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Abstract
In this work we will discuss on minimal and maximal curves over
a finite field k. Our method is to consider the curve over k̄, the
algebraic closure of k, and look at some invariants of the curve
which are unchanged with respect to constant field extensions. For
example, the p-adic Newton polygon, the Hasse-Witt matrix and
the p-rank of the curve. Using these arguments, we characterize
some classical maximal and minimal curves, such as Fermat curves,
Artin-Schreier curves and also hyperelliptic curves.
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Chapter 1

Introduction

The theory of equations over finite fields (or the theory of congruences) is in the basis

of classical number theory. Its foundations were laid, among others, by mathemati-

cians like Fermat, Euler, Lagrange, Gauss, and Galois. Historically, the object of the

first investigations in this theory were the congruences of the special form

y2 ≡ f(x) (modulo a prime number) (1.1)

where f(x) is a polynomial (or rational function) with integer coefficients. Such

congruences were used to get results such as the representability of integers as sum of

four squares, or the distribution of pairs of quadratic residues, or even the estimation

of the sum of Legendre’s quadratic residues symbols. E. Artin constructed a quadratic

extension of the field Fp(x), p a prime, by adjoining the roots of the congruence (1.1)

and he introduced a zeta-function for this field, in analogy with Dedekind’s zeta-

function for quadratic extensions of the field of rational numbers. Assuming that

Riemann’s hypothesis was valid for his zeta-function, Artin conjectured an upper

bound for the number of solutions of congruences such as the one in (1.1) above.

Artin’s conjecture was then proved by Hasse for polynomials f(x) of degrees 3 and

4 over arbitrary finite fields, and widely generalized by A. Weil (see [52]) as follows:
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Let C be a projective geometrically irreducible nonsingular algebraic curve of genus

g, defined over a finite field Fq with q elements, then we have the so-called Hasse-Weil

bounds:

q + 1− 2g
√
q ≤ #C(Fq) ≤ q + 1 + 2g

√
q (1.2)

where C(Fq) denotes the set of Fq-rational points of the curve C. In general, this

bound is sharp. In fact if q is square, there exist several curves that attain the upper

and lower bounds above.

There are however situations in which the bounds can be improved. For instance,

if q is not a square there is a non-trivial improvement due to Serre:

q + 1− g[2
√
q] ≤ #C(Fq) ≤ q + 1 + g[2

√
q],

where [a] denotes the integer part of the real number a.

The interest on curves over finite fields was renewed because of applications to

Coding Theory and to Finite Geometry. Goppa constructed the so-called algebraic

geometric codes. For these codes arising from curves, one has a good lower bound for

their minimum distance.

Here we will be interested in maximal(resp. minimal) curves over Fq2 , that is, we

will consider curves C attaining Hasse-Weil’s upper (resp. lower) bound:

#C(Fq2) = q2 + 1 + 2gq (resp. q2 + 1− 2gq).

There are three important problems on maximal curves over Fq2 :

1. Determination of the possible genera of maximal curves over Fq2 .

2. Determination of explicit equations for maximal curves over Fq2 .

3. Classification of maximal curves over Fq2 of a given genus.

The methods used to deal with these three problems are: the action of the Frobe-

nius morphism on the Jacobian of a maximal curve (see Section 4.1 here), Weierstrass

2



Point Theory (including Stöhr-Voloch theory of Frobenius orders of a morphism),

Castelnuovo’s genus bound for curves in projective spaces and Riemann-Hurwitz

genus formula for separable coverings of algebraic curves.

In this thesis, we will discuss on minimal and maximal curves over a finite field

k. Our method is to consider the curve over k̄, the algebraic closure of k, and look

at some invariants of the curve which are unchanged with respect to constant field

extensions. For example, the p-adic Newton polygon, the Hasse-Witt matrix and the

p-rank of the curve. The Newton polygon is a nice way to describe p-adic values of the

zeros and poles of zeta functions and L-functions (see here Section 2.3.5). Maximal

and minimal curves are supersingular. Furthermore as we will see here (Theorem

2.61), supersingular curves are minimal over some extension of the base field. Thus

their Newton polygons are also maximal in the sense that all slopes are equal to 1/2.

The Hasse-Witt matrix H of a non-singular algebraic curve C over a finite field Fq is

the matrix of the Frobenius mapping (p-th power mapping) with respect to any basis

for the differentials of the first kind. It is a g × g matrix where g is the genus of C.

We know also the dual of Frobenius mapping which is the so-called Cartier operator

acting on differential 1-forms. As maximal curves are supersingular, we have that the

Cartier operator is nilpotent (see Section 4.1). Finally the p-rank of a curve is exactly

equal to the length of the slope zero segment of its Newton polygon (see Section 2.3.5

and Proposition 2.54). Clearly, the p-rank of a maximal (or minimal) curve is zero.

In Chapter 2, the basic theoretical foundations in algebraic function fields and

algebraic curves over finite fields are laid. These ideas will be used throughout the

entire work.

In this chapter we introduce the basic definitions and results of the theory of

algebraic function fields: valuations, places, adeles, algebraic extensions of function

fields, extension of places, ramification index, the decomposition of a place and some

Galois extensions of algebraic function fields (Kummer and Artin-Schreier extensions).
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The zeta function of curves over finite fields, and some its fundamental properties are

also revisited. We also recall Weil’s conjectures about the zeta function of varieties.

As a prerequisite to the study of maximal curves, we briefly present fundamen-

tal concepts from algebraic curves over a field of positive characteristic. We define

the Hasse-Witt matrix, Cartier operator, p-rank of abelian varieties, p-adic Newton

polygon. Finally in last section of Chapter 2, we describe some exponential sums

(Gauss sum and Jacobi sum). In fact as Hasse, Davenport and Weil have shown,

there are deep connections between exponential sums and the zeta function of curves

(see Equations (3.5) and (4.5 )).

The reader who is well acquainted with all these concepts can concentrate on the

notation introduced.

Chapter 3 is part of a joint work ([16]) with Arnaldo Garcia. Let k be a field of

positive characteristic p. An additive polynomial in k[x] is a polynomial of the form

A(x) =
n∑
i=0

aix
pi

.

The polynomial A(x) is separable if and only if a0 6= 0. We consider in this chapter

maximal curves C over Fq2 of the form

A(x) = F (y) (1.3)

where A(x) is an additive and separable polynomial in Fq2 [x] and where F (y) ∈ Fq2 [y]

is a polynomial of degree m prime to the characteristic p > 0. The assumption that

F (y) is a polynomial is not too restrictive (see Lemma 3.13 and Remark 3.14). The

genus of the curve C is given by

2g(C) = (degA− 1)(m− 1). (1.4)
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Maximal curves given by equations as in (1.3) above were already studied. In [3]

they are classified under the assumption m = q + 1 and a hypothesis on Weierstrass

nongaps at a point; in [11] it is shown that if A(x) has coefficients in the finite field

Fq and F (y) = yq+1, then the curve C is covered by the Hermitian curve ; and in [12]

it is shown that if degF (y) = m = q + 1, then the maximality of the curve C implies

that the polynomial A(x) has all roots in the finite field Fq2 .

Here we generalize the above mentioned result from [12]; i.e., we show that a

maximal curve C over Fq2 given by Equation (1.3) is such that all roots of A(x)

belong to Fq2 (see Theorem 3.15).

Our main result in this chapter is the following theorem. For the proof we will

use the p-adic Newton polygon of Artin-Schreier curves that is described in Section

2.3.5.

Theorem 1.1. Let C be a maximal curve over Fq2 given by an equation of the form

A(x) = ym with gcd(p,m) = 1, (1.5)

where A(x) ∈ Fq2 [x] is an additive and separable polynomial. Then we must have that

m divides q + 1.

Part of the material in Chapter 4 which is based on studying the Hasse-Witt

matrix of maximal curves, is another joint work ([17]) with Arnaldo Garcia. First

in Section 4.1, we show that if a curve is maximal over Fq2 with q = pn, then we

have C n = 0, where C is the Cartier operator. For this we discuss the action of the

Frobenius morphism on the Jacobian of a maximal curve. We will also describe the

Witt cohomology to obtain an elementary proof that C n = 0.

Using this new theorem, stating C n = 0, in next sections of chapter 4 we find some

classifications for maximal and minimal curves. First in Section 4.2.1, we consider

the Fermat curve C(m) over Fq2 , defined by the affine equation ym = 1 − xm. We
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show that C(m) is maximal over Fq2 if and only if we have that m divides (q+1). This

generalizes [1, Corollary 3.5] which deals with the particular case when m belongs to

the set of values of the polynomial T 2 − T + 1, and it also generalizes [30, Corollary

1] which deals with the case q = p prime (see Remark 4.20).

In Section 4.2.2 we consider maximal curves C over Fq2 given by an affine equation

yq − y = f(x), where f(x) is a polynomial in Fq2 [x] with degree d prime to the

characteristic p. We show that d is a divisor of q + 1 and that the maximal curve C

is isomorphic to the curve given by yq + y = xd (see Theorem 4.30). In particular

this result shows that the hypothesis that d is a divisor of q + 1 in Proposition 4.28

(which is due to Wolfmann [54]) is superfluous and also that the maximal curves C in

Theorem 4.30 are covered by the Hermitian curve over Fq2 (see Remark 4.31). The

main ideas in Section 4.2.2 come from [28] which deals with the case q = p prime.

In Section 4.2.3 we deal with maximal and minimal hyperelliptic curves C over

Fq2 in characteristic p > 2. The genus of C satisfies g(C) ≤ (q − 1)/2 and the main

result of this section is to to show that the curve C given by the affine equation

y2 = xq + x

is the unique maximal hyperelliptic curve over Fq2 with genus satisfying g = (q−1)/2

(see Theorem 4.36). The main ideas here come from [50] which deals with hyperelliptic

curves with zero Hasse-Witt matrix (see Remark 4.37).

Finally in the last section, we study SW-maximal Artin-Schreier curves. A curve

C over Fq, with q non-square, is called SW-maximal if

#C(Fq) = q + 1 + [2
√
q].g(C).

In this thesis the word curve will mean a projective nonsingular and geometrically

irreducible algebraic curve defined over a perfect field of characteristic p > 0. Most

6



of the time the perfect field will be a finite field or its algebraic closure. Also quite

often we represent a curve by an affine plane model with singularities.
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Chapter 2

Preliminaries

In this beginning chapter, we shall collect most of the needed background in algebraic

function field theory and algebraic curves. For a more comprehensive approach we

refer the reader to [43], [40] and [34].

2.1 Algebraic Function Fields

Throughout Sections 2.1.1, 2.1.3 and 2.1.4, k denotes an arbitrary field.

2.1.1 Places and Divisors

Definition 2.1. An algebraic function field F/k of one variable over k is an extension

field F ⊃ k such that F is a finite algebraic extension of k(x) for some element x ∈ F

which is transcendental over k.

For brevity, we shall simply refer to F/k as a function field. The set k̃ := {z ∈

F |z is algebraic over k} is a subfield of F and it is called the field of constants of F/k.

The field k̃ of constants of an algebraic function field F/k is a finite extension field

of k, and F can also be regarded as a function field over k̃. Therefore the following

assumption is not critical:
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From here on, F/k will always denote an algebraic function field of one variable

such that k is the full constant field of F/k; i.e., we have that k̃ = k.

The simplest example of an algebraic function field is the rational function field ;

F/k is called rational if F = k(x) for some x ∈ F transcendental over k. Any

arbitrary function field F/k is often represented as a simple algebraic field extension

of a rational function field k(x), i.e., F = k(x, y) where ϕ(y) = 0 for some irreducible

polynomial ϕ(T ) ∈ k(x)[T ].

Definition 2.2. A valuation ring of the function field F/k is a ring O ⊂ F with the

following properties:

(1) k ⊂ O ⊂ F, and

(2) for any z ∈ F, we have z ∈ O or z−1 ∈ O.

From commutative algebra we know that a valuation ring O is a local ring, i.e.,

O has a unique maximal ideal P = O\O∗, where O∗ is the group of units of the ring

O.

Definition 2.3. (a) A place P of the function field F/k is the maximal ideal of some

valuation ring O of F/k. Any element t ∈ P such that P = tO is called a prime

element for P (t is also called a local parameter or a uniformizing variable).

(b) PF := {P |P is a place of F/k}.

IfO is a valuation ring F/k and P its maximal ideal, thenO is uniquely determined

by P , namely O = {z ∈ F |z−1 /∈ P}. Hence OP := O is called the valuation ring of

the place P .

Definition 2.4. Let P be a place.

(a) FP := OP/P is the residue class field of P . The map x → x(P ) from OP to

FP is called the residue class map with respect to P .

(b) deg P := [FP : k] is called the degree of P .

Definition 2.5. A discrete valuation of the function field F/k is a function υ : F →

Z ∪ {∞} with the following properties:
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(1) υ(x) = ∞ ⇔ x = 0.

(2) υ(xy) = υ(x) + υ(y) for any x, y ∈ F.

(3)υ(x+ y) ≥ min{υ(x), υ(y)} for any x, y ∈ F.

(4) There exists an element z ∈ F with υ(z) = 1.

(5) If x ∈ k∗ then υ(x) = 0.

Lemma 2.6 ([43], Lemma I.1.10). Let υ be a discrete valuation of F/k and x, y ∈ F

with υ(x) 6= υ(y). Then υ(x+ y) = min{υ(x), υ(y)}.

To any place P ∈ PF we associate a function υP : F → Z∪{∞} that is a discrete

valuation of F/k: Choose a prime element t for P . Then every 0 6= z ∈ F has a unique

representation z = tnu with u ∈ O∗P and n ∈ Z. Define υP (z) := n and υ(0) := ∞.

Definition 2.7. The (additively written) free abelian group which is generated by the

places of F/k is denoted by D(F ) and it is called the divisor group of F/k.

The elements of D(F ) are called divisors of F/k. In the other word, a divisor is

a formal sum

D =
∑
P∈PF

nPP with nP ∈ Z, almost all nP = 0.

The support of D is the finite set defined by

supp D := {P ∈ PF |nP 6= 0}.

A divisor D is called positive if nP ≥ 0, for all P ; in this case we write D ≥ 0. The

degree of a divisor is defined by

deg D :=
∑
P∈PF

nP deg P.

For a divisor D =
∑
npP , we denote by υP (D) := nP .
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Definition 2.8. Let 0 6= x ∈ F and denote by Z (resp. N) the set of zeros (poles) of

x in PF . Then we define

div0(x) :=
∑
P∈Z

υP (x)P, the zero divisor of x,

div∞(x) :=
∑
P∈N

(−υP (x))P, the pole divisor of x,

div(x) := div0(x)− div∞(x), the principal divisor of x.

Definition 2.9.

PF := {div(x)|0 6= x ∈ F}

is called the group of principal divisor of F/k. This is a subgroup of DF , since for

0 6= x, y ∈ F, we have div(xy) = div(x) + div(y). The factor group

C`(F ) := D(F )/P(F )

is called the divisor class group.

Theorem 2.10 ([43], Theorem I.4.11). Any principal divisor has degree zero. More

precisely: Let x ∈ F \ k, then

deg div0(x) = deg div∞(x) = [F : k(x)].

Definition 2.11. Let P ∈ PF . An integer n > 0 is called a pole number of P if and

only if there is an element x ∈ F with (x)∞ = nP. Otherwise n is called a gap number

(or a Weierstrass gap) of P .

The Weierstrass semigroup at P is the set

H(P ) := N \G(P ),
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where

G(P ) := {l ∈ Z : l is a Weierstrass gap at P}.

Theorem 2.12 ([43], Theorem I.6.7). Suppose that F/k has genus g > 0 and P is a

place of degree one. Then there are exactly g gap numbers i1 < i2 < . . . < ig of P .

We have

i1 = 1 and ig ≤ 2g − 1.

2.1.2 Adeles

Let C be a curve defined over an algebraically closed field k of characteristic p > 0.

Let F = k(C) be the field of rational functions on C.

Definition 2.13. An adele (or a repartition) of F/k is a mapping

α :

 PF → F,

P 7→ αP ,

such that αP ∈ OP for almost all P ∈ PF . We regard an adele as an element of the

direct product
∏

P∈PF
F and therefore use the notation α = (αP ). The set

AF := {α|α is an adele of F/k}

is called the adele space of F/k.

The principal adele of an element x ∈ F is the adele with all components αP

satisfying αP = x (note this definition makes sense because any element 0 6= x ∈ F

has only finitely many zeros and poles). This gives an embedding F ↪→ AF . The

valuations vP of F/k extend naturally to AF by setting vP (α) := vP (αP ).
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Definition 2.14. For D ∈ DF we define

AF (D) := {α ∈ AF |vP (α) ≥ −vP (D) for all P ∈ PF}.

Obviously, AF (D) is a k-subspace of the adele space AF .

We can consider F as a constant sheaf on C, containing the structure sheaf O as

a subsheaf. Then we have the following exact sequence :

0 → O → F → F/O → 0. (2.1)

As F is a constant sheaf and C is irreducible we have H1(C, F ) = 0. Thus from

the long exact sequence associated to (2.1) we obtain:

F → H0(C, F/O) → H1(C,O) → 0. (2.2)

This last exact sequence is easy to interpret. Let AF be the adeles of F . Adeles

α = (αP ) such that αP ∈ OP for any P form sub-ring AF (0) of AF . Then one can

see easily that AF/AF (0) is canonically isomorphic to H0(C, F/O). Finally from the

(2.2) we get

AF/(AF (0) + F ) ∼= H1(C,O), (2.3)

since F can be identified as a subring of AF .

2.1.3 Extensions of Algebraic Function Fields

Any function field over k can be regarded as a finite field extension of a rational

function field k(x). This is one of the reasons why it is of interest to investigate field

extensions F
′
/F of algebraic function fields.

Definition 2.15. An algebraic function field F
′
/k

′
is called an algebraic extension of

F/k if F
′ ⊇ F is an algebraic field extension and k

′ ⊇ k. The algebraic extension

13



F
′
/k

′
of F/k is called a finite extension if [F

′
: F ] <∞.

Now let us study the relation between the places of F and F
′
.

Definition 2.16. Consider an algebraic extension F
′
/k

′
of F/k. A place P

′ ∈ PF ′ is

said to lie over P ∈ PF if P ⊂ P
′
. We also say that P

′
is an extension of P or that

P lies under P
′
, and we write P

′|P.

Definition 2.17. Let F ′/k′ be an algebraic extension of F/k, and let P ′ ∈ PF ′ be a

place of F ′/k′ lying over P ∈ PF .

(a) The positive integer e(P ′|P ) := e with

υP ′(x) = eυP (x) for any x ∈ F

is called the ramification index of P ′ over P . We say that P ′|P is ramified if e(P ′|P ) >

1, and that P ′|P is unramified if e(P ′|P ) = 1.

(b) f(P ′|P ) := [F ′P ′ : FP ] is called the relative degree of P ′ over P .

Note that f(P ′|P ) can be finite or infinite; in fact it is finite if and only if [F ′ :

F ] <∞ (see [43, Proposition III.1.6]).

The place P is said to be decomposed completely in an algebraic extension of

F if e(Q|P ) = f(Q|P ) = 1 for all places Q of the extension field that lie over P .

Note that the existence of a place that decomposes completely implies that k′ = k.

The place P is called totally ramified if there is only one place Q lying over P and

e(Q|P ) = [F ′ : F ].

Definition 2.18. Let F ′/k′ be an algebraic extension of F/k. For a place P ∈ PF we

define its conorm (with respect to F ′/F ) by

ConF ′/F (P ) :=
∑
P ′|P

e(P ′|P )P ′,

where the sum runs over all places P ′ ∈ PF ′ lying over P .
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Clearly the conorm map is extended to a homomorphism from DF to DF ′ by

setting

ConF ′/F (
∑

nPP ) :=
∑

nPConF ′/F (P ).

Theorem 2.19 ([43], Theorem III.1.11). Let F ′/k′ be a finite extension of F/k, P

a place of F/k and P1, . . . , Pm all the places of F ′/k′ lying over P . Let ei := e(Pi|P )

denote the ramification index and fi := f(Pi|P ) the relative degree of Pi|P . Then

m∑
i=1

eifi = [F ′ : F ].

Corollary 2.20 ([43], Corollary III.1.13). Let F
′
/k

′
be a finite extension of F/k.

Then for any divisor A ∈ DF ,

deg ConF ′ |F (A) =
[F

′
: F ]

[k′ : k]
deg A.

Next we want to describe a method which can often be used to determine all

extensions of a place P ∈ PF in F
′
. For convenience, we introduce some notation.

F̄ := FP is the residue class field of P .

ā := a(P ) ∈ F̄ is the residue class of a ∈ OP .

If ψ(T ) =
∑
ciT

i is a polynomial with coefficients ci ∈ OP , we set

ψ̄(T ) :=
∑

c̄iT
i ∈ F̄ [T ].

Obviously, any polynomial γ(T ) ∈ F̄ [T ] can be represented as γ(T ) = ψ̄(T ) with

ψ(T ) ∈ OP [T ] and deg ψ(T ) = degγ(T ). With these notations, we have the following

theorem due to Kummer.

Theorem 2.21 ([43], Theorem III.3.7). Suppose that F
′
= F (y) where y is integral
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over OP , and consider the minimal polynomial ϕ(T ) ∈ OP [T ] of y over F . Let

ϕ̄(T ) = Πr
i=1γi(T )εi

be the decomposition of ϕ̄(T ) into irreducible factors over F̄ (i.e. the polynomials

γ1(T ), . . . , γr(T ) are irreducible, monic pairwise distinct in F̄ [T ] and εi ≥ 1). Choose

monic polynomials ϕi(T ) ∈ OP [T ] with

ϕ̄i(T ) = γi(T ) and deg ϕi(T ) = deg γi(T ).

Then, for 1 ≤ i ≤ r, there are places Pi ∈ PF ′ satisfying

Pi|P, ϕi(y) ∈ Pi and f(Pi|P ) ≥ deg γi(T ).

The places P1, . . . , Pr are distinct.

Moreover if εi = 1 for all i = 1, . . . , r, then there exists, for 1 ≤ i ≤ r, exactly one

place Pi ∈ PF ′ with Pi|P and ϕi(y) ∈ Pi. The places P1, . . . , Pr are all the places of

F
′
lying over P , and we have

ConF ′/F (P ) =
r∑
i=1

Pi,

i.e., e(Pi|P ) = 1. We also have f(Pi|P ) = deg γi(T ).

Let F ′/k′ be a finite separable extension of a function field F/k and P a place of

F/k. Then we have the very useful following theorem that yields a formula for the

genus of F ′, the Hurwitz Genus Formula. Let O′P denote the integral closure of OP

in F ′. Then the set

CP := {z ∈ F ′|TrF ′/F (z.O′P ) ⊂ OP}

is called complementary module overOP . Note that F ′/F is assumed to be a separable
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extension, hence the TrF ′/F is not identically zero.

One can shows (see [43, Proposition III.4.2]) that there is an element t ∈ F ′

(depending on P ) such that CP = t.O′P . Then we define for P ′|P , the differential

exponent of P ′ over P by

d(P ′|P ) := υP ′(t).

We refer to Section III.5 of [43] for results on the different.

Theorem 2.22 ([43], Theorem III.4.12). Let F/k be an algebraic function field of

genus g and F
′
/F be a finite separable extension. Let k′ denote the constant field of

F ′ and g′ the genus of F
′
/k′. Then we have

2g′ − 2 =
[F ′ : F ]

[k′ : k]
(2g − 2) +

∑
P∈PF

∑
P ′|P

d(P ′|P ). deg P ′.

2.1.4 Galois Extensions

Definition 2.23. An extension F
′
/k

′
of a function field F/k is said to be Galois if

F
′
/F is a Galois extension of finite degree.

Here we would like to recall two simple types of Galois extensions of a function

field, namely Kummer extensions and Artin-Schreier extensions. The following two

propositions are due to Hasse.

Proposition 2.24 ([43], Proposition III.7.3). Let F/k be an algebraic function field

in which k contains a primitive n−th root of unity (with n ≥ 1 and n relatively prime

to the characteristic of k). Suppose that u ∈ F is an element satisfying

u 6= wd for all w ∈ F and all d|n, d > 1.

Let

F
′
= F (y) with yn = u.
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We have:

(a) The polynomial Φ(T ) = T n − u is the minimal polynomial of y over the

subfield F . The extension F
′
/F is Galois of degree n; its Galois group is cyclic, and

all automorphisms of F
′
/F are given by σ(y) = ζy, where ζ ∈ k is an n−th root of

unity.

(b) Let P ∈ PF and P
′ ∈ PF ′ be an extension of P . Then

e(P
′|P ) =

n

rP
and d(P

′|P ) =
n

rP
− 1, where rP := gcd(n, υP (u)) > 0.

(c) If k
′
denotes the constant field of F

′
and g (resp. g

′
) is the genus of F/k (resp.

of F
′
/k

′
), then

g
′
= 1 +

n

[k′ : k]
(g − 1 +

1

2

∑
P∈PF

(1− rP
n

) degP ).

Proposition 2.25 ([43], Proposition III.7.8). Let F/k be an algebraic function field

of characteristic p > 0. Suppose that u ∈ F is an element which satisfies the following

condition:

u 6= wp − w for all w ∈ F.

Let

F
′
= F (y) with yp − y = u.

For a place P ∈ PF we define the integer mP by

mP :=


m if there is an element z ∈ F satisfying

υP (u− (zp − z)) = −m < 0 and gcd(p,m) = 1

−1 if υP (u− (zp − z)) ≥ 0 for some z ∈ F.

We have then:

(a) F
′
/F is a cyclic Galois extension of degree p. The automorphisms of F

′
/F
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are given by σ(y) = y + θ, with θ = 0, . . . , p− 1.

(b) P is unramified in F
′
/F if and only if mP = −1.

(c) P is totally ramified in F
′
/F if and only if mP > 0. Denote by P

′
the unique

place of F
′
lying over P . Then the different exponent d(P

′|P ) is given by

d(P
′|P ) = (p− 1)(mP + 1).

(d) If at least one place Q ∈ PF satisfies mQ > 0, then k is algebraically closed in

F
′
, and

g
′
= p.g +

p− 1

2
(−2 +

∑
P∈PF

(mP + 1)deg P )

where g′ (resp. g) is the genus of F ′/k (resp. of F/k.)

We need also the following theorem; it is the so-called Hilbert 90 Theorem.

Theorem 2.26 ([36], Theorem 10.5). Let K1 be a cyclic Galois extension of an

arbitrary field K, and let σ be a generator of the Galois group Gal(K1/K). If u ∈ K1,

then TrK1/K(u) = 0 if and only if u = σ(a)− a for some a ∈ K1.

In the particular case of finite fields K = Fq and K1 = Fqm we get for an element

u ∈ K1 that

TrK1/K(u) = 0 if and only if u = βq − β for some β ∈ K1.

2.1.5 Algebraic Function Fields over Finite Fields

In this section we consider function fields over a finite constant field. We are mainly

interested in the places of degree one of a function field. This number can be estimated

by the Hasse-Weil bound.

Throughout this section, F denotes an algebraic function field of genus g whose

constant field is the finite field k = Fq.
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As before, DF denotes the divisor group of the function field F/k. It is easy to

see that there exist only finitely many positive divisors of degree n, for any n ≥ 0. So

we can define

An := |{A ∈ DF |A ≥ 0 and deg A = n}|. (2.4)

For instance, A0 = 1 and A1 is the number of places P ∈ PF of degree one.

Definition 2.27. The power series

Z(t) := ZF (t) :=
∞∑
n=0

Ant
n ∈ C[[t]]

is called the zeta function of F/k.

Observe that we regard t here as a complex variable, and Z(t) is a power series

over the field of complex numbers. It is remarkable that this power series is convergent

for |t| < q−1. In the following we present some properties of the zeta function:

Proposition 2.28 ([43], Proposition V.1.8). For |t| < q−1, the zeta function can be

represented as an absolutely convergent product

Z(t) =
∏
P∈PF

(1− tdeg P )−1.

In particular, Z(t) 6= 0 for |t| < q−1.

The zeta function Z(t) can be extended to a meromorphic function on the whole

complex plane; actually Z(t) can be extended to an element Z(t) ∈ C(T ).

Proposition 2.29 ([43], Proposition V.1.13). The zeta function of F/k satisfies the

functional equation

Z(t) = qg−1t2g−2Z(
1

qt
).

Definition 2.30. The polynomial L(t) := LF (t) := (1 − t)(1 − qt)Z(t) is called the

L−polynomial of F/k.
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It is easy to show that L(t) is a polynomial of degree= 2g. Observe that L(t)

contains information about all the numbers An (n ≥ 0).

Theorem 2.31 ([43], Theorem V.1.15 ). (a) The polynomial L(t) belongs to Z[t].

(b) We write L(t) = a0 + a1t+ . . .+ a2gt
2g. Then the following holds:

(1) a0 = 1 and a2g = qg.

(2) a2g−i = qg−iai, for 0 ≤ i ≤ g.

(3) a1 = N − (q + 1) where N is the number of places of degree one.

(4) The polynomial L(t) factors in C[t] in the form

L(t) =

2g∏
i=1

(1− αit), (2.5)

where the complex numbers α1, . . . , α2g are algebraic integers, and they can be arranged

in such a way that αiαg+i = q holds, for i = 1, . . . , g.

(c) If Lr(t) := (1− t)(1− qrt)Zr(t) denotes the L−polynomial of the constant field

extension Fr = FFqr , then we have

Lr(t) =

2g∏
i=1

(1− αri t).

The above theorem shows that the number

N(F ) := N = |{P ∈ PF ; deg P = 1}|

can be easily calculated if the L−polynomial LF (t) of F/Fq is known. More generally,

we consider for r ≥ 1 the number

N(Fr) := Nr = |{P ∈ PFr ; deg P = 1}| (2.6)

where Fr = FFqr is the constant field extension of F/Fq of degree r. Hence we have
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from item 3) of Theorem 2.31:

Corollary 2.32. For any r ≥ 1, we have

Nr = qr + 1−
2g∑
i=1

αri .

In particular, N = q + 1−
∑2g

i=1 αi.

The next theorem is a very deep result. It is the main ingredient in the proof of

the Hasse-Weil bound.

Theorem 2.33 ([43], Theorem V.2.1). The reciprocals of the roots of LF (t) satisfy

|αi| = q1/2 for i = 1, . . . , 2g.

As an important conclusion we have:

Theorem 2.34 (Hasse-Weil Bound). The number N = N(F ) of places of F/Fq of

degree one can be estimated by

|N − q + 1| ≤ 2g
√
q.

There are however situations in which the bound can be improved. For instance,

if q is not a square there is a non-trivial improvement due to Serre:

q + 1− g[2
√
q] ≤ N ≤ q + 1 + g[2

√
q],

where [a] denote the integer part of the real number a.

Remark 2.35. Let F/k be a function field with constant field k = Fq (i.e., Fq is

algebraically closed in F ). To the field F there is an associated projective nonsingular

and geometrically irreducible curve C defined over k = Fq. The places of F of degree
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one correspond to Fq-rational points on the curve C; i.e., we have

N(F ) = #C(Fq).

The field F is the field of rational functions (defined over k = Fq) on the associated

curve C.

2.2 The Weil Conjectures

In 1949, André Weil made a series of very general conjectures concerning the number

of points on varieties defined over finite fields.

Let k be a field with q elements and for each integer n ≥ 1, let kn be the extension

of k of degree n, so #kn = qn. Let V/k be a projective nonsingular variety of dimension

d, so V is the set of zeros

f1(x0, . . . , xs) = . . . = fm(x0, . . . , xs) = 0,

of a collection of homogeneous polynomials with coefficients in k. Then V(kn) is the

set of points of V with coordinates in kn. We put the number of such points into a

generating function.

Definition 2.36. The zeta function of V/k is the power series

Z(V/k; t) = exp(
∞∑
n=1

(#V(kn))
tn

n
).

Here if F (t) ∈ Q[[t]] is a power series with no constant term, then exp(F(t)) is the

power series
∑∞

i=0 F (t)i/i!.

Theorem 2.37. (Weil conjectures) Let k be a field with q elements and V/k a

smooth projective variety of dimension n.
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(a) Rationality

Z(V/k; t) ∈ Q(t).

(b) Functional Equation

There is an integer ε (the Euler characteristic of V) so that

Z(V/k; 1/qnt) = ±qnε/2tεZ(V/k; t).

(c) Riemann Hypothesis

There is a factorization

Z(V/k; t) =
P1(t) . . . P2n−1(t)

P0(t)P2(t) . . . P2n(t)

with each Pi(t) ∈ Z[t]. Further P0(t) = 1− t, P2n(t) = 1− qnt, and for each 1 ≤ i ≤

2n− 1, the polynomial Pi(t) factors (over C) as

Pi(t) =
∏
j

(1− αijt) with |αij| = qi/2.

This conjecture was proposed by Weil in 1949, and proven by him for curves

and abelian varieties. Weil also observed that most of these properties would follow

formally for general varieties V from the existence of a good cohomology theory, what

is now called Weil cohomology theory. In fact the Lefschetz fixed point theorem

suggests why these conjectures are true.

Let q be the order of k; and F be the endomorphism on the l-adic étale cohomol-

ogy groups H i
et(V̄ ,Ql) of V (for some prime l different from the characteristic of k and

V̄ a geometric model of V) induced by the endomorphism of V̄ given by x 7→ xq: The

Grothendieck-Lefschetz formula expresses this zeta function as a rational fraction in
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terms of the (reciprocal) characteristic polynomials of F on the H i
et’ s

#V(k) =
2n∑
r=0

(−1)rTr(F |Hr
et(V̄ ,Ql)). (2.7)

Hence

Z(V/k; t) =
P1(t) . . . P2n−1(t)

P0(t)P2(t) . . . P2n(t)
,

where

Pi(t) = det(1−F t|H i
et(V̄ ,Ql)). (2.8)

However the rationality of the zeta function in general was established by Dwork in

1960 using techniques of p−adic functional analysis. In 1962 the l−adic cohomology

theory developed by Grothendieck and others gave another proof of the rationality

and of the functional equation. Then in 1973 Deligne proved the Riemann hypothesis.

We now recall the Weil conjectures for curves (Hasse-Weil Theorem). Let C be a

projective nonsingular geometrically irreducible curve of genus g defined over k, then

Z(C/k; t) =
L(t)

(1− t)(1− qt)
,

where L(t) is a polynomial in Z[t] of degree 2g such that

L(t) =

2g∏
i=1

(1− αit),

where αi ∈ C with |αi| = q1/2 for any 1 ≤ i ≤ 2g. Using this zeta function for the

curve C we have that #C(Fq) = 1+ q−
∑2g

i=1 αi. One can show that this is equivalent

to the bound below:

|#C(Fq)− (1 + q)| ≤ 2gq1/2.

The following theorem is due to Rosenlicht and it is crucial for us:
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Theorem 2.38 ([42], VII, Theorem 9). Let C be a curve with Jacobian J . Then the

canonical map C → J induces the following isomorphism:

H1(C,OC) ' H1(J ,OJ ).

Remark 2.39. There is a similar result for the étale cohomology (see [6], Corollary

9.6). In fact we have

H1
et(C,Zl) ' H1

et(J ,Zl) ' TlJ ,

where TlJ := lim← J [lm].

Corollary 2.40. If L(t) is the numerator of the zeta function associated to the curve

C, then h(t) = t2gL(t−1) is the characteristic polynomial of the Frobenius action on

the Jacobian J of C .

Proof. From Equation (2.8) we have

L(t) = det(1−F t|H1
et(C,Ql))

= det(1−F t|H1
et(J ,Ql))

= t2gh(t−1).

�

2.3 Algebraic Curves

2.3.1 Maximal Curves

One is often interested in curves C which have many points; i.e., curves C such that

N = #C(Fq) is a big number. So we introduce the following notion:

Definition 2.41. A curve C of genus g 6= 0 defined over Fq is said to be maximal (resp.

minimal) if N = q + 1 + 2gq1/2 (resp. if N = q + 1− 2gq1/2).
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Obviously, maximal (or minimal) curves over Fq with genus g 6= 0 can exist only

if q is a square.

Lemma 2.42. The curve C is maximal (resp. minimal) over Fq2 if and only if we

have that

αi = −q (resp. αi = q) for i = 1, . . . , 2g. (2.9)

Proof. Suppose C is a maximal curve over Fq2 . Let α1, . . . , α2g be the reciprocals of

the roots of L(t). Since

N = q + 1−
2g∑
i=1

αi and |αi| = q,

the assumption N = q + 1 + 2gq implies that

αi = −q for i = 1, . . . , 2g.

The result for minimal curves follows similarly. �

Corollary 2.43. Let C be a maximal curve over Fq2. Then the curve C is minimal

(resp. maximal) over Fq2n for n even (resp. odd).

Corollary 2.44. Let C be a maximal (resp. minimal) curve over Fq2. Then

L(t) = (1 + qt)2g (resp. L(t) = (1− qt)2g). (2.10)

We recall the following fact about maximal curves (see [49] and [43]):

Proposition 2.45. Suppose q is square. For a smooth projective curve C of genus g,

defined over k = Fq, the following conditions are equivalent:

• C is maximal.
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• Jacobian of C is k−isogenous to the g-th power of a supersingular elliptic curve,

all of whose endomorphisms are defined over k.

Our next result due to Ihara shows that C over Fq2 can not be maximal if the

genus is large with respect to q.

Proposition 2.46 ([27]). Suppose that C over Fq2 is maximal. Then

g(C) ≤ q(q − 1)

2
.

Proof. We consider the number N2 of rational points on the curve C over Fq4 . We

have from Corollary 2.43:

N2 = q4 + 1−
2g∑
i=1

α2
i = q4 + 1− 2gq2.

Hence we get the inequality below since N2 ≥ N = #C(Fq2) :

q2 + 1 + 2gq ≤ q4 + 1− 2gq2.

The inequality g ≤ q(q − 1)/2 follows immediately. �

There is a unique maximal curve over Fq2 which attains the above genus bound,

and it can be given by the affine equation (see [39])

yq + y = xq+1. (2.11)

This is the so-called Hermitian curve over Fq2 .

Remark 2.47. As J. P. Serre has pointed out, if there is a morphism defined over the

field k between two curves f : C −→ D, then the L−polynomial of D divides the one

of C. Hence a subcover D of a maximal curve C is also maximal (see Proposition 6 of

[31]). So one way to construct explicit maximal curves over Fq2 is to find equations
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for subcovers of the Hermitian curve (see [1] and [15]). On the other hand, it was a

conjecture that every maximal curve over Fq2 is a subcover of the Hermitian curve

given by Equation 2.11. Recently this conjecture was disproved (see [19]).

2.3.2 The Hasse-Witt Matrix

Let k be a field of characteristic p > 0 and C a curve defined over k of genus g > 0,

with function field F = k(C). We suppose that there is on the curve C a set P1, . . . Pg

of distinct k−rational points such that the divisor D =
∑g

i=1 Pi is nonspecial. For

each Pi we choose a local uniformizer ti and define adeles αi = (αi,P ) for 0 ≤ i ≤ g

as below:

αi,P =

 0 if P 6= Pi,

1
ti

if P = Pi,

Then α1, . . . αg form a basis of

AF/(AF (0) + F ),

since the divisor
∑g

i=1 Pi was chosen nonspecial. In particular, there is a congruence

relation as below

αpj ≡
g∑
i=1

aijαi mod (AF (0) + F ), with aij ∈ k.

Definition 2.48. The matrix H = (aij) is called the Hasse-Witt matrix of of the

curve C.

It was first introduced by Hasse and Witt in [26] in the way just described, and

there they established two basic properties:

1) If the nonspecial system Pi of g points is replaced by g others, then H is
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transformed according to the law

H → S−1H S(p)

where S is a nonsingular g × g matrix with entries in k and S(p) is obtained from S

by raising each of its entries to the p-th power.

2) If k is algebraically closed, the cyclic unramified extensions of C of degree p

are in one-to-one correspondence with equivalence classes of column vectors c̄ ∈ kg

modulo multiplication by elements of the prime field satisfying

H c̄(p) = c̄.

The c̄′s form a linear space whose dimension s is the rank of the matrix

H H (p) . . .H (pg−1). (2.12)

Now according to (2.3), we can interpret the Hasse-Witt matrix of the curve C as

the matrix of the semi-linear Frobenius operator

F : H1(C,O) → H1(C,O), (2.13)

for a suitable basis of H1(C,O).

In the following we recall some facts from [26]:

In general case , let ψ be a p−linear endomorphism of the vector space V , of finite

dimension, over a algebraically closed field k of characteristic p > 0. Then we can

find a canonical decomposition

V = Vs ⊕ Vσ, (2.14)

where Vs and Vσ are stable under the endomorphism ψ. Moreover ψ is nilpotent
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on Vσ and surjective on Vs. Dimensions of Vs and Vσ are denoted by s(V ) and

σ(V ) respectively. It is shown moreover that Vs contains a basis e1, . . . , es such that

ψ(ei) = ei for all i. Let v ∈ V be such that ψ(v) = v, then v is a linear combination

of e1, . . . , es with integer coefficients mod p, and therefore such fixed elements v form

the finite group V ψ of order ps(V ).

Let V
′

be the dual space of V . The transpose ψ
′

of ψ is the endomorphism

p−1-linear on V
′
defined by the formula:

< ψv, v
′
>=< v, ψ

′
v
′
>p for v ∈ V and v

′ ∈ V ′
. (2.15)

To the decomposition (2.14) corresponds the dual decomposition:

V
′
= V

′

s ⊕ V
′

σ. (2.16)

With the above notation, set V = H1(C,O) and the endomorphism ψ = F such

as (2.13). From Serre duality we know that V
′

= H0(C,Ω1). In fact if we identify

AF/(AF (0) + F ) with H1(C,O), it is well-known that the space AF/(AF (0) + F ) is

the dual of H0(C,Ω1). The duality comes from the following bilinear form:

< α, ω >=
∑
P∈C

resP (αPω), (2.17)

where α is an adele and ω is a differential form .

The dual of F is very interesting and will be described in the next section.

2.3.3 Cartier Operator

Let k be a perfect field of characteristic p > 0. If F is a function field in one variable

over k, then F has a unique purely inseparable subextension of degree p. If x is an

element of F such that x is not in F p, then F = F p(x).
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Any arbitrary differential form ω of F can be written as ω = ydx for some y ∈ F,

or in other words

ω = (yp0 + yp1x+ . . .+ ypp−1x
p−1)dx where yi ∈ F.

We define the Cartier operator C on differential forms by letting

Cω = yp−1dx.

Remark 2.49. On can show that this value Cω is independent of the representation

of the differential form, i.e., we get the same value if we write the form as ω = zdt

for some z ∈ F and t ∈ F \ F p (see [33, Appendix 2]).

The Cartier operator is obviously additive, and it is linear with respect to the

prime field. Let C be a curve defined over an algebraically closed field k of charac-

teristic p > 0. Let F = k(C) be the field of k−rational functions on C. We have the

following properties:

(i) C is 1/p−linear; i.e., C is additive and C (zpω) = z C (ω),

(ii) C vanishes on exact differentials; i.e., Cω = 0 if and only if ω = (dh) for some

h ∈ F ,

(iii) C (zp−1dz) = dz,

(iv) a differential ω ∈ H0(C,Ω1) is logarithmic (i.e., there exists z 6= 0 such that

ω = dz/z) if and only if ω is closed and C (ω) = ω,

(v) C (zn−1dz) = 0 if gcd(n, p) = 1.

It is useful to decompose a differential form ω = ydx as a sum

ω = df + gp
dx

x
, with some elements f, g ∈ F.

32



The existence of such a decomposition is obvious since the terms ypi x
i with 0 ≤ i ≤

p− 2 can be integrated. The uniqueness is equally clear. When ω is so written, then

it holds:

C (ω) = g
dx

x
.

We have also the following properties of the Cartier operator:

(vi) If ω is regular at a place of F over k, then C (ω) is also regular at this place.

(vii) Let P be a place of F over k, then resPCω = (resPω)1/p.

Hence we can define the Cartier operator as below:

Let C be a curve defined over a perfect field k of characteristic p > 0, then there

is the operator

C : H0(C,Ω1) → H0(C,Ω1) (2.18)

satisfying the above properties.

Proposition 2.50. The homomorphism C : H0(C,Ω1) → H0(C,Ω1) is coincident

with the dual F
′
of F : H1(C,O) → H1(C,O).

Proof. From (2.15) it is sufficient to show that if ω is a differential form and α is an

adele, one has the equality:

< αp, ω >=< α,Cω >p .

But this equality follows from Property (vii) and Equation (2.17). �

Definition 2.51. For a basis ω1, . . . , ωg of H0(C,Ω1) we let (aij) denote the associated

matrix of the Cartier operator C ; i.e., we have

C (ωj) =

g∑
i=1

aijωi.
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The corresponding Hasse-Witt matrix H is obtained by taking p−th powers, i.e., we

have

H = (apij).

Because of 1/p-linearity, the iterated operator C n is represented with respect to the

basis ω1, . . . , ωg by the product of matrices below:

(a
1/pn−1

ij ). . . . .(a
1/p
ij ).(aij).

By raising the coefficients to pn−th powers we get the matrix

H [n] = (apij).(a
p2

ij ). . . . .(a
pn

ij ).

It is remarkable that if n ≥ g then the rank of the matrix H [n] does not depend on

n and it is equal to Hasse-Witt invariant of C.

Remark 2.52. For a given natural number n, one can show:

C n(xjdx) =

 0 if pn - j + 1

xs−1dx if j + 1 = pns.

2.3.4 Hasse-Witt Invariant

Definition 2.53. The p−rank of an abelian variety A/k is denoted by σ(A); it means

that there are exactly σ(A) copies of Z/pZ in the group of points of order p in A(k̄).

The p−rank σ(C) of a curve C/k is the p−rank of its Jacobian. We call it also the

Hasse-Witt invariant of the curve.

If we have the L−polynomial of a curve C, we can use the following result to

determine its Hasse-Witt invariant (see [44, Satz1]):

Proposition 2.54. Let C be a curve defined over a finite field k = Fq. If we have
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L(t) = 1 + a1t+ . . .+ a2g−1t
2g−1 + qgt2g, then

σ(C) = max {i | ai 6≡ 0(mod p)}.

Remark 2.55. From Theorem 2.31 we know that a2g−i = qg−iai, for 0 ≤ i ≤ g. Hence

according to the above proposition, we have 0 ≤ σ(C) ≤ g.

Let C be a curve defined over the field k. The set D0(C) := {A ∈ D(C)|degA = 0}

which is obviously a subgroup of the divisor group D(C), is called the group of divisors

of degree zero, and

C`0(C) := {[A] ∈ C`(C)|deg[A] = 0}

is the group of divisor classes of degree zero. Let Gp denotes the subgroup of elements

d ∈ C`0(C), such that pd = 0. As before we denote by F the field of k−rational

functions on the curve C.

Proposition 2.56 ([40]). The group Gp is canonically isomorphic to the additive

group of differential forms of H0(C,Ω1) such that Cω = ω.

Proof. We define the morphism θ : Gp → H0(C,Ω1) as follows: consider d ∈ Gp, and

a divisor D that represents d; there is a function f 6= 0 such that pD = div(f). We

define θ(d) = df/f. First we show that θ is well-defined. In fact if d = D = D + div(g)

for some function g 6= 0, then pD + pdiv(g) = div(fgp). But d(fgp)/fgp = df/f =

θ(d). On the other hand, if P ∈ C then f = tpu where t ∈ F and u is a unit in OP .

Thus df/f = du/u and this means df/f does not have a pole at P . Hence θ(d) is a

holomorphic form. As C (df/f) = df/f , we need only to show that θ is surjective.

Suppose ω = df/f . Since ω ∈ H0(C,Ω1) is holomorphic, the order of the function

f ∈ F at any point P ∈ C is divisible by p. Hence div(f) = pD and so θ(d = D̄) = ω.

This complete the proof. �

Applying the above proposition to the Cartier operator on Ωreg, we get the fol-
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lowing decomposition for the vector space Ωreg = H0(C,Ω1):

Ωreg = Ωs
reg ⊕ Ωσ

reg

where

(i) Ωs
reg = k − space of logarithmic differentials,

(ii) The p-rank of C is dim Ωs
reg .

2.3.5 p-adic Newton Polygon

Let P (t) =
∑
ait

d−i ∈ Qp[t] be a monic polynomial of degree d. We are interested in

the p-adic values of its zeros (in an algebraic closure of Qp). These can be computed

by the (p-adic) Newton polygon of this polynomial.

The Newton polygon is defined as the lower convex hull of the points (i, vq(ai)),

i = 0, . . . , d, where vq is the p-adic valuation normalized so that vq(q) = 1.

Let A be an abelian variety over Fq, then the geometric Frobenius FA ∈ End(A)

has a characteristic polynomial fA(t) =
∑
bit

2g−i ∈ Z[t] ⊂ Qp[t]. By definition the

Newton polygon of A is the Newton polygon of fA(t). Note that (0, vq(b0)) = (0, 0)

because the polynomial is monic, and (2g, vq(b2g)) = (2g, g) because b2g = qg. More-

over for the slope λ of every side of this polygon we have 0 ≤ λ ≤ 1. In fact ordinary

abelian varieties are characterized by the fact that the Newton polygon has g slopes

equal to 0, and g slopes equal to 1. Supersingular abelian varieties turn out to be

characterized by the fact that all 2g slopes are equal to 1
2
. The p−rank is exactly

equal to the length of the slope zero segment of its Newton polygon.

Example 2.57. Let C be an elliptic curve over Fq. There are only two possibilities for

the Newton polygon of C as illustrated in the following pictures:
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The first case occurs if and only if C is an ordinary elliptic curve, and the second

one is the Newton polygon of supersingular elliptic curves.

Remark 2.58. In the case of curves, over finite fields, from Corollary 2.40 we know

that if L(t) is the numerator of the zeta function associated to the curve, then f(t) =

t2gL(t−1) is the characteristic polynomial of the Frobenius action on the Jacobian of

the curve. The Newton polygon of the curve is by definition the Newton polygon of

the polynomial f(t). In fact if the curve C is defined over Fq, q = pv for some integer

v, and the L−polynomial is given by L(t) = 1 +
∑2g

l=1 alt
l ∈ 1 + tZ[t], consider the

sequence of points in R2 (If bi = 0, define ordpbi = ∞):

(0, 0), (1,
ordpa1

v
), (2,

ordpa2

v
), . . . , (2g,

ordpa2g

v
),

where ordp denotes the p−adic valuation. The normalized p-adic Newton polygon is

defined to be the lower convex hull of this sequence of points.

Now we can easily show that the following corollary holds, where we use the

notation of Remark 2.58.

Corollary 2.59. If the curve C is maximal, then all slopes of the Newton polygon of

C are equal to 1/2. In particular, its Hasse-Witt invariant is zero.

Proof. Write f(t) =
∑2g

i=0 bit
2g−i. We have from Corollary 2.44 that f(t) = (t+

√
q)2g

and hence bi =
(
2g
i

)
(
√
q)i. Thus vq(bi) = vq(

(
2g
i

)
) + i

2
> i

2
, and this shows that

all points (i, vq(bi)) are above or on the line y = x
2
. Note that b2g = qg and so
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(2g, vq(b2g)) = (2g, g) lies on the line y = x
2
. �

Definition 2.60. Let C be a curve of genus g defined over a field k of characteristic

p > 0. The curve C is called supersingular if and only if its Newton polygon is

maximal, i.e., all the slopes are equal to 1/2. The curve C is called ordinary if and

only if its Newton polygon has g slopes equal to zero.

Here we can characterize all curves with maximal Newton polygon defined over a

finite field k as below:

Theorem 2.61 ([45], Proposition 1). Let C be a curve defined over a finite field k.

Then C is supersingular if and only if C is minimal over some extension of k.

Proof. Set q = #k. Suppose L(t) = 1+a1t+. . .+a2g−1t
2g−1+qgt2g =

∏2g
i=1(1−αit). If

C is minimal over kn = Fqn , then αni = qn/2 for i = 1, 2, ..., 2g. Hence the characteristic

polynomial hn(t) of the Frobenius relative to kn is given by hn(t) = (t− qn/2)2g. The

same arguments show that C is maximal over kn if and only if hn(t) = (t + qn/2)2g.

Therefore all roots of L(t/
√
q) are roots of unity if and only if C is minimal over some

extension kn. Now we must show that all roots of L(t/
√
q) are roots of unity if and

only if it holds for i = 0, 1, . . . , 2g that

ordp(ai) ≥
i

2
ordp(q),

where p is the characteristic of k.

”Only if” part: Let Ω = Q(α1, . . . , α2g) and p be a prime above p in Ω. There

exists a positive integer m such that αmi = qm/2 for i = 1, . . . , 2g, hence mυp(αi) =

υp(qm/2) = m
2
e(p|p)ordp(q), i.e., υp(αi) = e(p|p)ordp(q)/2. Therefore

ordp(ai) =
1

e(p|p)
υp(

∑
(−1)iαj1 . . . αji) ≥

i

2
ordp(q).
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”if” part: (i) If q is a square; i.e., if
√
q ∈ N then we have that the polynomial

L(
t
√
q
) = 1 +

2g−1∑
i=1

ai
(
√
q)i
ti + t2g

has integer coefficients ai/(
√
q)i ∈ Z; in fact this follows from the hypothesis

ordp(ai) ≥
i

2
ordp(q).

The roots of L(t/
√
q) are exactly the elements

√
q/αi for i = 1, 2, . . . , 2g; hence the

elements
√
q/αi are algebraic integers with all conjugates having norm one. It now

follows from [51, Lemma 1.6] that all roots of L(t/
√
q) are roots of unity.

(ii) If q is not a square, we consider the polynomial L2(t) which is the L−polynomial

of the curve C considered over Fq2 :

L2(t) =

2g∏
i=1

(1− α2
i t) := 1 + b1t+ . . .+ b2g−1t

2g−1 + q2gt2g.

Since bj is a symmetric function on α1, . . . , α2g of degree 2j we have that bj is a

polynomial in a1, . . . , a2j of the form

bj =
∑

ci1...ira
e1
i1
. . . aer

ir

where ci1...ir ∈ Z, and
∑r

`=1 e`i` = 2j. Hence

ordp(bj) ≥ min{ordp(a
e1
i1
. . . aer

ir
)} ≥

r∑
`=1

e`(
i`
2

ordp(q)) =
j

2
ordp(q

2).

From (i) it follows that all roots of L2(t/q) are roots of unity. These roots are the

elements (
√
q/αi)

2 and hence we have that
√
q/αi is a root of unity; i.e., all roots of

L(t/
√
q) are roots of unity. �
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2.4 Characters

Let G be a finite abelian group of order |G| with identity element 1G. A character χ

of G is a homomorphism from G into the multiplicative group U of complex numbers

of absolute value 1. More precisely,

χ : G→ U = {x ∈ C||x| = 1},

χ(g1 + g2) = χ(g1)χ(g2).

Let Ĝ denote the group of characters of the group G. The trivial character is by

definition such that χ(g) = 1 for each g ∈ G.

Theorem 2.62 ([34], Theorem 5.4). (a) If χ is a nontrivial character of the finite

abelian group G, then ∑
g∈G

χ(g) = 0.

(b) If g ∈ G with g 6= 1G, then ∑
χ∈Ĝ

χ(g) = 0.

Corollary 2.63. The number of characters of a finite abelian group G is equal to

|G|.

Proof. This follows from

|Ĝ| =
∑
g∈G

∑
χ∈Ĝ

χ(g) =
∑
χ∈Ĝ

∑
g∈G

χ(g) = |G|. �

In a finite field Fq there are two finite abelian groups that are of significance;

namely, the additive group and the multiplicative group of the field. Therefore we

will have to make an important distinction between the characters pertaining to these

two group structures:
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(a) Let G = (Fq,+). Let p be the characteristic of Fq. Let Tr : Fq → Fp be the

trace function from Fq to Fp. Then the function χ1 defined by

χ1(c) = e2πiTr(c)/p for all c ∈ Fq

is a character of the additive group of Fq. The character χ1 will be called the canonical

additive character of Fq.

Theorem 2.64 ([34], Theorem 5.7). For b ∈ Fq, the function χb defined by χb(c) =

χ1(bc) for all c ∈ Fq is an additive character of Fq, and every additive character of

Fq is obtained in this way.

(b) Let G = (F∗q,×). Since G is a cyclic group of order q − 1, its characters

can be easily determined. Let g be a generator of G, and for a fixed integer j, with

0 ≤ j ≤ q − 2, the function

χj(g
k) = e2πijk/(q−1), k = 0, . . . , q − 2,

defines a character of G. On the other hand, if χ is any character of G, then χ(g)

must be a (q− 1)−th root of unity, say χ(g) = e2πij/(q−1) for some 0 ≤ j ≤ q− 2, and

it follows that χ = χj. Therefore, Ĝ consists exactly of the characters χ0, . . . , χ(q−2).

Definition 2.65. Let ψ be a multiplicative and χ an additive character of Fq. Then

the Gauss sum G(ψ, χ) is defined by

G(ψ, χ) =
∑
c∈F∗q

ψ(c)χ(c).

The absolute value of G(ψ, χ) can obviously be at most q − 1, but it is in general

much smaller (see [34, Theorem 5.11]). In Section 3.1 we explain how the zeta function

of Artin-Schreier curves over Fq is connected with the Gauss sum G(ψ, χ).
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Definition 2.66. Let λ1, λ2 be two multiplicative characters of Fq. Then the sum

J(λ1, λ2) =
∑
c∈F∗q

λ1(c)λ2(1− c),

is called a Jacobi sum in Fq.

Just as Artin-Schreier curves are connected with Gauss sums, the Fermat curves

are connected with Jacobi sums (see Section (4.2.1)).

Let ψ1, ψ2 be two nontrivial multiplicative characters of Fq, and χ be a not trivial

additive character of Fq. Then if ψ1ψ2 is nontrivial, the Gauss and Jacobi sums are

related by the following equation:

J(ψ1, ψ2) =
G(ψ1, χ) G(ψ2, χ)

G(ψ1 ψ2, χ)

The statements of Theorem 2.62 and Corollary 2.63 can be combined into the

orthogonality relations for characters. Let χ and ψ be characters of a finite abelian

group G. Then

1

|G|
∑
g∈G

χ(g)ψ(g) =

 0 for χ 6= ψ

1 for χ = ψ,

where ψ(g) denotes complex conjugation.

Furthermore, if g and h are elements of G, then

1

|G|
∑
χ∈Ĝ

χ(g)χ(h) =

 0 for g 6= h

1 for g = h.

Character theory is often used to obtain expressions for the number of solutions

of equations in a finite abelian group G.

Corollary 2.67. Let f be an arbitrary map from G into G. Then for a fixed h ∈ G,
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the number N(h) of elements g ∈ G with f(g) = h is given by

N(h) =
1

|G|
∑
g∈G

∑
χ∈Ĝ

χ(f(g))χ(h).

We end this section with a deep result of Weil that is crucial for us.

Theorem 2.68 ([34], Theorem 5.38). Let f ∈ Fq[X] be a polynomial of degree n ≥ 1

with gcd(n, q) = 1 and let χ be a nontrivial additive character of Fq. Then

|
∑
c∈Fq

χ(f(c))| ≤ (n− 1)q1/2.
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Chapter 3

Additive Polynomials and Certain

Maximal Curves

In this section we show that a maximal curve over Fq2 given by an equation A(x) =

F (y), where A(x) ∈ Fq2 [x] is additive and separable and where F (y) ∈ Fq2 [y] has

degree m prime to the characteristic p, is such that all roots of A(x) belong to Fq2 .

In the particular case where F (y) = ym, we show that the degree m is a divisor of

q + 1.

We start by giving the definition of p-cyclic extensions of P1. Using the Newton

polygon of Artin-Schreier curves, we characterize maximal curves given by the equa-

tion xp − x = αym over Fq2 with gcd(m, p) = 1, and we show that they have the

following form:

xp + x = ym where m | q + 1. (3.1)

Then we study the additive polynomials, and using orthogonality relations for charac-

ters we generalize this result for any additive and separable polynomial A(x) instead

of xp − x.

44



3.1 p-Cyclic Extensions of P1

Let k be an algebraically closed field of characteristic p > 0. If F is any field of

characteristic p 6= 0, a cyclic extension of degree p is of the form L = F (x) where

xp − x = g(y) for some g(y) ∈ F. Moreover we can assume that g(y) satisfies the

following conditions:

g(y) =
g1(y)

(y − α1)e1 . . . (y − αn)en

where

(1) g1(y) is a polynomial in k[y].

(2) e′i s are positive integers prime to p.

(3) αi 6= αj and g1(αi) 6= 0 for i = 1, . . . , n.

(4) deg g1(y)− (e1 + . . .+ en) is a positive integer relatively prime to p.

Let π : C → D be a p−cyclic covering of complete non-singular curves over k.

Then the Deuring-Shafarevich formula gives a the following relation between the

Hasse-Witt invariants of C and D:

σ(C)− 1 + r = p(σ(D)− 1 + r),

where r is the number of the ramification points with respect to π.

Here we consider p-cyclic extension of the rational function field k(y). Let C be a

projective geometrically irreducible non-singular curve defined over a finite field such

that

C → P1

is a cyclic covering of degree p. If σ(C) = 0, then in the Deuring-Shafarevich formula

we must have r = 1 and so we can put this unique ramification point in infinity. This
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implies that for the curve C with σ(C) = 0 we can assume g(y) is a polynomial (see

also Remark 4.27).

When g(y) is a monomial we have the classical Artin-Schreier curve C that given

by

xp − x = ym gcd(m, p) = 1. (3.2)

In this case, over a finite field of characteristic p containing µm, the set of m-th roots

of unity, the curve C has two types of automorphism:

y 7→ ξy, x 7→ x with ξ ∈ µm (3.3)

and

y 7→ y, x 7→ x+ α with α ∈ Fp. (3.4)

We shall see that the first type corresponds to the multiplicative character ψ and the

second type to the additive character χ in the Gauss sum. Set Ĝ := µ̂m × F̂p and

S := {(ψ, χ) ∈ Ĝ|ψ 6= 1, χ 6= 1}.

Then the nominator of the zeta function of the curve C over a field Fl, where l is a

power of p and l ≡ 1 (mod m), is equal to

LC(t) = Π(ψ,χ)∈S(1 +G(ψ, χ ◦ tr)t), (3.5)

where tr denotes the trace function over Fl to Fp (see [8]).

Remark 3.1. Consider the Artin-Schreier curve C given by xp − x = ym, where

gcd(m, p) = 1 and d ≥ 3. From Remark 1.4 of [57] we can describe the Newton

polygon of C as below:

Let σ be the permutation in the symmetric group Sm−1 such that for every 1 ≤
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n ≤ m− 1 we set σ(n) the least positive residue of pn mod m. Write σ as a product

of disjoint cycles (including 1-cycles). For a cycle τ = (a1a2 . . . at) in Sm−1 we define

N(τ) := a1+a2+ . . .+at. Let σi be a li−cycle in σ. Let λi := N(σi)/(mli). Arrange σi

in an order such that λ1 ≤ λ2 ≤ . . . . For every cycle σi in σ let the pair (λi, li(p− 1))

represent the line segment of (horizontal) length li(p−1) and of slope λi. The joint of

the line segments (λi, li(p−1)) is the lower convex hull consisting of the line segments

(λi, li(p − 1)) connected at their endpoints, and this is the Newton polygon of the

curve C. Note that this Newton polygon only depends on the residue class of p mod

m. For example if p ≡ 1 (mod m), then σ is the identity of Sm−1 and so it is a product

of 1-cycles. We then get the Newton polygon from the following line segments:

(
1

m
, p− 1), (

2

m
, p− 1), . . . , (

m− 1

m
, p− 1).

Here we want to give a characterization for maximal Artin-Schreier curve defined

over a finite field. We begin with a simple lemma:

Lemma 3.2. If the curve C given by xp−x = aym+b ∈ Fq2 is maximal over k = Fq2 ,

then we must have that m is a divisor of q2 − 1.

Proof. Let d denote the gcd(m, q2 − 1). The curve C1 given by xp − x = azd + b is

also maximal since it is covered by the curve C (indeed, just set z = y
m
d ). We also

have that {α ∈ Fq2 | α is m-th power } = {α ∈ Fq2 | α is d-th power } and hence

#C(Fq2) = #C1(Fq2). Therefore g(C) = g(C1) and we then conclude from Equation

(1.4) that d = m. �

Lemma 3.3. Let β be an element of F∗q2. If the curve C given by xp − x = βym is

maximal over Fq2 and gcd(m, q + 1) = 1, then m divides (p− 1).

Proof. Since m divides q2 − 1 by Lemma 3.2 and gcd(m, q + 1) = 1, then m is a

divisor of q − 1. We denote by Tr the trace from Fq2 to Fp. By Hilbert 90 Theorem,
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we know

#C(Fq2) = 1 + p+mpB, (3.6)

where B := #{α ∈ H | Tr(βα) = 0} and H denotes the subgroup of F∗q2 with

(q2 − 1)/m elements. In fact, C has one infinite point, p points which correspond to

y = 0 and some mpB other points. The existence of the latter points follows from

Hilbert 90 Theorem. Since the genus of this curve is g(C) = (m− 1)(p− 1)/2 and the

curve C is maximal, then

#C(Fq2) = 1 + q2 + (p− 1)(m− 1)q. (3.7)

Comparing (3.6) and (3.7) gives

1 + q2 + (p− 1)(m− 1)q = 1 + p+mpB.

Hence

(q2 − p) + (p− 1)(m− 1)q = mpB

or (q2/p− 1) + (1− p)q/p+m(p− 1)q/p = mB. Thus m divides (q/p− 1)(q + 1).

On the other hand we have gcd(m, q + 1) = 1. Therefore m divides (q − p) , and the

result follows from the fact that m is a divisor of q − 1. �

Remark 3.4. In Lemma 3.3, if the characteristic p = 2 then m = p − 1 = 1. The

curve C is rational in this case. If p = 3 in Lemma 3.3, then again m = 1. The other

possibility, m = p− 1 = 2 is discarded since we have gcd(m, q + 1) = 1.

Proposition 3.5. Suppose that m > 2 is such that the characteristic p does not divide

m and gcd(m, q + 1) = 1. Then there is no maximal curve of the form xp − x = aym

over Fq2 , for any a ∈ Fq2 .

Proof. If there is some maximal curve of this form, according to Lemma 3.3 m must

divide p− 1. Now by using Remark 3.1, we know that the Newton polygon of C1 has
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slopes 1/m, 2/m, . . . , (m− 1)/m. Therefore Corollary 2.59 implies that this curve is

not maximal. �

Theorem 3.6. Let C be a curve defined over Fq2 given by the equation

xp − x = aym,

where gcd(m, p) = 1. If C is maximal over Fq2, then m is a divisor of q + 1.

We consider two cases:

Case p = 2. In this case gcd(q+ 1, q− 1) = 1, and we know that m divides q2− 1

by Lemma 3.2. From Remark 2.47 we have that xp−x = ayd is also maximal for any

prime divisor d of m. It now follows from Proposition 3.5 that this prime number d

is a divisor of q + 1. Since gcd(q + 1, q − 1) = 1, we conclude that m divides q + 1.

Case p = odd. In this case gcd(q + 1, q − 1) = 2. Reasoning as in the case p = 2,

we get here that if d is an odd prime divisor of m then d is a divisor of q+1. The only

situation still to be investigated is the following: q + 1 = 2rs with s an odd integer

and m = 2r1s1 with r1 > r and s1 is a divisor of s. But according to Remark 2.47

and the following lemma this case does not occur.

Lemma 3.7. Assume that the characteristic p is odd and write q + 1 = 2r.s with s

an odd integer. Denote by m := 2r+1. Then there is no maximal curve over Fq2 of the

form xp − x = βym with β ∈ F∗q2 .

Proof. Writing q = pn we consider two cases:

Case n is even. Clearly in this case we have q + 1 = 2s with s an odd integer. So

we must show that there is no maximal curve C of the form xp−x = βy4. We denote

by Tr the trace from Fq2 to Fp. By Hilbert 90 Theorem, we know

#C(Fq2) = 1 + p+ 4pB, (3.8)
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where B := #S, with S := {α ∈ H | Tr(βα) = 0} and H denotes the subgroup of

F∗q2 with (q2 − 1)/4 elements. Since the genus of this curve is g(C) = 3(p− 1)/2 and

the curve C is maximal, then

#C(Fq2) = 1 + q2 + 3(p− 1)q. (3.9)

Comparing (3.8) and (3.9) gives

1 + q2 + 3(p− 1)q = 1 + p+ 4pB.

Hence

B =
q/p− 1

2
.
q + 1

2
+
q

p
(p− 1). (3.10)

On the other hand, we have F∗p ⊂ H since (p − 1) divides (q2 − 1)/4. In fact since

n is even we have that p− 1 divides (q − 1)/2. Therefore the multiplication by each

element of F∗p defines a map on S. This implies that p − 1 is a divisor of B and so

from Equation (3.10) we obtain that p− 1 divides (q/p− 1)/2. But this is impossible

because n is even.

Case n is odd. We know the Newton polygon of a maximal curve over Fq2 is max-

imal, i.e., all slopes are 1/2. Hence it is sufficient to show that the Newton polygon

of the curve C is not maximal. As n is an odd number, the hypothesis q + 1 = 2r.s

implies p + 1 = 2r.s1 with s1 an odd integer. Hence p ≡ 2r − 1 (mod 2r+1) and

p(2r−1) ≡ 1 (mod 2r+1). Now if we set θ := 2r−1, with the notation of Remark 3.1,

the permutation σ has the 2-cycle (1θ) in its standard representation with disjoint

cycles. This 2-cycle (1θ) corresponds to the slope λ = (θ+1)/(2.2r+1) = 1/4 and this

finishes the proof. ��
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3.2 Additive Polynomials

Let k be a perfect field of characteristic p > 0 (e.g. k = Fq ) and let k̄ be the algebraic

closure of k. Let A(x) be an additive and separable polynomial in k[x] :

A(x) =
n∑
i=0

aix
pi

where a0an 6= 0.

Consider the equation

A(x) = 0. (3.11)

We know that the roots of Equation (3.11) form a vector space of dimension n over

Fp. Hence there exists a basis

ω1, ω2, . . . , ωn

for MA := {ω ∈ k̄|A(ω) = 0}. Every root is uniquely representable in the form

ω = k1ω1 + . . .+ knωn where ki belongs to Fp.

On the other hand given a Fp−space M of dimension n, with M ⊆ k̄, we can

associate a monic additive polynomial A(x) ∈ k̄[x] of degree pn having the elements

of M for roots.

Let ω1, ω2, . . . , ωn be a basis for M. Let At(x) (1 ≤ t ≤ n) be the monic additive

and separable polynomial in k̄[x] having the roots ω below:

ω = k1ω1 + . . .+ ktωt where ki belongs to Fp.

Then we have the following description of the monic additive polynomial At(x)

At(x) =
∆(ω1, ω2, . . . , ωt, x)

∆(ω1, ω2, . . . , ωt)
,
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where

∆(ω1, ω2, . . . , ωt) = det

∣∣∣∣∣∣∣∣∣∣∣∣∣

ω1 ω2 . . . ωt

ωp1 ωp2 . . . ωpt
... . . . . . .

...

ωp
t−1

1 ωp
t−1

2 . . . ωp
t−1

t

∣∣∣∣∣∣∣∣∣∣∣∣∣
and

∆(ω1, ω2, . . . , ωt, x) = det

∣∣∣∣∣∣∣∣∣∣∣∣∣

ω1 ω2 . . . ωt x

ωp1 ωp2 . . . ωpt xp

... . . . . . .
...

...

ωp
t

1 ωp
t

2 . . . ωp
t

t xp
t

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Hence

At(x) = At−1(X)At−1(x− ωt) . . . At−1(x− (p− 1)ωt). (3.12)

Let G(x) be a polynomial in k[x]. If there exist polynomials g(x) and h(x) in k[x]

such that G(x) = g(h(x)), then we say that G(x) is left divisible by g(x).

The following lemma is crucial for us (see [38, Equation 11]):

Lemma 3.8. Let A(x) =
∑n

i=0 aix
pi

be an additive and separable polynomial. Then

A(x) is left divisible by xp − αx if and only if α is a root of the equation

a1/pn

n y(pn−1)/((p−1)pn−1) + a
1/pn−1

n−1 y(pn−1−1)/((p−1)pn−2) + . . .+ a
1/p
1 y + a0 = 0. (3.13)

Definition. We say that an additive and separable polynomial A(x) =
∑n

i=0 aix
pi

has (∗)−property if its coefficients satisfy the following equality:

an + apn−1 + ap
2

n−2 + ...+ ap
n

0 = 0. (3.14)
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Corollary 3.9. If the polynomial A(x) =
∑n

i=0 aix
pi

has (∗)−property, then A(x) is

left divisible by a(x) = xp − x.

Proof. The result follows from Lemma 3.8 with α = 1. �

Definition. For the additive and separable polynomial

A(x) = anx
pn

+ an−1x
pn−1

+ . . .+ a1x
p + a0x,

we define another additive polynomial Ā(x) as follows

Ā(x) = (a0x)
pn

+ (a1x)
pn−1

+ . . .+ (an−1x)
p + anx,

which is the so-called adjoint polynomial of A(X).

Lemma 3.10. If A(x) ∈ k[x] is a monic additive and separable polynomial and

α−1 ∈ k̄ is a root of the adjoint polynomial Ā(x), then α−1A(αx) has (∗)−property.

Proof. Write A(x) as below

A(x) = xp
n

+ an−1x
pn−1

+ ...+ a1x
p + a0x.

Take α ∈ k̄ such that α−1 is a root of Ā(x). Clearly, we have

α−1A(αx) = αp
n−1xp

n

+ an−1α
pn−1−1xp

n−1

+ ...+ a1α
p−1xp + a0x. (3.15)

Now we verify that α−1A(αx) has (∗)−property. This follows from the choice of α−1
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as a root of the adjoint polynomial of A(x). In fact we have

αp
n−1 + (an−1α

pn−1−1)p + ...+ (a1α
p−1)p

n−1

+ (a0)
pn

= αp
n

.(
1

α
+ (

an−1

α
)p + ...+ (

a1

α
)p

n−1

+ (
a0

α
)p

n

)

= αp
n

.Ā(α−1) = 0. �

(3.16)

Example 3.11. Consider the Hermitian curve C over Fq2 given by xq +x = yq+1. Take

α ∈ Fq2 such that αq + α = 0. Changing variable x1 := α−1x we have that the

Hermitian curve can also be given as below:

yq+1 = (αx1)
q + (αx1) = −α(xq1 − x1). (3.17)

With A(x) = xq + x, we have α−1A(αx) = −(xq1 − x1); i.e., the additive polynomial

α−1A(αx) has (∗)−property.

The next lemma will be crucial in the proof of Theorem 3.15.

Lemma 3.12. With notation as above, we have MA = {ω ∈ k̄|A(ω) = 0} ⊂ k if and

only if MĀ = {ω ∈ k̄|Ā(ω) = 0} ⊂ k.

Proof. First we show that MA ⊂ k implies MĀ ⊂ k. Suppose ω1, ω2, . . . , ωn is a

basis for MA. From the Equation (3.12) with t = n, we have

An(x) = An−1(x)An−1(x− ωn) . . . An−1(x− (p− 1)ωn).

Hence we have

A(x) = anAn(x) = an(An−1(x)
p − An−1(ωn)

p−1An−1(x)).

If we set an = bp for some b ∈ k, which is possible since k is perfect, then
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A(x) = (bAn−1(x))
p − (bAn−1(ωn))

p−1(bAn−1(x)).

This shows that A(x) is left divisible by xp−(bAn−1(ωn))
p−1x. On the other hand,

if we define

ω̄1 :=(−1)n+1 ∆(ω2, ω3, . . . , ωn)

∆(ω1, ω2, . . . , ωn)

ω̄2 :=(−1)n+2 ∆(ω1, ω3, . . . , ωn)

∆(ω1, ω2, . . . , ωn)

...

ω̄n :=
∆(ω1, ω2, . . . , ωn−1)

∆(ω1, ω2, . . . , ωn)
,

(3.18)

then we have

An−1(ωn) =
∆(ω1, ω2, . . . , ωn)

∆(ω1, ω2, . . . , ωn−1)
=

1

ω̄n
.

Now according to Lemma 3.8, we can conclude that β := (bAn−1(ωn))
p−1 =

(b/ω̄n)
p−1 must be a root of Equation (3.13). Thus

a1/pn

n β(pn−1)/((p−1)pn−1)+a
1/pn−1

n−1 β(pn−1−1)/((p−1)pn−2)+. . .+a
1/p2

2 β(p+1)/p+a
1/p
1 β+a0 = 0.

Hence if we set λ = b/ω̄n, then

an(
1

λp
)
(1−pn)

+apn−1(
1

λp
)
(p−pn)

+ . . .+ap
n−2

2 (
1

λp
)
(pn−2−pn)

+ap
n−1

1 (
1

λp
)
(pn−1−pn)

+ap
n

0 = 0.

We then conclude that

an(
1

λp
) + apn−1(

1

λp
)
p

+ . . .+ ap
n−2

2 (
1

λp
)
pn−2

+ ap
n−1

1 (
1

λp
)
pn−1

+ ap
n

0 (
1

λp
)
pn

= 0.
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This means that (ω̄n/b)
p is a root of Ā(x). By changing the order of the basis

elements ωi of MA, one can deduce in the same way that A(x) is left divisible by

xp − (b/ω̄i)
p−1x for i = 1, 2, . . . , n.

So (ω̄1/b)
p, (ω̄2/b)

p, . . . , (ω̄n/b)
p are roots of Ā(x), and they form a basis over Fp for

MĀ. Hence we have shown that MA ⊂ k implies MĀ ⊂ k, since by Equation (3.18)

we see that (ω̄1/b), . . . , (ω̄n/b) belong to k.

Conversely, consider ¯̄A(x) the adjoint polynomial of Ā(x). Then

¯̄A(x) = ap
n

n x
pn

+ ap
n

n−1x
pn−1

+ . . .+ ap
n

1 x
p + ap

n

0 x.

Now one can verify that ωp
n

1 , ωp
n

2 , . . . , ωp
n

n form a basis for M ¯̄A.

Assume MĀ ⊂ k. Then we have already shown that M ¯̄A ⊂ k. Therefore the

elements ωp
n

1 , ωp
n

2 , . . . , ωp
n

n belong to k and this shows that ω1, ω2, . . . , ωn belong to k,

since k is a perfect field. It yields MA ⊂ k. �

3.3 Certain Maximal Curves

In this section we consider curves C over k = Fq2 given by an affine equation

A(x) = F (y)

where A(x) is an additive and separable polynomial in Fq2 [x] and F (y) is a rational

function in k(y) such that every pole of F (y) in k̄(y) occurs with a multiplicity rela-

tively prime to the characteristic p.
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We start with a simple lemma:

Lemma 3.13. With notation and hypotheses as above, if the curve C is maximal over

Fq2 then F (y) has only one pole which has order m ≤ q + 1.

Proof. In [48] it was shown that the group of divisor classes of C of degree zero and

order p has rank σ = (degA−1)(r−1) where r is the number of distinct poles of F (y)

in k̄ ∪ {∞}. Hence r = 1, since according to Corollary 2.59 the Hasse-Witt invariant

of a maximal curve is zero. By the genus formula we know

2g(C) = (degA− 1)(m− 1).

Now if C is maximal over Fq2 , then

#C(Fq2) = 1 + q2 + 2g(C)q.

On the other hand one can observe that

#C(Fq2) ≤ (q2 + 1)degA.

Thus

2g(C)q ≤ (q2 + 1)(degA− 1).

Using the genus formula we obtain (m− 1)q ≤ q2 + 1. Hence m ≤ q + 1. �

Remark 3.14. Since F (y) is a rational function with coefficients in Fq2 and Lemma

3.13 shows that F (y) has a unique pole α ∈ F̄q ∪ {∞}, then this pole α lies in

Fq2 ∪ {∞}. If α ∈ Fq2 then performing the substitution y → 1/(y − α), we can

assume that F (y) is a polynomial in Fq2 [y].

The following theorem is similar to Theorem 1 in [35]:
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Theorem 3.15. Let C be a curve given by the equation A(x) = F (y), where A(x) ∈

Fq2 [x] is an additive and separable polynomial and F (y) ∈ Fq2 [y] is a polynomial of

degree m relatively prime to the characteristic p. If the curve C is maximal over Fq2,

then all roots of A(x) belong to Fq2.

Proof. Let χ1 denote the canonical additive character of k = Fq2 . Denote by N the

number of affine solutions of A(x) = F (y) over Fq2 . The orthogonality relations of

characters (see Corollary 2.67) imply the equality

q2N =
∑
c∈k

(
∑
y∈k

χ1(−cF (y)))(
∑
x∈k

χ1(cA(x))).

But we know from Theorem 5.34 in [34] that

∑
x∈k

χ1(cA(x)) =

 0 if Ā(c) 6= 0

q2 if Ā(c) = 0.

So

N = q2 +
∑
c∈k∗
Ā(c)=0

(
∑
y∈k

χ1(−cF (y))).

We note that every affine point on the curve C over Fq2 is simple and C has exactly one

infinite point. Hence the maximality of C and Weil’s bound Theorem 2.68 imply that

MĀ = {c ∈ k̄ | Ā(c) = 0} is a subset of Fq2 and also that
∑

y∈k χ1(−cF (y)) = (m−1)q

for any 0 6= c ∈MĀ. So the desired result follows now from Lemma 3.12. �

Remark 3.16. Let C be a curve over Fq2 given by an affine equation

G(x) = F (y)

where G(x) and F (y) are polynomials such that G(x)−F (y) ∈ Fq2 [x, y] is absolutely
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irreducible. Suppose that G and F are left divisible by g and f , respectively. Then

the curve C1 given by

g(x) = f(y),

is covered by the curve C. In fact, write G(x) = g(h1(x)) and F (y) = f(h2(y)) and

consider the surjective map from C to C1 given by (x, y) 7−→ (h1(x), h2(y)).

Let A(x) be an additive and separable polynomial with all roots in Fq2 , that is left

divisible by an additive polynomial a(x). Then there exists an additive polynomial

u(x) such that

A(x) = a(u(x)).

Let U := {α ∈ Fq2 | u(α) = 0}. For a polynomial F (y) ∈ Fq2 [y] with degree m prime

to the characteristic p, the algebraic curves C and C1 over Fq2 defined respectively by

A(x) = F (y) and a(x) = F (y)

with the additive polynomial u(x) such that A(x) = a(u(x)) as above, are such that

the first curve C is a Galois cover of the second C1 with a Galois group isomorphic

to U . In fact, for each element α ∈ U consider the automorphism of the first curve

given by

σα(x) = x+ α and σα(y) = y.

Lemma 3.17. If A(x) = F (y) is maximal over Fq2, then there is a β ∈ F∗q2 such that

the curve xp − x = βF (y) is also maximal.

Proof. Since A(x) = F (y) is maximal over Fq2 , Theorem 3.15 and Lemma 3.12 imply

that Ā(x) has all roots in Fq2 . Hence according to Lemma 3.10, there exists α ∈ F∗q2

such that α−1A(αx) has (∗)−property. Take β = α−1. It then follows from Corollary

3.9 and Remark 3.16, that the curve A(αx) = F (y) covers the curve xp− x = βF (y).

By Remark 2.47, the last curve is maximal. �

As a corollary of Lemma 3.17 and Theorem 3.6 we have:
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Theorem 3.18. Let C be a maximal curve over Fq2 given by an equation of the form

A(x) = ym with gcd(p,m) = 1, (3.19)

where A(x) ∈ Fq2 [x] is an additive and separable polynomial. Then we must have that

m divides q + 1.

We end up with some comments on known results and examples. Let q = pn and

let t be a positive integer. Wolfmann [54] considered the number of rational points

on the Artin-Schreier curve C defined over Fq2t by the equation

xq − x = aym + b

where a, b ∈ Fq2t , a 6= 0 and m is any positive integer relatively prime to the charac-

teristic p.

Proposition 3.19 ([54], Theorem 1). Let C be a curve defined over Fq2 by the equation

xq − x = aym + b

where a, b ∈ Fq2 , a 6= 0 and m is any positive integer relatively prime to the charac-

teristic p. Suppose m dividing q + 1 and nm = q2 − 1 and um = q + 1. Then if C is

maximal over Fq2, then tr(b) = 0 and an = (−1)u.

We note here that the condition tr(b) = 0, means that αq−α = b for some element

α ∈ Fq2t by Hilbert 90 Theorem. So the curve C can be given by

x1
q − x1 = aym with x1 := x− α.
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Example 3.20. Suppose n is an odd number. The curve C given as follows

xp
2 − x = ym with m = (pn + 1)/(p+ 1), (3.20)

is maximal over Fp2n (see [14] for the case n = 3). Setting here q = p2 then the curve

C is maximal over Fqn with n odd. Hence this maximal curve is not among the ones

considered in [54].

In [18] it is proved that for p = 2 and n = 3 this curve in (3.20) is a Galois

subcover of the Hermitian curve. In [14] it is shown that this curve for p = 3 and

n = 3 is not a Galois subcover of the Hermitian curve.

Example 3.21. Suppose now that n = 2k is an even number. The curve given by

xp
k − x = βym

with βp
n−1 = −1 and m a divisor of pn+1 is a Galois subcover of the Hermitian curve.

Hence it is also maximal over Fp2n . This follows from the equation (see Example 3.11)

xp
n − x = (xp

k

+ x)p
k − (xp

k

+ x).

Setting here q = pk then this curve C is maximal over Fq4 . Hence this maximal curve

is among the ones considered in [54].
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Chapter 4

Some Characterization of Maximal

Curves

In this chapter, we consider maximal and minimal curves over a finite field with q2

elements. In the first section we study acting the Cartier operator C on the space of

regular differential forms of a maximal curve and we show that

Theorem 4.1. Let C be a curve defined over a finite field with q2 elements, where

q = pn for some n ∈ N. If C is maximal (or minimal) over Fq2, then C n = 0.

In next sections, we use this property to find some characterizations for maximal

and minimal curves; first in Section 4.2.1 we characterize maximal Fermat curves (see

Theorem 4.21); second we derive explicit equations for maximal and minimal Artin-

Schreier curves over Fq2 given by the relation yq − y = f(x), where f(x) is a rational

function with coefficients in Fq2 (see Theorem 4.30 and Theorem 4.32); in third we

classify maximal and minimal hyperelliptic curves over Fq2 such that attain the upper

genus bound (see Theorem 4.36 and Remark 4.38); in the last section we find some

properties of Artin-Schreier curves that attain the upper Serre bound (SW-maximal).

We also show all of maximal curves of these types are subcovers of the Hermitian

curve.
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4.1 The Hasse-Witt matrix of Maximal Curves

In this section we recall the following basic result concerning Jacobians. Let C be

a curve, F denotes the Frobenius endomorphism (relative to the base field) of the

Jacobian J of C, and let h(t) be the characteristic polynomial of F . Let h(t) =∏T
i=1 hi(t)

ri be the irreducible factorization of h(t) over Z[t]. Then

T∏
i=1

hi(F ) = 0 on J . (4.1)

This follows from the semisimplicity of F and the fact that the representation of

endomorphisms of J on the Tate module is faithful (cf. [49, Theorem 2] and [32,

VI, Section 3]) ( See [10] for more details and some applications). In the case of a

maximal curve over Fq2 , we have h(t) = (t+ q)2g. Therefore from (4.1) we obtain the

following result, which is contained in the proof of [39, Lemma 1].

Lemma 4.2. The Frobenius map F (relative to Fq2) of the Jacobian J of a maximal

(resp. minimal) curve over Fq2 acts as multiplication by −q (resp. by +q).

Remark 4.3. Let A be an abelian variety defined over Fq2 , of dimension g. Then we

have

(q − 1)2g ≤ #A(Fq2) ≤ (q + 1)2g.

But if C is a maximal (resp. minimal) curve over Fq2 , by the above lemma we have

J (Fq2) = (Z/(q + 1)Z)2g (resp. J (Fq2) = (Z/(q − 1)Z)2g). So the Jacobian of a

maximal (resp. minimal) curve is maximal (resp. minimal) in the sense of the above

bounds.

Let C be a maximal or minimal curve. Applying Proposition 2.56 to the Cartier

operation on V = Ωreg of the curve C, we get C r = 0 for some integer r. In fact

the subgroup Gp(C) of elements of C0(FC) of order p is isomorphic to the additive

group of differentials of H0(Ω1
C) such that C (ω) = ω. But if C is maximal or minimal,
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Corollary 2.59 implies Gp(C) = 0. Here we want to show the following theorem:

Theorem 4.4. Let C be a curve defined over a finite field with q2 elements, where

q = pn for some n ∈ N. If C is maximal (or minimal) over Fq2, then C n = 0.

To proof the above theorem we use Witt cohomology. So we need some properties

of Witt cohomology introduced by Serre as a p-adic cohomology(see [40]). In fact if k

is a perfect field of characteristic p, a classical construction yields a canonical lifting

of k to a discrete valuation ring

W(k) = lim
←
Wr(k).

Serre generalized this to W(R) for any ring R of characteristic p > 0, obtained a sheaf

of rings Wr = W(OX ) for any variety X . Here we recall briefly some definition and

some properties and for a more comprehensive approach we refer the reader to [21]

and [40].

Let p be a fixed prime and R a commutative ring with unit of characteristic p.

We denote by Wr(R) the ring of Witt vectors of length r with components in R. The

composition laws of commutative ring Wr(R) are given by certain polynomials with

coefficients in the prime field. The rings Wr(R) are mapped onto one another by the

following equations:

(a) The Frobenius endomorphism Fp : Wr(R) →Wr(R). By definition

Fp(a0, . . . , ar−1) = (ap0, . . . , a
p
r−1).

This is a ring homomorphism.

(b)The shift V : Wr(R) →Wr+1(R). By definition

V(a0, . . . , ar−1) = (0, a0, . . . , ar−1).
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This is an additive operator. If R is a k−algebra, where k is a perfect field of

characteristic p, then V is an p−1-linear transformation of the structure of Wr(R) as

Wr(k)-module.

(c)The restriction R : Wr+1(R) →Wr(R). By definition

R(a0, . . . , ar) = (a0, . . . , ar−1).

This is a ring homomorphism and commutes with the Frobenius endomorphism. Fur-

ther, we have

RVFp = FpRV = RFpV = p

(multiplication by p.)

The projective limit of the system Wr(R) of rings with respect to restriction is

denoted by W(R). It is a ring of characteristic zero on which the operators Fp and

V are defined and satisfy the relation VFp = FpV = p.

If R = k is a perfect field of characteristic p, then W(k) is a complete discrete

normed ring with the unique maximal ideal pW(k). In this case

Wr(k) = W(k)/prW(k).

If k = Fp is the prime field, then W(k) is isomorphic to the ring Zp of p−adic

integers, Fp is the identical isomorphism and Vw = pw for every w ∈ W(k).

Cohomology with coefficients in a sheaf of Witt vectors. Let X be an

algebraic k−variety, where k is any algebraically closed field of characteristic p, and

let O be the sheaf of local rings on X . Each fibre Ox is a ring of characteristic p. The

union of the rings Wr(Ox) for each x ∈ X has a natural structure as a sheaf of rings

over X , which we shall denote by Wr. The operations Fp,V and R extend to Wr.

The sheaves Wr are sheaves of W(k)-modules, which annihilated by ideas prW(k).
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Following Serre we define cohomology groups Hm(X ,Wr) which can be operated on

by Fp,V and R. For any m ≥ 0, W(k)-modules Hm(X ,Wr) and homomorphisms

R : Hm(X ,Wr+1) −→ Hm(X ,Wr) form a projective system. The projective limit,

which we denote by Hm(X ,W ), is also a W(k)-module and admits the operators

Fp, and V . The exact sequence

0 → WN
Vr

−→ WN+r
Rr

−→ Wr → 0

of sheaves gives rise to the exact cohomology sequence

. . .→ Hm(X ,WN)
Vr

→ Hm(X ,WN+r)
Rr

→ Hm(X ,Wr)
δm
r→ Hm+1(X ,WN) → . . .

and so, on going the projective limit as N →∞, we obtain the exact sequence

. . .→ Hm(X ,W )
Vr

→ Hm(X ,W )
pr

→ Hm(X ,Wr)
δm
r→ Hm+1(X ,W ) → . . . (4.2)

Lemma 4.5 ([41]). As notation above, if X be a abelian variety, then the coboundary

operators δmr are identically zero.

Now we can give a proof for Theorem 4.4

Proof of Theorem 4.4. Let C be a maximal (or minimal) curve over Fq2 , q = pn

for some integer n, with Jacobian J . Then by Lemma 4.5 and Exact sequence (4.2)

for r = 1, we have an exact sequence

H1(J ,W )
V→ H1(J ,W )

p→ H1(J ,OJ ) → 0. (4.3)

Now if we let Fq2 denote the Frobenius with respect to Fq2 and Fp the absolute

Frobenius, then F 2n
p = Fq2 on H1(J ,W ). According to Lemma 4.2 we know the

Frobenius acting on the Jacobian of C acts as the multiplication by ±q, hence F 2n
p =
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±pn. Now pn = F n
p Vn and Fp is injective on H1(J ,W ) so F n

p = ±Vn. This implies

F n
p = 0 on H1(J ,OJ ) (see also [9, Proposition 1.2]). In fact, Exact sequence (4.3)

implies

H1(J ,OJ ) = H1(J ,W )/VH1(J ,W ).

Then from Rosenlicht Theorem 2.38 we have that the Frobenius Fp acting on the

H1(C,OC) satisfies F n
p = 0. Finally, by Proposition 2.50 the Cartier operator acting

onH0(ΩC) and the Frobenius acting anH1(C,OC) are dual to each, so we have C n = 0.

�

The next result relates the Hasse-Witt matrix and the Weierstrass gap sequence

at a rational point.

Proposition 4.6 ([46], Corollary 2.7). Let C be a curve defined over a perfect field

and n ∈ N. Let H denote the Hasse-Witt matrix of the curve C. If P is a rational

point on C, then the rank of H [n] is larger than or equal to the number of gaps at P

divisible by pn.

Corollary 4.7. Let C be a curve defined over Fq2. Let P be a rational point on the

curve C. If C is maximal over Fq2 then q is not a gap number of P .

Proof. Writing q = pn for some integer n, if C is a maximal curve over Fq2 then by

Theorem 4.1 we have H [n] = 0. Thus the result follows from Proposition 4.6. �

Corollary 4.8. Let C be a hyperelliptic curve over Fq2 where q = pn and p > 2. If

C n = 0, then

g(C) ≤ q − 1

2
.

Proof. As the genus is fixed under a constant field extension, we can suppose that

k is algebraically closed. We know that a Weierstrass point on a hyperelliptic curve

has the gap sequence 1, 3, 5, . . . , 2g−1, so the result follows from Proposition 4.6. �
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Remark 4.9. If C is maximal over Fp2 then C = 0. On the other hand we know that

the Cartier operator on a curve is zero if and only if the Jacobian of the curve is the

product of supersingular elliptic curves (see [37, Theorem 4.1]). Now by Theorem 1.1

of [9] we will have also

• g(C) 6 (p2 − p)/2

• g(C) 6 (p− 1)/2 if C is hyperelliptic and (p, g) 6= (2, 1).

Here we give an example of a supersingular non-singular curve X defined over

a finite field Fp2 such that its Hasse-Witt matrix is zero but X is not maximal or

minimal over Fp2 .

Example 4.10. Let X (n) be the Hurwitz curve of degree n+ 1, i.e., the non-singular

plane curve given by equation

xny + ynz + znx = 0,

where p = char(Fq2) does not d := n2 − n + 1. According to [1, Theorem 3.1] we

know that X (n) is maximal over Fq2 if and only if d := n2 − n + 1 divides q + 1.

Hence the curve X (p) is not maximal over Fp2 . On the other hand the curve X (p)

is not minimal over Fq2 since it is maximal over Fp6 (see Corollary 2.43). Now we

can show that the Hasse-Witt matrix of X (p) is identically zero, i.e., the action of

Frobenius on H1(X (p),OX (p)) is 0. Here we recall the proof of this fact for p = 3, due

to Hartshorne [23]:

Let k be an algebraically closed field of characteristic 3. Consider the curve

X := X (3) given by the equation g := x3y+y3z+z3x as a plane curve in P := P2(k).

X is a plane curve of degree 4, it has genus 3. Then we have an exact sequence

0 → OP (−4)
g→ OP → OX → 0,
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which gives rise to an isomorphism

H1(X ,OX )
∼=→ H2(P,OP (−4)).

This latter vector space, according to the explicit calculations of cohomology on

projective space (see Theorem 5.1 Chapter III of [24]), has a basis consisting of the

negative monomials of degree 4, namely

1

x2yz
,

1

xy2z
,

1

xyz2
.

Under the above isomorphism, the action of Frobenius on H1(X ,OX ) becomes the

composition

H2(P,OP (−4))
f∗→ H2(P,OP (−12))

g2→ H2(P,OP (−4))

of Frobenius on P2 with multiplication by g2. Now Frobenius takes our there mono-

mials into their cubes,

1

x6y3z3
,

1

x3y6z3
,

1

x3y3z6
.

Every monomial of g2 contains either x6 or y3 or z3. Hence g2/x6y3z3 = 0 in

H2(P,OP (−4)). �
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4.2 Applications

In this section we give some classifications of maximal curves as applications of The-

orem 4.4.

4.2.1 Fermat Curves

In this section we introduce a characterization for maximal Fermat curves. First we

review some known result of Fermat curves.

Let k be a field, k̄ ⊇ k be its algebraic closure. The Fermat curve of exponent

m over k is the projective plane curve C(m) ⊆ P2(k) defined by the homogeneous

equation

xm + ym = zm. (4.4)

In case k = Q, Fermat curves are intimately related to Fermat’s last theorem, and

there is no further need to give reasons why one should study these curves.

If k has positive characteristic p > 0 and m = rp is a multiple of p, then Equation

(4.4) can be written as (xr + yr = zr)p and is therefore reducible. If however the

characteristic of k is relatively prime to m, then the Equation (4.4) is absolutely

irreducible. In this case the Fermat curve C(m) over k is easily seen to be non-

singular, and therefore its genus is

g(C(m)) = (m− 1)(m− 2)/2.

Let us consider the automorphisms of the Fermat curve C(m) over k = k̄ (as al-

ways we assume that m is relatively prime to the characteristic of k). For all m ≥ 4,

the group of Aut(C(m)) is finite, as follows from Hurwitz theorem. There are some

obvious automorphism f ∈ Aut(C(m)):
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(i) (a : b : c) 7→ (ζa : ξb : c) with ζm = ξm = 1.

Here we denote by (a : b : c) ∈ P2(k) a point of C(m), hence am + bm = cm.

(ii) The permutations of 3 coordinates of P2(k) yield automorphisms of C(m).

There are m2 automorphism of type (i) and 6 automorphism of type (ii); alto-

gether they generate a subgroup

G ⊆ Aut(C(m)) with ord(G) = 6m2.

For most values of m, the group G above is the full automorphism group of C(m).

If k is a finite field with l elements, Just as the Artin-Schreier curve is connected

with Gauss sums, similarly the Fermat curve C(m) with l ≡ 1 (mod m), is connected

with Jacobi sums. In fact as Weil explain in his famous paper in [53] we have the

following equation for L-polynomial of Fermat curve C(m):

L(t) =
∏

1≤r,s≤m
r+s 6=m

(1− J(ψ̃r, ψ̃s)t), (4.5)

where (ψr, ψs) ∈ µ̂m × µ̂m and ψ̃(x) := ψ(x(l−1)/m).

Here we are interested to characterize maximal curves. For this we begin with a

simple lemma:

Lemma 4.11. With notation and hypotheses as above, If C(m) is maximal over Fq2,

then m ≤ q + 1.

Proof. Since the genus is g = (m− 1)(m− 2)/2 and the curve C(m) is maximal over

Fq2 , then

#C(m)(Fq2) = 1 + q2 + (m− 1)(m− 2)q. (4.6)
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Looking at the function field extension Fq2(x, y)/Fq2(x), where it holds that ym =

1−xm, the points with xm = 1 are totally ramified. Hence we also have the following

inequality

#C(m)(Fq2) 6 m+ (q2 + 1−m)m. (4.7)

Using (4.6) and (4.7) we conclude that m 6 q + 1. �

Remark 4.12. If C is maximal over Fq2 , then m divides q2−1 (see the proof of Lemma

3.2).

We will now show that specific Fermat curves are maximal: let l = q2 be a square,

and consider the Hermitian curve H = C(q + 1) over Fl. We determine the points

P = (a : b : c) ∈ H(Fl).

(i) c = 1, so P = (a : b : 1). We can choose b ∈ Fl arbitrary; then a must satisfy

the equation

aq+1 = −1− bq+1. (4.8)

If bq+1 = −1, then a = 0 and

P = (0 : b : 1) ∈ H(Fl) (4.9)

If bq+1 6= −1, then −1− bq+1 is a non-zero element in Fq, and equation (4.8) has q+1

distinct roots a ∈ Fl. Hence we find for any b ∈ Fl with bq+1 6= −1 exactly q+1 points

P = (a : b : 1) ∈ H(Fl). (4.10)

Note that bq+1 6= −1 holds for exactly q2 − (q + 1) elements b ∈ Fl.

(ii) c = 0, so P = (a : 1 : 0). Since aq+1 + 1 = 0 has q + 1 roots a ∈ Fl, we find
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exactly q + 1 points of the form

P = (a : 1 : 0) ∈ H(Fl). (4.11)

Counting all points P ∈ H(Fl) as given by (4.9), (4.10) and (4.11) we find that

#H(Fq2) = (q + 1) + (q2 − (q + 1))(q + 1) + (q + 1)

= (q + 1)(q2 − q + 1) = q3 + 1.

Hence the Hermitian curve H = C(q + 1) is maximal over Fq2 of genus g(H) =

q(q− 1)/2. Hermitian curves are not the only examples of maximal curves among the

Fermat curves. In fact if m divides q+ 1, i.e., q+ 1 = mr for some integer r, then we

can define the following morphism

 C(q + 1) → C(m)

(x, y) 7→ (xr, yr).

Hence C(m) is covered by C(q+1). Thus by Remark 2.47 if m divides q+1, then C(m)

is maximal. Here we want to show they are all of maximal Fermat curves, indeed

we show that the degree of any maximal Fermat curve over Fq2 is a divisor of q + 1.

Before giving the proof, we review some known result of the Hasse-Witt matrix of

the Fermat curves from [30]:

Let k be a perfect field of characteristic p > 0, and the curve C(m) defined over

k. We study the H0(C(m),Ω1), k-module of holomorphic differentials in C(m). For

given pair [`, i] of integers satisfying 0 ≤ ` ≤ m− 3 and 0 ≤ i ≤ `, we put

ω
`,i

= xiy`−idx/ym−1.

73



It is well known that

ω0,0 , ω1,1 , ω1,0 , . . . , ωm−3,m−3 , ωm−3,m−2 , . . . , ωm−3,0 ,

is a basis of H0(C(m),Ω1). Such a basis is said to be canonical.

Because of gcd(m,p)=1, it is easy to prove the following lemma:

Lemma 4.13. For a given integer r and pair [`, i] of integers satisfying 0 ≤ ` ≤ m−3

and 0 ≤ i ≤ `, there exists one and only one pair [u, v] of integers such that

(E(m, pr; `, i))

 pru+mv = (pr − 1)(m− 1) + `− i,

0 ≤ u ≤ m− 2 and 0 ≤ v ≤ pr − 1.

The notation being as in Lemma 4.13, we get

ω`,i = xiy`−idx/ym−1

= xiy(pr−1)(m−1)+`−idx/yp
r(m−1)

= xi(1− xm)vyp
rudx/yp

r(m−1)

= (yu/ym−1)p
r

∑
0≤j≤v

(−1)j
(
v

j

)
xmj+idx.,

(4.12)

The following lemma is also easily proved:

Lemma 4.14. For a given integer r and pairs [`, i] and [u, v] as in Lemma 4.13,

(i) there exists one and only one pair [j, s] of integers such that

(E(m, pr; `, i;u, v))

 mj + i = pr(s+ 1)− 1,

0 ≤ j ≤ pr − 1 and 0 ≤ s ≤ m− 2.

(ii) In this case, if j ≤ v then u+ s ≤ m− 3, and if j > v then u+ s ≥ m− 1.

Thus, the rotations being as in Lemma 4.14, we obtain
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Theorem 4.15. For a given integer r and pair [`, i] of integers satisfying 0 ≤ ` ≤

m − 3 and 0 ≤ i ≤ `, let [u, v] be the solution of E(m, pr; `, i) and [j, s] the solution

of E(m, pr; `, i;u, v). Then

C r(ω`,i) =

 (−1)j
(
v
j

)
xsyudx/ym−1 if j ≤ v,

0 if j > v.

We will now put I(`, i) = `− i+ l+ `(`+ 1)/2 and ωI(`,i) = ω`,i for 0 ≤ ` ≤ m− 3

and 0 ≤ i ≤ `. Then ω1, ω2, . . . , ωg means the canonical basis of H0(C(m),Ω1), where

g = (m− 1)(m− 2)/2.

We denote by H the Hasse-Witt matrix of curve C(m) with respect to the canon-

ical basis ω1, ω2, . . . , ωg.

Corollary 4.16 ([30], Corollary of Theorem 1). H has at most one non-zero element

in each row and in each column.

Proof. From Theorem 4.15, it is clear that H has at most one non-zero element in

each row. Next, for given pairs [`, i] and [`
′
, i

′
] satisfying 0 ≤ ` ≤ m − 3, 0 ≤ i ≤ `,

0 ≤ `
′ ≤ m− 3 and 0 ≤ i

′ ≤ k′, let [u, v] and [u
′
, v

′
] be solutions of E(m, p; `, i) and

E(m, p; `
′
, i

′
) respectively.

Assume that [u+s, s] = [u
′
+s

′
, s

′
]. Then E(m, p; `, i;u, v) and E(m, p; `

′
, i

′
;u

′
, v

′
)

lead to i ≡ i
′

mod m and so i = i
′
. Thus E(m, p; `, i) and E(m, p; `

′
, i

′
) lead to

` ≡ `
′
mod m and so ` = `

′
. This shows that H has at most one non-zero element

in each column. �

Theorem 4.17 ([30], Theorem 2).

p ≡ 1 (mod m) if and only if rank H = g.

Proof. Let p ≡ 1 (mod m). Then, for each pair [`, i] (0 ≤ ` ≤ m− 3 and 0 ≤ i ≤ `),

let [u, v] be the solution of E(m, p; `, i) and [j, s] the solution of E(m, p; `, i;u, v).
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Evidently

u = `− i, v = (p− 1)(i+m− `− 1)/m,

j = (p− 1)(i+ 1)/m, s = i.

Since j < v and u+ s = `, it is clear that

C (ω`,i) = (−1)j
(
v

j

)
ω`,i,

we see that H is diagonal and rank H = g.

Conversely, assume rank H = g. Then let [u`, v`] be the solution of E(m, p; `, `)

for ` = 0, 1, . . . ,m− 3. Clearly

u0 = u1 = . . . = um−3 and v0 = v1 = . . . = vm−3

Moreover, let [j`, s`] be the solution of E(m, p; `, `;u`, v`) for ` = 0, 1, . . . ,m−3. Then

it is easy that

{s0, s1, . . . , sm−3} = {0, 1, . . . ,m− 3}.

Therefore, from ` + 1 ≡ p(s` + 1) (mod m) for ` = 0, 1, . . . ,m − 3, summing both

sides over k yields

(m− 1)(m− 2)/2 ≡ p(m− 1)(m− 2)/2 (mod m)

and so we get p−1+m(p−1)(m−3)/2 ≡ 0 (modm). Thus, because of 2 | (p−1)(m−3),

we have p ≡ 1 (mod m). �

Now we will give the rank relation between the Hasse-Witt matrices of two Fermat

curves and gives its simple application.

As before, let m be an integer having m ≥ 3. Denote by p and p
′
primes numbers

such that gcd(m, p) = 1 and gcd(m, p
′
) = 1. And let k and k

′
be perfects fields of
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characteristic p and p
′
respectively. Moreover let C(m) and C ′(m) be algebraic curves

over k and k
′
respectively.

Put g = (m − 1)(m − 2)/2 and denote by H and H ′ the Hasse-Witt matrices

of C(m) and C ′(m) with respect to the canonical bases of holomorphic differentials

respectively.

Theorem 4.18 ([30], Theorem 3). If p+ p
′ ≡ 0 (mod) m, then

rank H + rank H ′ = g.

Proof. For a given pair [`, i] of integers satisfying 0 ≤ ` ≤ m − 3 and 0 ≤ i ≤ `,

let [u, v] and [u
′
, v

′
] be the solutions of E(m, p; `, i) and E(m, p

′
; `, i) and let [j, s] and

[j
′
, s

′
] be the solution of E(m, p; `, i;u, v) and E(m, p

′
; `, i;u

′
, v

′
) respectively.

Then E(m, p; `, i) and E(m, p
′
; `, i) lead to p(u+ 1) ≡ p

′
(u

′
+ 1) (mod m) and so

u+ u
′
+ 2 = m. Moreover E(m, p; `, i;u, v) and E(m, p

′
; `, i;u

′
, v

′
) lead to p(s+ 1) ≡

p
′
(s

′
+ 1) (mod m and so we get s+ s

′
+ 2 = m.

Thus, in view of Lemma 4.14 (ii) and of u + s + u
′
+ s

′
= 2(m− 2), we see that

j ≤ v if and only if j
′ ≥ v

′
. So, by making use of Theorem 4.15, we obtain that

C (ω`,i) 6= 0 if and only if C ′(ω′`,i) = 0, where ω`,i and ω′`,i mean the canonical bases of

holomorphic differentials of C(m) and C ′(m). Therefore the required formula follows

immediately from Corollary 4.16. �

Corollary 4.19 ([30], Corollary 1 of Theorem 3).

p ≡ −1 (mod m) if and only if rank H = 0.

Proof. As gcd(m, p) = 1 using Drichlet Theorem (see [2]) we can find a prime

number p
′
such that p + p

′ ≡ 0 (mod m). Hence the result follows from combining

Theorem 4.17 and Theorem 4.18. �
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Remark 4.20. Let C(m) be a maximal curve defined over k = Fp2 where p is the

characteristic of k. Hence from Theorem 4.4, we know C = 0. Hence by the above

corollary m is a divisor of p+ 1.

Considerations such as the above led us to obtain the following result:

Theorem 4.21. Let C(m) be a Fermat curve of degree m prime to the characteristic

p defined over Fq2. Then C(m) is maximal over Fq2 if and only if m divides q + 1.

Proof. If m divides q + 1, from the above discussion we have that the curve C(m)

is maximal over Fq2 . Now we must show the converse statement. Consider then the

maximal curve C(m) over Fq2 . By Remark 4.12 we have that m divides q2− 1. As in

the proof of Lemma 4.11, looking at the function field extension Fq2(x, y)/Fq2(x) we

have:

#C(m)(Fq2) = m+ λm for some integer λ. (4.13)

In fact C(m) has m rational points which correspond to the totally ramified points

with xm = 1 and some others that are completely splitting. On the other hand from

the maximality of C(m), we have

#C(m)(Fq2) = 1 + q2 + (m− 1)(m− 2)q. (4.14)

Comparing (4.13) and (4.14) we obtain that m divides (q + 1)2. Hence m divides

2(q + 1), since m is a divisor of q2 − 1. Now we have two cases:

Case p = 2. In this case since gcd(m, p) = 1, we have that m is odd and hence it

divides q + 1, since it divides 2(q + 1).

Case p = odd. In this case we have gcd(q + 1, q − 1) = 2. Reasoning as in the

case p = 2, we get here that if d is an odd divisor of m, then d is a divisor of q + 1.

The only situation still to be investigated is the following: q+ 1 = 2rs with s an odd

integer and m = 2r+1s1 with s1 a divisor of s. But according to Remark 2.47 and the

following lemma, this situation does not occur.
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Lemma 4.22. Assume that the characteristic p is odd and write q + 1 = 2r.s with s

an odd integer. Denote by m := 2r+1. Then the Fermat curve C(m) is not maximal

over Fq2.

Proof. Writing q = pn we consider three cases:

Case p ≡ 1 (mod 4). In this case we have q+1 = 2.s with s an odd integer. So we

must show that the curve C(4) is not maximal over Fq2 . But it follows from Theorem

4.17 that the curve C(4) with p ≡ 1 (mod 4) is ordinary and so it is not maximal.

Case p ≡ 3 (mod 4) and n even. In this case we have again q + 1 = 2.s with s an

odd integer and we must show that the curve C(4) is not maximal over Fq2 . Since 4

is a divisor of p+ 1, the curve C(4) is maximal over Fp2 . Hence C(4) is minimal over

Fq2 because n is even.

Case p ≡ 3 (mod 4) and n odd. As n is odd then we have q + 1 = 2rs with r > 2

and s odd. Here we can assume that r ≥ 3. In fact for r = 2 according to [29, page

204], the curve C(8) is not supersingular and hence C(8) cannot be maximal. Note

that r = 2 implies p ≡ 3 (mod 8).

Consider now the curve C(m) with m = 2r+1 and r ≥ 3. As m = 2r+1 is the

biggest power of 2 that divides q2− 1, so (−1) is not a m-th power in F∗q2 . Hence the

points at infinity on ym = 1− xm are not rational. In this case, as µm acts on C(m)

we have:

#C(m)(Fq2) = m+ λ1m
2 for some integer λ1. (4.15)

Then from (4.14) and (4.15) we get

q2 + 1 + 2q − 3mq −m ≡ 0 (mod m2).

Hence (q + 1)2 − m(2q + 2) − m(q − 1) ≡ 0 (mod m2). Since m divides 2q + 2, we

obtain that 4(q+1)2−4m(q−1) ≡ 0 (mod 4m2). This implies that m divides 4(q−1)

and this is impossible as r > 3 and 4(q − 1) = 8s1 with s1 odd. This completes the
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proofs of Lemma 4.22 and of Theorem 4.21 ��

Remark 4.23. The particular case of Theorem 4.21 whenm is of the formm = t2−t+1

with t ∈ N, was proved in Corollary 3.5 of [1].

Remark 4.24. In the following we give another proof for our classification of maximal

Fermat curves; Consider Fermat curve C(m) given by

Y m +Xm = 1.

Let k = Fpf be a finite field of characteristic p > 0, where f is the smallest positive

integer such that

pf ≡ 1 (mod m).

Then we have the following theorem:

Theorem 4.25 ([56], Theorem 3.5). By the above situation, the Jacobian of the curve

C(m) is supersingular if and only if f is even and m divides pf/2 + 1.

Corollary 4.26. Let C(m) be the Fermat curve of degree m prime to the characteristic

p defined over Fq2 with q = pn. Then

1) C(m) is maximal over Fq2 if and only if m divides q + 1.

2) If C(m) is minimal over Fq2 then n is even and m divides pn − 1. In the other

word, minimal Fermat curves are maximal over some constant subfield.

Proof. 1) If C(m) is maximal over Fq2 , q = pn, we know that

p2n ≡ 1 (mod m).

As f is smallest with this property, one can show that f divides 2n, set 2n = fh. As

maximal (or minimal) curves are supersingular, by the above theorem we have f is
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even and m divides pf/2 + 1. Hence C(m) is also maximal over Fpf and maximality

over Fq2 implies that h is odd. Hence m divides q + 1.

2) If C(m) is minimal over Fq2 , then is supersingular. By the proof of the first

part we know that f divides 2n. Now if 2n = f then C(m) is maximal, so we can

assume f < 2n, 2n = fh, and h > 1. Furthermore h is even since C(m) is maximal

over Fpf . �

4.2.2 Artin-Schreier Curves

In this section we consider curves C over k = Fq2 given by an affine equation

yq − y = f(x), (4.16)

where f(x) is an admissible rational function in k(x); i.e., a rational function such

that every pole of f(x) in the algebraic closure k̄ occurs with a multiplicity relatively

prime to the characteristic p. If C is a maximal curve over Fq2 , from [18, Remark 4.2]

we can assume that f(x) is a polynomial of degree ≤ q+ 1. In the following we apply

results introduced in the preceding sections to characterize maximal curves given as

in Equation (4.16).

The following remark is due to Stichtenoth:

Remark 4.27. Suppose that q = p in Equation (4.16) considered over a perfect field

k. Then we can change variables to assume that the curve C is given by Equation

(4.16) with an admissible rational function. This follows from the partial fraction

decomposition and from arguments similar to the proof of [43, Lemma III.7.7]. In fact

let u(x) in k[x] be an irreducible polynomial and suppose that the rational function

f(x) involves a partial fraction of the form c(x) = u(x)rp, with c(x) a polynomial in

k[x] prime to u(x) and with r a natural number. Since the quotient field k[x]/(u(x))

is perfect, we can find polynomials a(x) and b(x) in k[x] such that c(x) = a(x)p +
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b(x)/u(x). Denoting by z = a(x) = u(x)r we get:

c(x) = u(x)rp − (zp − z) = z + b(x) = u(x)rp−1.

Performing the substitution y → y− z and repeating the arguments above we get the

desired result.

Denote by tr the trace of Fq2 over Fq. We have that (see [54]):

Proposition 4.28. Let C be a curve defined over Fq2 by the equation

yq − y = axd + b

where a, b ∈ Fq2 , a 6= 0 and d is any positive integer relatively prime to the character-

istic p. Suppose d divides q+1 and define v and u by vd = q2−1 and ud = q+1. Then

1) If C is maximal over Fq2, then tr(b) = 0 and av = (−1)u.

2) If C is minimal over Fq2 and q 6= 2, then d = 2, tr(b) = 0 and av 6= (−1)u.

Remark 4.29. Let q = 2 and b ∈ F4 \F2; apart from the curves listed in item 2) of the

above proposition, we have another minimal one of the form as in Equation (4.16):

the minimal elliptic curve over F4 given by the affine equation y2 + y = x3 + b.

Suppose q = p is a prime. Then a curve given by Equation (4.16) is a p−cyclic

extension of P1. In [28] we have a characterization of such curves, defined over an

algebraically closed field, with zero Hasse-Witt matrix. Here we generalize their

argument, and we characterize such curves in the general case q = pn with nilpotent

Cartier operator C n = 0.

We now state the main result of this section:
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Theorem 4.30. Let C be a curve defined by the equation yq − y = f(x), where

f(x) ∈ Fq2 [x] is a polynomial of degree d prime to p. If the curve C is maximal over

Fq2, then C is isomorphic to the projective curve defined over Fq2 by the following

affine equation

yq + y = xd with d a divisor of q + 1.

Proof. Write q = pn. As the curve C is maximal over Fq2 , from Theorem 4.1 we

know that C n = 0.

A basis B for H0(C,Ω1) is as bellow :

B = {yrxadx |0 ≤ a, r and apn + rd ≤ (pn − 1)(d− 1)− 2}. (4.17)

Since y = yq − f(x) we have

C n(yrxadx) = C n((yq − f)rxadx).

From Remark 2.52 we get

C n(yrxadx) =
r∑

h=0

(
r

h

)
(−1)hyr−hC n(fhxadx). (4.18)

Hence we have

C n(fhxadx) = 0 (4.19)

for all h, r and a satisfying 0 ≤ h ≤ r,
(
r
h

)
is prime to p and

apn + rd ≤ (pn − 1)(d− 1)− 2. (4.20)

First we show again that the degree of f(x) is not bigger than q + 1. In fact if
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d = deg(f(x) ≥ q + 2, then xq−1dx is a element of B, because

q(q − 1) ≤ (q − 1)(q + 1)− 2.

From Remark 2.52 we get C n(xp
n−1dx) = dx and this contradicts C n = 0.

Now if d = q+1, then the genus of the curve C is g = q(q−1)/2. Hence according

to [39] the curve C is the Hermitian curve given by:

yq + y = xq+1.

Hence we can assume d ≤ q, and so d ≤ q − 1. Then there exists ` ≥ 1 such that

`d+ 1 ≤ q < (`+ 1)d+ 1.

Again by gcd(p, d) = 1, we have

`d+ 1 ≤ q ≤ (`+ 1)d− 1. (4.21)

For a natural number r ∈ N satisfying

(q − 1− r)d ≥ q + 1

we define

a(r) := [d− 1− (r + 1)d+ 1

q
].

This number a(r) is the biggest possible number a ∈ N satisfying (4.20).

From (4.21) and d ≤ q − 1, we get that a(`) = d− 3 and therefore

deg(f `xa(`)) = `d+ a(`) = (`+ 1)d− 3. (4.22)
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Suppose that q − 1 = `d + a with 0 ≤ a ≤ a(`). Then the polynomial f `xa has

degree q − 1 and it follows from Remark 2.52 that

C n(f `xa.dx) = ad
`/q.dx

where ad denotes the leading coefficient of f(x). But this is in contradiction with

(4.19) where we take r = h = `.

Therefore we now get from (4.22) that

q − 1 ≥ `d+ a(`) + 1 = (`+ 1)d− 2. (4.23)

By (4.21) and (4.23), we have

q + 1 = sd with s := `+ 1 ≥ 2. (4.24)

Since gcd(p, d) = 1, we can change the variable x by x 7→ x + α, for a suitable

α ∈ Fq2 , such that

f(x) = adx
d + aix

i + ...+ a0 with i ≤ d− 2.

Therefore

f(x)s = asdx
sd + sas−1

d aix
i+(s−1)d + ...+ as0.

Suppose d ≥ 3. In this case if 1 ≤ i ≤ d− 2, then

0 ≤ d− i− 2 ≤ d− 3 = a(s).

We stress here that it holds a(`) = a(`+ 1) = d− 3.
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Therefore

i+ (s− 1)d+ d− i− 2 = sd− 2 = q − 1,

and we get

C n(f sxd−i−2dx) = s(as−1
d ai)

1/qdx = 0.

This implies ai = 0 since s is prime to p by (4.24). Hence f(x) must be of the form

(the case d = 2 is trivial)

f(x) = axd + b with d a divisor of q + 1.

Now if the curve is maximal, from Proposition 4.28 we know that tr(b) = 0 and

av = (−1)u where u = (q + 1)/d and v = (q2 − 1)/d. By Hilbert’s 90 Theorem, there

exists γ ∈ Fq2 such that γq−γ = b and by changing variable y → y+γ we can assume

b = 0.

Now we have two cases:

Case u is even. In this case av = 1 and hence a = cd for some c ∈ F∗q2 . Changing

variable x→ c−1x we have

yq − y = xd with d | q + 1.

Take α ∈ Fq2 with αq−1 = −1. Substituting y → α−1.y we have yq + y = αxd. Again

here αv = α(q−1)u = (−1)u = 1 and hence α = θd for some element θ ∈ F∗q2 and we

conclude that the curve is isomorphic to yq + y = xd.

Case u is odd. In this case av = −1 and hence (−aq−1)u = 1. So −aq−1 = βd(q−1)

for some β ∈ F∗q2 . Set µ := aβ−d, then µq−1 = −1. Now by changing variables

x→ β−1x and y → −µy we have that the curve C is equivalent to

yq + y = xd with d | q + 1. �
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degree q and where f(x) is an admissible rational function in

Remark 4.31. Most of the arguments in the proof above just uses the property C n =

0. We then have that the hypothesis that d divides q + 1 in Proposition 4.28 is

superfluous. We also get that all maximal curves over Fq2 given by yq − y = f(x) as

in Theorem 4.30 are covered by the Hermitian curve.

We can also classify minimal Artin-Schreier curves over Fq2 as bellow:

Theorem 4.32. Let C be a curve defined by the equation yq − y = f(x), where

f(x) ∈ Fq2 [x] has degree prime to p and p 6= 2. If C is minimal over Fq2 and g(C) 6= 0,

then C is equivalent to the projective curve defined by the equation

yq − y = ax2 where a ∈ Fq2 , a 6= 0, and it satisfies a
q2−1

2 6= (−1)
q+1
2 .

Proof. We know that if a curve is minimal over Fq2 , with q = pn, then again the

operator C n is zero. So by the proof of the above theorem, the curve can be defined

by yq − y = axd + b where d is a divisor of q + 1. Now we can use again Proposition

4.28; it yields d = 2, tr(b) = 0 and a
q2−1

2 6= (−1)
q+1
2 . �

Remark 4.33. Consider a maximal curve over k = Fq2 given by A(y) = f(x), where

A(y) is an additive separable polynomial in k[y] of degree q and where f(x) is an

admissible rational function in k(x). From Remark 3.14 we can assume that f(x) is

a polynomial in k[x] and from Theorem 3.15 we have that all roots of A(y) belong to

k. As now follows from Proposition 1.1 of [13], we can assume that A(y) = yq − y.

Hence we are in the situation of Theorem 4.30.

Remark 4.34. In the above theorem, if q ≡ 1 (mod 4), then changing variable x →

α−1x, where a = α2, the minimal curve C is equivalent to

yq − y = x2.
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Clearly, this last curve is maximal over Fq2 if q ≡ 3 (mod 4).

Let π : C → D be a p−cyclic covering of projective nonsingular curves over the

algebraic closure k̄. Then we have the so-called Deuring-Shafarevich formula:

σ(C)− 1 + r = p(σ(D)− 1 + r), (4.25)

where r is the number of ramification points of the covering π.

Corollary 4.35. Let C be a curve defined over k = Fp2 such that there exists

C → P1

a cyclic covering of degree p which also defined over k. If the curve C is maximal over

Fp2, then C is isomorphic to the curve given by the affine equation yp + y = xd, where

d divides p+ 1.

Proof. From Remark 4.27 we can assume that the curve C is given by :

yp − y = f(x),

where every pole of f(x) in k̄ occurs with a multiplicity relatively prime to the char-

acteristic p. Now if the curve C is maximal, then according to Corollary 2.59 we know

that σ(C) = 0. Note that from Formula (4.25) we must have r = 1 and we can put

this unique ramification point at infinity, and hence we can assume that f(x) is a

polynomial. The result now follows from Theorem 4.30. �

4.2.3 Hyperelliptic Curves

Let k = Fq2 be a finite field of characteristic p > 2. Let C be a projective nonsingular

hyperelliptic curve over k of genus g. Then C can be defined by an affine equation of
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the form

y2 = f(x)

where f(x) is a polynomial over k of degree 2g + 1, without multiple roots. If C is

maximal over Fq2 then by Corollary 4.8 we have an upper bound on the genus, namely

g(C) ≤ q − 1

2
.

In the following theorem we establish a characterization of maximal hyperelliptic

curves that attain this upper bound.

Theorem 4.36. There is a unique maximal hyperelliptic curve over Fq2 with genus

g = (q − 1)/2. It can be given by the affine equation

y2 = xq + x.

Before proving this theorem, we need to explain how the matrix associated to C n,

where q = pn, is determined from f(x). It is remarkable that the Hasse-Witt matrix

of hyperelliptic curves determined completely in [55].

The differential 1-forms of the first kind on C form a k−vector space H0(C,Ω1) of

dimension g with basis

B = {ωi =
xi−1dx

y
, i = 1, . . . , g}.

The images under the operator C n are determined in the following way. Rewrite

ωi =
xi−1dx

y
= xi−1y−qyq−1dx = y−qxi−1

N∑
j=0

cjx
jdx,
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where the coefficients cj ∈ k are obtained from the expansion

yq−1 = f(x)(q−1)/2 =
N∑
j=0

cjx
j with N =

q − 1

2
(2g + 1).

Then we get for i = 1, . . . , g,

ωi =y−q(
∑
j

i+j 6=0 mod q

cjx
i+j−1dx) +

∑
l

c(l+1)q−i
x(l+1)q

yq
dx

x
.

Note here that 0 ≤ l ≤ N+i
q
− 1 < g − 1

2
. On the other hand, we know from Remark

2.52 that if C n(xr−1dx) 6= 0 then r ≡ 0 (mod q). Thus we have

C n(ωi) =

g−1∑
l=0

(c(l+1)q−i)
1/q .

xl

y
dx.

If we write ω = (ω1, . . . , ωg) as a row vector we have

C n(ω) = ωA(1/q),

where A is the (g × g) matrix with elements in k given as

A =



cq−1 cq−2 . . . cq−g

c2q−1 c2q−2 . . . c2q−g
... . . . . . .

...

cgq−1 cgq−2 . . . cgq−g


.

Remark 4.37. In [50] the author find a characterization for hyperelliptic curves defined

over an algebraically closed field whose Hasse-Witt matrix is zero. Here we use his

idea to find hyperelliptic curves with nilpotent Cartier operator.

Proof of Theorem 6.1. Let C be a hyperelliptic curve of genus given by g =
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(q − 1)/2. Then the curve C can be defined by the equation y2 = f(x), with a

square-free polynomial

f(x) = aqx
q + aq−1x

q−1 + . . .+ a1x+ a0 ∈ Fq2 [x] and aq 6= 0.

As C is maximal over Fq2 , then C has 1 + q2 + q(q − 1) rational points. On the other

hand if we consider C as a double cover of P1, the ramification points are the roots

of f(x) and the point at infinity. As the point at infinity is a rational point and

1 + q2 + q(q − 1) is an even number, we have that f(x) must have an odd number

of rational roots. Hence f(x) has at least one rational root in Fq2 , denote it by θ.

Now by substituting x + θ for x, we can assume that C is defined by the equation

y2 = f(x) with f(0) = 0. We then write

f(x) = aqx
q + aq−1x

q−1 + . . .+ a1x ∈ Fq2 [x] and a1aq 6= 0.

Now as the curve C is maximal over Fq2 , with q = pn for some integer n, then

C n = 0. So the above matrix A is the zero matrix. Hence looking at the last row of

A, we have

cgq−1 = cgq−2 = . . . = cgq−g = 0.

We will show by induction that this means

aq−1 = aq−2 = . . . = aq−g = 0.

First we observe that

cgq−1 = g.aq
g−1aq−1.

So cgq−1 = 0 implies aq−1 = 0. Now assume aq−i = 0, for all 1 ≤ i < m ≤ g. We want

to show then that aq−m = 0. Under the assumption above, we have that f(x) reduces
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to

f(x) = aqx
q + aq−mx

q−m + . . .+ a1x.

We will then have that cgq−m = g.ag−1
q aq−m. So cgq−m = 0 implies that aq−m = 0. By

induction, we have shown that the polynomial f(x) reduces to

f(x) = aqx
q + agx

g + . . .+ a2x
2 + a1x.

Now we want to show that at = 0 for all 2 ≤ t ≤ g. Looking at the first row of the

matrix A, we have

cq−1 = cq−2 = . . . = cg+1 = 0.

By induction we can show that this means

a2 = a3 = . . . = ag = 0.

In fact, we first observe that cg+1 = ga1
g−1a2. Because a1 6= 0, cg+1 = 0 implies

a2 = 0. Now assume that ai = 0 for all i with 2 ≤ i < m ≤ g. We want to show that

am = 0. Under this assumption, we have that f(x) is :

f(x) = aqx
q + agx

g + . . .+ amx
m + a1x.

We will then have that cg−1+m = g.a1
g−1am. Again because a1 6= 0, we have that

cg−1+m = 0 implies am = 0. Thus by induction we have shown that the polynomial

f(x) must be of the form

f(x) = aqx
q + a1x with a1.aq 6= 0.
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Now we can write the equation of the curve C as below:

xq + µx = λy2 for some µ, λ ∈ F∗q2 .

As the curve C is maximal over Fq2 , one can show easily that the additive polynomial

A(x) := xq + µx has at least a nonzero root β ∈ F∗q2 . In fact more holds; it follows

from [18, Theorem 4.3] that all roots of A(x) belong to Fq2 .

Set α := βq and x1 = αx, then

A(x) = α−q(αx)q + (µα−1)(αx).

Hence

A(x) = α−q((x1)
q + µαq−1x1)

has the root x1 = αβ = βq+1 ∈ F∗q. So µαq−1 = −1, and this means that the curve C

is equivalent to the curve given by the equation

xq1 − x1 = ay2, where a := αqλ.

Now as we have seen at the end of the proof of Theorem 4.30, this curve is isomorphic

to the curve given by the equation

y2 = xq + x. �

Remark 4.38. Suppose that y2 = f(x), with f(x) ∈ Fq2 [x] a square-free polynomial

having degf(x) = q = pn and with p an odd prime, is the equation of a minimal curve

C over Fq2 . Then we have

#C(Fq2) = q2 + 1− (q − 1)q = q + 1
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and in particular #C(Fq2) is an even natural number. As in the proof of Theorem

4.36 we can assume that f(0) = 0, and from C n = 0 we then conclude that it holds

f(x) = aqx
q + a1x with a1aq 6= 0.

Hence the minimal curve C can be defined by

xq + µx = λy2, for some µ, λ ∈ F∗q2 .

The polynomial A(x) = xq + µx must have a nonzero root in Fq2 ; otherwise the

map sending x to A(x) would be an additive automorphism of Fq2 and hence the

cardinality of rational points would satisfy

#C(Fq2) = 1 + q2.

We then conclude, as in the proof of Theorem 4.36, that the curve C can be given by

the equation

xq1 − x1 = ay2, with a ∈ F∗q2 .

It now follows from Proposition 4.28 that

av 6= (−1)u with u =
q + 1

2
and v =

q2 − 1

2
.

Remark 4.39. An analogous result to Theorem 4.36 holds in the case of characteristic

p = 2; i.e., if p = 2 then the curve given by y2 + y = xq+1 is the unique maximal

hyperelliptic curve over k = Fq2 with genus g = q/2. In fact with arguments as in

the proof of Corollary 4.35, we get that the curve can be given by y2 + y = f(x) with

f(x) a polynomial in k[x] of degree q + 1. The result now follows from Theorem 2.3

of [12].
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4.2.4 Serre Maximal Curves

In this section we consider curves C that attain the Serre upper bound and we call

them SW− maximal curves ; i.e., it holds that

#C(Fq) = q + 1 + [2
√
q].g(C).

Proposition 4.40. Let k be a field with q elements and denote by m = [2
√
q]. For

a smooth projective curve C of genus g defined over k = Fq, the following conditions

are equivalent:

• The curve C is SW−maximal.

• The L− polynomial of C satisfies L(t) = (1 +mt+ qt2)g.

Proof. See [31] and [43, page 180]. �

Corollary 4.41. Let C be a smooth projective curve of genus g defined over k = Fq

which attains the Serre bound. Then its Hasse-Witt invariant satisfies

σ(C) =

 g if gcd(p,m) = 1

0 if p | m

Proof. Since C is SW -maximal, from Proposition 4.40 we have

L(t) = (1 +mt+ qt2)g

= 1 +
∑g

i=1

(
g
i

)
ti(m+ qt)i

= 1 +
∑g

i=1

(
g
i

)
ti(

∑i
j=0

(
i
j

)
mi−jqjtj).

If p divides m, then it is clear from Proposition ?? that σ(C) = 0. Now suppose that

gcd(p,m) = 1. We have to show that the coefficient of tg in the L-polynomial L(t) is
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not divisible by p. Denote it by ag. ¿From the last equality above, we then obtain

ag ≡ mg (mod p). �

We recall that an admissible rational function f(x) ∈ k(x) is such that every pole

of f(x) in the algebraic closure k̄ occurs with a multiplicity prime to the characteristic

p. We then have:

Theorem 4.42. Let C be a SW-maximal curve over Fq given by an affine equation

of the form

A(y) = f(x), (4.26)

where A(y) ∈ Fq[y] is an additive and separable polynomial and where f(x) is an

admissible rational function. Denote by m = [2
√
q] and suppose that gcd(p,m) = 1.

Then all poles of f(x) are simple poles.

Proof. We know that a curve C given by (4.26) is ordinary if and only if the rational

function f(x) has only simple poles (see [48, Corollary 1]). Thus Theorem 4.42 follows

directly from Corollary 4.41 . �

Corollary 4.43. Let C be a SW-maximal curve as in the above theorem. Then g(C) =

(degA− 1)(s− 1) where s denotes the number of poles of f(x).

We finish with two examples of SW-maximal Artin-Schreier curves:

Example 4.44. Let k = F2. So m = [2
√

2] = 2 and p divides m. Let C be the elliptic

curve over F2, given by the affine equation

y2 + y = x3 + x.

One can see easily that C has five k−rational points which means that C is SW-

maximal over k. Note that f(x) = x3 + x has a pole of order 3 at infinity.
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Example 4.45. Let k = F8. So m = [2
√

8] = 5 and gcd(p,m) = 1. Let C be the

elliptic curve over F8, given by the affine equation

y2 + y =
x2 + x+ 1

x
.

Then the curve C is SW-maximal since C has 14 k−rational points. In fact the two

simple poles of (x2 + x + 1)/x are totally ramified in the extension k(x, y)/k(x) and

they correspond to two k−rational points on C. By Hilbert 90 Theorem, we have

#C(F8) = 2 + 2B,

where B := #{α ∈ F8 | trF8|F2(
α2+α+1

α
) = 0}. But one can show that B = 6; in fact

the points x = α ∈ F8 \ F2 are completely splitting in k(x, y)/k(x).
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