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In this thesis we introduce multiplicative Dirac structures on Lie groupoids, gener-
alizing both multiplicative Poisson bivectors (i.e., Poisson group(oid)s) and closed 2-forms
(e.g., symplectic groupoids). We prove that for every source simply connected Lie groupoid
G with Lie algebroid AG, there exists a one-to-one correspondence between multiplicative
Dirac structures on G and Dirac structures on AG, which are compatible with both the
linear and algebroid structures of AG. This extends the integration of Lie bialgebroids to
Poisson groupoids carried out in [48]. In the case of multiplicative 2-forms, our approach
gives a new, simpler proof of the integration of Dirac manifolds of [10].

In the special case of multiplicative Dirac structures on Lie groups, we prove that
the characteristic foliation of a multiplicative Dirac structure is given by the cosets of a
normal Lie subgroup, and whenever this subgroup is closed, the space of characteristic
leaves inherits the structure of a Poisson-Lie group. We use Drinfeld’s correspondence
between Poisson-Lie groups and Lie bialgebras to describe multiplicative Dirac structures
on Lie groups infinitesimally.

We also explain the connection between multiplicative Dirac structures and Macken-

zie theory of double geometric structures.
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Chapter 1

Introduction

The natural geometric object describing phase spaces of mechanical systems is a
symplectic manifold. More precisely, a symplectic manifold is a pair (M,w) where M is
a smooth manifold and w € Q?(M) is a nondegenerate 2-form satisfying the integrability

condition

dw =0,

where d : Q°*(M) — Q*T1(M) is the de Rham differential. Due to the physical interpreta-
tion of a symplectic manifold, there are two operations of special interest, namely restriction
to submanifolds and quotients by a Lie group of symmetries. On one hand, given a sub-
manifold ig : @ — M one can consider the restriction of the symplectic form w to the
submanifold @, that is we consider the pull back form wg = i*Qw. It is obvious that wq is
a closed 2-form, but it may have a non trivial kernel. On the other hand, given a Lie group
G acting on (M,w) by diffeomorphism that preserve the symplectic structure, we can look
at the orbit space M/G. Assuming that the G-action on M is free and proper, the orbit
space M /G is a smooth manifold and one observes that it is generally not symplectic, but
it inherits a Poisson structure. A Poisson manifold is a pair (M, 7) where M is a smooth

manifold and 7 € T(A?(T'M)) is a smooth bivector satisfying the integrability condition

[, 7] =0,

where [-,-] : T(AP(TM)) x T(ANYTM)) — T(APT4 (T M)) denotes the Schouten bracket

of multivector fields on M. In summary, the property of a 2-form being symplectic may be



lost under the operations of restricting to submanifolds and taking quotients by symplectic
actions. Indeed, we are led to two different geometries: the geometry of closed 2-forms and
the geometry of Poisson bivectors. This suggests that we need to go further and define
a more general geometric structure which includes closed 2-forms and Poisson bivectors.
This was exactly what T. Courant did in his thesis, defining what nowadays is called a
Dirac manifold [17]. One observes that a closed 2-form w on M induces a bundle map
Wt TM — T*M via *(X)(Y) = w(X,Y), and similarly a Poisson bivetor 7 on M
defines a bundle map 7 : T*M — TM by 7#(a)(8) = n(a, 3). It follows that the graphs
of the bundle maps w® and 7? define natural subbundles L C TM := TM & T*M, which

are maximal isotropic with respect to the nondegenerate symmetric pairing on TM,

<(Xv O‘)a (Yv 6)) = Q(Y) + ﬁ(X),

and that satisfy the integrability condition

[T(L), T(L)] € (L),

with respect to the Courant bracket [-,-] : I'(TM) x I'(TM) — I'(TM),

[(X, ), (Y, B)] = ([X, Y], Lx B — ivda).

The integrability in the sense of Courant interpolates the integrability conditions defining
closed 2-forms and Poisson bivectors.

The main objective of this thesis is to study Dirac structures defined on Lie
groupoids, satisfying a suitable compatibility condition with the groupoid multiplication.
Recall that a groupoid is a small category in which every morphism is invertible. More
specifically, a groupoid consists of a set GG of arrows, a set M of objects, and structure map-
pings s,t : G — M called source and target maps, a partially defined multiplication
map m : Gy — G, where G(9) = {(g,h) € G x G | s(g) = t(h)} is the set of composable
groupoid pairs, a unit section € : M — G and an inversion map ¢ : G — G, satisfying
the axioms of a category (see e.g. [13, 41]). A Lie groupoid is a groupoid where G and
M are smooth manifolds, all the structure mappings are smooth maps and s and ¢ are
surjective submersions.

Our study is motivated by a variety of geometrical structures compatible with



group or groupoid structures, including:

i)

ii)

iii)

Poisson-Lie groups: these structures consist of a Lie group GG with a Poisson structure
m, which are compatible in the sense that the multiplication map m : G x G — G is

a Poisson map. Equivalently, the Poisson bivector 7 is multiplicative, that is

Tgh = (lg)*ﬂh + (Th)*'frg;

for every g,h € G. Here [, and 7, denote the left and right multiplication by g and h,
respectively. Poisson-Lie groups arise as semiclassical limit of quantum groups, and

they are infinitesimally described by Lie bialgebras. See e.g. [23].

Symplectic groupoids: a symplectic groupoid is a Lie groupoid G with a symplectic
structure w, which is compatible with the groupoid multiplication in the sense that

the graph

Graph(m) CG x G x G

is a Lagrangian submanifold with respect to the symplectic structure w ® w ©w. This

compatibility condition is equivalent to saying that w is multiplicative, that is

miw = priw + priw,

where pri,pr2 @ Gy — G are the canonical projections. Symplectic groupoids
arise in the context of quantization of Poisson manifolds [63, 65], connecting Poisson
geometry to noncommutative geometry. In [14], symplectic groupoids appeared as
phase spaces of certain sigma models. The infinitesimal description of symplectic

groupoids is given by Poisson structures, see e.g. [63, 16].

Poisson groupoids: these objects were introduced by A. Weinstein [64] as a common
generalization of Poisson-Lie groups and symplectic groupoids. A Poisson groupoid is
a Lie groupoid G equipped with a Poisson structure 7, which is compatible with the

groupoid multiplication in the sense that

Graph(m) CG x G x G



is a coisotropic submanifold. These structures are related to the geometry of the
classical dynamic Yang-Baxter equation, see for instance [24]. At the infinitesimal

level, Poisson groupoids are described by Lie bialgebroids [46].

iv) Presymplectic groupoids: Lie groupoids equipped with a multiplicative closed 2-form
were studied in [10]. A presymplectic groupoid [10] is a Lie groupoid G with a multi-
plicative closed 2-form w satisfying suitable nondegeneracy conditions. These objects
arise in connection with equivariant cohomology and generalized moment maps [9].
The infinitesimal description of presymplectic groupoids is given by Dirac structures,
extending the infinitesimal description of symplectic groupoids. More generally, Lie
groupoids endowed with arbitrary multiplicative closed 2-forms are infinitesimally de-
scribed by bundle maps o : AG — T*M called IM-2-forms. Here AG denotes the
Lie algebroid of G and T*M is the cotangent bundle of the base of G.

The first goal of this work is to find a suitable definition of multiplicative Dirac
structure that include both multiplicative Poisson bivectors and multiplicative closed 2-
forms, and hence encompasses all examples above. This is obtained by observing that given
a Lie groupoid G over M with Lie algebroid AG, the tangent bundle T'G and the cotangent
bundle T*G inherit natural Lie groupoid structures over TM and A*G, respectively. One
observes that a bivector 7 is multiplicative if and only if the bundle map 7t : T*G — TG
is a groupoid morphism [46]. Similarly, a 2-form w is multiplicative if and only if the bundle
map w! : TG — T*G is a morphism of Lie groupoids. It turns out that the direct sum
vector bundle TG®T*G is a Lie groupoid over TM @ A*G, and graphs of both multiplicative
Poisson bivectors and closed 2-forms define Lie subgroupoids of TG & T*G. We say that
a Dirac structure Lg on a Lie groupoid G is multiplicative if Lg C TG & T*G is a Lie
subgroupoid. A Lie groupoid G equipped with a multiplicative Dirac structure is referred
to as a Dirac groupoid.

Our main purpose is to describe multiplicative Dirac structures infinitesimally,
that is, in terms of Lie algebroid data. We prove that, for every Lie groupoid G with Lie
algebroid AG, multiplicative Dirac structures correspond to Dirac structures on AG suit-
ably compatible with both the linear and Lie algebroid structures on AG. In the particular
case of multiplicative Poisson bivectors and multiplicative 2-forms, we explain how this is
equivalent to the known infinitesimal descriptions. Along the way, we develop techniques

that can treat all multiplicative structures above in a unified manner, often simplifying



existing results and proofs. The organization of this thesis and results are as follows.

Lie groupoids and Dirac structures

Here we review the basics of Lie groupoids and Lie algebroids. We also recall
the definition and main properties of Dirac structures on smooth manifolds, as well as the
notion of morphism of Dirac manifolds. We also review the main properties of Poisson
groupoids and Lie bialgebroids, as well as multiplicative forms and IM-2-forms. In the last
section of chapter 2 we define our main object of study, multiplicative Dirac structures and

we discuss basic examples of these objects.

Multiplicative 2-forms and their infinitesimal counterparts

This chapter presents the detailed study of multiplicative Dirac structures in the
case of multiplicative 2-forms, giving new, simpler proofs of the results in [10]. We use
tangent lifts of differential forms [28] to understand the effect of the Lie functor on mul-
tiplicative forms. We show that every multiplicative 2-form wg on a Lie groupoid G is
infinitesimally described by a 2-form w4g on the Lie algebroid AG of G, which is mor-
phic in the sense that the natural map ng : T(AG) — T*(AG) is a morphism of Lie
algebroids. We show that when wg is closed relative to a 3-form ¢ € Q3(M), that is

de = S*QS - t*¢a

then the induced morphic 2-form on AG is given by

WAG = *(J*wcan + p*(7(¢)))a

where 0 : AG — T*M is defined by o(u) = (iuwa)|rar, Wean denotes the canonical sym-
plectic form on T*M, p : AG — TM is the anchor map of AG, and 7(¢) € Q*(TM) is
defined at every X € TM by 7(¢)x = p3;(ix¢). The main result of this chapter estab-
lishes that, on an abstract Lie algebroid A with anchor map p : A — TM, the 2-form
A = —(0*wean + p*(7(¢))) is morphic if and only if o : A — T*M defines an IM-2-form
with respect to ¢. This characterization of IM-2-forms together with Lie’s second theorem

provide a new proof of the main result of [10], avoiding the path space construction of Lie



groupoids.

The case of Lie groups

This chapter is concerned with the study of multiplicative Dirac structures on Lie
groups. We observe that a Dirac structure Lg on a Lie group G is multiplicative if and only
if the multiplication map m : G x G — G is a forward Dirac map. In particular, Dirac-Lie
groups provide a natural extension of Poisson-Lie groups. We show that the characteristic
foliation of a Dirac-Lie group is given by cosets of a normal Lie subgroup, and whenever this
subgroup is closed the space of characteristic leaves inherits the structure of a Poisson-Lie
group. In particular, using Drinfeld’s correspondence we find the infinitesimal picture of

Dirac-Lie groups.

Natural functors on Dirac groupoids

In this chapter we study the effect of two natural functors on Dirac groupoids,
namely the tangent functor and the Lie functor. First, for an arbitrary Dirac manifold
(M, Lys) we construct a tangent Dirac structure Lpps on the tangent bundle T'M via
Mackenzie and Xu’s method for prolongating Lie algebroid structures to tangent bundles
[46]. Our procedure gives an alternative description of tangent Dirac structures studied
before by T. Courant [18] and I. Vaisman [61]. In [28] it was proved that for every Poisson
Lie group (G, 7g) the tangent group T'G equipped with the tangent Poisson structure mpg
is a Poisson Lie group as well. We extend this result to the Dirac groupoids setting. We
prove that given a Dirac groupoid (G, L¢g) the tangent groupoid TG = T'M endowed with
the tangent Dirac structure Lrg is also a Dirac groupoid.

The second functor acting on a Dirac groupoid (G, L¢g) is the Lie functor. We

answer the main question of this thesis:

What are the infinitesimal counterparts of multiplicative Dirac structures?

We show that the multiplicativity of Lg C TG & T*G translates into the linearity of a
Dirac structure L 4g on AG which also defines a Lie subalgebroid Lag C T(AG) @ T*(AG).



Moreover, we show that the Dirac structure L4¢ coincides with the Lie algebroid A(Lg) of
L¢, up to natural identifications. Conversely, on an integrable Lie algebroid A, every linear
Dirac structure L4 on A which is also a subalgebroid of TA @& T* A can be integrated to a
multiplicative Dirac structure Lg C TG & T*G on the source simply connected Lie groupoid
G integrating the Lie algebroid A. This result is a natural extension of the integration of
Lie bialgebroids [48], where the linear Dirac structures involved there are just graphs of
Lie algebroid morphisms. We finish chapter 5 by studying multiplicative Dirac structures
defined by B-fields transformations of Poisson groupoids. We also describe these structures

infinitesimally.

Dirac groupoids and L.A-groupoids

This chapter is concerned with an alternative construction of the linear Dirac struc-
ture Lag on AG determined in chapter 5. We use the second order geometry introduced
by K. Mackenzie [42] to show that every Dirac groupoid (G, Lg) may be thought of as a
Lie groupoid object in the category of Lie algebroids. In the terminology of K. Mackenzie
this is an LA-groupoid [42]. The Lie functor applied to an arbitrary LA-groupoid yields
a double Lie algebroid [43]. In particular the induced Dirac structure L associated to a
Dirac groupoid (G, L¢) arises as the double Lie algebroid of the £.A-groupoid representing
(G, La).

New research directions

Chapter 7 describes natural new research directions. First, we briefly discuss the
connection between the results shown in chapter 3 and the Van Est isomorphism between
the Bott-Shulman complex of a Lie groupoid and the Weil algebra of its Lie algebroid,
constructed recently by C. Arias Abad and M. Crainic in [2, 3]. We also explain how the
theory of graded supermanifolds could give a different perspective on the infinitesimal invari-
ant of a Dirac groupoid. This approach is based on Roytenberg’s correspondence between
Courant algebroids and certain degree 2 symplectic supermanifolds. We also explain how
the underlying Courant algebroid where multiplicative Dirac structure lie would provide

the prototype of new interesting structure, which might be called a Courant groupoid.



In addition, we have included an appendix with some double structures which
are used throughout this work. Along this thesis we use Einstein’s summation convention

consistently.



Chapter 2

Lie groupoids and Dirac structures

2.1 Basic Lie theory of Lie algebroids and groupoids

A groupoid over a set M is a set G together with structure mappings
s,t:G— M,
called source and target maps, a partially defined multiplication map

m: G(Q) — G
(9,h) — gh

where Gy = {(g,h) € G x G | s(g) = t(h)} is the set of composable groupoid pairs,
a unit section € : M — G and an inversion map i : G — G, satisfying the following

compatibility conditions:

1. s(gh) = s(h), t(gh) = t(g).

2. (gh)k = g(hk), whenever s(g) = t(h) and s(h) = t(k).

Equivalently, a groupoid is a small category in which every morphism is invertible. See for

instance [13, 41]. We use the notation G =2 M to indicate that G is a groupoid over M.
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A Lie groupoid is a groupoid G over M, where G and M are smooth manifolds, all the

structure mappings are smooth maps and s and t are surjective submersions.
Example 2.1.1. Every Lie group G can be viewed as a Lie groupoid over a point.

Example 2.1.2. Let M be a smooth manifold. Consider the space

II(M) = {[y] | v is a curve in M},

here [vy] denotes the homotopy class of v with fixed end-points. There is a natural groupoid

structure on II(M) with source and target maps defined by

the multiplication is given by [v;][v2] = [v172], where 7,75 is the path obtained via the
concatenation of v, and 4. The smooth structure on II(M) is the unique smooth structure
making the map (s,t) : [I(M) — M x M into a surjective submersion. The groupoid
II(M) is called the fundamental groupoid of M.

Example 2.1.3. Let F be a regular foliation on a smooth manifold M. We define a Lie
groupoid M (F) over M as follows. If x,y € M are on different leaves, then there are no
arrows from z to y. If x and y are on the same leaf £, then the arrows from = to y in M (F)
are homotopy classes of paths from z to y inside the leaf £. The source and target maps are
the obvious ones and the multiplication is given by the homotopy class of the concatenation
of paths. We refer to M(F) = M as the monodromy groupoid of the foliated manifold
(M, F). For details see [50].

Example 2.1.4. Given a foliated manifold (M, F) we define a Lie groupoid H(F) == M in
a similar way to the definition of M (F), except that we replace homotopy classes of paths
by holonomy classes of paths. This Lie groupoid is referred to as the holonomy groupoid

associated to the foliated manifold (M, F). For a detailed explanation see [50].

Example 2.1.5. Let H be a Lie group acting on a smooth manifold M. We endow H x M

with a Lie groupoid structure over M as follows. The source and target maps are defined

by

s(hyz) =z, t(h,x)= hx.
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The multiplication is defined by (h,h'z)(h',z) = (hh/,z). The unit section is e¢(z) = (e, x)
where e € H is the identity element. Finally the inversion map is defined by i(h,x) =
(h=1, hz). These maps define a Lie groupoid structure on H x M, called the transforma-
tion groupoid. We usually denote the transformation groupoid by H x M. See [50] for

more details.

Definition 2.1.1. Let G; and G2 be Lie groupoids over M7 and My, respectively. A
morphism of Lie groupoids is a pair (®, ¢) of smooth maps ® : G; — Ga, ¢ : M1 — Mo,
commuting with all structure maps (in the sense that they define a functor between the

categories G and G3).

As in the case of Lie groups, every Lie groupoid has a natural infinitesimal invari-

ant. In order to find this invariant we recall the definition of an abstract Lie algebroid.

Definition 2.1.2. A Lie algebroid over a smooth manifold M is a vector bundle A A M
with a Lie bracket [-,-]4 on I'(A) and a bundle map, called the anchor map, p, : A — TM

satisfying the Leibniz rule

[u7 f’U]A = f[uv U]A + (ﬁpA(u)f)U
where u,v € I'(A) and f € C>*(M).

Given a Lie algebroid A A4 M , the Lie algebroid differential is the operator
da: DA A*) — DA A*) defined by

k
dab(ur, ooy tpgr) = Y (=1 pa(ui)é(ua, oy iy ooy g1 )+ (2.1)
=1
D (D) (g, wg) 4y ua,s ey iy ey gy o 1), (2:2)
1<j

where £ € T(A" A*) and u; € T'(A) with i = 1, ...,k + 1. The operator d4 satisfies d% =0,
so we can talk about the Lie algebroid cohomology. One easily checks that the anchor map
pa and the Lie bracket [-,-]4 are completely determined by d4 and the property d% = 0.
See [13] for more details. Another characterization of Lie algebroid structures is via linear
Poisson bivectors. More specifically, every Lie algebroid A induces a Poisson structure on
its dual bundle A* which is linear in the sense that the space of fiberwise linear functions

CX (A*) 2 T(A) C C*®(A*) is a Poisson subalgebra. More explicitly, if (z!,...,2™) is a

lin
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system of local coordinates on M and {ey,...,e,} is a basis of local sections of A, we induce
coordinates (z%,u®) on A. There are structure functions pg, C¢, for the Lie algebroid A,

determined by

i) palea) = Py, and

ii) [eq,ep]a = CSec.

Now if {el,...,e"} is a basis of local sections of A*, dual to {eq,...,e.}, we induce local
coordinates (z°,£,) on A*. With respect to this local description of A*, the linear Poisson
bivector 74« € X2(A*) has the form

0 0 1 0 0

(WA*)\@@ = Pa(fU)axi N o, + icab(x)gcaifa N o,

(2.3)

It can be easily verified that the linear Poisson structure on A* determines com-

pletely the Lie algebroid structure on A. See e.g. [13].

Example 2.1.6. Every finite dimensional Lie algebra g can be seen as a Lie algebroid over

a point.

Example 2.1.7. Let M be a smooth manifold. The tangent bundle T'M has a natural Lie
algebroid structure over M, with anchor map defined by Idras and Lie bracket on X(M)

given by the usual bracket of vector fields. We refer to T'M as the canonical Lie algebroid.

Example 2.1.8. Every regular distribution F© C T'M which is involutive defines a Lie
algebroid over M. The anchor map is given by the inclusion F' — T'M and the Lie bracket
on I'(F) is just the usual Lie bracket of vector fields.

Example 2.1.9. Let § be a Lie algebra acting on a smooth manifold M. That is, there

exists a Lie algebra morphism

b — X(M)

U — Upf.

We endow the trivial bundle Ay = b x M with the structure of a Lie algebroid over M. The
anchor map is defined by
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pibhx M — TM

(u,x) — ups(x).

The Lie bracket [-,-]a, on I'(Ay) = C*°(M) Qb is given by

[u,v]a, = [u,v],

for u,v € b, and we extend it by requiring the Leibniz rule. The bundle Ay — M with
this Lie algebroid structure is referred to as the transformation Lie algebroid. See [50]

for more details.

Given a Lie groupoid G = M, we construct its Lie algebroid in the same way we
do for the Lie algebra of a Lie group. For that, consider the distribution T°G tangent to
the s-fibration of G, that is at every point g € G we have

T°G =ker(T's : TG — TM).

Definition 2.1.3. A vector field X on G is called right invariant if it is tangent to the

s-fibration, and for every composable pair (g, h) € G(2) we have

Tyrn(Xg) = Xgn,

where 7, : s71(t(h)) — s71(s(h)) is the right multiplication by h € G and Tyry, denotes
the derivative of 7 at the point g € G.

One can see that the space X" (G) of right invariant vector fields on G is a Lie subalgebra
of X(G) with respect to the Lie bracket of vector fields. Furthermore, there is a one-to-one

correspondence between X"(G) and the module of sections of the pull back vector bundle

AG = " (T°G).

The Lie algebroid of G is the vector bundle AG — M equipped with the Lie bracket on
I'(AG) induced by the identification X"(G) = I'(AG), and anchor map defined by T't|a¢ :
AG — TM. See [13].
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Example 2.1.10. If G is a Lie group, the construction of its Lie algebroid leads to the Lie
algebra of G.

Example 2.1.11. The Lie algebroid of the fundamental groupoid II(M) is the tangent
bundle T'M with the canonical Lie algebroid structure.

Example 2.1.12. The Lie algebroids of the Lie groupoids M (F) and H(F) coincide with
the Lie algebroid associated to the distribution F' C T'M tangent to the foliation F.

Unlike finite dimensional Lie algebras, not every Lie algebroid is the Lie algebroid
of a Lie groupoid. A Lie algebroid A is called integrable if there exists a Lie groupoid G
with Lie algebroid isomorphic to A. It is easy to see that whenever A integrates to a Lie
groupoid G, then it admits an integration G with simply connected s-fibers. For instance,
the Lie algebroid associated to any integrable distribution F' C T'M integrates to H (F) and
to M(F), the latter being the source simply connected integration. Henceforth, we only
consider source simply connected integrations. Explicit obstructions for the integrability of

Lie algebroids can be found in [21].

Definition 2.1.4. ([41, 50]) Let Ay — M; and Ay — M> be Lie algebroids. A bundle
map ¥ : Ay — Ay covering a map ¢ : M1 — M is called a morphism of Lie algebroids

if the following properties are fulfilled:

Lopa, 0¥ =T1opy,

2. For every u,v sections of A with ¥(u) = fi¢*(u;) and v = ¢?¢*(v;) where u;,v; are
sections of A and f?, ¢/ are smooth functions on M, the following bracket preserving

condition is satisfied

U([u,v]a,) = 197 ¢" ([wis vj]az) + pa, ()G &7 (v7) — pa, (V) 16" (ui)

Let (@, ¢) be a Lie groupoid morphism between GG and Go. The tangent functor
applied to @ gives rise to a bundle map T'® : TG; — T'G2 which sends the distribution
TG into T*G4. Since (P, ) is compatible with the unit sections of G; and G2, the bundle
map T'® restricts to a bundle map A(®) : AG; — AG9, which defines a morphism of Lie
algebroids (A(®), ¢) between AG; and AG2. Let us denote by £G and LA the category of

Lie groupoids and Lie algebroids, respectively.
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Definition 2.1.5. There is a natural functor A : LG — LA, which maps each object
G € LG to the object AG € LA, and every morphism of groupoids ® : G; — Gs is
mapped to the Lie algebroid morphism A(®) : AG; — AG,. We refer to A as the Lie

functor.

We finish this subsection with the Lie’s second fundamental theorem for morphisms

of Lie algebroids. We will use this result several times along this thesis.

Theorem 2.1.1. Let ¢ : Ay — Ay be a morphism of integrable Lie algebroids, and let Gy
and Go be integrations of A1 and Ao, respectively. If Gy is source simply connected, then

there exists a unique morphism of Lie groupoids ® : G1 — Ga, such that A(®) = .
A proof of this result can be found in [21, 48].

Remark 2.1.1. Assume that G is a source-connected Lie groupoid. If &1, P : G; — G4
are Lie groupoid morphisms inducing the same Lie algebroid morphism ¥ : AG; — AGo,
then necessarily ®; = ®5. Indeed, we can consider the source simply connected Lie groupoid
G with AG, = AG; and integrate ¥ : AG; — AG5 to a unique groupoid morphism
® : G; — G. The natural projection pr : G — Giisa groupoid morphism, and we
notice that ®; opr : G; — Gy is a groupoid morphism with A(®1opr) = V. Similarly, the
groupoid morphism ®5 0 pr : G; — G satisfies A(®yopr) = V. Therefore, the uniqueness
of the integration d:GL — Gy implies that ®; = ®s.

2.2 Basics on Dirac geometry

2.2.1 Dirac structures

Given a smooth manifold M we consider TM = TM ®T*M. A Dirac structure
([17, 19]) is a subbundle L C TM satisfying the following properties:

1. Tt is maximal isotropic with respect to the non degenerate symmetric pairing on TM,

(Xoa,Y®s) =al)+ B(X).

2. The space of smooth sections I'(L) is closed under the Courant bracket on I'(TM),

[X®a,Y@F)=[X,Y]®LxS —iyda.
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It is whorthwhile to observe that, since the quadratic form (-, -) has split signature,
condition 1. is equivalent to saying that (-,-)|rxz = 0 and rank(L) = dim(M). A maximal
isotropic subbundle L C TM is referred to as a Lagrangian subbundle of TM. We denote
by Dir(M) the space of all Dirac structures on a smooth manifold M.

Example 2.2.1. (Closed 2-forms)
Let w be a 2-form on M. The graph of w is the subbundle of TM defined by

Lo ={X®uw"X)| X € TM}

where w! : TM — T*M is the natural bundle map induced by w. That is,

One easily checks that the skew symmetry of w implies that L, is isotropic, and it is clear

that L, has maximal dimension. The Courant integrability for L, is equivalent to dw = 0.

Example 2.2.2. (Poisson bivectors)
On the other extreme, the graph of a bivector = € T(\* T M) is the subbundle of
TM given by

L, ={r(a)®a|acT M}

Here 7t : T*M — TM denotes the bundle map defined by 7#(a) = m(a,-). Again the
isotropy property of L, comes from the skew symmetry of 7w, and we observe that L, has
maximal dimension. The Courant integrability for L, is equivalent to [r, 7] = 0, where [-, -]

is the Schouten bracket of multivector fields.

The examples discussed previously show that Dirac structures interpolate presym-
plectic and Poisson structures. There is also another important class of Dirac structures,

those given by regular foliations.

Example 2.2.3. (Regular foliations)
Let FF C TM be a regular distribution. Consider the graph

Lp=F®F° CTMa®T*M
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where F° denotes the annihilator of F. It is easy to see that Lgr defines a Dirac structure

on M if and only if F' is involutive in the sense of Frobenius.

Example 2.2.4. (Restriction to submanifolds)
Let L be a Dirac structure on M, and let Q <— M be a submanifold. For each
x € @ define the Lagrangian subspace

_ LN (1:Q & T M)
(LQ)I T L;L’ N (T;EQ)O

(2.4)

The result of putting together the pointwise subspaces (Lg), € TQ may not be a smooth
vector bundle. The result will be a smooth bundle if for instance L, N (1Q)° has constant
dimension. When the family (2.4) defines a smooth bundle, we get a Dirac structure Lg on

the submanifold @ of M.

Example 2.2.5. (Moment level sets)

Let (M, 7) be a Poisson manifold, and let H be a Lie group acting on M in a
Hamiltonian manner. Let J : M — h* be a momentum map for this action, and suppose
that § € b* is a regular value for J. Let H¢ denote the isotropy group of { € h* with respect
to the coadjoint action. The moment level set @ := J~1(£) is a submanifold of M, so we
can consider the family of Lagrangian subspaces (Lg), C TQ as in (2.4). If the isotropy
groups of the He-action on @ have constant dimension, e.g. if the action is free, then the
result of putting together the subspaces (Lg), yields a smooth bundle over () which defines

a Dirac structure on the moment level set Q = J~1(¢). See [17] for more details.

As observed in [57], it is convenient to modify the Courant bracket by a closed
3-form ¢ on M. The ¢-twisted Courant bracket on I'(TM) = X(M) ® Q' (M) is defined
by

[X@a,Yolls=[X,Y]®LxB—iyda+ixnyo.

A ¢-twisted Dirac structure on M is a Lagrangian subbundle L C TM whose
space of sections I'(L) is closed under the ¢-twisted Courant bracket. If ¢ = 0 we recover the
usual bracket [-, -] introduced previously. It is important to observe that it is the Courant
bracket that is twisted by the 3-form ¢ € Q3(M) and not the subbundle L. The addition of

the twist 3-form is important since there are interesting examples of Dirac structures which
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turn out to be integrable up to a closed 3-form [57]. The study of twisted Dirac structures
is motivated by the previous work of Klimé¢ik and Strobl [36] on WZW-Poisson manifolds,
where a 3-form background plays a role similar to the Wess-Zumino-Witten term in field
theory. One observes easily that a 2-form w on M defines a ¢-twisted Dirac structure if and

only if

dw+ ¢ = 0.

In this case we say that w is closed with respect to ¢ € Q3(M). Similarly, a bivector
7 e D(A\*TM) defines a ¢-twisted Dirac structure if and only if

1
Slm = () (@),

where Amf denotes the extension of the bundle map 7% : T*M — TM to higher exterior

powers.

Example 2.2.6. (Cartan-Dirac structure)
Let G be a Lie group whose Lie algebra g is equipped with a nondegenerate sym-
metric adjoint-invariant bilinear form (-,-)4. We can use the bilinear form (-, -)4 to identify

TG and T*G. With respect to this identification, we define the Lagrangian subbundle

1
Lo ={u —u @ §(u’”+ul) | u € g},

where 4" and u! denote the right and left invariant vector fields determined by u € g. One
can prove that Lg is a ¢g-twisted Dirac structure, where ¢ is the bi-invariant Cartan

3-form on G, defined at element in g by

1

¢G(u’ v, w) = 5(”7 [% w])g-

The ¢g-twisted Dirac structure Lg on G is referred to as the Cartan-Dirac structure on
G. The Cartan-Dirac structure on a Lie group is closely related to the theory of Lie group
valued moment maps [1, 10], which arises in connection with the symplectic structure of

the moduli space of flat connections on a compact Riemann surface [4].

Given a closed 3-form ¢ on M, we denote by Dir?(M) the space of all ¢-twisted

Dirac structures on M.
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2.2.2 Properties

The involutivity of a Dirac subbundle with respect to the ¢-twisted Courant
bracket may be thought of as a generalized Frobenius condition. It turns out that Dirac
geometry has natural connections with foliation theory, in particular with the theory of Lie
algebroids. More concretely, given a ¢-twisted Dirac structure L on a smooth manifold M,
the vector bundle L — M inherits a canonical Lie algebroid structure with anchor map
given by the restriction of the canonical projection pr|r : L — TM, and Lie bracket on
sections defined by the restriction ¢-twisted Courant bracket. Every Lie algebroid induces
an integrable singular distribution given by the image of the anchor map, see e.g. [13].
In the case of a Lie algebroid induced by a Dirac structure L, this singular foliation comes
with extra data. Actually, on each leaf ig : S < M there is a 2-form defined at each z € §
by

Qs(2)(X,Y) = aY),

where X, Y € pr(L), and o € T M satisfies X @ a € L,. Observe that since L C TM is
isotropic one concludes that €2s is well defined, that is, it does not depend on the choice of
. The integrability of L with respect to the ¢-twisted Courant bracket implies that the

leafwise 2-forms Qs are closed up to i5¢, that is

dQs + Z‘*gd) = 0.

We refer to this singular foliation with the leafwise 2-forms as the presymplectic foliation

of M.

Example 2.2.7. Let (M, 7) be a Poisson manifold. The singular foliation on M induced
by the Dirac structure L, is the foliation tangent to 7#(T*M) C TM. The leafwise presym-
plectic forms recover the leafwise symplectic structure underlying the Poisson structure

.

The kernel of a Dirac structure L on M is defined by generally singular distribu-
tion ker(L) = LNTM. It follows from the definition of the leafwise 2-forms that at each
x € S the fiber of ker(L) is given by ker(L), = ker(Q2s(x)). As in the symplectic or Poisson
case, we would like to define what the Hamiltonian vector field of a smooth function is. It

turns out that on a Dirac manifold not every smooth function has a natural Hamiltonian
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vector field, and the leafwise presymplectic forms play an important role in this problem.
An admissible function is a smooth function f € C°°(M) for which there exists a vector
field Xy € X(M) such that Xy @ df € L. By clear reasons, such a vector field is referred
to as a Hamiltonian vector field of f. Notice that X, is well defined up to elements in
ker(L), and whenever ¢ = 0, the set A(M) of admissible functions inherits a Poisson algebra

structure (see. e.g. [17]) defined by the bracket

{f,9} = dg(Xy).

Notice that, whenever ker(L) C T'M has constant rank and defines a simple' foliation
KC, then admissible functions are identified with smooth functions in the leaf space M /K.
Therefore, if K is a simple foliation, then the leaf space M /K inherits a Poisson structure

denoted by m,..q. The foliation K is called the characteristic foliation of M.

2.2.3 Dirac morphisms

Now we explain the notion of morphism of Dirac manifolds following [12]. A
proper notion of morphism of Dirac manifolds should include pull backs of 2-forms and
push forward of bivectors. In order to make a clear description of Dirac maps, we explain

two extreme situations.

Example 2.2.8. (Presymplectic maps)

Let (M,wyr) and (N,wy) presymplectic manifolds, that is wys and wy are closed
2-forms on M and N, respectively. A presymplectic map is a smooth map ¢ : M — N
such that wyr = ¢*wpn. One observes that this is equivalent to the fact that the induced
bundle maps wt]iw :TM — T*M and wg\, : TN — T*N are related by

(Wh)e = (@)@ © Tuw,

for each € M. As in Example 2.2.1, we have Dirac structures L,,,, and L., on M and

wN
N, respectively. Therefore we conclude that a smooth map ¢ : (M,wy) — (N,wy) is

presymplectic if and only if

A foliation F on a smooth manifold M is said to be simple if the leaf space M/F is a smooth manifold
such that the quotient map M — M /F is a surjective submersion.
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(LwM)OC = {X @ (ngp)*ﬁ | XeTl,M,pe T;(x)Na (T:BSO(X) ©® ﬁ) S (LWN)L;?(J:)}'

Example 2.2.9. (Poisson maps)

Let (M, ) and (N, my) be Poisson manifolds. A smooth map ¢ : M — N is a
Poisson map if and only if the induced bundle maps ﬂgw :T*M — TM and wg\, :T*N —
TN are related by

(Th )ty = To © (Thy)z 0 (Tup)*

As explained in Example 2.2.2, there are induced Dirac structures L,,, and L, on M and

N, respectively. The fact that ¢ : (M, 7y) — (N, 7x) is a Poisson map is equivalent to

(Lﬂ’N)cp(ac) = {T:E(P(X) ® 6 ’ XeTl,Mpe T;(x)Na (X D (TxQO)*ﬁ) € (Lﬂ'M)x}'

The examples discussed previously motivate the following definitions. Let (M, Lys)
and (N, Ly) be Dirac manifolds. A map ¢ : (M, Ly;) — (N, Ly) is called a backward

Dirac map if for every x € M we have
(LM)Z = {X ® (ngp)*ﬁ ‘ XeTl,M,pBe T;(x)Nv (Tx@(X) S /6) S (LN)cp(ac)}' (2'5)

Similarly, we say that ¢ is a forward Dirac map if for every x € M,

(LN)go(z) = {Tz‘p(X) D ﬁ | X € TmMaﬁ € T;(x)N>X D (TI(IO)*/B € (LM)m} (2'6)

Notice that a map between Poisson manifolds is a forward Dirac map if and only
if it is a Poisson map. Similarly, a backward Dirac between presymplectic manifolds is
the same that a presymplectic map. It is important to observe that even for symplectic
manifolds, Poisson and symplectic maps may be different, thus forward and backward Dirac

maps are different notions.

Example 2.2.10. Consider R? with coordinates (x!,p;) and symplectic form wy = da! A
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dpi. Assume also that on R* we have coordinates (x1,p1, 2%, p2) and the symplectic form

wy = dz' Adpy + dz? A dps. Tt is clear that the inclusion map

i R2—R*

(x17p1) = (xlaphoao)

is a backward Dirac map, since it is symplectic. Notice that with respect to the Poisson
brackets induced by wo and wy, the map i : R> — R* is not a Poisson map?, in particular

it is not a forward Dirac map. Similary, the projection

R* — R?

(x17p17m27p2) — (x17p1)7

is a forward Dirac map, since it is a Poisson map. Clearly the projection is not symplectic?,

in particular it is not backward Dirac.

Denote the right hand side of (2.5) by ¢*Ly. This defines a natural way to pull
Dirac structures back, though the result of putting together the pointwise subspaces of TM
is not necessarily a smooth vector bundle. The result will be a Dirac structure if it defines a
smooth bundle over M. For instance, the right hand side of (2.5) is smooth if ¢ : M — N
is a submersion. Therefore a smooth map ¢ : (M, Ly;) — (N, Ly) is a backward Dirac
map if Ly; = ¢*Ly. Also, we can write (2.6) as Ly = ¢, Ly, though ¢, Ly may not be
well defined. See [12] for more details.

Example 2.2.11. Let L be a Dirac structure on M, and let i : Q — M be a smooth
submanifold. Assume that the subspaces (Lg), € T.Q as in (2.4) define a smooth bundle
over (). Then we get a Dirac structure Lg on @, and this Dirac structure is determined by

the fact that the inclusion map i : QQ — M is a backward Dirac map. That is i*(L) = Lq.

We finish our discussion about Dirac maps by illustrating two examples where the

notions of backward and forward Dirac maps coincide.

Example 2.2.12. Let (S,Qs) be a pre symplectic leaf of a Dirac manifold (M, L). Then

the inclusion map is : & — M is both a forward and backward Dirac map.

2Recall that in this case the property of i : R?> — R* being a Poisson map implies that i has to be a
submersion, which clearly it is not the case.
3Recall that if a map between symplectic manifolds is a symplectic map, then it has to be an immersion.
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Example 2.2.13. Assume that the distribution ker(L) C TM is tangent to a simple
foliation K. Then the natural projection map (M, L) — (M/K, 7req) is a backward and

forward Dirac map.

Example 2.2.14. (Poisson reduction)

Let (M, ) be a Poisson manifold with a Hamiltonian action of a Lie group H. Let
J : M — b* be a moment map for this action and assume that & € h* is a regular value of
J. Assume that the He-action on Q = J~1(&) is free and proper. Then we conclude from
example 2.2.5 that the restriction of L to () defines a Dirac structure Lg on the level set
Q. One can verify that the He-orbits of the action on @ coincide with the characteristic
leaves of the Dirac structure Lg. Therefore, the reduced space M,.q := Q/H¢ is the space
of characteristic leaves of L, so it inherits a canonical Poisson structure ;.4 such that the
projection map  — M, .4 is both a backward and forward Dirac map. See [17] for more

details.

2.3 Tangent and cotangent structures

2.3.1 Tangent and cotangent groupoids

Let G be a Lie groupoid over M with Lie algebroid AG. The tangent bundle TG
has a natural Lie groupoid structure over T'M. This structure is obtained by applying the
tangent functor to each of the structure maps defining G (source, target, multiplication,
inversion and identity section). We refer to T'G with the groupoid structure over T'M as the
tangent groupoid of G. Notice that the set of composable pairs (T'G)2) = T(G(g)), and
for (g,h) € G(2) and a tangent groupoid pair (Xg,Ys) € (T'G)(2) the multiplication map on
TG is

Xg L] Yh = Tm(Xg, Yh)

Example 2.3.1. Let G be a Lie group with Lie algebra g. The tangent bundle T'G is a Lie

group as well. One can see that the multiplication on T'G is given by

Xg [ ] Yh = TgTh(Xg) + Thlg(Yh).

We can use right translations to trivialize TG in such a way that TG = G x g.
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With respect to this identification, it is easy to see that the group structure on the tangent

bundle corresponds to the semidirect group G x g determined by the adjoint representation.

Consider now the cotangent bundle 7*G. It was shown in [16], that TG is a Lie

groupoid over A*G. The source and target maps are defined by

Sag)u = ag(Tly(u— Tt(u))  and i(B,)v = 3,(Try(v))

where oy € A:(Q)G, u € Ayy)G and B, € A;“(g)G, v € Ay(g)G. The multiplication on T*G is
defined by

(ag o B1)(Xg 0 Yp) = ag(Xg) + B4 (Yn)

for (Xg, Yh) S T(g,h)G(Q)-
We refer to T*G with the groupoid structure over A* as the cotangent groupoid

of G.

Example 2.3.2. Let GG be a Lie group with Lie algebra g. Then the cotangent groupoid
T*G has base manifold g*. We can use right trivializations to identify T*G = G x g*.
In terms of this identification, the cotangent groupoid corresponds to the transformation

groupoid G X g* with respect to the coadjoint action.

Remark 2.3.1. Notice that the tangent groupoid T'G = T'M and the cotangent groupoid
T*G = A*G have an additional property. Namely, the space of arrows and objects are
vector bundles and all the structure maps (source, target, multiplication, inversion and unit
section) are morphisms of vector bundles. That is, they define Lie groupoid objects in
the category of vector bundles. These are examples of a more general structure called a
VB-groupoid. The reader can find the definition and main properties of such structures in

appendix A.

2.3.2 Tangent and cotangent algebroids

Let M be a smooth manifold. The tangent bundle of M is denoted by pas :
TM — M. We use ¢pr : T"M — M to indicate the cotangent bundle of a smooth
manifold. Consider now A %% M a vector bundle over M. The tangent bundle T'A has a

natural structure of vector bundle over T'M, defined by applying the tangent functor to each
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of the structure maps that define the vector bundle A %2 M. This yields to a commutative

diagram

Tqa

TA TM
pa Py (2.7)
A o M

In the terminology of [52, 41], this defines a double vector bundle?. Now we assume that
A 22 M has a Lie algebroid structure with anchor map p, : A — T'M and Lie bracket
[,-] on I'pr(A). First note that any Poisson structure 7y; on a smooth manifold M induces
a Poisson structure on the tangent bundle T'M. Indeed, since T*M is a Lie algebroid over
M, then the dual bundle T'M has a linear Poisson structure w7/ as in (2.3), which we call
the tangent Poisson structure. Now, if A is a Lie algebroid over M, then A* is a Poisson

manifold. Consider the double vector bundle

T(IA*
TA* ——TM

pax pPm (2'8)

A* M

qax*

The tangent Poisson structure on T'A* is linear with respect to both vector bundle
structures on T'A*. Therefore, the dual bundle (T'A*)* — TM inherits a Lie algebroid

structure.

Proposition 2.3.1. [/6] There exists a canonical isomorphism of vector bundles I : TA* —
(TA)

Proof. Consider the canonical pairing A* Xy A — R. Applying the tangent functor and
projecting onto the second component we get a nondegenerate pairing TA* Xy TA — R.
We use this pairing to define an isomorphism of vector bundles I : TA* — (T'A)*.

O]

4The reader can find a review of the basics on double vector bundles in appendix A.
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Definition 2.3.1. The tangent Lie algebroid of A is the vector bundle TA — TM
equipped with the unique Lie algebroid structure that makes the canonical map I* : TA —

(T A*)* into an isomorphism of Lie algebroids.
It will be useful to have an explicit description of the tangent anchor map, as well

as the tangent Lie bracket on sections of TA — T'M. First, recall that there exists a

canonical involution

I

TTM TTM

pPTM Ton (2.9)

M d ™
which in a local coordinates system (z°, %, §z°, 04%) on TTM is given by
Ja((2h, it 028, 02%)) = (2, 62%, &%, 62).

Now we can apply the tangent functor to the anchor map py : A — T'M, and then compose

with the canonical involution to obtain a bundle map ppy : TA — TTM defined by

pra=JmoTpy.

This defines the tangent anchor map. In order to define the tangent Lie bracket, we observe
that every section u € I"ps(A) induces two types of sections of TA — TM. The first type
of section is Tu : TM — T A, which is given by applying the tangent functor to the section
u : M — A. The second type of section is the core section @ : TM — TA, which is

defined by

a(X) = T(01)(X) + ulpm (X)),

where 04 : M — A denotes the zero section, and u(py(X)) = %(tu(pM(X)))h:o. As
observed in [46], sections of the form 7w and @ generate the module of sections I'rps(T'A).

Therefore, the tangent Lie bracket is determined by



27

(T, Tv) = Tlu,v),  [Tu,d] = [u0], [a,5] =0,
and we extend to other sections by requiring the Leibniz rule with respect to the tangent

anchor pp 4.

Example 2.3.3. If A = g is a Lie algebra, then T'A = g x g is also a Lie algebra. Moreover,
the tangent Lie algebra is the semidirect product Lie algebra g x g with respect to the

adjoint representation.

Now we explain how the cotangent bundle of a Lie algebroid inherits a Lie algebroid
structure. For that, let us explain the vector bundle structure T*A — A*. If (z*,u?) are
local coordinates on A, we induce a local coordinates system (z,u®, p;, \y) on T* A, where
(pi) determines a cotangent element in 7;M and (\,) € A} is a cotangent element with
respect to the tangent direction to the fibers of A. Now the bundle projection r : T*A — A*
is described locally by 7(x%, u®, p;, A\a) = (2, As). These vector bundle structures define a

commutative diagram

T*A A*
CA qaA* (210)
A M

qA

This endows T* A with a double vector bundle structure. Suppose that g4 : A — M carries
a Lie algebroid structure. Then we can consider the dual bundle A* endowed with the linear
Poisson structure induced by A. The cotangent bundle T*A* — A* has the Lie algebroid
structure determined by the linear Poisson bivector on A*. There exists a Legendre type
map R : T*A* — T*A which is a anti-symplectomorphism with respect to the canonical
symplectic structures, and it is locally defined by R(x%, ¢, pi, u®) = (2%, u®, —p;, &,). For an

intrinsic definition see [46, 59].

Definition 2.3.2. The cotangent algebroid of A is the vector bundle T*A — A*
equipped with the unique Lie algebroid structure that makes the Legendre type transform

R:T*(A*) — T*A into an isomorphism of Lie algebroids.
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Example 2.3.4. Let g be a Lie algebra. Then the cotangent Lie algebroid T*g = g x g* is

the transformation Lie algebroid g x g* with respect to the coadjoint representation.

Remark 2.3.2. The tangent and the cotangent algebroids have an additional property.
They define Lie algebroid objects in the category of vector bundles. These are particular
examples of a more general structure called a VB-algebroid. In appendix A we have included

the main properties and examples of such geometrical structures.

Notice that for a Lie group G with Lie algebra g, the tangent and cotangent Lie
algebroids of g are exactly the Lie algebroids of the tangent and cotangent Lie groupoids
of G. We will see that this is a general fact. For that, recall that the Tulczyjew map
Op : TT*M — T*T'M is the isomorphism defined by

@M = JE\% e} IM,
where Ip; : TT*M — (TTM)* is the map defined in Prop. 2.3.1 with A = T'M. In a local
coordinates system (z°, p;, &%, p;) the Tulezyjew map is given by
@M(xivph xzvpz) = (xia xl7p27p7,)
Consider now a Lie groupoid G over M with Lie algebroid AG. There exists a
natural injective bundle map
iaqg : AG — TG (2.11)

The canonical involution Jg : TTG — TTG restricts to an isomorphism of Lie algebroids

ja : T(AG) — A(TG). More precisely, there exists a commutative diagram

T(AG) —— A(TG)
T(iag) LA(TG) (2'12)
TTG— > TTG

In particular, the Lie algebroid A(T'G) of the tangent groupoid is canonically isomorphic
to the tangent Lie algebroid T(AG) of AG. Similarly, the Lie algebroid of the cotangent
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groupoid T*G is isomorphic to the cotangent Lie algebroid T*(AG). For that, notice that the
natural pairing T*G@®T'G — R defines a groupoid morphism, and the application of the Lie
functor yields a symmetric pairing ((-,-)) : A(T*G)® A(T'G) — R, which is nondegenerate.

See e.g. [46, 48]. In particular, we obtain an isomorphism K¢ : A(T*G) — A(TG)*,

where the target dual is with respect to the fibration A(T'G) 429 4@, Now we define a

Lie algebroid isomorphism

ja  A(T*G) — T*(AG),

determined by the composition ji = j& o Kg, where j5 : A(TG)* — T*(AG) is the
bundle map dual to the isomorphism jg : T(AG) — A(TG). As jo : T(AG) — A(TG)
is a suitable restriction of the canonical involution Jg : TTG — TTG, the isomorphism

J¢; is related to the Tulczyjew map O¢g : TT*G — T*TG, via
]/G = (Tiag)* 0O¢go LA(T*G)-

2.4 Examples of multiplicative structures

Now we present examples of geometrical structures defined on Lie groupoids which
are compatible with the groupoid multiplication.
2.4.1 Poisson-Lie groups

Let G be a Lie group and 7 € I'(A*TG) a Poisson bivector on G. One easily

observes that the following statements are equivalent:
i) The multiplication map m : G x G — G is a Poisson map.
ii) The graph of the multiplication map defines a coisotropic® submanifold of G x G x G.

iii) The bivector 7 is multiplicative in the sense that

Tgh = (lg)«Th + (rh)+Tg,

for every g,h € G.

SRecall that a submanifold @Q — M is said to be coisotropic with respect to a bivector = on M if
7 (N*Q) C TQ, where N*Q denotes the conormal bundle of Q.
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A Poisson-Lie group [23, 40, 55] is a Lie group G with a Poisson structure 7 € T'(A2TG)
satisfying one of the conditions above. Notice that condition iii) implies that a multiplicative
bivector w vanishes at the identity e € GG, and we conclude that Poisson-Lie groups are never
symplectic. Since 7, = 0, there exists a canonical Lie algebra structure on the cotangent
fiber TG = g*, see [62]. The Lie bracket on g* will be denoted by [, ], : g* x g* — g*.
We would like to understand how the multiplicativity of 7 is reflected in the Lie bracket
[-, ]« For that, we dualize [-, -], yielding a cobracket

F:g—gxg.

On one hand the bivector 7 is nothing else that a section 7 : G — A?TG, and
we use right translations to trivialize the vector bundle A?T'G = G x A?g. With respect to

this trivialization we induce a map

Notice that the multiplicativity of 7w implies that

7~rgh = 7~Tg —|—Adg(7~rh).

It turns out that 7 defines a 1-cocycle on G with valued in the G-module A?g, where the
module structure is the one determined by the adjoint action extended to the second wedge

product. See [39] for more details.

The linearization of 7 at the identity coincides with the cobracket F' [23, 40].
Then F defines a Lie algebra 1-cocycle with values in the g-module A%g, where the module

structure is defined by

adx (uAv) = (adxu) Av+uA (adxv).

The 1-cocycle condition for the cobracket F is

F(X,Y]) = adx F(Y) — ady F(X).
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Definition 2.4.1. A Lie bialgebra is a pair (g, g*) where (g, [-,-]) and (g%, [-,]«) are Lie

algebras and the cobracket F' := [, ]* satisfies

F([X,Y]) = adx F(Y) — ady F(X).

We have seen that every Poisson-Lie group (G, ) induces a natural Lie bialgebra
(g,9%). Hence, Lie bialgebras may be regarded as the infinitesimal version of Poisson Lie
groups. The converse result is true under the usual connectedness assumptions, establishing

the so called Drinfeld’s correspondence between Poisson-Lie groups and Lie bialgebras.

Theorem 2.4.1. [23]
Let G be a connected and simply connected Lie group with Lie algebra g. There

exists a one-to-one correspondence between

1. Lie bialgebra structures (g,g"), and

2. multiplicative Poisson structures on G.

The proof of Drinfeld’s correspondence is based on the correspondence between

Lie group 1-cocycles and Lie algebra 1-cocycles. See [39] for a detailed discussion.

2.4.2 Symplectic groupoids

A symplectic groupoid [63, 16] is a symplectic manifold (G,w¢) where G is a Lie
groupoid over M, and w¢ is a symplectic form compatible with the groupoid structure in

the sense that the graph

Ay = {(gvh7m(g7 h)) | (gvh) € G(Q)}7
is a Lagrangian submanifold of G x G' x G. Equivalently, the symplectic form wg is mul-
tiplicative, that is
miwg = priwg + prawe,

where pri,pra 1 G(9) — G are the natural projections. As observed in [63, 16], the base

M of a symplectic groupoid inherits a Poisson structure s, completely determined by the
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fact that the target map (resp. source) t : G — M is a Poisson map (resp. anti-Poisson).

Also, if AG is the Lie algebroid of GG, then there exists an isomorphism of Lie algebroids

o: AG — T*M (2.13)

w i (1uwa) T (2.14)

where the Lie algebroid structure on T* M is the one induced by the Poisson bivector 7, on
M. Tt turns out that Poisson structures may be thought of as the infinitesimal counterpart
of symplectic groupoids. To every symplectic groupoid one canonically associates a Poisson
manifold. For this reason, symplectic groupoids are natural geometric objects that are
useful for quantizing Poisson manifolds. Therefore, it seems that a suitable quantization
of the symplectic groupoid (G,w¢g) should provide a natural way of quantizing the Poisson
manifold (M, myy), see [65, 20] for more details about the prequantization of symplectic
groupoids. See also Cattaneo and Felder’s construction of symplectic groupoids as phase

spaces of certain sigma models [14].

2.4.3 Poisson groupoids

In this subsection we study Lie groupoids endowed with a Poisson structure which

satisfies an algebraic compatibility.

Definition 2.4.2. A Poisson groupoid is a pair (G, 7g) where G is a Lie groupoid over
M and 7g is a Poisson structure on G which is multiplicative in the sense that the graph

of the multiplication map

Ay = {(g7hagh) | (g,h) € GQ}

is a coisotropic submanifold of G' x G x G.

Poisson groupoids were introduced by Alan Weinstein [64], providing a unified
framework for the study of Poisson Lie groups [40] and symplectic groupoids [16]. A Poisson-
Lie group is just a Poisson groupoid over a point, and a symplectic groupoid is nothing but

a Poisson groupoid with nondegenerate Poisson bivector. In subsection 2.4.1 we observed
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that the infinitesimal invariant of a Poisson-Lie group is its Lie bialgebra. In order to
find the infinitesimal counterpart of Poisson groupoids, one observes that the base M of
a Poisson groupoid (G, 7) is a coisotropic submanifold, in particular the conormal bundle
N*(M) = A*(G) inherits a Lie algebroid structure. Here A*(G) denotes the vector bundle
dual to the Lie algebroid A(G) of the Lie groupoid G. It turns out that for any Poisson
groupoid there exists a pair of Lie algebroids (A(G), A*(G)) in duality as vector bundles,

which satisfies certain compatibility condition.

Definition 2.4.3. A Lie bialgebroid is a pair of Lie algebroids in duality (A, A*) satisfying

da-([u, v]) = [das(u), ] + [u, da-(v)]

for every u,v € T'(A).

Here d - : T(AF A) — D(A"* A) denotes the Lie algebroid differential induced
by A* and [, -] is the Schouten bracket on multisections of A.

Example 2.4.1. Any Lie bialgebra (g, g*) is a Lie bialgebroid.

Example 2.4.2. An interesting example coming from Poisson geometry is the following:
given a Poisson manifold (M, ), the cotangent bundle 7*M inherits a canonical Lie al-
gebroid structure with anchor map 7# : T*M — TM and Lie bracket on Q!'(M) given
by

[, B] = Lt(a)f — Lar(gyo — dr(a, 3).

This Lie algebroid structure together with the trivial Lie algebroid structure on

the tangent bundle of M makes the pair (T*M,TM) into a Lie bialgebroid.

Just as Lie bialgebras arise as the infinitesimal counterpart of Poisson-Lie groups
[23, 39], Lie bialgebroids are the infinitesimal version of Poisson groupoids according to the

following result of K. Mackenzie and P. Xu.

Theorem 2.4.2. [/6]
Let (G,mq) be a Poisson groupoid with Lie algebroid A(G). Then (A(G), A*(G))

1s a Lie bialgebroid.
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Let (G,wq) be a symplectic groupoid, viewed as a Poisson groupoid, then the Lie
bialgebroid of G is the one described in example 2.4.2, where M has the Poisson structure
induced by the symplectic groupoid (G,wg)

The key point in Mackenzie-Xu’s approach is based on the possibility of expressing
the multiplicativity of a bivector in terms of Lie groupoid morphisms. Given a Lie groupoid
G = M, we consider the tangent groupoid TG = T'M and the cotangent groupoid T%G =

A*G, as explained in subsection 2.3.1.

Proposition 2.4.1. [46]

A bivector ng € T(N*TG)) is a multiplicative bivector if and only if

T*G
(2.15)

A*(G) T™

pPaxG

is a morphism of Lie groupoids covering some bundle map pg«q-

This point of view is extremely useful since it provides a natural way for doing
Lie theory for Poisson groupoids in terms of Lie’s second theorem for morphisms of Lie
algebroids 2.1.1. Now it is natural to expect that the property of (A, A*) being a Lie
bialgebroid could be expressed in terms of suitable morphisms of Lie algebroids. First recall
that as we explained in the first section of this chapter, the Lie algebroid A* induces a linear

Poisson structure on A, given locally by

90 1, .0 D
(WA)|(I,U) - pa('jv) Ozt N ou® + QCab(x)u ou® N oub”

where 7, and Cl, are the structure functions of the dual Lie algebroid A*. Notice that the
linearity of 74 is reflected in the fact that the induced bundle map 77?4 :T*A — TA is not
only a morphism of vector bundles with respect to the usual bundle structures, but also it

defines a morphism



35

T*A

(2.16)

A P ax

with respect to the vector bundle structures 7*A — A* and TA — T M, explained in

subsection 2.3.2. This can be seen directly from the local expression for the bivector 7 4.

Now, just as the multiplicativity of a bivector is translated to the language of morphisms of

groupoids, the property of (A, A*) being a Lie bialgebroid is equivalent to saying that the
i

double vector bundle morphism 77 is also a morphism of Lie algebroids. The proof of the

following result can be found in [46].

Theorem 2.4.3. [46]

Let (A, A*) be a pair of Lie algebroids in duality. Then (A, A*) is a Lie bialgebroid
if and only if

T A TA

(2.17)

A*
is a morphism of Lie algebroids, where the top map is the linear Poisson bivector on A and

the bottom map is the anchor map of the dual algebroid.

The transition from a Poisson groupoid to a Lie bialgebroid follows by applying

the Lie functor to the morphism of groupoids (2.15), yielding a morphism of Lie algebroids
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A(T*G) A(TG)

(2.18)

A*G T™

PAx

Consider the natural identifications jg : T(AG) — A(TG) and ji, : A(T*G) — T*(AG),

as in subsection 2.3.2. It was proved in [46] that there is a commutative diagram

o )
A(T*G) = A(TG)
it ja (2.19)
T*(AG) — T(AG)
TAG

where ¢ is the linear Poisson bivector on AG, induced by the dual Lie algebroid A*G.
In particular, it follows from Theorem 2.4.3 that (AG, A*G) is a Lie bialgebroid. The
integration of Lie bialgebroids to Poisson groupoids is based on the same idea: under
standard connectedness assumptions, Lie bialgebroids integrate to Poisson groupoids via

Lie’s second theorem.

Theorem 2.4.4. [/8]
Let (A, A*) a Lie bialgebroid. Assume that A is the Lie algebroid of a source simply
connected Lie groupoid G. There exists a unique Poisson structure mg on G making the

pair (G, m¢q) into a Poisson groupoid with Lie bialgebroid (A, A*).

Since every Lie bialgebroid produces a morphism of Lie algebroids w& THA —
T A, we can integrate this morphism to a morphism of groupoids 7TﬁG TG — TG. It
was shown in [48] that the morphism of groupoids qu is linear with respect to the usual
tangent and cotangent bundle structures and it is skew symmetric. Therefore, there is a well
defined bivector m¢ on G, which it turns to be a Poisson bivector. This extends Drinfeld’s
correspondence 2.4.1 between Poisson-Lie groups and Lie bialgebras [23]. See [48] for details

about the proof.
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2.4.4 Multiplicative 2-forms

In this section we study Lie groupoids equipped with closed 2-forms which are
compatible with the groupoid structure. Let G be a Lie groupoid over M. A 2-form
wg € Q%(G) is called multiplicative if

m'weg = privg + priwg

where m : G(3) — G denotes the multiplication map and pri,pra : Gy — G are the
natural projections. If GG is a Lie groupoid equipped with a multiplicative symplectic form
wg, we recover symplectic groupoids. If wg € Q2(G) is a closed multiplicative form, not
necessarily symplectic, the bundle map o in (2.13) is no longer an isomorphism, and the
bracket preserving property does not make sense at all, since the base manifold is not
Poisson. In spite of this, the bundle map o has two interesting properties, as it was shown

in [10].

Proposition 2.4.2. Let ¢ be a closed 3-form on M. If wg € Q*(G) is a multiplicative
form with dwg = s*¢ — t*¢, then the associated bundle map o : AG — T*M satisfies the

following conditions
1. for every u,v € T'(AG) we have (o(u), p(v)) = —(o(v), p(u))

2. G([ua U]) = Ep(u)o-(’u) - [’p(v) (O'(U)) + d(a(u), ,O(U)> + Z.p(u)/\p(v)qb)
for every u,v € T'(AG).

A bundle map o : AG — T™* M satisfying properties 1. and 2. in Proposition 2.4.2
is called an IM-2-form with respect to ¢ € Q3(M). This terminology is due to the fact that
an IM-2-form with respect to ¢ € Q3(M) may be thought of as an infinitesimal multiplicative
2-form. It turns out that under standard connectedness assumptions, a multiplicative (s*¢—

t*¢)-twisted 2-form on a Lie groupoid is completely determined by its associated IM-2-form.

Theorem 2.4.5. [10]
Let G be a source simply connected Lie groupoid G over M, with Lie algebroid

AG. Consider a closed 3-form ¢ on M. There exists a one-to-one correspondence between

i) multiplicative 2-forms wg on G with dwg = s*¢ — t*¢, and
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it) IM-2-forms o : AG — T*M with respect to ¢.

Theorem 2.4.5 was proved in [10] using the path construction of Lie groupoids [21]
and infinite dimensional reduction as in [14]. In chapter 3 we give an alternative proof of
this result, avoiding infinite dimensional issues, which establishes a natural connection with

Dirac groupoids, introduced in the end of this chapter.

We have seen that every ¢-twisted Dirac structure L on M gives rise to a canon-
ical Lie algebroid. Now we explain how to construct twisted Dirac structures out of Lie
algebroids. Let us consider a closed 3-form ¢ on M. The following definition was given in

[10].

Definition 2.4.4. A ¢-twisted presymplectic groupoid over M is a pair (G,wq) where

G is a Lie groupoid over M and wg is a multiplicative 2-form on G satisfying
1. dwg =s"p—t*¢
2. dim(G) = 2dim(M)

3. at every x € M the following nondegeneracy condition holds

ker(T,s) Nker(T,t) Nker(wg), = 0.

Consider the IM-2-form o : AG — T* M associated to a presymplectic groupoid
(G,wg). One easily checks that conditions 2. and 3. guarantee that the image L, of the
bundle map pyq @ o : A(G) — TM @ T*M defines a ¢-twisted Dirac structure on M.
Moreover, the target map ¢ : (G,wg) — (M, L,) is a forward Dirac map. Furthermore,

the injective bundle map

pac®o: AG) — TMOT"M,

establishes an isomorphism of Lie algebroids AG = L, between the Lie algebroid of G
and the canonical Lie algebroid determined by the ¢-twisted Dirac structure L,. Hence,
Dirac manifolds may be thought of as the infinitesimal data of presymplectic groupoids. In

summary, the following result holds.
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Theorem 2.4.6. [10]
Let (G wa, @) be a ¢-twisted presymplectic groupoid over M, then

1. There exists a canonical ¢p-twisted Dirac structure Lyr on M, such that the target map

t: G — M is a forward Dirac map.

2. There is a canonical Lie algebroid isomorphism AG = Ly between the Lie algebroid

of G and the Lie algebroid of the ¢-twisted Dirac structure Lyy.

A ¢-twisted presymplectic groupoid (G, wg, ¢) related to a ¢-twisted Dirac struc-
ture Ljs on the base M as in Theorem 2.4.6 is referred to as an integration of L,;. The
integration of twisted Dirac manifolds to presymplectic groupoids was also carried out in
[10]. This follows as an immediate consequence of Theorem 2.4.5. More specifically, the

following result holds.

Theorem 2.4.7. [10]
Let Ly be a ¢-twisted Dirac structure on M, whose associated Lie algebroid is
integrable. Let G be the source simply connected Lie groupoid integrating L, then there is a

unique multiplicative 2-form wg on G such that (G,wg, @) is an integration of L.

The proof follows by applying Theorem 2.4.5 to the natural IM-2-form defined by
the projection Lyy CTM @ T*M — T*M.

In order to give a new proof of Theorem 2.4.5, avoinding path spaces, it is use-
ful to notice that one has a characterization of multiplicative forms in terms of groupoid

morphisms, in analogy with Theorem 2.4.1..

Proposition 2.4.3. A 2-form wg on a Lie groupoid G is multiplicative if and only if

TG ™G

(2.20)

™ : A*G

is a morphism of Lie groupoids, where o' : TM — A*G is the bundle map dual to the
IM-form o : AG — T* M induced by wq.
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Proof. First we check that wﬁG preserves the target fibrations. Given X, € T,G we have a
covector wﬁa(Xg) € T;G. Applying the cotangent target map we obtain f(wﬂG(Xg)) € Al )G

which at every ) € Ay )G acts via

Hwh (Xg))tts(g) = wh(Xg) (Tig)re(tis(q)))-

We can write X, = Tt(g) X, @ Xy and Ty(g)74(uy(g)) = Uyg) ® O, then using the

multiplicativity of wg one has the following identity

H(wh (X)) ur(g) =we(THg)Xg @ Xg,11yg) @ 0g)
=wa(Tt(9)Xg, uyg))
= — ' (Tt(9) X g)uy(g)-

That is f(wf;(Xg)) = —0'(Tt(g9)X4) which is the compatibility of wﬁG with the target maps.

A similar computation shows that wﬁG is compatible with the source maps. It remains to

show that wﬁG preserves the groupoid multiplications. For that we consider composable
groupoid pairs (X, Y3), (Uy, Vi) € TG(9), and we easily check that the multiplicativity of

wg implies that

W (X, 0 V3)(Uy 0 Vi) =wb(X,)U,y + Wb (Ya)Vi
= (W (X)) 0 Wb (Vi) (U, @ Vi).

That is, for every composable tangent pair (Xg,Y}) we have

Wh(X, o V) = wh(X,) o wh(Yh).

This shows that wﬁG is compatible with the groupoid multiplications, proving that wﬁG is a

groupoid morphism.

O]

This proposition suggests a different approach for the study of IM-2-forms. More
precisely, since a multiplicative form induces a natural Lie groupoid morphism, it seems

that the property of a bundle map o : A — T*M being an IM-2-form could be translated
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into a suitable map TTA — T™* A, constructed out of o, being a morphism of Lie algebroids,
the latter canonically related to the former via the Lie functor. This relation will be studied

in detail in chapter 3.

2.5 Multiplicative Dirac structures

In this section we study Lie groupoids equipped with Dirac structures compatible
with the groupoid multiplication. These new structures include both multiplicative Poisson

and closed 2-forms as particular cases.

2.5.1 Definition and examples

Let G be a Lie groupoid over M, with Lie algebroid A(G). Consider the direct
sum Lie groupoid TG = T'G @ T*G with base manifold TM & A*G.

Definition 2.5.1. Let GG be a Lie groupoid over M. A Dirac structure Lg on G is said to be
multiplicative if Lg C TG ®T*G is a subgroupoid over some subbundle £ C T'M & A*G.

We refer to a pair (G, Lg), made up of a Lie groupoid G and a multiplicative Dirac
structure Lg on G, as a Dirac groupoid. We use the notation Dir,,,;(G) to indicate the
set consisting of all multiplicative Dirac structures on G.

Notice that a multiplicative Dirac structure Lg on a Lie groupoid G defines a

VB-subgroupoid Lg C TG. See appendix A for this terminology.

Example 2.5.1. Let wg be a closed multiplicative 2-form on a Lie groupoid G. The
multiplicativity property of wq is equivalent to saying that the bundle map wﬁG TG —
T*G is a morphism of Lie groupoids. Hence, the corresponding Dirac structure L., =
Graph(wg) € TG is a multiplicative Dirac structure. In this case we have a groupoid
L., = E where E C TM @ A*G is the subbundle given by the graph of the bundle map

—o! determined by the IM-2-form o associated to wg.

Example 2.5.2. Let (G, 7¢) be a Poisson groupoid. The multiplicativity of 7« is equivalent
to saying that WﬁG : T*G — TG is a morphism of Lie groupoids. Therefore, the associated
Dirac structure L, = Graph(mg) € TG defines a multiplicative Dirac structure. In this
case we have a groupoid Lr, = E where E C TM @ A*G is the subbundle given by the

graph of dual anchor map py«g : A*G — T'M
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Example 2.5.3. A regular distribution F' C T'G is called multiplicative if it defines a Lie
subgroupoid of the tangent groupoid T'G. One checks that every involutive multiplicative
distribution on G defines a multiplicative Dirac structure on G. The foliation tangent to an
involutive multiplicative distribution is called a multiplicative foliation. Multiplicative
foliations which are simultaneously transversal to the s-fibration and to the ¢-fibration were

studied in [58], providing interesting examples of noncommutative Poisson algebras.

The examples discussed previously show that Dirac groupoids lead to a natural
generalization of Poisson groupoids and presymplectic groupoids. Our main aim is to de-
scribe Dirac groupoids infinitesimally, establishing in particular, a connection between such
a infinitesimal description and Lie bialgebroids and IM-2-forms. This will be done in chapter
5.

We finish this section with an example of multiplicative Dirac structures given

quotients of a Lie group action.

Example 2.5.4. Let Lg be a multiplicative Dirac structure on a Lie groupoid G = M,
and let H be a Lie group acting on G by groupoid automorphisms. Assume that the H-
action is free and proper and that the H-orbits coincide with the characteristic leaves of L.
In this case the quotient space G/H inherits the structure of a Lie groupoid over M/H.
Moreover, since G/H is the space of characteristic leaves of L¢, we conclude that there
exists a Poisson structure m..q on G/H, making the quotient map G — G/H into both a
backward and forward Dirac map. This fact together with the multiplicativity of Lg imply
that ¢4 is a multiplicative Poisson bivector. In other words, the quotient space G/H is a

Poisson groupoid.

2.5.2 Functorial properties of multiplicative Dirac structures

This is the last section of this chapter. Here we are concerned with a functorial
property of multiplicative Dirac structures that will be useful in the forthcoming chapters.
Let Gy = M; and G2 = M> be Lie groupoids and ® : G; — (G2 a morphism of Lie
groupoids. The tangent and cotangent Lie groupoids T'G2 and T*G5 are vector bundles over
G, so we can consider the pull back vector bundles ®*(T'G3) — G and *(T*G2) — G.

The following property is natural.

Proposition 2.5.1. Let ® : G; — G2 be a morphism of Lie groupoids covering a map

p: My — Ms. Assume that ® is a surjective submersion. Then the following hold:
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1. The pull back vector bundle ®*(TG3) inherits a canonical Lie groupoid structure over
©*(T'My). With respect to this groupoid structure the bundle map T® : TGy —
O*(T'Gy) is a morphism of Lie groupoids.

2. The pull back vector bundle ®*(T*Gs) inherits a canonical Lie groupoid structure over
©*(AG3). With respect to this groupoid structure the bundle map (T'®)* : ®*(T*G2) —

T*G1 is a morphism of Lie groupoids.

Proof. We begin with the proof of part 1. For that we define the structure mappings for
P*(TGe) = ¢*(T'Mz). For each arrow Yy, € ®*(T'Ga) we define the source and target
maps by

s?(Yarg) = Ts2(Yarg), t*(Yary) = Tt2(Ya(,)-

At composable pairs Y@(g),?q)(h) € ®*(T'G9) the multiplication map is defined by

m® (Ya(g), Yam) = Yo(g) ® Vo) € TognGo-

We also define the unit section €® : ¢*(TMs) — ®*(T'Gs) by the embedding

G(I)(Uw(xﬂ = TéQ(U@(I)).

Finally, the inversion map is given by

i* (Yo(g) = Tiz(Yay))-

The fact that ® : G; — (G2 is a morphism of Lie groupoids implies that each
of the mappings defined previously endows ®*(T'G3) with a Lie groupoid structure over
©*(T'Ms). Tt remains to show that wth respect to this groupoid structure the map TP :
TG, — ®*(TGs) is a Lie groupoid morphism. First we prove the compaibility with the

source maps, which in this case reads

s¥oT® =TpoTs. (2.21)

Since ® is a groupoid morphism, we have that ss o ® = ¢ o s1. Applying the tangent
functor we get (2.21). The same argument shows that T'® is compatible with the target
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and multiplication maps.

Now we prove part 2. For every arrow By € ®*(1T"G2) we define the source and

target maps by

5% (Ba(g) =32(Bag)) € Alsy (g G2
% (Bag)) =t2(Ba(g) € Aty (g) G

At every composable pair Sy, Ban) € ®*(T*G2), the multiplication map is determined
by

1% (Ba (g Bony) = Bag) © Ban):

Similarly, we can use the unit section and inversion map of T*Gy = A*G4 to define the unit
section and inversion map of ®*(T*G2) = ¢*(A*G2). This defines the groupoid structure
on ®*(T*G3). Finally, we show that with respect to this groupoid structure, the bundle
map (T®)* : ®*(T*G2) — T*G; is a groupoid morphism over the bundle map (A®)* :
©*(A*Gy) — A*G1, which is dual to the map A® : AG; — AG3 obtained by applying
the Lie functor to ® : G; — G3. Let us check the compatibility of (T'®)* with the source

maps, which in this case reads

510 (T®)" = (AD)* 0 5%. (2.22)

For that we consider an arrow fBg(,) € ®*(1"G2) with oy == (T'®)* By (). It follows from
the definition of the cotangent source map explained in subsection 2.3.1, that for every

u € Ay (9)G1 the following identity holds

S1(ag)u =ag(Tly(u — Tti(u))) (2.23)
=Bo(g) (TP o Tly(u — Tty (u))), (2.24)

where [, is the left multiplication by g € G1. The fact that ® is a groupoid morphism
implies ® o l; = lg(5) © ®. Also, since the anchor map pyq, = Tt1|ag, and AP = T®|4¢,
we see that (2.24) leads to
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$1((T®) " Ba(g))u = Ba(g) (Tl () (AP(u) = T 0 pag, (u))) (2.25)

On the other hand, using the definition of %, we see that the right hand side of (2.22) is
given by

(A®)*5® (Ba(g))u =5 (Ba(g)) AP(u) (2.26)
B (g) (Tlag) (AB(w) — Tty 0 AD(u))) (2.27)

Recall that by definition pyq, = Tt2|ag,. Also, the fact that AP : AG; — AGz is a
morphism of Lie algebroids implies that pq, 0 AP = T o pyg,. As a result (2.27) gives

rise to

(A®)*5% (B (g))u = Bap(g) (Tla(g) (AR (u) — Tp 0 pag, (u))) (2.28)

Therefore, comparing (2.28) with (2.25) we conclude the compatibility (2.22) of (T'®)* with
the source maps. A similar computation shows the compatibility of (7'®)* with target maps.

That is,

t o (T®)* = (AD)* o 1®.

It remains to show that (7'®)* preserves multiplication. Indeed, assume that (ﬁq)(g),ﬁcp(h))

is a composable pair in ®*(7T*G2), that is

2 (Baomy) = 5° (Ba(y) (2.29)

Define ag = (T®)* By and ap = (T®)*Bgy). Since (TP)* is compatible with source and
target maps, we see that (g, @) defines a composable pair in 7#G1, so the product arrow
agoay € T*Gy is well defined. Also, if X, Y}, € T,,G; it follows from the definition of

the cotangent multiplication that
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(agoap)(XgoYy) =0g(Xg) +an(Ys) (2.30)
=Ba(g)(TP(Xy)) + Bon) (TP(Yr)) (2.31)
=(Ba(g) © Ban))(TP(X,) e TO(Yy)) (2.32)
=(T®)*(Ba(g) © Ban))(Xg ® Ya), (2.33)

where in the last equality we have used the fact that T® : TG; — ®*(T'G2) is a groupoid

morphism. Thus we conclude that

(T®)* Bag) © (TP) Bay = (TP)* (Bag) © Ban));

which is exactly the compatibility of (7'®)* with the multiplication.
O

Now we study how multiplicative Dirac structures change by groupoid morphisms
which are Dirac maps as well. The following definition is general and it does not depend

on groupoids.

Definition 2.5.2. Let M, N be smooth manifolds and ¢ : M — N a smooth map. We
say that elements a = X @ o € TM, and b=Y @ 3 € TN, are p-related if Y = T'p(X)
and a = (T')*[.

Given a Lie groupoid G = M we consider the direct sum VB-groupoid TG =
TM @ A*G; we denote the multiplication of a composable pair (ay, @y) in (TG) ) by ag*ay,.

Proposition 2.5.2. Let & : Gy — G2 be a morphism of groupoids over ¢ : M; — Mo,
which is a surjective submersion. Assume that aq,an € TGy are ®-related to b¢(g),5¢(h) €
TGo. If ag,an are composable then b@(g),gq)(h) are composable. In this case, ag * Gy 1s

P-related to by y) *Bé(h).

Proof. We have seen that ®*(T'G2) and ®*(T*G2) have natural structures of Lie groupoids
in such a way that 70 : TG; — ®*(T'G2) and (T'®)* : *(T*G2) — T*(G) are morphisms
of groupoids.

Set ay; = (Xg4,0y), @, = (Xp,ap), and similarly bag) = (Ya(g), Ba(g)); E@(h) =
(?q,(h),ﬁq,(h)). The ®-relation between these elements reads
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Ya(q) =TP(Xy), ?q;.(h) =T®(Xy) (2.34)

ag =(T®) Borgy,  an = (TP) By (2.35)

Since ® : G; — G5 is a surjective submersion, we conclude that A® : AGy —

AG@] is surjective. In particular, the dual map (A®)* : p*(A*G2) — A*G) is injective. The
fact that a,, @y, are composable says that the corresponding tangent components X, X, and
the cotangent components oy, @y, are composable. Due to the fact that T'® is a groupoid

morphism, we conclude from (2.34) that Y¢(g),?¢,(h) are composable. Now we look at the

cotangent components. Recall that oy, aj, are composable if and only if

51(ag) = t1(aun). (2.36)

The fact that (7'®)* is a groupoid morphism implies that the left hand side of (2.36) is

§1(ag) = (A®)*(52(Ba(g)))- (2.37)

Also, the same argument proves that the right hand side of (2.36) is

ti(@n) = (A®)* (t2(Bany))- (2.38)

Therefore (2.36) implies that

(AP)"(32(Ba(g))) = (AP)*(52(Ba(g)))-

Using the injectivity of (A®)* we conclude that 52(8g(g)) = 52(Bp(g)), Which says that
/Bq)(g), B@(h) are composable. It remains to show that in this case, the product a4 * @, is

®-related to the product bgy) * Eq;(h). This is equivalent to the identities

Ya(g) @ Yan) =(T2)(Xy e Xp) (2.39)

ag ooy =(TP)" (Bg (g © B@(h)). (2.40)

The fact that T'® is a groupoid morphism together with (2.34) imply (2.39). Similarly, we
use that (T'®)* is a groupoid morphism and (2.35) to conclude (2.40).
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O]

Remark 2.5.1. Notice that the converse of Proposition 2.5.2 holds only when the base map
@ : M1 — M5 has injective derivative. In that case, the fact that ¢ is also a submersion

will imply that ¢ : M1 — Ms is a local diffeomorphism.

As a consequence of Proposition 2.5.2 we obtain a natural way of constructing

multiplicative Dirac structures.

Corollary 2.5.1. (Functoriality of multiplicative Dirac structures)
Let ® : G1 — G4 be a morphism of Lie groupoids, which is a surjective submer-
sion. Assume that L1 and Lo are Dirac structures on Gy and G, respectively. If ® is a

backward Dirac map and Lo is multiplicative, then Ly is multiplicative.

Proof. Recall that ® : (G1, L1) — (G2, L) is a backward Dirac map if and only if at every
g € G1 one has

(Ll)g = {X (&) (Tg@)*ﬁ ’ X € TgGl,,B S th(g)G% and Tg(I)(X) SRS (Lg)q)(g)}

That is, at every g € G, the fiber (L1), consists of all elements a, which are ®-related

to elements bgy) € (L2)p(g). In order to show that L is multiplicative, we prove that

9)
L; € TG is closed by multiplication. For that, consider ay4,a;, € Li a composable pair.
Since ® is backward Dirac, there exist b(}(g),gq)(h) € Lo, which are ®-related to ay and
ay, respectively. Since ag, @) are composable, we use Proposition 2.5.2 to conclude that
b¢(g),5¢(h) are composable, and that the product a, * @y is ®-related to the product bg(g) *
B@(h). The fact that Lo is multiplicative implies that bg(g) *Bq)(h) € (L2)a(gn)- Finally, since
ag * ap, is P-related to bg(y) * Bq;,(h) € (L2)a(gn) and the fiber (L), consists of all elements
®-related to elements of (Lz2)g(gn), we conclude that ag * @ € (L1)g,. This proves that Ly

is a multiplicative Dirac structure.

O

Example 2.5.5. (Reduction of Poisson groupoids)
Let (G,7¢g) be a Poisson groupoid, and let J : G — h* be a moment map for
a Hamiltonian action of a Lie group H on G. Assume that the H-action is by groupoid

automorphisms and that the moment map is multiplicative in the sense that
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J(g192) = J(g1) + J(92)-

for every composable pair (g1,92) € G(g). In [49] the reader can find interesting situations
where multiplicative moment maps arise. One observes that, whenever 0 € h* is a regular
value for J, the moment level set Q = J~!(0) is a Lie subgroupoid of G. Consider the Dirac
structure Lg as in example 2.2.14. Clearly this defines a multiplicative Dirac structure on
the subgroupoid @@ € G. Moreover, if the H-action is free and proper on the level set @,
we conclude from example 2.2.14 that the reduced space G,.q = Q/H inherits a canonical
Poisson structure m,..4 in such a way that the projection map Q — G4 is both a backward
and forward Dirac map. Now we use example 2.5.4 to conclude that m,.4 is multiplicative.
In other words, the reduced space (Gyeq, Treq) is a Poisson groupoid. See [25] for a detailed

discussion about symmetries of Poisson groupoids.

Example 2.5.6. Given a Lie groupoid G = M, we define the isotropy group at x € M

as

Gy = s Hz) Nt ! (x).

It is clear that G, is a Lie group. Moreover, the inclusion map ig, : G — G is a groupoid
morphism. Suppose now that G is equipped with a multiplicative Dirac structure L¢g, and
that the restriction of Lg to G, defines a smooth bundle Lg, over the isotropy group G5. In
this case, the bundle Lg, defines a Dirac structure on G,. It follows from the functoriality
of multiplicative Dirac structures that Lg, is a multiplicative Dirac structure on the Lie
group G,. This is what we call a Dirac Lie group. Dirac Lie groups are the main topic

of chapter 4.
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Chapter 3

Multiplicative 2-forms and their

infinitesimal counterparts

This chapter is devoted to the study of multiplicative Dirac structures defined
by graphs of multiplicative 2-forms. We show that the Lie functor acts naturally on multi-
plicative forms, establishing a correspondence between multiplicative 2-forms w¢ on a source
simply connected Lie groupoid GG and linear 2-forms w4 on the Lie algebroid A of G which
also define a Lie algebroid morphism wil :TA — T*A. The main result of this chapter is
the characterization of IM-2-forms on a Lie algebroid A in terms of suitable Lie algebroid
morphisms T'A — T* A between the tangent and the cotangent Lie algebroid. In particu-
lar, we use Lie’s second theorem to give an alternative proof of the correspondence between
multiplicative twisted 2-forms on a source simply connected Lie groupoid and IM-2-forms
on its Lie algebroid, carried out in [10]. The results presented here may be thought of as
dual versions of the results in [46, 48] where the integration of Lie bialgebroids is derived
from a combination of Lie’s second theorem and the characterization of Lie bialgebroids in
terms of suitable linear bivectors T*A — T A which also define Lie algebroid morphisms.
In order to understand what the dual version of a linear bivector should be, we recall the
main properties and examples of linear forms on vector bundles. Along this chapter we will
need some local computations, for that we begin by describing tangent and cotangent Lie

algebroids locally. The results proved here are part of the preprint [7].
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3.1 Tangent lifts of differential forms

This section discusses a natural way of constructing differential forms on a tangent
bundle TM 24 M, out of differential forms on its base M. Most of the results exposed
here can be found in [28, 60]. The direct sum over M of k-copies of T'M will be denoted by
H';M TM. Given a differential form o € Q¥ (M), we induce a canonical bundle map defined
by

k—1
at H TM —s T*M

Pm

(Xl, ---Xk—l) g Oé(Xl, ceuy Xk—17 )

Notice that the canonical involution Jy; : TT'M — TTM extends to an isomor-

phism on higher products

k k
JW [ ™M — ] TTM.

PTM Tpm

We apply the tangent functor to the bundle map of, and using the extended canon-

ical involution together with the Tulczyjew map, yields a bundle map aﬁT : Hkil TTM —

PT M
T*T M defined by
a% = Oy 0 (Tab) o ](\]/;_1).
In this way, one defines an operation
QF (M) — QF(TM) (3.1)
o — QT (32)

where ap(Vh, ..., Vi1, Vi) = agF(Vl, ey V1) (V). The k-form a7 is called the tangent lift
of a. For more details about tangent lifts of other tensors, see [28, 60]. Now we would like
to understand how the de Rham differential acts on tangent lifts of differential forms. For

that, let us consider the map 7 : Q¥(M) — QF¥=1(TM) defined by
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T(a)x = pylixa).

The map in (3.1) is related to the map 7 according to the following Cartan type formula

ar = dr(a) + 7(da). (3.3)
See e.g. [7, 28]. In particular, if 7 := da, one has that (da)r = d(ar). That is, the tangent
lift (3.1) commutes with the de Rham differential.

3.2 Linear forms on vector bundles

Let A 2% M be a vector bundle. The direct sum over M of k-copies of A will be
denoted by H’;A A.

Definition 3.2.1. A k-form w4 on a vector bundle A 2 M is called linear if it defines

a morphism of vector bundles

I, TA———1"4
(3.4)
[t rm—; A*

where the bottom map v is a vector bundle morphism, referred to as the base bundle map

covered by w 4.

Henceforth, we will be mainly interested in linear forms of lower degree, namely

2-forms and 3-forms.

Example 3.2.1. The canonical symplectic form wcq, on the cotangent bundle T*M — M

is a linear 2-form. The base bundle map T'M — T M is the identity map.

Example 3.2.2. Let A, B be vector bundles over M. Consider a vector bundle morphism
¥ : A — B covering the identity. If wp is a linear k-form on B, then the pull back form

w4 = V*wp defines a linear k-form on A. Indeed, the induced bundle map
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k—1
wg : H TA— T*A,
pa

is given, at every fiber over u € A, by (wg)u = (T,¥)* o (wuB)\I,(u) o (T, ¥)*=1) where
(Tw)*=1) HZ;I TA — H];;I TB denotes the natural extension of TW : TA — TB.
Thus wﬁA is a composition of vector bundle morphisms. The base bundle map covered by
w4 is given by the composition
k—1
Vov: [[TM — A,

pPm

Example 3.2.3. Let ¢ : A — T*M be a bundle map covering the identity. It follows
from example 3.2.2 that there is a canonical linear 2-form on A, defined by
WA =0 Wean.-
Since the canonical form w,s, covers the identity TM — T M, we conclude from example
3.2.2 that the base map covered by w4 = 6*weqn is given by the bundle map
ot TM — A*,
dual to o.

It turns out that all linear closed 2-forms on a vector bundle A — M are included

in example 3.2.3.

Proposition 3.2.1. [37]

Every linear closed 2-form w4 on a vector bundle A — M 1is given by

*
WA = 0 Wean,

where o : A — T*M is the bundle map dual to the base bundle morphism in (3.4).

3.2.1 Linear forms on Lie algebroids

Now we move to linear forms on a Lie algebroid. For that, assume that A A M

is a Lie algebroid with anchor map p: A — T M. According to example 3.2.3, the pull
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back morphism p* : Q(TM) — Q(A) provides a natural way to produce linear forms on A

out of linear forms on T'M. In subsection 3.1 we defined an operation

7 QN (M) — QF (T M),

with 7(a)x = pj;(ixa). One can see easily that for every (k+ 1)-form ¢ on M, the k-form
7(¢) € QF(TM) is a linear form, whose base bundle map Hl;; TM — A* is the fiberwise
zero map. Combining this operation with the pull back morphism p* : Q¥(TM) — QF(A)
we are led to a natural class of linear forms on Lie algebroids, those given by p*(7(¢)) for

some differential form ¢ on M.

Proposition 3.2.2. Let A — M be a Lie algebroid with anchor map p : A — TM.
Consider a closed 3-form ¢ on M. Assume that w4 is a linear 2-form on A, whose exterior

derivative satisfies dwa = dp*1(¢). Then

WA = 0" Wean + P T(P),
where 0 : A — T*M is the base bundle map covered by w4 .

Proof. The linear 2-form p*7(¢) covers the bundle map A — 7™M which is fiberwise zero.
Therefore, the linear 2-form w4 — p*7(¢) covers the same base bundle map o : A — T*M
covered by wa4. Since wag — p*7(¢) is closed, we use Proposition (3.2.1) to conclude the
statement.

O]

3.2.2 From multiplicative forms to linear forms

Now we explain another way of constructing linear forms on Lie algebroids. For
that, let G = M be a Lie groupoid with Lie algebroid AG. Recall that a k-form wg on G
is called multiplicative if

mwg = priwg + prawa,

where m : G(3y — G is the groupoid multiplication and pri,pra : Gy — G are the

natural projections. We denote by QF  (G) the set of all multiplicative k-forms on a Lie

mult

groupoid G. The k-degree version of the proof of Proposition 2.4.3 shows that the induced

bundle map wﬁG : H’;;l TG — T*G is a groupoid morphism, see e.g. [7]. The application
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of the Lie functor to wﬁa, yields a Lie algebroid morphism

k—1
Awg) : [ ATG) — A(TG).
A(pc)

We can use the natural morphisms of Lie algebroids j : A(T*G) — T*(AG) and jgﬁfl) :

15! rAG) — HZ?;G) A(TG), explained in section 2.3.2 of chapter 2, to define a Lie

PAG
algebroid morphism

k—1
ng : H T(AG) — T*(AG),
pPAG
with w%G = je o A(wﬁa) o jg_l). Notice the similarity of wQG with the construction of the
tangent lift of k-forms explained in subsection 3.1 of Appendix A. This similarity is clarified

by the following proposition.

Proposition 3.2.3. Let (wg)r € QF(TG) be the tangent lift of the multiplicative form
we € WF(G). Consider the linear k-form A on AG defined by

A =iye(we)r,
where iaq 1 AG — TG is the natural bundle inclusion. Then Af = wAﬁAG.
Proof. Recall that ji, = (Tiag)*0Ogois(r+a) and JgoTisg = iara)ojc- Thus extending
to higher products we have that
k i i k
Jé) o ([[Tiac) = (] iacra)) j(G)-

On the other hand i4(7+q) © A(wﬁG) = TwﬁG o Hkil iA(Tq), thus we get

k—1
Je 0 Alwly) 0 iV = (Tiag)* 0 0g o Twlyo [[ iawe o i "

k—1
= (Tiac)" o (we)y o (]| Tiac)

= (fac(wa)r)f

_ 8
=Waags
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as desired. ]

Due to the result above, we conclude that every multiplicative k-form w¢g on a Lie
groupoid G induces a linear k-form wag = i%,(wg)r on its Lie algebroid AG. Moreover,
since

. (k—1
Wha = deo Awh) o j5 Y,
is the composition of morphism of Lie algebroids, we conclude that w%G : T(AG) —
T*(AG) is a Lie algebroid morphism. In [47] the concept of morphic 1-form on a Lie
algebroid was introduced. A 1-form « on a Lie algebroid A is called morphicifa: A — T*A
is a Lie algebroid morphism. Moreover, they proved that the Lie functor applied to a
multiplicative 1-form on a Lie groupoid gives rise to a morphic 1-form on its Lie algebroid.

This motivates the following definition.

Definition 3.2.2. A linear k-form w4 on a Lie algebroid A 44, M is called morphic if

the induced bundle map (3.4) defines a morphism of Lie algebroids.

We denote by QF (A) the set of all morphic k-forms on a Lie algebroid A. Just as
the Lie functor applied to multiplicative 1-forms on a Lie groupoid yields morphic 1-forms
on its Lie algebroid [47], we see that the effect of the Lie functor on multiplicative k-forms

on a Lie groupoid G is determined by the map

Q]Tfnult(G) - Q];nor(AG) (35)
wa F WAG, (3.6)

where wag = o (wa)T-

Remark 3.2.1. Since the de Rham differential maps multiplicative forms into multiplica-
tive forms, and it commutes with tangent lifts of differential forms (see formula 3.3 in

Appendix A), we derive the following formula:

(de)AG =dwaq. (3.7)

In particular, (3.5) maps closed multiplicative forms into closed morphic forms.
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Every closed 3-form ¢ on M induces a multiplicative 3-form ¢o € Q3 ..(G),
defined by

b =500,

Let us find the induced morphic 3-form ¢ 45 on AG.
Proposition 3.2.4. ¢ o = —dp*(7(9)).

Proof. By definition of the induced morphic form, we have

bac = iac(s"d)r — ag(t"d)r-

Combining the fact d¢ = 0 with the Cartan type formula (3.3) for the tangent lift

of a differential form, we obtain

(s*¢)p = dr(s* ) and (t*¢)p = dr(t* ).

One easily observes that 7(s*¢) = (T's)*7(¢) and 7(t*¢) = (Tt)*7(¢). Thus we
get

Pac = d(Tsoiag) 7(¢) —d(Ttoiag) T(9).

Since AG = ker(T's)|p and the anchor map is defined by p = Tt o iaq, the statement
follows.

O

Notice also that whenever G has connected source fibers, the infinitesimal property
b ac = —dp*7(¢) characterizes the multiplicative form ¢; = s*¢ — t*¢. See remark 2.1.1 in

chapter 2.

Consider now a multiplicative 2-form w¢g on G with

dwg = s"¢ —t*¢.

As in (2.13) we consider the associated bundle map
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o:AG — T*M (3.8)

U (iyw) |- (3.9)

One observes that the groupoid morphism wﬁG : TG — T*G covers the bundle map —o? :

TM — A*G. See Proposition 2.4.3.

Proposition 3.2.5. Let wg be a multiplicative 2-form on G. Let ¢ € Q3(M) be closed
3-form and assume that dwg = s*¢ — t*¢. Then the morphic 2-form on AG associated to
wa 18

wAG = _(U*wcan + p*T(Qb))v

where wWeqn 18 the canonical symplectic form on T*M.

Proof. The fact dwg = s*¢ — t*¢, combined with (3.7), imply that the morphic 2-form w ¢

satisfies

dwag = —dp*7(9).

Thus, the hypothesis of Proposition 3.2.2 is fulfilled, and the statement follows.

The morphic 2-form wag = —(0*wean + p*7(9)), was constructed out of a global
data. Namely, we applied the Lie functor to the multiplicative 2-form wg with dwg = s*¢—
t*¢. Conversely, assume that A — M is a Lie algebroid with anchor map p: A — T M.
Consider also a bundle map o : A — T*M, a closed 3-form ¢ on M, and look at the

canonical linear 2-form A on A defined by

A= —0"wean — P 71(P).

We would like to find a purely infinitesimal condition on ¢ and on ¢, in such a way that

A € Q%(A) be a morphic 2-form. This will be explained in the last section of this chapter.
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3.3 Structure functions of tangent and cotangent Lie alge-

broids

Let A — M be a Lie algebroid with anchor map p: A — T'M and Lie bracket
[,-] on I'pr(A). As explained in chapter 2 section 2.3.2, there exist canonical Lie algebroid
structures on the vector bundles TA — TM and T*A — A*. Consider (xj)j:L...,dim(M)
local coordinates on M, and {e,} a basis of local sections of A, which defines structure

functions pfl and C¢, of the Lie algebroid A. These structure functions are determined by

.0 .
p(ea) = p{z@v [ea’ eb] = C’abeC'

According to subsection A.0.1 of appendix A, every section u € I'j;(A) induces sections
Tu,a € T'pp(TA). According to the definition of the tangent anchor map ppy : TA —
TTM and the tangent Lie bracket [-,-]ra on I'rpr(T'A), we conclude that the structure
functions of the tangent Lie algebroid T A — T'M are determined by

[€as€b)ra =0, [Teq,€plra = Copee, [Teq,Teplra = C5hTe. + dCoye., (3.10)
-0 -0 . -0
pra(Tea) = Pé@ + dﬁé@v prala) = F’Zz@- (3.11)

Consider {e*} the basis of local sections of A*, dual to {e,}. , we induce coordinates
(27,€,) on A*. With respect to {e,} we have coordinates (z7,u®) on A. On the cotangent
bundle T*A we use local coordinates of the form (z7,u®, pj, \,), where (p;) determines an
element in T} M and ()\,) defines an element in A%. As indicated in subsection A.0.1 of
appendix A, every section u € T'37(A) induces a linear section u” € T'4+(T*A), which is

locally described by

ub (', €,) = (a*,u(2),0,£,),

where u = u®e,. Also, given a section o : M — T*M of the core! of T*A — A*, we have

the corresponding core section & € I"4+ (T A), which is locally given by

d(xi, ga) = (‘Ti’ 0, ai(x)7€a)7

!The definition of the core of a double vector bundle can be found in appendix A
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where a = a;dz’. With respect to this local description, the structure functions of the

cotangent algebroid T*A — A* are determined by

(x,6) = —@ﬁc + Chel, (3.12)

[dxiadl“j]T*A =0, [eé,dazj]T*A = dpg, [eaL,e,ﬂT*A

T ; 0 L ; 0 c 0
pT*A(d:C ) = paaigaa pT*A(ea)|(z,§) = pa% + Cabfcaigb' (313)

3.4 Integration of IM-2-forms via Lie’s second Theorem

Let A — M be a Lie algebroid, with bracket [-,-] and anchor p. Let 0 : A —
T*M be a vector bundle map and ¢ € Q3(M) a closed 3-form. Let us consider the linear
2-form A € Q?(A) defined by

A =—(c"wean + p'7(9)), (3.14)

covering —ot : TM — T*M. We give a necessary and sufficient condition on ¢ and ¢ in
such a way that Af : TA — T* A defines a Lie algebroid morphism. Recall that the notion

of morphism of Lie algebroids was presented in chapter 2 definition 2.1.4.
Theorem 3.4.1. Let A € Q?(A) be as in (3.14). The following are equivalent:
(i) A is a morphic 2-form on A.
(i) The map o : A — T*M is an IM-2-form with respect to ¢. That is
(o(u), p(v)) = =(o(v), p(u))
o([u,v]) = L) (v) = L) (W) + ipw)ipw) P,
for all u,v € T'(A).

In order to prove Theorem 3.4.1 it will be useful to make some local computations.
For that we follow the local description of the tangent and cotangent algebroids, presented

in the first section of this chapter.

Proof. A system of local coordinates (27) on M induces local coordinates (z7,47) on the

tangent bundle TM, and (27,47, 627, 647) on the double tangent bundle TTM. Let {e,}
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be a basis of local sections of A, and {e®} the basis of local sections of A*, dual to {e,}.
We induce local coordinates (z7,u®) on A and (27,&,) on A*. The tangent bundle T A will
be described by the local coordinates system (27, u®,47,4%), and similary we have local
coordinates (z7,u®,pj, A\s) on the cotangent bundle 7*A. The bundle map o : A — T*M

can be locally written as

O'(ZL‘j, u) = (xj, uaaja(:l,‘)).

Thus the dual bundle map o : TM — A* has the local form

at(mj, J'Uj) = (xj, j:jaja).

We also write the 3-form ¢ € Q3(M) locally, as

1 ) .
¢ = Zoykda’ Nda! A dz*.

Consider the bundle map Af : TA — T* A induced by the linear 2-form A. Recall
that Af covers the bundle map —ot : TM — A*. A straightforward computation shows
that

Aﬁ(‘fj?udaijaad) = (xjaud7pj7)‘d)7 (315)

with coordinates (pj) € Ty M and (\g) € A} are determined by

0o ; Oo .
_ald jd ld d_ d ki
Py =wt < orl  OxJ T4 = G pat’

A =— x'lo'ld.

We want to show that (i) and (i) are equivalent. Recall that, by definition, A
is a morphic 2-form on A if and only if A* : TA — T*A is a Lie algebroid morphism
covering —ot : TM — A*. Let us study the compatibility of A* with the tangent and
cotangent anchor maps, defined in (3.11) and (3.13), respectively. Recall that I'rp(T'A) is
generated by sections of the form Te,, é,, with e, € I'jy;(A). Thefore, it suffices to show the

compatibility of A" with the anchors at linear and core sections Te, and é,, respectively.
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For that, notice that the morphism of double vector bundles A? : TA — T*A maps core

sections into core sections. We easily check that

Aﬁ(éb(xjv :L‘J)) = (:E]7 Oa O jby _i"la-ld) (316)

Similarly, the morphism of double vector bundles A* : TA — T*A maps linear sections
into a combination of linear and core sections. Therefore, a direct computation using (3.15)

gives

A (Tey(2?, 7)) = (27, 6pa, pj, —i'010), (3.17)

with the coordinates (p;) determined by
00 ; oo -
.1 Jb b k.
bi=* <8xl B 83:J> ~ Gigk’

Recall that the compatibility of A? with the tangent and cotangent anchor maps
means

Pr+a© AF = T(=0') o pra- (3.18)
We will need an explicit formula for the derivative of the bundle map —o! : TM — A*.
Using the local description of ¢!, we conclude that
T(—o") (27, i, 627, 047) = (27, —iloyg, 627, Ng) € TA*, (3.19)
where the coordinates (\g) are given by

10014 .
)\d = —l'lw(sl'k — O'ld(sxl.

Let us check (3.18) at a core section é,. One uses the definition of the cotangent

anchor map (3.13) and the local descripition (3.16) for A* at core sections to conclude that

the left hand side of (3.18), at a core section &, is determined by

pT*A(Aﬁ(éb(x, .%'))) = (xj, —a'clald, 0, pldalb) eTA*
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On the other hand, the tangent anchor applied to é; is determined by (3.11). Thus we use
(3.19) to conclude that the right hand side of (3.18) is given by

T(=0")(pra(@o(, &))) = (a7, =il 714, 0, —o140}).
Thus we immediatly observe that, at a core section é, the identity (3.18) holds if and only
if
1 [
Palib = —01dPy-

Or equivalently,

(o(ea); plen)) = —(a(ep), plea)),

for every pair of sections ey, e, of A. This is exactly the first property of an IM-2-form
with respect to ¢. Now let us check that (3.18) holds at every linear section T'e;. We use
the local description (3.17) of A% at a linear section Te;, and the definition of the cotangent
anchor (3.13) to conclude that the left hand side of (3.18) is given by

pT*A(Aﬁ(Teb(m, a:))) = (.%'j, —.flUld, p{;, /\d) S TA*,

where the coordinates (\;) are determined by

ozt Oxk
= <—ip(6d)(d0'(6b)) + ip(ed)ip(eb)qb + o([eq, b)), $> (3.20)

) Oogy  Oop, .y .
Aa = d'pf; ( iyl B ¢z’jkl)’§$lpiz + Chilore

On the other hand, the tangent anchor applied to Te, is determined by (3.11).
Thus we use (3.19) to conclude that the right hand side of (3.18) is given by

T(—0")(pra(Tey(z,#))) = (a7, —i'ora, p}, Ny) € (=o' T A",

where the coordinates (X)) are determined by,

. [ Oo opl .
o= i (G + iy ) = ~(Eaenotea (3.21)

Thus the identity (3.18) holds at a linear section T'e; if and only if (3.20) and (3.21) coincide.
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Equivalently, if and only if

o ([u, v]) = Lo (v) = Lpw)o(w) + ipw)ipw) P,

for every u, v sections of A. This is exactly the second property of an IM-2-form with respect

to ¢. This proves that (3.18) is fulfilled.
It remains to show that Af : TA — T* A is a bracket preserving map. Recall that,

according to Definition 2.1.4 in chapter 2, the bracket preserving property for A* means

AU, V]ra) =f59i(=0") [Us, Vilrea + Ly, (01 9i(—0*) Vi (3.22)

— Ly, fi(=0")Uj,

where U,V € I'rp(T'A), and fj,g; € C°(TM), U;,V; € T'4«(T*A) are such that

AU) = fi(=o')U;  and  AH(V) = gi(—0")"Vi.

Again, it suffices to check (3.22) when U, V represent all the possible combinations
of linear and core sections. We need to determine the functions f;,g; € C*>°(T'M) for each
of these cases. Recall that every section e, of A induces a linear section of T*A — A*,

given locally by

eﬁ(l‘j, fd) = (xj, dad, 0, gd)

Similarly, as explained in appendix A, every section « : M — T*M of the core of T*A,

induces a core section of T*A — A*, locally determined by

aL(xj’ gd) = (xj7 0, O@'(QZ), gd)a

where o = ajda’.

We use (3.16) to conclude that

—

No(eq(w,8)) = 0(ea)(—0" (2, 2)) = g¢dai(—0' (z, 7)), (3.23)
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where g¢(x,%) = 04q(x). Similarly, we use (3.17) to conclude that

A (Teq(z, %)) = ek (=0l (x, ) + f;‘gx\j(—at(az,:b)), (3.24)
where

a . . 00 ja ol i

Let us observe that a 1-form on T'M of the type a;(z, #)dx’ can be identified with a section

of the pull back bundle (—c)*(T*A), via

aj(z, 2)da? — oj(x, &)da? (3.25)

where, since there is no risk of confusion, in the right hand side of (3.25) we abuse notation

writing dz/ instead of dx?(—o'(x,4)). With respect to the identification (3.25) we have

fjadxj = iida(ea) - iiip(ea)¢7 (326)

with & = ! % € X(TM). Now we are ready to prove the bracket preserving property
(3.22). As we said before, since we only need to consider all the possible combinations of

linear and core sections, in order to check (3.22) we study three cases.

Case 1: Core-Core sections

Take U = é, and V' = ¢, in (3.22). By definition of the tangent Lie bracket (3.10)
we have [éq, €p]ra = 0. Thus the left hand side of (3.22) vanishes. Similarly, the definition
(3.12) of the cotangent bracket says [d/;;z, d/a;]T* 4 = 0. The tangent anchor at a core section
gives a vertical vector field on T'M, that is, a vector field tangent to the fibres. The right
hand side of (3.22) is a combination of [d/:gl, d/ﬁ]T*A = 0 and derivatives of g (x, &) = 04 ()
with respect to the variable #. Since g{ just depend on the variable x, we conclude that
the right hand side of (3.22) vanishes as well. This shows that (3.22) holds at a pair of core

sections.

Case 2: Linear-Core sections

Take U = Te, and V = &, in (3.22). According to (3.10), the tangent bracket of



66

linear and core sections is determined by [T'eq, é)ra = CS,é.. Using (3.23) we see that the

left hand side of (3.22) is given by

A ([Teq, éb]) = o([eq; €)).

On the other hand, the right hand side of (3.22) is given by the sum of three terms
Ty + To + T5. A straightforward computation, based on the structure functions (3.11) and
(3.12) for the tangent and cotangent algebroids, shows that

T1 :Uibdpz.
Ty =(L,, , (Tea)Tib)da’

=L, o (opdz’) —opl ; o da’
pa, Bxl pa Bacl

:Ep(ea)a(eb) - O—ibdpfz'
Ts =(Lp, (@) f7)dar?
0oia Ooyg i <
Z(Pé < agjl O ) - ¢z’jkﬂ§ﬁb) dz’

=ip(e,)do(€a) = ip(ey)p(ea) P

Therefore, the bracket preserving property (3.22) in this case is equivalent to

o(leasen]) =T1 +To + T (3.27)
:O'ibdpé + Ep(ea)a(eb) - O'ibdpi_‘_ (328)
+ ip(eb)dd(ea) — ip(eb)ip(ea)¢- (3.29)

One easily observes that (3.29) is equivalent to

o ([u, v]) = Lopuyo (v) = Lpw)o () + ipw)ipw) P,

for every w,v sections of A, which is exactly the second property of an IM-2-form with

respect to ¢.

Case 3: Linear-Linear sections
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This is the last case to be verified. Take U = Te, and V = Te; in (3.22). It
follows from the definition of the tangent Lie bracket (3.10) and the formulas (3.24) and
(3.23), that the left hand side of (3.22) is given by

Aﬁ([Tea,Teb]TA) = Cgbef]_gt(xw + C’becda:] +dC5 (2)o(ec)
= [eas )" | ot (a3) + Cip(iado(ec) — igip(e,)d) + dC5(E)o(ec)
= [em eb]L|—at(z,i7) + iﬂbdo_([eav eb}) + dcgb<o-(60)7 $> - iii[p(ea),p(eb)]¢'

Recall that (3.24) says that

A¥(Te,) =€k + fida?
A (Tey) =et + fPdat.
The right hand side of (3.22) is given by the sum of three terms S; + S2 + Ss.

A direct computation, using the structure functions (3.11) and (3.12) for the tangent and

cotangent algebroids, shows that

51 :[eav eb]L’th(x,x') + dC§b<at<¢)7 6c> - f;’ldpg + fzbdpfz
Sa :ﬁpTA(Tea)(fb)dxi'
S3 =Ly (rey) (f7 da.

We can use the fact that the Lie derivative is a derivation of degree zero, to conclude that

So =L, (Ten)(flda’) = f2(L, , (Tenda’). (3.30)

In the second term of the right hand side of (3.30) we can use Cartan’s formula and the

fact that the tangent anchor at Te, is given by

praTea) = phoo+ dpl o (3.31)

to conclude that fl-b(ﬁpT A(Tea)daci) = fbdp!. Recall also that
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fzbdq;l = iz'dU(Eb) - iiip(eb)(b?

thus we derive the identity

Sy = ‘CpTA(Tea)iﬂ'Cda(eb) - EpTA(Tea)ix'ip(eb)(z) - fzbdpfz (3.32)
Notice that (3.31) can be written as

pra(Teq) = pled) + V.,

with V! = dpfl(:'v)%. Observe also that

[IO(GQ), 1:] = _Vah7

where V' = dpé(:z':)%. It is easy to see, using local coordinates, that Lypiza = iyna, for
every 2-form a = $a;;(z)da’ A dad. Therefore, using Cartan’s calculus we see that the first

term of the right hand side of (3.32) is given by

‘CpTA(Tea)ii‘do'(eb) zﬁp(ea)iida(eb) + Cv;ij;da(eb)
= — ivahda(eb) + iiﬁp(ea)d(f(eb) + ivahda(eb)

:iidip(ea)da(eb).

The second term of the right hand side of (3.32) is

Lppa(Tea)iilp(e,)® = 1eLp(en) tp(ey) P-

Therefore we conclude that

So = izdiy(e,)do(er) = i:Lpteq)ipen)® — frdph-

The same argument applied to S3 implies that

S5 = iidiy(e,) A7 (€a) = L ptey)ip(en)d = 7P}
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Hence, the bracket preserving condition (3.22), which in this case, reduces to

Aﬁ([Tea, Teplra) = S1+ S2+ Ss,

holds if and only if

iﬂbda([eav eb]) - ii‘i[p(ea)7p(eb)]¢ :ia'cdip(ea)da(eb) - Z‘a'cﬁp(ea)Z‘p(eb)(zs (333)
— tidipe,)do(€a) + 10 Lo(e,)Tp(es)

Now we use the formula i(x y) = [Lx,iy] and the fact that ¢ is closed, to conclude that

Z[p (eq),p(ep) ]¢ 'C (ea)bp(ep) ¢+[’ p(ep)tp(eq) ¢ di eb)l (ea)d)

Thus, the identity (3.33) is holds if and only if

do([ea, eb]) = d(ip(e,)do(en) = ip(e,)do(€a) + Tp(e,)ip(eq) D)
= d(Lp(e)0(en) = dip(e,)0(en) = ip(ey) dU(ea) + i p(es)ip(ea) D)
= d(Lp(e,)0(€6) = ip(ey)do(€a) + ip(ey)ip(ea) D)
= d(Lp(e,)(€6) = Lp(ey)T(€a) + ip(ey)in(ey) )

which can be derived by differentiating the second property of an IM-2-form with respect
o ¢. This finishes the proof.

O]

As an immediate consequence of Theorem 3.4.1 we obtain an alternative method

to the one described in [10] for integrating IM-2-forms to multiplicative 2-forms.

Corollary 3.4.1. Let G be a source simply connected Lie groupoid G over M, with Lie
algebroid AG. Suppose that ¢ is a closed 3-form on M, and consider the 3-form ¢o on G

defined by ¢ = s*¢ — t*¢ There exists a one-to-one correspondence between

i) multiplicative 2-forms wg on G with dwg = ¢, and

it) IM-2-forms o : AG — T*M with respect to ¢.
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Proof. Let us consider a multiplicative 2-form wg on G such that dwg = s*¢ —t*¢ for some
closed 3-form ¢ on M. Consider also the bundle map o : AG — T*M as in (2.13). The
Lie functor applied to wg yields, in virtue of Proposition 3.2.5, a morphic 2-form w 4G on

AG given by

WAG = —0 Wean — p7(9).

Thus a direct application of Theorem 3.4.1 shows that o : AG — T* M satisfies the axioms
of an IM-2-form with respect to ¢. Conversely, given an IM-2-form with respect to ¢, we

consider the induced linear 2-form on AG given by

A= —0c"wean — p7().

It follows from Theorem 3.4.1 that A is morphic, so the induced bundle map Af : T(AG) —
T*(AG) is a Lie algebroid morphism. Since G is a source simply connected Lie groupoid,
the tangent Lie groupoid TG == T'M is also source simply connected, and its Lie algebroid
is T(AG). Therefore, it follows from Lie’s second theorem 2.1.1 that there exists a unique

morphism of Lie groupoids

wﬁG TG — TG,
with A(wﬂG) = AP, For every pair of tangent vectors (X,Y) € TG @ TG, define
wa(X,Y) == wh(X)(Y). (3.34)

Notice that if wg was a 2-form on G, then it would be automatically a multiplicative form.
In this case the morphic form induced by dw¢ is exactly dA = —dp*(7(¢)), and we conclude
from Proposition 3.2.5 that dwg = s*¢—t*¢, as required. Hence, we only need to check that
(3.34) defines a 2-form on G. First let us check that cGowﬁG = pg. Notice that pg : TG — G
and ¢ : T*G — G are morphism of Lie groupoids, whose induced Lie algebroid morphisms
are determined by pac = ji o A(pg) and cag = A(cg) o (ji) !, respectively. That is, up
to canonical isomorphism of Lie algebroids, we have that A(pg) = pag and A(cg) = cac.
Since caq o A* = paq, we conclude from the uniqueness of the integration of a Lie algebroid

morphism, that
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ca owﬁG = pa.

Now we verify that w! is linear with respect to the usual bundle structures TG — G and
T*G — G. For that we observe that the fiberwise addition maps +,¢ : TGHATG — TG
and +p+¢ : T"G @& T*G — T*G are groupoid morphisms, whose induced Lie algebroid
morphisms are, up to canonical identifications, given by the fiberwise addition maps 4, :
TA®TA — TA and 7+, : T*" AP T*A — T* A, respectively. Since the bundle map
A . TA — T*A is linear with respect to the usual bundle structures TA — A and
T*A — A, we conclude that

A¥ o 4p4 = 44 0 A%, (3.35)

Again by the uniqueness of the integration given by Lie’s second theorem, we conclude that

WﬁG © +rg = +r*g © WﬂG7 (3.36)

i

showing that wy, is additive. The same argument applied to the groupoid morphism given
by scalar multiplication, shows that wg(rX ) = rwﬁG(X ) for every X € TG and r € R.
Finally we prove that wﬁG : TG — T*(G is skew symmetric. This is equivalent to saying
that the canonical pairing 7*G'®T'G — R vanishes on the graph L, of wﬁG. Observe that,
since wﬁG is a groupoid morphism, the graph L, is a subgroupoid of T*G @© T'G, whose
Lie algebroid coincides, up to canonical identifications, with the graph Ly C T"A @ TA
of the Lie algebroid morphism Af. Also the skew symmetry of A is equivalent to the fact
that the canonical pairing T*A @ TA — R vanishes on Ly. We observe also, that the
canonical pairing T*G & TG — R is a groupoid morphism, whose induced morphism of
Lie algebroids is, up to identifications, the canonical pairing T*A & T A — R. Again, the
uniqueness of Lie’s second theorem implies that the canonical pairing TG & TG — R
vanishes on L, since this holds infinitesimally. This finishes the proof.

O]
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Chapter 4

The case of Lie groups

In this chapter we study multiplicative Dirac structures on Lie groups. We intro-
duce Dirac-Lie groups as a natural generalization of Poisson-Lie groups in the category of
Lie groups. The main results exposed in this chapter can be found in the author’s work

[51].

4.1 Dirac-Lie groups

A Dirac-Lie group is a pair (G, Lg) where G is a Lie group and Lg C TG is
a multiplicative Dirac structure on G. We have seen that Dirac structures unify Poisson
bivectors, closed 2-forms and regular foliations, therefore it is natural to study multiplicative
versions of these three classes of Dirac structures. We will analyze them separately. First,
we immediatly observe that a Dirac-Lie group (G, Lg) defined by the graph of a Poisson
bivector mg on G is nothing but a Poisson-Lie group. On the other extreme, the following
proposition says that there are no interesting Dirac-Lie groups defined by the graph of

multiplicative 2-forms.

Proposition 4.1.1. Let G be a Lie group. The only multiplicative 2-form on G is the zero

2-form.

Proof. Let wg be a multiplicative 2-form on G. In virtue of Proposition 2.4.3, the multi-
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plicativity of wgq is equivalent to saying that the bundle map

wh TG — T*G (4.1)

X ing, (42)

is a morphism of Lie groupoids. If X, € T,G is a tangent element, it follows from the
definition of the cotangent target map t : T*G — g* that f(wg(Xg)) € g*, which at every
u € g is given by

Hwh (Xy))u = we(Xg, "),

where u" is the right invariant vector field on G determined by u € g. As explained in
section 2.3.1 of chapter 2, the fact that G is a Lie group implies that the tangent bundle
TG is also a Lie group. In particular, the tangent target map is the zero map TG — {0}.
Thus, the fact that wﬁG is a groupoid morphism implies that

0 = H(wh(Xy))u = wa(Xy,u").
Now, if g € G is fixed, then every tangent element Y, € T;G can be written as Y, = u"(g)
for some right invariant vector field «" on G. Thus we conclude that
wG(ng }/;l) =0,

for every X,,Y, € T,G, as desired.

Just as Poisson-Lie groups are Lie groups with a Poisson structure such that the
multiplication map is a Poisson map, Dirac-Lie groups are Lie groups with a Dirac structure
compatible with the multiplication in the sense that the multiplication map is a forward
Dirac map. In order to explain this, we consider a Dirac structure Lg on G. The direct

product G x G is equipped with a Dirac structure defined by

(Lgxg)(gﬁ) = {(Xg,fh,ag,ah) | Xg b ay € (Lg)g,yh P ay € (Lg)h}.
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Proposition 4.1.2. Let G be a Lie group equipped with a Dirac structure Lg. Then Lg
is multiplicative if and only if the multiplication map m : (G x G, Lgxg) — (G, Lq) is a

forward Dirac map.
Proof. Assume that Lg is a multiplicative Dirac structure on G. Given g,h € G and
Yyn @ Bgi, € (La)gh, We can write

Yon ® ﬁgh € (Lg)gh =Xy ® X ® Qg O Qp, (4.3)

with X, @ ay € (Lg)y and X, @@y, € (Lg)p. In order to show that the multiplication map

is forward Dirac, it suffices to prove that

Yo ® By, = Tigmym(Xg, Xn) @ Byn, (4.4)

where (34, € T7, G and (Xgs Xty (Tigmym)* Byn) € (Laxa)(gn)- Take By, = ag o @, then
(4.3) implies (4.4), as desired. Conversely, if m : G x G — G is a forward Dirac map, then
L¢ is multiplicative if and only if given X, @ oy € (Lg)y and X, @ @y, € (Lg)p, then

Xg ° Yh Dagoay € (Lg)gh. (4.5)

Since m is a forward Dirac map, every element in (Lg)gp has the form

T(g,h)m(U97 Uh) @ ﬁgh?

(Ug, Un, (Tigmym)*Byn) € (Laxa)(gn)- Now (4.5) follows with Uy, = X, Up = X}, and
Bgn = ag o @p. This finishes the proof.
O

4.2 Multiplicative foliations

In this section we give a detailed study of Dirac-Lie groups defined by regular

foliations. Let us begin with the following observation.

Proposition 4.2.1. Let F C TG be a reqular integrable distribution on a Lie group G. Then
the corresponding Dirac structure Lp = F @ F° is multiplicative if and only if FF C TG is

a Lie subgroup, where TG has the natural Lie group structure induced from G.
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Proof. Assume that F' C T'G is a Lie subgroup. Let ay, 3;, be composable elements in the
annihilator F° of F'. The cotangent product is defined by

(ag 0 B )(Xg 0 Yp) = ag(Xg) + B, (Yh).

where X, € T;G and Y}, € T},G. In particular, if X, Y}, are composable elements of F', we
conclude that ay 0 3, € F°. This implies that Lr = F' @ F° is a Lie subgroupoid of TG,
or equivalently, Ly defines a multiplicative Dirac structure on G. Conversely, if Lr is a
multiplicative Dirac structure on G, we conclude that F' C T'G is a Lie subgroup, since the
groupoid structure on Lr C TG is defined out of the groupoid structures on T'G and T*G,
which are independent of each other.

O

A multiplicative foliation on a Lie group G is a regular foliation F tangent to
a Lie subgroup F' C T'G. The following proposition gives a natural way of constructing

multiplicative foliations.

Proposition 4.2.2. Let G be a Lie group with Lie algebra g. Suppose that h C g is a Lie
subalgebra. Consider the distribution ' C TG defined at every g € G by

Fy = Telg(b),

where ly : G — G is the left multiplication by g and e € G is the identity element. Then
F C TG is a Lie subgroup if and only if h C g is an ideal.

Proof. Assume that h C g is an ideal. We will show that F' C T'G is a Lie subgroup. In
general, if X, € T;G, then the tangent inverse is determined by

(Xg) ™' = —Ty(ly-1 0 ry-1) X, (4.6)

g

If X, € F,, then there exists u € h with X, = T,ly(u). Using (4.6) we conclude that
(Xg) ™' = —Tely-1(Adg(w)). (4.7)

The fact that h C g is an ideal is equivalent to the Ad-invariance of h. Thus (4.7) implies
that ' C TG is closed by the inversion map in T'G. It remains to show that FF C TG is
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closed by multiplication. For that, consider X, = T.l4(u) and Y}, = Telp(v), elements in F'.

If m is the multiplication map of GG, then the tangent multiplication gives

Xg [ ] Yh :T(gﬁ)m(Xg, Yh) (48)
=Ty rh(Telg (1)) + Thlg(Toln(v)) (4.9)
=Tyrn(Tolg(u)) + Tolgh (v). (4.10)

Notice that the second term of the right hand side of (4.10) belongs to Fy;,. On the other
hand, we claim that there exists a unique v’ € § such that the first term of the right hand
side of (4.10) is given by

Ty (Tolg (1) = Tolgr (). (4.11)

Indeed, since h is Ad-invariant, we see that v’ = Ad;,-1u € b is the solution of
(4.11). Thus, the right hand side of (4.10) defines an element of Fyy,, showing that F' C TG
is closed by multiplication. This proves that F' C T'G is a subgroup. Conversely, if F C TG
is a subgroup, then X, oY} € Fyy, for every Xy = T.ly(u) and Y}, = T.lj(v) elements in F.
In particular (4.10) implies that Tyry(Telg(u)) € Fyp, for every u € h. Now, v/ = Adj-1u
defined by (4.11) necessarily defines an element in b, and we conclude that b is Ad-invariant.
That is h C g is an ideal.
O

The distribution F' C T'G defined in Proposition 4.2.2 is clearly an integrable dis-
tribution. Thus, the induced foliation F on G is multiplicative. Notice that the leaf through
the identity coincides with the connected normal Lie subgroup H C G that integrates the
ideal h C g. The other leaves of F are cosets of the normal Lie subgroup H C G. The
following result says that this is the general picture of multiplicative foliations on a Lie
group.

Proposition 4.2.3. Let F be the foliation integrating a multiplicative distribution F' C TG.
The following holds:

1. The leaf through the identity F. C G is a normal Lie subgroup.

2. The foliation F 1is given by cosets of Fe.
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Proof. Since F C TG is a subgroup, it is closed under multiplication in TG, that is
dm(g,h)(Xg, Xn) = dRy(9)Xy + dLg(h) Xy, € Fy, for every X4, X), € F. In particular,
for X} = 0 we see that F' is right invariant, i.e. dRy(g)Xy € Fgp,. Similarly we obtain left
invariance of F': dLy(h)X), € Fy,. This says that the distribution at each g € G is given by

Fy = dLgy(e)F., = dRy(e)F.. (4.12)

Consider now F,, the leaf of F' through the identity e € GG. For every a,b € F,
there exist paths a(t),b(t) € G,t € [0, 1], tangent to the distribution F', joining the identity
e € G to a and b, respectively. We want to prove that ¢ = ab € F,. For this, take the
path ¢(t) = a(t)b(t), which joins the identity to ¢ = ab. The path c¢(t) is tangent to the

distribution F': indeed, the bi-invariance of F' implies that
c(t) = dRy(t)(a(t))a’(t) + dLa(t)(b(t))V'(t) € Fer),

since a/(t) € Fy) and V() € Fyyy. This shows that ¢ € F. A similar computation shows
that F. is closed by the inversion map. Therefore the leaf through the identity is a subgroup
of G. Moreover, it follows from (4.12) that the Lie algebra of F. is Ad-invariant, which is
equivalent to F, being a normal subgroup. The assertion in 2. follows from the bi-invariance
in (4.12).

O

4.3 The characteristic foliation of a Dirac-Lie group

In the previous section we discussed in detail three classes of Dirac-Lie groups.
Another class of examples of Dirac-Lie groups is obtained as follows: Let ® : G — Go
be a homomorphism of Lie groups which is a surjective submersion. If 7 is a multiplicative
Poisson structure on Gg, then its pull back (in the sense of Dirac structures, see chapter
2 ) turns out to be a multiplicative Dirac structure on G, whose presymplectic leaves are
the inverse images by ® of the symplectic leaves of G2, and whose characteristic foliation
is given by the fibres of the submersion ®. Our main observation in this section is that,
modulo a regularity condition, all multiplicative Dirac structures on Lie groups are of this
form.

We observed in Proposition 2.5.2 that if ® : G; — (G4 is a morphism of Lie
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groupoids and a surjective submersion, and if ag4,a, € TGp are ®-related elements to
ba(g)s Bq)(h) € TGa, we conclude that whenever ay, @, are composable elements, then bg (), Eb(h)
are composable as well. As a result we obtained a natural functorial property of multiplica-
tive Dirac structures on Lie groupoids explained in Corollary 2.5.1. In the special case of
multiplicative Dirac structures on Lie groups, we notice that the converse of Proposition

2.5.2 is true.

Proposition 4.3.1. Let ® : G — G2 be a morphism of Lie groups, which is a surjective
submersion. Assume that agy,ap, € TGy are ®-related to b¢(g),5¢,(h) € TGa. Then ay,ay, are

composable if and only if b¢(g),5¢(h) are composable. In this case, agy * ap is ®-related to

ba(g) * ba(n)-

Proof. 1t suffices to show that if bq)(g),gq,(h) are composable, then ag4,a; are composable,
since the other direction was proved in Proposition 2.5.2. The cotangent parts of bg(g)
and Bq)(h) are composable, so the ®-relation assumption together with fact that (7®)* :
¢*(T*G2) — T*Gy is a groupoid morphism implies that the cotangent parts of a, and
ap, are composable. Finally, notice that since G; is a Lie group, in particular TG is a
Lie group, then the tangent parts of ay, @ are always composable, and this fact does not

depend on the composability of b¢(g),5q>(h). This proves the statement.
O

Recall that Corollary 2.5.1 says that the multiplicativity property of a Dirac struc-
ture is preserved by groupoid morphisms which are surjective submersions and backward
Dirac maps. In virtue of Proposition 4.3.1 we obtain a similar result for forward Dirac

maps.

Corollary 4.3.1. Let ® : G; — G4 be a homomorphism of Lie groups, which is a surjective
submersion. Assume that Ly, Lo are Dirac structures on G1, Go , respectively. If ® is a
forward Dirac map and Ly is multiplicative, then Lo is multiplicative. Also, if ® is a

backward Dirac map and Lo is multiplicative, then Ly is multiplicative.

Proof. 1t suffices to show the forward case, since the backward case is a direct consequence
of Corollary 2.5.1. Now, recall that @ is a forward Dirac map if and only if Ly is the bundle
of all ®-related elements to elements in L. The statement follows from Proposition 4.3.1.

O]
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It turns out that such a functorial property is a useful tool for studying the space of
characteristic leaves of Lie groups endowed with multiplicative Dirac structures. Consider
now a Dirac Lie group (G, L¢g) and let K be the characteristic foliation of Lg, that is,
the generally singular foliation of G tangent to the distribution ker(Lg) = L NTG. As
explained in chapter 2, whenever K is a simple foliation, the space of characteristic leaves
G /K inherits a Poisson structure denoted by 7,.4. In the special case of Dirac-Lie groups

our main result is the following.

Theorem 4.3.1. Let G be a Lie group with a multiplicative Dirac structure Lg C TGOT*G.
Then:

1. The kernel of Lg is a multiplicative integrable distribution, and the leaves of the

characteristic foliation K are cosets of the normal Lie subgroup K. C G.

2. If K. is closed, then the leaf space G/K is smooth and the induced Poisson structure
Tred 18 multiplicative (i.e., G/KC becomes a Poisson-Lie group). Moreover, Lg is the

pull back of wreq by the quotient map G — G/K.

Proof. Since L¢ is multiplicative, we have that ker(Lg) = L N TG C TG is a subgroup,
hence (4.12) implies that ker(L¢) has constant rank. In particular it defines an involutive
distribution, whose leaves are given by cosets of the normal Lie subgroup K = K. (the
leaf through the identity) by Prop. 4.2.3. If K is closed, then G/K is a Lie group and the
projection G — G/K is a surjective submersion which is both a forward and backward
Dirac map [11], where G/ K is equipped with the natural Poisson structure 7.4 induced by
L. The multiplicativity property of m,..q is a direct consequence of the functorial property
of multiplicative Dirac structures.

O

4.4 Infinitesimal description

In this section we describe Dirac-Lie groups infinitesimally. We combine Theorem
4.3.1 and Drinfeld’s correspondence between Poisson-Lie groups and Lie bialgebras [23], to

obtain the infinitesimal counterpart of Dirac-Lie groups.

Let G be a Lie group with Lie algebra g.
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Proposition 4.4.1. If (G, Lg) is a Dirac-Lie group, then € = ker(Lg), is an ideal in g and
the quotient g/t inherits the structure of a Lie bialgebra.

Proof. The multiplicativity of the characteristic distribution implies that € C g is an ideal.
Now consider the connected and simply connected Lie group T integrating the quotient Lie
algebra g/€. The canonical projection g — g/ integrates to a homomorphism of Lie groups
® : G — T, where G denotes the universal covering of G. The subgroup H = ker(®) is
closed and normal in G, therefore the connected component of the identity Hp is closed and
normal as well and the quotient group G /Hy inherits a Poisson-Lie structure. Since G /H

is locally diffeomorphic to G /Hy, the Lie algebra g/ inherits a Lie bialgebra structure. [J

In the situation of Proposition 4.4.1 we say that (G, L) is an integration of the

infinitesimal data (g, €), where ¢ C g is ideal and g/ is a Lie bialgebra.

Proposition 4.4.2. If G is connected and simply connected and € C g is an ideal such that

g/t is a Lie bialgebra, then there is a unique multiplicative Dirac structure on G integrating

(g,¢).

Proof. Let T be the connected and simply connected Lie group integrating g/¢. Consider the
homomorphism ® : G — T and H C G as in the proof of Proposition 4.4.1. The quotient
group G/H = T has a multiplicative Poisson structure w7 integrating the Lie bialgebra
g/t. Since @ is a surjective submersion, we induce a multiplicative Dirac structure Lg on

G according to Corollary 4.3.1. This shows that (G, Lg) is an integration of (g, £). O
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Chapter 5

Natural functors on Dirac

groupoids

In this chapter we study the effect of natural functors, such as the tangent functor
and the Lie functor, on Lie groupoids equipped with multiplicative Dirac structures. On one
direction, we extend a result of Grabowski-Urbanski [28] concerning tangent lifts of Poisson
Lie groups. More precisely, we show that every Dirac groupoid (G, L) can be lifted, in a
natural manner, to a tangent Dirac groupoid (T'G, Lyg). On the other direction, we show
that any multiplicative Dirac structure Lg C TG is mapped, via the Lie functor, into a
Lie subalgebroid Lag C T(AG) which is also a linear Dirac subbundle. Conversely, if A is
an integrable Lie algebroid with source simply connected Lie groupoid G, then every Lie
subalgebroid L4 C TA which also defines a Dirac structure integrates to a Lie subgroupoid
Lg C TG, making the pair (G, Lg) into a Dirac groupoid. We also study multiplicative
B-fields acting on Poisson groupoids and we explain the geometric structures obtained after

applying the Lie functor.

5.1 The tangent functor

We start this section by motivating our construction of tangent Dirac structures.
Recall that if m)s is a Poisson bivector on M, then the cotangent bundle 7* M carries a Lie
algebroid structure over M, and we denote this Lie algebroid by (T*M),,,. We can dualize
this Lie algebroid structure, giving rise to a linear Poisson bivector m7j; on the tangent

bundle of M. This tangent Poisson structure coincides, up to canonical isomorphisms, with
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the derivative of m;. More precisely, there exists a commutative diagram

T(ﬂ'gw
T(T*M) T(TM)
@]\4 J]u (5 1)
T*(TM) T(TM)
TTMm

where Jyr : TTM — TTM denotes the canonical involution and ©y; : T(T*M) —
T*(TM) is the Tulczyjew map. For a detailed discussion about this identifications see the
original work [59] or section 2.3.2 in the second chapter of this work. Now we conclude
that the tangent Poisson structure wp,; induces a Lie algebroid structure on the cotangent
bundle T*(T'M) — T'M, which it turns to be isomorphic to the tangent Lie algebroid of
(T*M)y,,- Interms of Dirac geometry, the Poisson bivector w3 may be thought of as a Dirac
structure Ly; € TM ®T*M which, as a Lie algebroid, is isomorphic to the cotangent bundle
(T*M)r,,. Similarly, the tangent Poisson bivector 7wy induces a Dirac structure Lyys C
T(TM)®T*(TM) which, as a Lie algebroid, is isomorphic to (T*(TM))x,,,. Consequently,
the canonical bundle map Jy @ Oy : T(TM) & T(T*M) — T(T'M) @& T*(T M) restricts
to an isomorphism of Lie algebroids between the tangent prolongation Lie algebroid of Ly,
and a Dirac subbundle Lyy CT(TM) @ T*(TM).

We generalize this tangent lifting procedure for an arbitrary Dirac structure. In
order to make a clear exposition, we recall the canonical tangent lifts of multivector fields

and differential forms, see [29, 60].

5.1.1 Tangent Dirac structures

We begin by summarizing some of the main properties of tangent lifts of vector
fields and differential forms. Let f € C°°(M) be a smooth function. Then we have a pair
of smooth functions on T'M defined by

fo=fopms [T =df.

We refer to f¥ and f7 as the vertical lift and tangent lift of f, respectively. One can see

easily that the algebra of functions C*°(T'M) is generated by functions of the form f* and
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fT. Now, given a vector field X on M we define the vertical lift of X as the vector field

X" on TM which acts on vertical and tangent lifts of functions as

XU(f) =0, XU(f1) = (Xf)".

The tangent lift of X is the vector field X7 on T'M, which acts on vertical and

tangent lifts of functions in the following manner:

Xy =(xny, xXH(H=&xH'

It is easy to see that vertical and tangent lifts of vector fields generate the space of all vector
fields on TM. Now let us consider a 1-form « on a smooth manifold M. We define the
vertical lift of « as the 1-form o on T'M, which is determined by its value at vertical and

tangent lifts of vector fields,

a(X") =0, a"(X7) = (a(X))".

The tangent lift of « is the 1-form a” on T'M defined by

ol (XY) = (a(X))",  a(XT) = (a(X))".

It is important to emphasize that vertical and tangent lifts of vector fields (resp. of
1-forms) are sections of the usual vector bundle structure T(TM) *™ TM (resp. sections
of T*(TM) IM TM ), and they do not define sections of the tangent prolongation vector
bundle T'(T'M) v iy (resp. of the tangent prolongation T'(1T*M) Tev g ). However,
there exists a canonical relation between vector fields (resp. 1-forms) on T'M and sections of
the tangent prolongation vector bundle T(TM) — TM (resp. T(T*M) — TM). Recall
that for an arbitrary vector bundle A 22 M, every section u € I' M (A) induces two types
of sections of TA — T'M. The first type of section is Tu : TM — T A, which is given by
applying the tangent functor to the section v : M — A. The second type of section is the

core section 4 : TM — T A, which is defined by

a(X) = T(0")(X) + u(pm (X)),

where 04 : M — A denotes the zero section, and u(pr(X)) = & (tu(prr(X)))|t=o. Now,
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given a vector field X and a 1-form o on M, we consider the linear sections T'X, T’ and
the core sections X, & of the corresponding tangent prolongation vector bundles. It follows

from the definition that

Ju(TX)=XT Jy(X)=X". (5.2)
On(Ta) =al, Oy(a)=a’. (5.3)

It turns out that many geometric properties of the direct sum vector bundle T(TM) &
T*(TM) can be understood in terms of tangent geometric properties of T(T'M)® T (T*M),

using the canonical identification

Iy @ Oy T(TM) & T(T* M) —s T(TM) & T*(TM).

Consider now a Dirac structure Ly on M. Equivalently, we may think of Lj; as a
Lie algebroid over M with Lie bracket given by the Courant bracket on sections of L, and
the anchor map p,, is the natural projection from Ly; C TM & T*M onto T'M. According
to a construction of K. Mackenzie and P. Xu [46], we can consider the tangent prolongation

Lie algebroid T'Lj; — T M, with anchor map

pryv = Jnv o Tpyy,

and Lie bracket defined by

—

[a1,a2]rL,, =0, [Tay,a2]rr,, = [a1,az2], [Tai,Taslrr,, = Tla1,as],

where a1, ao are sections of Ly; — M. We denote by Lpjs the image of T'Lj; under the
natural bundle map Jy @Oy : TTM &TT*M — TTM & T*T M.

Proposition 5.1.1. The subbundle Lyyy CTTM ® T*T'M is isotropic with respect to the
non degenerate symmetric pairing (-, -)ray defined on TTM & T*TM.

Proof. Consider the non degenerate symmetric pairing (-, -)ps defined on TM & T*M. The
application of the tangent functor, followed by the projection onto de second factor, leads

to a non degenerate symmetric pairing
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<<,>> :TTM XTM TT*"M — ]R,

for which the subbundle T'Ly; CTTM®TT*M is isotropic. Finally, for every a1, a2 € T'Lyy
the well known identity

((a1,a2)) = ((Ju ® Onr)(a1), (Jur ® Onr)(a2))rar,

says that the canonical map Jy @ Oy : T(TM) @ T(T*M) — T(TM) & T*(TM) is a
fiberwise isometry with respect to the pairings ((-,-)) and (-, -)7as; see for instance [29, 46].
In particular, Ly = (Jar @ Onr)(TLyy) is isotropic with respect to the canonical pairing
onTTM & T*TM.

O

The tangent Lie algebroid T'Ly; — T'M induces a unique Lie algebroid structure
on Lpp; — TM characterized by the property that Jy @& Oy @ TLyy — Lpps is a
Lie algebroid isomorphism. The space of sections I'(Lyys) is generated by sections of the
form a” := (Jar ® Op7)(Ta) and a® := (Jpr ® Or)a, where a is a section of Ly — M. In

particular the induced Lie bracket on sections of L, is completely determined by identities
[a11)7 CLS] =0, [a’{’ ag] - [[ah aQ]]vv [CL{, ag] - [[alv GQHTv
and the Leibniz rule with respect to the induced anchor map pryras @ Lyyr — TTM.

Proposition 5.1.2. The induced Lie bracket on sections I'(Lppr) is a restriction of the

Courant bracket [-,-Jrar on sections of TTM & T*TM.

Proof. Due to the identities (5.2) and (5.3), we only need to check that the Courant bracket
on sections of Ly, naturally induced by Jy; @ Oy, satisfies the bracket identities that
determine the induced Lie bracket on I'(Lrys). One observes that vertical and tangent lifts

are compatible with Lie derivatives in the sense that
1. EXUO[U =0
2. Lyra’ = (Lxa)?

3. EXTaT = (Exa)T,
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and we conclude that
L [X"®a",Y'® 3] =0
2. [XT @, Y' @8] =[X,Y]" & (LxB —iyda)
3. [XTa o', YT 7] = [X,Y]T @ (LxB — iyda)T.

Thus the Lie bracket on I'pps (Lypy) induced by the tangent Lie bracket on I'pps (T'Lay)
coincides with the Courant bracket.

O

We have shown the following.

Proposition 5.1.3. Let M be a smooth manifold. There exists a natural map

Dir(M) — Dir(TM)

Ly — L1,

where Lpy = (JM D @M)(TLM)

The Dirac structure Lyas € Dir(T'M) given by the proposition above is referred
to as the tangent Dirac structure induced by Lj; € Dir(M).

Example 5.1.1. Let m; be a Poisson bivector on M and consider the induced tangent
Poisson bivector wrys on the tangent bundle of M. Let Lj; be the Dirac structure on
M defined by the graph of mj;. Then the tangent Dirac structure Lpjs induced by Ly

coincides with the graph of the tangent Poisson bivector wrjy.

Example 5.1.2. Let wjys be a closed 2-form on M. The tangent lift of wps is a closed

2-form wpps on T'M, determined by the commutative diagram

T(u)gw
T(TM)—=T(T*M)
iy Onr (5.4)
T(TM) T*(TM)

Yrnm
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Let Ljs be the Dirac structure on M given by the graph of wjys, then the tangent

Dirac structure L7,s induced by Ly is exactly the graph of the tangent lift wpys of wjy.

Remark 5.1.1. The tangent lift of Dirac structures was originally studied by T. Courant
[18], where tangent Dirac structures are described locally. In [61] I. Vaisman gives an
intrinsic construction of tangent Dirac structures, where the tangent lift of a Dirac structure
is described via the sheaf of local sections defining a Dirac subbundle of TTM & T*TM.
Our construction is also intrinsic, and it provides an explicit description of the vector bundle
Ly whose sheaf of sections coincides with the one described in [61]. Although we only
give an alternative description of tangent Dirac structures, our construction is functorial
and it has an important application to the study of multiplicative Dirac structures, namely,

the Lie functor is just a restriction of the tangent functor.

Now we explain how the tangent functor acts on morphisms of Dirac manifolds.
For every smooth map ¢ : M — N between smooth manifolds, the tangent functor yields
a bundle map T'¢ : TM — TN between tangent bundles. When M and N carry Dirac
structures, we are allowed to talk about Dirac maps. The following proposition explains

the effect of the tangent functor on Dirac maps.

Proposition 5.1.4. Let ¢ : (M, L)) — (N, Ly) be a backward Dirac map. Then Ty :
(TM,Lry) — (TN, Lry) is a backward Dirac map with respect to the tangent Dirac

structures induced by Ly and Ly .

Proof. The fact of ¢ being a backward Dirac map is equivalent to saying that every X da €
L can be written as

X@a=Xa (Te)p,
with Tp(X) ® 3 € ¢*(Ly). This implies that every element X @ & € TLy; can be written
as

X@a=XaoT(Te")p,
with B € T(T*N). We can apply the canonical map Jy @ Oy : TTM & TT*M —

TTM & T*T'M, yielding

In(X) ® On (@) = Jn(X) ® Om(T(T*)).
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Using the identity ©pr o T(T¢*) = (T(Ty))* o O, one concludes that every element in

Ly has the form

T (X) @ On(&) = Ju(X) @ (T(T)) O (D).

On the other hand, we can use the identity T'(T'¢) o Jyr = Jy o T'(Tp) to conclude
that T(Tp)Jy(X) = Jn(T(Te)X). In particular, we have that Jy(T(T)X) ® On(3) €
L7p. This shows that for every Y € TM

(Lrm)y ={Ve(T(T9)) ¢ |V € Ty (TM),£ € Tr o (TN), (Ty (T'p)VEE) € (Lrn)rp(v) }-

That is, the tangent map Ty : (TM, Lrar) — (T'N, L) is a backward Dirac map..
L]

Consider now a Dirac manifold (M, Lys) and let (S,€s) be a presymplectic leaf.
The presymplectic structure Qs € Q2(S) is characterized by the fact that the inclusion
map is : S — M is a backward Dirac map. As a consequence of Proposition 5.1.4 the

presymplectic foliation of the tangent Dirac manifold (T'M, L)) can be easily described.

Corollary 5.1.1. Let (M, Lys) be a Dirac manifold with presymplectic foliation {S,Qs}.
The presymplectic foliation of the tangent Dirac manifold (T M, Lar) is given by {TS,Q%},
where QL € Q*(TS) is the tangent lift of Qs € Q2(S).

Proof. 1t is clear that the foliation tangent to the generalized distribution pryra(Lras) has
leaves given by T'S where S is a leaf of the generalized foliation induced by Lj;. On the other
hand, since the inclusion map is : (S,Qs) — (M, Lys) is a backward Dirac map, then the
tangent functor applied to this map gives rise to the inclusion (T'S,Q%) — (T'M, L)
which is, due to Proposition 5.1.4, a backward Dirac map as well. This characterizes the
presymplectic foliation of (T'M, L), proving the statement.

O

Remark 5.1.2. We have constructed the tangent functor on Dirac structures. This is a map
Dir(M) — Dir(TM), which sends an object Ljs to the tangent object Lrys, and a Dirac
morphism ¢ : (M, Ly;) — (N, Ly) to the tangent Dirac morphism T : (T M, L) —

(TN, Lry). Since a Dirac structure is completely determined by its presymplectic foliation,
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we could define tangent Dirac structures by lifting the tangent presymplectic foliation,

according to Corollary 5.1.1.

5.1.2 Tangent lift of a multiplicative Dirac structure

In this subsection we study tangent lifts of multiplicative Dirac structures. It was
proved in [28] that whenever a Lie group G carries a multiplicative Poisson bivector 7,
then the tangent Lie group T'G equipped with the tangent Poisson structure mpg becomes
a Poisson Lie group. The next result extends the multiplicative Poisson case to abstract
multiplicative Dirac structures. Assume that G is a Lie groupoid over M and consider the

tangent groupoid T'G over T'M explained in section 2.3.1 of chapter 2.

Proposition 5.1.5. The tangent Dirac structure Lyg C TTG ® T*TG induced by a mul-

tiplicative Dirac structure Lg C TG @& T*G is also a multiplicative Dirac structure.

Proof. The bundle map Jg : TTG — TTG is a groupoid isomorphism over Jy; : TTM —
TTM. Similarly, the bundle map O¢g : TT*G — T*T'G is a groupoid isomorphism over
the canonical identification I : T(A*G) — (T(AG))*. Since Lg is a Lie subgroupoid of
TGeT*G, then the tangent functor yields a Lie subgroupoid TLg of TTG&TT*G. Due to
the fact that Lpg is the image of T'Lg via the groupoid isomorphism Jg @ ©¢, we see that
L7¢ inherits a natural structure of Lie subgroupoid of TTG @& T*TG. Hence we conclude

that Lpg defines a multiplicative Dirac structure on T'G.

Example 5.1.3. Let wg be a multiplicative closed 2-form on G. Then the tangent Dirac
structure Lr¢g induced by the graph of wg coincides with the multiplicative Dirac structure

on TG given by the graph of the tangent lift 2-form

wrGg = (Wﬁg)*wcany

where weqy, is the canonical symplectic form on T*G. Notice that the multiplicativity of the
Dirac structure Ly is also a consequence of the multiplicativity of weq, and the functorial

property of multiplicative Dirac structures (see Corollary 2.5.1 in chapter 2).
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5.1.3 The Courant 3-tensor and integrability

In this section we are concerned with an alternative way of proving the integrability
of tangent Dirac structures. First, notice that although we can check by hand that tangent
lifts of closed 2-forms and Poisson bivectors are also closed 2-forms and Poisson bivectors,
respectively, we can argue in a more direct way. In section 3.1 of chapter 3, we have seen

that for every 2-form w on M we have

d(w™) = (dw)”,

where (-)T denotes the tangent lift form on TM. In particular, the tangent lift of closed
forms is a closed form as well. Similarly, in [28] the analogue formula for multivector fields
was shown. More concretely, if 7 is a multivector on M and 77 is the tangent lift multivector
on T'M, then

(w7

T, T

- [7[-777] )

where the bracket above is the Schouten bracket. In particular, the tangent lift 77 of a
Poisson bivector 7 is also a Poisson bivector. We would like to find a direct argument that

ensures the integrability of the tangent lift of a Dirac structure.

The Courant integrability of Lagrangian subbundles of TM is measured by a
canonical tensorial object [17]. Given a Lagrangian sub bundle Lj; C TM, the Courant

3-tensor is the canonical section 11y, € Dar(A® L3,) defined by

Har e FM(L) X FM(L) X FM(L) — COO(M)

(a1,a2,a3) — ([a1,a2],a3)m

Notice that a Lagrangian sub bundle Lj; C TM defines a Dirac structure if and only if the

Courant 3-tensor p;, vanishes. Now let us observe that on the direct sum vector bundle

3
IT Zar:=La ®a Las ©ar L,

PMBCM

we have a natural function, also denoted by p;,, defined by
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(a1, az, az)p) = ([ar, az], as) v (p),

where ay,ag,ag are sections of Ljs such that, at the point p € M, satisfy a;(p) = a;
for + = 1,2,3. This is a well defined function due to the tensorial property of u;;. The

application of the tangent functor to uj, yields a function

3
Ty H TLy — R,
Tpr®Ten

which is related to the function p7;,, induced by the Lagrangian sub bundle Ly, C T(TM)

and the Courant 3-tensor up;s, according to the following proposition.

Proposition 5.1.6. For every (a1, a9, as) € T Ly the following identity holds

Tpp(ar,az,a3) = ppp ((Jar @ Oar)ar, (Jar @ Onr)ag, (Jur @ Onr)as).

Proof. For every ay,as,as € U'pr(Lys) one has Ty (Tay, Taz, Tas) = T(pup(a1,a2,as3)). On
the other hand, the canonical map Jys @ O applied to each of the sections Tay,Tas, Tas

gives al,al, a3T € I'rar(Lrar). Thus we conclude that

HTM(U’{7 ag? ag) :<[[a’{7 ag]]ﬂ a§>TM

=(([a1,az2], az)m)",

which is exactly the tangent functor applied to the function p,,(a1,a2,as). Therefore, for

every triple of sections aq, a9, as of Ly; we get
Ty (Tay, Tag, Tag) = ppy(af a5, a3 ). (5.5)

Now we notice, using local coordinates, that for every point @ € T Ly above
& € TM there exists a section a € I'y7(Lys) such that Ta(s) = a, where T'a € I'rps (T L)
is the section obtained by applying the tangent functor to the section a of Lj;. This fact
together with identity (5.5) prove the statement. O

As a consequence we obtain a direct proof of the Courant integrability of the
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tangent lift of a Dirac structure Lj; on M.

Corollary 5.1.2. Let Lp; be an almost Dirac structure on M, and consider the induced
almost Dirac structure Ly on TM. Then Ly is Courant integrable if Las is Courant

integrable.

Proof. An almost Dirac structure Ljy; on M is Courant integrable if and only if the associ-
ated Courant 3-tensor vanishes. The result follows by a direct application of the Proposition
5.1.6.

O

The identity Ty = s © (Jar @ 7)) will be extremely useful for finding the

infinitesimal data of a Dirac groupoid. This will be done in the next section.

5.2 The Lie functor

5.2.1 From multiplicative to linear Dirac structures

Let A 22 M be a vector bundle. A Dirac structure L4 C TA is called linear if
it defines a double vector sub bundle! L4 — E of TA — TM @& A*. The set of all linear
Dirac structures on A will be denoted by Diry;, (A).

Example 5.2.1. Consider a linear Poisson bivector m4 on a vector bundle A A4 M.
The induced Dirac structure (see example 2.2.2 in chapter 2) L,, C TA is a linear Dirac

structure on A.

Example 5.2.2. Let w4 be a closed linear 2-form on a vector bundle A 2 M. The Dirac

structure L,,, C TA determined by w4 defines a linear Dirac structure on A.

We will be mainly interested in linear Dirac structures on Lie algebroids. In
chapter 3 we discussed how multiplicative 2-forms on a Lie groupoid G induce linear 2-
forms on its Lie algebroid AG. In this section we extend this construction to the framework
of multiplicative Dirac structures. For that, consider a Dirac groupoid (G, Lg). We would

like to answer the following question.

Question 5.2.1. How is the multiplicativity of Lg € Dirp,;:(G) reflected at the infinitesi-

mal level?

1See appendix A for the definition and main examples of double vector bundles.
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Given a Lie algebroid A over M, we define the subset Dirgy(A) C Dirgpn(A)
consisting of all linear Dirac structures L4 on A, which also define a Lie subalgebroid of
TA — TM @ A*, over some subbundle E C TM @& A*. We will see that for any Lie
groupoid G with Lie algebroid AG there exists a natural map

Diryt(G) — Dirgq(AG)

Lg — Lag,

which up to canonical identifications, coincides with the Lie functor. The main idea for
constructing linear Dirac structures out of multiplicative ones is based on the following ob-
servation. The canonical geometric objects associated to TG that are used to define Dirac
structures (symmetric pairing and Courant bracket) are compatible with the groupoid struc-
ture of TG. This observation suggests that TG is the prototype of a new geometric object
that might be called a CA-groupoid, that is, a Lie groupoid object in the category of
Courant algebroids. See chapter 7 for more detailed discussion about such geometric struc-

tures.

Consider now the nondegenerate symmetric pairing (-, )¢ on the direct sum Lie

groupoid TG.

Proposition 5.2.1. The canonical pairing defines a morphism of Lie groupoids
(,7)g : TG TG — R,

where R is equipped with the usual abelian group structure.

Proof. Since R is a groupoid over a point, we only need to check the compatibility of
(-,-)¢ with the corresponding groupoid multiplications. For that, consider elements (X, @
ag), (Y, © B,) € TyG and (X}, @ o), (Y, @ B},) € TpG. Then by definition of the groupoid
structure on TG ® TG, we have

(Xg®ag) @ (Y, 69/89)) * ((Xl,z@a/h) D (Yf; @ﬂ/h)) = (Xg'X;LEBagOO‘;L) (Y ‘Yé@ﬂgoﬂ/h)7
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therefore one gets

(X, 0 X} @ agoa}), (Y, o Vi @ B, 0 By))e =(ag o o) (¥ @ Vi) + (B, 0 5)(X, © X})
g (Yy) + (V) + By(Xy) + Bh(X7)
(X, @ ag), (Y, B,))a + (X} @ o), (Vi @ Bh))e

This proves the statement. O

We can apply the Lie functor to the Lie groupoid morphism (-, ), yielding a

nondegenerate symmetric pairing

A((4)6) : (A(TG) & A(T*G)) xaq (A(TG) & A(T"G)) — R.

Let (-,-)ac denote the canonical non degenerate symmetric pairing on T(AG). Recall
that there exist canonical isomorphisms of Lie algebroids jg : T(AG) — A(TG) and
J&  A(T*G) — T*(AG), as explained in section 2.3.2 of chapter 2. Since (-, ) a¢ is just a

suitable restriction of 7'(-, )¢, one concludes that the canonical map

jgt @ jG s A(TG) @ A(T*G) — T(AG) & T*(AG),

is a fiberwise isometry with respect to A((-,-)¢) and (-,-)ag. This is a useful tool for
transporting Lagrangian subbundles of TG @ T*G to Lagrangian subbundles of T(AG) &
T*(AG). For instance, given a VB-subgroupoid Lg of TG @ T*G, we can apply the Lie
functor to obtain a VB-subalgebroid A(Lg) C A(TG)®A(T*G). We mimic the construction
of tangent Dirac structures, giving rise to a VB-subalgebroid of T'(AG) & T*(AG) defined
by

Lac = (jg' @ jo)(A(Lg)).

The following result is straightforward consequence of Proposition 5.2.1.

Proposition 5.2.2. Let Lg C TG @& T*G be a source simply connected VB-subgroupoid.
Consider the associated VB-subalgebroid Lag C T(AG) & T*(AG). Then L¢ is isotropic

with respect to (-,)q if and only if Lag is isotropic with respect to {(-,-) aG-

In particular the Lie functor maps Lagrangian VB-subgroupoids of TG & T*G into
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Lagrangian VB-subalgebroids of T(AG) & T*(AG).

Corollary 5.2.1. Let Lg C TG®T*G be a VB-subgroupoid with associated VIB-subalgebroid
Lac CT(AG) ® T*(AG). Then Lg is an almost Dirac structure on G if and only if Lag

18 an almost Dirac structure on AG.

This is just Proposition 5.2.2 rephrased in terms of Dirac structures. The main
objective of this section is to show that the Lie functor, not only preserves almost Dirac

structures, but also preserves the property of being integrable in the sense of Courant.

5.2.2 The Courant 3-tensor and integrability

This subsection is concerned with the integrability of linear Dirac structures ob-
tained by the application of the Lie functor to multiplicative Dirac structures. In order to
prove the integrability of the Lagrangian subbundle Lag C T'(AG) & T*(AG), we extract,
from the multiplicativity of L, a property that generalizes the fact that the de Rham
differential leaves invariant the set of multiplicative forms. As explained in chapter 3, such
a observation together with the compatibility of the exterior derivative with tangent lifts of

differential forms, gave rise to the identity

(dwg)ag = dwag, (5.6)

where w 4¢ is the restriction to AG of the tangent lift wg of wa. In particular, we concluded
immediatly that Lie(w¢) is closed, whenever wg is a closed 2-form. As in the case of tangent
Dirac structures, we would like to obtain an analogue of (5.6) that ensures the integrability
of the subbundle L4 C T(AG). As we did for tangent Dirac structures, we shall study the
Courant 3-tensor g € T(A® L) determined by the Lagrangian subbundle Lg € TG. Since
1t involves the Courant bracket, we need a compatibility between the Courant bracket and
the groupoid structure of TG.

In order to explain the relation between the Courant bracket and the Lie groupoid
structure on the direct sum vector bundle TG = TG & T*G, we consider the direct product
vector bundle TG x TG — G x G. Every section a(? of TG x TG can be written as
2)

a( = a1 opri & ag opra,
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where a1, as are sections of TG, and pri,pra : TG x TG — TG denote the natural projec-

tions. The direct product bracket on sections of TG x TG is defined as usual

[a®,a?] = [a1,@1] o pr1 @ [ag, @a] o pra.

Since the Courant bracket in I'(TG) does not satisfy Jacobi indentity, the direct
product bracket is not a Lie bracket. In fact, the direct product bracket together with the

componentwise projection map

TG x TG — TG x TG,

make the vector bundle TG x TG — G X G into an almost Lie algebroid. Recall that an
almost Lie algebroid is a vector bundle A — M with a skew symmetric bilinear bracket
[,-]a on I'(A) and an anchor map p4 : A — T'M which are compatible in the sense that
the usual Leibniz rule is fulfilled. On the other hand, the set of composable groupoid pairs
(TG) (g is a vector bundle over Gy, and we consider the almost Lie algebroid structure
on (TG)(g) induced by the direct product TG x TG. Now, the compatibility between the
Courant bracket on I'(TG) and the groupoid structure of TG becomes clear due to the

following proposition.

Proposition 5.2.3. Let mr : (TG)g) — TG denote the groupoid multiplication of TG =
TG ®T*G. Then the bundle map

mr

(TG) 2

TG

G2 e G
is a morphism of almost Lie algebroids.

If Ay — M; and Ay — M are almost Lie algebroids, then a bundle map
W : A — A covering ¢ : M1 — M> is a morphism of almost Lie algebroids if ¥ satisfies
the usual compatibility conditions with the anchor maps and the brackets on sections of Ay

and As. This definition makes sense since an almost Lie algebroid satisfies all the axioms of
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a Lie algebroid except the Jacobi identity. Now we proceed with the proof of Proposition
5.2.3.

Proof. We begin by checking the compatibility of (mr, m¢) with the corresponding anchor
maps. For that, consider a section a(?) = a; o pri & as o pro of (TG)(2) where a; = Xloaol
and as = X2 @ o? are sections of TG. The multiplication on the Lie groupoid TG maps the
section a(? into

mr(ay o pri @ ag o pre)(g,h) = Xg1 « X7 a; oar.

Applying the anchor map of TG we obtain

pra(X, e Xp @ ajoay) =X, ¢ Xj.

On the other hand, the componentwise anchor map of (TG)(2) applied to the section a®

gives rise to

Ptciym (@10 pr1 & az 0 pra)(g,h) = (X3, XP),

which followed by the derivative of m¢g : G(3) — G yields

Tme(prc) ) (Xg ® ag, X ® 7)) = Xg  Xj,

showing that (mr,mq) is compatible with the anchors. It remains to prove that mry is
bracket preserving. For that one observes that mr is a fiberwise surjective map, so it

suffices to check that, whenever

mroa® =aomg (5.8)

mroa® =aomg, (5.9)

where a(?),a® ¢ LG, ((TG)(g) and a,@ € I'(TG), then the following bracket preserving
property is fulfilled

mr o [a®,a?] = [a,a] o mg.

See e.g. [33] Prop. 1.5. It will be convenient write down sections as
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a? =(X'@al)opri @ (X* @ a?) o pry
a® =X oa') opri & (X° @) o pry
a=Y ap
a=Y @ p,

then the identities (5.8), (5.9) become
XgloX,%@a;oa,% =Yyn @ By, (5.10)
Xf] X, S a, oy =Y g, D By, (5.11)
for any composable pair (g,h) € G x G. Now it follows directly from the definition of the
direct product bracket that
[a®,a?)] = ([Xl,yl] ®Lyrial — iy1doz1) opry @ ([X2,y2] ® L2 — iyzdoﬂ) o pra.

Then, composing with the groupoid multiplication of TG, we have

mr o [a(Q),a(z)](%h) = [Xl,yl]g ] [X2,y2]h ) (,Cxlal - iyldal)g o ([’X262 - Z'YQdOﬂ)h.
On the other hand,

[[aaa]] 0 mG(gv h) = [K ?]gh @ (EYB - i?dﬂ)gh7

and using the identities (5.10) and (5.11) one concludes that

Y, YV]gn = X1, X'], 0 [X2, X .

Thus, the tangent component of [a,@]g, coincides with the tangent component of mr o

[a(2),6(2)](g,h). It remains to show that we also have the equality of the corresponding
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cotangent parts. This is equivalent to showing that

(Ly B — LB — d(B,Y))gn =(Lx1a" — ﬁ?”‘l —d{a!, X

o(L x2a% — EyzaQ —d{a?, X

for every composable pair (g,h) € G(2). In order to prove this identity, we need to check
that the left hand side (LHS), and the right hand side (RH S) above coincide at elements of
the form Uy @ V},. For that consider the 1-form on G defined by v := Ly 3 — L3 — d(B3,Y).
We can look at the pull back 1-form mgy € Ql(G(g)), which at every tangent vector
(Ug, Vi) € Tign)G(2) is given by

(m*GV)(gvh)(Ug’ Vi) = 7gh(U9 o Vy) = (LHS)(Ug e Vy).

The pull back form mg,y involves three terms. Let us analyze the first term

mg,(Ly B) of this pull back form. It follows from the relation Y = (m¢).(X!, X?) that

m&(Ly B) = Lix1 x2ymGP.

Notice that (5.11) implies that

(m&B) (g,0) (Ug, Vir) =Bgn(Ug © Vi)
:(aé o aﬁ)(Ug oV})
=a,(Uy) + aj, (Vi)

=@, @) (g1 (Ugs Vi)-

That is, m&(LyB) = Lx1@' & Ly2a2. A similar argument can be applied to the other

terms of the pull back form mg,, yielding
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(LHS)(Uy @ Vi) =(mey)(g,n) (Ugs Vi)
=(Lx1@")g(Uy) + (Lx20)n (Vi) +
—(Lgrah)y(Uy) = (Lg20®)n (Vi) +
—d(a!, X ")y(Uy) = d(a®, X" )(Vh)
—(RHS)(U, o V).

Thus RHS and LHS coincide at elements of the form U, e V},, and we conclude

that (mr, mg) is bracket preserving.

Given a Lagrangian VB-subgroupoid Lg = FEg of the direct sum TG & T*G =

TM & A*G, we induce a natural VB-groupoid structure on the direct sum vector bundle

3 3
I ze= ]I Ee

jfels el PMDgara

Associated to L¢ is the natural function

3
H Lo — R,

el =1

induced by the Courant 3-tensor ug € T'(A® LE,). Since L¢ is multiplicative it is natural to

expect that such a multiplicativity property could affect the nature of the function s .

Proposition 5.2.4. Given a Lagrangian subgroupoid Lg C TG ®T*G, the canonical func-

tion

3
H Le — R,

padca

s a groupoid morphism. That is pg s a multiplicative function.

Proof. Let us consider composable pairs a ah in Lg with ¢ = 1,2,3. Then,
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ng(ab a2, ad) @), at.a})) =([a'a, ] gn, a3}

:<[[a1, GQ]]Q[[EI’ 62]]’1’ 6@52)0-

The last identity follows from the fact that (mr, mg) is bracket preserving. Now we use

the fact that (-, )¢ is a groupoid morphism to conclude that

MG((CL;Q; ag) * (ailwa%wa%)) = MG(a};a a_¢2]7 ag) + MG(ailwa%ua%)‘

This proves that the function uq is multiplicative.

We can apply the Lie functor to the groupoid morphism i, yielding a Lie algebroid

morphism

Recall that Tug coincides, up to a canonical identification, with upg. Since A(ug) is a

suitable restriction of T'u, the following proposition follows directly.

Proposition 5.2.5. Consider the Lagrangian subbundle Lac = (j5' ®3j&)A(Lg) € T(AG).
The following identity holds

Lie(pg) = pag o (ig" @ je)®,

where (' @ i) Hi(pc@cc) A(Lg) — HJ:ZAGGBCAG L denotes the natural extension of
(g" @ ig)-
Now we are ready to state the main theorem of this section.

Theorem 5.2.1. Let Lo C TG be a multiplicative almost Dirac structure on G. Consider
the associated linear almost Dirac structure Lag C T(AG) on AG. If Lg is a Dirac

structure, then Laq s also a Dirac structure.
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Proof. The fact that Lg is a Dirac structure is equivalent to saying that the Courant 3-
tensor p vanishes. Now the identity

Lie(ug) = pag o (g ® je)®
implies that the Courant 3-tensor for the corresponding almost Dirac structure L4 on AG

vanishes as well. That is, L 4 defines a Dirac structure on AG.

O

We notice that Theorem 5.2.1 explains the effect of the Lie functor on multiplica-
tive Dirac structures. In particular, we are allowed to answer Question 5.2.1 proposed in

subsection 5.2.1. Given a Lie groupoid G with Lie algebroid AG, there is a natural map
Dirmult(G) — Diralg(AG)

which sends every multiplicative Dirac structure Lg on G to a linear Dirac structure L g
on AG which also defines a Lie subalgebroid of T(AG).
The Lie functor also can be applied on Dirac maps which are morphisms of Lie

groupoids.

Proposition 5.2.6. Let ® : G — H be a morphism of Lie groupoids. Assume that Lg
and Ly are multiplicative Dirac structures on G and H, respectively. If ® is a backward

Dirac map then A(®) : (AG, Lag) — (AH, Lag) is a backward Dirac map.

Proof. This follows from the fact that T¢ : (TG, Lr¢) — (TH, Ltg) is backward Dirac,
and the fact that A(¢) is a suitable restriction of T'¢.
O

5.2.3 Examples

Now we discuss some familiar examples of Dirac structures on Lie algebroids.

Example 5.2.3. (Linear Dirac structures induced by Poisson groupoids)
Let (G,mg) be a Poisson groupoid. The Dirac structure Lg on G defined by the
graph of wg is a multiplicative Dirac structure. The multiplicativity of this Dirac structure

is equivalent to WﬁG : T*G — TG being a morphism of Lie groupoids, and the associated
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Lie algebroid morphism coincides, up to identifications, with WiG : T*(AG) — T(AG)
where 74 denotes the linear Poisson bivector on AG dual to the Lie algebroid A*G. One

concludes that the corresponding Dirac structure Lag on AG is exactly the graph of 7 ¢.

Example 5.2.4. (Linear Dirac structures induced by multiplicative forms)

Let wg be a multiplicative closed 2-form on a Lie groupoid G. The graph of wg
defines a multiplicative Dirac structure Lg on G. Let 0 : AG — T*M denote the IM-2-
form determined by wg. The multiplicativity of wg is equivalent to saying that wﬁG TG —
T*@G is a morphism of Lie groupoids, and the corresponding morphism of Lie algebroids is
w%G : T(AG) — T*(AG) where wyg denotes the linear 2-form on AG induced by the
IM-2-form o. Hence, the associated Dirac structure Lac on AG is exactly the graph of the

linear closed 2-form w s¢.

Example 5.2.5. (Linear Dirac structures on Lie algebras)

Let G be a Lie group with Lie algebra g and let L € Diry,,¢(G) be a multiplicatice
Dirac structure such that the characteristic leaf K through the identity is closed. We have
seen that I is a normal Lie subgroup of GG, in particular its Lie algebra £ is an ideal of g. The
canonical quotient map ¢ : G — G/K is both a forward and a backward Dirac map, where
G /K has the multiplicative Poisson structure 7,4 induced by Lg. Applying the Lie functor
to the group homomorphism ¢, we get a morphism of Lie algebras q : g — g/¢ which is
a forward and backward Dirac map, with respect to the linear Dirac structures on g and
g/t determined by Lg and 7,4, respectively. It follows from example 5.2.3 that the linear

Dirac structure L on g/t is the graph of the linear Poisson bivector 7,/ determined by

g/
the dual Lie algebra (g/€)*. One concludes that the linear Dirac structure on g corresponds

to the pull back Dirac structure Lg := q*(Lx, , )-

Example 5.2.6. (Linear Dirac structures arising in Poisson reduction)

Let (G, 7¢) be a Poisson groupoid with a Hamiltonian action of a Lie group H as
in example 2.5.5 of chapter 2. We have seen that the reduced space (Gyed, Treq) is a Poisson
groupoid. Let A,.q be the Lie algebroid of G,¢4. The induced Dirac structure on A,.q is the
graph of the linear Poisson bivector w4, on A4, determined by the dual Lie algebroid

A*

red’

red

See example 5.2.3.
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5.3 Reconstructing multiplicative Dirac structures

In this chapter we extend the integration of Lie bialgebroids to Poisson groupoids
and the integration of IM-2-forms to twisted multiplicative 2-forms, carried out in [48] and
[10], respectively. Let A 44, M be an integrable Lie algebroid with source simply connected
integration G. The fact that G has simply connected s-fibers implies that the tangent
groupoid T'G = T M and the cotangent groupoid T*G = A* are source simply connected
Lie groupoids. In particular, since A(TG) = TA and A(T*G) = T* A we conclude that the
direct sum TG = TG @ T*G is the source simply connected integration of TA =TA®T*A.
Consider now a Lie subalgebroid L4 C TA which has also a vector bundle structure over
A. As explained in appendix A subsection A.0.2, L4 C TA integrates to a source simply
connected Lie subgroupoid Lg C TG which inherits a vector bundle structure over G. That

is,

VB-subalgebroid L4 C TA — VB-subgroupoid Lg C TG. (5.12)

In the previous section, we explained the effect of the Lie functor on multiplicative

Dirac structures in terms of the map

Diry:(G) — Dirge(AG) (5.13)
Lo — Lag (5.14)

We will prove that, whenever G has simply connected s-fibers, we can reconstruct a multi-

plicative Dirac structure out of elements in Dirg(AG).

Theorem 5.3.1. Let G = M be a source simply connected Lie groupoid with Lie algebroid
A. The map (5.13) is a bijection.

Proof. We construct an inverse of (5.13). For that we take an element L4 € Dirg,(A), that
is L4 is linear Dirac structure on A such that L4 C TA is a VB-subalgebroid. Consider
the integrating VB-subgroupoid Lg C TG as explained in (5.12). We will prove that Lg is
a multiplicative Dirac structure on G. Since Ly C TA is Lagrangian with respect to the
canonical symmetric pairing (-,-)4 on TA, we conclude from Proposition 5.2.2 that Lq is

Lagrangian with respect to the canonical symmetric pairing (-,-)¢ on TG. It remains to
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show that Ls C TG is integrable with respect to the Courant bracket. Equivalently, we
have to prove that the Courant 3-tensor ug € I'(A3LY) is zero. Recall that the fact that
Ly C TA is a Dirac structure is equivalent to saying that the induced Courant 3-tensor
pa € T(A3LY) vanishes. Therefore, we use Proposition 5.2.5 and Lie’s second theorem to
conclude that p; =0, as desired. This shows that Lg is a Dirac structure on G, which by
definition is multiplicative.

O

As a consequence of Theorem 5.3.1 we obtain the integration of Lie bialgebroids

proved in [48].

Corollary 5.3.1. Let (A, A*) be a Lie bialgebroid. Assume that G is a source simply
connected Lie groupoid with Lie algebroid A. Then there exists a unique Poisson bivector

wa on G, making the pair (G, 7g) into a Poisson groupoid with Lie algebroid (A, A*).

Proof. The linear Poisson bivector w4 on A defines a Lie algebroid morphism 7rﬁA T*A —
TA. Let L, be the Dirac structure on A determined by the graph of 7'['514. Then L, €
Dirg4(A) and we can integrate L, to a unique multiplicative Dirac structure Lg on G
according to Theorem 5.3.1. Since L, is the graph of a Lie algebroid morphism, we
conclude that Lg is the graph of a Lie groupoid morphism 7TﬁG : T*G — TG. The fact
that L¢g is a vector bundle over G says that there is a well defined bivector 7 on G, given

by

The fact that Lg is a Dirac structure over GG is equivalent to saying that 7w is a Poisson
bivector. Therefore, the pair (G, ) is a Poisson groupoid with Lie bialgebroid (A4, A*).
O

Finally, our construction of linear Dirac structures which are Lie subalgebroids
of TA, out of multiplicative Dirac structures on G is strongly inspired on the tangent lift
of arbitrary Dirac structures. Recall that the Courant integrability of the tangent lift of a
Dirac structure came for free, since up to canonical identifications, a tangent Dirac structure
is only a tangent prolongation Lie algebroid. The Courant bracket on X(T'M) @ Q' (T M)

is obtained via the Lie bracket of a tangent Lie algebroid and a suitable flip isomorphism
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Jy®On :TTM TT*M — TTM & T*T'M. In our study of multiplicative and linear
Dirac structures, we realized a linear Dirac structure L4 as the Lie functor applied to
a multiplicative Dirac structure Lg. It seems that the Lie functor applied to the Lie
algebroid Lo — G associated to a multiplicative Dirac structure should lead to a Lie
algebroid A(Lg) — AG, which up to canonical flip isomorphisms must coincide with the
Lie algebroid L o — AG associated to the linear Dirac structure L a¢. This approach is
closely related to a second order geometry introduced by K. Mackenzie [42, 43], and it will
be explained in chapter 6.

5.4 Multiplicative B-field transformations

A Dirac structure on M is defined out of two objects canonically attached to the
direct sum vector bundle TM = T'M & T*M, namely the symmetric pairing (-,-) and the
Courant bracket [-,-]. One can see easily that the there exists a natural extended action
of the group Diff(M) on TM, and this action preserves the symmetric pairing (-,-) and
the Courant bracket. In this section we study extra symmetries of the geometric data
(TM,{-,-),[,])- These symmetries are given by the so called B-field transformations. See
e.g. [26, 32, 34] for the relation with generalized complex geometry.

Let B € Q%(M) be a 2-form on M and consider the Lagrangian subbundle 75(L) C
TM defined by

(L) ={X®a+ixB|X®acL}

Now we see what condition on the 2-form B implies that 75(L) defines a Dirac

structure.

Proposition 5.4.1. [26]
The subbundle Tp(L) defines a Dirac structure on M if and only if B is a closed

2-form.

Proof. Let X @ a and Y @ 3 be sections of L. Then

[[X@a+iXB,Y@ﬂ+in]] = [X, Y] O Lx0—ixda+ LxiyB —iydixB,
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and using the formula i[xy) = [Lx,iy] one can see that B is closed if and only if

[X®a+ixB,Y@®p+iyB]=[X,Y]® LxS — ixda—Q—i[X’y}B,

which is equivalent to saying that 75(L) is a Dirac structure.

O

With this, the abelian group Q2 (M) of closed 2-forms on M can be thought of
as a group of symmetries of the space of Dirac structures on M. A Dirac structure L’ is
gauge equivalent to L, if L' = 75(L) for some closed 2-form B on M, see e.g. [5]. We
also say that L’ is obtained out of L by a B-field transformation. Notice that, it follows

from the proposition above, that the injective bundle map

TM & T*M 25 TM @ T*M

XGa— Xpa+ixD,

preserves the Courant bracket. In particular, as observed in [5], gauge equivalent Dirac

structures define isomorphic Lie algebroids

L=r7p(L).

One observes that gauge transformations may change the “relative position” of a
Dirac subbundle L inside TM. For instance, if a Dirac sub bundle L has null intersection
with T'M, that is L is a Dirac structure induced by a Poisson bivector = on M, then not

necessarily 7p(L) is the graph of a Poisson bivector.

Definition 5.4.1. [5]
A closed 2-form B on M is called m-admissible if 75(L) = L., (x) for some Poisson

bivector Tp(m) on M.

As we have seen before, if B is m-admissible then the Lie algebroid L, is isomorphic
to L;,(r) via the canonical map 7. This induces a canonical isomorphism between the
Lie algebroids (T"M), and (T*M)p determined by the Poisson structures 7 and 75(m),

respectively. One can check easily, that the induced Lie algebroid isomorphism is given by
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g :=1Id+ Bfort: (T*M), — (T*M)

Tp(n)"

Now we consider an integrable Poisson manifold (M, ), with symplectic groupoid (G,wq).
Assume that B is a m-admissible 2-form on M, then the Lie algebroid associated to the
Poisson manifold (M, 7p(m)) integrates to G. The natural question is what is the effect of a
gauge transformation on the symplectic groupoid of M. Notice that the map Id + Bf o 7 :
T*M — T*M is an IM-2-form, and since it is invertible, it corresponds to a symplectic
form wp on the Lie groupoid G. Further, notice that Id : T*"M — T*M is the IM-2-
form associated to wg, and Bf o 7w : T*M — T*M is the IM-2-form associated to the
multiplicative 2-form on G defined by Bg := t*B — s*B. Now it is clear how the symplectic

groupoid of an integrable Poisson manifold is modified under the action of a B-field.

Theorem 5.4.1. [11]
Consider the multiplicative 2-form wp = w + Bg. Then the pair (G,wp) is a

symplectic groupoid integrating the Poisson manifold (M, Tp(m)).

More generally, we can study gauge transformations of Poisson groupoids. In
particular we are concerned with the effect of a gauge transformation on the Lie bialgebroid
of a Poisson groupoid. Let (G, 7g) be a Poisson groupoid with Lie bialgebroid (A, A*). Let
Bg € Q%(G) be a closed multiplicative form on G. Assume that Bg is mg-admissible and
consider the Poisson bivector Wg constructed via the Bg-field tansformation of mg. One

can check that

(m8)f = ﬂﬁG o(Id + Bg o ﬂg)_l.

In particular the Poisson bivector ﬂ'g is multiplicative, since (772)ﬁ is the composition of
groupoid morphisms. As explained in chapter 3, the multiplicative closed 2-form B¢ induces
a linear closed 2-form B4 on A, and it is easy to see that By is m4-admissible, where 7 4 is
the linear Poisson structure on A induced by the dual Lie algebroid A*. Thus, we obtain a

new Poisson structure on A which is determined by

(5t = 7% o (1d + BY o %)L

One observes that ﬁ]j is a linear bivector, since (7r§)ﬁ is the composition of Lie algebroid

morphisms. Therefore, in the presence of a multiplicative Bg-field, the Lie algebroid struc-
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ture of A is preserved. On the other hand, the Poisson structure on A is modified by
the linear Ba-field transformation, so the Lie algebroid structure on the dual bundle A*
changes.

Now we see how the Lie algebroid A* changes under the action of a gauge trans-
formation of g by the multiplicative form Bg = t*B — s*B where B is a closed 2-form
on the base manifold M. We denote by A% the Lie algebroid dual to the linear Poisson
bivector 7%. Let us find the anchor p%. and the Lie bracket [-,-]%. of the Lie algebroid A%.

First we have a morphism of vector bundles

(r5)F

T A TA

(5.15)

A* TM

—1
pA*OwB

where ¢ = (Id 4 p% o Bf o p4.). On one hand, the linear bivector 78 induces a morphism
of Lie algebroids (T A)p, — T'A, then it follows from Theorem 2.4.3 that the anchor of
A% is given by

pﬁ* = pax© 1/1§1

Moreover the Lie bracket of the Lie algebroid A% is given by

€1, )5 = vplE (&), ¥5 (&) ax-

In summary, the action of Bg = t*B — s*B on (G, nq) is reflected infinitesimally by the
transition from the Lie bialgebroid (A, A*) to the Lie bialgebroid (A4, A}). Notice that
(A, A}) is actually a Lie bialgebroid due to the fact that (5.15) is a Lie algebroid morphism.
See Theorem 2.4.3.

Remark 5.4.1. Recall that every Lie bialgebroid (A, A*) induces a Poisson structure 7 on
the base M, determined by

Wﬁ :pAopj:l*a
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where py, ps- denote the anchor maps of A, A*, respectively. See e.g. [5]. Notice that
a closed 2-form B on M is m-admissible if and only if the map vp : A* — A* defined

previously is invertible.

The notion of gauge transformation of a Lie bialgebroid was introduced in [5], and
it becomes clear after the comments above. Let (A, A*) be a Lie bialgebroid with anchor
maps pyq : A — TM, pys : A* — TM and Lie brackets [-,-]a, [-,]ax. Let 7™ be the
Poisson structure on M induced by (A, A*). Suppose that B is a closed 2-form on M which

is m-admissible.

Definition 5.4.2. The gauge transformation of the Lie bialgebroid (A, A*) by the closed
2-form B, is the Lie bialgebroid (A, A};) described before.

The following result was proved in [5].

Theorem 5.4.2. Let (G, 7g) be a Poisson groupoid over M, with Lie bialgebroid (A, A*),
and induced Poisson structure m on M. Let B be a closed 2-form on M and consider the
2-form Bg = t*B — s*B. Then B is w-admissible if and only if Bg is mqg-admissible.

Moreover, the Poisson groupoid (G, Tp,(7q)) has Lie bialgebroid (A, A%).

The following result describes the effect of a gauge transformation of a Poisson
groupoid by a non admissible multiplicative 2-form. This is the original setting where

multiplicative Dirac structures appeared.

Theorem 5.4.3. Let (G, mg) be a Poisson groupoid over M with Lie bialgebroid (AG, A*G).
Let B be a closed 2-form on M and consider the multiplicative 2-form Bg = t*B — s*B.
The following hold:

1. The Dirac structure L8 = 7p,(Lr,) is multiplicative.

2. The linear Dirac structure induced by Lg 18

LﬁG = TBaa (LWAG )v

where Bag is the morphic 2-form determined by Bg, and maq is the linear Poisson

structure on AG induced by A*G.
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Proof. Let us show the first statement. A straightforward computation shows that the
multiplicativity of the form B¢ is equivalent to saying that

Ty : TG — TG
is a morphism of Lie groupoids. In particular, since Ly, is a Lie subgroupoid of TG we
conclude that the image LEG = 7By (Lx,) is also a Lie subgroupoid of TG, as required. In
order to prove 2. we observe that the application of the Lie functor to 7p,, gives a morphism
of Lie algebroids, which up to canonical identifications coincides with

7B, : TA — TA,
where By is the morphic closed 2-form on A induced by Bg. See chapter 3 to recall this
construction. The isomorphism of Lie groupoids

TB
Lpe —3 LE,

induces an isomorphism of Lie algebroids

TBAG 1B
LWAG ’ LAG'

Hence, the Dirac structure in Diryy(AG) induced by the multiplicative Dirac structure
Lg € Diryut(G) coincides with the subalgebroid LE C TA, as desired.
O
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Chapter 6

Dirac groupoids and LA-groupoids

This chapter is concerned with the second order geometry underlying multiplicative
Dirac structures. The definition of a Dirac groupoid encompasses two geometric structures,
namely a Dirac sub bundle Lg C TG which also defines a VB-subgroupoid Lg = E of
the natural VB-groupoid structure on TG. Double geometric structures have been vastly
studied by Kirill Mackenzie [42, 43, 45, 44] providing a unified setting for several structures
appearing in the theory of Poisson manifolds. The main observation of this chapter is
that every multiplicative Dirac structure fits in Mackenzie’s theory of double structures.
More concretely, we show that every Dirac groupoid can be viewed as a double structure
called LA-groupoid, which roughly speaking is a Lie groupoid object in the category of
Lie algebroids. A prolongation procedure, similar to the tangent prolongation of a Lie
algebroid, gives rise to the infinitesimal data of an L£A-groupoid, in the terminology of [43]
such a infinitesimal data is called a double Lie algebroid. If we think of a Dirac groupoid
as a special type of LA-groupoid, we are allowed to apply the Lie functor yielding the
corresponding double Lie algebroid. It turns out that this double Lie algebroid encodes
the linear Dirac structure associated to any multiplicative Dirac structure, as explained in

chapter 5.

6.1 LA-groupoids and double Lie algebroids

An LA-groupoid is a Lie groupoid object in the category of Lie algebroids. More

precisely, an LA-groupoid is a square
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q9H

dE

where the single arrows denote Lie algebroids and the double arrows denote Lie groupoids.
These structures are compatible in the sense that all the structure mappings (i.e. source,
target, unit section, inversion and multiplication) defining the Lie groupoid H are Lie alge-
broid morphisms over the corresponding structure mappings which define the Lie groupoid
G. We also require that the anchor map pg : H — T'G be a groupoid morphism over the
anchor map pp : £ — T M. Here TG is endowed with the tangent groupoid structure over
TM. For describing the square given by an LA-groupoid we use the notation (H, G, E, M).
It is worthwhile to explain how the groupoid multiplication defines a morphism of Lie al-
gebroids. For that, let mpy : Ho) € H x H — H denote the groupoid multiplication of
H, and similarly let m¢g : G(3) € G X G — G denote the multiplication of G. The direct
product vector bundle H x H — G X G inherits a natural Lie algebroid structure, and
we have a Lie subalgebroid H(y) over G(3) which is just a pull back algebroid, see e.g. [33]
for details about the pull back operation in the category of Lie algebroids. With respect to
this Lie algebroid structure, the multiplication map mpg is required to be a Lie algebroid

morphism covering mg.

Example 6.1.1. Let G be a Lie groupoid over M. The tangent functor leads to a canonical
LA-groupoid (TG,G,TM, M), where the Lie groupoid structure on T'G is the tangent
groupoid, and the Lie algebroid structure TG — G corresponds to the trivial Lie algebroid.
See example 2.1.7 in chapter 2.

The Lie functor applied to an L£A-groupoid (6.1) determines a square
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Alqm)
AG

E M

dE

where each of the arrows define Lie algebroids. The top Lie algebroid structure is non
trivial, and it deserves a detailed explanation. The Lie algebroid structure AH — AG was
constructed in [43] as a prolongation procedure similar to the tangent prolongation of a Lie

algebroid, except that we replace the tangent functor by the Lie functor.

Remark 6.1.1. The main ingredients for constructing the tangent Lie algebroid of H — G

are the tangent anchor map

pry = JaoTpy,

and the generators T'u, 4 of the space os sections I'pg(TH), where u is a section of the
vector bundle H — G. In order to construct the prolonged Lie algebroid structure on
AH — AG we need to understand the analogue objects of the tangent anchor and the
generating sections. More precisely, we would like to find conditions on the anchor map pg
and a section u € I'¢(H) in such a way that the tangent anchor, as well as the sections

Tu, G, restrict to an anchor map and sections of AH — AG that generate I'yq(AH).

Notice that the tangent anchor map is obtained by a direct application of the
tangent functor to the anchor of H, and then twisting by a suitable morphism of double
vector bundles. This suggests that the anchor map for AH — AG should be defined by
an application of the Lie functor to the Lie groupoid morphism p; : H — T'G and then

swap it in a proper manner.

Definition 6.1.1. The prolonged anchor map AH — T(AG) is defined by

Z) = ]61 © A(pH)a

where jg : T(AG) — A(TG) is the canonical identification defined in appendix A.



115

Now we study the space of sections I'g4g(AH). First we notice that the induced
section Tu € I'rq(T H) defines a section of AH — AG if the section v : G — H preserves

the units and the source fibrations. This leads naturally to the following definition.

Definition 6.1.2. A section u € I'¢(H) is called a star section if there exists a section

ug € T'ps(F) such that
1. egoug =wuoey,
2. sgou=ugo Sqg.

Notice that since every star section u : G — H preserves the units and the source

fibrations, we are allowed to apply the Lie functor to u, yielding a section A(u) of the vector

bundle AH "4 4.

Remark 6.1.2. Recall that the core of the double vector bundle (TH,TG, H,G) is the
vector bundle H — G. Every section u of the core H — G gave rise to a core section

G € T'pq(TH) defined by

a(Xg) = T(0") Xy + ulg),

where u(g) = %(tu(g))\tzo is the core element induced by u(g) € H,. This suggests that in
order to define sections of AH — AG that play the role of @, we need to find the core of
the double vector bundle (AH, AG, E, M).

Definition 6.1.3. Let (H,G,E,M) be an LA-groupoid. The core of H is the vector
bundle over M defined by

K = e ker(sp).

Example 6.1.2. Let G be a Lie groupoid and consider the canonical LA-groupoid (T'G,G,TM, M).
The core of T'G is nothing else that K = AG the Lie algebroid of G.

Given a section k € I'(K) we define a section ki € I'¢(H) in the following way

kr(g) == k(ta(9))0y,

where Oé{ is the zero element in the fiber H, above g € G. Notice that for every section

k € T'(K) the induced section ki € I'¢(H) satisfies
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kHOGM:k.

Example 6.1.3. For the canonical LA-groupoid (T'G,G,TM, M) a section k of the core K
is just a section of the Lie algebroid AG. The induced section krg € I'¢(T'G) is exactly the
right invariant vector field on G determined by the section k € I'(AG). Indeed, the right
invariant vector field determined by k € I'(AG) is defined, at every g € G with t(g) = z, by

Try(k(x)) = Tma(z, g)(k(x), 0, ),
which is exactly the section krg.

It was proved in [43] that there exist an exact sequence of vector bundles over F,

4p(K) — AH — qp(AG),

and an exact sequence of vector bundles over AG

Gac(K) — AH — qio(E).

In particular, the core of the double vector bundle (AH, AG, E, M) is the vector bundle
K— M.
Now let us see how a core element k& € K induces a Lie algebroid element k € AH.
For that, we observe that every element in AH has the form
d

W = —(h)|=
= (ho)li=o

where h; is a curve in H sitting in a fixed source fiber s3;'(e) with hg = ep(e). Thus, for
every core element k € K above xz € M, that is sy(k) = 0¥ and qg(k) = ey (), there
exists a natural element k € AH, defined by

—_ d
k= —(tk)|;i—0o.
dt( )t=0

Definition 6.1.4. Given a section k € I'(K), the core section induced by k is the section
ke € T aq(AH) defined by

ke () = A(07 Yuy + E(2).
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Notice that every section k € T'(K) induces a section of the tangent prolongation
TH — TG. Indeed, first we consider the induced section ky € I'g(H) and then we

construct the core section k € I'rq(TH) defined in the usual way

ki (Xg) =T(0") Xy + ku(g).

For every x € ep(M) C G one has ky(x) = k(x), and thus at any u, € (AG), C T, G we

get

~

ki (ug) = A% Yu, + k(x).

Hence we conclude that the core section u € I'rg (T H) restricts to a section of AH — AG
if & = kg comes from a section k € T'(K) of the core of (H,G,E,M). The following

proposition was proved in [43].

Proposition 6.1.1. The space of sections I'aq(AH) is generated by sections of the form

kCOI‘e

A(u), where u : G — H is a star section, and by sections of the form , where k :

M — K is a section of the core of H.

The Lie bracket on I'yg(AH) is defined in terms of star sections and core sections.
First we observe that whenever u,v € I'¢(H) are star sections, then the Lie bracket [u, v] €
I'¢(H) is also a star section. Thus the Lie bracket between sections of the form A(u), A(v)
is defined by
[A(u), AW)] = A(lu, v]).

The bracket of a pair of core sections is defined by

[k(lzorej k;OI‘e] — 0

In order to define the bracket of a star section and a core section we notice that

every star section u : G — H induces a covariant differential operator

D, : T(K) — T'(K)

k— [u7kH]OEM7
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now we define [A(u), k] = (D, (k))<.

The Lie bracket of other sections of ' 4g(AH) is defined by requiring the Leibniz

rule

[’LU, fw,] = f[wa U}/] + (‘Cﬁ(w)f)w,

The vector bundle AH ) AG endowed with the anchor map p = j;' o A(p)

and the Lie bracket [-,-] on I'ayg(AH) becomes a Lie algebroid called the prolonged Lie
algebroid induced by H — G, see [43].

Example 6.1.4. Consider the canonical LA-groupoid (T'G,G,TM,M) with the corre-
sponding prolonged Lie algebroid (A(T'G), AG, TM, M). The canonical map jg : T(AG) —
A(TG) is a morphism of double vector bundles, and whenever it is viewed as a morphism
of vector bundles over AG, it becomes a Lie algebroid isomorphism between the trivial Lie
algebroid T(AG) — AG and the prologated Lie algebroid A(TG) — AG. In fact, the
compatibility with the anchor maps follows directly from the definition of the prologated an-
chor map. On the other hand, for every star vector field X € I'¢(T'G), we have an induced
vector field X = jo (A(X)) on AG, which is linear in the sense that the corresponding
local 1-parameter family of diffeomorphisms of AG is given by vector bundle isomorphisms.
Similarly, for every section k € I'(AG) of the core of TG, one has another vector field k! on
AG, which is the core vector field induced by k, that is

k'(a)F := %F(a + tk(qac(a)))|t=o-

The space of vector fields X(AG) is generated by vector fields of the form X, where
X € X(G) is a star vector field, and by vector fields of the form k', where k € I'(AG). The

Lie bracket of such a vector fields satisfies

[X.Y]=[X,Y]; [X.K]=(X,kToen)'; [kl kj]=0.

In particular the prolonged Lie bracket on I'yq(A(T'G)) is mapped, via jél :
A(TG) — T(AG), to the usual Lie bracket of vector fields on AG. See [47].
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6.2 Dirac groupoids as LA-groupoids

Let Lg be a multiplicative Dirac structure on a Lie groupoid G = M. This means
that we have a VB-subgroupoid Lg = F of TG = TM ¢ A*G, such that Lg C TG is also
a Dirac sub bundle. In particular there is a canonical Lie algebroid structure on L — G
with anchor map Lg — T'G the natural projection and Lie bracket [-,-] on I'¢(Lg). The
dual of the Lie algebroid AG can identified with the conormal bundle N*(M) C T*G, and
we define a Courant like bracket on the space of sections of E C TM & A*G by

(X1 @&y, X2 @&y i= [X1, Xo] ® (Lx, 8o — ix,dE).

With respect to this Lie bracket and the natural projection £ — T'M, the vector
bundle £ — M becomes a Lie algebroid.

Proposition 6.2.1. A multiplicative Dirac structure Lg on G gives rise to an LA-groupoid

jJel=lde]

E M

qE
where pg and cg denote the tangent projection and the cotangent projection, respectively.

Proof. Since the structure mappings defining the Lie groupoid Lg == F are restrictions of
the structure mappings of the tangent and cotangent groupoids, a straightforward compu-
tation shows that these structure mappings are Lie algebroid morphisms over the structure
mapping of G. In order to prove that the multiplication on L¢ is a Lie algebroid morphism
over the multiplication on G, we reproduce the proof of Proposition 5.2.3 replacing mr by
mr., where mr, denotes the multiplication on Lg. An argument similar to the one used
in the proof of Proposition 5.2.3 shows that the inversion map on Lg is a Lie algebroid
morphism. This proves the statement.

O

Example 6.2.1. Assume that (G, 7g) is a Poisson groupoid. Then wﬁG TG — TG is

a groupoid morphism over the dual anchor map py«g : A*G — T'M. The corresponding
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LA-groupoid associated with this structure is

jJelS= el

where L. is the graph of the bivector 7g, and E, is the graph of the dual anchor map
paxg- The top Lie algebroid structure is the usual algebroid structure isomorphic to the
cotangent bundle TG — G, and the Lie algebroid structure on E,, is the one induced by
the graph of the Lie algebroid morphism py«q : A*G — T'M.

Example 6.2.2. Let wg be a multiplicative closed 2-form on a Lie groupoid G. Consider

the corresponding IM-2-form ¢ : AG — T*M. This determines an L.A-groupoid

jlels[de!

B, M

dEs

where Ly, is the graph of the wg and E, denotes the graph of the bundle map —o' :
TM — A*G.

Consider now a multiplicative Dirac structure Lo C TG with associated LA-
groupoid (Lg, G, E,M). Applying the Lie functor we obtain the prolonged Lie algebroid
structure on A(Lg) — AG, and we use the canonical map j;' @ : A(TG)® A(T*G) —
T(AG)®T*(AG), to define a Lie algebroid Lag = (j5'®j/)(A(Lg)) over AG, characterized
by the fact that j&l @ ji : A(Lg) — Lag is a Lie algebroid isomorphism. We have seen
in chapter 5 that Lsg C T(AG) is a Lagrangian sub bundle with respect to the canonical
pairing (-,-)ac on T(AG). We claim that the Lie bracket on I'ag(Lag) induced by the
prolonged Lie bracket on I'4¢(A(L¢g)) coincides with the Courant bracket.

Theorem 6.2.1. The Lie bracket on I'ag(Lag) coincides with the Courant bracket [-,-]
determined by the Courant algebroid T(AG) @& T*(AG). In particular, the Lie functor maps
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multiplicative Dirac structures on G into linear Dirac structures on AG which are Lie

subalgebroids of T(AG).

Proof. The space of sections I'gq(Lag) is generated by sections of the form X®a:=
Ja (AX)) @ jL(A(q)), where X @ € To(L) is a star section, and by sections of the form
'@kl = 5l (k) @ ji (heor), where k @ h € T'(K¢) is a section of the core Kg — G
of the LA-groupoid (Lg,G, E,M). The Lie bracket on I'yg(Lag) is determined by the

following identities
L [XeaYeld = (s ¢i)AlX®aY & flc)
2. [Xoak@nl)=(jg' i) ([X © a,krg ® higle o ear) ™

3. [kl @bl ki @)l =o0.

Since A(X®a) and (k&h)“™ are suitable restrictions of (X @«) and (k&h) ., respectively,
and the Lie bracket on sections of AH — AG comes from the Lie bracket on sections
of TH — TG, we conclude that the isomorphism A(Lg) = Lag, which is a suitable
restriction of the isomorphism (Lrq, [, ]) = (T'Lg, [-,]) shown in Proposition 5.1.2, sends

the prolonged Lie bracket to the Courant bracket.
O]

Example 6.2.3. The prolonged Lie algebroid A(L,,) — AG induced by the £.A-groupoid
determined by a Poisson groupoid, is mapped via the canonical map jél @ ji; into the Lie

algebroid L — AG given by the linear Dirac structure on AG defined by the linear

TAG

Poisson bivector w45 on AG.

Example 6.2.4. Consider the prolonged Lie algebroid A(L,.,) — AG induced by the
LA-groupoid determined by a multiplicative closed 2-form wg on G. The canonical map
jél @ j¢; sends the prolonged Lie algebroid to the Lie algebroid L,,, — AG defined by the

linear Dirac structure on AG which is the graph of the linear closed 2-form w4 = Lie(wg)

on AG.

Although the LA-groupoid approach to Dirac groupoids just explain the action
of the Lie functor, we believe that it provides an explicit construction of the linear Dirac
structure corresponding to a multiplicative Dirac structure, following the spirit of the con-

struction of the linear Dirac structures associated to multiplicative Poisson bivectors and
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multiplicative closed 2-forms. However, the integration of double Lie algebroids to double
Lie groupoids was perfomed by Kirill Mackenzie in some special cases. Our guess is that

an intermediate integration step as

{double Lie algebroids} — {L.A-groupoids} — {double Lie groupoids},

would provide an explicit integration functor from linear Dirac structures to multiplicative
Dirac structures. Furthermore, such intermediate step would be useful to find the presym-
plectic groupoid associated to a multiplicative Dirac structure. This will be treated in a

future work.
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Chapter 7

New research directions

This chapter contains a description of future work based on the main results ex-

posed along this dissertation.

7.1 Lie’s second theorem and the Van Est isomorphism

Let A % M be a Lie algebroid with anchor map p : A — TM and Lie bracket
[-,-] on I'(A). Consider a closed (k + 1)-form ¢ on M. An IM-k-form on A with respect to

Z:Il T* M, which satisfies the following conditions:

¢ is a bundle map 0 : A — []
L ipyo(u) = —iywyo(v)

2. U([u> v]) = ‘Cp(u)g(v) - ‘Cp(v)a(u) + dip(v)a(u) + Z.p(u)/\p(v)gba

for every u,v € I'(AG).

In [2, 3] was proved that for every source-simply connected Lie groupoid G with

Lie algebroid A, there exists a one-to-one correspondence between:

i) Multiplicative k-forms wg on G with dwg = s*w — t*wg, and

ii) IM-k-forms on A with respect to ¢.

The method used in [2, 3] is based in the interpretation of multiplicative forms
satisfying i) as cocycles in the so called Bott-Shulman complex of the Lie groupoid G.

Similarly, IM-k-forms with respect to ¢ induces cocycles in the Weil algebra of the Lie
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algebroid A, see [2, 3]. The correspondence between multiplicative forms satisfying i) and
IM-k-forms is constructed out of a Van Est type isomorphism between the cohomology of
the Bott-Shulman complex of G and the cohomology of the Weil algebra of A, see [2, 3].
We would like to find the relation between linear k-forms on a Lie algebroid A and elements
in the Weil algebra of A. In particular, morphic k-forms must induce cocycles in the Weil
algebra. We can use Lie’s second theorem to integrate morphic forms to multiplicative
forms. This procedure must be related with the Van Est map approach for integrating

IM-k-forms. We will discuss these topics in a future work.

7.2 Multiplicative Dirac structures and supergeometry

In this section we explain how the theory of graded supermanifolds can be used

to study multiplicative Dirac structures.

Definition 7.2.1. [38, 53]

A Courant algebroid over M is a vector bundle £ — M equipped with a
nondegenerate symmetric fibrewise bilinear operation (-, -), a bilinear bracket [-,-] on I'(E)
and an anchor map p : E — T'M, such that for every ej,e9,e3 € I'(E) and f € C*°(M),

the following conditions are fulfilled:

1. [e1, [ez,es]] = [[e1, e2], e3] + [e2, [e1, e3]]
2. p([er, ea]) = [p(e1), ple2)]

3. [er, feal = flex, e2] + (Lper) fez

4. (er, [ez; e3] + [es, ea]) = Lye,) ((e2, €3))

5 Loey)((e2, €3)) = ([er2 ], e3) + (e2, [er, ea])

A Courant algebroid will be denoted by (E,[-,-],(:,:),p). The main example of
a Courant algebroid is TM @& T*M with the canonical nondegenerate symmetric pair-
ing (-,-) and the usual Courant bracket. As explained in [54], every Courant algebroid
(E,[,-], (-,*), p) has an interesting counterpart in supergeometry. Since Courant algebroids
are the geometric structure where Dirac structures belong, it is useful to have such a su-

pergeometric interpretation to study Dirac structures.
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Theorem 7.2.1. [5/]

There exists a one-to-one correspondence between
1. Courant algebroids, and
2. Symplectic graded manifolds of degree 2 with a degree 3 function 0 satisfying {6,0} = 0.

Moreover, this correspondence is constructed in such a way that the canonical
Courant algebroid structure on TM @ T*M corresponds to the symplectic graded manifold
T*[2]T[1]M.

We propose to study the inifinitesimal counterpart of multiplicative Dirac struc-
tures via Roytenberg’s correspondence 7.2.1. For that, consider the usual Courant algebroid
TG®T*G over G, and let (S(G),0) denote the graded symplectic supermanifold 7*[2]T'[1]G
associated to TG @ T*G with the degree 3 function 6 satisfying {6,0} = 0. Since the direct
sum TG @ T*G is also a Lie groupoid over TM & A*, this property has to be reflected in the
supermanifold S(G) = T*[2]T[1]G. Indeed, S(G) is a graded Lie groupoid over the graded
manifold S(P) := (T[1]A)*[2]. Moreover, the symplectic structure on S(G) is the canonical
symplectic structure on a cotangent groupoid, thus it defines a multiplicative symplectic
structure on S(G). The other data defining S(G) is the degree 3-function §. The fact
that TG @ T*G is a Lie groupoid must imply that 6 is a multiplicative function on S(G).
Therefore, the supergeometric counterpart of the Courant algebroid TG & T*G is a graded
symplectic supergroupoid S(G) = S(P) equipped with a degree 3 multiplicative function 6
satisfying {0,6} = 0. On the other hand, the base manifold S(P) inherits the structure of
a graded Poisson manifold, characterized by the fact that the target map S(G) — S(P)
is a morphism of graded Poisson manifolds.

Let us consider now a multiplicative Dirac structure L on G. In the super
side, a multiplicative Dirac structure corresponds to a graded Lagrangian subgroupoid
S(L) = S(C) of the graded symplectic groupoid S(G) = S(P), where the degree 3 multi-
plicative function 6 vanishes. Just as Lagrangian subgroupoids of symplectic groupoids have
a coisotropic base [15, 66|, the graded Lagrangian subgroupoid S(L) C S(G), necessarily
has a base S(C') which is a graded coisotropic submanifold of the graded Poisson manifold
S(P). We can argue that the infinitesimal data of a graded Lagrangian subgroupoid S(L)
of S(G) is the Lie subalgebroid N*(S(C)) of T*(S(P))'. However, we only need S(C'), since

'Recall that a submanifold C of a Poisson manifold P is coisotropic if and only if the conormal bundle
N*(C) CT*P is a Lie subalgebroid
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we can go from S(C) to N*(S(C)) canonically. In terms of the algebra of functions, the in-
finitesimal version of a graded Lagrangian subgroupoid of S(G) corresponds to a coisotropic
ideal Z of the graded Poisson algebra C>°(S(P)).

The supergeometric approach to linear Dirac structures on a Lie algebroid should
provide a finer infinitesimal invariant of a multiplicative Dirac structure. The fact that the

ideal 7 is coisotropic means that

1.7y C 1,

and such a relation might lead to a more natural description of Dirac structures L4 €

Dirg4(A), such as Lie bialgebroids and IM-2-forms.

7.3 New higher structures: CA-groupoids

This is the final section of this chapter. Along this thesis we have study multi-
plicative Dirac structures on Lie groupoids. It is the Courant algebroid TG & T*G where
multiplicative Dirac structures lie. In addition, the vector bundle TG®T*G is a Lie groupoid
over TM @ A*G, and in chapter 5 we proved that all the structure data defining the Courant
algebroid TG @ T*G is preserved by the structure mappings that define the Lie groupoid

TG ®T*G. In terms of double structures, we have a square

TGoT*G G

TM & A*G M

where double arrows denote Lie groupoids, the top horizontal structure is a Courant al-
gebroid and the bottom horizontal structure has a structure similar to that of a Courant
groupoid, except that the natural pairing on TM ® A*G could be degenerate. The double
structure (7.1) should be thought of as the model example of a new higher structure that
might be called a CA-groupoid. Roughly, a CA-groupoid is a Lie groupoid object in the
category of Courant algebroids. We believe that the techniques used along this work can

be useful for the study C.A-groupoids and their infinitesimal versions. Also supergeometry
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can be used to understand what a CA-groupoid is. This will be a future research project.
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Appendix A

Double geometrical structures

We recall here some double geometric structures such as double vector bundles,

VB-groupoids and VB-algebroids.

A.0.1 Double vector bundles

The concept of double vector bundle was introduced by J. Pradines in [52]. Here
we recall the main properties of these structures. We also recommend [41] for a detailed
discussion about double structures. Roughly, a double vector bundle is a vector bundle
object in the category of vector bundles. More specifically, a double vector bundle

consists of square

ap
D B
ap 4B (Al)
A an M

where each of the arrows denote vector bundle structures. We require that all the structure
H

mappings defining the horizontal vector bundle D 2, B be morphisms of vector bundles

over the corresponding structure maps that define the vector bundle A 44, M. We use the

notation (D, B, A, M) to indicate the double vector bundle (A.1).

Example A.0.1. (Tangent double vector bundle)
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Given a vector bundle 4 4 M , there is a natural double vector bundle

Tqa
TA TM
PA PM (A.2)
A A M

obtained by applying the tangent functor to all the structure mappings that define A — M.

Example A.0.2. (Cotangent double vector bundle)
Given a vector bundle A & M , the cotangent bundle T* A gives rise to a double

vector bundle

T*A A*
ca qa* (A.3)
A M

qA

where the bundle projection 7 : T*A — A* is described locally by 7(z%, u®, p;, \a) = (o).

Given a double vector bundle (D, B, A, M), we define its core vector bundle as
C = ker(qf) Nker(g}). The core of a double vector bundle is canonically embedded in D,

and it becomes a vector bundle C — M in a natural way.

Example A.0.3. The core of the double vector bundle (A.2) is the vector bundle of ver-
tical vectors tangent to the zero section M — A. Therefore the core of (A.2) identifies

canonically with A — M.

Example A.0.4. The core of the double vector bundle (A.3) is described locally by elements
(2%, u%, pi, Ag) with u® = 0 and A\, = 0. Thus, the core of the double vector bundle (A.3)
identifies with T*M — M.

Let us consider a double vector bundle (D, B, A, M) as in (A.1).

Definition A.0.1. A section 4 € I'g(D) is called linear if there exists a section u € 'y (A)

such that & : B — D is a vector bundle morphism over v : M — A.
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Example A.0.5. Let u be a section of a vector bundle A — M. The application of the
tangent functor to u, yields a linear section Tu : TM — T A of the double vector bundle

(A.2).
Example A.0.6. A section u of a vector bundle A — M induces a linear section u” of
the double vector bundle (A.3). If {e,} denotes a basis of local sections of A such that
u = u®e,, then the linear section u’ is described locally by
UL(xiv ga) = (xiv ua($)7 0, fa)'

Given a section k of the core C — M of a double vector bundle (D, B, A, M),
the core section induced by k is a section k of D — B defined by
k(b) = 07(b) + k(gs (b)),

here 0P : B < D is the zero section and k(gp(b)) denotes the image of k(qz(b)) by the

canonical embedding C' — D.

Example A.0.7. A section v : M — A of the core of (TA,TM, A, M) induces a core
section @ : TM — T A determined by

where u(par(X)) = % (tu(par (X)))]i—o.

Example A.0.8. A section a : M — T*M of the core of (T*A, A*, A, M) determines a

core section & : A* — T™*A, which is locally described by

@(:Ei? ga) = (miy 0, O"i(x)a ga)v

where oo = o;dx’.

A.0.2 The VB-category

A VB-groupoid is a Lie groupoid object in the category of vector bundles. This

means that a VB-groupoid is a square
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q9H

(A4)

E M

dE

where double arrows denote Lie groupoid structures and single arrows denote vector bundles.
We require that the structure mappings (source, target, multiplication, unit section and
inversion) that define the Lie groupoid H = F be morphisms of vector bundles over the

corresponding structure mappings defining the Lie groupoid G = M.

Example A.0.9. Given a Lie groupoid G = M with Lie algebroid A, there are two
canonical VB-groupoids associated to it, namely, the tangent groupoid TG = T M and the
cotangent groupoid T*G == A*.

Now we want to understand what is the geometric object obtained by applying

the Lie functor to the VB-groupoid (A.4).

Definition A.0.2. An LA-vector bundle is a double vector bundle

E M

where the vertical structures are Lie algebroids and the horizontal structures are vector
bundles. These structures are compatible in the sense that all the structure mappings that
define the vector bundle A — FE are morphisms of Lie algebroids over the corresponding

mappings that define the vector bundle B — M.

As usual, one can say that an LA-vector bundle is a vector bundle object in the
category of Lie algebroid. There is also a symmetric version of an L£A-vector bundle, this
double structure is called a VB-algebroid. Recently, R. Mehta and A. Gracia-Saz [31] have

shown that these symmetric notions of double structure coincide.
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Example A.0.10. Given a Lie algebroid A — M, there are two canonical £A-vector bun-
dles associated to it, namely, the tangent Lie algebroid (T'A, TM, A, M) and the cotangent
Lie algebroid (T*A, A*, A, M).

It seems that the Lie functor maps VB-groupoids into £ A-vector bundles. In fact,

there exists a one-to-one correspondence between:
1. Source simply connected VB-groupoids, and
2. Integrable L£.A-vector bundles.

A VB-groupoid (A.4) is called source simply connected if the Lie groupoid H = F is
a source simply connected Lie groupoid. An L.A-vector bundle (A.5) is called integrable
if the Lie algebroid A — FE is an integrable Lie algebroid. In order to understand the
correspondence above, we briefly explain the main ideas of [6], where the determination of

a vector bundle out of its fiberwise scalar multiplication, proved in [30], is used strongly.

Definition A.0.3. ([30]) A homogeneous structure on a smooth manifold E is a smooth
action h : Ry x E — F of the multiplicative monoid R4 which is non-singular in the sense
that

d

ﬁ(h(t, e))|i=o =0 if and only if e € ho(E)

In the terminology of Grabowski and Rotkiewicz [30], every smooth action h :
Ry x E — F defines a projection hy : E — FE, whose image is a closed subset N = ho(FE).

We can define the vertical lift of the action V), : E — (TE)|ny by

% (h(t. €))lizo.

Vi(e) = a(

The vertical lift of the action h : Ry x £ — E may be thought of as an infinites-
imal action on E. Notice that at each point x € N, the vertical lift is given by Vj,(z) = 0,
so a homogeneous structure is an action such that the set of singularities of the vertical lift

is smallest as possible.

Example A.0.11. Let E — M be a vector bundle. The action by homoteties

h:iRyxE— E (A.6)
(t,e) — te, (A.7)
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endows F with a homogeneous structure.

It turns out that on a vector bundle E, the homogeneous structure given by ho-
moteties, determines completely the vector bundle structure on E. See [30] for a proof of

this result.

Theorem A.0.1. [30]
If h : Ry x E — FE is a homogeneous structure on a smooth manifold E, then

there exists a unique vector bundle structure on E such that h coincides with the homoteties

of E.

Notice that a morphism of vector bundles F; — FEj5 is just a map that com-
mutes with the corresponding homogeneous structures on F; and Fy. Let us see how this
characterization of vector bundle structures is useful to study Lie groupoids objects in the

category of vector bundles.

Proposition A.0.1. A VB-groupoid structure (H,G, E, M) is equivalent to homogeneous
structures h! and h¥ on H and E, respectively, which defines an action by groupoid endo-

morphisms

hH

=
T

E E

hE
Proof. The compatibility of (b1, h¥) with each of the groupoid structure mappings is equiv-
alent to saying that all the structure mappings defining the Lie groupoid H = E are vector
bundle morphisms over the corresponding structure mappings that define the groupoid
G = M. This is exactly the definition of a VB-groupoid.

O

A pair (R, h¥) of homogeneous structures given by groupoid endomorphisms will
be referred to as a multiplicative homogeneous structure. If we apply the Lie functor to

a multiplicative homogeneous structure (R, h¥) we obtain a homogeneous structure h*
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on AH given by Lie algebroid endomorphisms over h¥. Similarly, the following proposition
is proved along the same idea.

Proposition A.0.2. An LA-vector bundle structure (A, B, E, M) is equivalent to homo-
geneous structures h* and h® on A and E, respectively, which define an action by Lie

algebroid endomorphisms

hA

E E

hE

Now, in order to show the correspondence between source simply connected VB-
groupoids and integrable L£A-vector bundles, we can resort to the correspondence between
homogeneous structures given by groupoid endomorphisms and homogeneous structures
given by algebroid endomorphisms. The latter are related to the former via the Lie functor.
Also, as explained in [8], under standard connectedness assumptions it is possible to inte-
grate morphisms of VB-algebroids to morphisms of VB-groupoids. As a result, sub objects
in the category of integrable VB-algebroids can be integrated to sub objects in the category
of VB-groupoids.
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