is simple, εα = −1 if α is left double letter and εα = 1 if α is
right double letter.

Case I: Let C be a simple letter. Denote xC = Ω(π)AC ∈ {0, 1, 2} and
yC = Ω(π)CB ∈ {0, 1, 2}. Thus the matrix Ω(π) has a submatrix of the form: 0 2 xC

−2 0 −yC
−xC yC 0

 .

So, the matrix Ω(π) · Sπ has a submatrix of the form: 2 xC
−2 −yC

−xC + yC 0

 .

In this case the matrix Ω(π) · Sπ has rank 2, except if xC = yC .
Case II: Let D be a left double letter (the other case is analogous). Denote

zD = Ω(π)AD ∈ {−2,−1, 0, 1, 2}. Notice that Ω(π)DB = 2. In this case, the
matrix Ω(π) has a submatrix of the form: 0 2 zD

−2 0 −2
−zD 2 0

 ,

therefore, the matrix Ω(π) · Sπ has a submatrix of the form: 2 2 + zD
−2 −2

2− zD 2

 .

In this case the matrix Ω(π) · Sπ has rank 2, except if zD = 0.
Suppose that if C is a simple letter of the permutation π then xC = yC and

if D is a double letter of the permutation π then zD = 0. Since π is irreducible,
xC = yC = 1. Thus π has the form

A · · · · i(A) ∗ i(B) · · · B

If we apply the right or the left operation we obtain a reducible permutation.
So, there exists a simple letter C such that xC 6= yC or there exists a double

letter D such that zD 6= 0.

Recall that vπ =
∑
π(x)<π(∗) ex −

∑
π(x)>π(∗) ex is the orthogonal vector to

Sπ.

37



Lemma 5.5. Let π be an irreducible permutation and γ ∈ Π(R). If vπ ∈ H(π),
then the subspace H(π) has dimension greater than two.

Proof. Let A and B be the leftmost and the rightmost letters of π.
Since H(π) and vπ are invariant under Bγ , we can suppose that A is simple.
If B is simple, then π has the form:

A · · i(B) · · ∗ · i(A) · · B

We have that Ω(π) ·eA, Ω(π) ·eB and vπ are linearly independent, since (vπ)A =
(vπ)B = 0.

If π(i(B)) < π(i(A)) and B is double, we take a left double letter C, i.e., π
has the form:

A · C · · i(C) · ∗ · i(B) · i(A) · · B

And in the case that π(i(B)) > π(i(A)), π has the form:

A · C · · i(C) · ∗ · · i(A) · i(B) · B

In these last two cases, we have Ω(π) · eA, Ω(π) · (eB + eC) and vπ are linearly
independent, since (vπ)A = 0 and (vπ)B = −(vπ)C = 1.

Lemma 5.6. The roof function rΞ is good (in the sense of Definition 1.3).

Proof. Let Γ ⊂ Π(R) be the set of all γ such that γ is either γ∗, or a minimal
path of the form γ∗γ0γ∗ not beginning by γ∗γ∗. Notice that Γ consists of positive
paths.

The set H of inverse branches h of TΞ is in bijection with Γ, since each
inverse branch is of the form h(λ, π) =

(
B∗γh
·λ

‖B∗γh ·λ‖
, π
)

for some γh ∈ Γ.

Let h ∈ H. Then rΞ(h(λ, π)) = log ‖B∗γh ·λ‖. Since γh is positive, rΞ ≥ log 2,
which implies condition (1). By lemma 5.2, rΞ(h(λ, π)) is 1-Lipschitz with
respect to dist∆π , so (2) follows.

Let us check condition (3). We identify the tangent space to Ξ at a point
(λ, π) ∈ Ξ with V = {λ ∈ Sπ :

∑
λα = 0}. Assume that we can write

rΞ = ψ + φ ◦ TΞ − φ with φ C1 and ψ locally constant. Write r(n)(λ, π) =∑n−1
j=0 rΞ(T jΞ(λ, π)). Then D(r(n)◦hn) = Dφ−D(φ◦hn), which can be rewritten

as

‖(B∗γh)n · v‖
‖(B∗γh)n · λ‖

= Dφ(λ, π) · v −D(φ ◦ hn)(λ, π) · v, (λ, π) ∈ Ξ, v ∈ V. (26)

If we define

wn,h =
Bnγh · (1, . . . , 1)
〈λ,Bnγh · (1, . . . , 1)〉

,

we replace (26) by

〈v, wn,h〉 = Dφ(λ, π) · v −D(φ ◦ hn)(λ, π) · v, (λ, π) ∈ Ξ, v ∈ V.

We have that 〈λ,wn,h〉 = 1 for all λ ∈ Sπ and wn,h are vectors with all coor-
dinates positive. By the Perron-Frobenius Theorem wn,h converges to some wh
collinear with the unique positive eigenvector of Bγh (which also corresponds
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to the largest eigenvalue). And wh = w0,h + thvπ, where w0,h ∈ Sπ\{0} is the
orthogonal projection of wh in Sπ and vπ is the orthogonal vector of Sπ, which
is invariant under Bγh for all γh.

Since Dhn → 0, we conclude that

〈v, wh〉 = Dφ(λ, π) · v, (λ, π) ∈ Ξ, v ∈ V.

Since 〈λ,w0,h〉 = 1, we have w0,h = w0. Thus wh = w0 + thvπ where w0 ∈
Sπ\{0}.

Recalling that H(π) is invariant under Bγh , and intersects RA+, it follows
that wh ∈ H(π) and R+wn,h is converging to R− (Ω(π) · τ).

Let W = Rw0⊕Rvπ. We have that W ∩H(π) 6= ∅ is closed and invariant by
Bγh . By the previous two lemmas, there exists τ ∈ Θπ such that Ω(π) · τ /∈W .
But, given such τ , we can construct paths γn such that Bγn ·Ω(π) ·Θπ converges
to R− (Ω(π) · τ) as follows. We have already observed that Q̂−1 is recurrent, so
given (λ, π, τ) ∈ Ξ̂, we apply Q̂−1 until obtain (λ(−1), π, τ (−1)) ∈ Ξ̂. We denote
by γ1 the path obtained previously, starting at (λ(−1), π, τ (−1)) and ending at
(λ, π, τ). We follow the same procedure to obtain γn starting at (λ(−n), π, τ (−n))
and ending at (λ, π, τ).

By definition of Ξ̂, we have that such paths γn are strongly positive, so
the image of B∗γn · Θγn is contracted, relatively to the Hilbert metric. Thus
we have that Bγn · Ω(π) · Θπ is converging to R− (Ω(π) · τ). Thus we have a
contradiction.

Theorem 5.7. The roof function rΞ has exponential tails.

Proof. Let π be the start of γ∗. The push-forward under radial projection of
the Lebesgue measure on Λπ,q0 onto ∆π ∩ Υ(1)

R yields a smooth measure ν̃. It
is enough to show that ν̃{x ∈ Ξ : rΞ(x) ≥ T} ≤ CT−δ, for some C > 0,
δ > 0. A connected component of the domain of TΞ that intersects the set
{x ∈ Ξ : rΞ(x) ≥ T} is of the form ∆γ ∩ Υ(1)

R where γ can not be written as
γsγ̂γe with γ̂ = γ∗γ∗γ∗γ∗ and M(Bγ · q0) ≥ C−1T , where q0 = (1, . . . , 1) and C
is a constant depending on γ∗. Thus

ν̃{x ∈ Ξ : rΞ(x) ≥ T}
≤ Pq0(γ can not be written as γsγ̂γe and M(Bγ · q0) ≥ C−1T |π).

The result follows from Proposition 4.2.

Using both the map TbΞ and the roof function rΞ we will define a flow T̂t on
the space ∆̂r = {(x, y, s) : (x, y) ∈ Ξ̂, TbΞ(x, y) is defined and 0 ≤ s < rΞ(x)}.
Since TbΞ is a hyperbolic skew-product (Lemma 5.1), and rΞ is a good roof
function (Lemma 5.6) with exponential tails (Theorem 5.7), T̂t is an excellent
hyperbolic semi-flow. By Theorem 1.7, we get exponential decay of correlations

Ct(f̃ , g̃) =
∫
f̃ · g̃ ◦ T̂t dν −

∫
f̃ dν

∫
g̃ dν,

for C1 functions f̃ , g̃, that is

|Ct(f̃ , g̃)| ≤ Ce−3δt‖f̃‖C1‖g̃‖C1 , (27)

for some C > 0, δ > 0.
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6 The Teichmüller flow

6.1 Half-translation surfaces

Let S be a compact oriented surface of genus g ≥ 0, let Σ be a finite non-empty
subset of S, which we call the singular set. Let l = {lx}x∈Σ (the multiplicity
vector) be such that lx ∈ {−1} ∪ N and

∑
lx = 4g − 4. We say that lx is the

multiplicity of the singular point x. Consider a maximal atlas A = {(Uλ, φλ :
Uλ → Vλ ⊂ C)} of orientation preserving charts on S\Σ such that for all
λ1, λ2 with Uλ1 ∩ Uλ2 6= ∅ we have φλ1φ

−1
λ2

(z) = ±z + constant, i.e., coordinate
changes are compositions of rotations by 180◦ and translations. We call these
coordinates the regular charts. We also assume that each singular point x has
an open neighborhood U which is isomorphic to the lx+2

2 -folded cover of an
open neighborhood V ⊂ C of 0, that is, there exists a homeomorphism, called a
singular chart, φ : U → V such that any branch of z 7→ φ(z)(lx+2)/2 is a regular
chart. Under these conditions, we say that the atlas A defines a half-translation
structure on (S,Σ) with multiplicity vector l, and we call S a half-translation
surface.

Since the change of coordinates preserves families of parallel lines in the
plane, we have a well-defined singular foliation Fθ of S, for each direction θ ∈
PR2 (the projective space of R2). In particular, we have well-defined vertical
and horizontal directions. Notice that we can pullback the Euclidean metric in
R2 by the regular charts to define a flat metric on S\Σ. This flat metric does not
extend smoothly to Σ except at points with lx = 0. The other points of Σ are
genuine conical singularities with total angle π(lx+2), and are thus responsible
for any curvature. The corresponding volume form on S\Σ has finite total mass.

Notice that from each x ∈ Σ, there are lx + 2 horizontal separatrices alter-
nating with lx + 2 vertical separatrices emanating from x. A half-translation
surface together with the choice of some x0 ∈ Σ and of one of the horizontal
separatrices X emanating from x0 is called a marked half-translation surface.

6.2 Translation surfaces

If there exists a compatible atlas such that the coordinate changes are just trans-
lations, then any maximal such atlas is said to define a translation structure on
(S,Σ) compatible with the half-translation structure, and we call S a translation
surface. A half-translation surface has thus either 0 or 2 compatible translation
structures. Locally, each half-translation structure is compatible with a trans-
lation structure, but in general it is not true globally. Given a half-translation
surface S, we can associate a number ε where ε = 1 or ε = −1 according to
whether the half-translation structure is, or is not, compatible with a translation
structure (on the other hand, obviously each translation structure is compatible
with a unique half-translation structure). Notice that if ε = 1 then lx ∈ 2N for
every x ∈ Σ (and thus necessarily g ≥ 1), but the converse is not generally true.

Given a translation surface S, each oriented direction θ ∈ S1 determines a
singular oriented foliation Fθ on S. From every singularity thus emanate (lx +
2)/2 eastbound (respectively, northbound, westbound, southbound) oriented
separatrices. A translation surface together with the choice of some x0 ∈ Σ and
of a eastbound separatrix X emanating from x0 is called a marked translation
surface.
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6.3 Translation surfaces with involution

Let S̃ be a compact oriented surface of genus g ≥ 1, let Σ̃ be a finite non-empty
subset of S̃, and let I : S̃ → S̃ be an involution preserving Σ̃ and whose fixed
points are contained in Σ̃. A translation structure with involution on (S̃, Σ̃, I)
is a translation structure such that for every regular chart φ of the translation
structure, −φ ◦ I is also a regular chart.

Notice that given (S̃, Σ̃, I) we can consider the canonical projection p : S̃ →
S = S̃/I. Denote Σ = Σ̃/I. We see that any translation structure with involu-
tion on (S,Σ, I) induces by p a half-translation structure on (S,Σ), with ε = −1
if S̃ is connected.

Conversely, given (S,Σ) and a multiplicity vector l such that there exists a
half-translation structure on (S,Σ) with such multiplicity vector and ε = −1,
there exists a ramified double covering p : (S̃, Σ̃) → (S,Σ) which is unramified
in S̃\Σ̃. Indeed, given such a half-translation structure, we can define S̃\Σ̃
to be the set of pairs (z, α) where z ∈ S\Σ and α is an orientation of the
horizontal direction through z (the assumption that ε = −1 guarantees that S̃
is connected). It is then easy to define the missing set Σ̃ necessary to compactify:
each x ∈ Σ with odd lx giving rise to a single point of Σ̃ with multiplicity 2lx+2
and each x ∈ Σ with even lx giving rise to a pair points of Σ̃ with multiplicity lx
each one. To each half-translation surface we can associate a combinatorial data
l̃, which is the multiplicity vector considered up to labelling. The construction
above gives rise to a translation surface S̃ with singularity set Σ̃ and there is a
natural involution defined, interchanging points (z, α) with fixed z ∈ S̃.

A translation surface with involution together with the choice of some x̃0 ∈ Σ̃
and of one of the horizontal separatrices X̃ emanating from x̃0 to east is called
a marked translation surface with involution. We say that x̃0 is the start point
of X̃. It is obvious that fixing x̃0 and X̃ we also fix I(x̃0) and I(X̃).

Notice that when we do the double covering construction above we can do
it in such a way that p(X̃) = X and p(x̃0) = x0, i.e., the marked separatrix and
its start point are preserved.

As we will see in section 7.2, we can obtain combinatorial and length data
(λ, π, τ) (as in the section 2.1) associated to a marked translation surface with
involution (S̃, Σ̃, I).

6.4 Moduli spaces

Let S be a surface with singular set Σ and genus g. To consider the space of sur-
faces with fixed genus, singularity set, multiplicity vector and the marked sepa-
ratrix, we can define equivalence relations on those surfaces, obtaining moduli
spaces. Although moduli spaces are not manifolds, we can see them as a quo-
tient of a less restricted space, which has a complex affine manifold structure,
and the modular group of (S,Σ), i.e., the group of orientation preserving diffeo-
morphisms of S fixing Σ modulo those isotopic to the identity. Thus, moduli
spaces are complex affine orbifolds.

6.4.1 Moduli space of marked translation surfaces

Given g ≥ 1, a function κ : N→ 2N with finite support and
∑
i≥0 iκ(i) = 4g−4,

and an integer j ≥ 0 with κ(j) ≥ 0, we letMH(g, κ, j) to be the moduli space of
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marked translation surfaces (S,Σ, x0, X) with genus g, #{x ∈ Σ : lx = i} = κ(i)
and lx0 = j. Thus two surfaces (S,Σ, x0, X) and (S′,Σ′, x′0, X

′) are equivalent
if there exists a homeomorphism φ : (S,Σ, x0, X) → (S′,Σ′, x′0, X

′) preserving
the translation structure, the marked point and the given preferred separatrix.

An alternative way to viewMH(g, κ, j) is as follows. Given a fixed surface S,
with finite singular set Σ, a multiplicity vector l satisfying

∑
li = 2g−2, a fixed

point x0 ∈ Σ and some horizontal separatrix X starting from x0 going to east,
consider the space T H(S,Σ, x0, X) of all marked translation surfaces modulo the
following equivalence relation: two surfaces (S,Σ, x0, X) and (S′,Σ′, x′0, X

′) are
equivalent if there exists a homeomorphism φ : (S,Σ, x0, X) → (S′,Σ′, x′0, X

′)
isotopic to the identity relatively to Σ, which preserves the translation struc-
ture. The space MH(g, κ, j) is recovered in this way by taking the quotient by
an appropriate modular group, i.e., the group of orientation preserving diffeo-
morphisms of S, fixing Σ modulo those isotopic to the identity. The advantage
of seeing the moduli space as a quotient like this, is that it inherits a structure
of complex affine orbifold, since charts in T H(S,Σ, x0, X) are complex affine.
Indeed, given a path γ ∈ C◦([0, T ], S), we can lift it in C. Since we have the
translation structure, we can do this lifting everywhere. Thus, we can obtain
a linear map H1(S,Σ; Z) → C, which we can see as an element of the relative
cohomology group H1(S,Σ; C). This map is a local homeomorphism, thus it
is a local coordinate chart. So T H(S,Σ, x0, X) has a complex affine manifold
structure.

The Lebesgue measure on space H1(S,Σ; C) (normalized so that the inte-
ger lattice H1(S,Σ; Z) ⊕ iH1(S,Σ; Z) has covolume one) can be pulled back
via these local coordinates, and we obtain a smooth measure on the space
T H(S,Σ, x0, X). In charts, the modular group acts (discretely and properly dis-
continuously) by complex affine maps preserving the integer lattice (and hence
the Lebesgue measure). This exhibits MH(g, κ, j) as a complex affine orb-
ifold, with a canonical absolutely continuous measure νMH. Denoting MH(1)

the moduli space of marked translation surfaces with area one, we obtain the
respective induced measure ν(1)

MH.
The moduli spacesMH are also called strata and they can be disconnected.

Kontsevich and Zorich ([KZ]) classified these connected components and they
proved that they are at most three, for each strata.

6.4.2 Moduli space of marked translation surfaces with involution

Given g ≥ 1, functions κ̃, η : N→ N with finite support and
∑
i≥0 iκ̃(i) = 4g̃−4,

and an integer j̃ ≥ 0 with κ̃(j̃) ≥ 0, we let MHI(g̃, κ̃, η, j̃) to be the moduli
space of marked translation surfaces with involution (S̃, Σ̃, I, x̃0, X̃) with genus
g̃, an involution I : S̃ → S̃ preserving Σ̃ and whose fixed points are contained in
Σ̃, #{x ∈ Σ̃ : lx = i} = κ̃(i), lx0 = j̃, and #{x ∈ Σ̃ : lx = 2i and I(x) = x} =
η(2i). Thus two surfaces (S̃, Σ̃, I, x̃0, X̃) and (S̃′, Σ̃′, I ′, x̃′0, X̃

′) are equivalent if
there exists a homeomorphism φ : (S̃, Σ̃, I, x̃0, X̃)→ (S̃′, Σ̃′, I ′, x̃′0, X̃

′) preserv-
ing the translation structure and preserving the involution, in the sense that
φ ◦ I = I ′ ◦ φ. The marked point and the chosen separatrix are also preserved.

Analogous to the previous case, we will consider the moduli space of marked
translation surfaces with involutionMHI(g̃, κ̃, η, j̃) as a larger space, which has
an affine complex manifold structure, quotiented by a modular group. Consider
a fixed translation surface S̃, an associated involution I : S̃ → S̃, a finite sin-
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gular set Σ̃ invariant by I, with a multiplicity vector l̃ satisfying
∑
li = 4g̃ − 4,

together with some fixed x̃0 ∈ Σ̃ and one fixed horizontal separatrix X̃ ema-
nating from x̃0. Let T HI(S̃, Σ̃, I, x̃0, X̃) be the set of (S̃, Σ̃, I, x̃0, X̃) modulo
homeomorphism φ isotopic to the identity relatively to Σ, which preserves the
translation structure with involution, in particular φ ◦ I = I ◦ φ.

Let I : S̃ → S̃ be the involution as defined before. Consider the induced
involution I∗ : H1(S̃, Σ̃; C) → H1(S̃, Σ̃; C) on the relative cohomology group.
We can decompose the cohomology group into a direct sum H1(S̃, Σ̃; C) =
H1

+(S̃, Σ̃; C) ⊕ H1
−(S̃, Σ̃; C), where H1

+(S̃, Σ̃; C) and H1
−(S̃, Σ̃; C) are, respec-

tively, the invariant and the anti-invariant subspaces of I∗. Observe that,
since the involution changes the orientation of regular charts, the element of
H1(S̃, Σ̃; C) which represents S̃ is in H1

−(S̃, Σ̃; C) and a small neighborhood of
it gives a local coordinate chart of a neighborhood of S̃ in T HI(S̃, Σ̃, I, x̃0, X̃).
Notice that we are considering that the translation surface with involution
S̃ can have some regular points in Σ̃. But if we consider the set Σ̂ ⊂ Σ̃
such that Σ̂ has no regular points, we have that the canonical homomorphism
H1
−(S̃, Σ̃; C)→ H1

−(S̃, Σ̂; C) induced by the inclusion Σ̂ ↪→ Σ̃ is an isomorphism.
So we can choose Σ̂ or Σ̃ to define the coordinate charts (see [MZ]). Since the
modular group acts discretely and properly discontinuously, we obtain a com-
plex affine structure of orbifold to MHI(g̃, κ̃, η, j̃). The space H1

−(S̃, Σ̃; C)
has a smooth standard measure which we can transport to T HI(S̃, Σ̃, I, x̃0, X̃)
obtaining a smooth measure in this space. Hence, the space MHI inherits a
smooth measure µMHI and the moduli space of surfaces with area oneMHI(1)

inherits the induced measure µ(1)
MHI .

6.4.3 Moduli space of marked half-translation surfaces

Given g ≥ 0, a function κ : N∪{−1} → N with finite support and
∑
i≥−1 iκ(i) =

4g−4, ε ∈ {−1, 1}, and an integer j ≥ −1 with κ(j) > 0, we letMHQ(g, κ, ε, j)
to be the moduli space of marked half-translation surfaces (S,Σ, x0, X) with
genus g, #{x ∈ Σ : lx = i} = κ(i) and lx0 = j. Two surfaces (S,Σ, x0, X) and
(S′,Σ′, x′0, X

′) are equivalent if there exists a homeomorphism φ : (S,Σ, x0, X)→
(S′,Σ′, x′0, X

′) preserving the half-translation structure, the marked point and
the fixed separatrix.

If ε = 1, the half-translation structure is compatible with two translation
structures (corresponding to both possible orientations) and there is a natural
map MH(g, κ, j)→MHQ(g, κ, 1, j) which forgets the polarization. This map
is a ramified double cover of orbifolds.

Now given a half-translation structure which is not compatible with a trans-
lation structure, we will associate a translation structure using the (ramified)
double covering construction. Define κ̃ : N ∪ {−1} → N by κ̃(2i − 1) = 0,
κ̃(4i) = 2κ(4i) + κ(2i − 1), κ̃(4i + 2) = 2κ(4i + 2). Let g̃ = 4 +

∑
i≥−1 iκ̃(i) =

2g − 1 + 1
2

∑
i≥0 κ(2i− 1), j̃ = j if j is even or j̃ = 2j + 2 if j is odd. Thus, we

obtain a canonical injective map MHQ(g, κ,−1, j) → MH(g̃, κ̃, j̃). In fact,
by construction, the image of this map is MHI(g̃, κ̃, η, j̃), where the map
η : N ∪ {−1} → N is such that η(2i) = #{x ∈ Σ̃ : lx = 2i and I(x) = x}
and η(2i+ 1) = 0.

We also can define the quotient map MHI(g̃, κ̃, η, j̃)→MHQ(g, κ,−1, j),
such that, to each structure (S̃, Σ̃, I, x̃0, X̃) associates the quotient structure
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(S,Σ, x0, X) = (S̃/I, Σ̃/I, x̃0/I, X̃/I). Notice that this map is well-defined
and it is injective, since S̃ is connected. Thus, we have a bijection between
marked half-translation surfaces which are not translation surfaces and con-
nected marked translation surfaces with involution.

As in the case of translation surfaces, the moduli space of marked half-
translation surfaces is called strata. Lanneau classified the connected compo-
nents of each strata, which are at most two ([L1], [L3]).

6.5 Teichmüller Flow

The group SL(2,R) acts on MHI (or more generally, on the space of marked
translation surfaces with involution) by postcomposition in the charts. This
action preserves the hypersurface MHI(1) and measures µMHI on MHI and
µ

(1)
MHI on MHI(1).

The Teichmüller Flow is the particular action of the diagonal subgroup

T F t :=
(
et 0
0 e−t

)
and it is measure-preserving.

Theorem 6.1 (Masur, Veech). The Teichmüller flow is mixing on each con-
nected component of each stratum of the moduli space MHQ(1), with respect to
the finite equivalent Lebesgue measure, µ(1).

The Theorem A, in the setting of translation surfaces was proved by Avila,
Gouëzel and Yoccoz [AGY]. So, we will restrict the proof just to the case of
half-translation surfaces which are not translation surfaces. Thus, we can prove
it, just considering marked translation surfaces with involution. In this setting,
the Theorem A is equivalent to:

Theorem 6.2. The Teichmüller flow is exponential mixing on each connected
component of the moduli space MHI(1) with respect to the measure µ(1)

MHI for
observables in the Ratner class.

7 From the model to the Teichmüller flow

7.1 Zippered rectangles construction

Consider an irreducible permutation π ∈ R and length data λ ∈ Sπ, τ ∈ Θπ and
h ∈ RA+ defined by h = −Ω(π) · τ . Notice that h = (hα)α∈A is such that hα > 0
for all α ∈ A. Let α(l) and α(r) be the leftmost and the rightmost letters of π,
i.e., π(α(l)) = 1 = π(i(α(r))) and π(α(r)) = 2d+ 1 = π(i(α(l))).

Define the sets:

Bπ(α) =

{
{β ∈ A : π(α) < π(β) < π(∗)} if 1 ≤ π(α) < π(∗),
{β ∈ A : π(∗) < π(β) < π(α)} if π(∗) < π(α) ≤ 2d+ 1

B′π(α) =

{
{β ∈ A : π(α) ≤ π(β) < π(∗)} if 1 ≤ π(α) < π(∗),
{β ∈ A : π(∗) < π(β) ≤ π(α)} if π(∗) < π(α) ≤ 2d+ 1

Bπ(α) =

{
{β ∈ A : π(α) < π(β) < π(∗)} if 1 ≤ π(α) < π(∗),
{β ∈ A : π(∗) < π(β) < π(α)} if π(∗) < π(α) ≤ 2d+ 1
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B′π(α) =

{
{β ∈ A : π(α) ≤ π(β) < π(∗)} if 1 ≤ π(α) < π(∗),
{β ∈ A : π(∗) < π(β) ≤ π(α)} if π(∗) < π(α) ≤ 2d+ 1

For each α ∈ A consider the rectangles with horizontal sides λα and vertical
sides hα defined by:

Rt,rα =

 ∑
β∈Bπ(α)

λβ ,
∑

β∈B′π(α)

λβ

× [0, hα],

Rt,lα =

− ∑
β∈B′π(α)

λβ ,−
∑

β∈Bπ(α)

λβ

× [0, hα],

Rb,rα =

 ∑
β∈Bπ(α)

λβ ,
∑

β∈B′π(α)

λβ

× [−hα, 0].

Rb,lα =

− ∑
β∈B′π(α)

λβ ,−
∑

β∈Bπ(α)

λβ

× [−hα, 0].

If α /∈ {α(l), α(r)}, also consider the vertical segments:

St,rα =

 ∑
β∈B′π(α)

λβ

×
0,

∑
β∈B′π(α)

τβ


St,lα =

− ∑
β∈B′π(α)

λβ

×
0,−

∑
β∈B′π(α)

τβ


Sb,rα =

 ∑
β∈B′π(α)

λβ

×
 ∑
β∈B′π(α)

τβ , 0


Sb,lα =

− ∑
β∈B′π(α)

λβ

×
− ∑

β∈B′π(α)

τβ , 0


If Lπ =

∑
π(∗)<π(β)≤π(α(r)) τβ > 0 we define

St,rα(r) = −Sb,li(α(r)) =

 ∑
π(∗)<π(β)≤π(α(r))

λβ

× [0, Lπ]

St,lα(l) = Sb,ri(α(l)) = ∅

If Lπ < 0 we define

St,lα(l) = −Sb,ri(α(l)) =

 ∑
π(α(l))≤π(β)<π(∗)

λβ

× [0, Lπ]

Sbi(α(r)) = Stα(r) = ∅
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Otherwise, if Lπ = 0 we take

St,lα(l) = Sb,li(α(r)) =

− ∑
π(α(l))≤π(β)<π(∗)

λβ

× {0}
St,rα(r) = Sb,ri(α(l)) =

 ∑
π(∗)<π(β)≤π(α(r))

λβ

× {0}
Notice that, for each α ∈ A, the labels l and r in Xε,l

α and Xε,r
α , where ε ∈

{t, b} and X ∈ {R,S}, are just to make clear when π(α) < π(∗) or π(∗) < π(α).
When it does not lead to confusion, we will omit l and r.

Example 7.1. The next figure represents a zippered rectangle associated to π =
(D

B D

C

C

∗ A

A

B).

Rbi(A)RbA

RtC Rti(C)RtD

StC Sti(C)

Sbi(A)

Rti(A)RtA

RtB

StB
StA

SbC

RbB

RbD
RbC Rbi(C)

Rbi(B)

SbA

Sbi(B) Sti(D)

Sti(A)

SbB
SbDSbi(C)

Sbi(B)

Rti(B)

Rti(D)

Rbi(D)

Figure 5: Zippered rectangle

Define the set
R(λ,π,τ) =

⋃
α∈A

⋃
ε∈{l,r}

(Rεα ∪ Sεα)

We will identify, by translation, the rectangle Rtα with Rbα for all α ∈ A.
If Lπ > 0 we identify Stα(r) with the vertical segment S1 of length Lπ at

the bottom of the right side of the rectangle Rbα(r) if α(r) is the winner of π
or at the top of the right side of the rectangle Rti(α(l)) if α(r) is the loser of π.
Symmetrically, we identify Sbi(α(r)) with −S1.

If Lπ < 0 we identify Sbi(α(l)) with the vertical segment S2 of length −Lπ in
the bottom of the right side of the rectangle Rbα(r) if α(r) is the winner of π
or in the top of the right side of the rectangle Rti(α(l)) if α(r) is the loser of π.
Symmetrically, we identify Stα(l) with −S2.

Let S̃∗(λ, π, τ) be the topological space obtained from R(λ,π,τ) by these iden-
tifications. Thus, S̃∗(λ, π, τ) inherits from R2 = C the structure of a Riemann
surface and also a holomorphic 1-form ω (given by dz).
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For each α ∈ A recall ζα = λα + iτα. We call vertices the extreme points in
the top of segments Stα and the extremes in the bottom of segments Sbα, for all
α ∈ A. So, the vertices are points with following coordinates:

ξtα =


∑

π(α)≤π(β)<π(∗)

−ζβ if π(α) < π(∗)∑
π(∗)<π(β)≤π(α)

ζβ if π(∗) < π(α)

ξbα =


∑

π(α)≤π(β)<π(∗)

−ζβ if π(α) < π(∗)∑
π(∗)<π(β)≤π(α)

ζβ if π(∗) < π(α)

Now we will define a relation to identify vertices between them. Define the
set of all pairs (α, Y ) with α ∈ A∪ {∗} and Y ∈ {L,R}. Consider the following
identification:

(π(π−1(∗) + 1), L) ∼ (∗, R) ∼ (π(π−1(∗) + 1), L)

(π(π−1(∗)− 1), R) ∼ (∗, L) ∼ (π(π−1(∗)− 1), R)

(α(r), R) ∼ (i(α(l)), R)
(α(l), L) ∼ (i(α(r)), L)

We say that these pairs are irregular and all other pairs we call regular. We
also identify:

(α(r), R) ∼ (β, L) if π(α) + 1 = π(β)
(α(r), R) ∼ (β, L) if π(α) + 1 = π(β)

We can extend ∼ to an equivalence relation in the set of pairs (α, Y ). This
equivalence relation describes how half-planes are identified when one winds
around an end of S̃∗(λ, π, τ). Let Σ̃ be the set of equivalence classes relative
to the relation ∼. Thus to each c ∈ Σ̃ we have one, and only one, end vc of
S̃ = S̃∗(λ, π, τ). When it does not lead to confusion we will use S̃ to mean
S̃(λ, π, τ). From the local structure around vc, the compactification

S̃(λ, π, τ) = S̃∗(λ, π, τ) ∪ (∪Σ̃{vc})

is a compact Riemann surface with marked points {vc}. The 1-form ω extends
to a holomorphic 1-form on S̃(λ, π, τ) such that at the points vc we have marked
zeroes of angle 2kcπ where 2kc is the cardinality of the equivalence class of c.

Given (x, 0) on the bottom side of the rectangle Rtα, we can transport this
point vertically and when we reach the top side, which is the point (x, hα) we
identify it with the point (x + ωα, 0), where ω = Ω(π) · λ, in the top side of
Rbα. So, we have the vertical flow well-defined almost everywhere (except in the
points which reach singularities in finite time). It is clear that the return time
of points in the rectangle Rtα is equal to hα and the area of the surface S̃(λ, π, τ)
is A(λ, π, τ) = −2〈λ,Ω(π) · τ〉.

When we constructed the surface S̃, we have an implicit relation between
the horizontal coordinates λα and λi(α) and the vertical coordinates τα and
τi(α). Indeed, we have an involution I : S̃ → S̃, with a fixed point at the origin,
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defined as follows. Given any point x ∈ S̃ there exists α ∈ A such that x ∈ Rtα
or x ∈ Stα ∪ Sbα. Thus −x ∈ Rbi(α) or −x ∈ Sbi(α) ∪ S

t
i(α), respectively. So I(x) is

identified with −x.
Let S(λ, π, τ) be the surface S̃(λ, π, τ) quotiented by the involution I and

let Σ to be the set Σ̃ quotiented by the involution I. We can see that this
identification by involution implies that, for each α ∈ A, the rectangle Rtα is
identified with the rectangle Rti(α) by a translation composed with a rotation
of 180 degrees. So, the top side (resp. the bottom side) of the rectangle Rtα is
identified with the bottom side (resp. the top side) of the rectangle Rti(α).

7.2 Coordinates

Let (S̃, Σ̃, I, x̃0, X̃) be a marked translation surface with an involution I. The
marked separatrix X̃ starts at x̃0 and it goes to east. A segment σ adjacent to
x̃0 contained in X̃ is called admissible if the vertical geodesic Y passing through
the right endpoint z̃ of σ meets a singularity in the positive or in the negative
direction before returning to σ ∪ I(σ). Symmetrically, if σ is an admissible
segment then I(σ) starting at I(x̃0) going to west and ending at I(z̃) (which
has a vertical geodesic meeting a singularity in the negative or in the positive
direction before return to σ∪ I(σ)), also is an admissible segment if we consider
the marked separatrix I(X̃) instead consider X.

We call a separatrix incoming if its natural orientation points towards the
associated singularity and we call it outgoing otherwise. Let σ+ be the set of
points of the first intersection of incoming vertical separatrices with σ∪I(σ) and
σ− be the set of points of the first intersection of outgoing vertical separatrices
with σ ∪ I(σ). Notice that x̃0 and I(x̃0) are in both sets σ+ and σ−. If Y is
incoming (resp. outgoing) we extend it to the past (resp. future) until intersect
σ∪ I(σ) again and the second intersection point is an element of σ+ (resp. σ−).
Thus z̃ is an element of both σ+ and σ−. By the same argument applied to
I(Y ) we conclude that I(z̃) also is an element of both σ+ and σ−.

Notice that p ∈ σ− if and only if I(p) ∈ σ+, for all p ∈ σ−. Thus we will
consider just the set σ+ which determines the set σ− by involution.

Let |λ| be the length of σ and of I(σ). Let φr : [0, |λ|] → S̃ and φl :
[−|λ|, 0]→ S̃ be the parametrizations of σ and I(σ), respectively, by arc-length
with φr(0) = x̃0 and φl(0) = I(x̃0).

We can write:

σ+ = {I(z̃) = p+
−l > . . . > p+

−1 > p+
0− = I(x̃0)}∪{x̃0 = p+

0+ < p+
1 < . . . < p+

r = z̃}.

where < and > refer to the natural orientation on σ and I(σ), respectively.
Therefore, we have numbers

−|λ| = a+
−l < . . . < a+

−1 < a+
0− = 0 = a+

0+ < a+
1 < . . . < a+

r = |λ|

such that φr(p+
j ) = a+

j , for all j ∈ {−l . . . ,−1, 1 . . . r}, φr(p+
0−) = a+

0− = 0 and
φr(p+

0+) = a+
0+ = 0.

Let a+
0 = a+

0+ = a+
0− . Define λj = |Ij | = a+

j+1 − a
+
j for −l ≤ j ≤ r − 1

Let τj be the length of the vertical segment from the horizontal section to the
singularity corresponding to the point p+

j . Notice that τ0 = 0.
It is possible to verify that the first return map to the cross-section σ∪I(σ) is

well-defined except at the points p+
j . Moreover the first return time is constant
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on each open interval (a+
j , a

+
j+1). So, we can consider the interval exchange

transformation with involution π associated to the cross-section σ ∪ I(σ) where
the points defined before are the points of discontinuity.

Let hj be the first return time of the points in the interval (aj−1, aj). We
can define the zippered rectangle which represents (S̃, Σ̃, I, x̃0, X̃) by:

ZR(λ, π, τ, h) = ∪j(aj−1, aj)× [0, hj ].

Lemma 7.2. If two admissible segments σ and σ̃ with the same left extreme
point x̃0 are such that σ̃ ⊂ σ, then the corresponding zippered rectangles (λ, π, τ, h)
and (λ̃, π̃, τ̃ , h̃) satisfy:

∃ n ∈ N such that (λ̃, π̃, τ̃) = Q̂n(λ, π, τ)

Proof. Let σ and σ̃ be admissible segments and let the respective zippered
rectangles representations ZR(λ, π, τ, h) and ZR(λ̃, π̃, τ̃ , h̃).

Consider a sequence of maximal admissible segments σi+1 strictly contained
in σi such that σ1 = σ. Let zi be the right endpoint of σi. The right endpoint
z2 of σ2 corresponds to a discontinuity point of the first return map of the
vertical flow to the section σ1 and there is no other discontinuity point between
z2 and z1. By maximality, we conclude that, up to relabeling, Q̂(λ, π, τ) is the
representation of such first return map. We follow this process until obtain
σn = σ̃ for some n ∈ N. For such n we have Q̂n(λ, π, τ) = (λ̃, π̃, τ̃).

Corollary 7.3. Let (S̃, Σ̃, I, x̃0, X̃) be a marked translation surface with involu-
tion and let ZR(λ, π, τ, h) and ZR(λ̃, π̃, τ̃ , h̃) be two zippered rectangle represen-
tations of the surface. Then there exists n ∈ Z such that (λ̃, π̃, τ̃) = Q̂n(λ, π, τ).

Proof. Let σ and σ̃ be admissible segments of ZR(λ, π, τ, h) and ZR(λ̃, π̃, τ̃ , h̃),
respectively. By definition, the initial points of σ and σ̃ are the same x̃0. Sup-
pose, without loss of generality, that σ̃ ⊂ σ.

By the previous lemma there exists n ∈ N such that (λ̃, π̃, τ̃) = Q̂n(λ, π, τ).
Thus, the result follows.

Given a marked translation surface with involution (S̃, Σ̃, I, x̃, X̃) with zip-
pered rectangle representation ZR(λ, π, τ, h), we can cut and paste it appro-
priately until we obtain a surface (S̃′, Σ̃′, I ′, x̃′, X̃ ′) which representation in zip-
pered rectangles is an iterated by Rauzy induction with involution of the first
marked translation surface with involution. Since these operations preserve the
relation between parallel sides, then S̃ and S̃′ are isomorphic and the marked
separatrix is mapped to one another. Moreover if we have a marked translation
surface with involution (S̃1, Σ̃1, I1, x̃1, X̃1) which is near from (S̃, Σ̃, I, x̃, X̃), by
the continuity of the marked separatrix and of the singularities, we will obtain
a zippered rectangle construction ZR(λ1, π1, τ1, h1) near, up to relabel, from
ZR(λ, π, τ, h). So, the zippered rectangle construction, gives a system of local
coordinates in each stratum of the moduli space.

Using the zippered rectangles construction, we obtain a finite covering ZR,
of a stratumMHI(g̃, κ̃, η, j̃) of the moduli space of marked translation surfaces
with involution. Under the condition 〈λ, h〉 = 1, we get the space of zippered
rectangles of area one covering the spaceMHI(1)(g̃, κ̃, η, j̃). We have a bijection
between Rauzy classes with involution and a connected component of a stratum
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of the moduli space of translation surfaces with involution (see [BL]). Thus
we have a well-defined map proj : fR → C, where C = C(R) is a connected
component of MHI(g̃, κ̃, η, j̃) and proj ◦ Q̂ = proj. The fibers of this map
are almost everywhere finite (with constant cardinality). The projection of the
standard Lebesgue measure on fR is (up to scaling) the standard volume form
on C.

The subset f(1)
R = proj−1(C(1)) of surfaces with area one is invariant by the

Veech flow. So, the restriction T Vt(x) : f(1)
R → f(1)

R leaves invariant the volume
form that projects, up to scaling, to the invariant volume form on C(1). It was
proved by Veech that this volume form is finite using the lift measure on f(1)

R .

7.2.1 Homology and cohomology

For each α ∈ A consider the curve cα which is a path in R(λ,π,τ) joining ξtα− ζα
to ξtα if π(α) > π(∗) or joining ξtα to ξtα + ζα if π(α) < π(∗). Note that
I(cα) = −ci(α).

Consider the relative homology group H1(S̃, Σ̃; Z) of the surface S̃ relative
to the finite set of singularities Σ̃. We have a decomposition of the relative
homology group into an invariant subgroup H+

1 (S̃, Σ̃; Z) and an anti-invariant
subgroup H−1 (S̃, Σ̃; Z), with respect to the involution I. Following Masur and
Zorich ([MZ]), we can choose a basis in H−1 (S̃, Σ̃; Z) which has dimension d− 1,
where d is the number of classes of A∗. The elements of the basis will be lifts
of a collection of saddle connections on S, where S is the surface S̃ quotiented
by involution.

Analogously, the first (de Rham) cohomology group H1(S̃, Σ̃; C), is decom-
posed into an invariant subspace H1

+(S̃, Σ̃; C) and an anti-invariant subspace
H1
−(S̃, Σ̃; C), under the induced involution I∗ : H1(S̃, Σ̃; C)→ H1(S̃, Σ̃; C) No-

tice that [ω] is anti-invariant under the induced involution, so [ω] ∈ H1
−(S̃, Σ̃,C)

and we also have: ∫
cα

ω = ζα

In section 6.4.2 we have observed that H1
−(S̃, Σ̃; C) yields local coordinates

of an element of a stratum of the moduli space of translation surfaces with
involution. So if we consider the set of ζα = λα + iτα such that λ, τ ∈ Sπ we
obtain coordinates which describe S̃(λ, π, τ). And as we have seen in section 7.2,
for any other pair (S̃′, ω′) in a neighborhood of (S̃, ω) we can find coordinates
(λ′, π′, τ ′) of (S̃′, ω′), and so we can define the vectors ζ ′α as in section 7.1. For
more details in the construction of coordinates see [Ve3].

7.3 Teichmüller flow is exponential mixing

In section 2.3.2 we have seen the relation between the Teichmüller flow and
the Veech flow, which is naturally identified with the first return map of the
renormalization operator to the section Υ̂(1)

R .

∗The complex dimension of the moduli space of half-translation surfaces of genus g with σ
singularities is 2g + σ − 2 and d = 2g + σ − 1.
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We will identify Υ̂(1)
R × R with a connected component C(1) by the map

P : Υ̂(1)
R ×R→ C(1) defined by P (z, s) = T Fs(proj(z)), where z = (λ, π, τ) and

proj : ∆̂R → C is the natural projection.

Lemma 7.4. Let f : C(1) → R be a C1 compactly supported function and let
δ > 0 be as in (27). There exists ε0 > 0 and C > 0 such that for every t > 0,
there exists a C1 function f (t) : ∆̂r → R, such that ‖f ◦P − f (t)‖L2(ν) ≤ Ce−ε0t
and ‖f (t)‖C1( b∆r) ≤ Ce

δt.

Proof. Let δ0 > 0 be small and let Yt ⊂ ∆̂r be the union of connected compo-
nents of ∆̂r which contain points (λ, π, τ, s) with s > δ0t. Let f (t) = 0 in Yt and
f (t) = f ◦ P in the complement. The estimate ‖f ◦ P − f (t)‖L2(ν) ≤ Ce−ε0t is
then clear since ‖f ◦P − f (t)‖C0 ≤ ‖f‖C0 , while the support of f ◦P − f (t) has
exponentially small ν measure (since the roof function has exponential tails).

For the other estimate, it is enough to show that if (z, s) ∈ ∆̂r and P (z, s)
belongs to any fixed compact set K ⊂ C(1) then P is locally Lipschitz near (z, s),
with constant bounded by C(K)eC(K)s. Here we fix some arbitrary Finsler
metric in C(1) (the precise choice is irrelevant since K is compact). This result
is obvious if we impose some bound on s, say 0 ≤ s ≤ 1, since P is smooth. If
s0 > 0 is such that s0 < s < s0 + 1, notice that for (z′, s′) in a neighborhood of
(z, s), P (z′, s′) is obtained from P (z, s′ − s0) by applying the Teichmüller flow
for time s0. Thus, it is enough to show that if x and T Fs0(x) belong to some
fixed compact set of C(1) then T Fs0 is locally CeCs0 Lipschitz in a neighborhood
of x. This is a well known estimate, for instance, we can define a Finsler metric
on C(1) such that T Fs0 is globally Lipschitz with Lipschitz constant e2s0 (see
[AGY] §2.2.2 for the construction of a metric in the whole strata of squares, the
Finsler metric we need here being just the restriction to the substrata).

Lemma 7.5. If f : C(1) → R is C1 and compactly supported with
∫
fdνC(1) = 0

then there exists C > 0, ε > 0 such that for t > 0,∫
f · (f ◦ T F t) dνC(1) ≤ Ce−εt. (28)

Proof. We can estimate (28) with exponentially small error by comparison with
the correlations

∫
f (t) · f (t) ◦ T̂tdν − (

∫
f (t)dν)2, where f (t) is provided by the

previous lemma. Those decays exponentially by (27).

Finally, we are in a position to prove the main theorem:

Proof of Theorem A. Let H be the Hilbert space of SO(2,R) invariant L2(νC(1))
functions with zero mean. As shown in Appendix B of [AGY], exponential decay
of correlations for the Ratner class follows from the existence of a dense set of
f in H such that (28) decays exponentially fast. Since compactly supported
smooth functions are dense in H, the result follows.
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