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In this thesis we introduce multiplicative Dirac structures on Lie groupoids, gener-

alizing both multiplicative Poisson bivectors (i.e., Poisson group(oid)s) and closed 2-forms

(e.g., symplectic groupoids). We prove that for every source simply connected Lie groupoid

G with Lie algebroid AG, there exists a one-to-one correspondence between multiplicative

Dirac structures on G and Dirac structures on AG, which are compatible with both the

linear and algebroid structures of AG. This extends the integration of Lie bialgebroids to

Poisson groupoids carried out in [48]. In the case of multiplicative 2-forms, our approach

gives a new, simpler proof of the integration of Dirac manifolds of [10].

In the special case of multiplicative Dirac structures on Lie groups, we prove that

the characteristic foliation of a multiplicative Dirac structure is given by the cosets of a

normal Lie subgroup, and whenever this subgroup is closed, the space of characteristic

leaves inherits the structure of a Poisson-Lie group. We use Drinfeld’s correspondence

between Poisson-Lie groups and Lie bialgebras to describe multiplicative Dirac structures

on Lie groups infinitesimally.

We also explain the connection between multiplicative Dirac structures and Macken-

zie theory of double geometric structures.
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A mis amigos Andrés González (chico), Daniel Bravo (guatón) y Christopher

Thraves (negro) por los buenos momentos de matemática y carretes en JGM.
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Chapter 1

Introduction

The natural geometric object describing phase spaces of mechanical systems is a

symplectic manifold. More precisely, a symplectic manifold is a pair (M,ω) where M is

a smooth manifold and ω ∈ Ω2(M) is a nondegenerate 2-form satisfying the integrability

condition

dω = 0,

where d : Ω•(M) −→ Ω•+1(M) is the de Rham differential. Due to the physical interpreta-

tion of a symplectic manifold, there are two operations of special interest, namely restriction

to submanifolds and quotients by a Lie group of symmetries. On one hand, given a sub-

manifold iQ : Q −→ M one can consider the restriction of the symplectic form ω to the

submanifold Q, that is we consider the pull back form ωQ = i∗Qω. It is obvious that ωQ is

a closed 2-form, but it may have a non trivial kernel. On the other hand, given a Lie group

G acting on (M,ω) by diffeomorphism that preserve the symplectic structure, we can look

at the orbit space M/G. Assuming that the G-action on M is free and proper, the orbit

space M/G is a smooth manifold and one observes that it is generally not symplectic, but

it inherits a Poisson structure. A Poisson manifold is a pair (M,π) where M is a smooth

manifold and π ∈ Γ(
∧2(TM)) is a smooth bivector satisfying the integrability condition

[π, π] = 0,

where [·, ·] : Γ(
∧p(TM))× Γ(

∧q(TM)) −→ Γ(
∧p+q−1(TM)) denotes the Schouten bracket

of multivector fields on M . In summary, the property of a 2-form being symplectic may be
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lost under the operations of restricting to submanifolds and taking quotients by symplectic

actions. Indeed, we are led to two different geometries: the geometry of closed 2-forms and

the geometry of Poisson bivectors. This suggests that we need to go further and define

a more general geometric structure which includes closed 2-forms and Poisson bivectors.

This was exactly what T. Courant did in his thesis, defining what nowadays is called a

Dirac manifold [17]. One observes that a closed 2-form ω on M induces a bundle map

ω] : TM −→ T ∗M via ω](X)(Y ) = ω(X,Y ), and similarly a Poisson bivetor π on M

defines a bundle map π] : T ∗M −→ TM by π](α)(β) = π(α, β). It follows that the graphs

of the bundle maps ω] and π] define natural subbundles L ⊆ TM := TM ⊕ T ∗M , which

are maximal isotropic with respect to the nondegenerate symmetric pairing on TM,

〈(X,α), (Y, β)〉 = α(Y ) + β(X),

and that satisfy the integrability condition

[[Γ(L),Γ(L)]] ⊆ Γ(L),

with respect to the Courant bracket [[·, ·]] : Γ(TM)× Γ(TM) −→ Γ(TM),

[[(X,α), (Y, β)]] = ([X,Y ],LXβ − iY dα).

The integrability in the sense of Courant interpolates the integrability conditions defining

closed 2-forms and Poisson bivectors.

The main objective of this thesis is to study Dirac structures defined on Lie

groupoids, satisfying a suitable compatibility condition with the groupoid multiplication.

Recall that a groupoid is a small category in which every morphism is invertible. More

specifically, a groupoid consists of a set G of arrows, a set M of objects, and structure map-

pings s, t : G −→ M called source and target maps, a partially defined multiplication

map m : G(2) −→ G, where G(2) = {(g, h) ∈ G×G | s(g) = t(h)} is the set of composable

groupoid pairs, a unit section ε : M −→ G and an inversion map i : G −→ G, satisfying

the axioms of a category (see e.g. [13, 41]). A Lie groupoid is a groupoid where G and

M are smooth manifolds, all the structure mappings are smooth maps and s and t are

surjective submersions.

Our study is motivated by a variety of geometrical structures compatible with
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group or groupoid structures, including:

i) Poisson-Lie groups: these structures consist of a Lie group G with a Poisson structure

π, which are compatible in the sense that the multiplication map m : G×G −→ G is

a Poisson map. Equivalently, the Poisson bivector π is multiplicative, that is

πgh = (lg)∗πh + (rh)∗πg,

for every g, h ∈ G. Here lg and rh denote the left and right multiplication by g and h,

respectively. Poisson-Lie groups arise as semiclassical limit of quantum groups, and

they are infinitesimally described by Lie bialgebras. See e.g. [23].

ii) Symplectic groupoids: a symplectic groupoid is a Lie groupoid G with a symplectic

structure ω, which is compatible with the groupoid multiplication in the sense that

the graph

Graph(m) ⊆ G×G×G

is a Lagrangian submanifold with respect to the symplectic structure ω⊕ω	ω. This

compatibility condition is equivalent to saying that ω is multiplicative, that is

m∗ω = pr∗1ω + pr∗2ω,

where pr1, pr2 : G(2) −→ G are the canonical projections. Symplectic groupoids

arise in the context of quantization of Poisson manifolds [63, 65], connecting Poisson

geometry to noncommutative geometry. In [14], symplectic groupoids appeared as

phase spaces of certain sigma models. The infinitesimal description of symplectic

groupoids is given by Poisson structures, see e.g. [63, 16].

iii) Poisson groupoids: these objects were introduced by A. Weinstein [64] as a common

generalization of Poisson-Lie groups and symplectic groupoids. A Poisson groupoid is

a Lie groupoid G equipped with a Poisson structure π, which is compatible with the

groupoid multiplication in the sense that

Graph(m) ⊆ G×G×G
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is a coisotropic submanifold. These structures are related to the geometry of the

classical dynamic Yang-Baxter equation, see for instance [24]. At the infinitesimal

level, Poisson groupoids are described by Lie bialgebroids [46].

iv) Presymplectic groupoids: Lie groupoids equipped with a multiplicative closed 2-form

were studied in [10]. A presymplectic groupoid [10] is a Lie groupoid G with a multi-

plicative closed 2-form ω satisfying suitable nondegeneracy conditions. These objects

arise in connection with equivariant cohomology and generalized moment maps [9].

The infinitesimal description of presymplectic groupoids is given by Dirac structures,

extending the infinitesimal description of symplectic groupoids. More generally, Lie

groupoids endowed with arbitrary multiplicative closed 2-forms are infinitesimally de-

scribed by bundle maps σ : AG −→ T ∗M called IM-2-forms. Here AG denotes the

Lie algebroid of G and T ∗M is the cotangent bundle of the base of G.

The first goal of this work is to find a suitable definition of multiplicative Dirac

structure that include both multiplicative Poisson bivectors and multiplicative closed 2-

forms, and hence encompasses all examples above. This is obtained by observing that given

a Lie groupoid G over M with Lie algebroid AG, the tangent bundle TG and the cotangent

bundle T ∗G inherit natural Lie groupoid structures over TM and A∗G, respectively. One

observes that a bivector π is multiplicative if and only if the bundle map π] : T ∗G −→ TG

is a groupoid morphism [46]. Similarly, a 2-form ω is multiplicative if and only if the bundle

map ω] : TG −→ T ∗G is a morphism of Lie groupoids. It turns out that the direct sum

vector bundle TG⊕T ∗G is a Lie groupoid over TM⊕A∗G, and graphs of both multiplicative

Poisson bivectors and closed 2-forms define Lie subgroupoids of TG ⊕ T ∗G. We say that

a Dirac structure LG on a Lie groupoid G is multiplicative if LG ⊆ TG ⊕ T ∗G is a Lie

subgroupoid. A Lie groupoid G equipped with a multiplicative Dirac structure is referred

to as a Dirac groupoid.

Our main purpose is to describe multiplicative Dirac structures infinitesimally,

that is, in terms of Lie algebroid data. We prove that, for every Lie groupoid G with Lie

algebroid AG, multiplicative Dirac structures correspond to Dirac structures on AG suit-

ably compatible with both the linear and Lie algebroid structures on AG. In the particular

case of multiplicative Poisson bivectors and multiplicative 2-forms, we explain how this is

equivalent to the known infinitesimal descriptions. Along the way, we develop techniques

that can treat all multiplicative structures above in a unified manner, often simplifying
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existing results and proofs. The organization of this thesis and results are as follows.

Lie groupoids and Dirac structures

Here we review the basics of Lie groupoids and Lie algebroids. We also recall

the definition and main properties of Dirac structures on smooth manifolds, as well as the

notion of morphism of Dirac manifolds. We also review the main properties of Poisson

groupoids and Lie bialgebroids, as well as multiplicative forms and IM-2-forms. In the last

section of chapter 2 we define our main object of study, multiplicative Dirac structures and

we discuss basic examples of these objects.

Multiplicative 2-forms and their infinitesimal counterparts

This chapter presents the detailed study of multiplicative Dirac structures in the

case of multiplicative 2-forms, giving new, simpler proofs of the results in [10]. We use

tangent lifts of differential forms [28] to understand the effect of the Lie functor on mul-

tiplicative forms. We show that every multiplicative 2-form ωG on a Lie groupoid G is

infinitesimally described by a 2-form ωAG on the Lie algebroid AG of G, which is mor-

phic in the sense that the natural map ω]AG : T (AG) −→ T ∗(AG) is a morphism of Lie

algebroids. We show that when ωG is closed relative to a 3-form φ ∈ Ω3(M), that is

dωG = s∗φ− t∗φ,

then the induced morphic 2-form on AG is given by

ωAG = −(σ∗ωcan + ρ∗(τ(φ))),

where σ : AG −→ T ∗M is defined by σ(u) = (iuωG)|TM , ωcan denotes the canonical sym-

plectic form on T ∗M , ρ : AG −→ TM is the anchor map of AG, and τ(φ) ∈ Ω2(TM) is

defined at every X ∈ TM by τ(φ)X = p∗M (iXφ). The main result of this chapter estab-

lishes that, on an abstract Lie algebroid A with anchor map ρ : A −→ TM , the 2-form

Λ := −(σ∗ωcan + ρ∗(τ(φ))) is morphic if and only if σ : A −→ T ∗M defines an IM-2-form

with respect to φ. This characterization of IM-2-forms together with Lie’s second theorem

provide a new proof of the main result of [10], avoiding the path space construction of Lie
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groupoids.

The case of Lie groups

This chapter is concerned with the study of multiplicative Dirac structures on Lie

groups. We observe that a Dirac structure LG on a Lie group G is multiplicative if and only

if the multiplication map m : G×G −→ G is a forward Dirac map. In particular, Dirac-Lie

groups provide a natural extension of Poisson-Lie groups. We show that the characteristic

foliation of a Dirac-Lie group is given by cosets of a normal Lie subgroup, and whenever this

subgroup is closed the space of characteristic leaves inherits the structure of a Poisson-Lie

group. In particular, using Drinfeld’s correspondence we find the infinitesimal picture of

Dirac-Lie groups.

Natural functors on Dirac groupoids

In this chapter we study the effect of two natural functors on Dirac groupoids,

namely the tangent functor and the Lie functor. First, for an arbitrary Dirac manifold

(M,LM ) we construct a tangent Dirac structure LTM on the tangent bundle TM via

Mackenzie and Xu’s method for prolongating Lie algebroid structures to tangent bundles

[46]. Our procedure gives an alternative description of tangent Dirac structures studied

before by T. Courant [18] and I. Vaisman [61]. In [28] it was proved that for every Poisson

Lie group (G, πG) the tangent group TG equipped with the tangent Poisson structure πTG

is a Poisson Lie group as well. We extend this result to the Dirac groupoids setting. We

prove that given a Dirac groupoid (G,LG) the tangent groupoid TG ⇒ TM endowed with

the tangent Dirac structure LTG is also a Dirac groupoid.

The second functor acting on a Dirac groupoid (G,LG) is the Lie functor. We

answer the main question of this thesis:

What are the infinitesimal counterparts of multiplicative Dirac structures?

We show that the multiplicativity of LG ⊆ TG ⊕ T ∗G translates into the linearity of a

Dirac structure LAG on AG which also defines a Lie subalgebroid LAG ⊆ T (AG)⊕T ∗(AG).
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Moreover, we show that the Dirac structure LAG coincides with the Lie algebroid A(LG) of

LG, up to natural identifications. Conversely, on an integrable Lie algebroid A, every linear

Dirac structure LA on A which is also a subalgebroid of TA⊕ T ∗A can be integrated to a

multiplicative Dirac structure LG ⊆ TG⊕T ∗G on the source simply connected Lie groupoid

G integrating the Lie algebroid A. This result is a natural extension of the integration of

Lie bialgebroids [48], where the linear Dirac structures involved there are just graphs of

Lie algebroid morphisms. We finish chapter 5 by studying multiplicative Dirac structures

defined by B-fields transformations of Poisson groupoids. We also describe these structures

infinitesimally.

Dirac groupoids and LA-groupoids

This chapter is concerned with an alternative construction of the linear Dirac struc-

ture LAG on AG determined in chapter 5. We use the second order geometry introduced

by K. Mackenzie [42] to show that every Dirac groupoid (G,LG) may be thought of as a

Lie groupoid object in the category of Lie algebroids. In the terminology of K. Mackenzie

this is an LA-groupoid [42]. The Lie functor applied to an arbitrary LA-groupoid yields

a double Lie algebroid [43]. In particular the induced Dirac structure LAG associated to a

Dirac groupoid (G,LG) arises as the double Lie algebroid of the LA-groupoid representing

(G,LG).

New research directions

Chapter 7 describes natural new research directions. First, we briefly discuss the

connection between the results shown in chapter 3 and the Van Est isomorphism between

the Bott-Shulman complex of a Lie groupoid and the Weil algebra of its Lie algebroid,

constructed recently by C. Arias Abad and M. Crainic in [2, 3]. We also explain how the

theory of graded supermanifolds could give a different perspective on the infinitesimal invari-

ant of a Dirac groupoid. This approach is based on Roytenberg’s correspondence between

Courant algebroids and certain degree 2 symplectic supermanifolds. We also explain how

the underlying Courant algebroid where multiplicative Dirac structure lie would provide

the prototype of new interesting structure, which might be called a Courant groupoid.
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In addition, we have included an appendix with some double structures which

are used throughout this work. Along this thesis we use Einstein’s summation convention

consistently.
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Chapter 2

Lie groupoids and Dirac structures

2.1 Basic Lie theory of Lie algebroids and groupoids

A groupoid over a set M is a set G together with structure mappings

s, t : G −→M,

called source and target maps, a partially defined multiplication map

m : G(2) −→ G

(g, h) 7→ gh

where G(2) = {(g, h) ∈ G × G | s(g) = t(h)} is the set of composable groupoid pairs,

a unit section ε : M −→ G and an inversion map i : G −→ G, satisfying the following

compatibility conditions:

1. s(gh) = s(h), t(gh) = t(g).

2. (gh)k = g(hk), whenever s(g) = t(h) and s(h) = t(k).

3. ε(t(g))g = g = gε(s(g))

4. gi(g) = ε(t(g)), i(g)g = ε(s(g)).

Equivalently, a groupoid is a small category in which every morphism is invertible. See for

instance [13, 41]. We use the notation G ⇒ M to indicate that G is a groupoid over M .
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A Lie groupoid is a groupoid G over M , where G and M are smooth manifolds, all the

structure mappings are smooth maps and s and t are surjective submersions.

Example 2.1.1. Every Lie group G can be viewed as a Lie groupoid over a point.

Example 2.1.2. Let M be a smooth manifold. Consider the space

Π(M) = {[γ] | γ is a curve in M},

here [γ] denotes the homotopy class of γ with fixed end-points. There is a natural groupoid

structure on Π(M) with source and target maps defined by

s([γ]) = γ(0); t([γ]) = γ(1),

the multiplication is given by [γ1][γ2] = [γ1γ2], where γ1γ2 is the path obtained via the

concatenation of γ1 and γ2. The smooth structure on Π(M) is the unique smooth structure

making the map (s, t) : Π(M) −→ M ×M into a surjective submersion. The groupoid

Π(M) is called the fundamental groupoid of M .

Example 2.1.3. Let F be a regular foliation on a smooth manifold M . We define a Lie

groupoid M(F) over M as follows. If x, y ∈ M are on different leaves, then there are no

arrows from x to y. If x and y are on the same leaf L, then the arrows from x to y in M(F)

are homotopy classes of paths from x to y inside the leaf L. The source and target maps are

the obvious ones and the multiplication is given by the homotopy class of the concatenation

of paths. We refer to M(F) ⇒ M as the monodromy groupoid of the foliated manifold

(M,F). For details see [50].

Example 2.1.4. Given a foliated manifold (M,F) we define a Lie groupoid H(F) ⇒ M in

a similar way to the definition of M(F), except that we replace homotopy classes of paths

by holonomy classes of paths. This Lie groupoid is referred to as the holonomy groupoid

associated to the foliated manifold (M,F). For a detailed explanation see [50].

Example 2.1.5. Let H be a Lie group acting on a smooth manifold M . We endow H×M
with a Lie groupoid structure over M as follows. The source and target maps are defined

by

s(h, x) = x, t(h, x) = hx.
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The multiplication is defined by (h, h′x)(h′, x) = (hh′, x). The unit section is ε(x) = (e, x)

where e ∈ H is the identity element. Finally the inversion map is defined by i(h, x) =

(h−1, hx). These maps define a Lie groupoid structure on H ×M , called the transforma-

tion groupoid. We usually denote the transformation groupoid by H n M . See [50] for

more details.

Definition 2.1.1. Let G1 and G2 be Lie groupoids over M1 and M2, respectively. A

morphism of Lie groupoids is a pair (Φ, ϕ) of smooth maps Φ : G1 −→ G2, ϕ : M1 −→M2,

commuting with all structure maps (in the sense that they define a functor between the

categories G1 and G2).

As in the case of Lie groups, every Lie groupoid has a natural infinitesimal invari-

ant. In order to find this invariant we recall the definition of an abstract Lie algebroid.

Definition 2.1.2. A Lie algebroid over a smooth manifold M is a vector bundle A
qA−→M

with a Lie bracket [·, ·]A on Γ(A) and a bundle map, called the anchor map, ρA : A −→ TM

satisfying the Leibniz rule

[u, fv]A = f [u, v]A + (LρA(u)f)v

where u, v ∈ Γ(A) and f ∈ C∞(M).

Given a Lie algebroid A
qA−→ M , the Lie algebroid differential is the operator

dA : Γ(
∧k A∗) −→ Γ(

∧k+1A∗) defined by

dAξ(u1, ..., uk+1) =
k∑
i=1

(−1)iρA(ui)ξ(u1, ..., ûi, ..., uk+1)+ (2.1)

+
∑
i<j

(−1)i+jξ([ui, uj ]A, u1, ..., ûi, ..., ûj , ..., uk+1), (2.2)

where ξ ∈ Γ(
∧k A∗) and ui ∈ Γ(A) with i = 1, ..., k + 1. The operator dA satisfies d2

A = 0,

so we can talk about the Lie algebroid cohomology. One easily checks that the anchor map

ρA and the Lie bracket [·, ·]A are completely determined by dA and the property d2
A = 0.

See [13] for more details. Another characterization of Lie algebroid structures is via linear

Poisson bivectors. More specifically, every Lie algebroid A induces a Poisson structure on

its dual bundle A∗ which is linear in the sense that the space of fiberwise linear functions

C∞
lin(A

∗) ∼= Γ(A) ⊆ C∞(A∗) is a Poisson subalgebra. More explicitly, if (x1, ..., xm) is a
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system of local coordinates on M and {e1, ..., er} is a basis of local sections of A, we induce

coordinates (xi, ua) on A. There are structure functions ρja, Ccab for the Lie algebroid A,

determined by

i) ρA(ea) = ρja
∂
∂xj , and

ii) [ea, eb]A = Ccabec.

Now if {e1, ..., er} is a basis of local sections of A∗, dual to {e1, ..., er}, we induce local

coordinates (xi, ξa) on A∗. With respect to this local description of A∗, the linear Poisson

bivector πA∗ ∈ X2(A∗) has the form

(πA∗)|(x,ξ)
= ρia(x)

∂

∂xi
∧ ∂

∂ξa
+

1
2
Ccab(x)ξc

∂

∂ξa
∧ ∂

∂ξb
. (2.3)

It can be easily verified that the linear Poisson structure on A∗ determines com-

pletely the Lie algebroid structure on A. See e.g. [13].

Example 2.1.6. Every finite dimensional Lie algebra g can be seen as a Lie algebroid over

a point.

Example 2.1.7. Let M be a smooth manifold. The tangent bundle TM has a natural Lie

algebroid structure over M , with anchor map defined by IdTM and Lie bracket on X(M)

given by the usual bracket of vector fields. We refer to TM as the canonical Lie algebroid.

Example 2.1.8. Every regular distribution F ⊆ TM which is involutive defines a Lie

algebroid over M . The anchor map is given by the inclusion F −→ TM and the Lie bracket

on Γ(F ) is just the usual Lie bracket of vector fields.

Example 2.1.9. Let h be a Lie algebra acting on a smooth manifold M . That is, there

exists a Lie algebra morphism

h −→ X(M)

u 7→ uM .

We endow the trivial bundle Ah = h×M with the structure of a Lie algebroid over M . The

anchor map is defined by
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ρ : h×M −→ TM

(u, x) 7→ uM (x).

The Lie bracket [·, ·]Ah
on Γ(Ah) ∼= C∞(M)

⊗
h is given by

[u, v]Ah
:= [u, v],

for u, v ∈ h, and we extend it by requiring the Leibniz rule. The bundle Ah −→ M with

this Lie algebroid structure is referred to as the transformation Lie algebroid. See [50]

for more details.

Given a Lie groupoid G ⇒ M , we construct its Lie algebroid in the same way we

do for the Lie algebra of a Lie group. For that, consider the distribution T sG tangent to

the s-fibration of G, that is at every point g ∈ G we have

T sG = ker(Ts : TG −→ TM).

Definition 2.1.3. A vector field X on G is called right invariant if it is tangent to the

s-fibration, and for every composable pair (g, h) ∈ G(2) we have

Tgrh(Xg) = Xgh,

where rh : s−1(t(h)) −→ s−1(s(h)) is the right multiplication by h ∈ G and Tgrh denotes

the derivative of rh at the point g ∈ G.

One can see that the space Xr(G) of right invariant vector fields on G is a Lie subalgebra

of X(G) with respect to the Lie bracket of vector fields. Furthermore, there is a one-to-one

correspondence between Xr(G) and the module of sections of the pull back vector bundle

AG := ε∗(T sG).

The Lie algebroid of G is the vector bundle AG −→M equipped with the Lie bracket on

Γ(AG) induced by the identification Xr(G) ∼= Γ(AG), and anchor map defined by Tt|AG :

AG −→ TM . See [13].
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Example 2.1.10. If G is a Lie group, the construction of its Lie algebroid leads to the Lie

algebra of G.

Example 2.1.11. The Lie algebroid of the fundamental groupoid Π(M) is the tangent

bundle TM with the canonical Lie algebroid structure.

Example 2.1.12. The Lie algebroids of the Lie groupoids M(F) and H(F) coincide with

the Lie algebroid associated to the distribution F ⊆ TM tangent to the foliation F .

Unlike finite dimensional Lie algebras, not every Lie algebroid is the Lie algebroid

of a Lie groupoid. A Lie algebroid A is called integrable if there exists a Lie groupoid G

with Lie algebroid isomorphic to A. It is easy to see that whenever A integrates to a Lie

groupoid G, then it admits an integration G̃ with simply connected s-fibers. For instance,

the Lie algebroid associated to any integrable distribution F ⊆ TM integrates to H(F) and

to M(F), the latter being the source simply connected integration. Henceforth, we only

consider source simply connected integrations. Explicit obstructions for the integrability of

Lie algebroids can be found in [21].

Definition 2.1.4. ([41, 50]) Let A1 −→ M1 and A2 −→ M2 be Lie algebroids. A bundle

map Ψ : A1 −→ A2 covering a map ψ : M1 −→M2 is called a morphism of Lie algebroids

if the following properties are fulfilled:

1. ρA2
◦Ψ = Tψ ◦ ρA1

2. For every u, v sections of A1 with Ψ(u) = f iφ∗(ui) and v = gjφ∗(vj) where ui, vj are

sections of A2 and f i, gj are smooth functions on M1, the following bracket preserving

condition is satisfied

Ψ([u, v]A1) = f igjφ∗([ui, vj ]A2) + ρA1
(u)gjφ∗(vj)− ρA1

(v)f iφ∗(ui)

Let (Φ, ϕ) be a Lie groupoid morphism between G1 and G2. The tangent functor

applied to Φ gives rise to a bundle map TΦ : TG1 −→ TG2 which sends the distribution

T sG1 into T sG2. Since (Φ, ϕ) is compatible with the unit sections of G1 and G2, the bundle

map TΦ restricts to a bundle map A(Φ) : AG1 −→ AG2, which defines a morphism of Lie

algebroids (A(Φ), ϕ) between AG1 and AG2. Let us denote by LG and LA the category of

Lie groupoids and Lie algebroids, respectively.
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Definition 2.1.5. There is a natural functor A : LG −→ LA, which maps each object

G ∈ LG to the object AG ∈ LA, and every morphism of groupoids Φ : G1 −→ G2 is

mapped to the Lie algebroid morphism A(Φ) : AG1 −→ AG2. We refer to A as the Lie

functor.

We finish this subsection with the Lie’s second fundamental theorem for morphisms

of Lie algebroids. We will use this result several times along this thesis.

Theorem 2.1.1. Let ψ : A1 −→ A2 be a morphism of integrable Lie algebroids, and let G1

and G2 be integrations of A1 and A2, respectively. If G1 is source simply connected, then

there exists a unique morphism of Lie groupoids Φ : G1 −→ G2, such that A(Φ) = ψ.

A proof of this result can be found in [21, 48].

Remark 2.1.1. Assume that G1 is a source-connected Lie groupoid. If Φ1,Φ2 : G1 −→ G2

are Lie groupoid morphisms inducing the same Lie algebroid morphism Ψ : AG1 −→ AG2,

then necessarily Φ1 = Φ2. Indeed, we can consider the source simply connected Lie groupoid

G̃1 with AG̃1 = AG1 and integrate Ψ : AG1 −→ AG2 to a unique groupoid morphism

Φ̃ : G̃1 −→ G2. The natural projection pr : G̃1 −→ G1 is a groupoid morphism, and we

notice that Φ1 ◦pr : G̃1 −→ G2 is a groupoid morphism with A(Φ1 ◦pr) = Ψ. Similarly, the

groupoid morphism Φ2 ◦ pr : G̃1 −→ G2 satisfies A(Φ2 ◦ pr) = Ψ. Therefore, the uniqueness

of the integration Φ̃ : G̃1 −→ G2 implies that Φ1 = Φ2.

2.2 Basics on Dirac geometry

2.2.1 Dirac structures

Given a smooth manifold M we consider TM := TM⊕T ∗M . A Dirac structure

([17, 19]) is a subbundle L ⊂ TM satisfying the following properties:

1. It is maximal isotropic with respect to the non degenerate symmetric pairing on TM,

〈X ⊕ α, Y ⊕ β〉 = α(Y ) + β(X).

2. The space of smooth sections Γ(L) is closed under the Courant bracket on Γ(TM),

[[X ⊕ α, Y ⊕ β]] = [X,Y ]⊕ LXβ − iY dα.
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It is whorthwhile to observe that, since the quadratic form 〈·, ·〉 has split signature,

condition 1. is equivalent to saying that 〈·, ·〉|L×L = 0 and rank(L) = dim(M). A maximal

isotropic subbundle L ⊆ TM is referred to as a Lagrangian subbundle of TM . We denote

by Dir(M) the space of all Dirac structures on a smooth manifold M .

Example 2.2.1. (Closed 2-forms)

Let ω be a 2-form on M . The graph of ω is the subbundle of TM defined by

Lω = {X ⊕ ω](X) | X ∈ TM}

where ω] : TM −→ T ∗M is the natural bundle map induced by ω. That is,

ω](X) = ω(X, ·).

One easily checks that the skew symmetry of ω implies that Lω is isotropic, and it is clear

that Lω has maximal dimension. The Courant integrability for Lω is equivalent to dω = 0.

Example 2.2.2. (Poisson bivectors)

On the other extreme, the graph of a bivector π ∈ Γ(
∧2 TM) is the subbundle of

TM given by

Lπ = {π](α)⊕ α | α ∈ T ∗M}

Here π] : T ∗M −→ TM denotes the bundle map defined by π](α) = π(α, ·). Again the

isotropy property of Lπ comes from the skew symmetry of π, and we observe that Lπ has

maximal dimension. The Courant integrability for Lπ is equivalent to [π, π] = 0, where [·, ·]
is the Schouten bracket of multivector fields.

The examples discussed previously show that Dirac structures interpolate presym-

plectic and Poisson structures. There is also another important class of Dirac structures,

those given by regular foliations.

Example 2.2.3. (Regular foliations)

Let F ⊆ TM be a regular distribution. Consider the graph

LF = F ⊕ F ◦ ⊆ TM ⊕ T ∗M
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where F ◦ denotes the annihilator of F . It is easy to see that LF defines a Dirac structure

on M if and only if F is involutive in the sense of Frobenius.

Example 2.2.4. (Restriction to submanifolds)

Let L be a Dirac structure on M , and let Q ↪→ M be a submanifold. For each

x ∈ Q define the Lagrangian subspace

(LQ)x :=
Lx ∩ (TxQ⊕ T ∗xM)

Lx ∩ (TxQ)◦
. (2.4)

The result of putting together the pointwise subspaces (LQ)x ⊆ TQ may not be a smooth

vector bundle. The result will be a smooth bundle if for instance Lx ∩ (TxQ)◦ has constant

dimension. When the family (2.4) defines a smooth bundle, we get a Dirac structure LQ on

the submanifold Q of M .

Example 2.2.5. (Moment level sets)

Let (M,π) be a Poisson manifold, and let H be a Lie group acting on M in a

Hamiltonian manner. Let J : M −→ h∗ be a momentum map for this action, and suppose

that ξ ∈ h∗ is a regular value for J . Let Hξ denote the isotropy group of ξ ∈ h∗ with respect

to the coadjoint action. The moment level set Q := J−1(ξ) is a submanifold of M , so we

can consider the family of Lagrangian subspaces (LQ)x ⊆ TQ as in (2.4). If the isotropy

groups of the Hξ-action on Q have constant dimension, e.g. if the action is free, then the

result of putting together the subspaces (LQ)x yields a smooth bundle over Q which defines

a Dirac structure on the moment level set Q = J−1(ξ). See [17] for more details.

As observed in [57], it is convenient to modify the Courant bracket by a closed

3-form φ on M . The φ-twisted Courant bracket on Γ(TM) = X(M)⊕Ω1(M) is defined

by

[[X ⊕ α, Y ⊕ β]]φ = [X,Y ]⊕ LXβ − iY dα+ iX∧Y φ.

A φ-twisted Dirac structure on M is a Lagrangian subbundle L ⊆ TM whose

space of sections Γ(L) is closed under the φ-twisted Courant bracket. If φ = 0 we recover the

usual bracket [[·, ·]] introduced previously. It is important to observe that it is the Courant

bracket that is twisted by the 3-form φ ∈ Ω3(M) and not the subbundle L. The addition of

the twist 3-form is important since there are interesting examples of Dirac structures which
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turn out to be integrable up to a closed 3-form [57]. The study of twisted Dirac structures

is motivated by the previous work of Klimčik and Strobl [36] on WZW-Poisson manifolds,

where a 3-form background plays a role similar to the Wess-Zumino-Witten term in field

theory. One observes easily that a 2-form ω on M defines a φ-twisted Dirac structure if and

only if

dω + φ = 0.

In this case we say that ω is closed with respect to φ ∈ Ω3(M). Similarly, a bivector

π ∈ Γ(
∧2 TM) defines a φ-twisted Dirac structure if and only if

1
2
[π, π] = (∧3π])(φ),

where ∧π] denotes the extension of the bundle map π] : T ∗M −→ TM to higher exterior

powers.

Example 2.2.6. (Cartan-Dirac structure)

Let G be a Lie group whose Lie algebra g is equipped with a nondegenerate sym-

metric adjoint-invariant bilinear form (·, ·)g. We can use the bilinear form (·, ·)g to identify

TG and T ∗G. With respect to this identification, we define the Lagrangian subbundle

LG := {ur − ul ⊕ 1
2
(ur + ul) | u ∈ g},

where ur and ul denote the right and left invariant vector fields determined by u ∈ g. One

can prove that LG is a φG-twisted Dirac structure, where φG is the bi-invariant Cartan

3-form on G, defined at element in g by

φG(u, v, w) =
1
2
(u, [v, w])g.

The φG-twisted Dirac structure LG on G is referred to as the Cartan-Dirac structure on

G. The Cartan-Dirac structure on a Lie group is closely related to the theory of Lie group

valued moment maps [1, 10], which arises in connection with the symplectic structure of

the moduli space of flat connections on a compact Riemann surface [4].

Given a closed 3-form φ on M , we denote by Dirφ(M) the space of all φ-twisted

Dirac structures on M .
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2.2.2 Properties

The involutivity of a Dirac subbundle with respect to the φ-twisted Courant

bracket may be thought of as a generalized Frobenius condition. It turns out that Dirac

geometry has natural connections with foliation theory, in particular with the theory of Lie

algebroids. More concretely, given a φ-twisted Dirac structure L on a smooth manifold M ,

the vector bundle L −→ M inherits a canonical Lie algebroid structure with anchor map

given by the restriction of the canonical projection pr|L : L −→ TM , and Lie bracket on

sections defined by the restriction φ-twisted Courant bracket. Every Lie algebroid induces

an integrable singular distribution given by the image of the anchor map, see e.g. [13].

In the case of a Lie algebroid induced by a Dirac structure L, this singular foliation comes

with extra data. Actually, on each leaf iS : S ↪→M there is a 2-form defined at each x ∈ S
by

ΩS(x)(X,Y ) = α(Y ),

where X,Y ∈ pr(L)x and α ∈ T ∗xM satisfies X ⊕ α ∈ Lx. Observe that since L ⊆ TM is

isotropic one concludes that ΩS is well defined, that is, it does not depend on the choice of

α. The integrability of L with respect to the φ-twisted Courant bracket implies that the

leafwise 2-forms ΩS are closed up to i∗Sφ, that is

dΩS + i∗Sφ = 0.

We refer to this singular foliation with the leafwise 2-forms as the presymplectic foliation

of M .

Example 2.2.7. Let (M,π) be a Poisson manifold. The singular foliation on M induced

by the Dirac structure Lπ is the foliation tangent to π](T ∗M) ⊆ TM . The leafwise presym-

plectic forms recover the leafwise symplectic structure underlying the Poisson structure

π.

The kernel of a Dirac structure L on M is defined by generally singular distribu-

tion ker(L) = L ∩ TM . It follows from the definition of the leafwise 2-forms that at each

x ∈ S the fiber of ker(L) is given by ker(L)x = ker(ΩS(x)). As in the symplectic or Poisson

case, we would like to define what the Hamiltonian vector field of a smooth function is. It

turns out that on a Dirac manifold not every smooth function has a natural Hamiltonian
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vector field, and the leafwise presymplectic forms play an important role in this problem.

An admissible function is a smooth function f ∈ C∞(M) for which there exists a vector

field Xf ∈ X(M) such that Xf ⊕ df ∈ L. By clear reasons, such a vector field is referred

to as a Hamiltonian vector field of f . Notice that Xf is well defined up to elements in

ker(L), and whenever φ = 0, the set A(M) of admissible functions inherits a Poisson algebra

structure (see. e.g. [17]) defined by the bracket

{f, g} = dg(Xf ).

Notice that, whenever ker(L) ⊆ TM has constant rank and defines a simple1 foliation

K, then admissible functions are identified with smooth functions in the leaf space M/K.

Therefore, if K is a simple foliation, then the leaf space M/K inherits a Poisson structure

denoted by πred. The foliation K is called the characteristic foliation of M .

2.2.3 Dirac morphisms

Now we explain the notion of morphism of Dirac manifolds following [12]. A

proper notion of morphism of Dirac manifolds should include pull backs of 2-forms and

push forward of bivectors. In order to make a clear description of Dirac maps, we explain

two extreme situations.

Example 2.2.8. (Presymplectic maps)

Let (M,ωM ) and (N,ωN ) presymplectic manifolds, that is ωM and ωN are closed

2-forms on M and N , respectively. A presymplectic map is a smooth map ϕ : M −→ N

such that ωM = ϕ∗ωN . One observes that this is equivalent to the fact that the induced

bundle maps ω]M : TM −→ T ∗M and ω]N : TN −→ T ∗N are related by

(ω]M )x = (ω]N )ϕ(x) ◦ Txϕ,

for each x ∈ M . As in Example 2.2.1, we have Dirac structures LωM and LωN on M and

N , respectively. Therefore we conclude that a smooth map ϕ : (M,ωM ) −→ (N,ωN ) is

presymplectic if and only if

1A foliation F on a smooth manifold M is said to be simple if the leaf space M/F is a smooth manifold
such that the quotient map M −→M/F is a surjective submersion.
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(LωM )x = {X ⊕ (Txϕ)∗β | X ∈ TxM,β ∈ T ∗ϕ(x)N, (Txϕ(X)⊕ β) ∈ (LωN )ϕ(x)}.

Example 2.2.9. (Poisson maps)

Let (M,πM ) and (N,πN ) be Poisson manifolds. A smooth map ϕ : M −→ N is a

Poisson map if and only if the induced bundle maps π]M : T ∗M −→ TM and π]N : T ∗N −→
TN are related by

(π]N )ϕ(x) = Txϕ ◦ (π]M )x ◦ (Txϕ)∗.

As explained in Example 2.2.2, there are induced Dirac structures LπM and LπN on M and

N , respectively. The fact that ϕ : (M,πM ) −→ (N,πN ) is a Poisson map is equivalent to

(LπN )ϕ(x) = {Txϕ(X)⊕ β | X ∈ TxM,β ∈ T ∗ϕ(x)N, (X ⊕ (Txϕ)∗β) ∈ (LπM )x}.

The examples discussed previously motivate the following definitions. Let (M,LM )

and (N,LN ) be Dirac manifolds. A map ϕ : (M,LM ) −→ (N,LN ) is called a backward

Dirac map if for every x ∈M we have

(LM )x = {X ⊕ (Txϕ)∗β | X ∈ TxM,β ∈ T ∗ϕ(x)N, (Txϕ(X)⊕ β) ∈ (LN )ϕ(x)}. (2.5)

Similarly, we say that ϕ is a forward Dirac map if for every x ∈M ,

(LN )ϕ(x) = {Txϕ(X)⊕ β | X ∈ TxM,β ∈ T ∗ϕ(x)N,X ⊕ (Txϕ)∗β ∈ (LM )x}. (2.6)

Notice that a map between Poisson manifolds is a forward Dirac map if and only

if it is a Poisson map. Similarly, a backward Dirac between presymplectic manifolds is

the same that a presymplectic map. It is important to observe that even for symplectic

manifolds, Poisson and symplectic maps may be different, thus forward and backward Dirac

maps are different notions.

Example 2.2.10. Consider R2 with coordinates (x1, p1) and symplectic form ω2 = dx1 ∧
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dp1. Assume also that on R4 we have coordinates (x1, p1, x
2, p2) and the symplectic form

ω4 = dx1 ∧ dp1 + dx2 ∧ dp2. It is clear that the inclusion map

i : R2 −→ R4

(x1, p1) 7→ (x1, p1, 0, 0)

is a backward Dirac map, since it is symplectic. Notice that with respect to the Poisson

brackets induced by ω2 and ω4, the map i : R2 −→ R4 is not a Poisson map2, in particular

it is not a forward Dirac map. Similary, the projection

R4 −→ R2

(x1, p1, x
2, p2) 7→ (x1, p1),

is a forward Dirac map, since it is a Poisson map. Clearly the projection is not symplectic3,

in particular it is not backward Dirac.

Denote the right hand side of (2.5) by ϕ∗LN . This defines a natural way to pull

Dirac structures back, though the result of putting together the pointwise subspaces of TM

is not necessarily a smooth vector bundle. The result will be a Dirac structure if it defines a

smooth bundle over M . For instance, the right hand side of (2.5) is smooth if ϕ : M −→ N

is a submersion. Therefore a smooth map ϕ : (M,LM ) −→ (N,LN ) is a backward Dirac

map if LM = ϕ∗LN . Also, we can write (2.6) as LN = ϕ∗LM , though ϕ∗LM may not be

well defined. See [12] for more details.

Example 2.2.11. Let L be a Dirac structure on M , and let i : Q ↪→ M be a smooth

submanifold. Assume that the subspaces (LQ)x ⊆ TxQ as in (2.4) define a smooth bundle

over Q. Then we get a Dirac structure LQ on Q, and this Dirac structure is determined by

the fact that the inclusion map i : Q ↪→M is a backward Dirac map. That is i∗(L) = LQ.

We finish our discussion about Dirac maps by illustrating two examples where the

notions of backward and forward Dirac maps coincide.

Example 2.2.12. Let (S,ΩS) be a pre symplectic leaf of a Dirac manifold (M,L). Then

the inclusion map iS : S −→M is both a forward and backward Dirac map.
2Recall that in this case the property of i : R2 −→ R4 being a Poisson map implies that i has to be a

submersion, which clearly it is not the case.
3Recall that if a map between symplectic manifolds is a symplectic map, then it has to be an immersion.
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Example 2.2.13. Assume that the distribution ker(L) ⊆ TM is tangent to a simple

foliation K. Then the natural projection map (M,L) −→ (M/K, πred) is a backward and

forward Dirac map.

Example 2.2.14. (Poisson reduction)

Let (M,π) be a Poisson manifold with a Hamiltonian action of a Lie group H. Let

J : M −→ h∗ be a moment map for this action and assume that ξ ∈ h∗ is a regular value of

J . Assume that the Hξ-action on Q = J−1(ξ) is free and proper. Then we conclude from

example 2.2.5 that the restriction of Lπ to Q defines a Dirac structure LQ on the level set

Q. One can verify that the Hξ-orbits of the action on Q coincide with the characteristic

leaves of the Dirac structure LQ. Therefore, the reduced space Mred := Q/Hξ is the space

of characteristic leaves of LQ, so it inherits a canonical Poisson structure πred such that the

projection map Q −→ Mred is both a backward and forward Dirac map. See [17] for more

details.

2.3 Tangent and cotangent structures

2.3.1 Tangent and cotangent groupoids

Let G be a Lie groupoid over M with Lie algebroid AG. The tangent bundle TG

has a natural Lie groupoid structure over TM . This structure is obtained by applying the

tangent functor to each of the structure maps defining G (source, target, multiplication,

inversion and identity section). We refer to TG with the groupoid structure over TM as the

tangent groupoid of G. Notice that the set of composable pairs (TG)(2) = T (G(2)), and

for (g, h) ∈ G(2) and a tangent groupoid pair (Xg, Yh) ∈ (TG)(2) the multiplication map on

TG is

Xg • Yh := Tm(Xg, Yh)

Example 2.3.1. Let G be a Lie group with Lie algebra g. The tangent bundle TG is a Lie

group as well. One can see that the multiplication on TG is given by

Xg • Yh = Tgrh(Xg) + Thlg(Yh).

We can use right translations to trivialize TG in such a way that TG ∼= G × g.
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With respect to this identification, it is easy to see that the group structure on the tangent

bundle corresponds to the semidirect group Gng determined by the adjoint representation.

Consider now the cotangent bundle T ∗G. It was shown in [16], that T ∗G is a Lie

groupoid over A∗G. The source and target maps are defined by

s̃(αg)u = αg(T lg(u− Tt(u))) and t̃(βg)v = βg(Trg(v))

where αg ∈ A∗
s(g)G, u ∈ As(g)G and βg ∈ A∗

t(g)G, v ∈ At(g)G. The multiplication on T ∗G is

defined by

(αg ◦ βh)(Xg • Yh) = αg(Xg) + βh(Yh)

for (Xg, Yh) ∈ T(g,h)G(2).

We refer to T ∗G with the groupoid structure over A∗ as the cotangent groupoid

of G.

Example 2.3.2. Let G be a Lie group with Lie algebra g. Then the cotangent groupoid

T ∗G has base manifold g∗. We can use right trivializations to identify T ∗G ∼= G × g∗.

In terms of this identification, the cotangent groupoid corresponds to the transformation

groupoid Gn g∗ with respect to the coadjoint action.

Remark 2.3.1. Notice that the tangent groupoid TG ⇒ TM and the cotangent groupoid

T ∗G ⇒ A∗G have an additional property. Namely, the space of arrows and objects are

vector bundles and all the structure maps (source, target, multiplication, inversion and unit

section) are morphisms of vector bundles. That is, they define Lie groupoid objects in

the category of vector bundles. These are examples of a more general structure called a

VB-groupoid. The reader can find the definition and main properties of such structures in

appendix A.

2.3.2 Tangent and cotangent algebroids

Let M be a smooth manifold. The tangent bundle of M is denoted by pM :

TM −→ M . We use cM : T ∗M −→ M to indicate the cotangent bundle of a smooth

manifold. Consider now A
qA−→ M a vector bundle over M . The tangent bundle TA has a

natural structure of vector bundle over TM , defined by applying the tangent functor to each
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of the structure maps that define the vector bundle A
qA−→M . This yields to a commutative

diagram

TA

A

TM

M

TqA //

qA
//

pA

��

pM

��

(2.7)

In the terminology of [52, 41], this defines a double vector bundle4. Now we assume that

A
qA−→ M has a Lie algebroid structure with anchor map ρA : A −→ TM and Lie bracket

[·, ·] on ΓM (A). First note that any Poisson structure πM on a smooth manifold M induces

a Poisson structure on the tangent bundle TM . Indeed, since T ∗M is a Lie algebroid over

M , then the dual bundle TM has a linear Poisson structure πTM as in (2.3), which we call

the tangent Poisson structure. Now, if A is a Lie algebroid over M , then A∗ is a Poisson

manifold. Consider the double vector bundle

TA∗

A∗

TM

M

TqA∗ //

qA∗
//

pA∗

��

pM

��

(2.8)

The tangent Poisson structure on TA∗ is linear with respect to both vector bundle

structures on TA∗. Therefore, the dual bundle (TA∗)∗ −→ TM inherits a Lie algebroid

structure.

Proposition 2.3.1. [46] There exists a canonical isomorphism of vector bundles I : TA∗ −→
(TA)∗

Proof. Consider the canonical pairing A∗ ×M A −→ R. Applying the tangent functor and

projecting onto the second component we get a nondegenerate pairing TA∗×TM TA −→ R.

We use this pairing to define an isomorphism of vector bundles I : TA∗ −→ (TA)∗.

4The reader can find a review of the basics on double vector bundles in appendix A.



26

Definition 2.3.1. The tangent Lie algebroid of A is the vector bundle TA −→ TM

equipped with the unique Lie algebroid structure that makes the canonical map I∗ : TA −→
(TA∗)∗ into an isomorphism of Lie algebroids.

It will be useful to have an explicit description of the tangent anchor map, as well

as the tangent Lie bracket on sections of TA −→ TM . First, recall that there exists a

canonical involution

TTM

TM

TTM

TM

JM //

Id
//

pTM

��

TpM

��

(2.9)

which in a local coordinates system (xi, ẋi, δxi, δẋi) on TTM is given by

JM ((xi, ẋi, δxi, δẋi)) = (xi, δxi, ẋi, δẋi).

Now we can apply the tangent functor to the anchor map ρA : A −→ TM , and then compose

with the canonical involution to obtain a bundle map ρTA : TA −→ TTM defined by

ρTA = JM ◦ TρA.

This defines the tangent anchor map. In order to define the tangent Lie bracket, we observe

that every section u ∈ ΓM (A) induces two types of sections of TA −→ TM . The first type

of section is Tu : TM −→ TA, which is given by applying the tangent functor to the section

u : M −→ A. The second type of section is the core section û : TM −→ TA, which is

defined by

û(X) = T (0A)(X) + u(pM (X)),

where 0A : M −→ A denotes the zero section, and u(pM (X)) = d
dt(tu(pM (X)))|t=0. As

observed in [46], sections of the form Tu and û generate the module of sections ΓTM (TA).

Therefore, the tangent Lie bracket is determined by
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[Tu, Tv] = T [u, v], [Tu, v̂] = [̂u, v], [û, v̂] = 0,

and we extend to other sections by requiring the Leibniz rule with respect to the tangent

anchor ρTA.

Example 2.3.3. If A = g is a Lie algebra, then TA = g×g is also a Lie algebra. Moreover,

the tangent Lie algebra is the semidirect product Lie algebra g n g with respect to the

adjoint representation.

Now we explain how the cotangent bundle of a Lie algebroid inherits a Lie algebroid

structure. For that, let us explain the vector bundle structure T ∗A −→ A∗. If (xi, ua) are

local coordinates on A, we induce a local coordinates system (xi, ua, pi, λa) on T ∗A, where

(pi) determines a cotangent element in T ∗xM and (λa) ∈ A∗
x is a cotangent element with

respect to the tangent direction to the fibers of A. Now the bundle projection r : T ∗A −→ A∗

is described locally by r(xi, ua, pi, λa) = (xi, λa). These vector bundle structures define a

commutative diagram

T ∗A

A

A∗

M

r //

qA
//

cA

��

qA∗

��

(2.10)

This endows T ∗A with a double vector bundle structure. Suppose that qA : A −→M carries

a Lie algebroid structure. Then we can consider the dual bundle A∗ endowed with the linear

Poisson structure induced by A. The cotangent bundle T ∗A∗ −→ A∗ has the Lie algebroid

structure determined by the linear Poisson bivector on A∗. There exists a Legendre type

map R : T ∗A∗ −→ T ∗A which is a anti-symplectomorphism with respect to the canonical

symplectic structures, and it is locally defined by R(xi, ξa, pi, ua) = (xi, ua,−pi, ξa). For an

intrinsic definition see [46, 59].

Definition 2.3.2. The cotangent algebroid of A is the vector bundle T ∗A −→ A∗

equipped with the unique Lie algebroid structure that makes the Legendre type transform

R : T ∗(A∗) −→ T ∗A into an isomorphism of Lie algebroids.
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Example 2.3.4. Let g be a Lie algebra. Then the cotangent Lie algebroid T ∗g = g× g∗ is

the transformation Lie algebroid g n g∗ with respect to the coadjoint representation.

Remark 2.3.2. The tangent and the cotangent algebroids have an additional property.

They define Lie algebroid objects in the category of vector bundles. These are particular

examples of a more general structure called a VB-algebroid. In appendix A we have included

the main properties and examples of such geometrical structures.

Notice that for a Lie group G with Lie algebra g, the tangent and cotangent Lie

algebroids of g are exactly the Lie algebroids of the tangent and cotangent Lie groupoids

of G. We will see that this is a general fact. For that, recall that the Tulczyjew map

ΘM : TT ∗M −→ T ∗TM is the isomorphism defined by

ΘM := J∗M ◦ IM ,

where IM : TT ∗M −→ (TTM)∗ is the map defined in Prop. 2.3.1 with A = TM . In a local

coordinates system (xi, pi, ẋi, ṗi) the Tulczyjew map is given by

ΘM (xi, pi, ẋi, ṗi) = (xi, ẋi, ṗi, pi).

Consider now a Lie groupoid G over M with Lie algebroid AG. There exists a

natural injective bundle map

iAG : AG −→ TG (2.11)

The canonical involution JG : TTG −→ TTG restricts to an isomorphism of Lie algebroids

jG : T (AG) −→ A(TG). More precisely, there exists a commutative diagram

T (AG)

TTG

A(TG)

TTG

jG //

JG

//

T (iAG)

��

iA(TG)

��

(2.12)

In particular, the Lie algebroid A(TG) of the tangent groupoid is canonically isomorphic

to the tangent Lie algebroid T (AG) of AG. Similarly, the Lie algebroid of the cotangent
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groupoid T ∗G is isomorphic to the cotangent Lie algebroid T ∗(AG). For that, notice that the

natural pairing T ∗G⊕TG −→ R defines a groupoid morphism, and the application of the Lie

functor yields a symmetric pairing 〈〈·, ·〉〉 : A(T ∗G)⊕A(TG) −→ R, which is nondegenerate.

See e.g. [46, 48]. In particular, we obtain an isomorphism KG : A(T ∗G) −→ A(TG)∗,

where the target dual is with respect to the fibration A(TG)
A(pG)−→ AG. Now we define a

Lie algebroid isomorphism

j′G : A(T ∗G) −→ T ∗(AG),

determined by the composition j′G = j∗G ◦ KG, where j∗G : A(TG)∗ −→ T ∗(AG) is the

bundle map dual to the isomorphism jG : T (AG) −→ A(TG). As jG : T (AG) −→ A(TG)

is a suitable restriction of the canonical involution JG : TTG −→ TTG, the isomorphism

j′G is related to the Tulczyjew map ΘG : TT ∗G −→ T ∗TG, via

j′G = (TiAG)∗ ◦ΘG ◦ iA(T ∗G).

2.4 Examples of multiplicative structures

Now we present examples of geometrical structures defined on Lie groupoids which

are compatible with the groupoid multiplication.

2.4.1 Poisson-Lie groups

Let G be a Lie group and π ∈ Γ(
∧2 TG) a Poisson bivector on G. One easily

observes that the following statements are equivalent:

i) The multiplication map m : G×G −→ G is a Poisson map.

ii) The graph of the multiplication map defines a coisotropic5 submanifold of G×G×G.

iii) The bivector π is multiplicative in the sense that

πgh = (lg)∗πh + (rh)∗πg,

for every g, h ∈ G.
5Recall that a submanifold Q ↪→ M is said to be coisotropic with respect to a bivector π on M if

π](N∗Q) ⊆ TQ, where N∗Q denotes the conormal bundle of Q.
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A Poisson-Lie group [23, 40, 55] is a Lie group G with a Poisson structure π ∈ Γ(Λ2TG)

satisfying one of the conditions above. Notice that condition iii) implies that a multiplicative

bivector π vanishes at the identity e ∈ G, and we conclude that Poisson-Lie groups are never

symplectic. Since πe = 0, there exists a canonical Lie algebra structure on the cotangent

fiber T ∗eG = g∗, see [62]. The Lie bracket on g∗ will be denoted by [·, ·]∗ : g∗ × g∗ −→ g∗.

We would like to understand how the multiplicativity of π is reflected in the Lie bracket

[·, ·]∗. For that, we dualize [·, ·]∗ yielding a cobracket

F : g −→ g× g.

On one hand the bivector π is nothing else that a section π : G −→ ∧2TG, and

we use right translations to trivialize the vector bundle ∧2TG ∼= G× ∧2g. With respect to

this trivialization we induce a map

π̃ : G −→ ∧2g

g 7−→ (Rg−1)∗πg

Notice that the multiplicativity of π implies that

π̃gh = π̃g + Adg(π̃h).

It turns out that π̃ defines a 1-cocycle on G with valued in the G-module ∧2g, where the

module structure is the one determined by the adjoint action extended to the second wedge

product. See [39] for more details.

The linearization of π̃ at the identity coincides with the cobracket F [23, 40].

Then F defines a Lie algebra 1-cocycle with values in the g-module ∧2g, where the module

structure is defined by

adX(u ∧ v) = (adXu) ∧ v + u ∧ (adXv).

The 1-cocycle condition for the cobracket F is

F ([X,Y ]) = adXF (Y )− adY F (X).
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Definition 2.4.1. A Lie bialgebra is a pair (g, g∗) where (g, [·, ·]) and (g∗, [·, ·]∗) are Lie

algebras and the cobracket F := [·, ·]∗∗ satisfies

F ([X,Y ]) = adXF (Y )− adY F (X).

We have seen that every Poisson-Lie group (G, π) induces a natural Lie bialgebra

(g, g∗). Hence, Lie bialgebras may be regarded as the infinitesimal version of Poisson Lie

groups. The converse result is true under the usual connectedness assumptions, establishing

the so called Drinfeld’s correspondence between Poisson-Lie groups and Lie bialgebras.

Theorem 2.4.1. [23]

Let G be a connected and simply connected Lie group with Lie algebra g. There

exists a one-to-one correspondence between

1. Lie bialgebra structures (g, g∗), and

2. multiplicative Poisson structures on G.

The proof of Drinfeld’s correspondence is based on the correspondence between

Lie group 1-cocycles and Lie algebra 1-cocycles. See [39] for a detailed discussion.

2.4.2 Symplectic groupoids

A symplectic groupoid [63, 16] is a symplectic manifold (G,ωG) where G is a Lie

groupoid over M , and ωG is a symplectic form compatible with the groupoid structure in

the sense that the graph

Λm := {(g, h,m(g, h)) | (g, h) ∈ G(2)},

is a Lagrangian submanifold of G ×G ×G. Equivalently, the symplectic form ωG is mul-

tiplicative, that is

m∗ωG = pr∗1ωG + pr∗2ωG,

where pr1, pr2 : G(2) −→ G are the natural projections. As observed in [63, 16], the base

M of a symplectic groupoid inherits a Poisson structure πM , completely determined by the
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fact that the target map (resp. source) t : G −→M is a Poisson map (resp. anti-Poisson).

Also, if AG is the Lie algebroid of G, then there exists an isomorphism of Lie algebroids

σ : AG −→ T ∗M (2.13)

u 7→ (iuωG)|TM (2.14)

where the Lie algebroid structure on T ∗M is the one induced by the Poisson bivector πM on

M . It turns out that Poisson structures may be thought of as the infinitesimal counterpart

of symplectic groupoids. To every symplectic groupoid one canonically associates a Poisson

manifold. For this reason, symplectic groupoids are natural geometric objects that are

useful for quantizing Poisson manifolds. Therefore, it seems that a suitable quantization

of the symplectic groupoid (G,ωG) should provide a natural way of quantizing the Poisson

manifold (M,πM ), see [65, 20] for more details about the prequantization of symplectic

groupoids. See also Cattaneo and Felder’s construction of symplectic groupoids as phase

spaces of certain sigma models [14].

2.4.3 Poisson groupoids

In this subsection we study Lie groupoids endowed with a Poisson structure which

satisfies an algebraic compatibility.

Definition 2.4.2. A Poisson groupoid is a pair (G, πG) where G is a Lie groupoid over

M and πG is a Poisson structure on G which is multiplicative in the sense that the graph

of the multiplication map

Λm = {(g, h, gh) | (g, h) ∈ G2}

is a coisotropic submanifold of G×G× Ḡ.

Poisson groupoids were introduced by Alan Weinstein [64], providing a unified

framework for the study of Poisson Lie groups [40] and symplectic groupoids [16]. A Poisson-

Lie group is just a Poisson groupoid over a point, and a symplectic groupoid is nothing but

a Poisson groupoid with nondegenerate Poisson bivector. In subsection 2.4.1 we observed



33

that the infinitesimal invariant of a Poisson-Lie group is its Lie bialgebra. In order to

find the infinitesimal counterpart of Poisson groupoids, one observes that the base M of

a Poisson groupoid (G, π) is a coisotropic submanifold, in particular the conormal bundle

N∗(M) ∼= A∗(G) inherits a Lie algebroid structure. Here A∗(G) denotes the vector bundle

dual to the Lie algebroid A(G) of the Lie groupoid G. It turns out that for any Poisson

groupoid there exists a pair of Lie algebroids (A(G), A∗(G)) in duality as vector bundles,

which satisfies certain compatibility condition.

Definition 2.4.3. A Lie bialgebroid is a pair of Lie algebroids in duality (A,A∗) satisfying

dA∗([u, v]) = [dA∗(u), v] + [u, dA∗(v)]

for every u, v ∈ Γ(A).

Here dA∗ : Γ(
∧k A) −→ Γ(

∧k+1A) denotes the Lie algebroid differential induced

by A∗ and [·, ·] is the Schouten bracket on multisections of A.

Example 2.4.1. Any Lie bialgebra (g, g∗) is a Lie bialgebroid.

Example 2.4.2. An interesting example coming from Poisson geometry is the following:

given a Poisson manifold (M,π), the cotangent bundle T ∗M inherits a canonical Lie al-

gebroid structure with anchor map π] : T ∗M −→ TM and Lie bracket on Ω1(M) given

by

[α, β] = Lπ](α)β − Lπ](β)α− dπ(α, β).

This Lie algebroid structure together with the trivial Lie algebroid structure on

the tangent bundle of M makes the pair (T ∗M,TM) into a Lie bialgebroid.

Just as Lie bialgebras arise as the infinitesimal counterpart of Poisson-Lie groups

[23, 39], Lie bialgebroids are the infinitesimal version of Poisson groupoids according to the

following result of K. Mackenzie and P. Xu.

Theorem 2.4.2. [46]

Let (G, πG) be a Poisson groupoid with Lie algebroid A(G). Then (A(G), A∗(G))

is a Lie bialgebroid.
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Let (G,ωG) be a symplectic groupoid, viewed as a Poisson groupoid, then the Lie

bialgebroid of G is the one described in example 2.4.2, where M has the Poisson structure

induced by the symplectic groupoid (G,ωG)

The key point in Mackenzie-Xu’s approach is based on the possibility of expressing

the multiplicativity of a bivector in terms of Lie groupoid morphisms. Given a Lie groupoid

G ⇒ M , we consider the tangent groupoid TG ⇒ TM and the cotangent groupoid T ∗G ⇒

A∗G, as explained in subsection 2.3.1.

Proposition 2.4.1. [46]

A bivector πG ∈ Γ(
∧2 TG)) is a multiplicative bivector if and only if

T ∗G

A∗(G)

TG

TM

π]
G //

ρA∗G

//
���� ����

(2.15)

is a morphism of Lie groupoids covering some bundle map ρA∗G.

This point of view is extremely useful since it provides a natural way for doing

Lie theory for Poisson groupoids in terms of Lie’s second theorem for morphisms of Lie

algebroids 2.1.1. Now it is natural to expect that the property of (A,A∗) being a Lie

bialgebroid could be expressed in terms of suitable morphisms of Lie algebroids. First recall

that as we explained in the first section of this chapter, the Lie algebroid A∗ induces a linear

Poisson structure on A, given locally by

(πA)|(x,u)
= ρia(x)

∂

∂xi
∧ ∂

∂ua
+

1
2
C
c
ab(x)u

c ∂

∂ua
∧ ∂

∂ub
.

where ρja and Ccab are the structure functions of the dual Lie algebroid A∗. Notice that the

linearity of πA is reflected in the fact that the induced bundle map π]A : T ∗A −→ TA is not

only a morphism of vector bundles with respect to the usual bundle structures, but also it

defines a morphism
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T ∗A

A∗

TA

TM

π]
A //

ρA∗
//

�� ��

(2.16)

with respect to the vector bundle structures T ∗A −→ A∗ and TA −→ TM , explained in

subsection 2.3.2. This can be seen directly from the local expression for the bivector πA.

Now, just as the multiplicativity of a bivector is translated to the language of morphisms of

groupoids, the property of (A,A∗) being a Lie bialgebroid is equivalent to saying that the

double vector bundle morphism π]A is also a morphism of Lie algebroids. The proof of the

following result can be found in [46].

Theorem 2.4.3. [46]

Let (A,A∗) be a pair of Lie algebroids in duality. Then (A,A∗) is a Lie bialgebroid

if and only if

T ∗A

A∗

TA

TM

π]
A //

ρA∗
//

�� ��

(2.17)

is a morphism of Lie algebroids, where the top map is the linear Poisson bivector on A and

the bottom map is the anchor map of the dual algebroid.

The transition from a Poisson groupoid to a Lie bialgebroid follows by applying

the Lie functor to the morphism of groupoids (2.15), yielding a morphism of Lie algebroids
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A(T ∗G)

A∗G

A(TG)

TM

A(π]
G)

//

ρA∗
//

�� ��

(2.18)

Consider the natural identifications jG : T (AG) −→ A(TG) and j′G : A(T ∗G) −→ T ∗(AG),

as in subsection 2.3.2. It was proved in [46] that there is a commutative diagram

A(T ∗G)

T ∗(AG)

A(TG)

T (AG)

A(π]
G)

//

π]
AG

//

j′G

��

jG

OO

(2.19)

where πAG is the linear Poisson bivector on AG, induced by the dual Lie algebroid A∗G.

In particular, it follows from Theorem 2.4.3 that (AG,A∗G) is a Lie bialgebroid. The

integration of Lie bialgebroids to Poisson groupoids is based on the same idea: under

standard connectedness assumptions, Lie bialgebroids integrate to Poisson groupoids via

Lie’s second theorem.

Theorem 2.4.4. [48]

Let (A,A∗) a Lie bialgebroid. Assume that A is the Lie algebroid of a source simply

connected Lie groupoid G. There exists a unique Poisson structure πG on G making the

pair (G, πG) into a Poisson groupoid with Lie bialgebroid (A,A∗).

Since every Lie bialgebroid produces a morphism of Lie algebroids π]A : T ∗A −→
TA, we can integrate this morphism to a morphism of groupoids π]G : T ∗G −→ TG. It

was shown in [48] that the morphism of groupoids π]G is linear with respect to the usual

tangent and cotangent bundle structures and it is skew symmetric. Therefore, there is a well

defined bivector πG on G, which it turns to be a Poisson bivector. This extends Drinfeld’s

correspondence 2.4.1 between Poisson-Lie groups and Lie bialgebras [23]. See [48] for details

about the proof.
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2.4.4 Multiplicative 2-forms

In this section we study Lie groupoids equipped with closed 2-forms which are

compatible with the groupoid structure. Let G be a Lie groupoid over M . A 2-form

ωG ∈ Ω2(G) is called multiplicative if

m∗ωG = pr∗1ωG + pr∗2ωG

where m : G(2) −→ G denotes the multiplication map and pr1, pr2 : G(2) −→ G are the

natural projections. If G is a Lie groupoid equipped with a multiplicative symplectic form

ωG, we recover symplectic groupoids. If ωG ∈ Ω2(G) is a closed multiplicative form, not

necessarily symplectic, the bundle map σ in (2.13) is no longer an isomorphism, and the

bracket preserving property does not make sense at all, since the base manifold is not

Poisson. In spite of this, the bundle map σ has two interesting properties, as it was shown

in [10].

Proposition 2.4.2. Let φ be a closed 3-form on M . If ωG ∈ Ω2(G) is a multiplicative

form with dωG = s∗φ− t∗φ, then the associated bundle map σ : AG −→ T ∗M satisfies the

following conditions

1. for every u, v ∈ Γ(AG) we have 〈σ(u), ρ(v)〉 = −〈σ(v), ρ(u)〉

2. σ([u, v]) = Lρ(u)σ(v)− Lρ(v)(σ(u)) + d〈σ(u), ρ(v)〉+ iρ(u)∧ρ(v)φ,

for every u, v ∈ Γ(AG).

A bundle map σ : AG −→ T ∗M satisfying properties 1. and 2. in Proposition 2.4.2

is called an IM-2-form with respect to φ ∈ Ω3(M). This terminology is due to the fact that

an IM-2-form with respect to φ ∈ Ω3(M) may be thought of as an infinitesimal multiplicative

2-form. It turns out that under standard connectedness assumptions, a multiplicative (s∗φ−
t∗φ)-twisted 2-form on a Lie groupoid is completely determined by its associated IM-2-form.

Theorem 2.4.5. [10]

Let G be a source simply connected Lie groupoid G over M , with Lie algebroid

AG. Consider a closed 3-form φ on M . There exists a one-to-one correspondence between

i) multiplicative 2-forms ωG on G with dωG = s∗φ− t∗φ, and
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ii) IM-2-forms σ : AG −→ T ∗M with respect to φ.

Theorem 2.4.5 was proved in [10] using the path construction of Lie groupoids [21]

and infinite dimensional reduction as in [14]. In chapter 3 we give an alternative proof of

this result, avoiding infinite dimensional issues, which establishes a natural connection with

Dirac groupoids, introduced in the end of this chapter.

We have seen that every φ-twisted Dirac structure L on M gives rise to a canon-

ical Lie algebroid. Now we explain how to construct twisted Dirac structures out of Lie

algebroids. Let us consider a closed 3-form φ on M . The following definition was given in

[10].

Definition 2.4.4. A φ-twisted presymplectic groupoid over M is a pair (G,ωG) where

G is a Lie groupoid over M and ωG is a multiplicative 2-form on G satisfying

1. dωG = s∗φ− t∗φ

2. dim(G) = 2dim(M)

3. at every x ∈M the following nondegeneracy condition holds

ker(Txs) ∩ ker(Txt) ∩ ker(ωG)x = 0.

Consider the IM-2-form σ : AG −→ T ∗M associated to a presymplectic groupoid

(G,ωG). One easily checks that conditions 2. and 3. guarantee that the image Lσ of the

bundle map ρAG ⊕ σ : A(G) −→ TM ⊕ T ∗M defines a φ-twisted Dirac structure on M .

Moreover, the target map t : (G,ωG) −→ (M,Lσ) is a forward Dirac map. Furthermore,

the injective bundle map

ρAG ⊕ σ : A(G) −→ TM ⊕ T ∗M,

establishes an isomorphism of Lie algebroids AG ∼= Lσ between the Lie algebroid of G

and the canonical Lie algebroid determined by the φ-twisted Dirac structure Lσ. Hence,

Dirac manifolds may be thought of as the infinitesimal data of presymplectic groupoids. In

summary, the following result holds.
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Theorem 2.4.6. [10]

Let (G,ωG, φ) be a φ-twisted presymplectic groupoid over M , then

1. There exists a canonical φ-twisted Dirac structure LM on M , such that the target map

t : G −→M is a forward Dirac map.

2. There is a canonical Lie algebroid isomorphism AG ∼= LM between the Lie algebroid

of G and the Lie algebroid of the φ-twisted Dirac structure LM .

A φ-twisted presymplectic groupoid (G,ωG, φ) related to a φ-twisted Dirac struc-

ture LM on the base M as in Theorem 2.4.6 is referred to as an integration of LM . The

integration of twisted Dirac manifolds to presymplectic groupoids was also carried out in

[10]. This follows as an immediate consequence of Theorem 2.4.5. More specifically, the

following result holds.

Theorem 2.4.7. [10]

Let LM be a φ-twisted Dirac structure on M , whose associated Lie algebroid is

integrable. Let G be the source simply connected Lie groupoid integrating L, then there is a

unique multiplicative 2-form ωG on G such that (G,ωG, φ) is an integration of LM .

The proof follows by applying Theorem 2.4.5 to the natural IM-2-form defined by

the projection LM ⊆ TM ⊕ T ∗M −→ T ∗M .

In order to give a new proof of Theorem 2.4.5, avoinding path spaces, it is use-

ful to notice that one has a characterization of multiplicative forms in terms of groupoid

morphisms, in analogy with Theorem 2.4.1..

Proposition 2.4.3. A 2-form ωG on a Lie groupoid G is multiplicative if and only if

TG

TM

T ∗G

A∗G

ω]
G //

−σt
//

���� ����

(2.20)

is a morphism of Lie groupoids, where σt : TM −→ A∗G is the bundle map dual to the

IM-form σ : AG −→ T ∗M induced by ωG.
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Proof. First we check that ω]G preserves the target fibrations. Given Xg ∈ TgG we have a

covector ω]G(Xg) ∈ T ∗gG. Applying the cotangent target map we obtain t̃(ω]G(Xg)) ∈ A∗
t(g)G,

which at every ut(g) ∈ At(g)G acts via

t̃(ω]G(Xg))ut(g) = ω]G(Xg)(Tt(g)rg(ut(g))).

We can write Xg = Tt(g)Xg • Xg and Tt(g)rg(ut(g)) = ut(g) • 0g, then using the

multiplicativity of ωG one has the following identity

t̃(ω]G(Xg))ut(g) =ωG(Tt(g)Xg •Xg, ut(g) • 0g)

=ωG(Tt(g)Xg, ut(g))

=− σt(Tt(g)Xg)ut(g).

That is t̃(ω]G(Xg)) = −σt(Tt(g)Xg) which is the compatibility of ω]G with the target maps.

A similar computation shows that ω]G is compatible with the source maps. It remains to

show that ω]G preserves the groupoid multiplications. For that we consider composable

groupoid pairs (Xg, Yh), (Ug, Vh) ∈ TG(2), and we easily check that the multiplicativity of

ωG implies that

ω]G(Xg • Yh)(Ug • Vh) =ω]G(Xg)Ug + ω]G(Yh)Vh

=(ω]G(Xg) ◦ ω]G(Yh))(Ug • Vh).

That is, for every composable tangent pair (Xg, Yh) we have

ω]G(Xg • Yh) = ω]G(Xg) ◦ ω]G(Yh).

This shows that ω]G is compatible with the groupoid multiplications, proving that ω]G is a

groupoid morphism.

This proposition suggests a different approach for the study of IM-2-forms. More

precisely, since a multiplicative form induces a natural Lie groupoid morphism, it seems

that the property of a bundle map σ : A −→ T ∗M being an IM-2-form could be translated
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into a suitable map TA −→ T ∗A, constructed out of σ, being a morphism of Lie algebroids,

the latter canonically related to the former via the Lie functor. This relation will be studied

in detail in chapter 3.

2.5 Multiplicative Dirac structures

In this section we study Lie groupoids equipped with Dirac structures compatible

with the groupoid multiplication. These new structures include both multiplicative Poisson

and closed 2-forms as particular cases.

2.5.1 Definition and examples

Let G be a Lie groupoid over M , with Lie algebroid A(G). Consider the direct

sum Lie groupoid TG = TG⊕ T ∗G with base manifold TM ⊕A∗G.

Definition 2.5.1. Let G be a Lie groupoid over M . A Dirac structure LG on G is said to be

multiplicative if LG ⊆ TG⊕T ∗G is a subgroupoid over some subbundle E ⊆ TM ⊕A∗G.

We refer to a pair (G,LG), made up of a Lie groupoid G and a multiplicative Dirac

structure LG on G, as a Dirac groupoid. We use the notation Dirmult(G) to indicate the

set consisting of all multiplicative Dirac structures on G.

Notice that a multiplicative Dirac structure LG on a Lie groupoid G defines a

VB-subgroupoid LG ⊆ TG. See appendix A for this terminology.

Example 2.5.1. Let ωG be a closed multiplicative 2-form on a Lie groupoid G. The

multiplicativity property of ωG is equivalent to saying that the bundle map ω]G : TG −→
T ∗G is a morphism of Lie groupoids. Hence, the corresponding Dirac structure LωG =

Graph(ωG) ⊆ TG is a multiplicative Dirac structure. In this case we have a groupoid

LωG ⇒ E where E ⊆ TM ⊕ A∗G is the subbundle given by the graph of the bundle map

−σt determined by the IM-2-form σ associated to ωG.

Example 2.5.2. Let (G, πG) be a Poisson groupoid. The multiplicativity of πG is equivalent

to saying that π]G : T ∗G −→ TG is a morphism of Lie groupoids. Therefore, the associated

Dirac structure LπG = Graph(πG) ⊆ TG defines a multiplicative Dirac structure. In this

case we have a groupoid LπG ⇒ E where E ⊆ TM ⊕ A∗G is the subbundle given by the

graph of dual anchor map ρA∗G : A∗G −→ TM
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Example 2.5.3. A regular distribution F ⊆ TG is called multiplicative if it defines a Lie

subgroupoid of the tangent groupoid TG. One checks that every involutive multiplicative

distribution on G defines a multiplicative Dirac structure on G. The foliation tangent to an

involutive multiplicative distribution is called a multiplicative foliation. Multiplicative

foliations which are simultaneously transversal to the s-fibration and to the t-fibration were

studied in [58], providing interesting examples of noncommutative Poisson algebras.

The examples discussed previously show that Dirac groupoids lead to a natural

generalization of Poisson groupoids and presymplectic groupoids. Our main aim is to de-

scribe Dirac groupoids infinitesimally, establishing in particular, a connection between such

a infinitesimal description and Lie bialgebroids and IM-2-forms. This will be done in chapter

5.

We finish this section with an example of multiplicative Dirac structures given

quotients of a Lie group action.

Example 2.5.4. Let LG be a multiplicative Dirac structure on a Lie groupoid G ⇒ M ,

and let H be a Lie group acting on G by groupoid automorphisms. Assume that the H-

action is free and proper and that the H-orbits coincide with the characteristic leaves of LG.

In this case the quotient space G/H inherits the structure of a Lie groupoid over M/H.

Moreover, since G/H is the space of characteristic leaves of LG, we conclude that there

exists a Poisson structure πred on G/H, making the quotient map G −→ G/H into both a

backward and forward Dirac map. This fact together with the multiplicativity of LG imply

that πred is a multiplicative Poisson bivector. In other words, the quotient space G/H is a

Poisson groupoid.

2.5.2 Functorial properties of multiplicative Dirac structures

This is the last section of this chapter. Here we are concerned with a functorial

property of multiplicative Dirac structures that will be useful in the forthcoming chapters.

Let G1 ⇒ M1 and G2 ⇒ M2 be Lie groupoids and Φ : G1 −→ G2 a morphism of Lie

groupoids. The tangent and cotangent Lie groupoids TG2 and T ∗G2 are vector bundles over

G2, so we can consider the pull back vector bundles Φ∗(TG2) −→ G1 and Φ∗(T ∗G2) −→ G1.

The following property is natural.

Proposition 2.5.1. Let Φ : G1 −→ G2 be a morphism of Lie groupoids covering a map

ϕ : M1 −→M2. Assume that Φ is a surjective submersion. Then the following hold:
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1. The pull back vector bundle Φ∗(TG2) inherits a canonical Lie groupoid structure over

ϕ∗(TM2). With respect to this groupoid structure the bundle map TΦ : TG1 −→
Φ∗(TG2) is a morphism of Lie groupoids.

2. The pull back vector bundle Φ∗(T ∗G2) inherits a canonical Lie groupoid structure over

ϕ∗(AG2). With respect to this groupoid structure the bundle map (TΦ)∗ : Φ∗(T ∗G2) −→
T ∗G1 is a morphism of Lie groupoids.

Proof. We begin with the proof of part 1. For that we define the structure mappings for

Φ∗(TG2) ⇒ ϕ∗(TM2). For each arrow YΦ(g) ∈ Φ∗(TG2) we define the source and target

maps by

sΦ(YΦ(g)) = Ts2(YΦ(g)), tΦ(YΦ(g)) = Tt2(YΦ(g)).

At composable pairs YΦ(g), Y Φ(h) ∈ Φ∗(TG2) the multiplication map is defined by

mΦ(YΦ(g), Y Φ(h)) = YΦ(g) • Y Φ(h) ∈ TΦ(gh)G2.

We also define the unit section εΦ : ϕ∗(TM2) −→ Φ∗(TG2) by the embedding

εΦ(Uϕ(x)) = Tε2(Uϕ(x)).

Finally, the inversion map is given by

iΦ(YΦ(g)) = Ti2(YΦ(g)).

The fact that Φ : G1 −→ G2 is a morphism of Lie groupoids implies that each

of the mappings defined previously endows Φ∗(TG2) with a Lie groupoid structure over

ϕ∗(TM2). It remains to show that wth respect to this groupoid structure the map TΦ :

TG1 −→ Φ∗(TG2) is a Lie groupoid morphism. First we prove the compaibility with the

source maps, which in this case reads

sΦ ◦ TΦ = Tϕ ◦ Ts1. (2.21)

Since Φ is a groupoid morphism, we have that s2 ◦ Φ = ϕ ◦ s1. Applying the tangent

functor we get (2.21). The same argument shows that TΦ is compatible with the target
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and multiplication maps.

Now we prove part 2. For every arrow βΦ(g) ∈ Φ∗(T ∗G2) we define the source and

target maps by

s̃Φ(βΦ(g)) =s̃2(βΦ(g)) ∈ A∗
ϕ(s1(g))G2

t̃Φ(βΦ(g)) =t̃2(βΦ(g)) ∈ A∗
ϕ(t1(g))G2

At every composable pair βΦ(g), βΦ(h) ∈ Φ∗(T ∗G2), the multiplication map is determined

by

m̃Φ(βΦ(g), βΦ(h)) = βΦ(g) ◦ βΦ(h).

Similarly, we can use the unit section and inversion map of T ∗G2 ⇒ A∗G2 to define the unit

section and inversion map of Φ∗(T ∗G2) ⇒ ϕ∗(A∗G2). This defines the groupoid structure

on Φ∗(T ∗G2). Finally, we show that with respect to this groupoid structure, the bundle

map (TΦ)∗ : Φ∗(T ∗G2) −→ T ∗G1 is a groupoid morphism over the bundle map (AΦ)∗ :

ϕ∗(A∗G2) −→ A∗G1, which is dual to the map AΦ : AG1 −→ AG2 obtained by applying

the Lie functor to Φ : G1 −→ G2. Let us check the compatibility of (TΦ)∗ with the source

maps, which in this case reads

s̃1 ◦ (TΦ)∗ = (AΦ)∗ ◦ s̃Φ. (2.22)

For that we consider an arrow βΦ(g) ∈ Φ∗(T ∗G2) with αg := (TΦ)∗βΦ(g). It follows from

the definition of the cotangent source map explained in subsection 2.3.1, that for every

u ∈ As1(g)G1 the following identity holds

s̃1(αg)u =αg(T lg(u− Tt1(u))) (2.23)

=βΦ(g)(TΦ ◦ T lg(u− Tt1(u))), (2.24)

where lg is the left multiplication by g ∈ G1. The fact that Φ is a groupoid morphism

implies Φ ◦ lg = lΦ(g) ◦ Φ. Also, since the anchor map ρAG1
= Tt1|AG1 and AΦ = TΦ|AG1

we see that (2.24) leads to
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s̃1((TΦ)∗βΦ(g))u = βΦ(g)(T lΦ(g)(AΦ(u)− Tϕ ◦ ρAG1
(u))) (2.25)

On the other hand, using the definition of s̃Φ, we see that the right hand side of (2.22) is

given by

(AΦ)∗s̃Φ(βΦ(g))u =s̃Φ(βΦ(g))AΦ(u) (2.26)

=βΦ(g)(T lΦ(g)(AΦ(u)− Tt2 ◦AΦ(u))) (2.27)

Recall that by definition ρAG2
= Tt2|AG2 . Also, the fact that AΦ : AG1 −→ AG2 is a

morphism of Lie algebroids implies that ρAG2
◦ AΦ = Tϕ ◦ ρAG1

. As a result (2.27) gives

rise to

(AΦ)∗s̃Φ(βΦ(g))u = βΦ(g)(T lΦ(g)(AΦ(u)− Tϕ ◦ ρAG1
(u))) (2.28)

Therefore, comparing (2.28) with (2.25) we conclude the compatibility (2.22) of (TΦ)∗ with

the source maps. A similar computation shows the compatibility of (TΦ)∗ with target maps.

That is,

t̃1 ◦ (TΦ)∗ = (AΦ)∗ ◦ t̃Φ.

It remains to show that (TΦ)∗ preserves multiplication. Indeed, assume that (βΦ(g), βΦ(h))

is a composable pair in Φ∗(T ∗G2), that is

t̃Φ(βΦ(h)) = s̃Φ(βΦ(g)) (2.29)

Define αg = (TΦ)∗βΦ(g) and αh = (TΦ)∗βΦ(h). Since (TΦ)∗ is compatible with source and

target maps, we see that (αg, αh) defines a composable pair in T ∗G1, so the product arrow

αg ◦ αh ∈ T ∗G1 is well defined. Also, if Xg • Yh ∈ TghG1 it follows from the definition of

the cotangent multiplication that
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(αg ◦ αh)(Xg • Yh) =αg(Xg) + αh(Yh) (2.30)

=βΦ(g)(TΦ(Xg)) + βΦ(h)(TΦ(Yh)) (2.31)

=(βΦ(g) ◦ βΦ(h))(TΦ(Xg) • TΦ(Yh)) (2.32)

=(TΦ)∗(βΦ(g) ◦ βΦ(h))(Xg • Yh), (2.33)

where in the last equality we have used the fact that TΦ : TG1 −→ Φ∗(TG2) is a groupoid

morphism. Thus we conclude that

(TΦ)∗βΦ(g) ◦ (TΦ)∗βΦ(h) = (TΦ)∗(βΦ(g) ◦ βΦ(h)),

which is exactly the compatibility of (TΦ)∗ with the multiplication.

Now we study how multiplicative Dirac structures change by groupoid morphisms

which are Dirac maps as well. The following definition is general and it does not depend

on groupoids.

Definition 2.5.2. Let M,N be smooth manifolds and ϕ : M −→ N a smooth map. We

say that elements a = X ⊕α ∈ TMx and b = Y ⊕ β ∈ TNϕ(x) are ϕ-related if Y = Tϕ(X)

and α = (Tϕ)∗β.

Given a Lie groupoid G ⇒ M we consider the direct sum VB-groupoid TG ⇒

TM⊕A∗G; we denote the multiplication of a composable pair (ag, ah) in (TG)(2) by ag ∗ah.

Proposition 2.5.2. Let Φ : G1 −→ G2 be a morphism of groupoids over ϕ : M1 −→ M2,

which is a surjective submersion. Assume that ag, ah ∈ TG1 are Φ-related to bΦ(g), bΦ(h) ∈
TG2. If ag, ah are composable then bΦ(g), bΦ(h) are composable. In this case, ag ∗ ah is

Φ-related to bΦ(g) ∗ bΦ(h).

Proof. We have seen that Φ∗(TG2) and Φ∗(T ∗G2) have natural structures of Lie groupoids

in such a way that TΦ : TG1 −→ Φ∗(TG2) and (TΦ)∗ : Φ∗(T ∗G2) −→ T ∗G1 are morphisms

of groupoids.

Set ag = (Xg, αg), ah = (Xh, αh), and similarly bΦ(g) = (YΦ(g), βΦ(g)), bΦ(h) =

(Y Φ(h), βΦ(h)). The Φ-relation between these elements reads
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YΦ(g) =TΦ(Xg), Y Φ(h) = TΦ(Xh) (2.34)

αg =(TΦ)∗βΦ(g), αh = (TΦ)∗βΦ(h). (2.35)

Since Φ : G1 −→ G2 is a surjective submersion, we conclude that AΦ : AG1 −→
AG2 is surjective. In particular, the dual map (AΦ)∗ : ϕ∗(A∗G2) −→ A∗G1 is injective. The

fact that ag, ah are composable says that the corresponding tangent components Xg, Xh and

the cotangent components αg, αh are composable. Due to the fact that TΦ is a groupoid

morphism, we conclude from (2.34) that YΦ(g), Y Φ(h) are composable. Now we look at the

cotangent components. Recall that αg, αh are composable if and only if

s̃1(αg) = t̃1(αh). (2.36)

The fact that (TΦ)∗ is a groupoid morphism implies that the left hand side of (2.36) is

s̃1(αg) = (AΦ)∗(s̃2(βΦ(g))). (2.37)

Also, the same argument proves that the right hand side of (2.36) is

t̃1(αh) = (AΦ)∗(t̃2(βΦ(h))). (2.38)

Therefore (2.36) implies that

(AΦ)∗(s̃2(βΦ(g))) = (AΦ)∗(s̃2(βΦ(g))).

Using the injectivity of (AΦ)∗ we conclude that s̃2(βΦ(g)) = s̃2(βΦ(g)), which says that

βΦ(g), βΦ(h) are composable. It remains to show that in this case, the product ag ∗ ah is

Φ-related to the product bΦ(g) ∗ bΦ(h). This is equivalent to the identities

YΦ(g) • Y Φ(h) =(TΦ)(Xg •Xh) (2.39)

αg ◦ αh =(TΦ)∗(βΦ(g) ◦ βΦ(h)). (2.40)

The fact that TΦ is a groupoid morphism together with (2.34) imply (2.39). Similarly, we

use that (TΦ)∗ is a groupoid morphism and (2.35) to conclude (2.40).
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Remark 2.5.1. Notice that the converse of Proposition 2.5.2 holds only when the base map

ϕ : M1 −→ M2 has injective derivative. In that case, the fact that ϕ is also a submersion

will imply that ϕ : M1 −→M2 is a local diffeomorphism.

As a consequence of Proposition 2.5.2 we obtain a natural way of constructing

multiplicative Dirac structures.

Corollary 2.5.1. (Functoriality of multiplicative Dirac structures)

Let Φ : G1 −→ G2 be a morphism of Lie groupoids, which is a surjective submer-

sion. Assume that L1 and L2 are Dirac structures on G1 and G2, respectively. If Φ is a

backward Dirac map and L2 is multiplicative, then L1 is multiplicative.

Proof. Recall that Φ : (G1, L1) −→ (G2, L2) is a backward Dirac map if and only if at every

g ∈ G1 one has

(L1)g = {X ⊕ (TgΦ)∗β | X ∈ TgG1, β ∈ T ∗Φ(g)G2, and TgΦ(X)⊕ β ∈ (L2)Φ(g)}.

That is, at every g ∈ G1, the fiber (L1)g consists of all elements ag which are Φ-related

to elements bΦ(g) ∈ (L2)Φ(g). In order to show that L1 is multiplicative, we prove that

L1 ⊆ TG1 is closed by multiplication. For that, consider ag, ah ∈ L1 a composable pair.

Since Φ is backward Dirac, there exist bΦ(g), bΦ(h) ∈ L2, which are Φ-related to ag and

ah, respectively. Since ag, ah are composable, we use Proposition 2.5.2 to conclude that

bΦ(g), bΦ(h) are composable, and that the product ag ∗ ah is Φ-related to the product bΦ(g) ∗
bΦ(h). The fact that L2 is multiplicative implies that bΦ(g) ∗ bΦ(h) ∈ (L2)Φ(gh). Finally, since

ag ∗ ah is Φ-related to bΦ(g) ∗ bΦ(h) ∈ (L2)Φ(gh) and the fiber (L1)gh consists of all elements

Φ-related to elements of (L2)Φ(gh), we conclude that ag ∗ ah ∈ (L1)gh. This proves that L1

is a multiplicative Dirac structure.

Example 2.5.5. (Reduction of Poisson groupoids)

Let (G, πG) be a Poisson groupoid, and let J : G −→ h∗ be a moment map for

a Hamiltonian action of a Lie group H on G. Assume that the H-action is by groupoid

automorphisms and that the moment map is multiplicative in the sense that
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J(g1g2) = J(g1) + J(g2).

for every composable pair (g1, g2) ∈ G(2). In [49] the reader can find interesting situations

where multiplicative moment maps arise. One observes that, whenever 0 ∈ h∗ is a regular

value for J , the moment level set Q = J−1(0) is a Lie subgroupoid of G. Consider the Dirac

structure LQ as in example 2.2.14. Clearly this defines a multiplicative Dirac structure on

the subgroupoid Q ⊆ G. Moreover, if the H-action is free and proper on the level set Q,

we conclude from example 2.2.14 that the reduced space Gred = Q/H inherits a canonical

Poisson structure πred in such a way that the projection map Q −→ Gred is both a backward

and forward Dirac map. Now we use example 2.5.4 to conclude that πred is multiplicative.

In other words, the reduced space (Gred, πred) is a Poisson groupoid. See [25] for a detailed

discussion about symmetries of Poisson groupoids.

Example 2.5.6. Given a Lie groupoid G ⇒ M , we define the isotropy group at x ∈ M
as

Gx := s−1(x) ∩ t−1(x).

It is clear that Gx is a Lie group. Moreover, the inclusion map iGx : Gx ↪→ G is a groupoid

morphism. Suppose now that G is equipped with a multiplicative Dirac structure LG, and

that the restriction of LG to Gx defines a smooth bundle LGx over the isotropy group Gx. In

this case, the bundle LGx defines a Dirac structure on Gx. It follows from the functoriality

of multiplicative Dirac structures that LGx is a multiplicative Dirac structure on the Lie

group Gx. This is what we call a Dirac Lie group. Dirac Lie groups are the main topic

of chapter 4.
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Chapter 3

Multiplicative 2-forms and their

infinitesimal counterparts

This chapter is devoted to the study of multiplicative Dirac structures defined

by graphs of multiplicative 2-forms. We show that the Lie functor acts naturally on multi-

plicative forms, establishing a correspondence between multiplicative 2-forms ωG on a source

simply connected Lie groupoid G and linear 2-forms ωA on the Lie algebroid A of G which

also define a Lie algebroid morphism ω]A : TA −→ T ∗A. The main result of this chapter is

the characterization of IM-2-forms on a Lie algebroid A in terms of suitable Lie algebroid

morphisms TA −→ T ∗A between the tangent and the cotangent Lie algebroid. In particu-

lar, we use Lie’s second theorem to give an alternative proof of the correspondence between

multiplicative twisted 2-forms on a source simply connected Lie groupoid and IM-2-forms

on its Lie algebroid, carried out in [10]. The results presented here may be thought of as

dual versions of the results in [46, 48] where the integration of Lie bialgebroids is derived

from a combination of Lie’s second theorem and the characterization of Lie bialgebroids in

terms of suitable linear bivectors T ∗A −→ TA which also define Lie algebroid morphisms.

In order to understand what the dual version of a linear bivector should be, we recall the

main properties and examples of linear forms on vector bundles. Along this chapter we will

need some local computations, for that we begin by describing tangent and cotangent Lie

algebroids locally. The results proved here are part of the preprint [7].
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3.1 Tangent lifts of differential forms

This section discusses a natural way of constructing differential forms on a tangent

bundle TM
pM−→ M , out of differential forms on its base M . Most of the results exposed

here can be found in [28, 60]. The direct sum over M of k-copies of TM will be denoted by∏k
pM

TM . Given a differential form α ∈ Ωk(M), we induce a canonical bundle map defined

by

α] :
k−1∏
pM

TM −→ T ∗M

(X1, ...Xk−1) 7→ α(X1, ..., Xk−1, ·)

Notice that the canonical involution JM : TTM −→ TTM extends to an isomor-

phism on higher products

J
(k)
M :

k∏
pTM

TTM −→
k∏

TpM

TTM.

We apply the tangent functor to the bundle map α], and using the extended canon-

ical involution together with the Tulczyjew map, yields a bundle map α]T :
∏k−1
pTM

TTM −→
T ∗TM defined by

α]T := ΘM ◦ (Tα]) ◦ J (k−1)
M .

In this way, one defines an operation

Ωk(M) −→ Ωk(TM) (3.1)

α 7→ αT (3.2)

where αT (V1, ..., Vk−1, Vk) = α]T (V1, ..., Vk−1)(Vk). The k-form αT is called the tangent lift

of α. For more details about tangent lifts of other tensors, see [28, 60]. Now we would like

to understand how the de Rham differential acts on tangent lifts of differential forms. For

that, let us consider the map τ : Ωk(M) −→ Ωk−1(TM) defined by



52

τ(α)X = p∗M (iXα).

The map in (3.1) is related to the map τ according to the following Cartan type formula

αT = dτ(α) + τ(dα). (3.3)

See e.g. [7, 28]. In particular, if η := dα, one has that (dα)T = d(αT ). That is, the tangent

lift (3.1) commutes with the de Rham differential.

3.2 Linear forms on vector bundles

Let A
qA−→M be a vector bundle. The direct sum over M of k-copies of A will be

denoted by
∏k
qA
A.

Definition 3.2.1. A k-form ωA on a vector bundle A
qA−→ M is called linear if it defines

a morphism of vector bundles

∏k−1
pA

TA

∏k−1
pM

TM

T ∗A

A∗

ω]
A //

ν
//

�� ��

(3.4)

where the bottom map ν is a vector bundle morphism, referred to as the base bundle map

covered by ωA.

Henceforth, we will be mainly interested in linear forms of lower degree, namely

2-forms and 3-forms.

Example 3.2.1. The canonical symplectic form ωcan on the cotangent bundle T ∗M −→M

is a linear 2-form. The base bundle map TM −→ TM is the identity map.

Example 3.2.2. Let A,B be vector bundles over M . Consider a vector bundle morphism

Ψ : A −→ B covering the identity. If ωB is a linear k-form on B, then the pull back form

ωA := Ψ∗ωB defines a linear k-form on A. Indeed, the induced bundle map
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ω]A :
k−1∏
pA

TA −→ T ∗A,

is given, at every fiber over u ∈ A, by (ω]A)u = (TuΨ)∗ ◦ (ω]B)Ψ(u) ◦ (TuΨ)(k−1), where

(TΨ)(k−1) :
∏k−1
pA

TA −→
∏k−1
pB

TB denotes the natural extension of TΨ : TA −→ TB.

Thus ω]A is a composition of vector bundle morphisms. The base bundle map covered by

ωA is given by the composition

Ψ∗ ◦ ν :
k−1∏
pM

TM −→ A∗.

Example 3.2.3. Let σ : A −→ T ∗M be a bundle map covering the identity. It follows

from example 3.2.2 that there is a canonical linear 2-form on A, defined by

ωA := σ∗ωcan.

Since the canonical form ωcan covers the identity TM −→ TM , we conclude from example

3.2.2 that the base map covered by ωA = σ∗ωcan is given by the bundle map

σt : TM −→ A∗,

dual to σ.

It turns out that all linear closed 2-forms on a vector bundle A −→M are included

in example 3.2.3.

Proposition 3.2.1. [37]

Every linear closed 2-form ωA on a vector bundle A −→M is given by

ωA = σ∗ωcan,

where σ : A −→ T ∗M is the bundle map dual to the base bundle morphism in (3.4).

3.2.1 Linear forms on Lie algebroids

Now we move to linear forms on a Lie algebroid. For that, assume that A
qA−→M

is a Lie algebroid with anchor map ρ : A −→ TM . According to example 3.2.3, the pull
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back morphism ρ∗ : Ω(TM) −→ Ω(A) provides a natural way to produce linear forms on A

out of linear forms on TM . In subsection 3.1 we defined an operation

τ : Ωk(M) −→ Ωk−1(TM),

with τ(α)X = p∗M (iXα). One can see easily that for every (k+ 1)-form φ on M , the k-form

τ(φ) ∈ Ωk(TM) is a linear form, whose base bundle map
∏k−1
pM

TM −→ A∗ is the fiberwise

zero map. Combining this operation with the pull back morphism ρ∗ : Ωk(TM) −→ Ωk(A)

we are led to a natural class of linear forms on Lie algebroids, those given by ρ∗(τ(φ)) for

some differential form φ on M .

Proposition 3.2.2. Let A −→ M be a Lie algebroid with anchor map ρ : A −→ TM .

Consider a closed 3-form φ on M . Assume that ωA is a linear 2-form on A, whose exterior

derivative satisfies dωA = dρ∗τ(φ). Then

ωA = σ∗ωcan + ρ∗τ(φ),

where σ : A −→ T ∗M is the base bundle map covered by ωA.

Proof. The linear 2-form ρ∗τ(φ) covers the bundle map A −→ T ∗M which is fiberwise zero.

Therefore, the linear 2-form ωA − ρ∗τ(φ) covers the same base bundle map σ : A −→ T ∗M

covered by ωA. Since ωA − ρ∗τ(φ) is closed, we use Proposition (3.2.1) to conclude the

statement.

3.2.2 From multiplicative forms to linear forms

Now we explain another way of constructing linear forms on Lie algebroids. For

that, let G ⇒ M be a Lie groupoid with Lie algebroid AG. Recall that a k-form ωG on G

is called multiplicative if

m∗ωG = pr∗1ωG + pr∗2ωG,

where m : G(2) −→ G is the groupoid multiplication and pr1, pr2 : G(2) −→ G are the

natural projections. We denote by Ωk
mult(G) the set of all multiplicative k-forms on a Lie

groupoid G. The k-degree version of the proof of Proposition 2.4.3 shows that the induced

bundle map ω]G :
∏k−1
pG

TG −→ T ∗G is a groupoid morphism, see e.g. [7]. The application
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of the Lie functor to ω]G, yields a Lie algebroid morphism

A(ω]G) :
k−1∏
A(pG)

A(TG) −→ A(T ∗G).

We can use the natural morphisms of Lie algebroids j′G : A(T ∗G) −→ T ∗(AG) and j(k−1)
G :∏k−1

pAG
T (AG) −→

∏k−1
A(pG)A(TG), explained in section 2.3.2 of chapter 2, to define a Lie

algebroid morphism

ω]AG :
k−1∏
pAG

T (AG) −→ T ∗(AG),

with ω]AG := j′G ◦A(ω]G) ◦ j(k−1)
G . Notice the similarity of ω]AG with the construction of the

tangent lift of k-forms explained in subsection 3.1 of Appendix A. This similarity is clarified

by the following proposition.

Proposition 3.2.3. Let (ωG)T ∈ Ωk(TG) be the tangent lift of the multiplicative form

ωG ∈ Ωk(G). Consider the linear k-form Λ on AG defined by

Λ = i∗AG(ωG)T ,

where iAG : AG ↪→ TG is the natural bundle inclusion. Then Λ] = ω]AG.

Proof. Recall that j′G = (TiAG)∗◦ΘG◦iA(T ∗G) and JG◦TiAG = iA(TG)◦jG. Thus extending

to higher products we have that

J
(k)
G ◦ (

k∏
TiAG) = (

k∏
iA(TG)) ◦ j

(k)
G .

On the other hand iA(T ∗G) ◦A(ω]G) = Tω]G ◦
∏k−1 iA(TG), thus we get

j′G ◦A(ω]G) ◦ j(k−1)
G = (TiAG)∗ ◦ΘG ◦ Tω]G ◦

k−1∏
iA(TG) ◦ j

(k−1)
G

= (TiAG)∗ ◦ (ωG)]T ◦ (
k−1∏

TiAG)

= (i∗AG(ωG)T )]

= ω]AG,
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as desired.

Due to the result above, we conclude that every multiplicative k-form ωG on a Lie

groupoid G induces a linear k-form ωAG := i∗AG(ωG)T on its Lie algebroid AG. Moreover,

since

ω]AG = j′G ◦A(ω]G) ◦ j(k−1)
G ,

is the composition of morphism of Lie algebroids, we conclude that ω]AG : T (AG) −→
T ∗(AG) is a Lie algebroid morphism. In [47] the concept of morphic 1-form on a Lie

algebroid was introduced. A 1-form α on a Lie algebroidA is called morphic if α : A −→ T ∗A

is a Lie algebroid morphism. Moreover, they proved that the Lie functor applied to a

multiplicative 1-form on a Lie groupoid gives rise to a morphic 1-form on its Lie algebroid.

This motivates the following definition.

Definition 3.2.2. A linear k-form ωA on a Lie algebroid A
qA−→ M is called morphic if

the induced bundle map (3.4) defines a morphism of Lie algebroids.

We denote by Ωk
mor(A) the set of all morphic k-forms on a Lie algebroid A. Just as

the Lie functor applied to multiplicative 1-forms on a Lie groupoid yields morphic 1-forms

on its Lie algebroid [47], we see that the effect of the Lie functor on multiplicative k-forms

on a Lie groupoid G is determined by the map

Ωk
mult(G) −→ Ωk

mor(AG) (3.5)

ωG 7→ ωAG, (3.6)

where ωAG = i∗AG(ωG)T .

Remark 3.2.1. Since the de Rham differential maps multiplicative forms into multiplica-

tive forms, and it commutes with tangent lifts of differential forms (see formula 3.3 in

Appendix A), we derive the following formula:

(dωG)AG = dωAG. (3.7)

In particular, (3.5) maps closed multiplicative forms into closed morphic forms.
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Every closed 3-form φ on M induces a multiplicative 3-form φG ∈ Ω3
mult(G),

defined by

φG = s∗φ− t∗φ.

Let us find the induced morphic 3-form φAG on AG.

Proposition 3.2.4. φAG = −dρ∗(τ(φ)).

Proof. By definition of the induced morphic form, we have

φAG = i∗AG(s∗φ)T − i∗AG(t∗φ)T .

Combining the fact dφ = 0 with the Cartan type formula (3.3) for the tangent lift

of a differential form, we obtain

(s∗φ)T = dτ(s∗φ) and (t∗φ)T = dτ(t∗φ).

One easily observes that τ(s∗φ) = (Ts)∗τ(φ) and τ(t∗φ) = (Tt)∗τ(φ). Thus we

get

φAG = d(Ts ◦ iAG)∗τ(φ)− d(Tt ◦ iAG)∗τ(φ).

Since AG = ker(Ts)|M and the anchor map is defined by ρ = Tt ◦ iAG, the statement

follows.

Notice also that whenever G has connected source fibers, the infinitesimal property

φAG = −dρ∗τ(φ) characterizes the multiplicative form φG = s∗φ− t∗φ. See remark 2.1.1 in

chapter 2.

Consider now a multiplicative 2-form ωG on G with

dωG = s∗φ− t∗φ.

As in (2.13) we consider the associated bundle map
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σ : AG −→ T ∗M (3.8)

u 7→ (iuω)|TM . (3.9)

One observes that the groupoid morphism ω]G : TG −→ T ∗G covers the bundle map −σt :

TM −→ A∗G. See Proposition 2.4.3.

Proposition 3.2.5. Let ωG be a multiplicative 2-form on G. Let φ ∈ Ω3(M) be closed

3-form and assume that dωG = s∗φ − t∗φ. Then the morphic 2-form on AG associated to

ωG is

ωAG = −(σ∗ωcan + ρ∗τ(φ)),

where ωcan is the canonical symplectic form on T ∗M .

Proof. The fact dωG = s∗φ− t∗φ, combined with (3.7), imply that the morphic 2-form ωAG

satisfies

dωAG = −dρ∗τ(φ).

Thus, the hypothesis of Proposition 3.2.2 is fulfilled, and the statement follows.

The morphic 2-form ωAG = −(σ∗ωcan + ρ∗τ(φ)), was constructed out of a global

data. Namely, we applied the Lie functor to the multiplicative 2-form ωG with dωG = s∗φ−
t∗φ. Conversely, assume that A −→ M is a Lie algebroid with anchor map ρ : A −→ TM .

Consider also a bundle map σ : A −→ T ∗M , a closed 3-form φ on M , and look at the

canonical linear 2-form Λ on A defined by

Λ = −σ∗ωcan − ρ∗τ(φ).

We would like to find a purely infinitesimal condition on σ and on φ, in such a way that

Λ ∈ Ω2(A) be a morphic 2-form. This will be explained in the last section of this chapter.
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3.3 Structure functions of tangent and cotangent Lie alge-

broids

Let A −→ M be a Lie algebroid with anchor map ρ : A −→ TM and Lie bracket

[·, ·] on ΓM (A). As explained in chapter 2 section 2.3.2, there exist canonical Lie algebroid

structures on the vector bundles TA −→ TM and T ∗A −→ A∗. Consider (xj)j=1,...,dim(M)

local coordinates on M , and {ea} a basis of local sections of A, which defines structure

functions ρja and Ccab of the Lie algebroid A. These structure functions are determined by

ρ(ea) = ρja
∂

∂xj
, [ea, eb] = Ccabec.

According to subsection A.0.1 of appendix A, every section u ∈ ΓM (A) induces sections

Tu, û ∈ ΓTM (TA). According to the definition of the tangent anchor map ρTA : TA −→
TTM and the tangent Lie bracket [·, ·]TA on ΓTM (TA), we conclude that the structure

functions of the tangent Lie algebroid TA −→ TM are determined by

[êa, êb]TA = 0, [Tea, êb]TA = Ccabêc, [Tea, T eb]TA = CcabTec + dCcabêc, (3.10)

ρTA(Tea) = ρja
∂

∂xj
+ dρja

∂

∂ẋj
, ρTA(êa) = ρja

∂

∂ẋj
. (3.11)

Consider {ea} the basis of local sections of A∗, dual to {ea}. , we induce coordinates

(xj , ξa) on A∗. With respect to {ea} we have coordinates (xj , ua) on A. On the cotangent

bundle T ∗A we use local coordinates of the form (xj , ua, pj , λa), where (pj) determines an

element in T ∗xM and (λa) defines an element in A∗
x. As indicated in subsection A.0.1 of

appendix A, every section u ∈ ΓM (A) induces a linear section uL ∈ ΓA∗(T ∗A), which is

locally described by

uL(xi, ξa) = (xi, ua(x), 0, ξa),

where u = uaea. Also, given a section α : M −→ T ∗M of the core1 of T ∗A −→ A∗, we have

the corresponding core section α̂ ∈ ΓA∗(T ∗A), which is locally given by

α̂(xi, ξa) = (xi, 0, αi(x), ξa),

1The definition of the core of a double vector bundle can be found in appendix A
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where α = αidx
i. With respect to this local description, the structure functions of the

cotangent algebroid T ∗A −→ A∗ are determined by

[d̂xi, d̂xj ]T∗A = 0, [eLa , d̂xj ]T∗A = d̂ρja, [eLa , e
L
b ]T∗A|(x,ξ) = −d̂Ccabξc + Ccabe

L
c , (3.12)

ρT∗A(d̂xi) = ρia
∂

∂ξa
, ρT∗A(eLa )|(x,ξ) = ρia

∂

∂xi
+ Ccabξc

∂

∂ξb
. (3.13)

3.4 Integration of IM-2-forms via Lie’s second Theorem

Let A −→ M be a Lie algebroid, with bracket [·, ·] and anchor ρ. Let σ : A −→
T ∗M be a vector bundle map and φ ∈ Ω3(M) a closed 3-form. Let us consider the linear

2-form Λ ∈ Ω2(A) defined by

Λ = −(σ∗ωcan + ρ∗τ(φ)), (3.14)

covering −σt : TM −→ T ∗M . We give a necessary and sufficient condition on σ and φ in

such a way that Λ] : TA −→ T ∗A defines a Lie algebroid morphism. Recall that the notion

of morphism of Lie algebroids was presented in chapter 2 definition 2.1.4.

Theorem 3.4.1. Let Λ ∈ Ω2(A) be as in (3.14). The following are equivalent:

(i) Λ is a morphic 2-form on A.

(ii) The map σ : A −→ T ∗M is an IM-2-form with respect to φ. That is

〈σ(u), ρ(v)〉 = −〈σ(v), ρ(u)〉

σ([u, v]) = Lρ(u)σ(v)− Lρ(v)σ(u) + iρ(v)iρ(u)φ,

for all u, v ∈ Γ(A).

In order to prove Theorem 3.4.1 it will be useful to make some local computations.

For that we follow the local description of the tangent and cotangent algebroids, presented

in the first section of this chapter.

Proof. A system of local coordinates (xj) on M induces local coordinates (xj , ẋj) on the

tangent bundle TM , and (xj , ẋj , δxj , δẋj) on the double tangent bundle TTM . Let {ea}
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be a basis of local sections of A, and {ea} the basis of local sections of A∗, dual to {ea}.
We induce local coordinates (xj , ua) on A and (xj , ξa) on A∗. The tangent bundle TA will

be described by the local coordinates system (xj , ua, ẋj , u̇a), and similary we have local

coordinates (xj , ua, pj , λa) on the cotangent bundle T ∗A. The bundle map σ : A −→ T ∗M

can be locally written as

σ(xj , ua) = (xj , uaσja(x)).

Thus the dual bundle map σt : TM −→ A∗ has the local form

σt(xj , ẋj) = (xj , ẋjσja).

We also write the 3-form φ ∈ Ω3(M) locally, as

φ =
1
6
φijkdx

i ∧ dxj ∧ dxk.

Consider the bundle map Λ] : TA −→ T ∗A induced by the linear 2-form Λ. Recall

that Λ] covers the bundle map −σt : TM −→ A∗. A straightforward computation shows

that

Λ](xj , ud, ẋj , u̇d) = (xj , ud, pj , λd), (3.15)

with coordinates (pj) ∈ T ∗xM and (λd) ∈ A∗
x are determined by

pj =ẋlud
(
∂σjd
∂xl

− ∂σld
∂xj

)
+ u̇dσjd − φijku

dρkdẋ
i,

λd =− ẋlσld.

We want to show that (i) and (ii) are equivalent. Recall that, by definition, Λ

is a morphic 2-form on A if and only if Λ] : TA −→ T ∗A is a Lie algebroid morphism

covering −σt : TM −→ A∗. Let us study the compatibility of Λ] with the tangent and

cotangent anchor maps, defined in (3.11) and (3.13), respectively. Recall that ΓTM (TA) is

generated by sections of the form Tea, êa, with ea ∈ ΓM (A). Thefore, it suffices to show the

compatibility of Λ] with the anchors at linear and core sections Tea and êa, respectively.
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For that, notice that the morphism of double vector bundles Λ] : TA −→ T ∗A maps core

sections into core sections. We easily check that

Λ](êb(xj , ẋj)) = (xj , 0, σjb,−ẋlσld) (3.16)

Similarly, the morphism of double vector bundles Λ] : TA −→ T ∗A maps linear sections

into a combination of linear and core sections. Therefore, a direct computation using (3.15)

gives

Λ](Teb(xj , ẋj)) = (xj , δbd, pj ,−ẋlσld), (3.17)

with the coordinates (pj) determined by

pj = ẋl
(
∂σjb
∂xl

− ∂σlb
∂xj

)
− φijkρ

k
b ẋ

i.

Recall that the compatibility of Λ] with the tangent and cotangent anchor maps

means

ρT∗A ◦ Λ] = T (−σt) ◦ ρTA. (3.18)

We will need an explicit formula for the derivative of the bundle map −σt : TM −→ A∗.

Using the local description of σt, we conclude that

T (−σt)(xj , ẋj , δxj , δẋj) = (xj ,−ẋlσld, δxj , λd) ∈ TA∗, (3.19)

where the coordinates (λd) are given by

λd = −ẋl ∂σld
∂xk

δxk − σldδẋ
l.

Let us check (3.18) at a core section êb. One uses the definition of the cotangent

anchor map (3.13) and the local descripition (3.16) for Λ] at core sections to conclude that

the left hand side of (3.18), at a core section êb, is determined by

ρT∗A(Λ](êb(x, ẋ))) = (xj ,−ẋlσld, 0, ρldσlb) ∈ TA∗
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On the other hand, the tangent anchor applied to êb is determined by (3.11). Thus we use

(3.19) to conclude that the right hand side of (3.18) is given by

T (−σt)(ρTA(êb(x, ẋ))) = (xj ,−ẋlσld, 0,−σldρlb).

Thus we immediatly observe that, at a core section êb, the identity (3.18) holds if and only

if

ρldσlb = −σldρlb.

Or equivalently,

〈σ(ed), ρ(eb)〉 = −〈σ(eb), ρ(ed)〉,

for every pair of sections ea, eb of A. This is exactly the first property of an IM-2-form

with respect to φ. Now let us check that (3.18) holds at every linear section Teb. We use

the local description (3.17) of Λ] at a linear section Teb and the definition of the cotangent

anchor (3.13) to conclude that the left hand side of (3.18) is given by

ρT∗A(Λ](Teb(x, ẋ))) = (xj ,−ẋlσld, ρjb, λd) ∈ TA
∗,

where the coordinates (λd) are determined by

λd = ẋlρkd

(
∂σkb
∂xl

− ∂σlb
∂xk

)
− φijkρ

k
b ẋ

iρjd + Ccdbẋ
lσlc

=
〈
−iρ(ed)(dσ(eb)) + iρ(ed)iρ(eb)φ+ σ([ed, eb]), ẋ

〉
. (3.20)

On the other hand, the tangent anchor applied to Teb is determined by (3.11).

Thus we use (3.19) to conclude that the right hand side of (3.18) is given by

T (−σt)(ρTA(Teb(x, ẋ))) = (xj ,−ẋlσld, ρjb, λ
′
d) ∈ (−σt)∗TA∗,

where the coordinates (λ′d) are determined by,

λ′d = −ẋl
(
∂σld
∂xk

ρkb + σid
∂ρib
∂xl

)
= −

〈
Lρ(eb)σ(ed), ẋ

〉
(3.21)

Thus the identity (3.18) holds at a linear section Teb if and only if (3.20) and (3.21) coincide.
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Equivalently, if and only if

σ([u, v]) = Lρ(u)σ(v)− Lρ(v)σ(u) + iρ(v)iρ(u)φ,

for every u, v sections of A. This is exactly the second property of an IM-2-form with respect

to φ. This proves that (3.18) is fulfilled.

It remains to show that Λ] : TA −→ T ∗A is a bracket preserving map. Recall that,

according to Definition 2.1.4 in chapter 2, the bracket preserving property for Λ] means

Λ]([U, V ]TA) =fjgi(−σT )∗[Uj , Vi]T∗A + LρTA(U)gi(−σt)∗Vi (3.22)

− LρTA(V )fj(−σt)∗Uj ,

where U, V ∈ ΓTM (TA), and fj , gi ∈ C∞(TM), Uj , Vi ∈ ΓA∗(T ∗A) are such that

Λ](U) = fj(−σt)∗Uj and Λ](V ) = gi(−σt)∗Vi.

Again, it suffices to check (3.22) when U, V represent all the possible combinations

of linear and core sections. We need to determine the functions fj , gi ∈ C∞(TM) for each

of these cases. Recall that every section ea of A induces a linear section of T ∗A −→ A∗,

given locally by

eLa (xj , ξd) = (xj , δad, 0, ξd).

Similarly, as explained in appendix A, every section α : M −→ T ∗M of the core of T ∗A,

induces a core section of T ∗A −→ A∗, locally determined by

αL(xj , ξd) = (xj , 0, αj(x), ξd),

where α = αjdx
j .

We use (3.16) to conclude that

Λ](êa(x, ẋ)) = σ̂(ea)(−σt(x, ẋ)) = gai d̂x
i(−σt(x, ẋ)), (3.23)
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where gai (x, ẋ) = σia(x). Similarly, we use (3.17) to conclude that

Λ](Tea(x, ẋ)) = eLa (−σt(x, ẋ)) + faj d̂x
j(−σt(x, ẋ)), (3.24)

where

faj (x, ẋ) = ẋl
(
∂σja
∂xl

− ∂σla
∂xj

)
− φijkρ

k
aẋ

i.

Let us observe that a 1-form on TM of the type αj(x, ẋ)dxj can be identified with a section

of the pull back bundle (−σt)∗(T ∗A), via

αj(x, ẋ)dxj 7→ αj(x, ẋ)dxj , (3.25)

where, since there is no risk of confusion, in the right hand side of (3.25) we abuse notation

writing dxj instead of dxj(−σt(x, ẋ)). With respect to the identification (3.25) we have

faj dx
j = iẋdσ(ea)− iẋiρ(ea)φ, (3.26)

with ẋ = ẋl ∂
∂xl ∈ X(TM). Now we are ready to prove the bracket preserving property

(3.22). As we said before, since we only need to consider all the possible combinations of

linear and core sections, in order to check (3.22) we study three cases.

Case 1: Core-Core sections

Take U = êa and V = êb in (3.22). By definition of the tangent Lie bracket (3.10)

we have [êa, êb]TA = 0. Thus the left hand side of (3.22) vanishes. Similarly, the definition

(3.12) of the cotangent bracket says [d̂xi, d̂xj ]T∗A = 0. The tangent anchor at a core section

gives a vertical vector field on TM , that is, a vector field tangent to the fibres. The right

hand side of (3.22) is a combination of [d̂xi, d̂xj ]T∗A = 0 and derivatives of gai (x, ẋ) = σia(x)

with respect to the variable ẋ. Since gai just depend on the variable x, we conclude that

the right hand side of (3.22) vanishes as well. This shows that (3.22) holds at a pair of core

sections.

Case 2: Linear-Core sections

Take U = Tea and V = êb in (3.22). According to (3.10), the tangent bracket of
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linear and core sections is determined by [Tea, êb]TA = Ccabêc. Using (3.23) we see that the

left hand side of (3.22) is given by

Λ]([Tea, êb]) = σ([ea, eb]).

On the other hand, the right hand side of (3.22) is given by the sum of three terms

T1 + T2 + T3. A straightforward computation, based on the structure functions (3.11) and

(3.12) for the tangent and cotangent algebroids, shows that

T1 =σibdρia.

T2 =(LρTA(Tea)σib)dx
i

=Lρl
a

∂

∂xl
(σibdxi)− σibLρl

a
∂

∂xl
dxi

=Lρ(ea)σ(eb)− σibdρ
i
a.

T3 =(LρTA(beb)f
a
j )dxj

=
(
ρlb

(
∂σja
∂xl

− ∂σla
∂xj

)
− φijkρ

k
aρ
i
b

)
dxj

=iρ(eb)dσ(ea)− iρ(eb)iρ(ea)φ

Therefore, the bracket preserving property (3.22) in this case is equivalent to

σ([ea, eb]) =T1 + T2 + T3 (3.27)

=σibdρia + Lρ(ea)σ(eb)− σibdρ
i
a+ (3.28)

+ iρ(eb)dσ(ea)− iρ(eb)iρ(ea)φ. (3.29)

One easily observes that (3.29) is equivalent to

σ([u, v]) = Lρ(u)σ(v)− Lρ(v)σ(u) + iρ(v)iρ(u)φ,

for every u, v sections of A, which is exactly the second property of an IM-2-form with

respect to φ.

Case 3: Linear-Linear sections
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This is the last case to be verified. Take U = Tea and V = Teb in (3.22). It

follows from the definition of the tangent Lie bracket (3.10) and the formulas (3.24) and

(3.23), that the left hand side of (3.22) is given by

Λ]([Tea, T eb]TA) = Ccabe
L
c |−σt(x,ẋ) + Ccabf

c
j dx

j + dCcab(ẋ)σ(ec)

= [ea, eb]L|−σt(x,ẋ) + Ccab(iẋdσ(ec)− iẋiρ(ec)φ) + dCcab(ẋ)σ(ec)

= [ea, eb]L|−σt(x,ẋ) + iẋdσ([ea, eb]) + dCcab〈σ(ec), ẋ〉 − iẋi[ρ(ea),ρ(eb)]φ.

Recall that (3.24) says that

Λ](Tea) =eLa + faj dx
j

Λ](Teb) =eLb + f bi dx
i.

The right hand side of (3.22) is given by the sum of three terms S1 + S2 + S3.

A direct computation, using the structure functions (3.11) and (3.12) for the tangent and

cotangent algebroids, shows that

S1 =[ea, eb]L|−σt(x,ẋ) + dCcab
〈
σt(ẋ), ec

〉
− faj dρ

j
b + f bi dρ

i
a.

S2 =LρTA(Tea)(f
b
i )dx

i.

S3 =LρTA(Teb)(f
a
j )dxj .

We can use the fact that the Lie derivative is a derivation of degree zero, to conclude that

S2 = LρTA(Tea)(f
b
i dx

i)− f bi (LρTA(Tea)dx
i). (3.30)

In the second term of the right hand side of (3.30) we can use Cartan’s formula and the

fact that the tangent anchor at Tea is given by

ρTA(Tea) = ρja
∂

∂xj
+ dρja

∂

∂ẋj
, (3.31)

to conclude that f bi (LρTA(Tea)dx
i) = f bi dρ

i
a. Recall also that
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f bi dx
i = iẋdσ(eb)− iẋiρ(eb)φ,

thus we derive the identity

S2 = LρTA(Tea)iẋdσ(eb)− LρTA(Tea)iẋiρ(eb)φ− f bi dρ
i
a. (3.32)

Notice that (3.31) can be written as

ρTA(Tea) = ρ(ea) + V v
a ,

with V v
a = dρla(ẋ)

∂
∂ẋl . Observe also that

[ρ(ea), ẋ] = −V h
a ,

where V h
a = dρla(ẋ)

∂
∂xl . It is easy to see, using local coordinates, that LV v

a
iẋα = iV h

a
α, for

every 2-form α = 1
2αij(x)dx

i ∧ dxj . Therefore, using Cartan’s calculus we see that the first

term of the right hand side of (3.32) is given by

LρTA(Tea)iẋdσ(eb) =Lρ(ea)iẋdσ(eb) + LV v
a
iẋdσ(eb)

=− iV h
a
dσ(eb) + iẋLρ(ea)dσ(eb) + iV h

a
dσ(eb)

=iẋdiρ(ea)dσ(eb).

The second term of the right hand side of (3.32) is

LρTA(Tea)iẋiρ(eb)φ = iẋLρ(ea)iρ(eb)φ.

Therefore we conclude that

S2 = iẋdiρ(ea)dσ(eb)− iẋLρ(ea)iρ(eb)φ− f bi dρ
i
a.

The same argument applied to S3 implies that

S3 = iẋdiρ(eb)dσ(ea)− iẋLρ(eb)iρ(ea)φ− faj dρ
j
b.
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Hence, the bracket preserving condition (3.22), which in this case, reduces to

Λ]([Tea, T eb]TA) = S1 + S2 + S3,

holds if and only if

iẋdσ([ea, eb])− iẋi[ρ(ea),ρ(eb)]φ =iẋdiρ(ea)dσ(eb)− iẋLρ(ea)iρ(eb)φ (3.33)

− iẋdiρ(eb)dσ(ea) + iẋLρ(eb)iρ(ea)φ.

Now we use the formula i[X,Y ] = [LX , iY ] and the fact that φ is closed, to conclude that

i[ρ(ea),ρ(eb)]φ− Lρ(ea)iρ(eb)φ+ Lρ(eb)iρ(ea)φ = diρ(eb)iρ(ea)φ.

Thus, the identity (3.33) is holds if and only if

dσ([ea, eb]) = d(iρ(ea)dσ(eb)− iρ(eb)dσ(ea) + iρ(eb)iρ(ea)φ)

= d(Lρ(ea)σ(eb)− diρ(ea)σ(eb)− iρ(eb)dσ(ea) + iρ(eb)iρ(ea)φ)

= d(Lρ(ea)σ(eb)− iρ(eb)dσ(ea) + iρ(eb)iρ(ea)φ)

= d(Lρ(ea)σ(eb)− Lρ(eb)σ(ea) + iρ(eb)iρ(eb)φ),

which can be derived by differentiating the second property of an IM-2-form with respect

to φ. This finishes the proof.

As an immediate consequence of Theorem 3.4.1 we obtain an alternative method

to the one described in [10] for integrating IM-2-forms to multiplicative 2-forms.

Corollary 3.4.1. Let G be a source simply connected Lie groupoid G over M , with Lie

algebroid AG. Suppose that φ is a closed 3-form on M , and consider the 3-form φG on G

defined by φG = s∗φ− t∗φ There exists a one-to-one correspondence between

i) multiplicative 2-forms ωG on G with dωG = φG, and

ii) IM-2-forms σ : AG −→ T ∗M with respect to φ.
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Proof. Let us consider a multiplicative 2-form ωG on G such that dωG = s∗φ− t∗φ for some

closed 3-form φ on M . Consider also the bundle map σ : AG −→ T ∗M as in (2.13). The

Lie functor applied to ωG yields, in virtue of Proposition 3.2.5, a morphic 2-form ωAG on

AG given by

ωAG = −σ∗ωcan − ρ∗τ(φ).

Thus a direct application of Theorem 3.4.1 shows that σ : AG −→ T ∗M satisfies the axioms

of an IM-2-form with respect to φ. Conversely, given an IM-2-form with respect to φ, we

consider the induced linear 2-form on AG given by

Λ = −σ∗ωcan − ρ∗τ(φ).

It follows from Theorem 3.4.1 that Λ is morphic, so the induced bundle map Λ] : T (AG) −→
T ∗(AG) is a Lie algebroid morphism. Since G is a source simply connected Lie groupoid,

the tangent Lie groupoid TG ⇒ TM is also source simply connected, and its Lie algebroid

is T (AG). Therefore, it follows from Lie’s second theorem 2.1.1 that there exists a unique

morphism of Lie groupoids

ω]G : TG −→ T ∗G,

with A(ω]G) = Λ]. For every pair of tangent vectors (X,Y ) ∈ TG⊕ TG, define

ωG(X,Y ) := ω]G(X)(Y ). (3.34)

Notice that if ωG was a 2-form on G, then it would be automatically a multiplicative form.

In this case the morphic form induced by dωG is exactly dΛ = −dρ∗(τ(φ)), and we conclude

from Proposition 3.2.5 that dωG = s∗φ−t∗φ, as required. Hence, we only need to check that

(3.34) defines a 2-form onG. First let us check that cG◦ω]G = pG. Notice that pG : TG −→ G

and cG : T ∗G −→ G are morphism of Lie groupoids, whose induced Lie algebroid morphisms

are determined by pAG = jG ◦ A(pG) and cAG = A(cG) ◦ (j′G)−1, respectively. That is, up

to canonical isomorphism of Lie algebroids, we have that A(pG) = pAG and A(cG) = cAG.

Since cAG ◦Λ] = pAG, we conclude from the uniqueness of the integration of a Lie algebroid

morphism, that
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cG ◦ ω]G = pG.

Now we verify that ω] is linear with respect to the usual bundle structures TG −→ G and

T ∗G −→ G. For that we observe that the fiberwise addition maps +TG : TG⊕ TG −→ TG

and +T∗G : T ∗G ⊕ T ∗G −→ T ∗G are groupoid morphisms, whose induced Lie algebroid

morphisms are, up to canonical identifications, given by the fiberwise addition maps +TA :

TA ⊕ TA −→ TA and +T∗A : T ∗A ⊕ T ∗A −→ T ∗A, respectively. Since the bundle map

Λ] : TA −→ T ∗A is linear with respect to the usual bundle structures TA −→ A and

T ∗A −→ A, we conclude that

Λ] ◦+TA = +T∗A ◦ Λ]. (3.35)

Again by the uniqueness of the integration given by Lie’s second theorem, we conclude that

ω]G ◦+TG = +T∗G ◦ ω]G, (3.36)

showing that ω]G is additive. The same argument applied to the groupoid morphism given

by scalar multiplication, shows that ω]G(rX) = rω]G(X) for every X ∈ TG and r ∈ R.

Finally we prove that ω]G : TG −→ T ∗G is skew symmetric. This is equivalent to saying

that the canonical pairing T ∗G⊕TG −→ R vanishes on the graph LωG of ω]G. Observe that,

since ω]G is a groupoid morphism, the graph LωG is a subgroupoid of T ∗G ⊕ TG, whose

Lie algebroid coincides, up to canonical identifications, with the graph LΛ ⊆ T ∗A ⊕ TA

of the Lie algebroid morphism Λ]. Also the skew symmetry of Λ is equivalent to the fact

that the canonical pairing T ∗A ⊕ TA −→ R vanishes on LΛ. We observe also, that the

canonical pairing T ∗G ⊕ TG −→ R is a groupoid morphism, whose induced morphism of

Lie algebroids is, up to identifications, the canonical pairing T ∗A⊕ TA −→ R. Again, the

uniqueness of Lie’s second theorem implies that the canonical pairing T ∗G ⊕ TG −→ R

vanishes on LωG , since this holds infinitesimally. This finishes the proof.
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Chapter 4

The case of Lie groups

In this chapter we study multiplicative Dirac structures on Lie groups. We intro-

duce Dirac-Lie groups as a natural generalization of Poisson-Lie groups in the category of

Lie groups. The main results exposed in this chapter can be found in the author’s work

[51].

4.1 Dirac-Lie groups

A Dirac-Lie group is a pair (G,LG) where G is a Lie group and LG ⊆ TG is

a multiplicative Dirac structure on G. We have seen that Dirac structures unify Poisson

bivectors, closed 2-forms and regular foliations, therefore it is natural to study multiplicative

versions of these three classes of Dirac structures. We will analyze them separately. First,

we immediatly observe that a Dirac-Lie group (G,LG) defined by the graph of a Poisson

bivector πG on G is nothing but a Poisson-Lie group. On the other extreme, the following

proposition says that there are no interesting Dirac-Lie groups defined by the graph of

multiplicative 2-forms.

Proposition 4.1.1. Let G be a Lie group. The only multiplicative 2-form on G is the zero

2-form.

Proof. Let ωG be a multiplicative 2-form on G. In virtue of Proposition 2.4.3, the multi-
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plicativity of ωG is equivalent to saying that the bundle map

ω]G : TG −→ T ∗G (4.1)

X 7→ iXωG, (4.2)

is a morphism of Lie groupoids. If Xg ∈ TgG is a tangent element, it follows from the

definition of the cotangent target map t̃ : T ∗G −→ g∗ that t̃(ω]G(Xg)) ∈ g∗, which at every

u ∈ g is given by

t̃(ω]G(Xg))u = ωG(Xg, u
r),

where ur is the right invariant vector field on G determined by u ∈ g. As explained in

section 2.3.1 of chapter 2, the fact that G is a Lie group implies that the tangent bundle

TG is also a Lie group. In particular, the tangent target map is the zero map TG −→ {0}.
Thus, the fact that ω]G is a groupoid morphism implies that

0 = t̃(ω]G(Xg))u = ωG(Xg, u
r).

Now, if g ∈ G is fixed, then every tangent element Yg ∈ TgG can be written as Yg = ur(g)

for some right invariant vector field ur on G. Thus we conclude that

ωG(Xg, Yg) = 0,

for every Xg, Yg ∈ TgG, as desired.

Just as Poisson-Lie groups are Lie groups with a Poisson structure such that the

multiplication map is a Poisson map, Dirac-Lie groups are Lie groups with a Dirac structure

compatible with the multiplication in the sense that the multiplication map is a forward

Dirac map. In order to explain this, we consider a Dirac structure LG on G. The direct

product G×G is equipped with a Dirac structure defined by

(LG×G)(g,h) := {(Xg, Xh, αg, αh) | Xg ⊕ αg ∈ (LG)g, Xh ⊕ αh ∈ (LG)h}.
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Proposition 4.1.2. Let G be a Lie group equipped with a Dirac structure LG. Then LG

is multiplicative if and only if the multiplication map m : (G × G,LG×G) −→ (G,LG) is a

forward Dirac map.

Proof. Assume that LG is a multiplicative Dirac structure on G. Given g, h ∈ G and

Ygh ⊕ βgh ∈ (LG)gh, we can write

Ygh ⊕ βgh ∈ (LG)gh = Xg •Xh ⊕ αg ◦ αh, (4.3)

with Xg ⊕αg ∈ (LG)g and Xh⊕αh ∈ (LG)h. In order to show that the multiplication map

is forward Dirac, it suffices to prove that

Ygh ⊕ βgh = T(g,h)m(Xg, Xh)⊕ βgh, (4.4)

where βgh ∈ T ∗ghG and (Xg, Xh, (T(g,h)m)∗βgh) ∈ (LG×G)(g,h). Take βgh = αg ◦ αh, then

(4.3) implies (4.4), as desired. Conversely, if m : G×G −→ G is a forward Dirac map, then

LG is multiplicative if and only if given Xg ⊕ αg ∈ (LG)g and Xh ⊕ αh ∈ (LG)h, then

Xg •Xh ⊕ αg ◦ αh ∈ (LG)gh. (4.5)

Since m is a forward Dirac map, every element in (LG)gh has the form

T(g,h)m(Ug, Uh)⊕ βgh,

(Ug, Uh, (T(g,h)m)∗βgh) ∈ (LG×G)(g,h). Now (4.5) follows with Ug = Xg, Uh = Xh and

βgh = αg ◦ αh. This finishes the proof.

4.2 Multiplicative foliations

In this section we give a detailed study of Dirac-Lie groups defined by regular

foliations. Let us begin with the following observation.

Proposition 4.2.1. Let F ⊆ TG be a regular integrable distribution on a Lie group G. Then

the corresponding Dirac structure LF = F ⊕ F ◦ is multiplicative if and only if F ⊆ TG is

a Lie subgroup, where TG has the natural Lie group structure induced from G.



75

Proof. Assume that F ⊆ TG is a Lie subgroup. Let αg, βh be composable elements in the

annihilator F ◦ of F . The cotangent product is defined by

(αg ◦ βh)(Xg • Yh) = αg(Xg) + βh(Yh).

where Xg ∈ TgG and Yh ∈ ThG. In particular, if Xg, Yh are composable elements of F , we

conclude that αg ◦ βh ∈ F ◦. This implies that LF = F ⊕ F ◦ is a Lie subgroupoid of TG,

or equivalently, LF defines a multiplicative Dirac structure on G. Conversely, if LF is a

multiplicative Dirac structure on G, we conclude that F ⊆ TG is a Lie subgroup, since the

groupoid structure on LF ⊆ TG is defined out of the groupoid structures on TG and T ∗G,

which are independent of each other.

A multiplicative foliation on a Lie group G is a regular foliation F tangent to

a Lie subgroup F ⊆ TG. The following proposition gives a natural way of constructing

multiplicative foliations.

Proposition 4.2.2. Let G be a Lie group with Lie algebra g. Suppose that h ⊆ g is a Lie

subalgebra. Consider the distribution F ⊆ TG defined at every g ∈ G by

Fg := Telg(h),

where lg : G −→ G is the left multiplication by g and e ∈ G is the identity element. Then

F ⊆ TG is a Lie subgroup if and only if h ⊆ g is an ideal.

Proof. Assume that h ⊆ g is an ideal. We will show that F ⊆ TG is a Lie subgroup. In

general, if Xg ∈ TgG, then the tangent inverse is determined by

(Xg)−1 = −Tg(lg−1 ◦ rg−1)Xg. (4.6)

If Xg ∈ Fg, then there exists u ∈ h with Xg = Telg(u). Using (4.6) we conclude that

(Xg)−1 = −Telg−1(Adg(u)). (4.7)

The fact that h ⊆ g is an ideal is equivalent to the Ad-invariance of h. Thus (4.7) implies

that F ⊆ TG is closed by the inversion map in TG. It remains to show that F ⊆ TG is
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closed by multiplication. For that, consider Xg = Telg(u) and Yh = Telh(v), elements in F .

If m is the multiplication map of G, then the tangent multiplication gives

Xg • Yh =T(g,h)m(Xg, Yh) (4.8)

=Tgrh(Telg(u)) + Thlg(Telh(v)) (4.9)

=Tgrh(Telg(u)) + Telgh(v). (4.10)

Notice that the second term of the right hand side of (4.10) belongs to Fgh. On the other

hand, we claim that there exists a unique u′ ∈ h such that the first term of the right hand

side of (4.10) is given by

Tgrh(Telg(u)) = Telgh(u′). (4.11)

Indeed, since h is Ad-invariant, we see that u′ = Adh−1u ∈ h is the solution of

(4.11). Thus, the right hand side of (4.10) defines an element of Fgh, showing that F ⊆ TG

is closed by multiplication. This proves that F ⊆ TG is a subgroup. Conversely, if F ⊆ TG

is a subgroup, then Xg • Yh ∈ Fgh for every Xg = Telg(u) and Yh = Telh(v) elements in F .

In particular (4.10) implies that Tgrh(Telg(u)) ∈ Fgh for every u ∈ h. Now, u′ = Adh−1u

defined by (4.11) necessarily defines an element in h, and we conclude that h is Ad-invariant.

That is h ⊆ g is an ideal.

The distribution F ⊆ TG defined in Proposition 4.2.2 is clearly an integrable dis-

tribution. Thus, the induced foliation F on G is multiplicative. Notice that the leaf through

the identity coincides with the connected normal Lie subgroup H ⊆ G that integrates the

ideal h ⊆ g. The other leaves of F are cosets of the normal Lie subgroup H ⊆ G. The

following result says that this is the general picture of multiplicative foliations on a Lie

group.

Proposition 4.2.3. Let F be the foliation integrating a multiplicative distribution F ⊆ TG.

The following holds:

1. The leaf through the identity Fe ⊆ G is a normal Lie subgroup.

2. The foliation F is given by cosets of Fe.
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Proof. Since F ⊆ TG is a subgroup, it is closed under multiplication in TG, that is

dm(g, h)(Xg, Xh) = dRh(g)Xg + dLg(h)Xh ∈ Fgh for every Xg, Xh ∈ F . In particular,

for Xh = 0 we see that F is right invariant, i.e. dRh(g)Xg ∈ Fgh. Similarly we obtain left

invariance of F : dLg(h)Xh ∈ Fgh. This says that the distribution at each g ∈ G is given by

Fg = dLg(e)Fe = dRg(e)Fe. (4.12)

Consider now Fe, the leaf of F through the identity e ∈ G. For every a, b ∈ Fe
there exist paths a(t), b(t) ∈ G, t ∈ [0, 1], tangent to the distribution F , joining the identity

e ∈ G to a and b, respectively. We want to prove that c = ab ∈ Fe. For this, take the

path c(t) = a(t)b(t), which joins the identity to c = ab. The path c(t) is tangent to the

distribution F : indeed, the bi-invariance of F implies that

c′(t) = dRb(t)(a(t))a′(t) + dLa(t)(b(t))b′(t) ∈ Fc(t),

since a′(t) ∈ Fa(t) and b′(t) ∈ Fb(t). This shows that c ∈ Fe. A similar computation shows

that Fe is closed by the inversion map. Therefore the leaf through the identity is a subgroup

of G. Moreover, it follows from (4.12) that the Lie algebra of Fe is Ad-invariant, which is

equivalent to Fe being a normal subgroup. The assertion in 2. follows from the bi-invariance

in (4.12).

4.3 The characteristic foliation of a Dirac-Lie group

In the previous section we discussed in detail three classes of Dirac-Lie groups.

Another class of examples of Dirac-Lie groups is obtained as follows: Let Φ : G1 −→ G2

be a homomorphism of Lie groups which is a surjective submersion. If π is a multiplicative

Poisson structure on G2, then its pull back (in the sense of Dirac structures, see chapter

2 ) turns out to be a multiplicative Dirac structure on G1, whose presymplectic leaves are

the inverse images by Φ of the symplectic leaves of G2, and whose characteristic foliation

is given by the fibres of the submersion Φ. Our main observation in this section is that,

modulo a regularity condition, all multiplicative Dirac structures on Lie groups are of this

form.

We observed in Proposition 2.5.2 that if Φ : G1 −→ G2 is a morphism of Lie
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groupoids and a surjective submersion, and if ag, ah ∈ TG1 are Φ-related elements to

bΦ(g), bΦ(h) ∈ TG2, we conclude that whenever ag, ah are composable elements, then bΦ(g), bΦ(h)

are composable as well. As a result we obtained a natural functorial property of multiplica-

tive Dirac structures on Lie groupoids explained in Corollary 2.5.1. In the special case of

multiplicative Dirac structures on Lie groups, we notice that the converse of Proposition

2.5.2 is true.

Proposition 4.3.1. Let Φ : G1 −→ G2 be a morphism of Lie groups, which is a surjective

submersion. Assume that ag, ah ∈ TG1 are Φ-related to bΦ(g), bΦ(h) ∈ TG2. Then ag, ah are

composable if and only if bΦ(g), bΦ(h) are composable. In this case, ag ∗ ah is Φ-related to

bΦ(g) ∗ bΦ(h).

Proof. It suffices to show that if bΦ(g), bΦ(h) are composable, then ag, ah are composable,

since the other direction was proved in Proposition 2.5.2. The cotangent parts of bΦ(g)

and bΦ(h) are composable, so the Φ-relation assumption together with fact that (TΦ)∗ :

Φ∗(T ∗G2) −→ T ∗G1 is a groupoid morphism implies that the cotangent parts of ag and

ah are composable. Finally, notice that since G1 is a Lie group, in particular TG1 is a

Lie group, then the tangent parts of ag, ah are always composable, and this fact does not

depend on the composability of bΦ(g), bΦ(h). This proves the statement.

Recall that Corollary 2.5.1 says that the multiplicativity property of a Dirac struc-

ture is preserved by groupoid morphisms which are surjective submersions and backward

Dirac maps. In virtue of Proposition 4.3.1 we obtain a similar result for forward Dirac

maps.

Corollary 4.3.1. Let Φ : G1 −→ G2 be a homomorphism of Lie groups, which is a surjective

submersion. Assume that L1, L2 are Dirac structures on G1, G2 , respectively. If Φ is a

forward Dirac map and L1 is multiplicative, then L2 is multiplicative. Also, if Φ is a

backward Dirac map and L2 is multiplicative, then L1 is multiplicative.

Proof. It suffices to show the forward case, since the backward case is a direct consequence

of Corollary 2.5.1. Now, recall that Φ is a forward Dirac map if and only if L2 is the bundle

of all Φ-related elements to elements in L1. The statement follows from Proposition 4.3.1.
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It turns out that such a functorial property is a useful tool for studying the space of

characteristic leaves of Lie groups endowed with multiplicative Dirac structures. Consider

now a Dirac Lie group (G,LG) and let K be the characteristic foliation of LG, that is,

the generally singular foliation of G tangent to the distribution ker(LG) = LG ∩ TG. As

explained in chapter 2, whenever K is a simple foliation, the space of characteristic leaves

G/K inherits a Poisson structure denoted by πred. In the special case of Dirac-Lie groups

our main result is the following.

Theorem 4.3.1. Let G be a Lie group with a multiplicative Dirac structure LG ⊆ TG⊕T ∗G.

Then:

1. The kernel of LG is a multiplicative integrable distribution, and the leaves of the

characteristic foliation K are cosets of the normal Lie subgroup Ke ⊆ G.

2. If Ke is closed, then the leaf space G/K is smooth and the induced Poisson structure

πred is multiplicative (i.e., G/K becomes a Poisson-Lie group). Moreover, LG is the

pull back of πred by the quotient map G −→ G/K.

Proof. Since LG is multiplicative, we have that ker(LG) = LG ∩ TG ⊆ TG is a subgroup,

hence (4.12) implies that ker(LG) has constant rank. In particular it defines an involutive

distribution, whose leaves are given by cosets of the normal Lie subgroup K = Ke (the

leaf through the identity) by Prop. 4.2.3. If K is closed, then G/K is a Lie group and the

projection G −→ G/K is a surjective submersion which is both a forward and backward

Dirac map [11], where G/K is equipped with the natural Poisson structure πred induced by

LG. The multiplicativity property of πred is a direct consequence of the functorial property

of multiplicative Dirac structures.

4.4 Infinitesimal description

In this section we describe Dirac-Lie groups infinitesimally. We combine Theorem

4.3.1 and Drinfeld’s correspondence between Poisson-Lie groups and Lie bialgebras [23], to

obtain the infinitesimal counterpart of Dirac-Lie groups.

Let G be a Lie group with Lie algebra g.
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Proposition 4.4.1. If (G,LG) is a Dirac-Lie group, then k = ker(LG)e is an ideal in g and

the quotient g/k inherits the structure of a Lie bialgebra.

Proof. The multiplicativity of the characteristic distribution implies that k ⊆ g is an ideal.

Now consider the connected and simply connected Lie group T integrating the quotient Lie

algebra g/k. The canonical projection g −→ g/k integrates to a homomorphism of Lie groups

Φ : G̃ −→ T , where G̃ denotes the universal covering of G. The subgroup H = ker(Φ) is

closed and normal in G̃, therefore the connected component of the identity H0 is closed and

normal as well and the quotient group G̃/H0 inherits a Poisson-Lie structure. Since G̃/H

is locally diffeomorphic to G̃/H0, the Lie algebra g/k inherits a Lie bialgebra structure.

In the situation of Proposition 4.4.1 we say that (G,LG) is an integration of the

infinitesimal data (g, k), where k ⊆ g is ideal and g/k is a Lie bialgebra.

Proposition 4.4.2. If G is connected and simply connected and k ⊆ g is an ideal such that

g/k is a Lie bialgebra, then there is a unique multiplicative Dirac structure on G integrating

(g, k).

Proof. Let T be the connected and simply connected Lie group integrating g/k. Consider the

homomorphism Φ : G −→ T and H ⊆ G as in the proof of Proposition 4.4.1. The quotient

group G/H ∼= T has a multiplicative Poisson structure πT integrating the Lie bialgebra

g/k. Since Φ is a surjective submersion, we induce a multiplicative Dirac structure LG on

G according to Corollary 4.3.1. This shows that (G,LG) is an integration of (g, k).
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Chapter 5

Natural functors on Dirac

groupoids

In this chapter we study the effect of natural functors, such as the tangent functor

and the Lie functor, on Lie groupoids equipped with multiplicative Dirac structures. On one

direction, we extend a result of Grabowski-Urbanski [28] concerning tangent lifts of Poisson

Lie groups. More precisely, we show that every Dirac groupoid (G,LG) can be lifted, in a

natural manner, to a tangent Dirac groupoid (TG,LTG). On the other direction, we show

that any multiplicative Dirac structure LG ⊆ TG is mapped, via the Lie functor, into a

Lie subalgebroid LAG ⊆ T(AG) which is also a linear Dirac subbundle. Conversely, if A is

an integrable Lie algebroid with source simply connected Lie groupoid G, then every Lie

subalgebroid LA ⊆ TA which also defines a Dirac structure integrates to a Lie subgroupoid

LG ⊆ TG, making the pair (G,LG) into a Dirac groupoid. We also study multiplicative

B-fields acting on Poisson groupoids and we explain the geometric structures obtained after

applying the Lie functor.

5.1 The tangent functor

We start this section by motivating our construction of tangent Dirac structures.

Recall that if πM is a Poisson bivector on M , then the cotangent bundle T ∗M carries a Lie

algebroid structure over M , and we denote this Lie algebroid by (T ∗M)πM . We can dualize

this Lie algebroid structure, giving rise to a linear Poisson bivector πTM on the tangent

bundle of M . This tangent Poisson structure coincides, up to canonical isomorphisms, with
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the derivative of πM . More precisely, there exists a commutative diagram

T (T ∗M)

T ∗(TM)

T (TM)

T (TM)

T (π]
M )

//

π]
TM

//

ΘM

��

JM

��

(5.1)

where JM : TTM −→ TTM denotes the canonical involution and ΘM : T (T ∗M) −→
T ∗(TM) is the Tulczyjew map. For a detailed discussion about this identifications see the

original work [59] or section 2.3.2 in the second chapter of this work. Now we conclude

that the tangent Poisson structure πTM induces a Lie algebroid structure on the cotangent

bundle T ∗(TM) −→ TM , which it turns to be isomorphic to the tangent Lie algebroid of

(T ∗M)πM . In terms of Dirac geometry, the Poisson bivector πM may be thought of as a Dirac

structure LM ⊆ TM⊕T ∗M which, as a Lie algebroid, is isomorphic to the cotangent bundle

(T ∗M)πM . Similarly, the tangent Poisson bivector πTM induces a Dirac structure LTM ⊆
T (TM)⊕T ∗(TM) which, as a Lie algebroid, is isomorphic to (T ∗(TM))πTM . Consequently,

the canonical bundle map JM ⊕ ΘM : T (TM) ⊕ T (T ∗M) −→ T (TM) ⊕ T ∗(TM) restricts

to an isomorphism of Lie algebroids between the tangent prolongation Lie algebroid of LM

and a Dirac subbundle LTM ⊆ T (TM)⊕ T ∗(TM).

We generalize this tangent lifting procedure for an arbitrary Dirac structure. In

order to make a clear exposition, we recall the canonical tangent lifts of multivector fields

and differential forms, see [29, 60].

5.1.1 Tangent Dirac structures

We begin by summarizing some of the main properties of tangent lifts of vector

fields and differential forms. Let f ∈ C∞(M) be a smooth function. Then we have a pair

of smooth functions on TM defined by

fv = f ◦ pM ; fT = df.

We refer to fv and fT as the vertical lift and tangent lift of f , respectively. One can see

easily that the algebra of functions C∞(TM) is generated by functions of the form fv and
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fT . Now, given a vector field X on M we define the vertical lift of X as the vector field

Xv on TM which acts on vertical and tangent lifts of functions as

Xv(fv) = 0, Xv(fT ) = (Xf)v.

The tangent lift of X is the vector field XT on TM , which acts on vertical and

tangent lifts of functions in the following manner:

XT (fv) = (Xf)v, XT (fT ) = (Xf)T .

It is easy to see that vertical and tangent lifts of vector fields generate the space of all vector

fields on TM . Now let us consider a 1-form α on a smooth manifold M . We define the

vertical lift of α as the 1-form αv on TM , which is determined by its value at vertical and

tangent lifts of vector fields,

αv(Xv) = 0, αv(XT ) = (α(X))v.

The tangent lift of α is the 1-form αT on TM defined by

αT (Xv) = (α(X))v, αT (XT ) = (α(X))T .

It is important to emphasize that vertical and tangent lifts of vector fields (resp. of

1-forms) are sections of the usual vector bundle structure T (TM)
pTM−→ TM (resp. sections

of T ∗(TM) cTM−→ TM), and they do not define sections of the tangent prolongation vector

bundle T (TM)
TpM−→ TM (resp. of the tangent prolongation T (T ∗M) TcM−→ TM). However,

there exists a canonical relation between vector fields (resp. 1-forms) on TM and sections of

the tangent prolongation vector bundle T (TM) −→ TM (resp. T (T ∗M) −→ TM). Recall

that for an arbitrary vector bundle A
qA−→ M , every section u ∈ ΓM (A) induces two types

of sections of TA −→ TM . The first type of section is Tu : TM −→ TA, which is given by

applying the tangent functor to the section u : M −→ A. The second type of section is the

core section û : TM −→ TA, which is defined by

û(X) = T (0A)(X) + u(pM (X)),

where 0A : M −→ A denotes the zero section, and u(pM (X)) = d
dt(tu(pM (X)))|t=0. Now,
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given a vector field X and a 1-form α on M , we consider the linear sections TX, Tα and

the core sections X̂, α̂ of the corresponding tangent prolongation vector bundles. It follows

from the definition that

JM (TX) = XT , JM (X̂) = Xv. (5.2)

ΘM (Tα) = αT , ΘM (α̂) = αv. (5.3)

It turns out that many geometric properties of the direct sum vector bundle T (TM) ⊕
T ∗(TM) can be understood in terms of tangent geometric properties of T (TM)⊕T (T ∗M),

using the canonical identification

JM ⊕ΘM : T (TM)⊕ T (T ∗M) −→ T (TM)⊕ T ∗(TM).

Consider now a Dirac structure LM on M . Equivalently, we may think of LM as a

Lie algebroid over M with Lie bracket given by the Courant bracket on sections of LM , and

the anchor map ρM is the natural projection from LM ⊆ TM ⊕ T ∗M onto TM . According

to a construction of K. Mackenzie and P. Xu [46], we can consider the tangent prolongation

Lie algebroid TLM −→ TM , with anchor map

ρTM = JM ◦ TρM ,

and Lie bracket defined by

[â1, â2]TLM
= 0, [Ta1, â2]TLM

= ̂[a1, a2], [Ta1, Ta2]TLM
= T [a1, a2],

where a1, a2 are sections of LM −→ M . We denote by LTM the image of TLM under the

natural bundle map JM ⊕ΘM : TTM ⊕ TT ∗M −→ TTM ⊕ T ∗TM .

Proposition 5.1.1. The subbundle LTM ⊆ TTM ⊕ T ∗TM is isotropic with respect to the

non degenerate symmetric pairing 〈·, ·〉TM defined on TTM ⊕ T ∗TM .

Proof. Consider the non degenerate symmetric pairing 〈·, ·〉M defined on TM ⊕ T ∗M . The

application of the tangent functor, followed by the projection onto de second factor, leads

to a non degenerate symmetric pairing
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〈〈·, ·〉〉 : TTM ×TM TT ∗M −→ R,

for which the subbundle TLM ⊆ TTM⊕TT ∗M is isotropic. Finally, for every ȧ1, ȧ2 ∈ TLM
the well known identity

〈〈ȧ1, ȧ2〉〉 = 〈(JM ⊕ΘM )(ȧ1), (JM ⊕ΘM )(ȧ2)〉TM ,

says that the canonical map JM ⊕ ΘM : T (TM) ⊕ T (T ∗M) −→ T (TM) ⊕ T ∗(TM) is a

fiberwise isometry with respect to the pairings 〈〈·, ·〉〉 and 〈·, ·〉TM ; see for instance [29, 46].

In particular, LTM = (JM ⊕ ΘM )(TLM ) is isotropic with respect to the canonical pairing

on TTM ⊕ T ∗TM .

The tangent Lie algebroid TLM −→ TM induces a unique Lie algebroid structure

on LTM −→ TM characterized by the property that JM ⊕ ΘM : TLM −→ LTM is a

Lie algebroid isomorphism. The space of sections Γ(LTM ) is generated by sections of the

form aT := (JM ⊕ΘM )(Ta) and av := (JM ⊕ΘM )â, where a is a section of LM −→M . In

particular the induced Lie bracket on sections of LTM is completely determined by identities

[av1, a
v
2] = 0, [aT1 , a

v
2] = [[a1, a2]]v, [aT1 , a

T
2 ] = [[a1, a2]]T ,

and the Leibniz rule with respect to the induced anchor map prTTM : LTM −→ TTM .

Proposition 5.1.2. The induced Lie bracket on sections Γ(LTM ) is a restriction of the

Courant bracket [[·, ·]]TM on sections of TTM ⊕ T ∗TM .

Proof. Due to the identities (5.2) and (5.3), we only need to check that the Courant bracket

on sections of LTM , naturally induced by JM ⊕ ΘM , satisfies the bracket identities that

determine the induced Lie bracket on Γ(LTM ). One observes that vertical and tangent lifts

are compatible with Lie derivatives in the sense that

1. LXvαv = 0

2. LXTαv = (LXα)v

3. LXTαT = (LXα)T ,
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and we conclude that

1. [[Xv ⊕ αv, Y v ⊕ βv]] = 0

2. [[XT ⊕ αT , Y v ⊕ βv]] = [X,Y ]v ⊕ (LXβ − iY dα)v

3. [[XT ⊕ αT , Y T ⊕ βT ]] = [X,Y ]T ⊕ (LXβ − iY dα)T .

Thus the Lie bracket on ΓTM (LTM ) induced by the tangent Lie bracket on ΓTM (TLM )

coincides with the Courant bracket.

We have shown the following.

Proposition 5.1.3. Let M be a smooth manifold. There exists a natural map

Dir(M) −→ Dir(TM)

LM 7→ LTM ,

where LTM := (JM ⊕ΘM )(TLM ).

The Dirac structure LTM ∈ Dir(TM) given by the proposition above is referred

to as the tangent Dirac structure induced by LM ∈ Dir(M).

Example 5.1.1. Let πM be a Poisson bivector on M and consider the induced tangent

Poisson bivector πTM on the tangent bundle of M . Let LM be the Dirac structure on

M defined by the graph of πM . Then the tangent Dirac structure LTM induced by LM

coincides with the graph of the tangent Poisson bivector πTM .

Example 5.1.2. Let ωM be a closed 2-form on M . The tangent lift of ωM is a closed

2-form ωTM on TM , determined by the commutative diagram

T (TM)

T (TM)

T (T ∗M)

T ∗(TM)

T (ω]
M )

//

ω]
TM

//

JM

��

ΘM

��

(5.4)
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Let LM be the Dirac structure on M given by the graph of ωM , then the tangent

Dirac structure LTM induced by LM is exactly the graph of the tangent lift ωTM of ωM .

Remark 5.1.1. The tangent lift of Dirac structures was originally studied by T. Courant

[18], where tangent Dirac structures are described locally. In [61] I. Vaisman gives an

intrinsic construction of tangent Dirac structures, where the tangent lift of a Dirac structure

is described via the sheaf of local sections defining a Dirac subbundle of TTM ⊕ T ∗TM .

Our construction is also intrinsic, and it provides an explicit description of the vector bundle

LTM whose sheaf of sections coincides with the one described in [61]. Although we only

give an alternative description of tangent Dirac structures, our construction is functorial

and it has an important application to the study of multiplicative Dirac structures, namely,

the Lie functor is just a restriction of the tangent functor.

Now we explain how the tangent functor acts on morphisms of Dirac manifolds.

For every smooth map ϕ : M −→ N between smooth manifolds, the tangent functor yields

a bundle map Tϕ : TM −→ TN between tangent bundles. When M and N carry Dirac

structures, we are allowed to talk about Dirac maps. The following proposition explains

the effect of the tangent functor on Dirac maps.

Proposition 5.1.4. Let ϕ : (M,LM ) −→ (N,LN ) be a backward Dirac map. Then Tϕ :

(TM,LTM ) −→ (TN,LTN ) is a backward Dirac map with respect to the tangent Dirac

structures induced by LM and LN .

Proof. The fact of ϕ being a backward Dirac map is equivalent to saying that every X⊕α ∈
LM can be written as

X ⊕ α = X ⊕ (Tϕ)∗β,

with Tϕ(X)⊕ β ∈ ϕ∗(LN ). This implies that every element Ẋ ⊕ α̇ ∈ TLM can be written

as

Ẋ ⊕ α̇ = Ẋ ⊕ T (Tϕ∗)β̇,

with β̇ ∈ T (T ∗N). We can apply the canonical map JM ⊕ ΘM : TTM ⊕ TT ∗M −→
TTM ⊕ T ∗TM , yielding

JM (Ẋ)⊕ΘM (α̇) = JM (Ẋ)⊕ΘM (T (Tϕ∗)β̇).
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Using the identity ΘM ◦ T (Tϕ∗) = (T (Tϕ))∗ ◦ ΘN , one concludes that every element in

LTM has the form

JM (Ẋ)⊕ΘM (α̇) = JM (Ẋ)⊕ (T (Tϕ))∗ΘN (β̇).

On the other hand, we can use the identity T (Tϕ) ◦JM = JN ◦T (Tϕ) to conclude

that T (Tϕ)JM (Ẋ) = JN (T (Tϕ)Ẋ). In particular, we have that JN (T (Tϕ)Ẋ) ⊕ ΘN (β̇) ∈
LTN . This shows that for every Y ∈ TM

(LTM )Y = {V ⊕(T (Tϕ))∗ξ | V ∈ TY (TM), ξ ∈ T ∗Tϕ(Y )(TN), (TY (Tϕ)V ⊕ξ) ∈ (LTN )Tϕ(Y )}.

That is, the tangent map Tϕ : (TM,LTM ) −→ (TN,LTN ) is a backward Dirac map..

Consider now a Dirac manifold (M,LM ) and let (S,ΩS) be a presymplectic leaf.

The presymplectic structure ΩS ∈ Ω2(S) is characterized by the fact that the inclusion

map iS : S ↪→ M is a backward Dirac map. As a consequence of Proposition 5.1.4 the

presymplectic foliation of the tangent Dirac manifold (TM,LTM ) can be easily described.

Corollary 5.1.1. Let (M,LM ) be a Dirac manifold with presymplectic foliation {S,ΩS}.
The presymplectic foliation of the tangent Dirac manifold (TM,LTM ) is given by {TS,ΩT

S},
where ΩT

S ∈ Ω2(TS) is the tangent lift of ΩS ∈ Ω2(S).

Proof. It is clear that the foliation tangent to the generalized distribution prTTM (LTM ) has

leaves given by TS where S is a leaf of the generalized foliation induced by LM . On the other

hand, since the inclusion map iS : (S,ΩS) −→ (M,LM ) is a backward Dirac map, then the

tangent functor applied to this map gives rise to the inclusion (TS,ΩT
S ) −→ (TM,LTM )

which is, due to Proposition 5.1.4, a backward Dirac map as well. This characterizes the

presymplectic foliation of (TM,LTM ), proving the statement.

Remark 5.1.2. We have constructed the tangent functor on Dirac structures. This is a map

Dir(M) −→ Dir(TM), which sends an object LM to the tangent object LTM , and a Dirac

morphism ϕ : (M,LM ) −→ (N,LN ) to the tangent Dirac morphism Tϕ : (TM,LTM ) −→
(TN,LTN ). Since a Dirac structure is completely determined by its presymplectic foliation,
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we could define tangent Dirac structures by lifting the tangent presymplectic foliation,

according to Corollary 5.1.1.

5.1.2 Tangent lift of a multiplicative Dirac structure

In this subsection we study tangent lifts of multiplicative Dirac structures. It was

proved in [28] that whenever a Lie group G carries a multiplicative Poisson bivector πG,

then the tangent Lie group TG equipped with the tangent Poisson structure πTG becomes

a Poisson Lie group. The next result extends the multiplicative Poisson case to abstract

multiplicative Dirac structures. Assume that G is a Lie groupoid over M and consider the

tangent groupoid TG over TM explained in section 2.3.1 of chapter 2.

Proposition 5.1.5. The tangent Dirac structure LTG ⊆ TTG⊕ T ∗TG induced by a mul-

tiplicative Dirac structure LG ⊆ TG⊕ T ∗G is also a multiplicative Dirac structure.

Proof. The bundle map JG : TTG −→ TTG is a groupoid isomorphism over JM : TTM −→
TTM . Similarly, the bundle map ΘG : TT ∗G −→ T ∗TG is a groupoid isomorphism over

the canonical identification I : T (A∗G) −→ (T (AG))∗. Since LG is a Lie subgroupoid of

TG⊕T ∗G, then the tangent functor yields a Lie subgroupoid TLG of TTG⊕TT ∗G. Due to

the fact that LTG is the image of TLG via the groupoid isomorphism JG⊕ΘG, we see that

LTG inherits a natural structure of Lie subgroupoid of TTG ⊕ T ∗TG. Hence we conclude

that LTG defines a multiplicative Dirac structure on TG.

Example 5.1.3. Let ωG be a multiplicative closed 2-form on G. Then the tangent Dirac

structure LTG induced by the graph of ωG coincides with the multiplicative Dirac structure

on TG given by the graph of the tangent lift 2-form

ωTG = (ω]G)∗ωcan,

where ωcan is the canonical symplectic form on T ∗G. Notice that the multiplicativity of the

Dirac structure LTG is also a consequence of the multiplicativity of ωcan and the functorial

property of multiplicative Dirac structures (see Corollary 2.5.1 in chapter 2).
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5.1.3 The Courant 3-tensor and integrability

In this section we are concerned with an alternative way of proving the integrability

of tangent Dirac structures. First, notice that although we can check by hand that tangent

lifts of closed 2-forms and Poisson bivectors are also closed 2-forms and Poisson bivectors,

respectively, we can argue in a more direct way. In section 3.1 of chapter 3, we have seen

that for every 2-form ω on M we have

d(ωT ) = (dω)T ,

where (·)T denotes the tangent lift form on TM . In particular, the tangent lift of closed

forms is a closed form as well. Similarly, in [28] the analogue formula for multivector fields

was shown. More concretely, if π is a multivector onM and πT is the tangent lift multivector

on TM , then

[πT , πT ] = [π, π]T ,

where the bracket above is the Schouten bracket. In particular, the tangent lift πT of a

Poisson bivector π is also a Poisson bivector. We would like to find a direct argument that

ensures the integrability of the tangent lift of a Dirac structure.

The Courant integrability of Lagrangian subbundles of TM is measured by a

canonical tensorial object [17]. Given a Lagrangian sub bundle LM ⊆ TM , the Courant

3-tensor is the canonical section µM ∈ ΓM (
∧3 L∗M ) defined by

µM : ΓM (L)× ΓM (L)× ΓM (L) −→ C∞(M)

(a1, a2, a3) 7→ 〈[[a1, a2]], a3〉M

Notice that a Lagrangian sub bundle LM ⊆ TM defines a Dirac structure if and only if the

Courant 3-tensor µM vanishes. Now let us observe that on the direct sum vector bundle

3∏
pM⊕cM

LM := LM ⊕M LM ⊕M LM ,

we have a natural function, also denoted by µM , defined by
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µM ((a1, a2, a3)p) = 〈[[ã1, ã2]], ã3〉M (p),

where ã1, ã2, ã3 are sections of LM such that, at the point p ∈ M , satisfy ãi(p) = ai

for i = 1, 2, 3. This is a well defined function due to the tensorial property of µM . The

application of the tangent functor to µM yields a function

TµM :
3∏

TpM⊕TcM

TLM −→ R,

which is related to the function µTM , induced by the Lagrangian sub bundle LTM ⊆ T(TM)

and the Courant 3-tensor µTM , according to the following proposition.

Proposition 5.1.6. For every (ȧ1, ȧ2, ȧ3) ∈ TLM the following identity holds

TµM (ȧ1, ȧ2, ȧ3) = µTM ((JM ⊕ΘM )ȧ1, (JM ⊕ΘM )ȧ2, (JM ⊕ΘM )ȧ3).

Proof. For every a1, a2, a3 ∈ ΓM (LM ) one has TµM (Ta1, Ta2, Ta3) = T (µM (a1, a2, a3)). On

the other hand, the canonical map JM ⊕ΘM applied to each of the sections Ta1, Ta2, Ta3

gives aT1 , a
T
2 , a

T
3 ∈ ΓTM (LTM ). Thus we conclude that

µTM (aT1 , a
T
2 , a

T
3 ) =〈[[aT1 , aT2 ]], aT3 〉TM

=(〈[[a1, a2]], a3〉M )T ,

which is exactly the tangent functor applied to the function µM (a1, a2, a3). Therefore, for

every triple of sections a1, a2, a3 of LM we get

TµM (Ta1, Ta2, Ta3) = µTM (aT1 , a
T
2 , a

T
3 ). (5.5)

Now we notice, using local coordinates, that for every point ȧ ∈ TLM above

ẋ ∈ TM there exists a section a ∈ ΓM (LM ) such that Ta(ẋ) = ȧ, where Ta ∈ ΓTM (TLM )

is the section obtained by applying the tangent functor to the section a of LM . This fact

together with identity (5.5) prove the statement.

As a consequence we obtain a direct proof of the Courant integrability of the
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tangent lift of a Dirac structure LM on M .

Corollary 5.1.2. Let LM be an almost Dirac structure on M , and consider the induced

almost Dirac structure LTM on TM . Then LTM is Courant integrable if LM is Courant

integrable.

Proof. An almost Dirac structure LM on M is Courant integrable if and only if the associ-

ated Courant 3-tensor vanishes. The result follows by a direct application of the Proposition

5.1.6.

The identity TµM = µTM ◦ (JM ⊕ΘM )(3) will be extremely useful for finding the

infinitesimal data of a Dirac groupoid. This will be done in the next section.

5.2 The Lie functor

5.2.1 From multiplicative to linear Dirac structures

Let A
qA−→ M be a vector bundle. A Dirac structure LA ⊆ TA is called linear if

it defines a double vector sub bundle1 LA −→ E of TA −→ TM ⊕A∗. The set of all linear

Dirac structures on A will be denoted by Dirlin(A).

Example 5.2.1. Consider a linear Poisson bivector πA on a vector bundle A
qA−→ M .

The induced Dirac structure (see example 2.2.2 in chapter 2) LπA ⊆ TA is a linear Dirac

structure on A.

Example 5.2.2. Let ωA be a closed linear 2-form on a vector bundle A
qA−→M . The Dirac

structure LωA ⊆ TA determined by ωA defines a linear Dirac structure on A.

We will be mainly interested in linear Dirac structures on Lie algebroids. In

chapter 3 we discussed how multiplicative 2-forms on a Lie groupoid G induce linear 2-

forms on its Lie algebroid AG. In this section we extend this construction to the framework

of multiplicative Dirac structures. For that, consider a Dirac groupoid (G,LG). We would

like to answer the following question.

Question 5.2.1. How is the multiplicativity of LG ∈ Dirmult(G) reflected at the infinitesi-

mal level?
1See appendix A for the definition and main examples of double vector bundles.
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Given a Lie algebroid A over M , we define the subset Diralg(A) ⊆ Dirlin(A)

consisting of all linear Dirac structures LA on A, which also define a Lie subalgebroid of

TA −→ TM ⊕ A∗, over some subbundle E ⊆ TM ⊕ A∗. We will see that for any Lie

groupoid G with Lie algebroid AG there exists a natural map

Dirmult(G) −→ Diralg(AG)

LG 7→ LAG,

which up to canonical identifications, coincides with the Lie functor. The main idea for

constructing linear Dirac structures out of multiplicative ones is based on the following ob-

servation. The canonical geometric objects associated to TG that are used to define Dirac

structures (symmetric pairing and Courant bracket) are compatible with the groupoid struc-

ture of TG. This observation suggests that TG is the prototype of a new geometric object

that might be called a CA-groupoid, that is, a Lie groupoid object in the category of

Courant algebroids. See chapter 7 for more detailed discussion about such geometric struc-

tures.

Consider now the nondegenerate symmetric pairing 〈·, ·〉G on the direct sum Lie

groupoid TG.

Proposition 5.2.1. The canonical pairing defines a morphism of Lie groupoids

〈·, ·〉G : TG⊕ TG −→ R,

where R is equipped with the usual abelian group structure.

Proof. Since R is a groupoid over a point, we only need to check the compatibility of

〈·, ·〉G with the corresponding groupoid multiplications. For that, consider elements (Xg ⊕
αg), (Yg ⊕ βg) ∈ TgG and (X ′

h ⊕ α′h), (Y
′
h ⊕ β′h) ∈ ThG. Then by definition of the groupoid

structure on TG⊕ TG, we have

((Xg⊕αg)⊕ (Yg⊕βg))∗ ((X ′
h⊕α′h)⊕ (Y ′

h⊕β′h)) = (Xg •X ′
h⊕αg ◦α′h)⊕ (Yg •Y ′

h⊕βg ◦β′h),
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therefore one gets

〈(Xg •X ′
h ⊕ αg ◦ α′h), (Yg • Y ′

h ⊕ βg ◦ β′h)〉G =(αg ◦ α′h)(Yg • Y ′
h) + (βg ◦ β′h)(Xg •X ′

h)

=αg(Yg) + α′h(Y
′
h) + βg(Xg) + β′h(X

′
h)

=〈(Xg ⊕ αg), (Yg, βg)〉G + 〈(X ′
h ⊕ α′h), (Y

′
h ⊕ β′h)〉G

This proves the statement.

We can apply the Lie functor to the Lie groupoid morphism 〈·, ·〉G, yielding a

nondegenerate symmetric pairing

A(〈·, ·〉G) : (A(TG)⊕A(T ∗G))×AG (A(TG)⊕A(T ∗G)) −→ R.

Let 〈·, ·〉AG denote the canonical non degenerate symmetric pairing on T(AG). Recall

that there exist canonical isomorphisms of Lie algebroids jG : T (AG) −→ A(TG) and

j′G : A(T ∗G) −→ T ∗(AG), as explained in section 2.3.2 of chapter 2. Since 〈·, ·〉AG is just a

suitable restriction of T 〈·, ·〉G, one concludes that the canonical map

j−1
G ⊕ j′G : A(TG)⊕A(T ∗G) −→ T (AG)⊕ T ∗(AG),

is a fiberwise isometry with respect to A(〈·, ·〉G) and 〈·, ·〉AG. This is a useful tool for

transporting Lagrangian subbundles of TG ⊕ T ∗G to Lagrangian subbundles of T (AG) ⊕
T ∗(AG). For instance, given a VB-subgroupoid LG of TG ⊕ T ∗G, we can apply the Lie

functor to obtain a VB-subalgebroid A(LG) ⊆ A(TG)⊕A(T ∗G). We mimic the construction

of tangent Dirac structures, giving rise to a VB-subalgebroid of T (AG) ⊕ T ∗(AG) defined

by

LAG := (j−1
G ⊕ j′G)(A(LG)).

The following result is straightforward consequence of Proposition 5.2.1.

Proposition 5.2.2. Let LG ⊆ TG ⊕ T ∗G be a source simply connected VB-subgroupoid.

Consider the associated VB-subalgebroid LAG ⊆ T (AG) ⊕ T ∗(AG). Then LG is isotropic

with respect to 〈·, ·〉G if and only if LAG is isotropic with respect to 〈·, ·〉AG.

In particular the Lie functor maps Lagrangian VB-subgroupoids of TG⊕T ∗G into
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Lagrangian VB-subalgebroids of T (AG)⊕ T ∗(AG).

Corollary 5.2.1. Let LG ⊆ TG⊕T ∗G be a VB-subgroupoid with associated VB-subalgebroid

LAG ⊆ T (AG) ⊕ T ∗(AG). Then LG is an almost Dirac structure on G if and only if LAG

is an almost Dirac structure on AG.

This is just Proposition 5.2.2 rephrased in terms of Dirac structures. The main

objective of this section is to show that the Lie functor, not only preserves almost Dirac

structures, but also preserves the property of being integrable in the sense of Courant.

5.2.2 The Courant 3-tensor and integrability

This subsection is concerned with the integrability of linear Dirac structures ob-

tained by the application of the Lie functor to multiplicative Dirac structures. In order to

prove the integrability of the Lagrangian subbundle LAG ⊆ T (AG)⊕ T ∗(AG), we extract,

from the multiplicativity of LG, a property that generalizes the fact that the de Rham

differential leaves invariant the set of multiplicative forms. As explained in chapter 3, such

a observation together with the compatibility of the exterior derivative with tangent lifts of

differential forms, gave rise to the identity

(dωG)AG = dωAG, (5.6)

where ωAG is the restriction to AG of the tangent lift ωTG of ωG. In particular, we concluded

immediatly that Lie(ωG) is closed, whenever ωG is a closed 2-form. As in the case of tangent

Dirac structures, we would like to obtain an analogue of (5.6) that ensures the integrability

of the subbundle LAG ⊆ T(AG). As we did for tangent Dirac structures, we shall study the

Courant 3-tensor µG ∈ Γ(
∧3 L∗G) determined by the Lagrangian subbundle LG ⊆ TG. Since

µG involves the Courant bracket, we need a compatibility between the Courant bracket and

the groupoid structure of TG.

In order to explain the relation between the Courant bracket and the Lie groupoid

structure on the direct sum vector bundle TG = TG⊕T ∗G, we consider the direct product

vector bundle TG× TG −→ G×G. Every section a(2) of TG× TG can be written as

a(2) = a1 ◦ pr1 ⊕ a2 ◦ pr2,
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where a1, a2 are sections of TG, and pr1, pr2 : TG× TG −→ TG denote the natural projec-

tions. The direct product bracket on sections of TG× TG is defined as usual

[a(2), a(2)] = [[a1, a1]] ◦ pr1 ⊕ [[a2, a2]] ◦ pr2.

Since the Courant bracket in Γ(TG) does not satisfy Jacobi indentity, the direct

product bracket is not a Lie bracket. In fact, the direct product bracket together with the

componentwise projection map

TG× TG −→ TG× TG,

make the vector bundle TG× TG −→ G×G into an almost Lie algebroid. Recall that an

almost Lie algebroid is a vector bundle A −→ M with a skew symmetric bilinear bracket

[·, ·]A on Γ(A) and an anchor map ρA : A −→ TM which are compatible in the sense that

the usual Leibniz rule is fulfilled. On the other hand, the set of composable groupoid pairs

(TG)(2) is a vector bundle over G(2), and we consider the almost Lie algebroid structure

on (TG)(2) induced by the direct product TG × TG. Now, the compatibility between the

Courant bracket on Γ(TG) and the groupoid structure of TG becomes clear due to the

following proposition.

Proposition 5.2.3. Let mT : (TG)(2) −→ TG denote the groupoid multiplication of TG =

TG⊕ T ∗G. Then the bundle map

(TG)(2)

G2

TG

G

mT //

mG

//
�� ��

(5.7)

is a morphism of almost Lie algebroids.

If A1 −→ M1 and A2 −→ M2 are almost Lie algebroids, then a bundle map

Ψ : A1 −→ A2 covering ψ : M1 −→M2 is a morphism of almost Lie algebroids if Ψ satisfies

the usual compatibility conditions with the anchor maps and the brackets on sections of A1

and A2. This definition makes sense since an almost Lie algebroid satisfies all the axioms of
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a Lie algebroid except the Jacobi identity. Now we proceed with the proof of Proposition

5.2.3.

Proof. We begin by checking the compatibility of (mT,mG) with the corresponding anchor

maps. For that, consider a section a(2) = a1 ◦ pr1 ⊕ a2 ◦ pr2 of (TG)(2) where a1 = X1 ⊕ α1

and a2 = X2⊕α2 are sections of TG. The multiplication on the Lie groupoid TG maps the

section a(2) into

mT(a1 ◦ pr1 ⊕ a2 ◦ pr2)(g, h) = X1
g •X2

h ⊕ α1
g ◦ α2

h.

Applying the anchor map of TG we obtain

ρTG(X1
g •X2

h ⊕ α1
g ◦ α2

h) = X1
g •X2

h.

On the other hand, the componentwise anchor map of (TG)(2) applied to the section a(2)

gives rise to

ρ(TG)(2)
(a1 ◦ pr1 ⊕ a2 ◦ pr2)(g, h) = (X1

g , X
2
h),

which followed by the derivative of mG : G(2) −→ G yields

TmG(ρ(TG)(2)
(X1

g ⊕ α1
g, X

2
h ⊕ α2

h)) = X1
g •X2

h,

showing that (mT,mG) is compatible with the anchors. It remains to prove that mT is

bracket preserving. For that one observes that mT is a fiberwise surjective map, so it

suffices to check that, whenever

mT ◦ a(2) =a ◦mG (5.8)

mT ◦ a(2) =a ◦mG, (5.9)

where a(2), a(2) ∈ ΓG(2)
((TG)(2)) and a, a ∈ ΓG(TG), then the following bracket preserving

property is fulfilled

mT ◦ [a(2), a(2)] = [[a, a]] ◦mG.

See e.g. [33] Prop. 1.5. It will be convenient write down sections as
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a(2) =(X1 ⊕ α1) ◦ pr1 ⊕ (X2 ⊕ α2) ◦ pr2

a(2) =(X1 ⊕ α1) ◦ pr1 ⊕ (X2 ⊕ α2) ◦ pr2

a =Y ⊕ β

a =Y ⊕ β,

then the identities (5.8), (5.9) become

X1
g •X2

h ⊕ α1
g ◦ α2

h =Ygh ⊕ βgh (5.10)

X
1
g •X

2
h ⊕ α1

g ◦ α2
h =Y gh ⊕ βgh, (5.11)

for any composable pair (g, h) ∈ G × G. Now it follows directly from the definition of the

direct product bracket that

[a(2), a(2)] = ([X1, X
1]⊕ LX1α1 − i

X
1dα1) ◦ pr1 ⊕ ([X2, X

2]⊕ LX2α2 − i
X

2dα2) ◦ pr2.

Then, composing with the groupoid multiplication of TG, we have

mT ◦ [a(2), a(2)](g,h) = [X1, X
1]g • [X2, X

2]h ⊕ (LX1α1 − i
X

1dα1)g ◦ (LX2α2 − i
X

2dα2)h.

On the other hand,

[[a, a]] ◦mG(g, h) = [Y, Y ]gh ⊕ (LY β − iY dβ)gh,

and using the identities (5.10) and (5.11) one concludes that

[Y, Y ]gh = [X1, X
1]g • [X2, X

2]h.

Thus, the tangent component of [[a, a]]gh coincides with the tangent component of mT ◦
[a(2), a(2)](g,h). It remains to show that we also have the equality of the corresponding
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cotangent parts. This is equivalent to showing that

(LY β − LY β − d〈β, Y 〉)gh =(LX1α1 − L
X

1α1 − d〈α1, X
1〉)g◦

◦(LX2α2 − L
X

2α2 − d〈α2, X
2〉)h,

for every composable pair (g, h) ∈ G(2). In order to prove this identity, we need to check

that the left hand side (LHS), and the right hand side (RHS) above coincide at elements of

the form Ug • Vh. For that consider the 1-form on G defined by γ := LY β−LY β− d〈β, Y 〉.
We can look at the pull back 1-form m∗

Gγ ∈ Ω1(G(2)), which at every tangent vector

(Ug, Vh) ∈ T(g,h)G(2) is given by

(m∗
Gγ)(g,h)(Ug, Vh) = γgh(Ug • Vh) = (LHS)(Ug • Vh).

The pull back form m∗
Gγ involves three terms. Let us analyze the first term

m∗
G(LY β) of this pull back form. It follows from the relation Y = (mG)∗(X1, X2) that

m∗
G(LY β) = L(X1,X2)m

∗
Gβ.

Notice that (5.11) implies that

(m∗
Gβ)(g,h)(Ug, VH) =βgh(Ug • Vh)

=(α1
g ◦ α2

h)(Ug • Vh)

=α1
g(Ug) + α2

h(Vh)

=(α1, α2)(g,h)(Ug, Vh).

That is, m∗
G(LY β) = LX1α1 ⊕ LX2α2. A similar argument can be applied to the other

terms of the pull back form m∗
Gγ, yielding



100

(LHS)(Ug • Vh) =(m∗
Gγ)(g,h)(Ug, Vh)

=(LX1α1)g(Ug) + (LX2α2)h(Vh)+

−(L
X

1α1)g(Ug)− (L
X

2α2)h(Vh)+

−d〈α1, X
1〉g(Ug)− d〈α2, X

2〉h(Vh)

=(RHS)(Ug • Vh).

Thus RHS and LHS coincide at elements of the form Ug • Vh, and we conclude

that (mT,mG) is bracket preserving.

Given a Lagrangian VB-subgroupoid LG ⇒ EG of the direct sum TG ⊕ T ∗G ⇒

TM ⊕A∗G, we induce a natural VB-groupoid structure on the direct sum vector bundle

3∏
pG⊕cG

LG ⇒
3∏

pM⊕qA∗G

EG.

Associated to LG is the natural function

µG :
3∏

pG⊕cG

LG −→ R,

induced by the Courant 3-tensor µG ∈ Γ(
∧3 L∗G). Since LG is multiplicative it is natural to

expect that such a multiplicativity property could affect the nature of the function µG.

Proposition 5.2.4. Given a Lagrangian subgroupoid LG ⊆ TG⊕T ∗G, the canonical func-

tion

µG :
3∏

pG⊕cG

LG −→ R,

is a groupoid morphism. That is µG is a multiplicative function.

Proof. Let us consider composable pairs aig, a
i
h in LG with i = 1, 2, 3. Then,
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µG((a1
g, a

2
g, a

3
g) ∗ (a1

h, a
2
h, a

3
h)) =〈[[a1a1, a2a2]]gh, a3

ga
3
h〉G

=〈[[a1, a2]]g[[a1, a2]]h, a3
ga

3
h〉G.

The last identity follows from the fact that (mT,mG) is bracket preserving. Now we use

the fact that 〈·, ·〉G is a groupoid morphism to conclude that

µG((a1
g, a

2
g, a

3
g) ∗ (a1

h, a
2
h, a

3
h)) = µG(a1

g, a
2
g, a

3
g) + µG(a1

h, a
2
h, a

3
h).

This proves that the function µG is multiplicative.

We can apply the Lie functor to the groupoid morphism µG, yielding a Lie algebroid

morphism

A(µG) :
3∏

A(pG⊕cG)

A(LG) −→ R.

Recall that TµG coincides, up to a canonical identification, with µTG. Since A(µG) is a

suitable restriction of TµG, the following proposition follows directly.

Proposition 5.2.5. Consider the Lagrangian subbundle LAG = (j−1
G ⊕j′G)A(LG) ⊆ T(AG).

The following identity holds

Lie(µG) = µAG ◦ (j−1
G ⊕ j′G)(3),

where (j−1
G ⊕ j′G)(3) :

∏3
A(pG⊕cG)A(LG) −→

∏3
pAG⊕cAG

LAG denotes the natural extension of

(j−1
G ⊕ j′G).

Now we are ready to state the main theorem of this section.

Theorem 5.2.1. Let LG ⊆ TG be a multiplicative almost Dirac structure on G. Consider

the associated linear almost Dirac structure LAG ⊆ T(AG) on AG. If LG is a Dirac

structure, then LAG is also a Dirac structure.
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Proof. The fact that LG is a Dirac structure is equivalent to saying that the Courant 3-

tensor µG vanishes. Now the identity

Lie(µG) = µAG ◦ (j−1
G ⊕ j′G)(3)

implies that the Courant 3-tensor for the corresponding almost Dirac structure LAG on AG

vanishes as well. That is, LAG defines a Dirac structure on AG.

We notice that Theorem 5.2.1 explains the effect of the Lie functor on multiplica-

tive Dirac structures. In particular, we are allowed to answer Question 5.2.1 proposed in

subsection 5.2.1. Given a Lie groupoid G with Lie algebroid AG, there is a natural map

Dirmult(G) −→ Diralg(AG)

which sends every multiplicative Dirac structure LG on G to a linear Dirac structure LAG

on AG which also defines a Lie subalgebroid of T(AG).

The Lie functor also can be applied on Dirac maps which are morphisms of Lie

groupoids.

Proposition 5.2.6. Let Φ : G −→ H be a morphism of Lie groupoids. Assume that LG

and LH are multiplicative Dirac structures on G and H, respectively. If Φ is a backward

Dirac map then A(Φ) : (AG,LAG) −→ (AH,LAH) is a backward Dirac map.

Proof. This follows from the fact that Tφ : (TG,LTG) −→ (TH,LTH) is backward Dirac,

and the fact that A(φ) is a suitable restriction of Tφ.

5.2.3 Examples

Now we discuss some familiar examples of Dirac structures on Lie algebroids.

Example 5.2.3. (Linear Dirac structures induced by Poisson groupoids)

Let (G, πG) be a Poisson groupoid. The Dirac structure LG on G defined by the

graph of πG is a multiplicative Dirac structure. The multiplicativity of this Dirac structure

is equivalent to π]G : T ∗G −→ TG being a morphism of Lie groupoids, and the associated
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Lie algebroid morphism coincides, up to identifications, with π]AG : T ∗(AG) −→ T (AG)

where πAG denotes the linear Poisson bivector on AG dual to the Lie algebroid A∗G. One

concludes that the corresponding Dirac structure LAG on AG is exactly the graph of πAG.

Example 5.2.4. (Linear Dirac structures induced by multiplicative forms)

Let ωG be a multiplicative closed 2-form on a Lie groupoid G. The graph of ωG

defines a multiplicative Dirac structure LG on G. Let σ : AG −→ T ∗M denote the IM-2-

form determined by ωG. The multiplicativity of ωG is equivalent to saying that ω]G : TG −→
T ∗G is a morphism of Lie groupoids, and the corresponding morphism of Lie algebroids is

ω]AG : T (AG) −→ T ∗(AG) where ωAG denotes the linear 2-form on AG induced by the

IM-2-form σ. Hence, the associated Dirac structure LAG on AG is exactly the graph of the

linear closed 2-form ωAG.

Example 5.2.5. (Linear Dirac structures on Lie algebras)

Let G be a Lie group with Lie algebra g and let LG ∈ Dirmult(G) be a multiplicatice

Dirac structure such that the characteristic leaf K through the identity is closed. We have

seen that K is a normal Lie subgroup of G, in particular its Lie algebra k is an ideal of g. The

canonical quotient map q : G −→ G/K is both a forward and a backward Dirac map, where

G/K has the multiplicative Poisson structure πred induced by LG. Applying the Lie functor

to the group homomorphism q, we get a morphism of Lie algebras q : g −→ g/k which is

a forward and backward Dirac map, with respect to the linear Dirac structures on g and

g/k determined by LG and πred, respectively. It follows from example 5.2.3 that the linear

Dirac structure Lπg/k
on g/k is the graph of the linear Poisson bivector πg/k determined by

the dual Lie algebra (g/k)∗. One concludes that the linear Dirac structure on g corresponds

to the pull back Dirac structure Lg := q∗(Lπg/k
).

Example 5.2.6. (Linear Dirac structures arising in Poisson reduction)

Let (G, πG) be a Poisson groupoid with a Hamiltonian action of a Lie group H as

in example 2.5.5 of chapter 2. We have seen that the reduced space (Gred, πred) is a Poisson

groupoid. Let Ared be the Lie algebroid of Gred. The induced Dirac structure on Ared is the

graph of the linear Poisson bivector πAred
on Ared, determined by the dual Lie algebroid

A∗
red. See example 5.2.3.
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5.3 Reconstructing multiplicative Dirac structures

In this chapter we extend the integration of Lie bialgebroids to Poisson groupoids

and the integration of IM-2-forms to twisted multiplicative 2-forms, carried out in [48] and

[10], respectively. Let A
qA−→M be an integrable Lie algebroid with source simply connected

integration G. The fact that G has simply connected s-fibers implies that the tangent

groupoid TG ⇒ TM and the cotangent groupoid T ∗G ⇒ A∗ are source simply connected

Lie groupoids. In particular, since A(TG) ∼= TA and A(T ∗G) ∼= T ∗A we conclude that the

direct sum TG = TG⊕T ∗G is the source simply connected integration of TA = TA⊕T ∗A.

Consider now a Lie subalgebroid LA ⊆ TA which has also a vector bundle structure over

A. As explained in appendix A subsection A.0.2, LA ⊆ TA integrates to a source simply

connected Lie subgroupoid LG ⊆ TG which inherits a vector bundle structure over G. That

is,

VB-subalgebroid LA ⊆ TA 7→ VB-subgroupoid LG ⊆ TG. (5.12)

In the previous section, we explained the effect of the Lie functor on multiplicative

Dirac structures in terms of the map

Dirmult(G) −→ Diralg(AG) (5.13)

LG 7→ LAG (5.14)

We will prove that, whenever G has simply connected s-fibers, we can reconstruct a multi-

plicative Dirac structure out of elements in Diralg(AG).

Theorem 5.3.1. Let G ⇒ M be a source simply connected Lie groupoid with Lie algebroid

A. The map (5.13) is a bijection.

Proof. We construct an inverse of (5.13). For that we take an element LA ∈ Diralg(A), that

is LA is linear Dirac structure on A such that LA ⊆ TA is a VB-subalgebroid. Consider

the integrating VB-subgroupoid LG ⊆ TG as explained in (5.12). We will prove that LG is

a multiplicative Dirac structure on G. Since LA ⊆ TA is Lagrangian with respect to the

canonical symmetric pairing 〈·, ·〉A on TA, we conclude from Proposition 5.2.2 that LG is

Lagrangian with respect to the canonical symmetric pairing 〈·, ·〉G on TG. It remains to
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show that LG ⊆ TG is integrable with respect to the Courant bracket. Equivalently, we

have to prove that the Courant 3-tensor µG ∈ Γ(∧3L∗G) is zero. Recall that the fact that

LA ⊆ TA is a Dirac structure is equivalent to saying that the induced Courant 3-tensor

µA ∈ Γ(∧3L∗A) vanishes. Therefore, we use Proposition 5.2.5 and Lie’s second theorem to

conclude that µG ≡ 0, as desired. This shows that LG is a Dirac structure on G, which by

definition is multiplicative.

As a consequence of Theorem 5.3.1 we obtain the integration of Lie bialgebroids

proved in [48].

Corollary 5.3.1. Let (A,A∗) be a Lie bialgebroid. Assume that G is a source simply

connected Lie groupoid with Lie algebroid A. Then there exists a unique Poisson bivector

πG on G, making the pair (G, πG) into a Poisson groupoid with Lie algebroid (A,A∗).

Proof. The linear Poisson bivector πA on A defines a Lie algebroid morphism π]A : T ∗A −→
TA. Let LπA be the Dirac structure on A determined by the graph of π]A. Then LπA ∈
Diralg(A) and we can integrate LπA to a unique multiplicative Dirac structure LG on G

according to Theorem 5.3.1. Since LπA is the graph of a Lie algebroid morphism, we

conclude that LG is the graph of a Lie groupoid morphism π]G : T ∗G −→ TG. The fact

that LG is a vector bundle over G says that there is a well defined bivector πG on G, given

by

πG(α, β) = π]G(α)β.

The fact that LG is a Dirac structure over G is equivalent to saying that πG is a Poisson

bivector. Therefore, the pair (G, πG) is a Poisson groupoid with Lie bialgebroid (A,A∗).

Finally, our construction of linear Dirac structures which are Lie subalgebroids

of TA, out of multiplicative Dirac structures on G is strongly inspired on the tangent lift

of arbitrary Dirac structures. Recall that the Courant integrability of the tangent lift of a

Dirac structure came for free, since up to canonical identifications, a tangent Dirac structure

is only a tangent prolongation Lie algebroid. The Courant bracket on X(TM) ⊕ Ω1(TM)

is obtained via the Lie bracket of a tangent Lie algebroid and a suitable flip isomorphism
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JM ⊕ ΘM : TTM ⊕ TT ∗M −→ TTM ⊕ T ∗TM . In our study of multiplicative and linear

Dirac structures, we realized a linear Dirac structure LAG as the Lie functor applied to

a multiplicative Dirac structure LG. It seems that the Lie functor applied to the Lie

algebroid LG −→ G associated to a multiplicative Dirac structure should lead to a Lie

algebroid A(LG) −→ AG, which up to canonical flip isomorphisms must coincide with the

Lie algebroid LAG −→ AG associated to the linear Dirac structure LAG. This approach is

closely related to a second order geometry introduced by K. Mackenzie [42, 43], and it will

be explained in chapter 6.

5.4 Multiplicative B-field transformations

A Dirac structure on M is defined out of two objects canonically attached to the

direct sum vector bundle TM = TM ⊕ T ∗M , namely the symmetric pairing 〈·, ·〉 and the

Courant bracket [[·, ·]]. One can see easily that the there exists a natural extended action

of the group Diff(M) on TM , and this action preserves the symmetric pairing 〈·, ·〉 and

the Courant bracket. In this section we study extra symmetries of the geometric data

(TM, 〈·, ·〉, [[·, ·]]). These symmetries are given by the so called B-field transformations. See

e.g. [26, 32, 34] for the relation with generalized complex geometry.

Let B ∈ Ω2(M) be a 2-form onM and consider the Lagrangian subbundle τB(L) ⊆
TM defined by

τB(L) = {X ⊕ α+ iXB | X ⊕ α ∈ L}.

Now we see what condition on the 2-form B implies that τB(L) defines a Dirac

structure.

Proposition 5.4.1. [26]

The subbundle τB(L) defines a Dirac structure on M if and only if B is a closed

2-form.

Proof. Let X ⊕ α and Y ⊕ β be sections of L. Then

[[X ⊕ α+ iXB, Y ⊕ β + iYB]] = [X,Y ]⊕ LXβ − iXdα+ LXiYB − iY diXB,
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and using the formula i[X,Y ] = [LX , iY ] one can see that B is closed if and only if

[[X ⊕ α+ iXB, Y ⊕ β + iYB]] = [X,Y ]⊕ LXβ − iXdα+ i[X,Y ]B,

which is equivalent to saying that τB(L) is a Dirac structure.

With this, the abelian group Ω2
cl(M) of closed 2-forms on M can be thought of

as a group of symmetries of the space of Dirac structures on M . A Dirac structure L′ is

gauge equivalent to L, if L′ = τB(L) for some closed 2-form B on M , see e.g. [5]. We

also say that L′ is obtained out of L by a B-field transformation. Notice that, it follows

from the proposition above, that the injective bundle map

TM ⊕ T ∗M
τB−→ TM ⊕ T ∗M

X ⊕ α 7→ X ⊕ α+ iXB,

preserves the Courant bracket. In particular, as observed in [5], gauge equivalent Dirac

structures define isomorphic Lie algebroids

L ∼= τB(L).

One observes that gauge transformations may change the “relative position” of a

Dirac subbundle L inside TM . For instance, if a Dirac sub bundle L has null intersection

with TM , that is L is a Dirac structure induced by a Poisson bivector π on M , then not

necessarily τB(L) is the graph of a Poisson bivector.

Definition 5.4.1. [5]

A closed 2-form B onM is called π-admissible if τB(L) = LτB(π) for some Poisson

bivector τB(π) on M .

As we have seen before, if B is π-admissible then the Lie algebroid Lπ is isomorphic

to LτB(π) via the canonical map τB. This induces a canonical isomorphism between the

Lie algebroids (T ∗M)π and (T ∗M)B determined by the Poisson structures π and τB(π),

respectively. One can check easily, that the induced Lie algebroid isomorphism is given by
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ϕB := Id +B] ◦ π] : (T ∗M)π −→ (T ∗M)τB(π).

Now we consider an integrable Poisson manifold (M,π), with symplectic groupoid (G,ωG).

Assume that B is a π-admissible 2-form on M , then the Lie algebroid associated to the

Poisson manifold (M, τB(π)) integrates to G. The natural question is what is the effect of a

gauge transformation on the symplectic groupoid of M . Notice that the map Id +B] ◦ π] :

T ∗M −→ T ∗M is an IM-2-form, and since it is invertible, it corresponds to a symplectic

form ωB on the Lie groupoid G. Further, notice that Id : T ∗M −→ T ∗M is the IM-2-

form associated to ωG, and B] ◦ π] : T ∗M −→ T ∗M is the IM-2-form associated to the

multiplicative 2-form on G defined by BG := t∗B− s∗B. Now it is clear how the symplectic

groupoid of an integrable Poisson manifold is modified under the action of a B-field.

Theorem 5.4.1. [11]

Consider the multiplicative 2-form ωB = ω + BG. Then the pair (G,ωB) is a

symplectic groupoid integrating the Poisson manifold (M, τB(π)).

More generally, we can study gauge transformations of Poisson groupoids. In

particular we are concerned with the effect of a gauge transformation on the Lie bialgebroid

of a Poisson groupoid. Let (G, πG) be a Poisson groupoid with Lie bialgebroid (A,A∗). Let

BG ∈ Ω2(G) be a closed multiplicative form on G. Assume that BG is πG-admissible and

consider the Poisson bivector πBG constructed via the BG-field tansformation of πG. One

can check that

(πBG)] = π]G ◦ (Id +B]
G ◦ π

]
G)−1.

In particular the Poisson bivector πBG is multiplicative, since (πBG)] is the composition of

groupoid morphisms. As explained in chapter 3, the multiplicative closed 2-form BG induces

a linear closed 2-form BA on A, and it is easy to see that BA is πA-admissible, where πA is

the linear Poisson structure on A induced by the dual Lie algebroid A∗. Thus, we obtain a

new Poisson structure on A which is determined by

(πBA)] = π]A ◦ (Id +B]
A ◦ π

]
A)−1.

One observes that πBA is a linear bivector, since (πBA)] is the composition of Lie algebroid

morphisms. Therefore, in the presence of a multiplicative BG-field, the Lie algebroid struc-
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ture of A is preserved. On the other hand, the Poisson structure on A is modified by

the linear BA-field transformation, so the Lie algebroid structure on the dual bundle A∗

changes.

Now we see how the Lie algebroid A∗ changes under the action of a gauge trans-

formation of πG by the multiplicative form BG = t∗B − s∗B where B is a closed 2-form

on the base manifold M . We denote by A∗
B the Lie algebroid dual to the linear Poisson

bivector πBA . Let us find the anchor ρBA∗ and the Lie bracket [·, ·]BA∗ of the Lie algebroid A∗
B.

First we have a morphism of vector bundles

T ∗A

A∗

TA

TM

(πB
A)]

//

ρA∗◦ψ−1
B

//
�� ��

(5.15)

where ψB = (Id + ρ∗A ◦B] ◦ ρA∗). On one hand, the linear bivector πBA induces a morphism

of Lie algebroids (T ∗A)BA
−→ TA, then it follows from Theorem 2.4.3 that the anchor of

A∗
B is given by

ρBA∗ = ρA∗ ◦ ψ−1
B .

Moreover the Lie bracket of the Lie algebroid A∗
B is given by

[ξ1, ξ2]
B
A∗ = ψB[ψ−1

B (ξ1), ψ
−1
B (ξ2)]A∗ .

In summary, the action of BG = t∗B − s∗B on (G, πG) is reflected infinitesimally by the

transition from the Lie bialgebroid (A,A∗) to the Lie bialgebroid (A,A∗
B). Notice that

(A,A∗
B) is actually a Lie bialgebroid due to the fact that (5.15) is a Lie algebroid morphism.

See Theorem 2.4.3.

Remark 5.4.1. Recall that every Lie bialgebroid (A,A∗) induces a Poisson structure π on

the base M , determined by

π] = ρA ◦ ρ∗A∗ ,
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where ρA, ρA∗ denote the anchor maps of A,A∗, respectively. See e.g. [5]. Notice that

a closed 2-form B on M is π-admissible if and only if the map ψB : A∗ −→ A∗ defined

previously is invertible.

The notion of gauge transformation of a Lie bialgebroid was introduced in [5], and

it becomes clear after the comments above. Let (A,A∗) be a Lie bialgebroid with anchor

maps ρA : A −→ TM , ρA∗ : A∗ −→ TM and Lie brackets [·, ·]A, [·, ·]A∗ . Let π be the

Poisson structure on M induced by (A,A∗). Suppose that B is a closed 2-form on M which

is π-admissible.

Definition 5.4.2. The gauge transformation of the Lie bialgebroid (A,A∗) by the closed

2-form B, is the Lie bialgebroid (A,A∗
B) described before.

The following result was proved in [5].

Theorem 5.4.2. Let (G, πG) be a Poisson groupoid over M , with Lie bialgebroid (A,A∗),

and induced Poisson structure π on M . Let B be a closed 2-form on M and consider the

2-form BG = t∗B − s∗B. Then B is π-admissible if and only if BG is πG-admissible.

Moreover, the Poisson groupoid (G, τBG
(πG)) has Lie bialgebroid (A,A∗

B).

The following result describes the effect of a gauge transformation of a Poisson

groupoid by a non admissible multiplicative 2-form. This is the original setting where

multiplicative Dirac structures appeared.

Theorem 5.4.3. Let (G, πG) be a Poisson groupoid over M with Lie bialgebroid (AG,A∗G).

Let B be a closed 2-form on M and consider the multiplicative 2-form BG = t∗B − s∗B.

The following hold:

1. The Dirac structure LBG := τBG
(LπG) is multiplicative.

2. The linear Dirac structure induced by LBG is

LBAG = τBAG
(LπAG),

where BAG is the morphic 2-form determined by BG, and πAG is the linear Poisson

structure on AG induced by A∗G.
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Proof. Let us show the first statement. A straightforward computation shows that the

multiplicativity of the form BG is equivalent to saying that

τBG
: TG −→ TG

is a morphism of Lie groupoids. In particular, since LπG is a Lie subgroupoid of TG we

conclude that the image LBAG = τBG
(LπG) is also a Lie subgroupoid of TG, as required. In

order to prove 2. we observe that the application of the Lie functor to τBG
gives a morphism

of Lie algebroids, which up to canonical identifications coincides with

τBA
: TA −→ TA,

where BA is the morphic closed 2-form on A induced by BG. See chapter 3 to recall this

construction. The isomorphism of Lie groupoids

LπG

τBG−→ LBG,

induces an isomorphism of Lie algebroids

LπAG

τBAG−→ LBAG.

Hence, the Dirac structure in Diralg(AG) induced by the multiplicative Dirac structure

LBG ∈ Dirmult(G) coincides with the subalgebroid LBA ⊆ TA, as desired.
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Chapter 6

Dirac groupoids and LA-groupoids

This chapter is concerned with the second order geometry underlying multiplicative

Dirac structures. The definition of a Dirac groupoid encompasses two geometric structures,

namely a Dirac sub bundle LG ⊆ TG which also defines a VB-subgroupoid LG ⇒ E of

the natural VB-groupoid structure on TG. Double geometric structures have been vastly

studied by Kirill Mackenzie [42, 43, 45, 44] providing a unified setting for several structures

appearing in the theory of Poisson manifolds. The main observation of this chapter is

that every multiplicative Dirac structure fits in Mackenzie’s theory of double structures.

More concretely, we show that every Dirac groupoid can be viewed as a double structure

called LA-groupoid, which roughly speaking is a Lie groupoid object in the category of

Lie algebroids. A prolongation procedure, similar to the tangent prolongation of a Lie

algebroid, gives rise to the infinitesimal data of an LA-groupoid, in the terminology of [43]

such a infinitesimal data is called a double Lie algebroid. If we think of a Dirac groupoid

as a special type of LA-groupoid, we are allowed to apply the Lie functor yielding the

corresponding double Lie algebroid. It turns out that this double Lie algebroid encodes

the linear Dirac structure associated to any multiplicative Dirac structure, as explained in

chapter 5.

6.1 LA-groupoids and double Lie algebroids

An LA-groupoid is a Lie groupoid object in the category of Lie algebroids. More

precisely, an LA-groupoid is a square
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H

E

G

M

qH //

qE
//

���� ����

(6.1)

where the single arrows denote Lie algebroids and the double arrows denote Lie groupoids.

These structures are compatible in the sense that all the structure mappings (i.e. source,

target, unit section, inversion and multiplication) defining the Lie groupoid H are Lie alge-

broid morphisms over the corresponding structure mappings which define the Lie groupoid

G. We also require that the anchor map ρH : H −→ TG be a groupoid morphism over the

anchor map ρE : E −→ TM . Here TG is endowed with the tangent groupoid structure over

TM . For describing the square given by an LA-groupoid we use the notation (H,G,E,M).

It is worthwhile to explain how the groupoid multiplication defines a morphism of Lie al-

gebroids. For that, let mH : H(2) ⊆ H × H −→ H denote the groupoid multiplication of

H, and similarly let mG : G(2) ⊆ G ×G −→ G denote the multiplication of G. The direct

product vector bundle H × H −→ G × G inherits a natural Lie algebroid structure, and

we have a Lie subalgebroid H(2) over G(2) which is just a pull back algebroid, see e.g. [33]

for details about the pull back operation in the category of Lie algebroids. With respect to

this Lie algebroid structure, the multiplication map mH is required to be a Lie algebroid

morphism covering mG.

Example 6.1.1. Let G be a Lie groupoid over M . The tangent functor leads to a canonical

LA-groupoid (TG,G, TM,M), where the Lie groupoid structure on TG is the tangent

groupoid, and the Lie algebroid structure TG −→ G corresponds to the trivial Lie algebroid.

See example 2.1.7 in chapter 2.

The Lie functor applied to an LA-groupoid (6.1) determines a square
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AH

E

AG

M

A(qH) //

qE
//

�� ��

(6.2)

where each of the arrows define Lie algebroids. The top Lie algebroid structure is non

trivial, and it deserves a detailed explanation. The Lie algebroid structure AH −→ AG was

constructed in [43] as a prolongation procedure similar to the tangent prolongation of a Lie

algebroid, except that we replace the tangent functor by the Lie functor.

Remark 6.1.1. The main ingredients for constructing the tangent Lie algebroid ofH −→ G

are the tangent anchor map

ρTH = JG ◦ TρH ,

and the generators Tu, û of the space os sections ΓTG(TH), where u is a section of the

vector bundle H −→ G. In order to construct the prolonged Lie algebroid structure on

AH −→ AG we need to understand the analogue objects of the tangent anchor and the

generating sections. More precisely, we would like to find conditions on the anchor map ρH
and a section u ∈ ΓG(H) in such a way that the tangent anchor, as well as the sections

Tu, û, restrict to an anchor map and sections of AH −→ AG that generate ΓAG(AH).

Notice that the tangent anchor map is obtained by a direct application of the

tangent functor to the anchor of H, and then twisting by a suitable morphism of double

vector bundles. This suggests that the anchor map for AH −→ AG should be defined by

an application of the Lie functor to the Lie groupoid morphism ρH : H −→ TG and then

swap it in a proper manner.

Definition 6.1.1. The prolonged anchor map AH −→ T (AG) is defined by

ρ̃ := j−1
G ◦A(ρH),

where jG : T (AG) −→ A(TG) is the canonical identification defined in appendix A.
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Now we study the space of sections ΓAG(AH). First we notice that the induced

section Tu ∈ ΓTG(TH) defines a section of AH −→ AG if the section u : G −→ H preserves

the units and the source fibrations. This leads naturally to the following definition.

Definition 6.1.2. A section u ∈ ΓG(H) is called a star section if there exists a section

u0 ∈ ΓM (E) such that

1. εE ◦ u0 = u ◦ εM ,

2. sH ◦ u = u0 ◦ sG.

Notice that since every star section u : G −→ H preserves the units and the source

fibrations, we are allowed to apply the Lie functor to u, yielding a section A(u) of the vector

bundle AH
A(qH)−→ AG.

Remark 6.1.2. Recall that the core of the double vector bundle (TH, TG,H,G) is the

vector bundle H −→ G. Every section u of the core H −→ G gave rise to a core section

û ∈ ΓTG(TH) defined by

û(Xg) = T (0H)Xg + u(g),

where u(g) = d
dt(tu(g))|t=0 is the core element induced by u(g) ∈ Hg. This suggests that in

order to define sections of AH −→ AG that play the role of û, we need to find the core of

the double vector bundle (AH,AG,E,M).

Definition 6.1.3. Let (H,G,E,M) be an LA-groupoid. The core of H is the vector

bundle over M defined by

K := ε∗Mker(sH).

Example 6.1.2. LetG be a Lie groupoid and consider the canonical LA-groupoid (TG,G, TM,M).

The core of TG is nothing else that K = AG the Lie algebroid of G.

Given a section k ∈ Γ(K) we define a section kH ∈ ΓG(H) in the following way

kH(g) := k(tG(g))0Hg ,

where 0Hg is the zero element in the fiber Hg above g ∈ G. Notice that for every section

k ∈ Γ(K) the induced section kH ∈ ΓG(H) satisfies
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kH ◦ εM = k.

Example 6.1.3. For the canonical LA-groupoid (TG,G, TM,M) a section k of the core K

is just a section of the Lie algebroid AG. The induced section kTG ∈ ΓG(TG) is exactly the

right invariant vector field on G determined by the section k ∈ Γ(AG). Indeed, the right

invariant vector field determined by k ∈ Γ(AG) is defined, at every g ∈ G with t(g) = x, by

Trg(k(x)) = TmG(x, g)(k(x), 0TGg ),

which is exactly the section kTG.

It was proved in [43] that there exist an exact sequence of vector bundles over E,

q∗E(K) −→ AH −→ q∗E(AG),

and an exact sequence of vector bundles over AG

q∗AG(K) −→ AH −→ q∗AG(E).

In particular, the core of the double vector bundle (AH,AG,E,M) is the vector bundle

K −→M .

Now let us see how a core element k ∈ K induces a Lie algebroid element k ∈ AH.

For that, we observe that every element in AH has the form

W =
d

dt
(ht)|t=0,

where ht is a curve in H sitting in a fixed source fiber s−1
H (e) with h0 = εE(e). Thus, for

every core element k ∈ K above x ∈ M , that is sH(k) = 0Ex and qH(k) = εM (x), there

exists a natural element k ∈ AH, defined by

k :=
d

dt
(tk)|t=0.

Definition 6.1.4. Given a section k ∈ Γ(K), the core section induced by k is the section

kcore ∈ ΓAG(AH) defined by

kcore(ux) := A(0H)ux + k(x).
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Notice that every section k ∈ Γ(K) induces a section of the tangent prolongation

TH −→ TG. Indeed, first we consider the induced section kH ∈ ΓG(H) and then we

construct the core section k̂H ∈ ΓTG(TH) defined in the usual way

k̂H(Xg) = T (0H)Xg + kH(g).

For every x ∈ εM (M) ⊆ G one has kH(x) = k(x), and thus at any ux ∈ (AG)x ⊆ TxG we

get

k̂H(ux) = A(0H)ux + k(x).

Hence we conclude that the core section û ∈ ΓTG(TH) restricts to a section of AH −→ AG

if û = k̂H comes from a section k ∈ Γ(K) of the core of (H,G,E,M). The following

proposition was proved in [43].

Proposition 6.1.1. The space of sections ΓAG(AH) is generated by sections of the form

A(u), where u : G −→ H is a star section, and by sections of the form kcore, where k :

M −→ K is a section of the core of H.

The Lie bracket on ΓAG(AH) is defined in terms of star sections and core sections.

First we observe that whenever u, v ∈ ΓG(H) are star sections, then the Lie bracket [u, v] ∈
ΓG(H) is also a star section. Thus the Lie bracket between sections of the form A(u), A(v)

is defined by

[A(u), A(v)] = A([u, v]).

The bracket of a pair of core sections is defined by

[kcore
1 , kcore

2 ] = 0.

In order to define the bracket of a star section and a core section we notice that

every star section u : G −→ H induces a covariant differential operator

Du : Γ(K) −→ Γ(K)

k 7→ [u, kH ] ◦ εM ,
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now we define [A(u), kcore] = (Du(k))core.

The Lie bracket of other sections of ΓAG(AH) is defined by requiring the Leibniz

rule

[w, fw′] = f [w,w′] + (Lρ̃(w)f)w′.

The vector bundle AH
A(qH)−→ AG endowed with the anchor map ρ̃ = j−1

G ◦ A(ρ)

and the Lie bracket [·, ·] on ΓAG(AH) becomes a Lie algebroid called the prolonged Lie

algebroid induced by H −→ G, see [43].

Example 6.1.4. Consider the canonical LA-groupoid (TG,G, TM,M) with the corre-

sponding prolonged Lie algebroid (A(TG), AG, TM,M). The canonical map jG : T (AG) −→
A(TG) is a morphism of double vector bundles, and whenever it is viewed as a morphism

of vector bundles over AG, it becomes a Lie algebroid isomorphism between the trivial Lie

algebroid T (AG) −→ AG and the prologated Lie algebroid A(TG) −→ AG. In fact, the

compatibility with the anchor maps follows directly from the definition of the prologated an-

chor map. On the other hand, for every star vector field X ∈ ΓG(TG), we have an induced

vector field X̃ = j−1
G (A(X)) on AG, which is linear in the sense that the corresponding

local 1-parameter family of diffeomorphisms of AG is given by vector bundle isomorphisms.

Similarly, for every section k ∈ Γ(AG) of the core of TG, one has another vector field k↑ on

AG, which is the core vector field induced by k, that is

k↑(a)F :=
d

dt
F (a+ tk(qAG(a)))|t=0.

The space of vector fields X(AG) is generated by vector fields of the form X̃, where

X ∈ X(G) is a star vector field, and by vector fields of the form k↑, where k ∈ Γ(AG). The

Lie bracket of such a vector fields satisfies

[X̃, Ỹ ] = ˜[X,Y ]; [X̃, k↑] = ([X, kr] ◦ εM )↑; [k↑1, k
↑
2] = 0.

In particular the prolonged Lie bracket on ΓAG(A(TG)) is mapped, via j−1
G :

A(TG) −→ T (AG), to the usual Lie bracket of vector fields on AG. See [47].
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6.2 Dirac groupoids as LA-groupoids

Let LG be a multiplicative Dirac structure on a Lie groupoid G ⇒ M . This means

that we have a VB-subgroupoid LG ⇒ E of TG ⇒ TM ⊕A∗G, such that LG ⊆ TG is also

a Dirac sub bundle. In particular there is a canonical Lie algebroid structure on LG −→ G

with anchor map LG −→ TG the natural projection and Lie bracket [[·, ·]] on ΓG(LG). The

dual of the Lie algebroid AG can identified with the conormal bundle N∗(M) ⊆ T ∗G, and

we define a Courant like bracket on the space of sections of E ⊆ TM ⊕A∗G by

[X1 ⊕ ξ1, X2 ⊕ ξ2] := [X1, X2]⊕ (LX1ξ2 − iX2dξ1).

With respect to this Lie bracket and the natural projection E −→ TM , the vector

bundle E −→M becomes a Lie algebroid.

Proposition 6.2.1. A multiplicative Dirac structure LG on G gives rise to an LA-groupoid

LG

E

G

M

pG⊕cG //

qE
//

���� ����

(6.3)

where pG and cG denote the tangent projection and the cotangent projection, respectively.

Proof. Since the structure mappings defining the Lie groupoid LG ⇒ E are restrictions of

the structure mappings of the tangent and cotangent groupoids, a straightforward compu-

tation shows that these structure mappings are Lie algebroid morphisms over the structure

mapping of G. In order to prove that the multiplication on LG is a Lie algebroid morphism

over the multiplication on G, we reproduce the proof of Proposition 5.2.3 replacing mT by

mLG
, where mLG

denotes the multiplication on LG. An argument similar to the one used

in the proof of Proposition 5.2.3 shows that the inversion map on LG is a Lie algebroid

morphism. This proves the statement.

Example 6.2.1. Assume that (G, πG) is a Poisson groupoid. Then π]G : T ∗G −→ TG is

a groupoid morphism over the dual anchor map ρA∗G : A∗G −→ TM . The corresponding
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LA-groupoid associated with this structure is

LπG

Eρ

G

M

pG⊕cG //

qEρ

//
���� ����

(6.4)

where LπG is the graph of the bivector πG, and Eρ is the graph of the dual anchor map

ρA∗G. The top Lie algebroid structure is the usual algebroid structure isomorphic to the

cotangent bundle T ∗G −→ G, and the Lie algebroid structure on Eρ is the one induced by

the graph of the Lie algebroid morphism ρA∗G : A∗G −→ TM .

Example 6.2.2. Let ωG be a multiplicative closed 2-form on a Lie groupoid G. Consider

the corresponding IM-2-form σ : AG −→ T ∗M . This determines an LA-groupoid

LωG

Eσ

G

M

pG⊕cG //

qEσ

//
���� ����

(6.5)

where LωG is the graph of the ωG and Eσ denotes the graph of the bundle map −σt :

TM −→ A∗G.

Consider now a multiplicative Dirac structure LG ⊆ TG with associated LA-

groupoid (LG, G,E,M). Applying the Lie functor we obtain the prolonged Lie algebroid

structure on A(LG) −→ AG, and we use the canonical map j−1
G ⊕j′G : A(TG)⊕A(T ∗G) −→

T (AG)⊕T ∗(AG), to define a Lie algebroid LAG = (j−1
G ⊕j′G)(A(LG)) over AG, characterized

by the fact that j−1
G ⊕ j′G : A(LG) −→ LAG is a Lie algebroid isomorphism. We have seen

in chapter 5 that LAG ⊆ T(AG) is a Lagrangian sub bundle with respect to the canonical

pairing 〈·, ·〉AG on T(AG). We claim that the Lie bracket on ΓAG(LAG) induced by the

prolonged Lie bracket on ΓAG(A(LG)) coincides with the Courant bracket.

Theorem 6.2.1. The Lie bracket on ΓAG(LAG) coincides with the Courant bracket [[·, ·]]
determined by the Courant algebroid T (AG)⊕T ∗(AG). In particular, the Lie functor maps
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multiplicative Dirac structures on G into linear Dirac structures on AG which are Lie

subalgebroids of T(AG).

Proof. The space of sections ΓAG(LAG) is generated by sections of the form X̃ ⊕ α̃ :=

j−1
G (A(X))⊕j′G(A(α)), where X⊕α ∈ ΓG(LG) is a star section, and by sections of the form

k↑ ⊕ h↑ = j−1
G (kcore) ⊕ j′G(hcore), where k ⊕ h ∈ Γ(KG) is a section of the core KG −→ G

of the LA-groupoid (LG, G,E,M). The Lie bracket on ΓAG(LAG) is determined by the

following identities

1. [X̃ ⊕ α̃, Ỹ ⊕ β̃] = (j−1
G ⊕ j′G)A([[X ⊕ α, Y ⊕ β]]G)

2. [X̃ ⊕ α̃, k↑ ⊕ h↑] = (j−1
G ⊕ j′G)([[X ⊕ α, kLG

⊕ hLG
]]G ◦ εM )core

3. [k↑1 ⊕ h↑1, k
↑
2 ⊕ h↑2] = 0.

SinceA(X⊕α) and (k⊕h)core are suitable restrictions of T (X⊕α) and (k⊕h)̂LG
, respectively,

and the Lie bracket on sections of AH −→ AG comes from the Lie bracket on sections

of TH −→ TG, we conclude that the isomorphism A(LG) ∼= LAG, which is a suitable

restriction of the isomorphism (LTG, [[·, ·]]) ∼= (TLG, [·, ·]) shown in Proposition 5.1.2, sends

the prolonged Lie bracket to the Courant bracket.

Example 6.2.3. The prolonged Lie algebroid A(LπG) −→ AG induced by the LA-groupoid

determined by a Poisson groupoid, is mapped via the canonical map j−1
G ⊕ j′G into the Lie

algebroid LπAG −→ AG given by the linear Dirac structure on AG defined by the linear

Poisson bivector πAG on AG.

Example 6.2.4. Consider the prolonged Lie algebroid A(LωG) −→ AG induced by the

LA-groupoid determined by a multiplicative closed 2-form ωG on G. The canonical map

j−1
G ⊕ j′G sends the prolonged Lie algebroid to the Lie algebroid LωA −→ AG defined by the

linear Dirac structure on AG which is the graph of the linear closed 2-form ωA = Lie(ωG)

on AG.

Although the LA-groupoid approach to Dirac groupoids just explain the action

of the Lie functor, we believe that it provides an explicit construction of the linear Dirac

structure corresponding to a multiplicative Dirac structure, following the spirit of the con-

struction of the linear Dirac structures associated to multiplicative Poisson bivectors and
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multiplicative closed 2-forms. However, the integration of double Lie algebroids to double

Lie groupoids was perfomed by Kirill Mackenzie in some special cases. Our guess is that

an intermediate integration step as

{double Lie algebroids} −→ {LA-groupoids} −→ {double Lie groupoids},

would provide an explicit integration functor from linear Dirac structures to multiplicative

Dirac structures. Furthermore, such intermediate step would be useful to find the presym-

plectic groupoid associated to a multiplicative Dirac structure. This will be treated in a

future work.
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Chapter 7

New research directions

This chapter contains a description of future work based on the main results ex-

posed along this dissertation.

7.1 Lie’s second theorem and the Van Est isomorphism

Let A
qA−→ M be a Lie algebroid with anchor map ρ : A −→ TM and Lie bracket

[·, ·] on Γ(A). Consider a closed (k + 1)-form φ on M . An IM-k-form on A with respect to

φ is a bundle map σ : A −→
∏k−1
cM

T ∗M , which satisfies the following conditions:

1. iρ(v)σ(u) = −iρ(u)σ(v)

2. σ([u, v]) = Lρ(u)σ(v)− Lρ(v)σ(u) + diρ(v)σ(u) + iρ(u)∧ρ(v)φ,

for every u, v ∈ Γ(AG).

In [2, 3] was proved that for every source-simply connected Lie groupoid G with

Lie algebroid A, there exists a one-to-one correspondence between:

i) Multiplicative k-forms ωG on G with dωG = s∗ω − t∗ωG, and

ii) IM-k-forms on A with respect to φ.

The method used in [2, 3] is based in the interpretation of multiplicative forms

satisfying i) as cocycles in the so called Bott-Shulman complex of the Lie groupoid G.

Similarly, IM-k-forms with respect to φ induces cocycles in the Weil algebra of the Lie
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algebroid A, see [2, 3]. The correspondence between multiplicative forms satisfying i) and

IM-k-forms is constructed out of a Van Est type isomorphism between the cohomology of

the Bott-Shulman complex of G and the cohomology of the Weil algebra of A, see [2, 3].

We would like to find the relation between linear k-forms on a Lie algebroid A and elements

in the Weil algebra of A. In particular, morphic k-forms must induce cocycles in the Weil

algebra. We can use Lie’s second theorem to integrate morphic forms to multiplicative

forms. This procedure must be related with the Van Est map approach for integrating

IM-k-forms. We will discuss these topics in a future work.

7.2 Multiplicative Dirac structures and supergeometry

In this section we explain how the theory of graded supermanifolds can be used

to study multiplicative Dirac structures.

Definition 7.2.1. [38, 53]

A Courant algebroid over M is a vector bundle E −→ M equipped with a

nondegenerate symmetric fibrewise bilinear operation 〈·, ·〉, a bilinear bracket [[·, ·]] on Γ(E)

and an anchor map ρ : E −→ TM , such that for every e1, e2, e3 ∈ Γ(E) and f ∈ C∞(M),

the following conditions are fulfilled:

1. [[e1, [[e2, e3]]]] = [[[[e1, e2]], e3]] + [[e2, [[e1, e3]]]]

2. ρ([[e1, e2]]) = [ρ(e1), ρ(e2)]

3. [[e1, fe2]] = f [[e1, e2]] + (Lρ(e1)f)e2

4. 〈e1, [[e2, e3]] + [[e3, e2]]〉 = Lρ(e1)(〈e2, e3〉)

5. Lρ(e1)(〈e2, e3〉) = 〈[[e1,2 ]], e3〉+ 〈e2, [[e1, e3]]〉

A Courant algebroid will be denoted by (E, [[·, ·]], 〈·, ·〉, ρ). The main example of

a Courant algebroid is TM ⊕ T ∗M with the canonical nondegenerate symmetric pair-

ing 〈·, ·〉 and the usual Courant bracket. As explained in [54], every Courant algebroid

(E, [[·, ·]], 〈·, ·〉, ρ) has an interesting counterpart in supergeometry. Since Courant algebroids

are the geometric structure where Dirac structures belong, it is useful to have such a su-

pergeometric interpretation to study Dirac structures.
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Theorem 7.2.1. [54]

There exists a one-to-one correspondence between

1. Courant algebroids, and

2. Symplectic graded manifolds of degree 2 with a degree 3 function θ satisfying {θ, θ} = 0.

Moreover, this correspondence is constructed in such a way that the canonical

Courant algebroid structure on TM ⊕ T ∗M corresponds to the symplectic graded manifold

T ∗[2]T [1]M .

We propose to study the inifinitesimal counterpart of multiplicative Dirac struc-

tures via Roytenberg’s correspondence 7.2.1. For that, consider the usual Courant algebroid

TG⊕T ∗G over G, and let (S(G), θ) denote the graded symplectic supermanifold T ∗[2]T [1]G

associated to TG⊕ T ∗G with the degree 3 function θ satisfying {θ, θ} = 0. Since the direct

sum TG⊕T ∗G is also a Lie groupoid over TM⊕A∗, this property has to be reflected in the

supermanifold S(G) = T ∗[2]T [1]G. Indeed, S(G) is a graded Lie groupoid over the graded

manifold S(P ) := (T [1]A)∗[2]. Moreover, the symplectic structure on S(G) is the canonical

symplectic structure on a cotangent groupoid, thus it defines a multiplicative symplectic

structure on S(G). The other data defining S(G) is the degree 3-function θ. The fact

that TG ⊕ T ∗G is a Lie groupoid must imply that θ is a multiplicative function on S(G).

Therefore, the supergeometric counterpart of the Courant algebroid TG⊕ T ∗G is a graded

symplectic supergroupoid S(G) ⇒ S(P ) equipped with a degree 3 multiplicative function θ

satisfying {θ, θ} = 0. On the other hand, the base manifold S(P ) inherits the structure of

a graded Poisson manifold, characterized by the fact that the target map S(G) −→ S(P )

is a morphism of graded Poisson manifolds.

Let us consider now a multiplicative Dirac structure L on G. In the super

side, a multiplicative Dirac structure corresponds to a graded Lagrangian subgroupoid

S(L) ⇒ S(C) of the graded symplectic groupoid S(G) ⇒ S(P ), where the degree 3 multi-

plicative function θ vanishes. Just as Lagrangian subgroupoids of symplectic groupoids have

a coisotropic base [15, 66], the graded Lagrangian subgroupoid S(L) ⊆ S(G), necessarily

has a base S(C) which is a graded coisotropic submanifold of the graded Poisson manifold

S(P ). We can argue that the infinitesimal data of a graded Lagrangian subgroupoid S(L)

of S(G) is the Lie subalgebroid N∗(S(C)) of T ∗(S(P ))1. However, we only need S(C), since
1Recall that a submanifold C of a Poisson manifold P is coisotropic if and only if the conormal bundle

N∗(C) ⊆ T ∗P is a Lie subalgebroid
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we can go from S(C) to N∗(S(C)) canonically. In terms of the algebra of functions, the in-

finitesimal version of a graded Lagrangian subgroupoid of S(G) corresponds to a coisotropic

ideal I of the graded Poisson algebra C∞(S(P )).

The supergeometric approach to linear Dirac structures on a Lie algebroid should

provide a finer infinitesimal invariant of a multiplicative Dirac structure. The fact that the

ideal I is coisotropic means that

{I, I} ⊆ I,

and such a relation might lead to a more natural description of Dirac structures LA ∈
Diralg(A), such as Lie bialgebroids and IM-2-forms.

7.3 New higher structures: CA-groupoids

This is the final section of this chapter. Along this thesis we have study multi-

plicative Dirac structures on Lie groupoids. It is the Courant algebroid TG ⊕ T ∗G where

multiplicative Dirac structures lie. In addition, the vector bundle TG⊕T ∗G is a Lie groupoid

over TM⊕A∗G, and in chapter 5 we proved that all the structure data defining the Courant

algebroid TG ⊕ T ∗G is preserved by the structure mappings that define the Lie groupoid

TG⊕ T ∗G. In terms of double structures, we have a square

TG⊕ T ∗G

TM ⊕A∗G

G

M

//

//
���� ����

(7.1)

where double arrows denote Lie groupoids, the top horizontal structure is a Courant al-

gebroid and the bottom horizontal structure has a structure similar to that of a Courant

groupoid, except that the natural pairing on TM ⊕ A∗G could be degenerate. The double

structure (7.1) should be thought of as the model example of a new higher structure that

might be called a CA-groupoid. Roughly, a CA-groupoid is a Lie groupoid object in the

category of Courant algebroids. We believe that the techniques used along this work can

be useful for the study CA-groupoids and their infinitesimal versions. Also supergeometry
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can be used to understand what a CA-groupoid is. This will be a future research project.
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Appendix A

Double geometrical structures

We recall here some double geometric structures such as double vector bundles,

VB-groupoids and VB-algebroids.

A.0.1 Double vector bundles

The concept of double vector bundle was introduced by J. Pradines in [52]. Here

we recall the main properties of these structures. We also recommend [41] for a detailed

discussion about double structures. Roughly, a double vector bundle is a vector bundle

object in the category of vector bundles. More specifically, a double vector bundle

consists of square

D

A

B

M

qH
D //

qA
//

qV
D

��

qB

��

(A.1)

where each of the arrows denote vector bundle structures. We require that all the structure

mappings defining the horizontal vector bundle D
qH
D−→ B be morphisms of vector bundles

over the corresponding structure maps that define the vector bundle A
qA−→M . We use the

notation (D,B,A,M) to indicate the double vector bundle (A.1).

Example A.0.1. (Tangent double vector bundle)
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Given a vector bundle A
qA−→M , there is a natural double vector bundle

TA

A

TM

M

TqA //

qA
//

pA

��

pM

��

(A.2)

obtained by applying the tangent functor to all the structure mappings that define A −→M .

Example A.0.2. (Cotangent double vector bundle)

Given a vector bundle A
qA−→M , the cotangent bundle T ∗A gives rise to a double

vector bundle

T ∗A

A

A∗

M

r //

qA
//

cA

��

qA∗

��

(A.3)

where the bundle projection r : T ∗A −→ A∗ is described locally by r(xi, ua, pi, λa) = (λa).

Given a double vector bundle (D,B,A,M), we define its core vector bundle as

C = ker(qHD ) ∩ ker(qVD). The core of a double vector bundle is canonically embedded in D,

and it becomes a vector bundle C −→M in a natural way.

Example A.0.3. The core of the double vector bundle (A.2) is the vector bundle of ver-

tical vectors tangent to the zero section M −→ A. Therefore the core of (A.2) identifies

canonically with A −→M .

Example A.0.4. The core of the double vector bundle (A.3) is described locally by elements

(xi, ua, pi, λa) with ua = 0 and λa = 0. Thus, the core of the double vector bundle (A.3)

identifies with T ∗M −→M .

Let us consider a double vector bundle (D,B,A,M) as in (A.1).

Definition A.0.1. A section ũ ∈ ΓB(D) is called linear if there exists a section u ∈ ΓM (A)

such that ũ : B −→ D is a vector bundle morphism over u : M −→ A.
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Example A.0.5. Let u be a section of a vector bundle A −→ M . The application of the

tangent functor to u, yields a linear section Tu : TM −→ TA of the double vector bundle

(A.2).

Example A.0.6. A section u of a vector bundle A −→ M induces a linear section uL of

the double vector bundle (A.3). If {ea} denotes a basis of local sections of A such that

u = uaea, then the linear section uL is described locally by

uL(xi, ξa) = (xi, ua(x), 0, ξa).

Given a section k of the core C −→ M of a double vector bundle (D,B,A,M),

the core section induced by k is a section k̂ of D −→ B defined by

k̂(b) = 0D(b) + k(qB(b)),

here 0D : B ↪→ D is the zero section and k(qB(b)) denotes the image of k(qB(b)) by the

canonical embedding C ↪→ D.

Example A.0.7. A section u : M −→ A of the core of (TA, TM,A,M) induces a core

section û : TM −→ TA determined by

û(X) = T (0A)(X) + u(pM (X)),

where u(pM (X)) = d
dt(tu(pM (X)))|t=0.

Example A.0.8. A section α : M −→ T ∗M of the core of (T ∗A,A∗, A,M) determines a

core section α̂ : A∗ −→ T ∗A, which is locally described by

α̂(xi, ξa) = (xi, 0, αi(x), ξa),

where α = αidx
i.

A.0.2 The VB-category

A VB-groupoid is a Lie groupoid object in the category of vector bundles. This

means that a VB-groupoid is a square
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H

E

G

M

qH //

qE
//

���� ����

(A.4)

where double arrows denote Lie groupoid structures and single arrows denote vector bundles.

We require that the structure mappings (source, target, multiplication, unit section and

inversion) that define the Lie groupoid H ⇒ E be morphisms of vector bundles over the

corresponding structure mappings defining the Lie groupoid G ⇒ M .

Example A.0.9. Given a Lie groupoid G ⇒ M with Lie algebroid A, there are two

canonical VB-groupoids associated to it, namely, the tangent groupoid TG ⇒ TM and the

cotangent groupoid T ∗G ⇒ A∗.

Now we want to understand what is the geometric object obtained by applying

the Lie functor to the VB-groupoid (A.4).

Definition A.0.2. An LA-vector bundle is a double vector bundle

A

E

B

M

//

//
�� ��

(A.5)

where the vertical structures are Lie algebroids and the horizontal structures are vector

bundles. These structures are compatible in the sense that all the structure mappings that

define the vector bundle A −→ E are morphisms of Lie algebroids over the corresponding

mappings that define the vector bundle B −→M .

As usual, one can say that an LA-vector bundle is a vector bundle object in the

category of Lie algebroid. There is also a symmetric version of an LA-vector bundle, this

double structure is called a VB-algebroid. Recently, R. Mehta and A. Gracia-Saz [31] have

shown that these symmetric notions of double structure coincide.



132

Example A.0.10. Given a Lie algebroid A −→M , there are two canonical LA-vector bun-

dles associated to it, namely, the tangent Lie algebroid (TA, TM,A,M) and the cotangent

Lie algebroid (T ∗A,A∗, A,M).

It seems that the Lie functor maps VB-groupoids into LA-vector bundles. In fact,

there exists a one-to-one correspondence between:

1. Source simply connected VB-groupoids, and

2. Integrable LA-vector bundles.

A VB-groupoid (A.4) is called source simply connected if the Lie groupoid H ⇒ E is

a source simply connected Lie groupoid. An LA-vector bundle (A.5) is called integrable

if the Lie algebroid A −→ E is an integrable Lie algebroid. In order to understand the

correspondence above, we briefly explain the main ideas of [6], where the determination of

a vector bundle out of its fiberwise scalar multiplication, proved in [30], is used strongly.

Definition A.0.3. ([30]) A homogeneous structure on a smooth manifold E is a smooth

action h : R+×E −→ E of the multiplicative monoid R+ which is non-singular in the sense

that

d

dt
(h(t, e))|t=0 = 0 if and only if e ∈ h0(E)

In the terminology of Grabowski and Rotkiewicz [30], every smooth action h :

R+×E −→ E defines a projection h0 : E −→ E, whose image is a closed subset N = h0(E).

We can define the vertical lift of the action Vh : E −→ (TE)|N by

Vh(e) =
d

dt
(h(t, e))|t=0.

The vertical lift of the action h : R+ ×E −→ E may be thought of as an infinites-

imal action on E. Notice that at each point x ∈ N , the vertical lift is given by Vh(x) = 0,

so a homogeneous structure is an action such that the set of singularities of the vertical lift

is smallest as possible.

Example A.0.11. Let E −→M be a vector bundle. The action by homoteties

h : R+ × E −→ E (A.6)

(t, e) 7→ te, (A.7)
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endows E with a homogeneous structure.

It turns out that on a vector bundle E, the homogeneous structure given by ho-

moteties, determines completely the vector bundle structure on E. See [30] for a proof of

this result.

Theorem A.0.1. [30]

If h : R+ × E −→ E is a homogeneous structure on a smooth manifold E, then

there exists a unique vector bundle structure on E such that h coincides with the homoteties

of E.

Notice that a morphism of vector bundles E1 −→ E2 is just a map that com-

mutes with the corresponding homogeneous structures on E1 and E2. Let us see how this

characterization of vector bundle structures is useful to study Lie groupoids objects in the

category of vector bundles.

Proposition A.0.1. A VB-groupoid structure (H,G,E,M) is equivalent to homogeneous

structures hH and hE on H and E, respectively, which defines an action by groupoid endo-

morphisms

H

E

H

E

hH
//

hE
//

���� ����

(A.8)

Proof. The compatibility of (hH , hE) with each of the groupoid structure mappings is equiv-

alent to saying that all the structure mappings defining the Lie groupoid H ⇒ E are vector

bundle morphisms over the corresponding structure mappings that define the groupoid

G ⇒ M . This is exactly the definition of a VB-groupoid.

A pair (hH , hE) of homogeneous structures given by groupoid endomorphisms will

be referred to as a multiplicative homogeneous structure. If we apply the Lie functor to

a multiplicative homogeneous structure (hH , hE) we obtain a homogeneous structure hAH
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on AH given by Lie algebroid endomorphisms over hE . Similarly, the following proposition

is proved along the same idea.

Proposition A.0.2. An LA-vector bundle structure (A,B,E,M) is equivalent to homo-

geneous structures hA and hE on A and E, respectively, which define an action by Lie

algebroid endomorphisms

A

E

A

E

hA
//

hE
//

�� ��

(A.9)

Now, in order to show the correspondence between source simply connected VB-

groupoids and integrable LA-vector bundles, we can resort to the correspondence between

homogeneous structures given by groupoid endomorphisms and homogeneous structures

given by algebroid endomorphisms. The latter are related to the former via the Lie functor.

Also, as explained in [8], under standard connectedness assumptions it is possible to inte-

grate morphisms of VB-algebroids to morphisms of VB-groupoids. As a result, sub objects

in the category of integrable VB-algebroids can be integrated to sub objects in the category

of VB-groupoids.
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